Sample records for crossing dgp gravity

  1. On asymptotic behavior of anisotropic branes with induced gravity inspired by L(R) term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.ir

    2010-12-01

    The DGP brane-world scenario provides the accelerated expansion of the universe at late-time by large-distance modification of general relativity without any need for dark energy. Using the method in reference [33], we investigate the asymptotic behavior of homogeneous and anisotropic cosmologies on a generalization of DGP scenario where the effective theory of gravity induced on the brane is given by a L(R) term. We show that for a constant induced curvature term on the brane all Bianchi models except type IX isotropize, like general relativity, if the effective energy density and E{sub ab} term satisfy some energy conditions. Finally, wemore » compare the result of the model with the result of anisotropic DGP branes and general relativity.« less

  2. Towards precision constraints on gravity with the Effective Field Theory of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Bose, Benjamin; Koyama, Kazuya; Lewandowski, Matthew; Vernizzi, Filippo; Winther, Hans A.

    2018-04-01

    We compare analytical computations with numerical simulations for dark-matter clustering, in general relativity and in the normal branch of DGP gravity (nDGP). Our analytical frameword is the Effective Field Theory of Large-Scale Structure (EFTofLSS), which we use to compute the one-loop dark-matter power spectrum, including the resummation of infrared bulk displacement effects. We compare this to a set of 20 COLA simulations at redshifts z = 0, z = 0.5, and z = 1, and fit the free parameter of the EFTofLSS, called the speed of sound, in both ΛCDM and nDGP at each redshift. At one-loop at z = 0, the reach of the EFTofLSS is kreach ≈ 0.14 Mpc‑1 for both ΛCDM and nDGP. Along the way, we compare two different infrared resummation schemes and two different treatments of the time dependence of the perturbative expansion, concluding that they agree to approximately 1% over the scales of interest. Finally, we use the ratio of the COLA power spectra to make a precision measurement of the difference between the speeds of sound in ΛCDM and nDGP, and verify that this is proportional to the modification of the linear coupling constant of the Poisson equation.

  3. Anisotropic cosmologies in warped DGP braneworld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe

    2009-10-15

    The DGP braneworld scenario explains accelerated expansion of the Universe via leakage of gravity to extra dimensions without any need for dark energy. We study the behavior of homogeneous and anisotropic cosmologies on a warped DGP brane with perfect fluid as a matter source. Taking a conformally flat bulk, we obtain the general solutions of the field equations in an exact parametric form for Bianchi type I space-time with a pressureless fluid. Finally, the behavior of the observationally important parameters like shear, anisotropy, and the deceleration parameter is considered in detail. We find that isotropization can proceed slower in themore » warped DGP model than the generalized Randall-Sundrum II model.« less

  4. Theoretical accuracy in cosmological growth estimation

    NASA Astrophysics Data System (ADS)

    Bose, Benjamin; Koyama, Kazuya; Hellwing, Wojciech A.; Zhao, Gong-Bo; Winther, Hans A.

    2017-07-01

    We elucidate the importance of the consistent treatment of gravity-model specific nonlinearities when estimating the growth of cosmological structures from redshift space distortions (RSD). Within the context of standard perturbation theory (SPT), we compare the predictions of two theoretical templates with redshift space data from COLA (comoving Lagrangian acceleration) simulations in the normal branch of DGP gravity (nDGP) and general relativity (GR). Using COLA for these comparisons is validated using a suite of full N-body simulations for the same theories. The two theoretical templates correspond to the standard general relativistic perturbation equations and those same equations modeled within nDGP. Gravitational clustering nonlinear effects are accounted for by modeling the power spectrum up to one-loop order and redshift space clustering anisotropy is modeled using the Taruya, Nishimichi and Saito (TNS) RSD model. Using this approach, we attempt to recover the simulation's fiducial logarithmic growth parameter f . By assigning the simulation data with errors representing an idealized survey with a volume of 10 Gpc3/h3 , we find the GR template is unable to recover fiducial f to within 1 σ at z =1 when we match the data up to kmax=0.195 h /Mpc . On the other hand, the DGP template recovers the fiducial value within 1 σ . Further, we conduct the same analysis for sets of mock data generated for generalized models of modified gravity using SPT, where again we analyze the GR template's ability to recover the fiducial value. We find that for models with enhanced gravitational nonlinearity, the theoretical bias of the GR template becomes significant for stage IV surveys. Thus, we show that for the future large data volume galaxy surveys, the self-consistent modeling of non-GR gravity scenarios will be crucial in constraining theory parameters.

  5. Phantom-like behavior of a DGP-inspired Scalar-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozari, Kourosh; Azizi, Tahereh; Setare, M.R., E-mail: knozari@umz.ac.ir, E-mail: t.azizi@umz.ac.ir, E-mail: rezakord@ipm.ir

    2009-10-01

    We study the phantom-like behavior of a DGP-inspired braneworld scenario where curvature correction on the brane is taken into account. We include a possible modification of the induced gravity on the brane by incorporating higher order curvature terms of Gauss-Bonnet type. We investigate the cosmological implications of the model and we show that the normal branch of the scenario self-accelerates in this modified scenario without introducing any dark energy component. Also, a phantom-like behavior can be realized in this model without introducing any phantom field that suffers from serious difficulties such as violation of the null energy condition.

  6. Self-accelerating warped braneworlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela; Lykken, Joseph; Santiago, Jose

    2007-01-15

    Braneworld models with induced gravity have the potential to replace dark energy as the explanation for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze, and Porrati (DGP) demonstrated the existence of a 'self-accelerating' branch of background solutions, but suffered from the presence of ghosts. We present a new large class of braneworld models which generalize the DGP model. Our models have negative curvature in the bulk, allow a second brane, and have general brane tensions and localized curvature terms. We exhibit three different kinds of ghosts, associated to the graviton zero mode, the radion, andmore » the longitudinal components of massive graviton modes. The latter two species occur in the DGP model, for negative and positive brane tension, respectively. In our models, we find that the two kinds of DGP ghosts are tightly correlated with each other, but are not always linked to the feature of self-acceleration. Our models are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts, and perhaps for eliminating them altogether.« less

  7. Self-accelerating Warped Braneworlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela; Lykken, Joseph; /Fermilab

    2006-11-01

    Braneworld models with induced gravity have the potential to replace dark energy as the explanation for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze and Porrati (DGP) demonstrated the existence of a ''self-accelerating'' branch of background solutions, but suffered from the presence of ghosts. We present a new large class of braneworld models which generalize the DGP model. Our models have negative curvature in the bulk, allow a second brane, and have general brane tensions and localized curvature terms. We exhibit three different kinds of ghosts, associated to the graviton zero mode, the radion, andmore » the longitudinal components of massive graviton modes. The latter two species occur in the DGP model, for negative and positive brane tension respectively. In our models, we find that the two kinds of DGP ghosts are tightly correlated with each other, but are not always linked to the feature of self-acceleration. Our models are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts, and perhaps for eliminating them altogether.« less

  8. COLA with scale-dependent growth: applications to screened modified gravity models

    NASA Astrophysics Data System (ADS)

    Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo

    2017-08-01

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f(R) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps.

  9. Bulk scalar field in brane-worlds with induced gravity inspired by the L(R) term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, M.; Sepangi, H.R., E-mail: heydarifard@qom.ac.ir, E-mail: hr-sepangi@sbu.ac.ir

    2009-01-15

    We obtain the effective field equations in a brane-world scenario within the framework of a DGP model where the action on the brane is an arbitrary function of the Ricci scalar, L(R), and the bulk action includes a scalar field in the matter Lagrangian. We obtain the Friedmann equations and acceleration conditions in the presence of the bulk scalar field for the R{sup n} term in four-dimensional gravity.

  10. Nonminimal kinetic coupled gravity: Inflation on the warped DGP brane

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Parsiya, A.; Atazadeh, K.

    2016-03-01

    We consider the nonminimally kinetic coupled version of DGP brane model, where the kinetic term of the scalar field is coupled to the metric and Einstein tensor on the brane by a coupling constant ζ. We obtain the corresponding field equations, using the Friedmann-Robertson-Walker metric and the perfect fluid, and study the inflationary scenario to confront the numerical analysis of six typical scalar field potentials with the current observational results. We find that among the suggested potentials and coupling constants, subject to the e-folding N = 60, the potentials V (ϕ) = σϕ, V (ϕ) = σϕ2 and V (ϕ) = σϕ3 provide the best fits with both Planck+WP+highL data and Planck+WP+highL+BICEP2 data.

  11. Thin limit of the 6D Cascading DGP model

    NASA Astrophysics Data System (ADS)

    Sbisà, Fulvio

    2018-05-01

    A thin limit description of the 6D Cascading DGP model is derived, starting from a configuration where both the codimension-1 and the codimension-2 branes are thick. Postulating that the thicknesses of the two branes obey a hierarchic relation, the thin limit is executed in two steps. First the thin limit of the codimension-1 brane is executed, obtaining a system where a "ribbon" codimension-2 brane is embedded inside a thin codimension-1 brane with induced gravity, and then the thin limit of the ribbon brane is considered. By proposing a geometric ansatz on the limit configuration, the junction conditions which are to hold at the thin codimension-2 brane are derived. The latters are fully non-perturbative and covariant and, together with the Israel junction conditions at the codimension-1 brane and the Einstein equations in the bulk, constitute the looked-for thin limit formulation of the 6D Cascading DGP model. It is commented on how wide is the class of thin source configurations which can be placed on the thin codimension-2 brane.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winther, Hans A.; Koyama, Kazuya; Wright, Bill S.

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f ( R ) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative tomore » ΛCDM even when using a fairly small number of COLA time steps.« less

  13. Holographic renormalization group and cosmology in theories with quasilocalized gravity

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John

    2001-03-01

    We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations.

  14. Holographic renormalization group and cosmology in theories with quasilocalized gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.

    2001-03-15

    We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowskimore » space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations.« less

  15. Testing gravity using large-scale redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Bertacca, Daniele; Pietrobon, Davide; Schmidt, Fabian; Samushia, Lado; Bartolo, Nicola; Doré, Olivier; Matarrese, Sabino; Percival, Will J.

    2013-11-01

    We use luminous red galaxies from the Sloan Digital Sky Survey (SDSS) II to test the cosmological structure growth in two alternatives to the standard Λ cold dark matter (ΛCDM)+general relativity (GR) cosmological model. We compare observed three-dimensional clustering in SDSS Data Release 7 (DR7) with theoretical predictions for the standard vanilla ΛCDM+GR model, unified dark matter (UDM) cosmologies and the normal branch Dvali-Gabadadze-Porrati (nDGP). In computing the expected correlations in UDM cosmologies, we derive a parametrized formula for the growth factor in these models. For our analysis we apply the methodology tested in Raccanelli et al. and use the measurements of Samushia et al. that account for survey geometry, non-linear and wide-angle effects and the distribution of pair orientation. We show that the estimate of the growth rate is potentially degenerate with wide-angle effects, meaning that extremely accurate measurements of the growth rate on large scales will need to take such effects into account. We use measurements of the zeroth and second-order moments of the correlation function from SDSS DR7 data and the Large Suite of Dark Matter Simulations (LasDamas), and perform a likelihood analysis to constrain the parameters of the models. Using information on the clustering up to rmax = 120 h-1 Mpc, and after marginalizing over the bias, we find, for UDM models, a speed of sound c∞ ≤ 6.1e-4, and, for the nDGP model, a cross-over scale rc ≥ 340 Mpc, at 95 per cent confidence level.

  16. Brane universes with Gauss-Bonnet-induced-gravity

    NASA Astrophysics Data System (ADS)

    Brown, Richard A.

    2007-04-01

    The DGP brane world model allows us to get the observed late time acceleration via modified gravity, without the need for a “dark energy” field. This can then be generalised by the inclusion of high energy terms, in the form of a Gauss-Bonnet bulk. This is the basis of the Gauss-Bonnet-Induced-Gravity (GBIG) model explored here with both early and late time modifications to the cosmological evolution. Recently the simplest GBIG models (Minkowski bulk and no brane tension) have been analysed. Two of the three possible branches in these models start with a finite density “Big-Bang” and with late time acceleration. Here we present a comprehensive analysis of more general models where we include a bulk cosmological constant and brane tension. We show that by including these factors it is possible to have late time phantom behaviour.

  17. Dynamic Gaming Platform (DGP)

    DTIC Science & Technology

    2009-04-01

    GAMING PLATFORM (DGP) Lockheed Martin Corporation...YYYY) APR 09 2. REPORT TYPE Final 3. DATES COVERED (From - To) Jul 07 – Mar 09 4. TITLE AND SUBTITLE DYNAMIC GAMING PLATFORM (DGP) 5a...CMU Carnegie Mellon University DGP Dynamic Gaming Platform GA Genetic Algorithm IARPA Intelligence Advanced Research Projects Activity LM ATL Lockheed Martin Advanced Technology Laboratories PAINT ProActive INTelligence

  18. Protein thermal stabilization by charged compatible solutes: Computational studies in rubredoxin from Desulfovibrio gigas.

    PubMed

    Micaelo, Nuno M; Victor, Bruno L; Soares, Cláudio M

    2008-08-01

    Molecular dynamics simulation studies of rubredoxin from Desulfovibrio gigas (RDG) were used to characterize the molecular mechanism of thermal stabilization by the compatible solute (CS) diglycerol-phospate (DGP). DGP is a negatively charged CS that accumulates under salt stress in Archaeoglobus fulgidus. Experimental results show that a 100 mM DGP solution exerts a strong protection effect in the half-life of RDG at 363 K (Lamosa et al., Appl Environ Microbiol 2000;66:1974-1979). RDG was simulated in four aqueous solutions at 300 and 363 K: pure aqueous media, 100 mM DGP, 100 mM NaCl, and 500 mM DGP. Our work shows that the 100 mM DGP solution is able to maintain the average protein structure when the temperature is increased, preventing the occurrence of large-scale deviation of a mobile loop involved in the first steps of RDG unfolding. The molecular mechanism of thermal denaturation protection by DGP seems to involve the direct interaction between the protein and the CS by hydrogen bond interactions near the mobile loop. Several clusters of DGP molecules are formed and preferentially localized at neutral electrostatic regions of the surface. The increase of DGP concentration to 500 mM did not yield better stabilization of the protein suggesting that the thermal protective role of this charged CS is achieved at low concentrations, as shown experimentally. (c) 2008 Wiley-Liss, Inc.

  19. Big differences in primary care celiac disease serological markers request in Spain.

    PubMed

    Salinas, Maria; López-Garrigós, Maite; Flores, Emilio; Leiva-Salinas, Carlos

    2017-02-15

    Celiac disease (CD) prevalence is increasing but the disorder remains undiagnosed. The study compares CD serology markers requested by General Practitioners (GPs) over time and geographical areas. The aim of the current research is to assess the inter-practice and temporal variability in the request of CD serology markers by GPs in Spain, and the differences between regions. A cross-sectional study was conducted enrolling Spanish clinical laboratories. Primary care CD serology markers request in 2010, 2012 and 2014 from 15 autonomous communities (AACC), with more participants was reported. Test-utilization rates were calculated (tissue transglutaminase IgA antibodies (tTG-IgA) and deaminated peptide gliadine IgA antibodies (DGP-IgA) per 1000 inhabitants), and also the ratio of both tests request (DGP-IgA /tTG-IgA). The request of tTG-IgA per 1000 inhabitants increased significantly along years (from 3.99 to 5.90 (P < 0.001)). The demand of DGP-IgA per 1000 inhabitants was maintained in 2010 and 2012 (0.68 and 0.6), and decreased in 2014 (0.35) (P = 0.927). DGP-IgA /tTG-IgA diminished over time (from 0.16 to 0.06 (P = 0.548)), and in the 2014 edition, there was a significant regional difference, ranging from 0.01 to 0.57 (P < 0.001). The variability in the request in CD serology markers emphasizes the need of inter-regional cooperation to develop strategies to optimize the use of laboratory tests.

  20. Cosmological perturbations in the DGP braneworld: Numeric solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Antonio; Koyama, Kazuya; Silva, Fabio P.

    2008-04-15

    We solve for the behavior of cosmological perturbations in the Dvali-Gabadadze-Porrati (DGP) braneworld model using a new numerical method. Unlike some other approaches in the literature, our method uses no approximations other than linear theory and is valid on large scales. We examine the behavior of late-universe density perturbations for both the self-accelerating and normal branches of DGP cosmology. Our numerical results can form the basis of a detailed comparison between the DGP model and cosmological observations.

  1. Antibodies against deamidated gliadin peptides identify adult coeliac disease patients negative for antibodies against endomysium and tissue transglutaminase.

    PubMed

    Dahle, C; Hagman, A; Ignatova, S; Ström, M

    2010-07-01

    This study was done to evaluate the diagnostic utility of antibodies against deamidated gliadin peptides compared to traditional markers for coeliac disease. To evaluate diagnostic utility of antibodies against deamidated gliadin peptide (DGP). Sera from 176 adults, referred for endoscopy without previous analysis of antibodies against tissue transglutaminase (tTG) or endomysium (EmA), were retrospectively analysed by ELISAs detecting IgA/IgG antibodies against DGP or a mixture of DGP and tTG, and compared with IgA-tTG and EmA. Seventy-nine individuals were diagnosed with coeliac disease. Receiver operating characteristic analyses verified the manufacturers' cut-off limits except for IgA/IgG-DGP/tTG. In sera without IgA deficiency, the sensitivity was higher for IgA/IgG-DGP (0.85-0.87) compared with IgA-tTg (0.76) and EmA (0.61). All tests showed high specificity (0.95-1.00). Eighteen coeliac disease-sera were negative regarding IgA-tTG, nine of which were positive for IgA/IgG-DGP. Sera from coeliac disease-patients >70 years were more often negative for IgA-tTG (50%) and IgA/IgG-DGP (36%) than younger patients (15% and 8% respectively) (P < 0.01). Three of the four IgA-deficient patients were positive in the IgA/IgG-DGP assay. In this study of patients unselected regarding IgA-tTg/EmA, thus unbiased in this respect, IgA/IgG-DGP identified adult coeliac disease patients negative for antibodies against endomysium and tissue transglutaminase. Serology is often negative in elderly patients with coeliac disease; a small bowel biopsy should therefore be performed generously before coeliac disease is excluded.

  2. Conjoined constraints on modified gravity from the expansion history and cosmic growth

    NASA Astrophysics Data System (ADS)

    Basilakos, Spyros; Nesseris, Savvas

    2017-09-01

    In this paper we present conjoined constraints on several cosmological models from the expansion history H (z ) and cosmic growth f σ8. The models we study include the CPL w0wa parametrization, the holographic dark energy (HDE) model, the time-varying vacuum (ΛtCDM ) model, the Dvali, Gabadadze and Porrati (DGP) and Finsler-Randers (FRDE) models, a power-law f (T ) model, and finally the Hu-Sawicki f (R ) model. In all cases we perform a simultaneous fit to the SnIa, CMB, BAO, H (z ) and growth data, while also following the conjoined visualization of H (z ) and f σ8 as in Linder (2017). Furthermore, we introduce the figure of merit (FoM) in the H (z )-f σ8 parameter space as a way to constrain models that jointly fit both probes well. We use both the latest H (z ) and f σ8 data, but also LSST-like mocks with 1% measurements, and we find that the conjoined method of constraining the expansion history and cosmic growth simultaneously is able not only to place stringent constraints on these parameters, but also to provide an easy visual way to discriminate cosmological models. Finally, we confirm the existence of a tension between the growth-rate and Planck CMB data, and we find that the FoM in the conjoined parameter space of H (z )-f σ8(z ) can be used to discriminate between the Λ CDM model and certain classes of modified gravity models, namely the DGP and f (T ).

  3. Gravitational baryogenesis in DGP brane cosmology

    NASA Astrophysics Data System (ADS)

    Atazadeh, K.

    2018-06-01

    We consider the imbalance of matter and antimatter by using a gravitational baryogenesis mechanism in the background of Dvali-Gabadadze-Porrati (DGP) brane cosmology. By taking into account a flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric in the DGP brane model, we find that for a radiation dominated universe, w=1/3, the ratio of baryon number density to entropy from the gravitational baryogenesis is not zero, contrary to ordinary general relativity. Also, we study the ratio of baryon number density to entropy against the observational constraints in DGP cosmology.

  4. Colonic irrigation for defecation disorders after dynamic graciloplasty.

    PubMed

    Koch, Sacha M; Uludağ, Ozenç; El Naggar, Kadri; van Gemert, Wim G; Baeten, Cor G

    2008-02-01

    Dynamic graciloplasty (DGP) improves anal continence and quality of life for most patients. However, in some patients, DGP fails and fecal incontinence is unsolved or only partially improved. Constipation is also a significant problem after DGP, occurring in 13-90%. Colonic irrigation can be considered as an additional or salvage treatment for defecation disorders after unsuccessful or partially successful DGP. In this study, the effectiveness of colonic irrigation for the treatment of persistent fecal incontinence and/or constipation after DGP is investigated. Patients with defecation disorders after DGP visiting the outpatient clinic of the University Hospital Maastricht were selected for colonic irrigation as additional therapy or salvage therapy in the period between January 1999 and June 2003. The Biotrol(R) Irrimatic pump or the irrigation bag was used for colonic irrigation. Relevant physical and medical history was collected. The patients were asked to fill out a detailed questionnaire about colonic irrigation. Forty-six patients were included in the study with a mean age of 59.3 +/- 12.4 years (80% female). On average, the patients started the irrigation 21.39 +/- 38.77 months after the DGP. Eight patients started irrigation before the DGP. Fifty-two percent of the patients used the irrigation as additional therapy for fecal incontinence, 24% for constipation, and 24% for both. Irrigation was usually performed in the morning. The mean frequency of irrigation was 0.90 +/- 0.40 times per day. The mean amount of water used for the irrigation was 2.27 +/- 1.75 l with a mean duration of 39 +/- 23 min. Four patients performed antegrade irrigation through a colostomy or appendicostomy, with good results. Overall, 81% of the patients were satisfied with the irrigation. Thirty-seven percent of the patients with fecal incontinence reached (pseudo-)continence, and in 30% of the patients, the constipation completely resolved. Side effects of the irrigation were reported in 61% of the patients: leakage of water after irrigation, abdominal cramps, and distended abdomen. Seven (16%) patients stopped the rectal irrigation. Colonic irrigation is an effective alternative for the treatment of persistent fecal incontinence after DGP and/or recurrent or onset constipation additional to unsuccessful or (partially) successful DGP.

  5. The unassigned distance geometry problem

    DOE PAGES

    Duxbury, P. M.; Granlund, L.; Gujarathi, S. R.; ...

    2015-11-19

    Studies of distance geometry problems (DGP) have focused on cases where the vertices at the ends of all or most of the given distances are known or assigned, which we call assigned distance geometry problems (aDGPs). In this contribution we consider the unassigned distance geometry problem (uDGP) where the vertices associated with a given distance are unknown, so the graph structure has to be discovered. uDGPs arises when attempting to find the atomic structure of molecules and nanoparticles using X-ray or neutron diffraction data from non-crystalline materials. Rigidity theory provides a useful foundation for both aDGPs and uDGPs, though itmore » is restricted to generic realizations of graphs, and key results are summarized. Conditions for unique realization are discussed for aDGP and uDGP cases, build-up algorithms for both cases are described and experimental results for uDGP are presented.« less

  6. Educators Who Believe: Understanding the Enthusiasm of Teachers Who Use Digital Games in the Classroom

    ERIC Educational Resources Information Center

    Stieler-Hunt, Colleen; Jones, Christian M.

    2015-01-01

    This study used qualitative methods to explore why some educators embrace the use of digital game-play (DGP) in the classroom. The results indicated that these teachers had a very strong belief that DGP could be beneficial for learning which stemmed from experiencing their own form of subjective success with using DGP in the classroom, availing…

  7. Colonic irrigation for defecation disorders after dynamic graciloplasty

    PubMed Central

    Koch, Sacha M.; Uludağ, Özenç; El Naggar, Kadri; van Gemert, Wim G.

    2007-01-01

    Background and aims Dynamic graciloplasty (DGP) improves anal continence and quality of life for most patients. However, in some patients, DGP fails and fecal incontinence is unsolved or only partially improved. Constipation is also a significant problem after DGP, occurring in 13–90%. Colonic irrigation can be considered as an additional or salvage treatment for defecation disorders after unsuccessful or partially successful DGP. In this study, the effectiveness of colonic irrigation for the treatment of persistent fecal incontinence and/or constipation after DGP is investigated. Materials and methods Patients with defecation disorders after DGP visiting the outpatient clinic of the University Hospital Maastricht were selected for colonic irrigation as additional therapy or salvage therapy in the period between January 1999 and June 2003. The Biotrol® Irrimatic pump or the irrigation bag was used for colonic irrigation. Relevant physical and medical history was collected. The patients were asked to fill out a detailed questionnaire about colonic irrigation. Results Forty-six patients were included in the study with a mean age of 59.3 ± 12.4 years (80% female). On average, the patients started the irrigation 21.39 ± 38.77 months after the DGP. Eight patients started irrigation before the DGP. Fifty-two percent of the patients used the irrigation as additional therapy for fecal incontinence, 24% for constipation, and 24% for both. Irrigation was usually performed in the morning. The mean frequency of irrigation was 0.90 ± 0.40 times per day. The mean amount of water used for the irrigation was 2.27 ± 1.75 l with a mean duration of 39 ± 23 min. Four patients performed antegrade irrigation through a colostomy or appendicostomy, with good results. Overall, 81% of the patients were satisfied with the irrigation. Thirty-seven percent of the patients with fecal incontinence reached (pseudo-)continence, and in 30% of the patients, the constipation completely resolved. Side effects of the irrigation were reported in 61% of the patients: leakage of water after irrigation, abdominal cramps, and distended abdomen. Seven (16%) patients stopped the rectal irrigation. Conclusion Colonic irrigation is an effective alternative for the treatment of persistent fecal incontinence after DGP and/or recurrent or onset constipation additional to unsuccessful or (partially) successful DGP. PMID:17896111

  8. A synthetic diosgenin primary amine derivative attenuates LPS-stimulated inflammation via inhibition of NF-κB and JNK MAPK signaling in microglial BV2 cells.

    PubMed

    Cai, Bangrong; Seong, Kyung-Joo; Bae, Sun-Woong; Chun, Changju; Kim, Won-Jae; Jung, Ji-Yeon

    2018-06-08

    Diosgenin, a precursor of steroid hormones in plants, is known to exhibit diverse pharmacological activities including anti-inflammatory properties. In this study, (3β, 25R)‑spirost‑5‑en‑3‑oxyl (2‑((2((2‑aminoethyl)amino)ethyl)amino)ethyl) carbamate (DGP), a new synthetic diosgenin derivative incorporating primary amine was used to investigate its anti-inflammatory effects and underlying mechanisms of action in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. Pretreatment with DGP resulted in significant inhibition of nitric oxide (NO) synthesis, and down-regulation of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated microglial BV2 cells. In addition, DGP decreased the production of reactive oxygen species (ROS) and pro-inflammatory cytokines such as interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α). The inhibitory effects of DGP on these inflammatory mediators in LPS-stimulated microglial BV2 cells were regulated by NF-κB signaling through blocking p65 nuclear translocation and NF-κB p65/DNA binding activity. DGP also blocked the phosphorylation of c-Jun amino-terminal kinase (JNK), but not p38 kinase or extracellular signal-regulated kinases (ERK). The NF-κB inhibitor JSH-23 and JNK-specific inhibitor SP600125 significantly decreased NO production and IL-6 release in LPS-stimulated BV2 cells, respectively. The overall results demonstrate that DGP has anti-inflammatory effects on LPS-stimulated BV2 cells via inhibition of NF-κB and JNK activation, suggesting that DGP is a potential prophylactic agent in various neurodegenerative disorders. Copyright © 2018. Published by Elsevier B.V.

  9. Revealing modified gravity signals in matter and halo hierarchical clustering

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Koyama, Kazuya; Bose, Benjamin; Zhao, Gong-Bo

    2017-07-01

    We use a set of N-body simulations employing a modified gravity (MG) model with Vainshtein screening to study matter and halo hierarchical clustering. As test-case scenarios we consider two normal branch Dvali-Gabadadze-Porrati (nDGP) gravity models with mild and strong growth rate enhancement. We study higher-order correlation functions ξn(R ) up to n =9 and associated reduced cumulants Sn(R )≡ξn(R )/σ (R )2n -2. We find that the matter probability distribution functions are strongly affected by the fifth force on scales up to 50 h-1 Mpc , and the deviations from general relativity (GR) are maximized at z =0 . For reduced cumulants Sn, we find that at small scales R ≤6 h-1 Mpc the MG is characterized by lower values, with the deviation growing from 7% in the reduced skewness up to even 40% in S5. To study the halo clustering we use a simple abundance matching and divide haloes into thee fixed number density samples. The halo two-point functions are weakly affected, with a relative boost of the order of a few percent appearing only at the smallest pair separations (r ≤5 h-1 Mpc ). In contrast, we find a strong MG signal in Sn(R )'s, which are enhanced compared to GR. The strong model exhibits a >3 σ level signal at various scales for all halo samples and in all cumulants. In this context, we find that the reduced kurtosis to be an especially promising cosmological probe of MG. Even the mild nDGP model leaves a 3 σ imprint at small scales R ≤3 h-1 Mpc , while the stronger model deviates from a GR signature at nearly all scales with a significance of >5 σ . Since the signal is persistent in all halo samples and over a range of scales, we advocate that the reduced kurtosis estimated from galaxy catalogs can potentially constitute a strong MG-model discriminatory as well as GR self-consistency test.

  10. Test of Gravity on Large Scales with Weak Gravitational Lensing and Clustering Measurements of SDSS Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle; Mandelbaum, R.; Seljak, U.; Gunn, J.; Lombriser, L.

    2009-01-01

    We perform a test of gravity on large scales (5-50 Mpc/h) using 70,000 luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) DR7 with redshifts 0.16

  11. Analysis of dark energy models in DGP braneworld

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul

    2015-12-01

    In this paper, we reconsider the accelerated expansion phenomenon in the DGP braneworld scenario which leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch (ɛ= +1) which is not more attractive model. Thus, we assume the DGP braneworld scenario with (ɛ= -1) and also interacting Hubble and event horizons pilgrim dark energy models. We extract various cosmological parameters in this scenario and displayed our results with respect to redshift parameter. It is found that the ranges of Hubble parameter are coincided with observational results. The equation of state parameter lies within the suggested ranges of different observational schemes. The squared speed of sound shows stability for all present models in DGP braneworld scenario. The ω_{\\vartheta}-ω'_{\\vartheta} planes lie in the range (ω_{\\vartheta}=-1.13^{+0.24}_{-0.25},ω'_{\\vartheta}<1.32) which has been obtained through different observational schemes. It is remarked that our results of various cosmological parameters shows consistency with different observational data like Planck, WP, BAO, H0 and SNLS.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreira, Alexandre; Bose, Sownak; Li, Baojiu

    We study the imprints that theories of gravity beyond GR can leave on the lensing signal around line of sight directions that are predominantly halo-underdense (called troughs) and halo-overdense. To carry out our investigations, we consider the normal branch of DGP gravity, as well as a phenomenological variant thereof that directly modifies the lensing potential. The predictions of these models are obtained with N-body simulation and ray-tracing methods using the ECOSMOG and Ray-Ramses codes. We analyse the stacked lensing convergence profiles around the underdense and overdense lines of sight, which exhibit, respectively, a suppression and a boost w.r.t. the meanmore » in the field of view. The modifications to gravity in these models strengthen the signal w.r.t. ΛCDM in a scale-independent way. We find that the size of this effect is the same for both underdense and overdense lines of sight, which implies that the density field along the overdense directions on the sky is not sufficiently evolved to trigger the suppression effects of the screening mechanism. These results are robust to variations in the minimum halo mass and redshift ranges used to identify the lines of sight, as well as to different line of sight aperture sizes and criteria for their underdensity and overdensity thresholds.« less

  13. The integrated bispectrum in modified gravity theories

    NASA Astrophysics Data System (ADS)

    Munshi, Dipak

    2017-01-01

    Gravity-induced non-Gaussianity can provide important clues to Modified Gravity (MG) Theories. Several recent studies have suggested using the Integrated Bispectrum (IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the IB, we include redshift-space distortions to study a class of (parametrised) MG theories that include the string-inspired Dvali, Gabadadze & Porrati (DGP) model. Various contributions from redshift-space distortions are derived in a transparent manner, and squeezed contributions from these terms are derived separately. Results are obtained using the Zel'dovich Approximation (ZA). Results are also presented for projected surveys (2D). We use the Press-Schechter (PS) and Sheth-Tormen (ST) mass functions to compute the IB for collapsed objects that can readily be extended to peak-theory based approaches. The cumulant correlators (CCs) generalise the ordinary cumulants and are known to probe collapsed configurations of higher order correlation functions. We generalise the concept of CCs to halos of different masses. We also introduce a generating function based approach to analyse more general non-local biasing models. The Fourier representations of the CCs, the skew-spectrum, or the kurt-spctra are discussed in this context. The results are relevant for the study of the Minkowski Functionals (MF) of collapsed tracers in redshift-space.

  14. The integrated bispectrum in modified gravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munshi, Dipak, E-mail: D.Munshi@sussex.ac.uk

    2017-01-01

    Gravity-induced non-Gaussianity can provide important clues to Modified Gravity (MG) Theories. Several recent studies have suggested using the Integrated Bispectrum (IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the IB, we include redshift-space distortions to study a class of (parametrised) MG theories that include the string-inspired Dvali, Gabadadze and Porrati (DGP) model. Various contributions from redshift-space distortions are derived in a transparent manner, and squeezed contributions from these terms are derived separately. Results are obtained using the Zel'dovich Approximation (ZA). Results are also presented for projected surveys (2D). We use the Press-Schechter (PS) and Sheth-Tormenmore » (ST) mass functions to compute the IB for collapsed objects that can readily be extended to peak-theory based approaches. The cumulant correlators (CCs) generalise the ordinary cumulants and are known to probe collapsed configurations of higher order correlation functions. We generalise the concept of CCs to halos of different masses. We also introduce a generating function based approach to analyse more general non-local biasing models. The Fourier representations of the CCs, the skew-spectrum, or the kurt-spctra are discussed in this context. The results are relevant for the study of the Minkowski Functionals (MF) of collapsed tracers in redshift-space.« less

  15. Large scale structure formation of the normal branch in the DGP brane world model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yong-Seon

    2008-06-15

    In this paper, we study the large scale structure formation of the normal branch in the DGP model (Dvail, Gabadadze, and Porrati brane world model) by applying the scaling method developed by Sawicki, Song, and Hu for solving the coupled perturbed equations of motion of on-brane and off-brane. There is a detectable departure of perturbed gravitational potential from the cold dark matter model with vacuum energy even at the minimal deviation of the effective equation of state w{sub eff} below -1. The modified perturbed gravitational potential weakens the integrated Sachs-Wolfe effect which is strengthened in the self-accelerating branch DGP model.more » Additionally, we discuss the validity of the scaling solution in the de Sitter limit at late times.« less

  16. Galileon as a local modification of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolis, Alberto; Rattazzi, Riccardo; Trincherini, Enrico

    2009-03-15

    In the Dvali-Gabadadze-Porrati (DGP) model, the 'self-accelerating' solution is plagued by a ghost instability, which makes the solution untenable. This fact, as well as all interesting departures from general relativity (GR), are fully captured by a four-dimensional effective Lagrangian, valid at distances smaller than the present Hubble scale. The 4D effective theory involves a relativistic scalar {pi}, universally coupled to matter and with peculiar derivative self-interactions. In this paper, we study the connection between self-acceleration and the presence of ghosts for a quite generic class of theories that modify gravity in the infrared. These theories are defined as those thatmore » at distances shorter than cosmological, reduce to a certain generalization of the DGP 4D effective theory. We argue that for infrared modifications of GR locally due to a universally coupled scalar, our generalization is the only one that allows for a robust implementation of the Vainshtein effect--the decoupling of the scalar from matter in gravitationally bound systems--necessary to recover agreement with solar-system tests. Our generalization involves an internal Galilean invariance, under which {pi}'s gradient shifts by a constant. This symmetry constrains the structure of the {pi} Lagrangian so much so that in 4D there exist only five terms that can yield sizable nonlinearities without introducing ghosts. We show that for such theories in fact there are ''self-accelerating'' de Sitter solutions with no ghostlike instabilities. In the presence of compact sources, these solutions can support spherically symmetric, Vainshtein-like nonlinear perturbations that are also stable against small fluctuations. We investigate a possible infrared completion of these theories at scales of order of the Hubble horizon, and larger. There are however some features of our theories that may constitute a problem at the theoretical or phenomenological level: the presence of superluminal excitations; the extreme subluminality of other excitations, which makes the quasistatic approximation for certain solar-system observables unreliable due to Cherenkov emission; the very low strong-interaction scale for {pi}{pi} scatterings.« less

  17. Measuring Efficiency of Tunisian Schools in the Presence of Quasi-Fixed Inputs: A Bootstrap Data Envelopment Analysis Approach

    ERIC Educational Resources Information Center

    Essid, Hedi; Ouellette, Pierre; Vigeant, Stephane

    2010-01-01

    The objective of this paper is to measure the efficiency of high schools in Tunisia. We use a statistical data envelopment analysis (DEA)-bootstrap approach with quasi-fixed inputs to estimate the precision of our measure. To do so, we developed a statistical model serving as the foundation of the data generation process (DGP). The DGP is…

  18. Is a wild mammal kept and reared in captivity still a wild animal?

    PubMed

    Künzl, Christine; Kaiser, Sylvia; Meier, Edda; Sachser, Norbert

    2003-01-01

    This study compared domestic guinea pigs (Cavia aperea f. porcellus; DGP) and two different populations of the wild cavy (Cavia aperea), its ancestor, to examine whether rearing of wild mammals in captivity affects their behavior and physiological stress responses. One population of wild cavies consisted of wild-trapped animals and their first laboratory-reared offspring (WGP-1). The animals of the other population were reared in captivity for about 30 generations (WGP-30). The spontaneous behavior of each of six groups of WGP-1 and WGP-30 and nine groups of DGP, each consisting of one adult male and two adult females, was analyzed quantitatively. Blood samples of the males were taken to determine cortisol, epinephrine, and norepinephrine concentrations. In addition, the exploratory behavior of 60-day-old male WGP-1, WGP-30, and DGP was investigated in an exploration apparatus. The domesticated animals displayed significantly less aggression, but significantly more sociopositive and male courtship behavior than their wild ancestors. In addition, DGP were much less attentive to their physical environment. Surprisingly, no behavioral difference was found between WGP-1 and WGP-30. Basal cortisol concentrations did not differ between wild and domestic guinea pigs. Catecholamine concentrations, however, as well as the challenge values of cortisol, were distinctly reduced in the DGP. WGP-1 and WGP-30 did not differ with respect to their endocrine stress responses. In the exploration apparatus both forms of wild cavies were much more explorative than the domestic animals. These data suggest that the long-term breeding and rearing of wild guinea pigs in captivity do not result in significant changes in behavior and hormonal stress responses. It appears to take much longer periods of time and artificial selection by humans to bring about characters of domestication in wild animals.

  19. Parametrizing growth in dark energy and modified gravity models

    NASA Astrophysics Data System (ADS)

    Resco, Miguel Aparicio; Maroto, Antonio L.

    2018-02-01

    It is well known that an extremely accurate parametrization of the growth function of matter density perturbations in Λ CDM cosmology, with errors below 0.25%, is given by f (a )=Ωmγ(a ) with γ ≃0.55 . In this work, we show that a simple modification of this expression also provides a good description of growth in modified gravity theories. We consider the model-independent approach to modified gravity in terms of an effective Newton constant written as μ (a ,k )=Geff/G and show that f (a )=β (a )Ωmγ(a ) provides fits to the numerical solutions with similar accuracy to that of Λ CDM . In the time-independent case with μ =μ (k ), simple analytic expressions for β (μ ) and γ (μ ) are presented. In the time-dependent (but scale-independent) case μ =μ (a ), we show that β (a ) has the same time dependence as μ (a ). As an example, explicit formulas are provided in the Dvali-Gabadadze-Porrati (DGP) model. In the general case, for theories with μ (a ,k ), we obtain a perturbative expansion for β (μ ) around the general relativity case μ =1 which, for f (R ) theories, reaches an accuracy below 1%. Finally, as an example we apply the obtained fitting functions in order to forecast the precision with which future galaxy surveys will be able to measure the μ parameter.

  20. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation.

    PubMed

    Chen, Xingwei; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Zhang, Yanhui; Fan, Yating; Huang, Yanqing; Liu, Yan

    2012-11-01

    The purpose of this study was to evaluate the feasibility of in situ thermosensitive hydrogel based on chitosan in combination with disodium α-d-Glucose 1-phosphate (DGP) for ocular drug delivery system. Aqueous solution of chitosan/DGP underwent sol-gel transition as temperature increased which was flowing sol at room temperature and then turned into non-flowing hydrogel at physiological temperature. The properties of gels were characterized regarding gelation time, gelation temperature, and morphology. The sol-to-gel phase transition behaviors were affected by the concentrations of chitosan, DGP and the model drug levocetirizine dihydrochloride (LD). The developed hydrogel presented a characteristic of a rapid release at the initial period followed by a sustained release and remarkably enhanced the cornea penetration of LD. The results of ocular irritation demonstrated the excellent ocular tolerance of the hydrogel. The ocular residence time for the hydrogel was significantly prolonged compared with eye drops. The drug-loaded hydrogel produced more effective anti-allergic conjunctivitis effects compared with LD aqueous solution. These results showed that the chitosan/DGP thermosensitive hydrogel could be used as an ideal ocular drug delivery system in terms of the suitable sol-gel transition temperature, mild pH environment in the hydrogel as well as the organic solvent free.

  1. Traversable braneworld wormholes supported by astrophysical observations

    NASA Astrophysics Data System (ADS)

    Wang, Deng; Meng, Xin-He

    2018-02-01

    In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space-time configurations in the Dvali-Gabadadze-Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space-time structure will open in terms of the 2 σ confidence level when we utilize the joint constraints supernovae (SNe) Ia + observational Hubble parameter data (OHD) + Planck + gravitational wave (GW) and z < 0:2874. Furthermore, we obtain several model-independent conclusions, such as (i) the exotic matter threading the wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space-time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space-time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.

  2. Cosmology on a cosmic ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedermann, Florian; Schneider, Robert, E-mail: florian.niedermann@physik.lmu.de, E-mail: robert.bob.schneider@physik.uni-muenchen.de

    We derive the modified Friedmann equations for a generalization of the Dvali-Gabadadze-Porrati (DGP) model in which the brane has one additional compact dimension. The main new feature is the emission of gravitational waves into the bulk. We study two classes of solutions: first, if the compact dimension is stabilized, the waves vanish and one exactly recovers DGP cosmology. However, a stabilization by means of physical matter is not possible for a tension-dominated brane, thus implying a late time modification of 4D cosmology different from DGP. Second, for a freely expanding compact direction, we find exact attractor solutions with zero 4Dmore » Hubble parameter despite the presence of a 4D cosmological constant. The model hence constitutes an explicit example of dynamical degravitation at the full nonlinear level. Without stabilization, however, there is no 4D regime and the model is ruled out observationally, as we demonstrate explicitly by comparing to supernova data.« less

  3. k-essence in the DGP brane-world cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-Lopez, Mariam; Chimento, Luis P.

    We analyze a Dvali-Gabadadze-Porrati (DGP) brane filled with a k-essence field and assume the k field evolving linearly with the cosmic time of the brane. We then solve analytically the Friedmann equation and deduce the different behavior of the brane at the low- and the high-energy regimes. The asymptotic behavior can be quite different involving accelerating branes, big bangs, big crunches, big rips, or quiescent singularities. The latter correspond to a type of sudden singularity.

  4. Improved parametrization of the growth index for dark energy and DGP models

    NASA Astrophysics Data System (ADS)

    Jing, Jiliang; Chen, Songbai

    2010-03-01

    We propose two improved parameterized form for the growth index of the linear matter perturbations: (I) γ(z)=γ0+(γ∞-γ0)z/z+1 and (II) γ(z)=γ0+γ1 z/z+1 +(γ∞-γ1-γ0)(. With these forms of γ(z), we analyze the accuracy of the approximation the growth factor f by Ωmγ(z) for both the wCDM model and the DGP model. For the first improved parameterized form, we find that the approximation accuracy is enhanced at the high redshifts for both kinds of models, but it is not at the low redshifts. For the second improved parameterized form, it is found that Ωmγ(z) approximates the growth factor f very well for all redshifts. For chosen α, the relative error is below 0.003% for the ΛCDM model and 0.028% for the DGP model when Ωm=0.27. Thus, the second improved parameterized form of γ(z) should be useful for the high precision constraint on the growth index of different models with the observational data. Moreover, we also show that α depends on the equation of state w and the fractional energy density of matter Ωm0, which may help us learn more information about dark energy and DGP models.

  5. Optimizing future imaging survey of galaxies to confront dark energy and modified gravity models

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Parkinson, David; Hamana, Takashi; Nichol, Robert C.; Suto, Yasushi

    2007-07-01

    We consider the extent to which future imaging surveys of galaxies can distinguish between dark energy and modified gravity models for the origin of the cosmic acceleration. Dynamical dark energy models may have similar expansion rates as models of modified gravity, yet predict different growth of structure histories. We parametrize the cosmic expansion by the two parameters, w0 and wa, and the linear growth rate of density fluctuations by Linder’s γ, independently. Dark energy models generically predict γ≈0.55, while the Dvali-Gabadadze-Porrati (DGP) model γ≈0.68. To determine if future imaging surveys can constrain γ within 20% (or Δγ<0.1), we perform the Fisher matrix analysis for a weak-lensing survey such as the ongoing Hyper Suprime-Cam (HSC) project. Under the condition that the total observation time is fixed, we compute the figure of merit (FoM) as a function of the exposure time texp. We find that the tomography technique effectively improves the FoM, which has a broad peak around texp≃several˜10min; a shallow and wide survey is preferred to constrain the γ parameter. While Δγ<0.1 cannot be achieved by the HSC weak-lensing survey alone, one can improve the constraints by combining with a follow-up spectroscopic survey like Wide-field Fiber-fed Multi-Object Spectrograph (WFMOS) and/or future cosmic microwave background (CMB) observations.

  6. Decision Gate Process for Assessment of a NASA Technology Development Portfolio

    NASA Technical Reports Server (NTRS)

    Kohli, Rajiv; Fishman, Julianna L.; Hyatt, Mark J.

    2012-01-01

    The NASA Dust Management Project (DMP) was established to provide technologies (to Technology Readiness Level (TRL) 6) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, to reduce life cycle cost and risk, and to increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product was either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.

  7. Decision Gate Process for Assessment of a Technology Development Portfolio

    NASA Technical Reports Server (NTRS)

    Kohli, Rajiv; Fishman, Julianna; Hyatt, Mark

    2012-01-01

    The NASA Dust Management Project (DMP) was established to provide technologies (to TRL 6 development level) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, which will reduce life cycle cost and risk, and will increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product is either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.

  8. Diagnostic Yield of Isolated Deamidated Gliadin Peptide Antibody Elevation for Celiac Disease.

    PubMed

    Hoerter, Nicholas A; Shannahan, Sarah E; Suarez, Jorge; Lewis, Suzanne K; Green, Peter H R; Leffler, Daniel A; Lebwohl, Benjamin

    2017-05-01

    Serologic testing for celiac disease includes tissue transglutaminase and endomysial antibodies. In addition to these tools, assays for deamidated gliadin peptide antibodies have been shown to have sensitivity and specificity that are comparable to tissue transglutaminase testing, and are increasingly being used for celiac disease testing. The goal of this study is to evaluate the utility of deamidated gliadin peptide (DGP) testing in the setting of a negative tissue transglutaminase (TTG) IgA test. We reviewed the records of all patients seen at two U.S. celiac disease referral centers and identified those who had an elevated DGP IgA and/or IgG in the setting of a negative TTG IgA. Of these patients, those who underwent duodenal biopsy while on a gluten-containing diet were included. Patients with prior biopsy-proven celiac disease or prior TTG IgA positivity were excluded. The results of the biopsy were used as the gold standard for celiac disease diagnosis, and patients with villous atrophy (Marsh class 3) on duodenal biopsy were considered to have celiac disease. Between the two institutions, 84 patients were identified with negative TTG IgA and positive DGP IgA or IgG who also had duodenal biopsies performed while maintaining a gluten-containing diet. Of these patients, 13 patients (15.5%; 95% CI 8.5-25.0%) were found to have celiac disease on duodenal biopsy. DGP antibody testing can identify cases of celiac disease in TTG-negative individuals, although the low positive predictive value suggests that the yield may be low.

  9. New holographic dark energy model inspired by the DGP braneworld

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Dehghani, M. H.; Ghaffari, S.

    2016-11-01

    The energy density of the holographic dark energy (HDE) is based on the area law of entropy, and thus any modification of the area law leads to a modified holographic energy density. Inspired by the entropy expression associated with the apparent horizon of a Friedmann-Robertson-Walker (FRW) universe in DGP braneworld, we propose a new model for the HDE in the framework of DGP brane cosmology. We investigate the cosmological consequences of this new model and calculate the equation of state (EoS) parameter by choosing the Hubble radius, L = H-1, as the system’s IR cutoff. Our study show that, due to the effects of the extra dimension (bulk), the identification of IR cutoff with Hubble radius, can reproduce the present acceleration of the universe expansion. This is in contrast to the ordinary HDE in standard cosmology which leads to the zero EoS parameter in the case of choosing the Hubble radius as system’s IR cutoff in the absence of interaction between dark matter (DM) and dark energy (DE).

  10. Exploring extra dimensions with scalar fields

    NASA Astrophysics Data System (ADS)

    Brown, Katherine; Mathur, Harsh; Verostek, Mike

    2018-05-01

    This paper provides a pedagogical introduction to the physics of extra dimensions by examining the behavior of scalar fields in three landmark models: the ADD, Randall-Sundrum, and DGP spacetimes. Results of this analysis provide qualitative insights into the corresponding behavior of gravitational fields and elementary particles in each of these models. In these "brane world" models, the familiar four dimensional spacetime of everyday experience is called the brane and is a slice through a higher dimensional spacetime called the bulk. The particles and fields of the standard model are assumed to be confined to the brane, while gravitational fields are assumed to propagate in the bulk. For all three spacetimes, we calculate the spectrum of propagating scalar wave modes and the scalar field produced by a static point source located on the brane. For the ADD and Randall-Sundrum models, at large distances, the field looks like that of a point source in four spacetime dimensions, but at short distances, it crosses over to a form appropriate to the higher dimensional spacetime. For the DGP model, the field has the higher dimensional form at long distances rather than short. The behavior of these scalar fields, derived using only undergraduate level mathematics, closely mirror the results that one would obtain by performing the far more difficult task of analyzing the behavior of gravitational fields in these spacetimes.

  11. Prevalence of Celiac Disease Autoimmunity Among Adolescents and Young Adults in China.

    PubMed

    Yuan, Juanli; Zhou, Chunyan; Gao, Jinyan; Li, Jingjing; Yu, Fenglian; Lu, Jun; Li, Xin; Wang, Xiaozhong; Tong, Ping; Wu, Zhihua; Yang, Anshu; Yao, Yonghong; Nadif, Sarah; Shu, Heng; Jiang, Xu; Wu, Yujie; Gilissen, Luud; Chen, Hongbing

    2017-10-01

    In China, epidemiologic information on celiac disease autoimmunity is scarce and fragmented. We investigated the prevalence of celiac disease autoimmunity in the general Chinese population. In a cross-sectional prospective study, 19,778 undiagnosed Chinese adolescents and young adults (age, 16-25 y) were recruited from consecutive new students who underwent routine physical examinations at 2 universities in Jiangxi, China, from September 2010 through October 2013; the students were from 27 geographic regions in China. All subjects were tested for serum IgG, IgG against deamidated gliadin peptides (IgG anti-DGP), and IgA anti-tissue transglutaminase antibodies (IgA anti-tTG). We also analyzed HLA genotypes in subgroups of participants with different results from tests for serum markers of celiac disease. A total of 434 students (2.19%) tested positive for serum markers for celiac disease (95% confidence interval [CI], 1.99%-2.41%), 0.36% of the students tested positive for anti-tTG IgA (95% CI, 0.28%-0.46%), and 1.88% tested positive for anti-DGP IgG (95% CI, 1.70%-2.09%). The prevalence of celiac disease autoimmunity (positive results in assays for anti-tTG IgA and anti-DGP-IgG) was 0.06% (95% CI, 0.03%-0.10%). Celiac disease autoimmunity was associated with the consumption of wheat and female sex. The prevalence in the Shandong province in north China, where wheat is a staple in the diet, was 0.76% (95% CI, 0.21%-1.95%). The frequencies of the HLA-DQ2/-DQ8 genotypes associated with celiac disease were higher in subjects with celiac disease autoimmunity, based on detection of both serum markers, than in subjects with positive results from a single test (P < .01). All subjects with positive results from both assays carried the HLA-DQ2 genotype. Approximately 2% of adolescents or young adults in China had positive results from assays for serum markers for celiac disease. The prevalence of celiac disease autoimmunity in the Shandong province in north China, where wheat is a staple in the diet, was 0.76%. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazkoz, Ruth

    We present here the general transformation that leaves unchanged the form of the field equations for perfect fluid cosmologies in the Dvali-Gabadadze-Porrati (DGP) brane-world model. Specifically, a prescription for relating exact solutions with different equations of state is provided, and the symmetries found can be used as algorithms for generating new cosmological models from previously known ones. We also present, implicitly, the first known exact DGP perfect fluid spacetime. A particular case of the general transformation is used to illustrate the crucial role played both by the number of scalar fields and the extra-dimensional effects in the occurrence of inflation.more » In particular, we see that assisted inflation does not proceed at all times for one of the two possible ways in which the brane can be embedded into the bulk.« less

  13. Improving GOCE cross-track gravity gradients

    NASA Astrophysics Data System (ADS)

    Siemes, Christian

    2018-01-01

    The GOCE gravity gradiometer measured highly accurate gravity gradients along the orbit during GOCE's mission lifetime from March 17, 2009, to November 11, 2013. These measurements contain unique information on the gravity field at a spatial resolution of 80 km half wavelength, which is not provided to the same accuracy level by any other satellite mission now and in the foreseeable future. Unfortunately, the gravity gradient in cross-track direction is heavily perturbed in the regions around the geomagnetic poles. We show in this paper that the perturbing effect can be modeled accurately as a quadratic function of the non-gravitational acceleration of the satellite in cross-track direction. Most importantly, we can remove the perturbation from the cross-track gravity gradient to a great extent, which significantly improves the accuracy of the latter and offers opportunities for better scientific exploitation of the GOCE gravity gradient data set.

  14. Dewatering General Permit (DGP) for Massachusetts & New Hampshire

    EPA Pesticide Factsheets

    Documents, links & contacts for the Notice of Availability of the National Pollutant Discharge Elimination System (NPDES) General Permit for Dewatering Activity Discharges in Massachusetts (MAG070000) and New Hampshire (NHG070000).

  15. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meador, Lydia R.

    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viralmore » vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.« less

  16. Microbial Transglutaminase Used in Bread Preparation at Standard Bakery Concentrations Does Not Increase Immunodetectable Amounts of Deamidated Gliadin.

    PubMed

    Heil, Andreas; Ohsam, Jürgen; van Genugten, Bernard; Diez, Oscar; Yokoyama, Keiichi; Kumazawa, Yoshiyuki; Pasternack, Ralf; Hils, Martin

    2017-08-16

    The effect of standard bakery concentrations of microbial transglutaminase (MTG) in wheat bread preparation on the immunoreactivity of sera of celiac disease (CD) patients was investigated. Immunoblotting using monoclonal antibodies specific to unmodified and/or deamidated gliadin showed no differences between control bread and MTG bread. Deamidation of gliadin could not be detected at standard MTG concentrations. Sera of CD patients were characterized using anti-gliadin and anti-deamidated gliadin peptide (DGP) enzyme-linked immunosorbent assay and grouped into DGP high- and low-titer pools. The recognition pattern obtained after using both CD sera pools for immunoblotting did not reveal differences between control and MTG-treated bread protein extracts. Our results indicate that MTG treatment of wheat bread prepared with typical MTG concentrations used in standard bakery processes does not lead to immunodetectable amounts of CD immunotoxic deamidated gliadins.

  17. Crossing of the phantom divide using tachyon-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, J.; Banijamali, A.; Milani, F.

    2009-06-15

    In this paper we consider two models. First, we study tachyon-Gauss-Bonnet gravity and obtain the condition of the equation of state crossing -1. Second, we discuss the modified Gauss-Bonnet gravity with the tachyon field and show the condition of {omega} crossing -1. Also, we plot figures for {omega} numerically in special potential and coupling function.

  18. [Effect of Different Stimulating Strength of Electroacupuncture on Gastrointestinal Motility and RhoA/ROCK Signaling in Gastric Antral Smooth Muscle in Diabetic Gastroparesis Rats].

    PubMed

    Wu, Xue-Fen; Chen, Xiao-Li; Zheng, Xue-Na; Guo, Xin; Xie, Zhi-Qiang; Liu, Li; Wei, Xin-Ran; Yue, Zeng-Hui

    2018-03-25

    To observe the effect of different strength of electroacupuncture (EA) stimulation on gastrointestinal motility and Ras homolog gene family member (RhoA)/Rho associated coiled-coil forming protein kinase (ROCK) signaling in diabetic gastroparesis (DGP) rats, so as to reveal the underlying mechanisms of EA for improving DGP. Sixty SD rats were randomly and equally divided into blank control, DGP model, weak EA, medium EA, and strong EA groups ( n =12 rats in each). The DGP model was established by intraperitoneal injection of streptozotocin (STZ, 55 mmol/kg, 2%) and high-sugar and high-fat fodder feeding for 8 weeks. EA (0.12, 0.24, 0.36 mA, 20 Hz/100 Hz) was applied to "Zusanli" (ST 36), "Sanyinjiao" (SP 6) and "Liangmen" (ST 21) for 20 min, once daily for 15 successive days. Blood glucose levels were measured weekly with blood glucose meter and blood glucose test paper. Fecal phenol red excretion method was used to display gastric emptying and small intestinal propulsion function. The expression of RhoA protein in the gastric antral smooth muscle tissue was detected by immunohistochemistry and Western blot (WB), separately, and that of ROCK, myosin phosphatase target subunit 1 (MYPT 1) and phosphorylated (p)-MYPT 1 proteins in gastric antrum detected by WB. Compared with the blank control group, the gastric emptying rate and small intestine propulsion rate of the model group were significantly decreased ( P <0.05), and the blood glucose level was remarkably increased ( P <0.05). Moreover, the expression levels of RhoA, ROCK, MYPT 1 and p-MYPT 1 proteins in the gastric antrum were significantly down-regulated relevant to the control group ( P <0.05). After administration of EA, the decreased gastric emptying rate and intestinal propulsion rate, and the down-regulated expression of RhoA, ROCK, MYPT 1 and p-MYPT 1 proteins were significantly increased in the strong, medium and weak EA stimulation groups ( P <0.05). Comparison among the 3 EA groups showed that the strong stimulation was significantly superior to weak stimulation in up-regulating the expression of RhoA, ROCK, MYPT 1 and p-MYPT 1 proteins, and obviously superior to the medium stimulation in up-regulating RhoA and MYPT 1 protein levels ( P <0.05), while the medium stimulation was significantly stronger than the weak stimulation in up-regulating the expression of ROCK, MYPT 1 and p-MYPT 1 proteins ( P <0.05). There were no significant differences among the 3 EA groups in up-regulating the gastric emptying rate and small intestinal propulsion rate, and between the strong stimulation and medium stimulation in the expression levels of ROCK and p-MYPT 1 proteins ( P >0.05). Electroacupuncture stimulation of ST 36-SP 6-ST 21 at 0.12, 0.24 and 0.36 mA can promote the gastrointestinal motility in DGP rats, which may be associated with its effects in enhancing RhoA/ROCK signaling in the gastric antral smooth muscle at different degrees.

  19. Overview of biomarkers for diagnosis and monitoring of celiac disease.

    PubMed

    Brusca, Ignazio

    2015-01-01

    Among the adverse reactions caused by wheat, celiac disease (CD) is the longest studied and best-known pathology. The more recently defined non-celiac gluten sensitivity (NCGS) presents with symptoms which are often indistinguishable from CD. Diagnosis of CD is based on serologic, molecular, and bioptic testing. The IgA anti-transglutaminase (tTG) test is considered highly important, as it shows high sensitivity and specificity and its levels correlate to the degree of intestinal damage. Small bowel biopsy can be avoided in symptomatic patients with IgA anti-tTG levels above 10× the manufacturer's cut-off. Recently, tests of anti-deamidated peptides of gliadin (DGP) have replaced classic anti-native gliadin (AGA) tests. DGP assays have a considerably higher diagnostic accuracy than AGA assays, especially in the IgG class, and can replace anti-tTG tests in patients with selective IgA deficiency. The combination of IgG anti-DGP plus IgA anti-tTG assays show greater sensitivity than a single test, with very high specificity. EMA tests have great diagnostic accuracy but are not recommended by all the latest guidelines because they are observer dependent. Biopsy must still be considered the gold standard for CD diagnosis. HLA-DQ genotyping can be used to screen asymptomatic children and in cases of histology/serology disagreement. About half of NCGS patients are DQ2 positive and have IgG AGA. To diagnose NCGS, first CD and wheat allergy must be excluded; then the wheat dependence of symptoms must be verified by a gluten-free diet and subsequent gluten challenge. © 2015 Elsevier Inc. All rights reserved.

  20. Fecal Gluten Peptides Reveal Limitations of Serological Tests and Food Questionnaires for Monitoring Gluten-Free Diet in Celiac Disease Patients.

    PubMed

    Comino, Isabel; Fernández-Bañares, Fernando; Esteve, María; Ortigosa, Luís; Castillejo, Gemma; Fambuena, Blanca; Ribes-Koninckx, Carmen; Sierra, Carlos; Rodríguez-Herrera, Alfonso; Salazar, José Carlos; Caunedo, Ángel; Marugán-Miguelsanz, J M; Garrote, José Antonio; Vivas, Santiago; Lo Iacono, Oreste; Nuñez, Alejandro; Vaquero, Luis; Vegas, Ana María; Crespo, Laura; Fernández-Salazar, Luis; Arranz, Eduardo; Jiménez-García, Victoria Alejandra; Antonio Montes-Cano, Marco; Espín, Beatriz; Galera, Ana; Valverde, Justo; Girón, Francisco José; Bolonio, Miguel; Millán, Antonio; Cerezo, Francesc Martínez; Guajardo, César; Alberto, José Ramón; Rosinach, Mercé; Segura, Verónica; León, Francisco; Marinich, Jorge; Muñoz-Suano, Alba; Romero-Gómez, Manuel; Cebolla, Ángel; Sousa, Carolina

    2016-10-01

    Treatment for celiac disease (CD) is a lifelong strict gluten-free diet (GFD). Patients should be followed-up with dietary interviews and serology as CD markers to ensure adherence to the diet. However, none of these methods offer an accurate measure of dietary compliance. Our aim was to evaluate the measurement of gluten immunogenic peptides (GIP) in stools as a marker of GFD adherence in CD patients and compare it with traditional methods of GFD monitoring. We performed a prospective, nonrandomized, multicenter study including 188 CD patients on GFD and 84 healthy controls. Subjects were given a dietary questionnaire and fecal GIP quantified by enzyme-linked immunosorbent assay (ELISA). Serological anti-tissue transglutaminase (anti-tTG) IgA and anti-deamidated gliadin peptide (anti-DGP) IgA antibodies were measured simultaneously. Of the 188 celiac patients, 56 (29.8%) had detectable GIP levels in stools. There was significant association between age and GIP in stools that revealed increasing dietary transgressions with advancing age (39.2% in subjects ≥13 years old) and with gender in certain age groups (60% in men ≥13 years old). No association was found between fecal GIP and dietary questionnaire or anti-tTG antibodies. However, association was detected between GIP and anti-DGP antibodies, although 46 of the 53 GIP stool-positive patients were negative for anti-DGP. Detection of gluten peptides in stools reveals limitations of traditional methods for monitoring GFD in celiac patients. The GIP ELISA enables direct and quantitative assessment of gluten exposure early after ingestion and could aid in the diagnosis and clinical management of nonresponsive CD and refractory CD. Trial registration number NCT02711397.

  1. Fecal Gluten Peptides Reveal Limitations of Serological Tests and Food Questionnaires for Monitoring Gluten-Free Diet in Celiac Disease Patients

    PubMed Central

    Comino, Isabel; Fernández-Bañares, Fernando; Esteve, María; Ortigosa, Luís; Castillejo, Gemma; Fambuena, Blanca; Ribes-Koninckx, Carmen; Sierra, Carlos; Rodríguez-Herrera, Alfonso; Salazar, José Carlos; Caunedo, Ángel; Marugán-Miguelsanz, J M; Garrote, José Antonio; Vivas, Santiago; lo Iacono, Oreste; Nuñez, Alejandro; Vaquero, Luis; Vegas, Ana María; Crespo, Laura; Fernández-Salazar, Luis; Arranz, Eduardo; Jiménez-García, Victoria Alejandra; Antonio Montes-Cano, Marco; Espín, Beatriz; Galera, Ana; Valverde, Justo; Girón, Francisco José; Bolonio, Miguel; Millán, Antonio; Cerezo, Francesc Martínez; Guajardo, César; Alberto, José Ramón; Rosinach, Mercé; Segura, Verónica; León, Francisco; Marinich, Jorge; Muñoz-Suano, Alba; Romero-Gómez, Manuel; Cebolla, Ángel; Sousa, Carolina

    2016-01-01

    Objectives: Treatment for celiac disease (CD) is a lifelong strict gluten-free diet (GFD). Patients should be followed-up with dietary interviews and serology as CD markers to ensure adherence to the diet. However, none of these methods offer an accurate measure of dietary compliance. Our aim was to evaluate the measurement of gluten immunogenic peptides (GIP) in stools as a marker of GFD adherence in CD patients and compare it with traditional methods of GFD monitoring. Methods: We performed a prospective, nonrandomized, multicenter study including 188 CD patients on GFD and 84 healthy controls. Subjects were given a dietary questionnaire and fecal GIP quantified by enzyme-linked immunosorbent assay (ELISA). Serological anti-tissue transglutaminase (anti-tTG) IgA and anti-deamidated gliadin peptide (anti-DGP) IgA antibodies were measured simultaneously. Results: Of the 188 celiac patients, 56 (29.8%) had detectable GIP levels in stools. There was significant association between age and GIP in stools that revealed increasing dietary transgressions with advancing age (39.2% in subjects ≥13 years old) and with gender in certain age groups (60% in men ≥13 years old). No association was found between fecal GIP and dietary questionnaire or anti-tTG antibodies. However, association was detected between GIP and anti-DGP antibodies, although 46 of the 53 GIP stool-positive patients were negative for anti-DGP. Conclusions: Detection of gluten peptides in stools reveals limitations of traditional methods for monitoring GFD in celiac patients. The GIP ELISA enables direct and quantitative assessment of gluten exposure early after ingestion and could aid in the diagnosis and clinical management of nonresponsive CD and refractory CD. Trial registration number NCT02711397. PMID:27644734

  2. 78 FR 16756 - International Civil Aviation Organization's (ICAO) Dangerous Goods Panel; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration International Civil Aviation Organization's (ICAO) Dangerous Goods Panel; Notice of Public Meeting AGENCY: Federal Aviation Administration... Aviation Organization's (ICAO) Dangerous Goods Panel's (DGP's) Spring Working Group to be held April 15-19...

  3. 77 FR 53250 - International Civil Aviation Organization's (ICAO) Dangerous Goods Panel; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration International Civil Aviation Organization's (ICAO) Dangerous Goods Panel; Notice of Public Meeting AGENCY: Federal Aviation Administration... Aviation Organization's (ICAO) Dangerous Goods Panel's (DGP's) Fall Working Group to be held October 15-19...

  4. Celiac disease or non-celiac gluten sensitivity? An approach to clinical differential diagnosis.

    PubMed

    Kabbani, Toufic A; Vanga, Rohini R; Leffler, Daniel A; Villafuerte-Galvez, Javier; Pallav, Kumar; Hansen, Joshua; Mukherjee, Rupa; Dennis, Melinda; Kelly, Ciaran P

    2014-05-01

    Differentiating between celiac disease (CD) and non-celiac gluten sensitivity (NCGS) is important for appropriate management but is often challenging. We retrospectively reviewed records from 238 patients who presented for the evaluation of symptoms responsive to gluten restriction without prior diagnosis or exclusion of CD. Demographics, presenting symptoms, serologic, genetic, and histologic data, nutrient deficiencies, personal history of autoimmune diseases, and family history of CD were recorded. NCGS was defined as symptoms responsive to a gluten-free diet (GFD) in the setting of negative celiac serology and duodenal biopsies while on a gluten-containing diet or negative human leukocyte antigen (HLA) DQ2/DQ8 testing. Of the 238 study subjects, 101 had CD, 125 had NCGS, 9 had non-celiac enteropathy, and 3 had indeterminate diagnosis. CD subjects presented with symptoms of malabsorption 67.3% of the time compared with 24.8% of the NCGS subjects (P<0.0001). In addition, CD subjects were significantly more likely to have a family history of CD (P=0.004), personal history of autoimmune diseases (P=0.002), or nutrient deficiencies (P<0.0001). The positive likelihood ratio for diagnosis of CD of a >2× upper limit of normal IgA trans-glutaminase antibody (tTG) or IgA/IgG deaminated gliadan peptide antibody (DGP) with clinical response to GFD was 130 (confidence interval (CI): 18.5-918.3). The positive likelihood ratio of the combination of gluten-responsive symptoms and negative IgA tTG or IgA/IgG DGP on a regular diet for NCGS was 9.6 (CI: 5.5-16.9). When individuals with negative IgA tTG or IgA/IgG DGP also lacked symptoms of malabsorption (weight loss, diarrhea, and nutrient deficiencies) and CD risk factors (personal history of autoimmune diseases and family history of CD), the positive likelihood ratio for NCGS increased to 80.9. On the basis of our findings, we have developed a diagnostic algorithm to differentiate CD from NCGS. Subjects with negative celiac serologies (IgA tTG or IgA/IgG DGP) on a regular diet are unlikely to have CD. Those with negative serology who also lack clinical evidence of malabsorption and CD risk factors are highly likely to have NCGS and may not require further testing. Those with equivocal serology should undergo HLA typing to determine the need for biopsy.

  5. 98. (Credit BLV) Detail of gravity, flow conduit intake at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. (Credit BLV) Detail of gravity, flow conduit intake at cross Lake dam Cribbing supports extra suction intake installed in 1930. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  6. Sensorimotor aspects of high-speed artificial gravity: II. The effect of head position on illusory self motion

    NASA Technical Reports Server (NTRS)

    Mast, F. W.; Newby, N. J.; Young, L. R.

    2002-01-01

    The effects of cross-coupled stimuli on the semicircular canals are shown to be influenced by the position of the subject's head with respect to gravity and the axis of rotation, but not by the subject's head position relative to the trunk. Seventeen healthy subjects made head yaw movements out of the horizontal plane while lying on a horizontal platform (MIT short radius centrifuge) rotating at 23 rpm about an earth-vertical axis. The subjects reported the magnitude and duration of the illusory pitch or roll sensations elicited by the cross-coupled rotational stimuli acting on the semicircular canals. The results suggest an influence of head position relative to gravity. The magnitude estimation is higher and the sensation decays more slowly when the head's final position is toward nose-up (gravity in the subject's head x-z-plane) compared to when the head is turned toward the side (gravity in the subject's head y-z-plane). The results are discussed with respect to artificial gravity in space and the possible role of pre-adaptation to cross-coupled angular accelerations on earth.

  7. The Weight Management Dietetics Practice Group collecting outcomes mentoring program

    USDA-ARS?s Scientific Manuscript database

    The is a newsletter article for the Academy of Nutrition and Dietetics (AND), Weight Management Dietetics Practice Group (WM DPG). The article presents the ‘Collecting Outcomes Mentoring Program’ for 2017 that is managed by the Research Section of the WM DPG. Dietitians in the WM DGP are provided wi...

  8. 3D GRASE PROPELLER: Improved Image Acquisition Technique for Arterial Spin Labeling Perfusion Imaging

    PubMed Central

    Tan, Huan; Hoge, W. Scott; Hamilton, Craig A.; Günther, Matthias; Kraft, Robert A.

    2014-01-01

    Arterial spin labeling (ASL) is a non-invasive technique that can quantitatively measure cerebral blood flow (CBF). While traditionally ASL employs 2D EPI or spiral acquisition trajectories, single-shot 3D GRASE is gaining popularity in ASL due to inherent SNR advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T2 decay. A novel technique combining 3D GRASE and a PROPELLER trajectory (3DGP) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3×3×5mm3 nominal voxel size with Q2TIPS-FAIR as the ASL preparation sequence. Data from 5 healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in CBF quantification with 3D GRASE, 3DGP demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. PMID:21254211

  9. Attitudes on euthanasia, physician-assisted suicide and terminal sedation--a survey of the members of the German Association for Palliative Medicine.

    PubMed

    Müller-Busch, H C; Oduncu, F S; Woskanjan, S; Klaschik, E

    2004-01-01

    Due to recent legislations on euthanasia and its current practice in the Netherlands and Belgium, issues of end-of-life medicine have become very vital in many European countries. In 2002, the Ethics Working Group of the German Association for Palliative Medicine (DGP) has conducted a survey among its physician members in order to evaluate their attitudes towards different end-of-life medical practices, such as euthanasia (EUT), physician-assisted suicide (PAS), and terminal sedation (TS). An anonymous questionnaire was sent to the 411 DGP physicians, consisting of 14 multiple choice questions on positions that might be adopted in different hypothetical scenarios on situations of "intolerable suffering" in end-of-life care. For the sake of clarification, several definitions and legal judgements of different terms used in the German debate on premature termination of life were included. For statistical analysis t-tests and Pearson-correlations were used. The response rate was 61% (n = 251). The proportions of the respondents who were opposed to legalizing different forms of premature termination of life were: 90% opposed to EUT, 75% to PAS, 94% to PAS for psychiatric patients. Terminal sedation was accepted by 94% of the members. The main decisional bases drawn on for the answers were personal ethical values, professional experience with palliative care, knowledge of alternative approaches, knowledge of ethical guidelines and of the national legal frame. In sharp contrast to similar surveys conducted in other countries, only a minority of 9.6% of the DGP physicians supported the legalization of EUT. The misuse of medical knowledge for inhumane killing in the Nazi period did not play a relevant role for the respondents' negative attitude towards EUT. Palliative care needs to be stronger established and promoted within the German health care system in order to improve the quality of end-of-life situations which subsequently is expected to lead to decreasing requests for EUT by terminally ill patients.

  10. Critical attitudes and beliefs towards guidelines amongst palliative care professionals - results from a national survey.

    PubMed

    Kalies, Helen; Schöttmer, Rieke; Simon, Steffen T; Voltz, Raymond; Crispin, Alexander; Bausewein, Claudia

    2017-03-21

    Little is known about palliative care professionals' attitudes towards guidelines. In 2015, the German Association for Palliative Medicine (DGP) published an evidence based guideline for palliative care in adults with incurable cancer. Before publication we conducted a national survey among members of the DGP to detect possible barriers and facilitators for its implementation. The aim of the present publication was to evaluate critical attitudes and beliefs which could hinder the effective implementation of the new guideline and to evaluate differences within professional groups and medical specialisations. This web-based online survey was addressed to all members of the DGP in summer 2014. Twenty-one questions concerning attitudes and beliefs towards guidelines were a priori developed to represent the following topics: scepticism regarding the quality of guidelines, doubts about the implementation of guidelines, restrictions in treatment options through guidelines, discrepancy between palliative care values and guidelines. Differences within professions and specialisations were tested using Kruskal-Wallis tests. All 4.786 members with known email address were invited, 1.181 followed the link, 1.138 began to answer the questionnaire and 1.031 completed the questionnaire. More than half of participating members were physicians and one third nurses. Scepticism regarding the quality of existing guidelines was high (range 12.8-73.2%). Doubts regarding practical aspects of guidelines were less prevalent but still high (range 21.8-57.6%). About one third (range 5.4-31.4%) think that guidelines restrict their treatment options. In addition, 38.8% believed that guidelines are a kind of cookbook and restrict the flexibility of individual patient care. The majority saw no or little discrepancy between palliative care values and guidelines (range 68.4-82.6%). There were relatively small but significant differences between professions and specialisations. The person-centred and individual approach of palliative care does not seem to contradict the acceptance of guidelines. Main barriers were related to scepticism regarding the quality of guidelines and the implementation of guidelines in general.

  11. New gravity anomaly map of Taiwan and its surrounding regions with some tectonic interpretations

    NASA Astrophysics Data System (ADS)

    Doo, Wen-Bin; Lo, Chung-Liang; Hsu, Shu-Kun; Tsai, Ching-Hui; Huang, Yin-Sheng; Wang, Hsueh-Fen; Chiu, Shye-Donq; Ma, Yu-Fang; Liang, Chin-Wei

    2018-04-01

    In this study, we compiled recently collected (from 2005 to 2015) and previously reported (published and open access) gravity data, including land, shipborne and satellite-derived data, for Taiwan and its surrounding regions. Based on the cross-over error analysis, all data were adjusted; and, new Free-air gravity anomalies were obtained, shedding light on the tectonics of the region. To obtain the Bouguer gravity anomalies, the densities of land terrain and marine sediments were assumed to be 2.53 and 1.80 g/cm3, respectively. The updated gravity dataset was gridded with a spacing of one arc-minute. Several previously unnoticed gravity features are revealed by the new maps and can be used in a broad range of applications: (1) An isolated gravity high is located between the Shoushan and the Kaoping Canyon off southwest Taiwan. (2) Along the Luzon Arc, both Free-air and Bouguer gravity anomaly maps reveal a significant gravity discontinuity feature at the latitude of 21°20‧N. (3) In the southwestern Okinawa Trough, the NE-SW trending cross-back-arc volcanic trail (CBVT) marks the low-high gravity anomaly (both Free-air and Bouguer) boundary.

  12. 77 FR 31274 - Hazardous Materials: Harmonization With the United Nations Recommendations on the Transport of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... (ICAO) Dangerous Goods Panel (DGP) regarding certain lithium ion battery-powered mobility aids (e.g... devices on an aircraft and providing for the intentional removal of a lithium ion battery from a device... limit lithium ion batteries used to power portable electronic devices and medical devices to 160 watt...

  13. Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study

    PubMed Central

    Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860

  14. Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.

    PubMed

    Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.

  15. Two-View Gravity Stress Imaging Protocol for Nondisplaced Type II Supination External Rotation Ankle Fractures: Introducing the Gravity Stress Cross-Table Lateral View.

    PubMed

    Boffeli, Troy J; Collier, Rachel C; Gervais, Samuel J

    Assessing ankle stability in nondisplaced Lauge-Hansen supination external rotation type II injuries requires stress imaging. Gravity stress mortise imaging is routinely used as an alternative to manual stress imaging to assess deltoid integrity with the goal of differentiating type II from type IV injuries in cases without a posterior or medial fracture. A type II injury with a nondisplaced fibula fracture is typically treated with cast immobilization, and a type IV injury is considered unstable and often requires operative repair. The present case series (two patients) highlights a standardized 2-view gravity stress imaging protocol and introduces the gravity stress cross-table lateral view. The gravity stress cross-table lateral view provides a more thorough evaluation of the posterior malleolus owing to the slight external rotation and posteriorly directed stress. External rotation also creates less bony overlap between the tibia and fibula, allowing for better visualization of the fibula fracture. Gravity stress imaging confirmed medial-sided injury in both cases, confirming the presence of supination external rotation type IV or bimalleolar equivalent fractures. Open reduction and internal fixation was performed, and both patients achieved radiographic union. No further treatment was required at 21 and 33 months postoperatively. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. ISW-galaxy cross-correlation in K-mouflage

    NASA Astrophysics Data System (ADS)

    Benevento, G.; Bartolo, N.; Liguori, M.

    2018-01-01

    Cross-correlations between the cosmic microwave background and the galaxy distribution can probe the linear growth rate of cosmic structures, thus providing a powerful tool to investigate different Dark Energy and Modified Gravity models. We explore the possibility of using this observable to probe a particular class of Modified Gravity models, called K-mouflage.

  17. Prostate Cancer Progression and Serum SIBLING (Small Integrin Binding N-Linked Glycoprotein)Levels

    DTIC Science & Technology

    2007-10-01

    termed SIBLINGs (for small integrin binding ligand N-linked glycoproteins) whose members include bone sialoprotein (BSP), osteopontin (OPN), dentin...enzyme-linked immunosorbent assays (ELISAs) for quantitatively determining the levels of bone sialoprotein (BSP), osteopontin (OPN), dentin...synthesized as a chimeric protein, composed of three parts: dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP, also

  18. On the Numerical Solution of the Elliptic Monge—Ampère Equation in Dimension Two: A Least-Squares Approach

    NASA Astrophysics Data System (ADS)

    Dean, Edward J.; Glowinski, Roland

    During his outstanding career, Olivier Pironneau has addressed the solution of a large variety of problems from the Natural Sciences, Engineering and Finance to name a few, an evidence of his activity being the many articles and books he has written. It is the opinion of these authors, and former collaborators of O. Pironneau (cf. [DGP91]), that this chapter is well-suited to a volume honoring him. Indeed, the two pillars of the solution methodology that we are going to describe are: (1) a nonlinear least squares formulation in an appropriate Hilbert space, and (2) a mixed finite element approximation, reminiscent of the one used in [DGP91] and [GP79] for solving the Stokes and Navier-Stokes equations in their stream function-vorticity formulation; the contributions of O. Pironneau on the two above topics are well-known world wide. Last but not least, we will show that the solution method discussed here can be viewed as a solution method for a non-standard variant of the incompressible Navier-Stokes equations, an area where O. Pironneau has many outstanding and celebrated contributions (cf. [Pir89], for example).

  19. On the source of cross-grain lineations in the central Pacific gravity field

    NASA Technical Reports Server (NTRS)

    Mcadoo, David C.; Sandwell, David T.

    1989-01-01

    The source of cross-grain lineations in marine gravity field observed in central Pacific was investigated by comparing multiple collinear gravity profiles from Geosat data with coincident bathymetry profiles, in the Fourier transform domain. Bathymetric data were collected by multibeam sonar systems operating from two research vessels, one in June-August 1985, the other in February and March 1987. The results of this analysis indicate that the lineations are superficial features that appear to result from a combination of subsurface and surface loads supported by a thin (2 km to 5 km) lithosphere.

  20. Bubble Formation from Wall Orifice in Liquid Cross-Flow Under Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2000-01-01

    Two-phase flows present a wide variety of applications for spacecraft thermal control systems design. Bubble formation and detachment is an integral part of the two phase flow science. The objective of the present work is to experimentally investigate the effects of liquid cross-flow velocity, gas flow rate, and orifice diameter on bubble formation in a wall-bubble injection configuration. Data were taken mainly under reduced gravity conditions but some data were taken in normal gravity for comparison. The reduced gravity experiment was conducted aboard the NASA DC-9 Reduced Gravity Aircraft. The results show that the process of bubble formation and detachment depends on gravity, the orifice diameter, the gas flow rate, and the liquid cross-flow velocity. The data are analyzed based on a force balance, and two different detachment mechanisms are identified. When the gas momentum is large, the bubble detaches from the injection orifice as the gas momentum overcomes the attaching effects of liquid drag and inertia. The surface tension force is much reduced because a large part of the bubble pinning edge at the orifice is lost as the bubble axis is tilted by the liquid flow. When the gas momentum is small, the force balance in the liquid flow direction is important, and the bubble detaches when the bubble axis inclination exceeds a certain angle.

  1. Results of Gravity Fieldwork Conducted in March 2008 in the Moapa Valley Region of Clark County, Nevada

    USGS Publications Warehouse

    Scheirer, Daniel S.; Andreasen, Arne Dossing

    2008-01-01

    In March 2008, we collected gravity data along 12 traverses across newly-mapped faults in the Moapa Valley region of Clark County, Nevada. In areas crossed by these faults, the traverses provide better definition of the gravity field and, thus, the density structure, than prior gravity observations. Access problems prohibited complete gravity coverage along all of the planned gravity traverses, and we added and adjusted the locations of traverses to maximize our data collection. Most of the traverses exhibit isostatic gravity anomalies that have gradients characteristic of exposed or buried faults, including several of the newly-mapped faults.

  2. Quasars, clusters and cosmology

    NASA Astrophysics Data System (ADS)

    Dhanda, Neelam

    PART A: Acceleration of the Universe and Modified Gravity: We study the power of next-generation galaxy cluster surveys (such as eROSITA and WFXT) in constraining the cosmological parameters and especially the growth history of the Universe, using the information from galaxy cluster redshift and mass-function evolution and from cluster power spectrum. We use the Fisher Matrix formalism to evaluate the potential for the galaxy cluster surveys to make predictions about cosmological parameters like the gravitational growth index gamma. The primary purpose of this study has been to check whether we can rule out one or the other of the underlying gravity theories in light of the present uncertainty of mass-observable relations and their scatter evolution. We found that these surveys will provide better constraints on various cosmological parameters even after we admit a lack of complete knowledge about the galaxy cluster structure, and when we combine the information from the cluster number count redshift and mass evolution with that from the cluster power spectrum. Based on this, we studied the ability of different surveys to constrain the growth history of the Universe. It was found that whereas eROSITA surveys will need strong priors on cluster structure evolution to conclusively rule out one or the other of the two gravity models, General Relativity and DGP Braneworld Gravity; WFXT surveys do hold the special promise of differentiating growth and telling us whether it is GR or not, with its wide-field survey having the ability to say so even with 99% confidence. PART B: Chemical Evolution in Quasars: We studied chemical evolution in the broad emission line region (BELR) of nitrogen rich quasars drawn from the SDSS Quasar Catalogue IV. Using tools of emission-line spectroscopy, we made detailed abundance measurements of ˜ 40 quasars and estimated their metallicities using the line-intensity ratio method. It was found that quasars with strong nitrogen lines are indicators of high metallicities. Some of these quasars have reached metallicities as high as Z ˜ 20 Z⊙ . Our detailed analysis showed that except in three QSOs, most of the different line-intensity ratios implied the similar metallicities. This verifies that this abundance analysis technique does produce meaningful results. The exceptions are the line-intensity ratio NIV]/CIV, which gives systematically low metallicities and the line-intensity ratio NV/He II, which gives systematically high metallicities. We compared our findings with the predictions of the galactic chemical evolution models. From this study it was concluded that such high metallicities are reached either by requiring a top-heavy Initial Mass Function (IMF) for the quasar host galaxy as suggested by theoretical models, or by physically catastrophic events such as mergers that trigger star formation in already evolved systems which then leads to extreme metallicities in such quasars.

  3. Out of the white hole: a holographic origin for the Big Bang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhasan, Razieh; Afshordi, Niayesh; Mann, Robert B., E-mail: rpourhasan@perimeterinstitute.ca, E-mail: nafshordi@pitp.ca, E-mail: rbmann@uwaterloo.ca

    While most of the singularities of General Relativity are expected to be safely hidden behind event horizons by the cosmic censorship conjecture, we happen to live in the causal future of the classical Big Bang singularity, whose resolution constitutes the active field of early universe cosmology. Could the Big Bang be also hidden behind a causal horizon, making us immune to the decadent impacts of a naked singularity? We describe a braneworld description of cosmology with both 4d induced and 5D bulk gravity (otherwise known as Dvali-Gabadadze-Porati, or DGP model), which exhibits this feature: the universe emerges as a sphericalmore » 3-brane out of the formation of a 5D Schwarzschild black hole. In particular, we show that a pressure singularity of the holographic fluid, discovered earlier, happens inside the white hole horizon, and thus need not be real or imply any pathology. Furthermore, we outline a novel mechanism through which any thermal atmosphere for the brane, with comoving temperature of ∼20% of the 5D Planck mass can induce scale-invariant primordial curvature perturbations on the brane, circumventing the need for a separate process (such as cosmic inflation) to explain current cosmological observations. Finally, we note that 5D space-time is asymptotically flat, and thus potentially allows an S-matrix or (after minor modifications) an AdS/CFT description of the cosmological Big Bang.« less

  4. Joint Interpretation of Bathymetric and Gravity Anomaly Maps Using Cross and Dot-Products.

    NASA Astrophysics Data System (ADS)

    Jilinski, Pavel; Fontes, Sergio Luiz

    2010-05-01

    0.1 Summary We present the results of joint map interpretation technique based on cross and dot-products applied to bathymetric and gravity anomaly gradients maps. According to the theory (Gallardo, Meju, 2004) joint interpretation of different gradient characteristics help to localize and empathize patterns unseen on one image interpretation and gives information about the correlation of different spatial data. Values of angles between gradients and their cross and dot-product were used. This technique helps to map unseen relations between bathymetric and gravity anomaly maps if they are analyzed separately. According to the method applied for the southern segment of Eastern-Brazilian coast bathymetrical and gravity anomaly gradients indicates a strong source-effect relation between them. The details of the method and the obtained results are discussed. 0.2 Introduction We applied this method to investigate the correlation between bathymetric and gravity anomalies at the southern segment of the Eastern-Brazilian coast. Gridded satellite global marine gravity data and bathymetrical data were used. The studied area is located at the Eastern- Brazilian coast between the 20° W and 30° W meridians and 15° S and 25° S parallels. The volcanic events responsible for the uncommon width of the continental shelf at the Abrolhos bank also were responsible for the formation of the Abrolhos islands and seamounts including the major Vitoria-Trindade chain. According to the literature this volcanic structures are expected to have a corresponding gravity anomaly (McKenzie, 1976, Zembruscki, S.G. 1979). The main objective of this study is to develop and test joint image interpretation method to compare spatial data and analyze its relations. 0.3 Theory and Method 0.3.1 Data sources The bathymetrical satellite data were derived bathymetry 2-minute grid of the ETOPO2v2 obtained from NOAA's National Geophysical Data Center (http://www.ngdc.noaa.gov). The satellite marine gravity 1-minute gridded data were obtained from the Satellite Geodesy at the Scripps Institution of Oceanography, Smith & Sandwell (1997; http://topex.ucsd.edu. Gravity anomaly data were re-gridded using the ETOPO2v2 grid. All calculations and maps were made using MatLab 2007 software. 0.3.2 Cross-Product Cross-product is the result of multiplication of bathymetric and gravity anomaly gradient magnitudes by the sine of the angle between them. According to the definition of gradient cross-product minimal values are expected to be found in points where the angle between gradients is close to zero or where one or both of the gradient magnitudes have values close to zero. It creates an ambiguity and a problem for data interpretation since there is no exact correspondence between bathymetric structures and gravity anomalies. 0.3.3 Dot-Product Dot-product is the result of multiplication of bathymetric and gravity anomaly magnitudes by the cosine on the angle between them. According to the definition of dot-product, values close to zero can be generated by near perpendicular orientation of the gradients or small magnitudes of one or both gradients. So, the results are mutually increased in areas with larger magnitudes or smaller angles between gradients. Due to this mutual amplification dot-products are less affected by the ambiguity of cross-product explained above. The same statistical separation of cross-product was used to support the conclusions. 0.3.4 Statistics and Significance Criteria Statistical analysis was made in order to sort the data into two groups to reduce ambiguity effect: first group - data with magnitudes that could be considered anomalous (where the main minimizing source is the angle between the gradients and the second group - data with magnitudes variations that could be considered as (non significant or background (where cross-product value is determined by the small magnitude). It was chosen to use the mean value and standard deviation (std) to sort the data in such two groups. These values were determined for bathymetric and gravity anomaly gradient magnitudes creating two data sets - one where one or both gradient magnitudes are one standard deviation larger than the mean value with a total of 7831 (anomalous) and a second one where both magnitudes differ smaller than one standard deviation from the mean value with 85584 (background ). Statistical analysis of distribution patterns for both groups was made. 0.4 Examples of Method Application 0.4.1 Map of Angles Between Gradients Figure 1 shows the map of angle values. The angle values were divided into 4 equal intervals. The statistical distribution of angles between gradient in the given intervals is the following (percents of the total): 0 to 60° - 51.39% of the values; 60° to 90° -12.08%; 90° to 120° -14.92%; 120° to 180° -21.18%. It can be seen that 51% of the gradients have a small angle between them, 72% of gradients can be considered as parallel (72%) with angles smaller than 60° or bigger than 120° between them. After statistical separation in the anomalous group almost 91% of the gradients have an angle smaller than 60° while in the background group just 48.6%. From these results we can make a conclusion that the majority of the bathymetric and gravity anomaly gradients are related. Regions with higher gradient magnitudes are characterized by cosine values close to 1 (indicating a small angle between them). The size of the areas characterized by small angles between gradients exceed the size of bathymetric and gravity anomaly isolines characterizing the area of influence of the structures and their effects. Regions with no significant anomalies show uncorrelated value spots. 0.4.2 Map of Cross-Product The resulting map shows small spots of higher cross-product magnitudes following magnitude isolines. About 90% of the values are close to minimum. As was mentioned before, we can presume that areas where bathymetry and gravity anomaly gradient cross-products have smallest magnitudes there is a good correspondence between them indicating a good correspondence between shapes. According to these results for the studied area the shapes and positions of bathymetric structures and gravity anomalies are well correlated suggesting strong correlation between source and its effect. 0.4.3 Map of Dot-Product The resulting map resembles bathymetric and gravity anomaly isolines. All the sea mounts, banks, continental slope and other notable geomorphologic structures and gravity anomalies are well delimitated in the dot-product map eliminating uncorrelated areas where gradient orientations can be considered as near perpendicular. The dot-product map of the studied area suggests a strong source-effect between bathymetry and gravity anomaly. 0.5 Conclusions The joint image interpretation technique uses three different criteria that are sensitive to different gradient properties. Angles between gradients are a good indicator of areas where data are related and it is not sensitive to the magnitudes of the gradients. Angles maps can be used to find areas with direct and inverse relation between mapped properties and contour areas of influence of anomalies unseen on gradient magnitude maps alone. Statistical measures of distribution of angles can be an indicator of relation between data sets as show using significance criteria. Cross-product map has a spotted character of contours. To reduce the effects of the ambiguity the separation into two groups proved to be useful. It helps to separate the cross-product values that are minimized due to gradient magnitudes from those that minimize due to sine values which is a measure of correlation between them. Dot-product values contour areas where gradients are correlated. According to joint image interpretation technique applied bathymetric structures especially the volcanic seamounts and banks in the southern part of East-Brazilian Coast are closely related to the observed gravity anomalies and can be interpreted as sources and effect. This technique also helps to evaluate the shape and dispersion of the gravitational effect from a bathymetrical source. 0.6 References Dehlinger P., Marine Gravity, Elsevier, 1978. Gallardo, L. A., and M. A. Meju., Joint 2D cross-gradient imaging of magnetotelluric and seismic travel-time data for structural and lithological classification, Geophys. J. Int., 169, 1261-1272. (2007) Gallardo, L.A., M. A. Meju (2004), Joint two-dimensional dc resistivity and seismic traveltime inversion with cross-gradients constraints, J. Geophys. Res., 109, B03311, doi:10.1029/2003JB002716 Jacoby, W., and Smilde P. L., Gravity Interpretation, Springer, 2009. McKenzie D. & Bowin C. 1976. The relationship between bathymetry and gravity in Atlantic Ocean. Journal of Geophysical Research, 81: 1903-1915. Roy. K. K., Potential Theory in Applied Geophysics, Springer, 2008. Smith, W. H. F., and D. T. Sandwell, Global seafloor topography from satellite altimetry and ship depth soundings, Science, v. 277, p. 1957-1962, 26 Sept., 1997. Sandwell, D. T., and W. H. F. Smith, Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate, J. Geophys. Res., 114, B01411, doi:10.1029/2008JB006008, 2009. Zembruscki, S.G. 1979. Geomorfologia da Margem Continental Sul Brasileira e das Bacias Oceânicas Adjacentes. In: Geomorfologia da margem continental brasileira e das áreas oceânicas adjacentes. Série Projeto REMAC, N° 7.

  5. Resin distribution in second-growth ponderosa pine

    Treesearch

    B.H. Paul

    1955-01-01

    In a study of specific gravity of second-growth ponderosa pine, there was visible evidence of resin in a part of the specific gravity specimens. Each specimen contained 10 annual growth rings in cross sections taken at 4 heights in the merchantable length of the trees. Since the presence of resin introduced an uncertain amount of error in the specific gravity values,...

  6. Superconducting tensor gravity gradiometer for satellite geodesy and inertial navigation

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    A sensitive gravity gradiometer can provide much needed gravity data of the earth and improve the accuracy of inertial navigation. Superconductivity and other properties of materials at low temperatures can be used to obtain a sensitive, low-drift gravity gradiometer; by differencing the outputs of accelerometer pairs using superconducting circuits, it is possible to construct a tensor gravity gradiometer which measures all the in-line and cross components of the tensor simultaneously. Additional superconducting circuits can be provided to determine the linear and angular acceleration vectors. A tensor gravity gradiometer with these features is being developed for satellite geodesy. The device constitutes a complete package of inertial navigation instruments with angular and linear acceleration readouts as well as gravity signals.

  7. 31. LOOKING SOUTHEAST. AS THE TRAM ENTERED THE GRAVITY TRAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. LOOKING SOUTHEAST. AS THE TRAM ENTERED THE GRAVITY TRAM LINE, IT CROSSED THIS CUT-STONE BRIDGE AND WAS CONTROLLED BY THE SWITCHING PLATFORM IN THE BACKGROUND - Independent Coal & Coke Company, Kenilworth, Carbon County, UT

  8. Gravity anomalies without geomagnetic disturbances interfere with pigeon homing--a GPS tracking study.

    PubMed

    Blaser, Nicole; Guskov, Sergei I; Entin, Vladimir A; Wolfer, David P; Kanevskyi, Valeryi A; Lipp, Hans-Peter

    2014-11-15

    The gravity vector theory postulates that birds determine their position to set a home course by comparing the memorized gravity vector at the home loft with the local gravity vector at the release site, and that they should adjust their flight course to the gravity anomalies encountered. As gravity anomalies are often intermingled with geomagnetic anomalies, we released experienced pigeons from the center of a strong circular gravity anomaly (25 km diameter) not associated with magnetic anomalies and from a geophysical control site, equidistant from the home loft (91 km). After crossing the border zone of the anomaly--expected to be most critical for pigeon navigation--they dispersed significantly more than control birds, except for those having met a gravity anomaly en route. These data increase the credibility of the gravity vector hypothesis. © 2014. Published by The Company of Biologists Ltd.

  9. Analysis of gravity and topography in the GLIMPSE study region: Isostatic compensation and uplift of the Sojourn and Hotu Matua Ridge systems

    USGS Publications Warehouse

    Harmon, N.; Forsyth, D.W.; Scheirer, D.S.

    2006-01-01

    The Gravity Lieations Intraplate Melting Petrologic and Seismic Expedition (GLIMPSE) Experiment investigated the formation of a series of non-hot spot, intraplate volcanic ridges in the South Pacific and their relationship to cross-grain gravity lineaments detected by satellite altimetry. Using shipboard gravity measurements and a simple model of surface loading of a thin elastic plate, we estimate effective elastic thicknesses ranging from ???2 km beneath the Sojourn Ridge to a maximum of 10 km beneath the Southern Cross Seamount. These elastic thicknesses are lower than predicted for the 3-9 Ma seafloor on which the volcanoes lie, perhaps due to reheating and thinning of the plate during emplacement. Anomalously low apparent densities estimated for the Matua and Southern Cross seamounts 2050 and 2250 kg m-3, respectively, probably are artifacts caused by the assumption of only surface loading, ignoring the presence of subsurface loading in the form of underplated crust and/or low-density mantle. Using satellite free-air gravity and shipboard bathymetry, we calculate the age-detrended, residual mantle Bouguer anomaly (rMBA). The rMBA corrects the free-air anomaly for the direct effects of topography, including the thickening of the crust beneath the seamounts and volcanic ridges due to surface loading of the volcanic edifices. There are broad, negative rMBA anomalies along the Sojourn and Brown ridges and the Hotu Matua seamount chain that extend nearly to the East Pacific Rise. These negative rMBA anomalies connect to negative free-air anomalies in the western part of the study area that have been recognized previously as the beginnings of the cross-grain gravity lineaments. Subtracting the topographic effects of surface loading by the ridges and seamounts from the observed topography reveals that the ridges are built on broad bands of anomalously elevated seafloor. This swell topography and the negative rMBA anomalies contradict the predictions of lithospheric cracking models for the origin of gravity lineaments and associated volcanic ridges, favoring models with a dynamic mantle component such as small-scale convection or channelized asthenospheric return flow. Copyright 2006 by the American Geophysical Union.

  10. TESTING NONSTANDARD COSMOLOGICAL MODELS WITH SNLS3 SUPERNOVA DATA AND OTHER COSMOLOGICAL PROBES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhengxiang; Yu Hongwei; Wu Puxun, E-mail: hwyu@hunnu.edu.cn

    2012-01-10

    We investigate the implications for some nonstandard cosmological models using data from the first three years of the Supernova Legacy Survey (SNLS3), assuming a spatially flat universe. A comparison between the constraints from the SNLS3 and those from other SN Ia samples, such as the ESSENCE, Union2, SDSS-II, and Constitution samples, is given and the effects of different light-curve fitters are considered. We find that analyzing SNe Ia with SALT2 or SALT or SiFTO can give consistent results and the tensions between different data sets and different light-curve fitters are obvious for fewer-free-parameters models. At the same time, we alsomore » study the constraints from SNLS3 along with data from the cosmic microwave background and the baryonic acoustic oscillations (CMB/BAO), and the latest Hubble parameter versus redshift (H(z)). Using model selection criteria such as {chi}{sup 2}/dof, goodness of fit, Akaike information criterion, and Bayesian information criterion, we find that, among all the cosmological models considered here ({Lambda}CDM, constant w, varying w, Dvali-Gabadadze-Porrati (DGP), modified polytropic Cardassian, and the generalized Chaplygin gas), the flat DGP is favored by SNLS3 alone. However, when additional CMB/BAO or H(z) constraints are included, this is no longer the case, and the flat {Lambda}CDM becomes preferred.« less

  11. Specific gravity variation in robusta eucalyptus grown in Hawaii

    Treesearch

    Roger G. Skolmen

    1972-01-01

    The specific gravity (air-dry volume, ovendry weight) of Eucalyptus robusta wood was tested within and between trees from 10 stands. Mean specific gravity was 0.603, but the range in individual samples for 50 trees was 0.331 to 0.869, and was 0.357 to 0.755 within one cross section. A consistent increase was recorded in all trees from pith to cambium and from butt to...

  12. Simplified model of statistically stationary spacecraft rotation and associated induced gravity environments

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1978-01-01

    A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.

  13. Analysis of the Characteristics of Inertia-Gravity Waves during an Orographic Precipitation Event

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Ran, Lingkun; Gao, Shouting

    2018-05-01

    A numerical experiment was performed using the Weather Research and Forecasting (WRF) model to analyze the generation and propagation of inertia-gravity waves during an orographic rainstorm that occurred in the Sichuan area on 17 August 2014. To examine the spatial and temporal structures of the inertia-gravity waves and identify the wave types, three wavenumber-frequency spectral analysis methods (Fourier analysis, cross-spectral analysis, and wavelet cross-spectrum analysis) were applied. During the storm, inertia-gravity waves appeared at heights of 10-14 km, with periods of 80-100 min and wavelengths of 40-50 km. These waves were generated over a mountain and propagated eastward at an average speed of 15-20 m s-1. Meanwhile, comparison between the reconstructed inertia-gravity waves and accumulated precipitation showed there was a mutual promotion process between them. The Richardson number and Scorer parameter were used to demonstrate that the eastward-moving inertia-gravity waves were trapped in an effective atmospheric ducting zone with favorable reflector and critical level conditions, which were the primary causes of the long lives of the waves. Finally, numerical experiments to test the sensitivity to terrain and diabatic heating were conducted, and the results suggested a cooperative effect of terrain and diabatic heating contributed to the propagation and enhancement of the waves.

  14. Geographically correlated orbit error

    NASA Technical Reports Server (NTRS)

    Rosborough, G. W.

    1989-01-01

    The dominant error source in estimating the orbital position of a satellite from ground based tracking data is the modeling of the Earth's gravity field. The resulting orbit error due to gravity field model errors are predominantly long wavelength in nature. This results in an orbit error signature that is strongly correlated over distances on the size of ocean basins. Anderle and Hoskin (1977) have shown that the orbit error along a given ground track also is correlated to some degree with the orbit error along adjacent ground tracks. This cross track correlation is verified here and is found to be significant out to nearly 1000 kilometers in the case of TOPEX/POSEIDON when using the GEM-T1 gravity model. Finally, it was determined that even the orbit error at points where ascending and descending ground traces cross is somewhat correlated. The implication of these various correlations is that the orbit error due to gravity error is geographically correlated. Such correlations have direct implications when using altimetry to recover oceanographic signals.

  15. A spaceborne superconducting gravity gradiometer for mapping the earth's gravity field

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The principles of a satellite gravity gradiometer system which measures all five independent components of the gravity gradient tensor with a sensitivity of 0.001 E/Hz to the 1/2 power or better, are analyzed, and the status of development of the system is reviewed. The superconducting gravity gradiometer uses sensitive superconducting accelerometers, each of which are composed of a weakly suspended superconducting proof mass, a superconducting magnetic transducer, and a low-noise superconducting magnetometer. The magnetic field produced by the transducer coils is modulated by the motion of the proof mass and detected by the magnetometer. A combination of two or four of such accelerometers with proper relative orientation of sensitive axes results in an in-line or a cross component gravity gradiometer.

  16. Crustal analysis of the Ulleung Basin in the East Sea (Japan Sea) from enhanced gravity mapping

    NASA Astrophysics Data System (ADS)

    Park, Chan Hong; Kim, Jeong Woo; Isezaki, Nobuhiro; Roman, Daniel R.; von Frese, Ralph R. B.

    2006-12-01

    To facilitate geological analyses of the Ulleung Basin in the East Sea (Japan Sea) between Korea and Japan, shipborne and satellite altimetry-derived gravity data are combined to derive a regionally coherent anomaly field. The 2-min gridded satellite altimetry-based gravity predicted by Sandwell and Smith [Sandwell DT, Smith WHF (1997) J Geophys Res 102(B5):10,039-10,054] are used for making cross-over adjustments that reduce the errors between track segments and at the cross-over points of shipborne gravity profiles. Relative to the regionally more homogeneous satellite gravity anomalies, the longer wavelength components of the shipborne anomalies are significantly improved with minimal distortion of their shorter wavelength components. The resulting free-air gravity anomaly map yields a more coherent integration of short and long wavelength anomalies compared to that obtained from either the shipborne or satellite data sets separately. The derived free-air anomalies range over about 140 mGals or more in amplitude and regionally correspond with bathymetric undulations in the Ulleung Basin. The gravity lows and highs along the basin’s margin indicate the transition from continental to oceanic crust. However, in the northeastern and central Ulleung Basin, the negative regional correlation between the central gravity high and bathymetric low suggests the presence of shallow denser mantle beneath thinned oceanic crust. A series of gravity highs mark seamounts or volcanic terranes from the Korean Plateau to Oki Island. Gravity modeling suggests underplating by mafic igneous rocks of the northwestern margin of the Ulleung Basin and the transition between continental and oceanic crust. The crust of the central Ulleung Basin is about a 14-15 km thick with a 4-5 km thick sediment cover. It may also include a relatively weakly developed buried fossil spreading ridge with approximately 2 km of relief.

  17. Dynamic gene expression response to altered gravity in human T cells.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Huge, Andreas; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver

    2017-07-12

    We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.

  18. Galaxy-galaxy weak gravitational lensing in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Li, Baojiu; Shirasaki, Masato

    2018-03-01

    We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon f(R) gravity - a leading candidate of non-standard gravity models. For the analysis, we have created mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the f(R) and Λ cold dark matter (ΛCDM) models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the f(R) model predicts an enhancement of the convergence power spectrum by up to ˜ 30 per cent compared to the standard ΛCDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5 per cent on separations above ˜1-2 h-1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy autocorrelations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in f(R) gravity. We find that the galaxy-matter cross-correlation coefficient remains at unity down to ˜2-3 h-1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allows us to break the degeneracy between f(R) gravity and other cosmological parameters such as Ωm and σ8.

  19. Gravity fields. [Jovian, Martian, Cytherean, Mercurian and lunar mass distributions

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Anderson, J. D.; Phillips, R. J.; Trask, D. W.

    1976-01-01

    Detailed results on internal mass distribution have been obtained via earth-based Doppler radio tracking of deep space probes in the case of Mars, the earth's moon, Venus, Mercury, and Jupiter. Global gravity fields show close correlation with topography in the case of the moon and Mars, as data from orbiting spacecraft indicate. Some data are available on Jovian satellites. The gravity measuring instrumentation and data reduction techniques are described. Gravity profiles referable to lunar frontside mascons, craters, and mountain chains have been acquired from low-altitude (15-20 km) orbit surveys. Theoretically based cross sections through the moon and Jupiter are presented.

  20. Interpretation of gravity anomalies in the northwest Adirondack lowlands, northern New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revetta, F.A.; O'Brian, B.

    1993-03-01

    Twelve hundred gravity measurements were made in the Adirondack Highlands and northwest Adirondack Lowlands, New York between 44[degree]15 minutes and 44[degree]30 minutes N. Latitude and 75[degree]00 minutes W. Longitude. A Bouguer gravity map constructed from the gravity measurements includes the Carthage-Colton Mylonite Zone, a major structural boundary between the highlands and lowlands. The gravity map indicates the gravity contours trend parallel to the CCMZ along most of its length however in some areas the contours cross the boundary. No clear-cut relationships exists between the CCMZ and gravity contours. The Bouguer gravity map shows several prominent gravity anomalies which correlate withmore » the geology seismicity and mineral deposits in the area. Gravity lows of 20 to 30 g.u. are centered over the Gouverneur, Hyde and Payne Lake Alaskite gneiss bodies. A gravity high of 20 g.u. occurs over the Pleasant Lake gabbro pluton. Gravity highs of 35 and 100 g.u. occur over the Sylvia Lake Zinc District and marble just north of the district. A gravity high at Russell, N.Y. coincides with a cluster of nine earthquake epicenters. Finally a steep gravity gradient separates high density rocks from lower density rocks along the Black Lake fault. Two-dimensional computer modeling of the geologic features is underway and quantitative models of the structures will be presented.« less

  1. Thin-shell wormholes in rainbow gravity

    NASA Astrophysics Data System (ADS)

    Amirabi, Z.; Halilsoy, M.; Mazharimousavi, S. Habib

    2018-03-01

    At the Planck scale of length ˜10‑35 m where the energy is comparable with the Planck energy, the quantum gravity corrections to the classical background spacetime results in gravity’s rainbow or rainbow gravity. In this modified theory of gravity, geometry depends on the energy of the test particle used to probe the spacetime, such that in the low energy limit, it yields the standard general relativity. In this work, we study the thin-shell wormholes in the spherically symmetric rainbow gravity. We find the corresponding properties in terms of the rainbow functions which are essential in the rainbow gravity and the stability of such thin-shell wormholes are investigated. Particularly, it will be shown that there are exact solutions in which high energy particles crossing the throat will encounter less amount of total exotic matter. This may be used as an advantage over general relativity to reduce the amount of exotic matter.

  2. Selection of artificial gravity by animals during suborbital rocket flights

    NASA Technical Reports Server (NTRS)

    Lange, K. O.; Belleville, R. E.; Clark, F. C.

    1975-01-01

    White rats selected preferred artificial gravity levels by locomotion in centrifuges consisting of two runways mounted in the nose of sounding rockets. Roll rate of the Aerobee 150A rocket was designed to produce an angular velocity of 45 rpm during 5 min of free-fall, providing a gravity range from 0.3 to 1.5 G depending on a subject's runway position. One animal was released at the high and one at the low gravity position in each flight. Animal positions were continuously recorded. Locomotion patterns during these flights were similar. All four animals explored the entire available G-range. One rat settled at 0.4 G after 2 min; the others crossed the 1-G location in progressively narrower excursions and were near earth gravity at the end of the test period. Tentatively, the data suggest that normal earth-reared rats select earth gravity when available magnitudes include values above and below 1 G. Modification of gravity preference by prolonged exposure to higher or lower levels remains a possibility.

  3. Prelaunch testing of the GEOS-3 laser reflector array

    NASA Technical Reports Server (NTRS)

    Minott, P. O.; Fitzmaurice, M. W.; Abshire, J. B.; Rowe, H. E.

    1978-01-01

    The prelaunch testing performed on the Geos-3 laser reflector array before launch was used to determine the lidar cross section of the array and the distance of the center of gravity of the satellite from the center of gravity of reflected laser pulses as a function of incidence angle. Experimental data are compared to computed results.

  4. Interpretations of Complete Bouguer Gravity Anomalies from the GRAV-D Project in Alaska

    NASA Astrophysics Data System (ADS)

    Diehl, T. M.; Preaux, S. A.; Childers, V. A.

    2010-12-01

    The GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project of the U.S. National Geodetic Survey plans to collect airborne gravity data across the entire U.S. and its holdings over the next decade. The goal of the project is to create a gravimetric geoid model to use as the vertical datum for the U.S. by 2021. Airborne gravity survey work began more than two years ago, with Alaska as a high priority for new data collection. Data collection there is underway and will be ongoing for several more years, but two roughly 400 km x 400 km surveys have been completed: in 2008 (centered over Cook Inlet near Anchorage) and in 2009 (centered over the Interior, to the north of the Alaska Range and west of Fairbanks). The gravity data for both surveys was collected with a MicroG LaCoste TAGS system but each survey utilized a different aircraft and survey layout. The 2008 survey was flown at 35,000 ft with the NOAA Cessna Citation jet, with 10 km data line spacing and 60 km cross lines spacing. The 2009 survey was flown at 12,500 ft with the Naval Research Lab King Air (RC-12) turboprop, with 7.5 km data line spacing and 37.5 cross line spacing. The 2008 data reveal the > 20 km resolution gravity effects of all the near-trench features (from accretionary prism to volcanic arc) for a 400 km stretch of the active plate boundary. In comparison, the 2009 gravity data allow a slightly better resolution (> 15 km) view of the distal deformation to the north of the Alaska Range. The free-air gravity disturbances for each survey were computed and then complete (terrain-corrected) Bouguer gravity anomalies were calculated with Gauss-Legendre Quadrature integration (von Frese, et al., 1999) using standard density assumptions. Topography used to calculate the corrections came from the freely-available GTOPO30 (USGS, online) and bathymetry from the Smith and Sandwell (1997) altimetry-derived data. Interpretations of the complete Bouguer gravity anomalies will be made in the context of the tectonic activity in southern Alaska.

  5. Cosmological applications of F (T ,TG) gravity

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Saridakis, Emmanuel N.

    2014-10-01

    We investigate the cosmological applications of F (T ,TG) gravity, which is a novel modified gravitational theory based on the torsion invariant T and the teleparallel equivalent of the Gauss-Bonnet term TG. F (T ,TG) gravity differs from both F (T ) theories as well as from F (R ,G ) class of curvature modified gravity, and thus its corresponding cosmology proves to be very interesting. In particular, it provides a unified description of the cosmological history from early-times inflation to late-times self-acceleration, without the inclusion of a cosmological constant. Moreover, the dark energy equation-of-state parameter can be quintessence or phantomlike, or experience the phantom-divide crossing, depending on the parameters of the model.

  6. Unit operations for gas-liquid mass transfer in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Allen, David T.

    1992-01-01

    Basic scaling rules are derived for converting Earth-based designs of mass transfer equipment into designs for a reduced gravity environment. Three types of gas-liquid mass transfer operations are considered: bubble columns, spray towers, and packed columns. Application of the scaling rules reveals that the height of a bubble column in lunar- and Mars-based operations would be lower than terrestrial designs by factors of 0.64 and 0.79 respectively. The reduced gravity columns would have greater cross-sectional areas, however, by factors of 2.4 and 1.6 for lunar and Martian settings. Similar results were obtained for spray towers. In contract, packed column height was found to be nearly independent of gravity.

  7. Gravity and magnetic anomaly data analysis

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1982-01-01

    Progress on the analysis MAGSAT data is reported. The MAGSAT data from 40 deg S to 70 deg N latitude and 30 deg W to 60 E longitude was reduced to radial polarization. In addition, gravity anomaly data from this area were processed and a variety of filtered maps were prepared for combined interpretation of the gravity and magnetic data in conjunction with structural and tectonic maps of the area. The VERSATEC listings and cross-reference maps of variable and array names for the spherical Earth analysis programs NVERTSM, SMFLD, NVERTG, and GFLD were also prepared.

  8. Role of the plant cell wall in gravity resistance.

    PubMed

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. An improved model for the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.

    1989-01-01

    An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.

  10. Secondary arm coarsening and microsegregation in superalloy PWA-1480 single crystals: Effect of low gravity

    NASA Technical Reports Server (NTRS)

    Vijayakumar, M.; Tewari, S. N.; Lee, J. E.; Curreri, P. A.

    1990-01-01

    Single crystal specimens of nickel base superalloy PWA-1480 were directionally solidified on ground and during low gravity (20 sec) and high gravity (90 sec) parabolic maneuver of KC-135 aircraft. Thermal profiles were measured during solidification by two in-situ thermocouples positioned along the sample length. The samples were quenched during either high or low gravity cycles so as to freeze the structures of the mushy zone developing under different gravity levels. Microsegregation was measured by examining the solutal profiles on several transverse cross-sections across primary dendrites along their length in the quenched mushy zone. Effect of gravity level on secondary arm coarsening kinetics and microsegregation have been investigated. The results indicate that there is no appreciable difference in the microsegregation and coarsening kinetics behavior in the specimens grown under high or low gravity. This suggests that short duration changes in gravity/levels (0.02 to 1.7 g) do not influence convection in the interdendritic region. Examination of the role of natural convection, in the melt near the primary dendrite tips, on secondary arm spacings requires low gravity periods longer than presently available on KC-135. Secondary arm coarsening kinetics show a reasonable fit with the predictions from a simple analytical model proposed by Kirkwood for a binary alloy.

  11. Cross-correlation between EMG and center of gravity during quiet stance: theory and simulations.

    PubMed

    Kohn, André Fabio

    2005-11-01

    Several signal processing tools have been employed in the experimental study of the postural control system in humans. Among them, the cross-correlation function has been used to analyze the time relationship between signals such as the electromyogram and the horizontal projection of the center of gravity. The common finding is that the electromyogram precedes the biomechanical signal, a result that has been interpreted in different ways, for example, the existence of feedforward control or the preponderance of a velocity feedback. It is shown here, analytically and by simulation, that the cross-correlation function is dependent in a complicated way on system parameters and on noise spectra. Results similar to those found experimentally, e.g., electromyogram preceding the biomechanical signal may be obtained in a postural control model without any feedforward control and without any velocity feedback. Therefore, correct interpretations of experimentally obtained cross-correlation functions may require additional information about the system. The results extend to other biomedical applications where two signals from a closed loop system are cross-correlated.

  12. Gridded Data in the Arctic; Benefits and Perils of Publicly Available Grids

    NASA Astrophysics Data System (ADS)

    Coakley, B.; Forsberg, R.; Gabbert, R.; Beale, J.; Kenyon, S. C.

    2015-12-01

    Our understanding of the Arctic Ocean has been hugely advanced by release of gridded bathymetry and potential field anomaly grids. The Arctic Gravity Project grid achieves excellent, near-isotropic coverage of the earth north of 64˚N by combining land, satellite, airborne, submarine, surface ship and ice set-out measurements of gravity anomalies. Since the release of the V 2.0 grid in 2008, there has been extensive icebreaker activity across the Amerasia Basin due to mapping of the Arctic coastal nation's Extended Continental Shelves (ECS). While grid resolution has been steadily improving over time, addition of higher resolution and better navigated data highlights some distortions in the grid that may influence interpretation. In addition to the new ECS data sets, gravity anomaly data has been collected from other vessels; notably the Korean Icebreaker Araon, the Japanese icebreaker Mirai and the German icebreaker Polarstern. Also the GRAV-D project of the US National Geodetic Survey has flown airborne surveys over much of Alaska. These data will be Included in the new AGP grid, which will result in a much improved product when version 3.0 is released in 2015. To make use of these measurements, it is necessary to compile them into a continuous spatial representation. Compilation is complicated by differences in survey parameters, gravimeter sensitivity and reduction methods. Cross-over errors are the classic means to assess repeatability of track measurements. Prior to the introduction of near-universal GPS positioning, positional uncertainty was evaluated by cross-over analysis. GPS positions can be treated as more or less true, enabling evaluation of differences due to contrasting sensitivity, reference and reduction techniques. For the most part, cross-over errors for racks of gravity anomaly data collected since 2008 are less than 0.5 mGals, supporting the compilation of these data with only slight adjustments. Given the different platforms used for various Arctic Ocean surveys, registration between bathymetric and gravity anomaly grids cannot be assumed. Inverse methods, which assume co-registration of data produce, sometimes surprising results when well-constrained gravity grid values are inverted against interpolated bathymetry.

  13. Polydisperse particle-driven gravity currents in non-rectangular cross section channels

    NASA Astrophysics Data System (ADS)

    Zemach, T.

    2018-01-01

    We consider a high-Reynolds-number gravity current generated by polydisperse suspension of n types of particles distributed in a fluid of density ρi. Each class of particles in suspension has a different settling velocity. The current propagates along a channel of non-rectangular cross section into an ambient fluid of constant density ρa. The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general form -f1(z) ≤ y ≤ f2(z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion. We solve the problem by a finite-difference numerical code to present typical height h, velocity u, and mass fractions of particle (concentrations) (ϕ( j), j = 1, …, n) profiles. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged "box" model. We demonstrate that any degree of polydispersivity adds to the runout length of the currents, relative to that of equivalent monodisperse currents with an average settling velocity. The theoretical predictions are supported by the available experimental data. The present approach is a significant generalization of the particle-driven gravity current problem: on the one hand, now the monodisperse current in non-rectangular channels is a particular case of n = 1. On the other hand, the classical formulation of polydisperse currents for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model.

  14. 3D joint inversion of gravity-gradient and borehole gravity data

    NASA Astrophysics Data System (ADS)

    Geng, Meixia; Yang, Qingjie; Huang, Danian

    2017-12-01

    Borehole gravity is increasingly used in mineral exploration due to the advent of slim-hole gravimeters. Given the full-tensor gradiometry data available nowadays, joint inversion of surface and borehole data is a logical next step. Here, we base our inversions on cokriging, which is a geostatistical method of estimation where the error variance is minimised by applying cross-correlation between several variables. In this study, the density estimates are derived using gravity-gradient data, borehole gravity and known densities along the borehole as a secondary variable and the density as the primary variable. Cokriging is non-iterative and therefore is computationally efficient. In addition, cokriging inversion provides estimates of the error variance for each model, which allows direct assessment of the inverse model. Examples are shown involving data from a single borehole, from multiple boreholes, and combinations of borehole gravity and gravity-gradient data. The results clearly show that the depth resolution of gravity-gradient inversion can be improved significantly by including borehole data in addition to gravity-gradient data. However, the resolution of borehole data falls off rapidly as the distance between the borehole and the feature of interest increases. In the case where the borehole is far away from the target of interest, the inverted result can be improved by incorporating gravity-gradient data, especially all five independent components for inversion.

  15. A State Event Detection Algorithm for Numerically Simulating Hybrid Systems with Model Singularities

    DTIC Science & Technology

    2007-01-01

    the case of non- constant step sizes. Therefore the event dynamics after the predictor and corrector phases are, respectively, gpk +1 = g( xk + hk+1{ m...the Extrapolation Polynomial Using a Taylor series expansion of the predicted event function eq.(6) gpk +1 = gk + hk+1 dgp dt ∣∣∣∣ (x,t)=(xk,tk) + h2k...1 2! d2gp dt2 ∣∣∣∣ (x,t)=(xk,tk) + . . . , (8) we can determine the value of gpk +1 as a function of the, yet undetermined, step size hk+1. Recalling

  16. Production of Gas Bubbles in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Oguz, Hasan N.; Takagi, Shu; Misawa, Masaki

    1996-01-01

    In a wide variety of applications such as waste water treatment, biological reactors, gas-liquid reactors, blood oxygenation, purification of liquids, etc., it is necessary to produce small bubbles in liquids. Since gravity plays an essential role in currently available techniques, the adaptation of these applications to space requires the development of new tools. Under normal gravity, bubbles are typically generated by forcing gas through an orifice in a liquid. When a growing bubble becomes large enough, the buoyancy dominates the surface tension force causing it to detach from the orifice. In space, the process is quite different and the bubble may remain attached to the orifice indefinitely. The most practical approach to simulating gravity seems to be imposing an ambient flow to force bubbles out of the orifice. In this paper, we are interested in the effect of an imposed flow in 0 and 1 g. Specifically, we investigate the process of bubble formation subject to a parallel and a cross flow. In the case of parallel flow, we have a hypodermic needle in a tube from which bubbles can be produced. On the other hand, the cross flow condition is established by forcing bubbles through an orifice on a wall in a shear flow. The first series of experiments have been performed under normal gravity conditions and the working fluid was water. A high quality microgravity facility has been used for the second type and silicone oil is used as the host liquid.

  17. Thought-Experiments About Gravity in the History of Science and in Research into Children's Thinking

    NASA Astrophysics Data System (ADS)

    Blown, E. J.; Bryce, T. G. K.

    2013-03-01

    This article examines the main strands of thinking about gravity through the ages and the continuity of thought-experiments, from the early Greeks, through medieval times, to Galileo, Newton and Einstein. The key ideas are used to contextualise an empirical study of 247 children's ideas about falling objects carried out in China and New Zealand, including the use of scenarios involving thrown and dropped items, and objects falling down deep well holes (as in Carroll's Alice in Wonderland). The sample included 68 pre-school pupils, 68 primary school pupils, 56 middle school students, and 55 high school students; with approximately equal numbers in each group and of boys and girls in each group in each culture. The methodology utilised Piagetian interviews with three media (verbal language, drawing, and play-dough), a shadow stick; and everyday items including model people and soft model animals. The data from each group was categorised and analysed with Kolmogorov- Smirnov Two- Sample Tests and Spearman r s coefficients. It was hypothesised and confirmed (at K- S alpha levels .05; r s : p < .001) that cross-age and cross-cultural research and analysis would reveal that (a) an intuitive sense of gravity is present from an early age and develops in association with concepts like Earth shape and motion; (b) the development of concepts of gravity is similar in cultures such as China and New Zealand where teachers hold a scientific world view; and (c) children's concepts of Earth motion, Earth shape, and gravity are coherent rather than fragmented. It was also demonstrated that multi-media interviews together with concrete experiences and thought-experiments afforded children the opportunity to share their emerging concepts of gravity. The findings provide information that teachers might use for lessons at an appropriate level.

  18. Investigation of lunar maria structure from cross-analysis of GRAIL gravity and Kaguya radar data

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Ermakov, A.; Smith, D. E.; Mastroguiseppe, M.; Raguso, M.

    2016-12-01

    The Lunar Radar Sounder (LRS) on JAXA's Kaguya spacecraft investigated the subsurface structure of the Moon to a depth of a few km. GRAIL gravity models are potentially sensitive to subsurface structure at such depths. GRAIL gravity and LRS radar data are complementary since both are sensitive to density/compositional heterogeneities. Cross-correlation of GRAIL and LRS data has the potential to produce new constraints on the structure and evolution of the lunar maria. Originally, subsurface reflections within the lunar maria were detected with Lunar Sounder Experiment aboard Apollo 17. Subsurface layering was attributed to multiple episodes of volcanism. Later, Kaguya's LRS produced similar measurements but with global-scale coverage. Laboratory measurements show that density variations among mare basalts can be up to 200 kg m-3 or 7%. The LRS measurements have detected subsurface reflection in the upper 1 km of the crust. Combining these two estimates and using the Bouguer slab approximation, we estimate that anomalies of order 1-10 mGal are expected due to potentially varying density of surface and/or subsurface horizons. This accuracy is achievable with the latest GRAIL gravity models. The LRS surface backscattering power is indicative of surface and near sub-surface dielectric properties, which are sensitive to target density and roughness. We investigate the northwestern part of the Procellarum basin because it is the region with the strongest signal-to-noise ratios in gravity models within maria. To examine shallow subsurface structure, we map the surface received power by tracking the first return of radar echoes and compare it with gravity gradients, which are particularly sensitive to small-scale structures.

  19. Entanglement entropy and correlations in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Feller, Alexandre; Livine, Etera R.

    2018-02-01

    Black hole entropy is one of the few windows into the quantum aspects of gravitation, and its study over the years has highlighted the holographic nature of gravity. At the non-perturbative level in quantum gravity, promising explanations are being explored in terms of the entanglement entropy between regions of space. In the context of loop quantum gravity, this translates into an analysis of the correlations between the regions of the spin network states defining the quantum state of the geometry of space. In this paper, we explore a class of states, motivated by results in condensed matter physics, satisfying an area law for entanglement entropy and having non-trivial correlations. We highlight that entanglement comes from holonomy operators acting on loops crossing the boundary of the region.

  20. 2D data-space cross-gradient joint inversion of MT, gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Pak, Yong-Chol; Li, Tonglin; Kim, Gang-Sop

    2017-08-01

    We have developed a data-space multiple cross-gradient joint inversion algorithm, and validated it through synthetic tests and applied it to magnetotelluric (MT), gravity and magnetic datasets acquired along a 95 km profile in Benxi-Ji'an area of northeastern China. To begin, we discuss a generalized cross-gradient joint inversion for multiple datasets and model parameters sets, and formulate it in data space. The Lagrange multiplier required for the structural coupling in the data-space method is determined using an iterative solver to avoid calculation of the inverse matrix in solving the large system of equations. Next, using model-space and data-space methods, we inverted the synthetic data and field data. Based on our result, the joint inversion in data-space not only delineates geological bodies more clearly than the separate inversion, but also yields nearly equal results with the one in model-space while consuming much less memory.

  1. Gravity and Magnetotelluric Modeling of the Santo Domingo Basin, Northern New Mexico

    NASA Astrophysics Data System (ADS)

    Zamudio, K. D.; Keithline, N.; Blum, C.; Cunningham, E.; Fromont, A.; Jorgensen, M.; Lee, R.; McBride, K.; Saez Berrios, P.; Harper, C.; Pellerin, L.; McPhee, D.; Ferguson, J. F.

    2015-12-01

    The Santo Domingo Basin, one of a series of basins within the Rio Grande Rift, is located between Santa Fe and Albuquerque, NM, and has been the focus of research by the Summer of Geophysical Experience (SAGE) program since 2000. Gravity, magnetotelluric (MT), and seismic data have been collected throughout the region, although we are concentrating on gravity and MT data collected during SAGE 2014 and 2015. The study area is located in the center of the Santo Domingo basin, an extensional, Miocene age, rift basin, in an area that was minimally involved in the preceding local Laramide orogenic activity. Rift sediments (~3.5 km thick) are underlain by Eocene age sediments that were shed from adjacent uplifts. Up to 3 km of Mesozoic and Paleozoic sediments are preserved above the Precambrian basement. Geologic outcrop, borehole and seismic reflection data, and known density values were used in the construction of a ~100 km-long, generalized geologic cross section from which a gravity response was calculated. The modeled gravity response makes fairly definitive predictions about the geometry of the basin as well as the stratigraphy and faulting within and bounding the basin. MT data was collected at ten stations within the basin. The MT sounding curves exhibit one-dimensional behavior at short periods (<10 s), not surprisingly considering the relatively flat local structure in the area. Layered-earth MT models, without geologic constraints, show a conductive (<10 ohm-m) layer at ~1.5 km above a more resistive layer (>1000 ohm-m) at ~ 3.5-4 km. Conductivities of the major stratigraphic units have been determined from well logs and previous MT modeling. Forward and inverse MT models constrained by the gravity-modeled geologic cross section are used to develop a conductivity model consistent with the geology, and are a step towards a better unified treatment of MT, seismic and gravity data.

  2. PDEPTH—A computer program for the geophysical interpretation of magnetic and gravity profiles through Fourier filtering, source-depth analysis, and forward modeling

    USGS Publications Warehouse

    Phillips, Jeffrey D.

    2018-01-10

    PDEPTH is an interactive, graphical computer program used to construct interpreted geological source models for observed potential-field geophysical profile data. The current version of PDEPTH has been adapted to the Windows platform from an earlier DOS-based version. The input total-field magnetic anomaly and vertical gravity anomaly profiles can be filtered to produce derivative products such as reduced-to-pole magnetic profiles, pseudogravity profiles, pseudomagnetic profiles, and upward-or-downward-continued profiles. A variety of source-location methods can be applied to the original and filtered profiles to estimate (and display on a cross section) the locations and physical properties of contacts, sheet edges, horizontal line sources, point sources, and interface surfaces. Two-and-a-half-dimensional source bodies having polygonal cross sections can be constructed using a mouse and keyboard. These bodies can then be adjusted until the calculated gravity and magnetic fields of the source bodies are close to the observed profiles. Auxiliary information such as the topographic surface, bathymetric surface, seismic basement, and geologic contact locations can be displayed on the cross section using optional input files. Test data files, used to demonstrate the source location methods in the report, and several utility programs are included.

  3. Making baryons dark: the quantum prediction of the variation of photon-particle scattering cross section with the approach to equilibrium in deep gravity wells

    NASA Astrophysics Data System (ADS)

    Ernest, Alllan David; Collins, Matthew P.

    2015-08-01

    Analysis of astrophysical phenomena relies on knowledge of cross sections. These cross sections are measured in scattering experiments, or calculated using theoretical techniques such as partial wave analysis. It has been recently shown [1,2,3] however that photon scattering cross sections depend also on the degree of localization of the target particle, and that particles in large-scale, deep-gravity wells can exhibit lower cross sections than those measured in lab-based experiments where particles are implicitly localized. This purely quantum effect arises as a consequence of differences in the gravitational eigenspectral distribution of a particle’s wavefunction in different situations, and is in addition to the obvious notion that delocalized particle scattering is less likely simply because the target particles are ‘in a bigger box’.In this presentation we consider the quantum equilibrium statistics of particles in gravitational potentials corresponding to dark matter density profiles. We show that as galactic halos approach equilibrium, the dark eigenstates of the eigenspectral ensemble are favoured and baryons exhibit lower photon scattering cross sections, rendering halos less visible than expected from currently accepted cross sections. Traditional quantum theory thus predicts that baryons that have not coalesced into self-bound macroscopic structures such as stars, can essentially behave as dark matter simply by equilibrating within a deep gravity well. We will discuss this effect and the consequences for microwave anisotropy analysis and primordial nucleosynthesis.[1] Ernest, A. D., and Collins, M. P., 2014, Australian Institute of Physics, AIP Congress, Canberra, December, 2014.[2] Ernest, A. D., 2009, J. Phys. A: Math. Theor., 42, 115207, 115208.[3] Ernest, A. D., 2012, In Prof. Ion Cotaescu (Ed) Advances in Quantum Theory (pp 221-248). Rijeka: InTech. ISBN 978-953-51-0087-4

  4. Potential Means of Cost Reduction in Grade Crossing Motorist-Warning Control Equipment : Volume 2. Comparison of Solid State and Relay Devices and Techniques

    DOT National Transportation Integrated Search

    1977-12-01

    Consideration is given to the properties of solid-state circuits, miniature relays and large gravity-operated relays when applied to control systems for grade crossings equipped with train-activated motorist warnings. Factors discussed include origin...

  5. A high order compact least-squares reconstructed discontinuous Galerkin method for the steady-state compressible flows on hybrid grids

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Zhang, Fan; Liu, Tiegang

    2018-06-01

    In this paper, a class of new high order reconstructed DG (rDG) methods based on the compact least-squares (CLS) reconstruction [23,24] is developed for simulating the two dimensional steady-state compressible flows on hybrid grids. The proposed method combines the advantages of the DG discretization with the flexibility of the compact least-squares reconstruction, which exhibits its superior potential in enhancing the level of accuracy and reducing the computational cost compared to the underlying DG methods with respect to the same number of degrees of freedom. To be specific, a third-order compact least-squares rDG(p1p2) method and a fourth-order compact least-squares rDG(p2p3) method are developed and investigated in this work. In this compact least-squares rDG method, the low order degrees of freedom are evolved through the underlying DG(p1) method and DG(p2) method, respectively, while the high order degrees of freedom are reconstructed through the compact least-squares reconstruction, in which the constitutive relations are built by requiring the reconstructed polynomial and its spatial derivatives on the target cell to conserve the cell averages and the corresponding spatial derivatives on the face-neighboring cells. The large sparse linear system resulted by the compact least-squares reconstruction can be solved relatively efficient when it is coupled with the temporal discretization in the steady-state simulations. A number of test cases are presented to assess the performance of the high order compact least-squares rDG methods, which demonstrates their potential to be an alternative approach for the high order numerical simulations of steady-state compressible flows.

  6. [Attitudes and experiences regarding physician assisted suicide : A survey among members of the German Association for Palliative Medicine].

    PubMed

    Jansky, Maximiliane; Jaspers, Birgit; Radbruch, Lukas; Nauck, Friedemann

    2017-01-01

    The need to regulate physician-assisted suicide (PAS) and organizations offering assisted suicide has been controversially debated in Germany. Before the German parliament voted on various drafts in November 2015, the German Association for Palliative Medicine surveyed its members on their attitudes and experiences regarding PAS. Items for the survey were derived from the literature and consented in a focus group. 2005-2015 - PubMed: PAS [Title/Abstract] UND survey (all countries), grey literature. We invited 5152 members of the DGP to participate in the online/paper survey. Descriptive quantitative and content analytic qualitative analysis of data using SPSS and MaxQDA. We obtained 1811 valid data sets (response rate 36.9%). 33.7% of the participants were male, 43.6% were female, and 0.4% identifed as other. Physicians accounted for 48.5% of the respondents, 17.8% nurses, other professions 14.3%, and about 20% of the data was missing socio-demographic information. More than 90% agreed that "wishes for PAS may be ambivalent" and "are rather a wish to end an unbearable situation". Of the 833 participating physicians, 56% refused participating in PAS and 74.2% had been asked to perform PAS. PAS was actually performed by 3%. Of all participating members, 56% approved of a legal ban of organizations offering assisted suicide. More than 60% of all professions agreed that PAS is not a part of palliative care. The respondents show a broad spectrum of attitudes, only partly supporting statements of relevant bodies, such as DGP. Because many are confronted with the issue, PAS is relevant to professionals in palliative care.

  7. 2-Nitrosoamino-3-methylimidazo[4,5-f]quinoline activated by the inflammatory response forms nucleotide adducts.

    PubMed

    Lakshmi, Vijaya M; Schut, Herman A J; Zenser, Terry V

    2005-11-01

    Heterocyclic amines and inflammation have been implicated in the etiology of colon cancer. We have recently demonstrated that during autoxidation of the inflammatory mediator nitric oxide 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) undergoes nitrosation to form 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ). This study evaluates the genotoxicity of N-NO-IQ and compares the adducts it forms to those of 2-hydroxyamino-3-methylimidazo[4,5-f]quinoline (N-OH-IQ). N-NO-IQ was incubated with 2'-deoxyguanosine 3'-monophosphate (dGp) under a variety of inflammatory conditions. 32P-Postlabeling demonstrated the presence of multiple adducts. Incubation of N-OH-IQ with dGp at pH 7.4, 5.5, or 2.0 resulted in the formation of a single major adduct, N-(deoxyguanosin-8-yl)-IQ (dG-C8-IQ). Using a combination of 32P-postlabeling, HPLC, and nuclease P1 treatment, N-NO-IQ was shown to produce dG-C8-IQ under several different conditions. HOCl oxidation of N-NO-IQ increased dG-C8-IQ formation, and this was further increased as pH decreased from 7.4 to 5.5. Oxidation of N-NO-IQ formed a new adduct, adduct 2, while in the absence of oxidants adduct m was the major adduct. Adducts 2 and m were not formed by N-OH-IQ and not further identified. The results demonstrate that N-NO-IQ forms N-(deoxyguanosin-8-yl)-IQ, is genotoxic, is activated by conditions that mediate inflammatory responses, and is a possible cancer risk factor for individuals with colitis, inflammation of the colon.

  8. Modified floating-zone growth of organic single crystals

    NASA Astrophysics Data System (ADS)

    Kou, S.; Chen, C. P.

    1994-04-01

    For organic materials floating-zone crystal growth is superior to other melt growth processes in two significant respects: (1) the absence of crucible-induced mechanical damage and (2) minimum heating-induced chemical degradation. Due to the rather low surface tension of organic melts, however, floating-zone crystal growth under normal gravity has not been possible so far but microgravity is ideal for such a purpose. With the help of a modified floating-zone technique, organic single crystals of small cross-sections were test grown first under normal gravity. These small crystals were round and rectangular single crystals of benzil and salol, up to about 7 cm long and 6 mm in diameter or 9 mm × 3 mm in cross-section.

  9. Modeling and Crustal Structure in the Future Reservoir of Jequitaí, Brazil

    NASA Astrophysics Data System (ADS)

    Teixeira, C. D.; Von Huelsen, M. G.; Chemale, F., Jr.; Nascimento, A. V. D. S., Sr.; do Sacramento, V., Sr.; Garcia, V. B. P., Sr.

    2017-12-01

    Integrated geophysical and geological data analysis in the state of Minas Gerais, Brazil, allowed the modeling of the subsurface framework in a region where a reservoir - the Jequitaí reservoir - will be constructed. Studies of this nature during the previous stages of the construction of large hydroelectric projects are highly important, because the regional geology understanding associated with geophysical data interpretation can help to prevent damage in the physical structure of the dam, which will aid in its preservation. The use of gravity and magnetic data in a 2D crustal model provided information on a possible framework of the area and revealed features not mapped until now, which may be useful for further studies and can contribute to the understanding of this portion of the crust. The results show the presence of high gravity anomalies in the southern part of the study area, besides extensive lineaments that cross the whole area, interpreted as possible faults and dykes. Depth estimation techniques, such as Euler deconvolution and radially averaged power spectrum, allowed the identification of continuous structures up to 400 m depth, and showed differences in the basement depth in the northern and southern portions of the study area. Inversion of the gravity data along a profile crossing a gravity anomaly yielded to information about the depth, thickness and shape of a possible intrusive body. The geological-geophysical model was consistent with the interpretations based on surface geology and in the gravity and magnetic signal, because the section could be modeled respecting the geophysical data and the pre-existing structural proposals.

  10. 96. (Credit BLV) View locking West at Cross Lake dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    96. (Credit BLV) View locking West at Cross Lake dam and spillway constructed immediately west of Kansas City Southern railroad bridge. Booster station located at left. Note cribbing at bridge abutment in upper left which straddles gravity flow canduit installed in 1924-1926 and supports extra suction line (installed in 1930) on top. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  11. Algorithmic Trading with Developmental and Linear Genetic Programming

    NASA Astrophysics Data System (ADS)

    Wilson, Garnett; Banzhaf, Wolfgang

    A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.

  12. Ghosts in the self-accelerating DGP branch with Gauss–Bonnet effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yen-Wei; Izumi, Keisuke; Bouhmadi-López, Mariam

    2015-06-01

    The Dvali–Gabadadze–Porrati brane-world model provides a possible approach to address the late-time cosmic acceleration. However, it has subsequently been pointed out that a ghost instability will arise on the self-accelerating branch. Here, we carefully investigate whether this ghost problem could be possibly cured by introducing the Gauss–Bonnet term in the five-dimensional bulk action, a natural generalization to the Dvali–Gabadadze–Porrati model. Our analysis is carried out for a background where a de Sitter brane is embedded in an anti–de Sitter bulk. Our result shows that the ghost excitations cannot be avoided even in this modified model.

  13. Selection of artificial gravity by animals during suborbital rocket flights.

    PubMed

    Lange, K O; Belleville, R E; Clark, F C

    1975-06-01

    White rats selected preferred artificial gravity levels by locomotion in centrifuges consisting of two runways mounted in the nose of sounding rockets. Roll rate of the Aerobee 150A rocket was designed to produce an angular velocity of 45 r.p.m. during 5 min of free-fall, providing a gravity range range from 0.3 to 1.5 G depending on a subject's runway position. One animal was released at the high and one at the low gravity position in each flight. Animal positions were continuously recorded. Flight subjects were selected from about 100 trained animals adapted to the simulated launch environment for several months. In two flights excessive rollrates produced gravity ranges above the designed limits. In two other flights the desired range was produced. Locomotion patterns during these flights were similar. All four animals explored the entire available G-range. One rat settled at 0.4 G after 2 min; the others crossed the 1-G location in progressively narrower excursions and were near earth gravity at the end of the test period. Data were more varible than in laboratory tests above 1 G and the observation periods were necessarily few and short. Tentatively, however, the data suggest that normal earth-reared rats select earth gravity when available magnitudes include values above and below 1 B. Modification of gravity preference by prolonged exposure to higher or lower levels remains a possibility.

  14. Insights into the Lurking Structures and Related Intraplate Earthquakes in the Region of Bay of Bengal Using Gravity and Full Gravity Gradient Tensor

    NASA Astrophysics Data System (ADS)

    Dubey, C. P.; Tiwari, V. M.; Rao, P. R.

    2017-12-01

    Comprehension of subsurface structures buried under thick sediments in the region of Bay of Bengal is vital as structural features are the key parameters that influence or are caused by the subsurface deformation and tectonic events like earthquakes. Here, we address this issue using the integrated analysis and interpretation of gravity and full gravity gradient tensor with few seismic profiles available in the poorly known region. A 2D model of the deep earth crust-mantle is constructed and interpreted with gravity gradients and seismic profiles, which made it possible to obtain a visual image of a deep seated fault below the basement associated with thick sediments strata. Gravity modelling along a NE-SW profile crossing the hypocentre of the earthquake of 21 May 2014 ( M w 6.0) in the northern Bay of Bengal suggests that the location of intraplate normal dip fault earthquake in the upper mantle is at the boundary of density anomalies, which is probably connected to the crustal fault. We also report an enhanced structural trend of two major ridges, the 85°E and the 90°E ridges hidden under the sedimentary cover from the computed full gravity gradients tensor components.

  15. Primary School 5th and 8th Graders' Understanding and Mental Models about the Shape of the World and Gravity

    ERIC Educational Resources Information Center

    Öztürk, Ayse; Doganay, Ahmet

    2013-01-01

    This study investigated primary school 5th and 8th graders' understanding and mental models related to the shape of the world and gravity, and how these models reflected the fact and what kind of a change there is from 5th to 8th graders. This research is based on a cross-sectional design. The study was conducted in a low socioeconomic level…

  16. Use of an otolith-deficient mutant in studies of fish behavior in microgravity

    NASA Astrophysics Data System (ADS)

    Ijiri, K.; Mizuno, R.; Eguchi, H.

    2003-10-01

    The mutant strain ( ha) of medaka ( Oryzias latipes) lack utricular otoliths as fry, and some never form otoliths for life. The cross (Fl generation) between the strain having good eyesight and another strain having ordinary eyesight augmented visual acuity of the Fl generation. Crossing the good eyesight strain and ha mutant produced fish having good eyesight and less sensitivity to gravity in the F2 population. Their tolerance to microgravity was tested by parabolic flight using an airplane. The fish exhibited less looping and no differences in degree of looping between light and dark conditions, suggesting that loss of eyesight (in darkness) is not a direct cause for looping behavior in microgravity. The ha embryos could not form utricular otoliths. They did form saccular otoliths, but with a delay. Fry of the mutant fish lacking the utricular otoliths are highly dependent on light upon hatching and exhibit a perfect dorsal-light response (DLR). As they grow, they eventually shift from being light-dependent to being gravity-dependent. Continuous treatment of the fry with altered light direction suppressed this shift to gravity dependence. Being less dependent on gravity, these fish can serve as models in studying the differences expected for the vestibular system of fish reared in microgravity. When these fish were exposed to microgravity (parabolic flights) of an airplane, they spent far less time looping than fish reared in an ordinary light regimen.

  17. Neutral buoyancy testing of architectural and environmental concepts of space vehicle design

    NASA Technical Reports Server (NTRS)

    Lenda, J. A.; Rosener, A. A.; Stephenson, M. L.

    1972-01-01

    Design guidelines are presented that are applicable to providing habitability areas and furniture elements for extended periods in a zero gravity environment. This was accomplished by: (1) analyzing the existing habitability crew area requirements, mobility and restraint aids, cross-cultural design, and establishing a man model for zero gravity; (2) designing specific furniture elements, chair and table, and volumes for a stateroom, office, bathroom, galley, and wardroom; and (3) neutral buoyancy testing and evaluation of these areas.

  18. Scaling of muscle architecture and fiber types in the rat hindlimb.

    PubMed

    Eng, Carolyn M; Smallwood, Laura H; Rainiero, Maria Pia; Lahey, Michele; Ward, Samuel R; Lieber, Richard L

    2008-07-01

    The functional capacity of a muscle is determined by its architecture and metabolic properties. Although extensive analyses of muscle architecture and fiber type have been completed in a large number of muscles in numerous species, there have been few studies that have looked at the interrelationship of these functional parameters among muscles of a single species. Nor have the architectural properties of individual muscles been compared across species to understand scaling. This study examined muscle architecture and fiber type in the rat (Rattus norvegicus) hindlimb to examine each muscle's functional specialization. Discriminant analysis demonstrated that architectural properties are a greater predictor of muscle function (as defined by primary joint action and anti-gravity or non anti-gravity role) than fiber type. Architectural properties were not strictly aligned with fiber type, but when muscles were grouped according to anti-gravity versus non-anti-gravity function there was evidence of functional specialization. Specifically, anti-gravity muscles had a larger percentage of slow fiber type and increased muscle physiological cross-sectional area. Incongruities between a muscle's architecture and fiber type may reflect the variability of functional requirements on single muscles, especially those that cross multiple joints. Additionally, discriminant analysis and scaling of architectural variables in the hindlimb across several mammalian species was used to explore whether any functional patterns could be elucidated within single muscles or across muscle groups. Several muscles deviated from previously described muscle architecture scaling rules and there was large variability within functional groups in how muscles should be scaled with body size. This implies that functional demands placed on muscles across species should be examined on the single muscle level.

  19. Systematic effects in LOD from SLR observations

    NASA Astrophysics Data System (ADS)

    Bloßfeld, Mathis; Gerstl, Michael; Hugentobler, Urs; Angermann, Detlef; Müller, Horst

    2014-09-01

    Beside the estimation of station coordinates and the Earth’s gravity field, laser ranging observations to near-Earth satellites can be used to determine the rotation of the Earth. One parameter of this rotation is ΔLOD (excess Length Of Day) which describes the excess revolution time of the Earth w.r.t. 86,400 s. Due to correlations among the different parameter groups, it is difficult to obtain reliable estimates for all parameters. In the official ΔLOD products of the International Earth Rotation and Reference Systems Service (IERS), the ΔLOD information determined from laser ranging observations is excluded from the processing. In this paper, we study the existing correlations between ΔLOD, the orbital node Ω, the even zonal gravity field coefficients, cross-track empirical accelerations and relativistic accelerations caused by the Lense-Thirring and deSitter effect in detail using first order Gaussian perturbation equations. We found discrepancies due to different a priories by using different gravity field models of up to 1.0 ms for polar orbits at an altitude of 500 km and up to 40.0 ms, if the gravity field coefficients are estimated using only observations to LAGEOS 1. If observations to LAGEOS 2 are included, reliable ΔLOD estimates can be achieved. Nevertheless, an impact of the a priori gravity field even on the multi-satellite ΔLOD estimates can be clearly identified. Furthermore, we investigate the effect of empirical cross-track accelerations and the effect of relativistic accelerations of near-Earth satellites on ΔLOD. A total effect of 0.0088 ms is caused by not modeled Lense-Thirring and deSitter terms. The partial derivatives of these accelerations w.r.t. the position and velocity of the satellite cause very small variations (0.1 μs) on ΔLOD.

  20. Helium 2 slosh in low gravity

    NASA Technical Reports Server (NTRS)

    Ross, Graham O.

    1994-01-01

    This paper describes the status and plans for the work being performed under NASA NRA contract NASW-4803 so that members of the Microgravity Fluid Dynamics Discipline Working Group are aware of this program. The contract is a cross-disciplinary research program and is administered under the Low Temperature Microgravity Research Program at the Jet Propulsion Laboratory. The purpose of the project is to perform low-gravity verification experiments on the slosh behavior of He II to use in the development of a CFD model that incorporates the two-fluid physics of He II. The two-fluid code predicts a different fluid motion response in low-gravity environment from that predicted by a single-fluid model, while the 1g response is identical for the both types of model.

  1. Zero-G experiments in two-phase fluids flow regimes

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; King, C. D.; Littles, J. W.

    1975-01-01

    The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.

  2. Three-dimensional cross-gradient joint inversion of gravity and normalized magnetic source strength data in the presence of remanent magnetization

    NASA Astrophysics Data System (ADS)

    Zhou, Junjie; Meng, Xiaohong; Guo, Lianghui; Zhang, Sheng

    2015-08-01

    Three-dimensional cross-gradient joint inversion of gravity and magnetic data has the potential to acquire improved density and magnetization distribution information. This method usually adopts the commonly held assumption that remanent magnetization can be ignored and all anomalies present are the result of induced magnetization. Accordingly, this method might fail to produce accurate results where significant remanent magnetization is present. In such a case, the simplification brings about unwanted and unknown deviations in the inverted magnetization model. Furthermore, because of the information transfer mechanism of the joint inversion framework, the inverted density results may also be influenced by the effect of remanent magnetization. The normalized magnetic source strength (NSS) is a transformed quantity that is insensitive to the magnetization direction. Thus, it has been applied in the standard magnetic inversion scheme to mitigate the remanence effects, especially in the case of varying remanence directions. In this paper, NSS data were employed along with gravity data for three-dimensional cross-gradient joint inversion, which can significantly reduce the remanence effects and enhance the reliability of both density and magnetization models. Meanwhile, depth-weightings and bound constraints were also incorporated in this joint algorithm to improve the inversion quality. Synthetic and field examples show that the proposed combination of cross-gradient constraints and the NSS transform produce better results in terms of the data resolution, compatibility, and reliability than that of separate inversions and that of joint inversions with the total magnetization intensity (TMI) data. Thus, this method was found to be very useful and is recommended for applications in the presence of strong remanent magnetization.

  3. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'Ichi; Odintsov, Sergei D.

    2011-08-01

    The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.

  4. Quantifying Variations in Airborne Gravity Data Quality Due to Aircraft Selection with the Gravity for the Re-Definition of the American Vertical Datum Project

    NASA Astrophysics Data System (ADS)

    Youngman, M.; Weil, C.; Salisbury, T.; Villarreal, C.

    2015-12-01

    The U.S. National Geodetic Survey is collecting airborne gravity with the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project to produce a geoid supporting heights accurate to 2 centimeters, where possible, with a modernized U.S. vertical datum in 2022. Targeting 15.6 million square kilometers, the GRAV-D project is unprecedented in its scope of consistently collected airborne gravity data across the entire U.S. and its holdings. Currently over 42% of data collection has been completed by 42 surveys (field campaigns) covering 34 completed blocks (data collection areas). The large amount of data available offers a unique opportunity to evaluate the causes of data quality variation from survey to survey. Two metrics were chosen to use as a basis for comparing the quality of each survey/block: 1. total crossover error (i.e. difference in gravity recorded at all locations of crossing flight lines) and 2. the statistical difference of the airborne gravity from the EGM2008 global model. We have determined that the aircraft used for surveying contributes significantly to the variation in data quality. This paper will further expand upon that recent work, using statistical analysis to determine the contribution of aircraft selection to data quality taking into account other variables such as differences in survey setup or weather conditions during surveying.

  5. Effects of drop acceleration and deceleration on particle capture in a cross-flow gravity tower at intermediate drop Reynolds numbers.

    PubMed

    Kumar, Anoop; Gupta, S K; Kale, S R

    2007-04-01

    Cross-flow gravity towers are particle scrubbing devices in which water is sprayed from the top into particle-laden flow moving horizontally. Models for predicting particle capture assume drops traveling at terminal velocity and potential flow (ReD > 1000) around it, however, Reynolds numbers in the intermediate range of 1 to 1000 are common in gravity towers. Drops are usually injected at velocities greater than their terminal velocities (as in nozzles) or from near rest (perforated tray) and they accelerate/decelerate to their terminal velocity in the tower. Also, the effects of intermediate drop Reynolds number on capture efficiency have been simulated for (a) drops at their terminal velocity and (b) drops accelerating/decelerating to their terminal velocity. Tower efficiency based on potential flow about the drop is 40%-50% greater than for 200 mm drops traveling at their terminal velocity. The corresponding values for 500 mm drops are about 10%-20%. The drop injection velocity is important operating parameter. Increase in tower efficiency by about 40% for particles smaller than 5 mm is observed for increase in injection velocity from 0 to 20 m/s for 200 and 500mm drops.

  6. Lithospheric structure of Taiwan from gravity modelling and sequential inversion of seismological and gravity data

    NASA Astrophysics Data System (ADS)

    Masson, F.; Mouyen, M.; Hwang, C.; Wu, Y.-M.; Ponton, F.; Lehujeur, M.; Dorbath, C.

    2012-11-01

    Using a Bouguer anomaly map and a dense seismic data set, we have performed two studies in order to improve our knowledge of the deep structure of Taiwan. First, we model the Bouguer anomaly along a profile crossing the island using simple forward modelling. The modelling is 2D, with the hypothesis of cylindrical symmetry. Second we present a joint analysis of gravity anomaly and seismic arrival time data recorded in Taiwan. An initial velocity model has been obtained by local earthquake tomography (LET) of the seismological data. The LET velocity model was used to construct an initial 3D gravity model, using a linear velocity-density relationship (Birch's law). The synthetic Bouguer anomaly calculated for this model has the same shape and wavelength as the observed anomaly. However some characteristics of the anomaly map are not retrieved. To derive a crustal velocity/density model which accounts for both types of observations, we performed a sequential inversion of seismological and gravity data. The variance reduction of the arrival time data for the final sequential model was comparable to the variance reduction obtained by simple LET. Moreover, the sequential model explained about 80% of the observed gravity anomaly. New 3D model of Taiwan lithosphere is presented.

  7. Numerical Study on the Effects of Gravity and Surface Tension on Condensation Process in Square Minichannel

    NASA Astrophysics Data System (ADS)

    Li, Panpan; Chen, Zhenqian; Shi, Juan

    2018-02-01

    A volume of fluid (VOF) method is adopted to simulate the condensation of R134a in a horizontal single square minichannel with 1 mm side length. The effect of gravity, surface tension and gas-liquid interfacial shear stress are taken into account. The result denotes that condensation is first appeared at the corner of channel, and then the condensation is stretched at the effect of surface tension until the whole channel boundary covered. The effect of gravity on the distribution of the liquid film depends on the channel length. In short channel, the gravity shows no significant effect, the distribution shape of steam in the cross section of the channel is approximately circular. In long channel, due to the influence of gravity, the liquid converges at the bottom under the effect of gravity, and the thickness of the liquid film at the bottom is obviously higher than that of the upper part of the channel. The effect of surface tension on condensation is also analysed. The surface tension can enhance the condensation heat transfer significantly when the inlet mass flux is low. Whilst, at high mass flux, the enhancement of surface tension on heat transfer is unobvious and can be neglected.

  8. Gravity at the horizon: on relativistic effects, CMB-LSS correlations and ultra-large scales in Horndeski's theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renk, Janina; Zumalacárregui, Miguel; Montanari, Francesco, E-mail: renk@thphys.uni-heidelberg.de, E-mail: miguel.zumalacarregui@nordita.org, E-mail: francesco.montanari@helsinki.fi

    2016-07-01

    We address the impact of consistent modifications of gravity on the largest observable scales, focusing on relativistic effects in galaxy number counts and the cross-correlation between the matter large scale structure (LSS) distribution and the cosmic microwave background (CMB). Our analysis applies to a very broad class of general scalar-tensor theories encoded in the Horndeski Lagrangian and is fully consistent on linear scales, retaining the full dynamics of the scalar field and not assuming quasi-static evolution. As particular examples we consider self-accelerating Covariant Galileons, Brans-Dicke theory and parameterizations based on the effective field theory of dark energy, using the himore » class code to address the impact of these models on relativistic corrections to LSS observables. We find that especially effects which involve integrals along the line of sight (lensing convergence, time delay and the integrated Sachs-Wolfe effect—ISW) can be considerably modified, and even lead to O(1000%) deviations from General Relativity in the case of the ISW effect for Galileon models, for which standard probes such as the growth function only vary by O(10%). These effects become dominant when correlating galaxy number counts at different redshifts and can lead to ∼ 50% deviations in the total signal that might be observable by future LSS surveys. Because of their integrated nature, these deep-redshift cross-correlations are sensitive to modifications of gravity even when probing eras much before dark energy domination. We further isolate the ISW effect using the cross-correlation between LSS and CMB temperature anisotropies and use current data to further constrain Horndeski models. Forthcoming large-volume galaxy surveys using multiple-tracers will search for all these effects, opening a new window to probe gravity and cosmic acceleration at the largest scales available in our universe.« less

  9. Prediction of Bubble Diameter at Detachment from a Wall Orifice in Liquid Cross Flow Under Reduced and Normal Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2003-01-01

    Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.

  10. New Interpretations of the Rayn Anticlines in the Arabian Basin Inferred from Gravity Modelling

    NASA Astrophysics Data System (ADS)

    AlMogren, S. M.; Mukhopadhyay, M.

    2014-12-01

    The Ryan Anticlines comprise of a regularly-spaced set of super-giant anticlines oriented NNW, developed due to E-W compression in the Arabian Basin. Most prominent of these being: the Ghawar Anticline, followed by the Summan, Khurais Anticlines and Qatar Arch. Gravity anomaly is largely characteristic for both Ryan Anticlines and its smaller size version the Jinadriah Anticline in the Riyadh Salt Basin. It displays a bipolar gravity field - a zone of gravity high running along the fold axis that is flanked by asymmetric gravity lows. Available structural models commonly infer structural uplift for the median gravity high but ignore the flanking lows. Here we interpret the bipolar gravity anomaly due primarily to such anticline structures, while, the flanking gravity lows are due to greater sediment thickness largely compacted and deformed over the basement depressions. Further complexities are created due to the salt layer and its migration at the lower horizons of sediment strata. Such diagnostic gravity anomaly pattern is taken here as an evidence for basement tectonics due to prevailing crustal dynamics in the Arabian Basin. Density inversion provides details on the subsurface density variation due to the folding and structural configuration for the sediment layers, including the salt layer, affected by basement deformation. This interpretation is largely supported by gravity forward and inversion models given in the present study what is partly constrained by the available seismic, MT and deep resistivity lines and surface geologic mapping. Most of the oil-gas fields in this part of the Arabian Basin are further known for salt diapirism. In this study the gravity interpretation help in identification of salt diapirism directly overlying the basement is firstly given here for Jinadriah Anticline; that is next extended to a regional geologic cross-section traversing the Ryan Anticlines to infer probable subsurface continuation of salt diapirs directly overlying the metamorphosed basement, sediment deformation pattern skirting the anticlines as well as their relationship of faulting to basement tectonics.

  11. Mapping the gravity field in coastal areas: feasibility and interest of a new airborne planar gradiometer concept

    NASA Astrophysics Data System (ADS)

    Douch, Karim; Panet, Isabelle; Foulon, Bernard; Christophe, Bruno; Pajot-Métivier, Gwendoline; Diament, Michel

    2014-05-01

    Satellite missions such as CHAMP, GRACE and GOCE have led to an unprecedented improvement of global gravity field models during the past decade. However, for many applications these global models are not sufficiently accurate when dealing with wavelengths shorter than 100 km. This is all the more true in areas where gravity data are scarce and uneven as for instance in the poorly covered land-sea transition area. We suggest here, in line with spatial gravity gradiometry, airborne gravity gradiometry as a convenient way to amplify the sensitivity to short wavelengths and to cover homogeneously coastal region. Moreover, the directionality of the gravity gradients gives new information on the geometry of the gravity field and therefore of the causative bodies. In this respect, we analyze here the performances of a new airborne electrostatic acceleration gradiometer, GREMLIT, which permits along with ancillary measurements to determine the horizontal gradients of the horizontal components of the gravitational field in the instrumental frame. GREMLIT is composed of a compact assembly of 4 planar electrostatic accelerometers inheriting from technologies developed by ONERA for spatial accelerometers. After an overview of the functionals of the gravity field that are of interest for coastal oceanography, passive navigation and hydrocarbon exploration, we present the corresponding required precision and resolution. Then, we investigate the influence of the different parameters of the survey, such as altitude or cross-track distance, on the resolution and precision of the final measurements. To do so, we design numerical simulations of airborne survey performed with GREMLIT and compute the total error budget on the gravity gradients. Based on this error analysis, we infer by a method of error propagation the uncertainty on the different functionals of the gravity potential used for each application. This finally enables us to conclude on the requirements for a high resolution mapping of the gravity field in coastal areas.

  12. Characteristics Of Turbulent Nonpremixed Jet-Flames And Jet-Flames In Crossflow In Normal- And Low-Gravity

    NASA Technical Reports Server (NTRS)

    Clemens, N. T.; Boxx, I. G.; Idicheria, C. A.

    2003-01-01

    It is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. For example, previous studies have shown that transitional and turbulent jet flames exhibit flame lengths that are as much as a factor of two longer in microgravity than in normal gravity. The objective of this study is to extend these previous studies by investigating both mean and fluctuating characteristics of turbulent nonpremixed jet flames under three different gravity levels (1 g, 20 mg and 100 micrograms). This work is described in more detail elsewhere. In addition, we have recently initiated a new study into the effects of buoyancy on turbulent nonpremixed jet flames in cross-flow (JFICF). Buoyancy has been observed to play a key role in determining the centerline trajectories of such flames.6 The objective of this study is to use the low gravity environment to study the effects of buoyancy on the turbulent characteristics of JFICF.

  13. Research on metal solidification in zero-g state

    NASA Technical Reports Server (NTRS)

    Papazian, J. M.; Larson, D. J., Jr.

    1975-01-01

    The containerless solidification of several pure metals and metallic alloys was studied in a low gravity environment. The tests were performed in the MSFC 4.2 s drop tower using a rapid wire melting apparatus designed and built for this purpose. Pure iron and nickel, and alloys of iron-nickel, iron-carbon, nickel-aluminum and tungsten-rhenium were all melted and solidified at a gravity level of approximately 100.000/-4 g. Interpretation of the results has led to an appreciation of the factors controlling the successful execution of this drop test experiment and to a delineation of the limits of applicability of the apparatus. Preliminary metallurgical evaluations are presented of the overall shapes, lattice parameters, surface microstructure,, cross-sectional microstructures, solidification and transformation sequences, evaporative segregation, and localized solute redistribution observed in the low-gravity specimens. The effects of low gravity on metallic solidification are discussed with particular emphasis on observations of spontaneous undercooling and evaporative segregation in uncontained melts.

  14. Entanglement of purification through holographic duality

    NASA Astrophysics Data System (ADS)

    Umemoto, Koji; Takayanagi, Tadashi

    2018-06-01

    The gauge/gravity correspondence discovered two decades ago has had a profound influence on how the basic laws in physics should be formulated. In spite of the predictive power of holographic approaches (for example, when they are applied to strongly coupled condensed-matter physics problems), the fundamental reasons behind their success remain unclear. Recently, the role of quantum entanglement has come to the fore. Here we explore a quantity that connects gravity and quantum information in the light of the gauge/gravity correspondence. This is given by the minimal cross-section of the entanglement wedge that connects two disjoint subsystems in a gravity dual. In particular, we focus on various inequalities that are satisfied by this quantity. They suggest that it is a holographic counterpart of the quantity called entanglement of purification, which measures a bipartite correlation in a given mixed state. We give a heuristic argument that supports this identification based on a tensor network interpretation of holography. This predicts that the entanglement of purification satisfies the strong superadditivity for holographic conformal field theories.

  15. Biennial Guidance Test Symposium (13th) Held in Holloman Air Force Base, New Mexico on 6-8 October 1987. Volume 1

    DTIC Science & Technology

    1987-10-15

    Guardiani, R. Strane, J. Profeta, Contraves Goerz Corporation, 610 Epsilon Dr., Pittsburg PA S04A "The Global Positioning System as an Aid to the Testing...errors. The weights defining the current error state as a linear combination of the gravity errors at the previous vehicle locations are maintained and...updated at each time step. These weights can also be used to compute the cross-correlation of the system errors with measured gravity quantities for use

  16. Contoured tank outlets for draining of cylindrical tanks in low-gravity environment. [Lewis Research Center Zero Gravity Facility

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1979-01-01

    An analysis is presented for defining the outlet contour of a hemispherical-bottomed cylindrical tank that will prevent vapor ingestion when the tank is drained. The analysis was used to design two small-scale tanks that were fabricated and then tested in a low gravity environment. The draining performance of the tanks was compared with that for a tank with a conventional outlet having a constant circular cross-sectional area, under identical conditions. Even when drained at off-design conditions, the contoured tank had less liquid residuals at vapor ingestion than the conventional outlet tank. Effects of outflow rate, gravitational environment, and fluid properties on the outlet contour are discussed. Two potential applications of outlet contouring are also presented and discussed.

  17. Basement structures over Rio Grande Rise from gravity inversion

    NASA Astrophysics Data System (ADS)

    Constantino, Renata Regina; Hackspacher, Peter Christian; de Souza, Iata Anderson; Lima Costa, Iago Sousa

    2017-04-01

    The basement depth in the Rio Grande Rise (RGR), South Atlantic, is estimated from combining gravity data obtained from satellite altimetry, marine surveys, bathymetry, sediment thickness and crustal thickness information. We formulate a crustal model of the region by inverse gravity modeling. The effect of the sediment layer is evaluated using the global sediment thickness model of National Oceanic and Atmospheric Administration (NOAA) and fitting the sediment compaction model to observed density values from Deep Sea Drilling Project (DSDP) reports. The Global Relief Model ETOPO1 and constraining data from seismic interpretation on crustal thickness are integrated in the inversion process. The modeled Moho depth values vary between 6 and 27 km over the area, being thicker under the RGR and also in the direction of São Paulo Plateau. The inversion for the gravity-equivalent basement topography is applied to gravity residual data, which is free from the gravity effect of sediments and from the gravity effect of the estimated Moho interface. We find several short-wavelengths structures not present in the bathymetry data. Our model shows a rift crossing the entire Rio Grande Rise deeper than previously presented in literature, with depths up to 5 km in the East Rio Grande Rise (ERGR) and deeper in the West Rio Grande Rise (WRGR), reaching 6.4 km. An interesting NS structure that goes from 34°S and extends through de São Paulo Ridge may be related to the South Atlantic Opening and could reveal an extinct spreading center.

  18. Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Weissman, D. E.

    1981-01-01

    A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.

  19. Assessment of coeliac disease prevalence in patients with Down syndrome in Poland - a multi-centre study.

    PubMed

    Szaflarska-Popławska, Anna; Soroczyńska-Wrzyszcz, Anetta; Barg, Ewa; Józefczuk, Jan; Korczowski, Bartosz; Grzybowska-Chlebowczyk, Urszula; Więcek, Sabina; Cukrowska, Bożena

    2016-01-01

    The results of studies assessing whether patients with Down syndrome have increased risk of coeliac disease are contradictory. The prevalence of coeliac disease in patients with Down syndrome is estimated at a wide range between 1% to as much as 18.6%. To assess coeliac disease prevalence in patients with Down syndrome in Poland. The study enrolled 301 patients with Down syndrome from six centres in Poland (Wroclaw, Sandomierz, Rzeszow, Grudziadz, Katowice, and Bydgoszcz). We measured the concentration of anti-tissue transglutaminase IgA antibodies and anti-deamidated gliadin peptide IgG antibodies in all patients. Patients with abnormal positive (> 10 U/ml) or inconclusive (7-10 U/ml) result of the serological test were offered endoscopic biopsy of the small intestine in the main centre. In 31 (10.3%) patients increased concentrations of the investigated antibodies were found, including 19 (6.3%) patients with increased tTg-IgA concentration, 27 (8.97%) patients with increased concentration of DGP-IgG, and 15 (4.98%) patients with increased concentration of both types of antibodies. Endoscopic biopsy of the small intestine was planned for all 31 patients with abnormal results of at least one antibody test and for 2 patients with inconclusive results. One of them suffered from previously diagnosed and histologically confirmed coeliac disease. Biopsy was not conducted in 9 patients due to contraindications, lack of their consent, or introduction of a gluten-free diet by the parents before the examination. In a group of 23 patients who underwent endoscopic biopsy of the small intestine, in 15 patients the histopathological picture of the small intestinal mucosa was typical for coeliac disease, 2 patients were diagnosed with lesions of grade 1 according to the classification by Marsh-Oberhuber, 1 patient was diagnosed with focal shortening of villi and hypertrophy of the crypts with no intraepithelial lymphocytosis (remains under gastrological observation), 2 patients were diagnosed with mucosal inflammation of the duodenum, and 3 patients were found to have a normal histopathological picture of the small intestine. Analysis of the data included in the questionnaires of all patients showed no statistically significant differences in the body height, body mass index, prevalence of abdominal pain, diarrhoea, constipations, recurrent stomatitis, enamel hypoplasia, thyroid diseases, or hypertransaminasaemia between the groups of patients with normal and abnormal serological test results. Significantly higher prevalence of abdominal flatulence (p < 0.05) and epilepsy (p < 0.05) was found in the group of patients whose serological test results were negative. Patients with Down syndrome are a high-risk group for coeliac disease in the Polish population, with an estimated prevalence of at least 5.4%. Serological tools based on tTG-IgA and DGP-IgG tests are useful for the diagnosis of coeliac disease in Down syndrome patients. tTG-IgA test may be superior to DGP-IgG test in patients with normal total IgA level. Tests for coeliac disease should be carried out in all Polish patients with Down syndrome, regardless of the clinical picture.

  20. Ionic signaling in plant gravity and touch responses

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Fasano, Jeremiah M.; Gilroy, Simon

    2003-01-01

    Plant roots are optimized to exploit resources from the soil and as each root explores this environment it will encounter a range of biotic and abiotic stimuli to which it must respond. Therefore, each root must possess a sensory array capable of monitoring and integrating these diverse stimuli to direct the appropriate growth response. Touch and gravity represent two of the biophysical stimuli that plants must integrate. As sensing both of these signals requires mechano-transduction of biophysical forces to biochemical signaling events, it is likely that they share signal transduction elements. These common signaling components may allow for cross-talk and so integration of thigmotropic and gravitropic responses. Indeed, signal transduction events in both plant touch and gravity sensing are thought to include Ca(2+)- and pH-dependent events. Additionally, it seems clear that the systems responsible for root touch and gravity response interact to generate an integrated growth response. Thus, primary and lateral roots of Arabidopsis respond to mechanical stimuli by eliciting tropic growth that is likely part of a growth strategy employed by the root to circumvent obstacles in the soil. Also, the mechano-signaling induced by encountering an obstacle apparently down-regulates the graviperception machinery to allow this kind of avoidance response. The challenge for future research will be to define how the cellular signaling events in the root cap facilitate this signal integration and growth regulation. In addition, whether other stimuli are likewise integrated with the graviresponse via signal transduction system cross-talk is an important question that remains to be answered.

  1. Studies of oceanic tectonics based on GEOS-3 satellite altimetry

    NASA Technical Reports Server (NTRS)

    Poehls, K. A.; Kaula, W. M.; Schubert, G.; Sandwell, D.

    1979-01-01

    Using statistical analysis, geoidal admittance (the relationship between the ocean geoid and seafloor topography) obtained from GEOS-3 altimetry was compared to various model admittances. Analysis of several altimetry tracks in the Pacific Ocean demonstrated a low coherence between altimetry and seafloor topography except where the track crosses active or recent tectonic features. However, global statistical studies using the much larger data base of all available gravimetry showed a positive correlation of oceanic gravity with topography. The oceanic lithosphere was modeled by simultaneously inverting surface wave dispersion, topography, and gravity data. Efforts to incorporate geoid data into the inversion showed that the base of the subchannel can be better resolved with geoid rather than gravity data. Thermomechanical models of seafloor spreading taking into account differing plate velocities, heat source distributions, and rock rheologies were discussed.

  2. [The German Program for Disease Management Guidelines: COPD Guideline 2006. Short review].

    PubMed

    Ollenschläger, Günter; Kopp, Ina; Lelgemann, Monika

    2007-01-15

    In Germany, the first national consensus on evidence-based recommendations for COPD prevention and disease management was reached in spring 2006. After a development period of 9 months, the National Disease Management Guideline COPD was finalized by nominal group process under the authorship of the scientific societies for pneumology (DGP and Atemwegsliga), general internal medicine (DGIM), family medicine (DEGAM), and the Drug Commission of the German Medical Association (AKDAE). The recommendations' main sources are the NICE COPD Guideline 2004, the GOLD Recommendations as well as existing German guidelines and reviews of recent scientific evidence. The article gives an overview on authors, sources, and key recommendations of the German National Disease Management Guideline COPD 2006 (www.copd.versorgungsleitlinien.de).

  3. 66. (Credit JTL) Filter rooms looking south from end of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. (Credit JTL) Filter rooms looking south from end of 1924 wing extension. Concrete gravity filters are in foreground, converted New York filters in background. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  4. A Cross-Cultural Investigation of Children's Conceptions about the Earth, the Sun and the Moon: Greek and American Data. Technical Report No. 497.

    ERIC Educational Resources Information Center

    Vosniadou, Stella; Brewer, William F.

    This document reports the results of a cross-cultural study on children's knowledge about the shape, gravity, movement, and location of the Earth and about the day/night cycle. The subjects of the study were elementary school students from Greece (N=90) and the United States (N=60). The results of the study showed that the children in both samples…

  5. A rodent model for artificial gravity: VOR adaptation and Fos expression.

    PubMed

    Kaufman, Galen; Weng, Tianxiang; Ruttley, Tara

    2005-01-01

    Vestibulo-ocular reflex (VOR) adaptation and brainstem Fos expression as a result of short radius cross-coupling stimuli were investigated to find neural correlates of the inherent Coriolis force asymmetry from an artificial gravity (AG) environment. Head-fixed gerbils (Meriones unguiculatus, N=79) were exposed, in the dark, to 60--90 minutes of cross-coupled rotations, combinations of pitch (or roll) and yaw rotation, while binocular horizontal, vertical, and torsional eye position were determined using infrared video-oculography. Centripetal acceleration in combination with angular cross-coupling was also studied. Simultaneous sinusoidal rotations in two planes (yaw with roll or pitch) provided a net symmetrical stimulus for the right and left labyrinths. In contrast, a constant velocity yaw rotation during sinusoidal roll or pitch provided the asymmetric stimulus model for AG. We found orthogonally oriented half-cycle VOR gain changes. The results depended on the direction of horizontal rotation during asymmetrical cross-coupling, and other aspects of the stimulus, including the phase relationship between the two rotational inputs, the symmetry of the stimulus, and training. Fos expression also revealed laterality differences in the prepositus and inferior olivary C subnucleus. In contrast the inferior olivary beta and ventrolateral outgrowth were labeled bilaterally. Additional cross-coupling dependent labeling was found in the flocculus, hippocampus, and several cortical regions, including the perirhinal and temporal association cortices. Analyses showed significant differences across the brain regions for several factors (symmetry, rotation velocity and direction, the presence of centripetal acceleration or a visual surround, and training). Finally, animals compensating from a unilateral surgical labyrinthectomy who received multiple cross-coupling training sessions had improved half-cycle VOR gain in the ipsilateral eye with head rotation toward the intact side. We hypothesize that cross-coupling vestibular training can benefit aspects of motor recovery or performance.

  6. Applications of acoustic-gravity waves numerical modeling to tsunami signals observed by gravimetry satellites in very low orbit

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Sladen, A.; Martin, R.; Komatitsch, D.

    2016-12-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite-difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with spatially non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including variations with altitude of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from shallow water simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.

  7. Geological Implications From Complete Gondwana GOCE- Products Reconstructions and Link to Lithospheric Roots

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla; Mariani, Patrizia

    2015-03-01

    The GOCE gravity field is globally homogeneous at the resolution of about 80km or better allowing for the first time to analyze tectonic structures at continental scale. Geologic correlation studies propose to continue the tectonic lineaments across continents to the pre-breakup position. Tectonic events that induce density changes, as metamorphic events and magmatic events, should then show up in the gravity field. Applying geodynamic plate reconstructions to the GOCE gravity field places today’s observed field at the pre-breakup position. The same reconstruction can be applied to the seismic velocity models, to allow a joint gravity-velocity analysis. The geophysical fields allow to control the likeliness of the hypothesized continuation of lineations based on sparse surface outcrops. Total absence of a signal, makes the cross-continental continuation of the lineament improbable, as continental-wide lineaments are controlled by rheologic and compositional differences of lithospheric mantle. It is found that the deep lithospheric roots as those found below cratons control the position of the positive gravity values. The explanation is that the deep lithospheric roots focus asthenospheric upwelling outboard of the root protecting the overlying craton from magmatic intrusions. The study is carried out over the African and South American continents.

  8. The Effects of Magnetic-Field Geometry on Longitudinal Oscillations of Solar Prominences: Cross-Sectional Area Variation for Thin Tubes

    NASA Technical Reports Server (NTRS)

    Luna, M.; Diaz, A. J.; Oliver, R.; Terradas, J.; Karpen, J.

    2016-01-01

    Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the filament channel magnetic structure that supports the cool prominence plasma against gravity. Our pendulum model, in which the restoring force is the gravity projected along the dipped field lines of the magnetic structure, best explains these oscillations. However, several factors can influence the longitudinal oscillations, potentially invalidating the pendulum model. Aims. The aim of this work is to study the influence of large-scale variations in the magnetic field strength along the field lines, i.e., variations of the cross-sectional area along the flux tubes supporting prominence threads. Methods. We studied the normal modes of several flux tube configurations, using linear perturbation analysis, to assess the influence of different geometrical parameters on the oscillation properties. Results. We found that the influence of the symmetric and asymmetric expansion factors on longitudinal oscillations is small.Conclusions. We conclude that the longitudinal oscillations are not significantly influenced by variations of the cross-section of the flux tubes, validating the pendulum model in this context.

  9. Family of columns isospectral to gravity-loaded columns with tip force: A discrete approach

    NASA Astrophysics Data System (ADS)

    Ramachandran, Nirmal; Ganguli, Ranjan

    2018-06-01

    A discrete model is introduced to analyze transverse vibration of straight, clamped-free (CF) columns of variable cross-sectional geometry under the influence of gravity and a constant axial force at the tip. The discrete model is used to determine critical combinations of loading parameters - a gravity parameter and a tip force parameter - that cause onset of dynamic instability in the CF column. A methodology, based on matrix-factorization, is described to transform the discrete model into a family of models corresponding to weightless and unloaded clamped-free (WUCF) columns, each with a transverse vibration spectrum isospectral to the original model. Characteristics of models in this isospectral family are dependent on three transformation parameters. A procedure is discussed to convert the isospectral discrete model description into geometric description of realistic columns i.e. from the discrete model, we construct isospectral WUCF columns with rectangular cross-sections varying in width and depth. As part of numerical studies to demonstrate efficacy of techniques presented, frequency parameters of a uniform column and three types of tapered CF columns under different combinations of loading parameters are obtained from the discrete model. Critical combinations of these parameters for a typical tapered column are derived. These results match with published results. Example CF columns, under arbitrarily-chosen combinations of loading parameters are considered and for each combination, isospectral WUCF columns are constructed. Role of transformation parameters in determining characteristics of isospectral columns is discussed and optimum values are deduced. Natural frequencies of these WUCF columns computed using Finite Element Method (FEM) match well with those of the given gravity-loaded CF column with tip force, hence confirming isospectrality.

  10. Gravity constraints on the geometry of the Big Bend of the San Andreas Fault in the southern Carrizo Plains and Pine Mountain egion

    NASA Astrophysics Data System (ADS)

    Altintas, Ali Can

    The goal of this project is to combine gravity measurements with geologic observations to better understand the "Big Bend" of the San Andreas Fault (SAF) and its role in producing hydrocarbon-bearing structures in the southern Central Valley of California. The SAF is the main plate boundary structure between the Pacific and North American plates and accommodates ?35 mm/yr of dextral motion. The SAF can be divided into three main parts: the northern, central and southern segments. The boundary between the central and southern segments is the "Big Bend", which is characterized by an ≈30°, eastward bend. This fault curvature led to the creation of a series of roughly east-west thrust faults and the transverse mountain ranges. Four high-resolution gravity transects were conducted across locations on either side of the bend. A total of 166 new gravity measurements were collected. Previous studies suggest significantly inclined dip angle for the San Andreas Fault in the Big Bend area. Yet, our models indicate that the San Andreas Fault is near vertical in the Big Bend area. Also gravity cross-section models suggest that flower structures occur on either side of the bend. These structures are dominated by sedimentary rocks in the north and igneous rocks in the south. The two northern transects in the Carrizo plains have an ≈-70 mgal Bouguer anomaly. The SAF has a strike of ≈315° near these transects. The northern transects are characterized by multiple fault strands which cut marine and terrestrial Miocene sedimentary rocks as well as Quaternary alluvial valley deposits. These fault strands are characterized by ?6 mgal short wavelength variations in the Bouguer gravity anomaly, which correspond to low density fault gouge and fault splays that juxtapose rocks of varying densities. The southern transects cross part of the SAF with a strike of 285°, have a Bouguer anomaly of ≈-50 mgal and are characterized by a broad 15 mgal high. At this location the rocks on either side of the fault are Proterozoic - Cretaceous metamorphic or/and plutonic rocks. Previous work based on geologic mapping hypothesized the existence of a shallow, low angle Abel Mountain Thrust in which crystalline rocks were thrust over Miocene sedimentary rocks, near Apache Saddle. However, gravity models indicate the crystalline rocks are vertically extensive and form a positive flower structure bounded by high angle faults. Also, based on the thickness of fault adjacent sedimentary cover, the gravity models suggest a minimum exhumation of 5-6 km for crystalline rocks in the south. Assuming exhumation began with the switch from the transtensional San Gabriel Fault to transpressional San Andreas Fault at approximately 5 Ma, this indicates exhumation rates of 1 km/Ma. Overall, the broad gravity highs observed along the southern transects are due to uplift of basement rocks in this area.

  11. On global gravity anomalies and two-scale mantle convection

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.; Marsh, J. G.

    1976-01-01

    The two-scale model of mantle convection developed by Richter and Parsons (1975) predicts that if the depth of the convective layer is about 600 km, then for a plate moving at 10 cm/yr, longitudinal convective rolls will be produced in about 50 million years, and the strike of these rolls indicates the direction of motion of the plate relative to the upper mantle. The paper tests these predictions by examining a new global free air gravity model complete to the 30th degree and order. The free air gravity map developed shows a series of linear positive and negative anomalies (with transverse wavelengths of about 2000 km) spanning the Pacific Ocean, crossing the Pacific rise and striking parallel to the Hawaiian seamounts. It is suggested that the pattern of these anomalies may indicate the presence of longitudinal convective rolls beneath the Pacific plates, a result which tends to support the predictions of Richter and Parsons.

  12. Synthesis of regional crust and upper-mantle structure from seismic and gravity data

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Lavin, P. M. (Principal Investigator)

    1982-01-01

    Analyses of regional gravity and magnetic patterns, LANDSAT images and geological information revealed two major lineaments crossing western Pennsylvania and parts of surrounding states. These lineaments are inferred to be expressions of fracture zones which penetrare deeply into the crust and possibly the upper mantle. The extensions of the Tyron-Mt. Union and the Pittsburgh-Washington lineaments bound a distinct crustal block (Lake Erie-Maryland block) over 100 km wide and probably more than 600 km in length. Evidence exists for the lateral displacement of this block at least 60 km northwestward during late Precambrian to Lower Ordovician time. Subsequent movements have been mainly vertical with respect to neighboring blocks. A possible crustal block that passes through eastern Kentucky, proposed by a TVA study on tectonics in the southern Appalachians, was also investigated. Finally, the use of regional gravity and magnetic data in identifying major crustal structures beneath western Pennsylvania is discussed.

  13. Changes in functional construction of bone in rats under conditions of simulated increased gravity.

    NASA Technical Reports Server (NTRS)

    Amtmann, E.; Oyama, J.

    1973-01-01

    An investigation was conducted to determine experimentally whether femur bones are altered in cross-sectional area or cross-sectional shape by chronic centrifugation at different G-levels in conformance to Wolff's law. It was found that the centrifuged animals exhibit on the average smaller body masses, femur lengths and femur cross sections, as compared to their corresponding age controls. The mean inhibitory effect of chronic centrifugation upon body and femur growth can be measured in a shortcut approximation by calculating the decrease of body masses and femoral dimensions on a percentage basis.

  14. Temporal sea-surface gravity changes observed near the source area prior to the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Tsuboi, S.

    2013-12-01

    Recent seismological studies suggested subsurface activities preceding the 2011 Tohoku earthquake; the occurrence of migration of seismicity (Kato et al., 2012) and slow slip events (Ito et al., 2013) in and around the source area one month before the mainshock. In this study, we investigated sea-surface gravity changes observed by the shipboard gravimeter mounted on research vessels before the mainshock. The vessels incidentally passed through the source area along almost the same cruise track twice, four months before and one month before the mainshock. Comparing the sea surface gravity in the former track with that in the latter after Bouguer correction, we find the gravity changes of approximately 7 mGal in coseismic slip areas near the trench axis during the three months. We find these gravity changes even in the crossing areas of the cruise tracks where seafloor topographies have no differences between the tracks. We also find that the topographic differences show positive changes but the gravity changes negative ones in other areas, which is a negative correlation inconsistent with the theoretical relationship between the topographic difference and the gravity change. These mean that the differences of seafloor topographies due to differences between the two cruise tracks are not main causes of the observed gravity changes there. The changes cannot also be explained by drifts of the gravimeter and geostrophic currents. Although we have not had any clear evidences, we speculate that the possible cause may be density increases around the seismogenic zone or uplifts of seafloor in order to explain the changes of this size. We estimate the density increases of 1.0 g/cm**3 in a disk with a radius of 40 km and a width of 200 m or the uplifts of several tens of meters in seafloor areas for the observed gravity changes. Our results indicate that sea-surface gravity observations may be one of valid approaches to monitor the approximate location of a possible great earthquake in offshore areas.

  15. Effect of gravity on vertical eye position.

    PubMed

    Pierrot-Deseilligny, C

    2009-05-01

    There is growing evidence that gravity markedly influences vertical eye position and movements. A new model for the organization of brainstem upgaze pathways is presented in this review. The crossing ventral tegmental tract (CVTT) could be the efferent tract of an "antigravitational" pathway terminating at the elevator muscle motoneurons in the third nerve nuclei and comprising, upstream, the superior vestibular nucleus and y-group, the flocculus, and the otoliths. This pathway functions in parallel to the medial longitudinal fasciculus pathways, which control vertical eye movements made to compensate for all vertical head movements and may also comprise the "gravitational" vestibular pathways, involved in the central reflection of the gravity effect. The CVTT could provide the upgaze system with the supplement of tonic activity required to counteract the gravity effect expressed in the gravitational pathway, being permanently modulated according to the static positions of the head (i.e., the instantaneous gravity vector) between a maximal activity in the upright position and a minimal activity in horizontal positions. Different types of arguments support this new model. The permanent influence of gravity on vertical eye position is strongly suggested by the vertical slow phases and nystagmus observed after rapid changes in hypo- or hypergravity. The chin-beating nystagmus, existing in normal subjects with their head in the upside-down position, suggests that gravity is not compensated for in the downgaze system. Upbeat nystagmus due to brainstem lesions, most likely affecting the CVTT circuitry, is improved when the head is in the horizontal position, suggesting that this circuitry is involved in the counteraction of gravity between the upright and horizontal positions of the head. In downbeat nystagmus due to floccular damage, in which a permanent hyperexcitation of the CVTT could exist, a marked influence of static positions of the head is also observed. Finally, the strongest argument supporting a marked role of gravity in vertical eye position is that the eye movement alterations observed in the main, typical physiological and pathological conditions are precisely those that would be expected from a direct effect of gravity on the eyeballs, with, moreover, no single alternative interpretation existing so far that could account for all these different types of findings.

  16. The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling

    NASA Astrophysics Data System (ADS)

    Choi, S.; Goetze, H.; Meyer, U.; Group, D.

    2008-12-01

    This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. Using that combined gravity dataset and DESIRE wide angle refractions seismic interpretation we modified density structures in the DSB. As results we estimated that (1) the Moho depth varies from 26 km in the Israel side to 34 km in the Jordan side. (2) The maximum thickness of the Dead Sea sediment Basin is about 15 km. (3) The salt rock with an average thickness of about 5 km is present not only in the southern part of the DSB but also in northern part underlying the entire Dead Sea.

  17. Production of black holes and their angular momentum distribution in models with split fermions

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan

    2006-05-01

    In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large n-n¯ oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross section for the production of black holes and their angular momentum distribution in these models with “split” fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.

  18. Orbit determination and gravity field recovery from Doppler tracking data to the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Maier, Andrea; Baur, Oliver

    2016-03-01

    We present results for Precise Orbit Determination (POD) of the Lunar Reconnaissance Orbiter (LRO) based on two-way Doppler range-rates over a time span of ~13 months (January 3, 2011 to February 9, 2012). Different orbital arc lengths and various sets of empirical parameters were tested to seek optimal parametrization. An overlap analysis covering three months of Doppler data shows that the most precise orbits are obtained using an arc length of 2.5 days and estimating arc-wise constant empirical accelerations in along track direction. The overlap analysis over the entire investigated time span of 13 months indicates an orbital precision of 13.79 m, 14.17 m, and 1.28 m in along track, cross track, and radial direction, respectively, with 21.32 m in total position. We compare our orbits to the official science orbits released by the US National Aeronautics and Space Administration (NASA). The differences amount to 9.50 m, 6.98 m, and 1.50 m in along track, cross track, and radial direction, respectively, as well as 12.71 m in total position. Based on the reconstructed LRO orbits, we estimated lunar gravity field coefficients up to spherical harmonic degree and order 60. The results are compared to gravity field solutions derived from data collected by other lunar missions.

  19. Equatorial Pacific gravity lineaments: interpretations with basement topography along seismic reflection lines

    NASA Astrophysics Data System (ADS)

    Mitchell, Neil C.; Davies, Huw

    2018-03-01

    The central equatorial Pacific is interesting for studying clues to upper mantle processes, as the region lacks complicating effects of continental remnants or major volcanic plateaus. In particular, the most recently produced maps of the free-air gravity field from satellite altimetry show in greater detail the previously reported lineaments west of the East Pacific Rise (EPR) that are aligned with plate motion over the mantle and originally suggested to have formed from mantle convection rolls. In contrast, the gravity field 600 km or farther west of the EPR reveals lineaments with varied orientations. Some are also parallel with plate motion over the mantle but others are sub-parallel with fracture zones or have other orientations. This region is covered by pelagic sediments reaching 500-600 m thickness so bathymetry is not so useful for seeking evidence for plate deformation across the lineaments. We instead use depth to basement from three seismic reflection cruises. In some segments of these seismic data crossing the lineaments, we find that the co-variation between gravity and basement depth is roughly compatible with typical densities of basement rocks (basalt, gabbro or mantle), as expected for some explanations for the lineaments (e.g., mantle convection rolls, viscous asthenospheric inter-fingering or extensional deformation). However, some other lineaments are associated with major changes in basement depth with only subtle changes in the gravity field, suggesting topography that is locally supported by varied crustal thickness. Overall, the multiple gravity lineament orientations suggest that they have multiple origins. In particular, we propose that a further asthenospheric inter-fingering instability mechanism could occur from pressure variations in the asthenosphere arising from regional topography and such a mechanism may explain some obliquely oriented gravity lineaments that have no other obvious origin.

  20. On the effect of pressure, oxygen concentration, air flow and gravity on simulated pool fires

    NASA Technical Reports Server (NTRS)

    Torero, J. L.; Most, J. M.; Joulain, P.

    1995-01-01

    The initial development of a fire is characterized by the establishment of a diffusion flame over the surface of a the condensed fuel and is particularly influenced by gravity, with most of the gaseous flow induced by natural convection. Low initial momentum of the fuel vapor, strong buoyant flows induced by the hot post-combustion gases and consequently low values of the Froude number (inertia-gravity forces ratio) are typical of this kind of scenario. An experimental study is conducted by using a porous burner to simulate the burning of a horizontal combustible surface. Ethane is used as fuel and different mixtures of oxygen and nitrogen as oxidizer. The magnitude of the fuel injection velocities is restricted to values that will keep the Froude number on the order of 10-5, when calculated at normal gravity and pressure, which are characteristic of condensed fuel burning. Two different burners are used, a circular burner (62 mm diameter) placed inside a cylindrical chamber (0.3 m diameter and 1.0 m height) and a rectangular burner (50 mm wide by 200 mm long) placed in a wind tunnel (350 mm long) of rectangular cross section (120 mm wide and 90 mm height). The first burner is used to study the effect of pressure and gravity in the absence of a forced flow parallel to the surface. The second burner is used to study the effect of a forced flow parallel to the burner surface as well as the effect of oxygen concentration in the oxidizer flow. In this case experiments are also conducted at different gravity levels (micro-gravity, 0.2 g(sub 0), g(sub 0) and 1.8 g(sub 0)) to quantify the relative importance of buoyancy.

  1. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho

    NASA Astrophysics Data System (ADS)

    Uieda, Leonardo; Barbosa, Valéria C. F.

    2017-01-01

    Estimating the relief of the Moho from gravity data is a computationally intensive nonlinear inverse problem. What is more, the modelling must take the Earths curvature into account when the study area is of regional scale or greater. We present a regularized nonlinear gravity inversion method that has a low computational footprint and employs a spherical Earth approximation. To achieve this, we combine the highly efficient Bott's method with smoothness regularization and a discretization of the anomalous Moho into tesseroids (spherical prisms). The computational efficiency of our method is attained by harnessing the fact that all matrices involved are sparse. The inversion results are controlled by three hyperparameters: the regularization parameter, the anomalous Moho density-contrast, and the reference Moho depth. We estimate the regularization parameter using the method of hold-out cross-validation. Additionally, we estimate the density-contrast and the reference depth using knowledge of the Moho depth at certain points. We apply the proposed method to estimate the Moho depth for the South American continent using satellite gravity data and seismological data. The final Moho model is in accordance with previous gravity-derived models and seismological data. The misfit to the gravity and seismological data is worse in the Andes and best in oceanic areas, central Brazil and Patagonia, and along the Atlantic coast. Similarly to previous results, the model suggests a thinner crust of 30-35 km under the Andean foreland basins. Discrepancies with the seismological data are greatest in the Guyana Shield, the central Solimões and Amazonas Basins, the Paraná Basin, and the Borborema province. These differences suggest the existence of crustal or mantle density anomalies that were unaccounted for during gravity data processing.

  2. New insights into asteroid 3200 Phaethon's meteor complex

    NASA Astrophysics Data System (ADS)

    Jakubik, Marian; Neslusan, Lubos

    2015-11-01

    In this work, we study the meteor complex originating from asteroid 3200 Phaethon. Using a modeling of variety of meteoroid streams and following their dynamical evolution, we confirm the presence of two filaments crossing the Earth observed as Geminid and Daytime Sextantid meteor showers. We use numerical integrations of modeled particles performed for several past perihelion passages of the asteroid considering (i) only the gravity of planets and (2) gravity of planets and the Poynting-Robertson effect. We present the results of comparing our models (predicted showers) with observed showers. We also point out discrepancies, their possible solutions and/or new hypothesis concerning the examined meteor complex.

  3. Neosphincter surgery for fecal incontinence: a critical and unbiased review of the relevant literature.

    PubMed

    Belyaev, Orlin; Müller, Christophe; Uhl, Waldemar

    2006-01-01

    Up until about 15 years ago the only realistic option for end-stage fecal incontinence was the creation of a permanent stoma. There have since been several developments. Dynamic graciloplasty (DGP) and artificial bowel sphincter (ABS) are well-established surgical techniques, which offer the patient a chance for continence restoration and improved quality of life; however, they are unfortunately associated with high morbidity and low success rates. Several trials have been done in an attempt to clarify the advantages and disadvantages of these methods and define their place in the second-line treatment of severe, refractory fecal incontinence. This review presents a critical and unbiased overview of the current status of neosphincter surgery according to the available data in the world literature.

  4. CCFpams: Atmospheric stellar parameters from cross-correlation functions

    NASA Astrophysics Data System (ADS)

    Malavolta, Luca; Lovis, Christophe; Pepe, Francesco; Sneden, Christopher; Udry, Stephane

    2017-07-01

    CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.

  5. Joint-inversion of gravity data and cosmic ray muon flux to detect shallow subsurface density structure beneath volcanoes: Testing the method at a well-characterized site

    NASA Astrophysics Data System (ADS)

    Roy, M.; Lewis, M.; George, N. K.; Johnson, A.; Dichter, M.; Rowe, C. A.; Guardincerri, E.

    2016-12-01

    The joint-inversion of gravity data and cosmic ray muon flux measurements has been utilized by a number of groups to image subsurface density structure in a variety of settings, including volcanic edifices. Cosmic ray muons are variably-attenuated depending upon the density structure of the material they traverse, so measuring muon flux through a region of interest provides an independent constraint on the density structure. Previous theoretical studies have argued that the primary advantage of combining gravity and muon data is enhanced resolution in regions not sampled by crossing muon trajectories, e.g. in sensing deeper structure or structure adjacent to the region sampled by muons. We test these ideas by investigating the ability of gravity data alone and the joint-inversion of gravity and muon flux to image subsurface density structure, including voids, in a well-characterized field location. Our study area is a tunnel vault located at the Los Alamos National Laboratory within Quaternary ash-flow tuffs on the Pajarito Plateau, flanking the Jemez Volcano in New Mexico. The regional geology of the area is well-characterized (with density measurements in nearby wells) and the geometry of the tunnel and the surrounding terrain is known. Gravity measurements were made using a Lacoste and Romberg D meter and the muon detector has a conical acceptance region of 45 degrees from the vertical and track resolution of several milliradians. We obtain individual and joint resolution kernels for gravity and muon flux specific to our experimental design and plan to combine measurements of gravity and muon flux both within and above the tunnel to infer density structure. We plan to compare our inferred density structure against the expected densities from the known regional hydro-geologic framework.

  6. Numerical investigation of split flows by gravity currents into two-layered stratified water bodies

    NASA Astrophysics Data System (ADS)

    Cortés, A.; Wells, M. G.; Fringer, O. B.; Arthur, R. S.; Rueda, F. J.

    2015-07-01

    The behavior of a two-dimensional (2-D) gravity current impinging upon a density step in a two-layered stratified basin is analyzed using a high-resolution Reynolds-Averaged Navier-Stokes model. The gravity current splits at the density step, and the portion of the buoyancy flux becoming an interflow is largely controlled by the vertical distribution of velocity and density within the gravity current and the magnitude of the density step between the two ambient layers. This is in agreement with recent laboratory observations. The strongest changes in the ambient density profiles occur as a result of the impingement of supercritical currents with strong density contrasts, for which a large portion of the gravity current detaches from the bottom and becomes an interflow. We characterize the current partition process in the simulated experiments using the densimetric Froude number of the current (Fr) across the density step (upstream and downstream). When underflows are formed, more supercritical currents are observed downstream of the density step compared to upstream (Fru < Frd), and thus, stronger mixing of the current with the ambient water downstream. However, when split flows and interflows are formed, smaller Fr values are identified after the current crosses the density step (Fru > Frd), which indicates lower mixing between the current and ambient water after the impingement due to the significant stripping of interfacial material at the density step.

  7. Inclined gravity currents filling basins: The influence of Reynolds number on entrainment into gravity currents

    NASA Astrophysics Data System (ADS)

    Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg

    2015-09-01

    In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.

  8. Flexural-gravity Wave Attenuation in a Thick Ice Shelf

    NASA Astrophysics Data System (ADS)

    Stephen, R. A.; Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    A thirty-four station broadband seismic array was deployed on the Ross Ice Shelf, Antarctica from November 2014 to November 2017. Analyses indicate that phase speeds of infra-gravity wave and tsunami excitation in the 0.003 to 0.02 Hz band are 70 m/s, corresponding to the low frequency limit of flexural-gravity waves. Median spectral amplitudes in this band decay exponentially with distance from the shelf edge in a manner consistent with intrinsic attenuation. Seismic Q is typically 7-9, with an RMS amplitude decay of 0.04-0.05dB/km and an e-folding distance of 175-220 km. Amplitudes do not appear to drop crossing crevasse fields. Vertical and horizontal acceleration levels at stations on the floating ice shelf are 50 dB higher than those on grounded ice. Horizontal accelerations are about 15 dB higher than vertical accelerations. Median spectral levels at 0.003 Hz are within 6 dB for stations from 2 to 430 km from the shelf edge. In contrast, the levels drop by 90 dB at 0.02 Hz. Ocean gravity wave excitation has been proposed as a mechanism that can weaken ice shelves and potentially trigger disintegration events. These measurements indicate that the propensity for shelf weakening and disintegration decays exponentially with distance from the ice front for gravity waves in the 0.003 to 0.02Hz band.

  9. Cantilever Beam Natural Frequencies in Centrifugal Inertia Field

    NASA Astrophysics Data System (ADS)

    Jivkov, V. S.; Zahariev, E. V.

    2018-03-01

    In the advanced mechanical science the well known fact is that the gravity influences on the natural frequencies and modes even for the vertical structures and pillars. But, the condition that should be fulfilled in order for the gravity to be taken into account is connected with the ration between the gravity value and the geometrical cross section inertia. The gravity is related to the earth acceleration but for moving structures there exist many other acceleration exaggerated forces and such are forces caused by the centrifugal accelerations. Large rotating structures, as wind power generators, chopper wings, large antennas and radars, unfolding space structures and many others are such examples. It is expected, that acceleration based forces influence on the structure modal and frequency properties, which is a subject of the present investigations. In the paper, rotating beams are subject to investigations and modal and frequency analysis is carried out. Analytical dependences for the natural resonances are derived and their dependences on the angular velocity and centrifugal accelerations are derived. Several examples of large rotating beams with different orientations of the rotating shaft are presented. Numerical experiments are conducted. Time histories of the beam tip deflections, that depict the beam oscillations are presented.

  10. A community effort to construct a gravity database for the United States and an associated Web portal

    USGS Publications Warehouse

    Keller, Gordon R.; Hildenbrand, T.G.; Kucks, R.; Webring, M.; Briesacher, A.; Rujawitz, K.; Hittleman, A.M.; Roman, D.R.; Winester, D.; Aldouri, R.; Seeley, J.; Rasillo, J.; Torres, R.; Hinze, W. J.; Gates, A.; Kreinovich, V.; Salayandia, L.

    2006-01-01

    Potential field data (gravity and magnetic measurements) are both useful and costeffective tools for many geologic investigations. Significant amounts of these data are traditionally in the public domain. A new magnetic database for North America was released in 2002, and as a result, a cooperative effort between government agencies, industry, and universities to compile an upgraded digital gravity anomaly database, grid, and map for the conterminous United States was initiated and is the subject of this paper. This database is being crafted into a data system that is accessible through a Web portal. This data system features the database, software tools, and convenient access. The Web portal will enhance the quality and quantity of data contributed to the gravity database that will be a shared community resource. The system's totally digital nature ensures that it will be flexible so that it can grow and evolve as new data, processing procedures, and modeling and visualization tools become available. Another goal of this Web-based data system is facilitation of the efforts of researchers and students who wish to collect data from regions currently not represented adequately in the database. The primary goal of upgrading the United States gravity database and this data system is to provide more reliable data that support societal and scientific investigations of national importance. An additional motivation is the international intent to compile an enhanced North American gravity database, which is critical to understanding regional geologic features, the tectonic evolution of the continent, and other issues that cross national boundaries. ?? 2006 Geological Society of America. All rights reserved.

  11. Effect of Baffle on Gravity-Gradient-Excited Slosh Waves and Spacecraft Moment and Angular-Momentum Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.

    1995-01-01

    The dynamical behavior of fluids affected by the asymmetric gravity gradient acceleration has been investigated. In particular, the effects of surface tension on partially filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank with and without baffles are studied. Results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient acceleration indicate that the gravity gradient acceleration is equivalent to the combined effect of a twisting force and a torsional moment acting on the spacecraft. The results are clearly seen from one-up one-down and one-down one-up oscillations in the cross-section profiles of two bubbles in the vertical (r, z)-plane of the rotating dewar, and from the eccentric contour of the bubble rotating around the axis of the dewar in a horizontal (r, theta)-plane. As the viscous force, between liquid and solid interface, greatly contributes to the damping of slosh wave excitation, a rotating dewar with baffles provides more areas of liquid-solid interface than that of a rotating dewar without baffles. Results show that the damping effect provided by the baffles reduces the amplitude of slosh wave excitation and lowers the degree of asymmetry in liquid-vapor distribution. Fluctuations of angular momentum and fluid moment caused by the slosh wave excited by gravity gradient acceleration with and without baffle boards are also investigated. It is also shown that the damping effect provided by the baffles greatly reduces the amplitudes of angular momentum and fluid moment fluctuations.

  12. 62. (Credit CBF) Operating floor of filter room, c1912. The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. (Credit CBF) Operating floor of filter room, c1912. The remodeled New York horizontal pressure filters (now gravity filters) are in the foreground; the remodelled Hyatt tub filters are in the background. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  13. A parametrization of the growth index of matter perturbations in various Dark Energy models and observational prospects using a Euclid-like survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belloso, Alicia Bueno; García-Bellido, Juan; Sapone, Domenico, E-mail: alicia.bueno@uam.es, E-mail: juan.garciabellido@uam.es, E-mail: domenico.sapone@uam.es

    2011-10-01

    We provide exact solutions to the cosmological matter perturbation equation in a homogeneous FLRW universe with a vacuum energy that can be parametrized by a constant equation of state parameter w and a very accurate approximation for the Ansatz w(a) = w{sub 0}+w{sub a}(1−a). We compute the growth index γ = log f(a)/log Ω{sub m}(a), and its redshift dependence, using the exact and approximate solutions in terms of Legendre polynomials and show that it can be parametrized as γ(a) = γ{sub 0}+γ{sub a}(1−a) in most cases. We then compare four different types of dark energy (DE) models: wΛCDM, DGP, f(R)more » and a LTB-large-void model, which have very different behaviors at z∼>1. This allows us to study the possibility to differentiate between different DE alternatives using wide and deep surveys like Euclid, which will measure both photometric and spectroscopic redshifts for several hundreds of millions of galaxies up to redshift z ≅ 2. We do a Fisher matrix analysis for the prospects of differentiating among the different DE models in terms of the growth index, taken as a given function of redshift or with a principal component analysis, with a value for each redshift bin for a Euclid-like survey. We use as observables the complete and marginalized power spectrum of galaxies P(k) and the Weak Lensing (WL) power spectrum. We find that, using P(k), one can reach (2%, 5%) errors in (w{sub 0},w{sub a}), and (4%, 12%) errors in (γ{sub 0},γ{sub a}), while using WL we get errors at least twice as large. These estimates allow us to differentiate easily between DGP, f(R) models and ΛCDM, while it would be more difficult to distinguish the latter from a variable equation of state parameter or LTB models using only the growth index.« less

  14. Preliminary drop-tower experiments on liquid-interface geometry in partially filled containers at zero gravity

    NASA Technical Reports Server (NTRS)

    Smedley, G.

    1990-01-01

    Plexiglass containers with rounded trapezoidal cross sections were designed and built to test the validity of Concus and Finn's existence theorem (1974, 1983) for a bounded free liquid surface at zero gravity. Experiments were carried out at the NASA Lewis two-second drop tower. Dyed ethanol-water solutions and three immiscible liquid pairs, with one liquid dyed, were tested. High-speed movies were used to record the liquid motion. Liquid rose to the top of the smaller end of the containers when the contact angle was small enough, in agreement with the theory. Liquid interface motion demonstrated a strong dependence on physical properties, including surface roughness and contamination.

  15. A reinterpretation of the data from the NASA Stratosphere-Troposphere Exchange Project

    NASA Astrophysics Data System (ADS)

    Newman, Paul A.; Schoeberl, Mark R.

    Data obtained during the NASA Stratosphere Troposphere Exchange Project (STEP) Mid-Latitude Field Experiment displayed laminae of ozone, water, and condensation nuclei in the stratosphere in association with a mid-latitude stratosphere-troposphere folding event. Danielsen et al. (1991) constructed cross sections of these observations, and interpreted these quasi-horizontal laminae as evidence of ultra-low frequency gravity waves. We use a new technique to show that these laminae could have resulted from differential advection, rather than transport by ultra-low frequency gravity waves. This new technique uses reverse domain filling back trajectories on multiple isentropic surfaces in conjunction with modified potential vorticity to reveal the qualitative details of the constituent laminae.

  16. Quantum Gravity Effects on Hawking Radiation of Schwarzschild-de Sitter Black Holes

    NASA Astrophysics Data System (ADS)

    Singh, T. Ibungochouba; Meitei, I. Ablu; Singh, K. Yugindro

    2017-08-01

    The correction of Hawking temperature of Schwarzschild-de Sitter (SdS) black hole is investigated using the generalized Klein-Gordon equation and the generalized Dirac equation by taking the quantum gravity effects into account. We derive the corrected Hawking temperatures for scalar particles and fermions crossing the event horizon. The quantum gravity effects prevent the rise of temperature in the SdS black hole. Besides correction of Hawking temperature, the Hawking radiation of SdS black hole is also investigated using massive particles tunneling method. By considering self gravitation effect of the emitted particles and the space time background to be dynamical, it is also shown that the tunneling rate is related to the change of Bekenstein-Hawking entropy and small correction term (1 + 2 β m 2). If the energy and the angular momentum are taken to be conserved, the derived emission spectrum deviates from the pure thermal spectrum. This result gives a correction to the Hawking radiation and is also in agreement with the result of Parikh and Wilczek.

  17. f(T,T) gravity and cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harko, Tiberiu; Lobo, Francisco S.N.; Otalora, G.

    2014-12-01

    We present an extension of f(T) gravity, allowing for a general coupling of the torsion scalar T with the trace of the matter energy-momentum tensor T. The resulting f(T,T) theory is a new modified gravity, since it is different from all the existing torsion or curvature based constructions. Applied to a cosmological framework, it leads to interesting phenomenology. In particular, one can obtain a unified description of the initial inflationary phase, the subsequent non-accelerating, matter-dominated expansion, and then the transition to a late-time accelerating phase. Additionally, the effective dark energy sector can be quintessence or phantom-like, or exhibit the phantom-dividemore » crossing during the evolution. Moreover, in the far future the universe results either to a de Sitter exponential expansion, or to eternal power-law accelerated expansions. Finally, a detailed study of the scalar perturbations at the linear level reveals that f(T,T) cosmology can be free of ghosts and instabilities for a wide class of ansatzes and model parameters.« less

  18. Experimental study of three-wave interactions among capillary-gravity surface waves

    NASA Astrophysics Data System (ADS)

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  19. Experimental study of three-wave interactions among capillary-gravity surface waves.

    PubMed

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  20. Gravity study of Libya;Evaluation and Integration with Geological Data

    NASA Astrophysics Data System (ADS)

    Ben Suleman, abdunnur; Saheel, Ahmed

    2016-04-01

    Libya is located on the Mediterranean foreland of the African Shield and covers an area of approximately 1.8 million square kilometers. Since Early Paleozoic time, Libya has been a site of deposition of large sheets of continental clastics and several transgressions and regressions by the seas with consequent accumulations of a wide variety of sedimentary rocks. Several tectonic cycles affected the area and shaped the geological setting of the country. However, the regional geology and the structural framework have been highly influenced by the Caledonian, Hercynian, and Alpine tectonic events. As a result, a total of seven sedimentary basins, namely Ghadames, Murzuq, Al Kufra, Al Butnan, Sirt, and the Offshore Pelagian Basin, were developed and were separated by intervening uplifts and platforms ( Gargaf, Tibesti, Nafusah and Cyrenaica platform). Apart from Sirt and the offshore basins, all the above mentioned basins are active since Early Paleozoic time and received several thousand feet of sediments. The capability of providing regional information on the structure of sedimentary basins makes gravity mapping, in conjunction with geological information, potentially powerful tools. In this study we used gravity mapping as our primary tool of investigation however, we also used all available geological information to better understand the regional tectonics. The gravity dataset that were used in the Gravity compilation project of Libya is not homogenous. As a result, some irregularities, apparent spikes or misties, and large shifts were obtained and were taken into consideration. Evaluation of gravity Maps of Libya and their integration with geological data provide a better understanding of the role that gravity mapping plays in the geological exploration of sedimentary basins. Results confirm the known Sirt Basin regional tectonic elements and the possible presence of NW-SE lateral wrench tectonics, crossing Ajdabiya Trough at the center of Sirt Basin. The residual gravity map supports new interpretation of the Sirwal Trough in Northern Cyrenaica. Results also indicate shallow crust along the present day coast line of Al Jabal Al Akhdar, steeply dipping toward the offshore. The depo-center of Ghadames Basin cannot be precisely defined due to the lack of gravity coverage. However, Murzuq Basin is well defined regionally, in spite of gravity gaps which make the overall coverage in the southern basins inadequate for precise interpretation.

  1. Feedback of balanced cross sections and gravity modeling: numerical estimation of horizon mislocations. A case study from the Linking Zone (Northeastern, Spain)

    NASA Astrophysics Data System (ADS)

    Pueyo, E. L.; Izquierdo-Llavall, E.; Ayala, C.; Oliva-Urcia, B.; Rubio, F. M.; Rodríguez-Pintó, A.; Casas, A. M.; García Crespo, J.

    2015-12-01

    The lack of subsurface information in the Linking Zone (between the Iberian and the Catalan Coastal Ranges) where no seismic sections and few boreholes are available, together with the need to perform an evaluation of a potential CO2 reservoir, have motivated us to carry out a combined structural and geophysical study. The reservoir is located in the Bunt/Muschelkalk facies (Triassic in age) just underneath the Keuper evaporites (regional detachment). The expected density contrast between cover/basement/detachment rocks represent a suitable setting to apply gravity modeling. Therefore, we designed the location of eight serial and radial cross sections over 1.50000 available geological maps, we also include bedding data (field work) and thickness and depth information from wells and previous stratigraphic profiles. Besides, gravity data were acquired along the sections to build up 2.5D models and thus, to constrain the geometry of the basement and the thickness of the sedimentary cover. Density values used in the modelling come from a database with 1470 sites (compiled and acquired). Initially we build the balanced sections using the available geological information and applying standard geometric techniques. Regional knowledge and previous sections were also taken into account. Then, we took these sections into Oasis Montaj to fit the real and expected gravimetric signal. In this work we present the comparison of the location of certain horizons before and after that feedback. In some cases, mislocation of some horizons may reach up to 0.4 km, which represents up to 50% of the expected depth. After fitting the gravity data with balanced cross-sections we carried out a stochastic inversion that allowed reducing the uncertainty to a maximum of 0.15 km, i. e. c. 20% . Further error analysis may be focused on the double-checking with seismic section information from the industry, if and when available. Attached figure displays an example of one of the performed sections. There, extrapolation of subsurface structures under the Ebro foreland basin based on lateral information cannot be supported by the measured gravimetric signal. The mislocations of the basement top in A and B zones reach -0.4 and + 0.8 km respectively, with critical implications for any potential CO2 storage.

  2. SKA weak lensing - I. Cosmological forecasts and the power of radio-optical cross-correlations

    NASA Astrophysics Data System (ADS)

    Harrison, Ian; Camera, Stefano; Zuntz, Joe; Brown, Michael L.

    2016-12-01

    We construct forecasts for cosmological parameter constraints from weak gravitational lensing surveys involving the Square Kilometre Array (SKA). Considering matter content, dark energy and modified gravity parameters, we show that the first phase of the SKA (SKA1) can be competitive with other Stage III experiments such as the Dark Energy Survey and that the full SKA (SKA2) can potentially form tighter constraints than Stage IV optical weak lensing experiments, such as those that will be conducted with LSST, WFIRST-AFTA or Euclid-like facilities. Using weak lensing alone, going from SKA1 to SKA2 represents improvements by factors of ˜10 in matter, ˜10 in dark energy and ˜5 in modified gravity parameters. We also show, for the first time, the powerful result that comparably tight constraints (within ˜5 per cent) for both Stage III and Stage IV experiments, can be gained from cross-correlating shear maps between the optical and radio wavebands, a process which can also eliminate a number of potential sources of systematic errors which can otherwise limit the utility of weak lensing cosmology.

  3. Polarizations of gravitational waves in Horndeski theory

    NASA Astrophysics Data System (ADS)

    Hou, Shaoqi; Gong, Yungui; Liu, Yunqi

    2018-05-01

    We analyze the polarization content of gravitational waves in Horndeski theory. Besides the familiar plus and cross polarizations in Einstein's General Relativity, there is one more polarization state which is the mixture of the transverse breathing and longitudinal polarizations. The additional mode is excited by the massive scalar field. In the massless limit, the longitudinal polarization disappears, while the breathing one persists. The upper bound on the graviton mass severely constrains the amplitude of the longitudinal polarization, which makes its detection highly unlikely by the ground-based or space-borne interferometers in the near future. However, pulsar timing arrays might be able to detect the polarization excited by the massive scalar field. Since additional polarization states appear in alternative theories of gravity, the measurement of the polarizations of gravitational waves can be used to probe the nature of gravity. In addition to the plus and cross states, the detection of the breathing polarization means that gravitation is mediated by massless spin 2 and spin 0 fields, and the detection of both the breathing and longitudinal states means that gravitation is propagated by the massless spin 2 and massive spin 0 fields.

  4. Holographic Rényi entropy in AdS3/LCFT2 correspondence

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Song, Feng-yan; Zhang, Jia-ju

    2014-03-01

    The recent study in AdS3/CFT2 correspondence shows that the tree level contribution and 1-loop correction of holographic Rényi entanglement entropy (HRE) exactly match the direct CFT computation in the large central charge limit. This allows the Rényi entanglement entropy to be a new window to study the AdS/CFT correspondence. In this paper we generalize the study of Rényi entanglement entropy in pure AdS3 gravity to the massive gravity theories at the critical points. For the cosmological topological massive gravity (CTMG), the dual conformal field theory (CFT) could be a chiral conformal field theory or a logarithmic conformal field theory (LCFT), depending on the asymptotic boundary conditions imposed. In both cases, by studying the short interval expansion of the Rényi entanglement entropy of two disjoint intervals with small cross ratio x, we find that the classical and 1-loop HRE are in exact match with the CFT results, up to order x 6. To this order, the difference between the massless graviton and logarithmic mode can be seen clearly. Moreover, for the cosmological new massive gravity (CNMG) at critical point, which could be dual to a logarithmic CFT as well, we find the similar agreement in the CNMG/LCFT correspondence. Furthermore we read the 2-loop correction of graviton and logarithmic mode to HRE from CFT computation. It has distinct feature from the one in pure AdS3 gravity.

  5. The small but clear gravity signal above the natural cave 'Grotta Gigante' (Trieste, Italy)

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla; Sampietro, Daniele; Zuliani, David; Barbagallo, Alfio; Fabris, Paolo; Fabbri, Julius; Rossi, Lorenzo; Handi Mansi, Ahmed

    2014-05-01

    Gravity observations are a powerful means for detecting underground mass changes. The Italian and Slovenian Karst has a number of explored caves, several are also touristic due to their size (e.g. Grotta Gigante in Italy; Skocjianske Jame and Postojnska Jama in Slovenia). Just a few years ago another big cave was discovered by chance close to Trieste when drilling a tunnel for a motor-highway, which shows that more caves are expected to be discovered in coming years. We have acquired the gravity field above the Grotta Gigante cave, a cave roughly 100 m high and 200 m long with a traditional spring-gravity meter (Lacoste&Romberg) and height measurements made with GPS and total station. The GPS was made with two different teams and processing algorithms, to cross-check accuracy and error estimate. Some stations had to be surveyed with a classical instrument due to the vegetation which concealed the satellite positioning signal. Here we present the results of the positioning acquisitions and the gravity field. The cave produces a signal of 1.5 mGal, with a clear elongated concentric symmetry. The survey shows that a systematic coverage of the Karst would have the benefit to recover the position of all of the greater existing caves. This will have a large impact on civil and environmental purposes, since it will for example allow to plan the urban development at a safety distance from subsurface caves.

  6. Can gravity waves significantly impact PSC occurrence in the Antarctic?

    NASA Astrophysics Data System (ADS)

    McDonald, A. J.; George, S. E.; Woollands, R. M.

    2009-11-01

    A combination of POAM III aerosol extinction and CHAMP RO temperature measurements are used to examine the role of atmospheric gravity waves in the formation of Antarctic Polar Stratospheric Clouds (PSCs). POAM III aerosol extinction observations and quality flag information are used to identify Polar Stratospheric Clouds using an unsupervised clustering algorithm. A PSC proxy, derived by thresholding Met Office temperature analyses with the PSC Type Ia formation temperature (TNAT), shows general agreement with the results of the POAM III analysis. However, in June the POAM III observations of PSC are more abundant than expected from temperature threshold crossings in five out of the eight years examined. In addition, September and October PSC identified using temperature thresholding is often significantly higher than that derived from POAM III; this observation probably being due to dehydration and denitrification. Comparison of the Met Office temperature analyses with corresponding CHAMP observations also suggests a small warm bias in the Met Office data in June. However, this bias cannot fully explain the differences observed. Analysis of CHAMP data indicates that temperature perturbations associated with gravity waves may partially explain the enhanced PSC incidence observed in June (relative to the Met Office analyses). For this month, approximately 40% of the temperature threshold crossings observed using CHAMP RO data are associated with small-scale perturbations. Examination of the distribution of temperatures relative to TNAT shows a large proportion of June data to be close to this threshold, potentially enhancing the importance of gravity wave induced temperature perturbations. Inspection of the longitudinal structure of PSC occurrence in June 2005 also shows that regions of enhancement are geographically associated with the Antarctic Peninsula; a known mountain wave "hotspot". The latitudinal variation of POAM III observations means that we only observe this region in June-July, and thus the true pattern of enhanced PSC production may continue operating into later months. The analysis has shown that early in the Antarctic winter stratospheric background temperatures are close to the TNAT threshold (and PSC formation), and are thus sensitive to temperature perturbations associated with mountain wave activity near the Antarctic peninsula (40% of PSC formation). Later in the season, and at latitudes away from the peninsula, temperature perturbations associated with gravity waves contribute to about 15% of the observed PSC (a value which corresponds well to several previous studies). This lower value is likely to be due to colder background temperatures already achieving the TNAT threshold unaided. Additionally, there is a reduction in the magnitude of gravity waves perturbations observed as POAM III samples poleward of the peninsula.

  7. The inverse gravimetric problem in gravity modelling

    NASA Technical Reports Server (NTRS)

    Sanso, F.; Tscherning, C. C.

    1989-01-01

    One of the main purposes of geodesy is to determine the gravity field of the Earth in the space outside its physical surface. This purpose can be pursued without any particular knowledge of the internal density even if the exact shape of the physical surface of the Earth is not known, though this seems to entangle the two domains, as it was in the old Stoke's theory before the appearance of Molodensky's approach. Nevertheless, even when large, dense and homogeneous data sets are available, it was always recognized that subtracting from the gravity field the effect of the outer layer of the masses (topographic effect) yields a much smoother field. This is obviously more important when a sparse data set is bad so that any smoothing of the gravity field helps in interpolating between the data without raising the modeling error, this approach is generally followed because it has become very cheap in terms of computing time since the appearance of spectral techniques. The mathematical description of the Inverse Gravimetric Problem (IGP) is dominated mainly by two principles, which in loose terms can be formulated as follows: the knowledge of the external gravity field determines mainly the lateral variations of the density; and the deeper the density anomaly giving rise to a gravity anomaly, the more improperly posed is the problem of recovering the former from the latter. The statistical relation between rho and n (and its inverse) is also investigated in its general form, proving that degree cross-covariances have to be introduced to describe the behavior of rho. The problem of the simultaneous estimate of a spherical anomalous potential and of the external, topographic masses is addressed criticizing the choice of the mixed collection approach.

  8. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  9. Disentangling dark energy and cosmic tests of gravity from weak lensing systematics

    NASA Astrophysics Data System (ADS)

    Laszlo, Istvan; Bean, Rachel; Kirk, Donnacha; Bridle, Sarah

    2012-06-01

    We consider the impact of key astrophysical and measurement systematics on constraints on dark energy and modifications to gravity on cosmic scales. We focus on upcoming photometric ‘stage III’ and ‘stage IV’ large-scale structure surveys such as the Dark Energy Survey (DES), the Subaru Measurement of Images and Redshifts survey, the Euclid survey, the Large Synoptic Survey Telescope (LSST) and Wide Field Infra-Red Space Telescope (WFIRST). We illustrate the different redshift dependencies of gravity modifications compared to intrinsic alignments, the main astrophysical systematic. The way in which systematic uncertainties, such as galaxy bias and intrinsic alignments, are modelled can change dark energy equation-of-state parameter and modified gravity figures of merit by a factor of 4. The inclusion of cross-correlations of cosmic shear and galaxy position measurements helps reduce the loss of constraining power from the lensing shear surveys. When forecasts for Planck cosmic microwave background and stage IV surveys are combined, constraints on the dark energy equation-of-state parameter and modified gravity model are recovered, relative to those from shear data with no systematic uncertainties, provided fewer than 36 free parameters in total are used to describe the galaxy bias and intrinsic alignment models as a function of scale and redshift. While some uncertainty in the intrinsic alignment (IA) model can be tolerated, it is going to be important to be able to parametrize IAs well in order to realize the full potential of upcoming surveys. To facilitate future investigations, we also provide a fitting function for the matter power spectrum arising from the phenomenological modified gravity model we consider.

  10. Measurement of the horizontal velocity of wind perturbations in the middle atmosphere by spaced MF radar systems

    NASA Technical Reports Server (NTRS)

    Meek, C. E.; Manson, A. H.; Smith, M. J.

    1983-01-01

    Two remote receiving sites have been set up at a distance of approx 40 km from the main MF radar system. This allows measurement of upper atmosphere winds from 60-120 km (3 km resolution) at the corners of an approximately equilateral triangle of side approx 20 km. Some preliminary data are compared through cross correlation and cross spectral analysis in an attempt to determine the horizontal velocity of wind perturbations and/or the horizontal wavelength and phase velocity of gravity waves.

  11. A Pocket Manual of the Physical and Chemical Characteristics of the Earth’s Atmosphere

    DTIC Science & Technology

    1974-07-01

    20305 l< UOHITOAINC AOENCV NAME i AODRESS(" ""•’•"< ’""" Canlralllnt Olflea) READ INSTRUCTIONS BEFORE COMPLETING FORM t. RECIRlENT’l...ABSORPTION OF SOLAR UV - SCHUMANN-RUNGE NET OXYGEN FLUX AIRGLOW (MAINLY OH-MEINEL) C02 EMISSION (IR) GRAVITY WAVE DISSIPATION NUMBERS IN ERG CM...and lonlzatlon cross-sections of Oot N». and O at solar lines. Cross-sections in megabarns (10-18cm2). (Source: R-12, Table3) ’. K Solar Line

  12. Gravity and Magnetic Anomaly Interpretations and 2.5D Cross-Section Models over the Border Ranges Fault System and Aleutian Subduction Zone, Alaska

    NASA Astrophysics Data System (ADS)

    Mankhemthong, N.; Doser, D. I.; Baker, M. R.; Kaip, G.; Jones, S.; Eslick, B. E.; Budhathoki, P.

    2011-12-01

    Quaternary glacial covers and lack of dense geophysical data on the Kenai Peninsula cause a location and geometry of the Border Ranges fault system (BRFS) within a recent forearc-accretionary boundary of Aleutian subduction zone in southern Alaska are unclear. Using new ~1,300 gravity collections within the Anchorage and Kenai Peninsula regions complied with prior 1997 gravity and aeromagnetic data help us better imaging these fault and the subduction structures. Cook Inlet forearc basin is corresponded by deep gravity anomaly lows; basin boundaries are characterized by a strong gravity gradient, where are considered to be traces of Border Ranges fault system on the east and Castle Mountain and Bruin Bay fault system on the west and northwest of the forearc basin respectively. Gravity anomaly highs over accreted rocks generally increase southeastward to the Aleutian trench, but show a gravity depression over the Kenai Mountains region. The lineament between gravity high and low in the same terrenes over the Kenai Peninsula is may be another evidence to determine the Southern Edge of the Yakutat Microplate (SEY) as inferred by Eberhart-Phillips et al. (2006). Our 2.5-D models illustrate the main fault of the BRFS dips steeply toward the west with a downslip displacement. Gravity and Magnetic anomaly highs, on the east of the BRFS, probably present a slice of the ultramafic complex emplaced by faults along the boundary of the forearc basin and accretionary wedge terranes. Another magnetic high beneath the basin in the southern forearc basin support a serpentiznied body inferred by Saltus et al. (2001), with a decreasing size toward the north. Regional density-gravity models show the Pacific subducting slab beneath the foreacre-arc teranes with a gentle and flatted dip where the subducting plate is located in north of SEY and dips more steeply where it is located on the south of SEY. The gravity depression over the accreted terrene can be explained by a density low slab beneath, which does not exist on the south. Results of 2.5-D density models will be used to guide the building of 3-D inversion models. Plausible interpretations of a modeling structure by implementing a 3-D model will be compared, and the most reasonable model will be used for structures representative of the BRFS including the subduction tectonics in southern Alaska.

  13. Optimizing Spectroscopic and Photometric Galaxy Surveys: Same-Sky Benefits for Dark Energy and Modified Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Donnacha; Lahav, Ofer; Bridle, Sarah

    The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power tomore » measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.« less

  14. Life cycle impacts of ethanol production from spruce wood chips under high-gravity conditions.

    PubMed

    Janssen, Matty; Xiros, Charilaos; Tillman, Anne-Marie

    2016-01-01

    Development of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips. The cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main process variable was the detoxification strategy applied to the pretreated feedstock material. The results of the assessment show that a process configuration, in which washing of the pretreated slurry is the detoxification strategy, leads to the lowest environmental impact of the process. Enzyme production and use are the main contributors to the environmental impact in all process configurations, and strategies to significantly reduce this contribution are enzyme recycling and on-site enzyme production. Furthermore, a strong linear correlation between the ethanol yield of a configuration and its environmental impact is demonstrated, and the selected environmental impacts show a very strong cross-correlation ([Formula: see text] in all cases) which may be used to reduce the number of impact categories considered from four to one (in this case, global warming potential). Lastly, a comparison with results of an LCA of ethanol production under high-gravity conditions using wheat straw shows that the environmental performance does not significantly differ when using spruce wood chips. For this comparison, it is shown that eutrophication potential also needs to be considered due to the fertilizer use in wheat cultivation. The LCA points out the environmental hotspots in the ethanol production process, and thus provides input to the further development of the high-gravity technology. Reducing the number of impact categories based only on cross-correlations should be done with caution. Knowledge of the analyzed system provides further input to the choice of impact categories.

  15. GRAV-D for Puerto Rico and the U.S. Virgin Islands

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Li, X.; Smith, D. A.; Geoid; GRAV-D Teams

    2013-05-01

    NOAA's National Geodetic Survey began the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) program in an effort to modernize and unify vertical datums in all states and territories. As a part of this program, NGS collected aerogravity profiles over the islands of Puerto Rico and the U.S. Virgin Islands in January 2009. A Citation II aircraft was equipped with an airborne gravimeter, GPS receiver, and a GPS/Inertial unit. Absolute gravity and GPS ties were made to multiple ground sites to ensure consistency in the results. The main survey covered a region of approximately 400 km by 500 km with flight altitudes of 10,668 m (35,000ft) and with 10 km track spacing. Cross-track profiles at 40 km spacing were also collected to establish an accuracy of 1.34 mGals RMSE. In addition to the high altitude flights, two more flights were made primarily over terrestrial areas at 1,524 m (5,000 ft) to obtain higher resolution information in these regions. There were no cross-ties established for these lower altitude flights. Additionally, terrestrial surveys were also conducted to better tie ground sites and to serve as control for later analysis for available but older terrestrial and marine gravity data in the region already held by NGS. The aerogravity data were analyzed and at least internally compared to obtain the optimal results before being published on the web. In this study, the aerogravity data were compared to available global gravity models derived from satellite missions (GRACE & GOCE) to evaluate their long wavelength character (e.g., potential biases and trends). The vetted satellite-aerogravity data were then combined and used to evaluate surface data (terrestrial and marine) in the region to remove any potential systematic effects. Finally, all these data were combined into a gravimetric geoid height model and evaluated with an eye to eventual use as a GNSS-accessed vertical datum.

  16. From Germany to Antarctica: Airborne geodesy and geophysics and the utilization of the research aircraft HALO (Invited)

    NASA Astrophysics Data System (ADS)

    Scheinert, M.; Barthelmes, F.; Foerste, C.; Heyde, I.

    2013-12-01

    The geoid as an equipotential surface of the gravity potential plays a crucial role for the realiziation of the Global Geodetic Observation System (GGOS) of IAG (International Association of Geodesy). It is the major reference surface for physical height systems. The gravity potential is needed to precisely predict the orbits of artificial satellites of the earth. A precise static solution enters analyses of temporal changes of the gravity field due to mass transport processes between the different subsystems of the earth. However, also in neighbouring disciplines the geoid is applied. In oceanography, for example, the geoid serves as a reference surface for the determination of the mean sea-surface topography (MSST). In glaciology, it enters analyses of the thickness of ice bodies floating in polar waters, based on freeboard heights and the equilibrium supposition. To come up with high resolution global gravity field models, satellite observations - preferably of the dedicated satellite gravity missions - have to be combined with surface gravity data. Although the majority of the continental surface is captured by ground-based or near-surface gravity measurements - and gravity over the oceans is determined by satellite altimetry - still large gaps in surface gravity data exist. In this respect it is the Antarctic continent which suffers large data gaps, not only in surface gravity but also due to the polar gap of GOCE satellite gravimetry. Chairing the IAG Subcommission 2.4f 'Gravity and Geoid in Antarctica' (AntGG) the author will discuss the current status of gravity surveys in Antarctica. Especially airborne gravimetry has been and is being widely applied as the only reasonable method to survey large areas in this vast and hostile environment. As a novel application the German research aircraft HALO was utilized for a geodetic-geophysical flight mission. Measurements were realized to acquire data of the gravity and magnetic fields, of GNSS remote sensing and of laser altimetry over Italy and adjacent (Tyrrhenian, Adriatic and Ionian) seas. This so-called GEOHALO flight mission was carried out in the time period from June 2 to 12, 2012. The flights comprised seven parallel profiles directing from north-west to south-east, in a height of about 3,500 m, with a length of about 1,000 km each and a line spacing of about 40 km. These long profiles were complemented by four crossing profiles and a profile at an altitude of approx. 10 km along the same track as the center long profile. Special focus will be given to the results of airborne gravimetry and laser altimetry to further investigate the gravity field and the sea-surface topography in the Mediterranean. Furthermore, the status of HALO and future plans to utilize HALO for an Antarctic flight mission will be discussed. Applications of airborne gravimetry to investigate geodetic problems in Antarctica shall be shortly discussed, together with an outlook of AntGG.

  17. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells.

    PubMed

    Valbuena, Miguel A; Manzano, Aránzazu; Vandenbrink, Joshua P; Pereda-Loth, Veronica; Carnero-Diaz, Eugénie; Edelmann, Richard E; Kiss, John Z; Herranz, Raúl; Medina, F Javier

    2018-06-08

    Red light is able to compensate for deleterious effects of microgravity on root cell growth and proliferation. Partial gravity combined with red light produces differential signals during the early plant development. Light and gravity are environmental cues used by plants throughout evolution to guide their development. We have investigated the cross-talk between phototropism and gravitropism under altered gravity in space. The focus was on the effects on the meristematic balance between cell growth and proliferation, which is disrupted under microgravity in the dark. In our spaceflight experiments, seedlings of three Arabidopsis thaliana genotypes, namely the wild type and mutants of phytochrome A and B, were grown for 6 days, including red-light photoactivation for the last 2 days. Apart from the microgravity and the 1g on-board control conditions, fractional gravity (nominally 0.1g, 0.3g, and 0.5g) was created with on-board centrifuges. In addition, a simulated microgravity (random positioning machine, RPM) experiment was performed on ground, including both dark-grown and photostimulated samples. Photoactivated samples in spaceflight and RPM experiments showed an increase in the root length consistent with phototropic response to red light, but, as gravity increased, a gradual decrease in this response was observed. Uncoupling of cell growth and proliferation was detected under microgravity in darkness by transcriptomic and microscopic methods, but red-light photoactivation produced a significant reversion. In contrast, the combination of red light and partial gravity produced small but consistent variations in the molecular markers of cell growth and proliferation, suggesting an antagonistic effect between light and gravity signals at the early plant development. Understanding these parameters of plant growth and development in microgravity will be important as bioregenerative life support systems for the colonization of the Moon and Mars.

  18. Altered gravity causes the changes in the proteins NoA100 in plant cell nucleoli

    NASA Astrophysics Data System (ADS)

    Sobol, Margarita A.; Gonzalez-Camacho, Fernando; Kordyum, Elizabeth L.; Medina, Francisco Javier

    2005-08-01

    A nucleolar protein homologous to the mammalian nucleolin and to the onion nucleolin-like protein NopA100 was detected in nuclear soluble protein fraction from Lepidium sativum root meristematic cells, using the specific silver staining method and the cross-reaction with the anti-NopA100 antibody. In 2D Western blots of soluble nuclear fraction, NopA100 was revealed as a smear extending through a certain range of pI. In extracts obtained from seedlings grown under clinorotation, the extension of the pI range was shorter than in the stationary control indicating a lower phosphorylation of the protein. This suggests that altered gravity causes a decrease in the rate of nucleolar activity.

  19. Reconstruction scenario in modified Horava-Lifshitz F( R) gravity with well-known scale factors

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila

    2015-05-01

    In this paper, we analyze the behavior of pilgrim dark energy with G-O cutoff scale in modified Horava-Lifshitz F( R) gravity through correspondence scenario. We consider three well-known scale factors in which one scale factor describes the unification of matter dominated and accelerated phases and others are intermediate and bouncing forms. We obtain the models for these scale factors and obtain increasing behavior with the passage of time. We also extract equation of state parameter corresponding to these models. We observe that this parameter shows transition from phantom towards quintessence by crossing the phantom divide line in all cases. We also give comparison of our results of equation of state parameter with observational constraints.

  20. Two-Phase Flow in Microchannels with Non-Circular Cross Section

    NASA Astrophysics Data System (ADS)

    Eckett, Chris A.; Strumpf, Hal J.

    2002-11-01

    Two-phase flow in microchannels is of practical importance in several microgravity space technology applications. These include evaporative and condensing heat exchangers for thermal management systems and vapor cycle systems, phase separators, and bioreactors. The flow passages in these devices typically have a rectangular cross-section or some other non-circular cross-section; may include complex flow paths with branches, merges and bends; and may involve channel walls of different wettability. However, previous experimental and analytical investigations of two-phase flow in reduced gravity have focussed on straight, circular tubes. This study is an effort to determine two-phase flow behavior, both with and without heat transfer, in microchannel configurations other than straight, circular tubes. The goals are to investigate the geometrical effects on flow pattern, pressure drop and liquid holdup, as well as to determine the relative importance of capillary, surface tension, inertial, and gravitational forces in such geometries. An evaporative heat exchanger for microgravity thermal management systems has been selected as the target technology in this investigation. Although such a heat exchanger has never been developed at Honeywell, a preliminary sizing has been performed based on knowledge of such devices in normal gravity environments. Fin shapes considered include plain rectangular, offset rectangular, and wavy fin configurations. Each of these fin passages represents a microchannel of non-circular cross section. The pans at the inlet and outlet of the heat exchanger are flow branches and merges, with up to 90-deg bends. R-134a has been used as the refrigerant fluid, although ammonia may well be used in the eventual application.

  1. Basement structures over Rio Grande Rise from gravity inversion

    NASA Astrophysics Data System (ADS)

    Constantino, Renata; Hackspacker, Peter Christian; Anderson de Souza, Iata; Sousa Lima Costa, Iago

    2017-04-01

    In this study, we show that from satellite-derived gravity field, bathymetry and sediment thicknesses, it is possible to give a 3-D model of the basement over oceanic areas, and for this purpose, we have chosen the Rio Grande Rise, in South Atlantic Ocean, to build a gravity-equivalent basement topography. The advantages of the method applied in this study are manifold: does not depend directly on reflection seismic data; can be applied quickly and with fewer costs for acquiring and interpreting the data; and as the main result, presents the physical surface below the sedimentary layer, which may be different from the acoustic basement. We evaluated the gravity effect of the sediments using the global sediment thickness model of NOAA, fitting a sediment compaction model to observed density values from Deep Sea Drilling Program (DSDP) reports. The Global Relief Model ETOPO1 and constraining data from seismic interpretation on crustal thickness are integrated in the gravity inversion procedure. The modeled Moho depth values vary between 6 to 27 km over the area, being thicker under the Rio Grande Rise and also in the direction of São Paulo Plateau. The inversion for the gravity-equivalent basement topography is applied for a gravity residual data, which is free from the gravity effect of sediments and from the gravity effect of the estimated Moho interface. A description of the basement depth over Rio Grande Rise area is unprecedented in the literature, however, our results could be compared to in situ data, provided by DSDP, and a small difference of only 9 m between our basement depth and leg 516 F was found. Our model shows a rift crossing the entire Rio Grande Rise deeper than previously presented in literature, with depths up to 5 km in the East Rio Grande Rise (ERGR) and deeper in the West Rio Grande Rise (WRGR), reaching 6.4 km. We find several short-wavelengths structures not present in the bathymetry data. Seamounts, guyots and fracture zones are much more clearly defined in the basement than in the bathymetric model. An interesting NS structure that goes from 34S and extends through de São Paulo Ridge is interpreted in the basement model, and we propose that this feature can be related to the South Atlantic opening, revealing an extinct spreading center.

  2. Searching for a New Improved Atlantic in ‘Atlantic’ and ‘Superior’ Reciprocal Cross Populations

    USDA-ARS?s Scientific Manuscript database

    ‘Atlantic’ is the standard variety for chipping from the field or very short-term cold storage. It has traits desired by the chip industry such as uniformity, high specific gravity and high yield. However, ‘Atlantic’ tubers are susceptible to common scab and internal defects such as internal brown s...

  3. Gravity anomaly and density structure of the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Yuen; Rui, Feng; Zhengsheng, Yao; Xingjue, Shi

    1986-01-01

    A densely spaced gravity survey across the San andreas fault zone was conducted near Bear Valley, about 180 km south of San Francisco, along a cross-section where a detailed seismic reflection profile was previously made by McEvilly (1981). With Feng and McEvilly's velocity structure (1983) of the fault zone at this cross-section as a constraint, the density structure of the fault zone is obtained through inversion of the gravity data by a method used by Parker (1973) and Oldenburg (1974). Although the resulting density picture cannot be unique, it is better constrained and contains more detailed information about the structure of the fault than was previously possible. The most striking feature of the resulting density structure is a deeply seated tongue of low-density material within the fault zone, probably representing a wedge of fault gouge between the two moving plates, which projects from the surface to the base of the seismogenic zone. From reasonable assumptions concerning the density of the solid grains and the state of saturation of the fault zone the average porosity of this low-density fault gouge is estimated as about 12%. Stress-induced cracks are not expected to create so much porosity under the pressures in the deep fault zone. Large-scaled removal of fault-zone material by hydrothermal alteration, dissolution, and subsequent fluid transport may have occurred to produce this pronounced density deficiency. In addition, a broad, funnel-shaped belt of low density appears about the upper part of the fault zone, which probably represents a belt of extensively shattered wall rocks.

  4. Plant Roots: The Hidden Half. Chapter 16; Calcium and Gravitropism; Revised

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Reedy, A. S. N.

    1995-01-01

    Environmental signals such as light and gravity control many aspects of plant growth and development. In higher plants, the directional growth of an organ in response to stimuli such as gravity and light is considered a tropic movement. Such movement could be either positive or negative with respect to a specific stimulus. In general, stems show a positive response to light and negative response to gravity. In contrast, most roots show a positive response to gravity and a negative response to light. Investigations on plant tropism date back a century when Darwin studied the phototropic responses of maize seedlings (Darwin). Although the precise mechanism of signal perception and transduction in roots is not understood, Darwin recognized over 100 years ago that the root cap is the probable site of signal perception. He discovered that the removal of the root cap eliminates the ability of roots to respond to gravity. Other investigators have since confirmed Darwin's observation (Konings; Evans et al.). In recent years, especially with the advent of the U.S. Space Program, there has been a renewed interest in understanding how plants respond to extracellular signals such as gravity (Halstead and Dutcher). Studies on the mechanisms involved in perception and transduction of gravity signal by roots would ultimately help us to better understand gravitropism and also to grow plants under microgravity conditions as in space. In this chapter, we restrict ourselves to the role of calcium in transduction of the gravity signal. In doing so, emphasis is given to the role of calcium-modulated proteins and their role in signal transduction in gravitropism. Detailed reviews on various other aspects of gravitropism (Scott, Torrey, Wilkins, Fim and Digby, Feldman, Pickard, Moore and Evans, Halstead and Dutcher, Poovaiah et al.) and on the role of calcium as a messenger in signal transduction in general have been published (Helper and Wayne, Poovaiah and Reddy, Roberts and Hartnon, Bowler and Chua, Gilroy and Trewavas). Plant roots have been widely used to study the transduction of gravity and light signals (Poovaiah et al., Roux and Serlin). Most roots show positive gravitropic response in either dark or light. However, roots of some varieties of plants (e.g., Zea mays L., cv Merit, and Zea rwvs L., cv Golden Cross Bantam 70) show positive gravitropic response only in light (Feldman, Miyazaki et al.). Investigations from various laboratories indicate that calcium acts as a messenger in transducing gravity and light signals in plant roots(Pickard, Evans et al., Pooviah et al.).

  5. The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling

    NASA Astrophysics Data System (ADS)

    Choi, Sungchan; Götze, Hans-Jürgen; Meyer, Uwe; Desire-Group

    2010-05-01

    This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. The results of the 3D gravity modelling based the GPS analysis, magnetic field characters, seismic researches and analysis of earthquake data allow us to propose that (1) the DSB is divided into two tectonic blocks by the region between the Lisan peninsula and the southern margin of the northern DSB and (2) the tectonic system in the DSB is defined as a counter-clockwise rotating pull apart basin due to the ‘Riedel flaking', by which the northern DSB is rotated counter-clockwise from the region and the southern DSB to the opposite direction. The salt diapir below the Dead Sea is suspected to be migrated from the Lisan peninsula to present region by the rotation of the northern DSB, while the Sedom diapir is extended to the SE direction. The Almacik flake along the North Anatolian fault, Turkey is probably another example of such basin.

  6. CryoSat-2 altimetry derived Arctic bathymetry map: first results and validation

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Abulaitijiang, A.; Cancet, M.; Knudsen, P.

    2017-12-01

    The Technical University of Denmark (DTU), DTU Space has been developing high quality high resolution gravity fields including the new highly accurate CryoSat-2 radar altimetry satellite data which extends the global coverage of altimetry data up to latitude 88°. With its exceptional Synthetic Aperture Radar (SAR) mode being operating throughout the Arctic Ocean, leads, i.e., the ocean surface heights, is used to retrieve the sea surface height with centimeter-level range precision. Combined with the long repeat cycle ( 369 days), i.e., dense cross-track coverage, the high-resolution Arctic marine gravity can be modelled using the CryoSat-2 altimetry. Further, the polar gap can be filled by the available ArcGP product, thus yielding the complete map of the Arctic bathymetry map. In this presentation, we will make use of the most recent DTU17 marine gravity, to derive the arctic bathymetry map using inversion based on best available hydrographic maps. Through the support of ESA a recent evaluation of existing hydrographic models of the Arctic Ocean Bathymetry models (RTOPO, GEBCO, IBCAO etc) and various inconsistencies have been identified and means to rectify these inconsistencies have been taken prior to perform the inversion using altimetry. Simultaneously DTU Space has been placing great effort on the Arctic data screening, filtering, and de-noising using various altimetry retracking solutions and classifications. All the pre-processing contributed to the fine modelling of Actic gravity map. Thereafter, the arctic marine gravity grids will eventually be translated (downward continuation operation) to a new altimetry enhanced Arctic bathymetry map using appropriate band-pass filtering.

  7. Upper atmospheric gravity wave details revealed in nightglow satellite imagery

    PubMed Central

    Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.

    2015-01-01

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004

  8. Ionic signaling in plant responses to gravity and touch

    NASA Technical Reports Server (NTRS)

    Fasano, Jeremiah M.; Massa, Gioia D.; Gilroy, Simon

    2002-01-01

    Touch and gravity are two of the many stimuli that plants must integrate to generate an appropriate growth response. Due to the mechanical nature of both of these signals, shared signal transduction elements could well form the basis of the cross-talk between these two sensory systems. However, touch stimulation must elicit signaling events across the plasma membrane whereas gravity sensing is thought to represent transformation of an internal force, amyloplast sedimentation, to signal transduction events. In addition, factors such as turgor pressure and presence of the cell wall may also place unique constraints on these plant mechanosensory systems. Even so, the candidate signal transduction elements in both plant touch and gravity sensing, changes in Ca2+, pH and membrane potential, do mirror the known ionic basis of signaling in animal mechanosensory cells. Distinct spatial and temporal signatures of Ca2+ ions may encode information about the different mechanosignaling stimuli. Signals such as Ca2+ waves or action potentials may also rapidly transfer information perceived in one cell throughout a tissue or organ leading to the systemic reactions characteristic of plant touch and gravity responses. Longer-term growth responses are likely sustained via changes in gene expression and asymmetries in compounds such as inositol-1,4,5-triphosphate (IP3) and calmodulin. Thus, it seems likely that plant mechanoperception involves both spatial and temporal encoding of information at all levels, from the cell to the whole plant. Defining this patterning will be a critical step towards understanding how plants integrate information from multiple mechanical stimuli to an appropriate growth response.

  9. Upper atmospheric gravity wave details revealed in nightglow satellite imagery.

    PubMed

    Miller, Steven D; Straka, William C; Yue, Jia; Smith, Steven M; Alexander, M Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T

    2015-12-08

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼ 90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation.

  10. Gravity study through the Tualatin Mountains, Oregon: Understanding crustal structure and earthquake hazards in the Portland urban area

    USGS Publications Warehouse

    Blakely, R.J.; Beeson, M.H.; Cruikshank, K.; Wells, R.E.; Johnson, Aaron H.; Walsh, K.

    2004-01-01

    A high-resolution gravity survey through the Tualatin Mountains (Portland Nills) west of downtown Portland exhibits evidence of faults previously identified from surface geologic and aeromagnetic mapping. The gravity survey was conducted in 1996 along the 4.5-km length of a twin-bore tunnel, then under construction and now providing light-rail service between downtown Portland and communities west of the Portland Hills. Gravitational attraction gradually increases from west to east inside the tunnel, which reflects the tunnel's location between low-density sedimentary deposits of the Tualatin basin to the west and high-density, mostly concealed Eocene basalt to the east. Superimposed on this gradient are several steplike anomalies that we interpret as evidence for faulted contacts between rocks of contrasting density. The largest of these anomalies occurs beneath Sylvan Creek, where a fault had previously been mapped inside the tunnel. Another occurs 1200 m from the west portal, at the approximate intersection of the tunnel with an aeromagnetic anomaly associated with the Sylvan fault (formerly called the Oatfield fault). Lithologic cross sections based on these gravity data show that the steplike anomalies are consistent with steeply dipping reverse faults, although strike-slip displacements also may be important. Three gravity lows correspond with topographic lows directly overhead and may reflect zones of shearing. Several moderate earthquakes (M ??? 3.5) occurred near the present-day location of the tunnel in 1991, suggesting that some of these faults or other faults in the Portland Hills fault zone are seismically active.

  11. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  12. Validation of the Five-Phase Method for Simulating Complex Fenestration Systems with Radiance against Field Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisler-Moroder, David; Lee, Eleanor S.; Ward, Gregory J.

    2016-08-29

    The Five-Phase Method (5-pm) for simulating complex fenestration systems with Radiance is validated against field measurements. The capability of the method to predict workplane illuminances, vertical sensor illuminances, and glare indices derived from captured and rendered high dynamic range (HDR) images is investigated. To be able to accurately represent the direct sun part of the daylight not only in sensor point simulations, but also in renderings of interior scenes, the 5-pm calculation procedure was extended. The validation shows that the 5-pm is superior to the Three-Phase Method for predicting horizontal and vertical illuminance sensor values as well as glare indicesmore » derived from rendered images. Even with input data from global and diffuse horizontal irradiance measurements only, daylight glare probability (DGP) values can be predicted within 10% error of measured values for most situations.« less

  13. Bigravity from gradient expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Yasuho; Tanaka, Takahiro; Department of Physics, Kyoto University,606-8502, Kyoto

    2016-05-04

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takesmore » the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.« less

  14. Gravity and magnetic anomaly modeling and correlation using the SPHERE program and Magsat data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J. (Principal Investigator); Vonfrese, R. R. B.

    1980-01-01

    The spherical Earth inversion, modeling, and contouring software were tested and modified for processing data in the Southern Hemisphere. Preliminary geologic/tectonic maps and selected cross sections for South and Central America and the Caribbean region are being compiled and as well as gravity and magnetic models for the major geological features of the area. A preliminary gravity model of the Andeas Beniff Zone was constructed so that the density columns east and west of the subducted plates are in approximate isostatic equilibrium. The magnetic anomaly for the corresponding magnetic model of the zone is being computed with the SPHERE program. A test tape containing global magnetic measurements was converted to a tape compatible with Purdue's CDC system. NOO data were screened for periods of high diurnal activity and reduced to anomaly form using the IGS-75 model. Magnetic intensity anomaly profiles were plotted on the conterminous U.S. map using the track lines as the anomaly base level. The transcontinental magnetic high seen in POGO and MAGSAT data is also represented in the NOO data.

  15. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.

    PubMed

    Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng

    2017-11-18

    A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.

  16. Quantum gravity in three dimensions, Witten spinors and the quantisation of length

    NASA Astrophysics Data System (ADS)

    Wieland, Wolfgang

    2018-05-01

    In this paper, I investigate the quantisation of length in euclidean quantum gravity in three dimensions. The starting point is the classical hamiltonian formalism in a cylinder of finite radius. At this finite boundary, a counter term is introduced that couples the gravitational field in the interior to a two-dimensional conformal field theory for an SU (2) boundary spinor, whose norm determines the conformal factor between the fiducial boundary metric and the physical metric in the bulk. The equations of motion for this boundary spinor are derived from the boundary action and turn out to be the two-dimensional analogue of the Witten equations appearing in Witten's proof of the positive mass theorem. The paper concludes with some comments on the resulting quantum theory. It is shown, in particular, that the length of a one-dimensional cross section of the boundary turns into a number operator on the Fock space of the theory. The spectrum of this operator is discrete and matches the results from loop quantum gravity in the spin network representation.

  17. Stellar occultation spikes as probes of atmospheric structure and composition. [for Jupiter

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Veverka, J.

    1976-01-01

    The characteristics of spikes observed in occultation light curves of Beta Scorpii by Jupiter are discussed in terms of the gravity-gradient model. The occultation of Beta Sco by Jupiter on May 13, 1971, is reviewed, and the gravity-gradient model is defined as an isothermal atmosphere of constant composition in which the refractivity is a function only of the radial coordinate from the center of refraction, which is assumed to lie parallel to the local gravity gradient. The derivation of the occultation light curve in terms of the atmosphere, the angular diameter of the occulted star, and the occultation geometry is outlined. It is shown that analysis of the light-curve spikes can yield the He/H2 concentration ratio in a well-mixed atmosphere, information on fine-scale atmospheric structure, high-resolution images of the occulted star, and information on ray crossing. Observational limits are placed on the magnitude of horizontal refractivity gradients, and it is concluded that the spikes are the result of local atmospheric density variations: atmospheric layers, density waves, or turbulence.

  18. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments

    PubMed Central

    Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang

    2017-01-01

    A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587

  19. Modélisation morphodynamique cross-shore d'un estran vaseux

    NASA Astrophysics Data System (ADS)

    Waeles, Benoı̂t; Le Hir, Pierre; Silva Jacinto, Ricardo

    2004-08-01

    Numerical experiments were performed to simulate the profile evolution of an intertidal mudflat with a 1D cross-shore morphodynamical model. First, the hydrodynamical forcing is a cross-shore tidal current due to semi-diurnal variations of the free surface elevation at the open boundary. Further, considering the conservation of the action density of surface gravity waves, a wave height (and resulting bottom shear stress) calculation is added to the morphodynamical model. Results of the numerical experiments show that the shape of the profile reaches equilibrium. The mudflat progrades continually when the forcing is tide only, whereas it can be steady under the simultaneous action of tide and waves. To cite this article: B. Waeles et al., C. R. Geoscience 336 (2004).

  20. Integrated study of basins in the Four Corners region

    NASA Astrophysics Data System (ADS)

    Fagbola, Olamide Olawumi

    2007-12-01

    This dissertation is an integrated study of basins in the four corners area of the central part of the Colorado Plateau. The Colorado Plateau is a structurally unique part of the Rocky Mountain region because it has only been moderately deformed when compared to the more intensely deformed areas around it. The Colorado Plateau covers a portion of Utah, Colorado, New Mexico and Arizona. The study area extends from latitude 34°N-40°N to longitude 106°W-111W° encompassing a series of major basins and uplifts: the San Juan, Black Mesa, Paradox, and the Blanding basins; and the Zuni, Defiance, Four Corners, Monument uplifts and the San Juan dome and volcanic field. An analysis of gravity anomalies, basement and crustal structure for basins in the four corners region was carried out. This involved using gravity, magnetic, well, outcrop, seismic estimates of crustal thickness, and geologic data in an integrated fashion. Six filtered gravity and three filtered magnetic maps were generated to aid in the interpretation of the gravity and magnetic anomalies in the study area. A detailed comparison of these maps was carried out. The results show a deep seated mafic structure in the basement acting as a crustal boundary separating the high gravity anomalies from the low. These maps also show that the sources of these anomalies are quite shallow resulting from the upper crust in the study area. The structures in the study area are characterized by northwest and northeast trends which correspond to the Precambrian and the Late Paleozoic structures, respectively. A crustal thickness map of the area was also constructed from seismic estimates of crustal thickness. A comparison was done between the crustal thickness map and the 45 km upward continuation Bouguer anomaly map. The result of this comparison shows that areas of thicker ix crust corresponded to low gravity while areas of thinner crust means mantle material is closer to the surface, thereby producing a high gravity anomaly. The thinnest crust encountered is about 32 km while the thickest crust is about 50 km. Seven gravity models were constructed and these include three crustal-scale profiles crisscrossing the study area and four local profiles. The gravity profiles were modeled using well data, structural thickness maps, cross section data, geologic maps and previous gravity models as constraints. Basement inhomogeneities beneath the basins and the uplifts were delineated by the gravity modeling. One of results from this study reveals that the basement beneath the Four Corners area is highly inhomogeneous. This study reveals that there is a high density deep seated mafic intrusion present in the basement which is responsible for the high gravity and magnetic anomaly in A. This dissertation has also shown that the Four Corners region does not possess a single crustal signature as shown by the different crustal trends in San Juan basin trending northeast and the east-west trending Uncompahgre uplift. The 45 km upward continuation gravity map was also found to correlate with seismic estimates of crustal thickness. The Precambrian basement in this region is also not homogeneous as shown by the necessity of inserting exotic bodies into the basement to compensate for high gravity anomalies and lastly an attempt was made to better define Tweto's (1980) outline of geologic features in the study area. On integrating gravity, magnetics, well and outcrop data, the relief of the Defiance uplift is not as high as delineated by Tweto's (1980) outline.

  1. Arabella

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Arabella, a common cross spider, spins an earthly web aboard the second Skylab mission in 1973 after initial disoriented attempts. The experiment, Web Formation in Zero Gravity, part of the Skylab Student Project, was submitted by Judith Miles, a junior at Lexington High School in Lexington, Massachusetts. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments, including the Skylab Student Project.

  2. Breaking Gravity Waves Over Large-Scale Topography

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Shapiro, M. A.

    2002-12-01

    The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.

  3. Determination of the boundary conditions of the grinding load in ball mills

    NASA Astrophysics Data System (ADS)

    Sharapov, Rashid R.

    2018-02-01

    The prospects of application in ball mills for grinding cement clinker with inclined partitions are shown. It is noted that ball mills with inclined partitions are more effective. An algorithm is proposed for calculating the power consumed by a ball mill with inclined inter-chamber partitions in which an axial movement of the ball load takes place. The boundary conditions in which the ball load is located are determined. The equations of bounding the grinding load are determined. The behavior of a grinding load is considered in view of the characteristic cross sections. The coordinates of the centers of gravity of the grinding load with a definite step and the shape of the cross sections are determined. It is theoretically shown that grinding load in some parts of the ball mill not only consumes, but also helps to rotate the ball mill. Methods for calculating complex analytical expressions for determining the coordinates of the centers of gravity of the grinding load under the conditions of its longitudinal motion have developed. The carried out researches allow to approach from the general positions to research of behavior of a grinding load in the ball mills equipped with various in-mill devices.

  4. The Influence of Surface Gravity Waves on Marine Current Turbine Performance

    NASA Astrophysics Data System (ADS)

    Lust, E.; Luznik, L.; Flack, K. A.; Walker, J.; Van Benthem, M.

    2013-12-01

    Surface gravity waves can significantly impact operating conditions for a marine current turbine, imparting unsteady velocities several orders of magnitude larger than the ambient turbulence. The influence of surface waves on the performance characteristics of a two-bladed horizontal axis marine current turbine was investigated experimentally in a large towing tank facility at the United States Naval Academy. The turbine model had a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to lift coefficient in the operating range of Rec ≈ 4 x 105. The torque, thrust and rotational speed were measured at a range of tip speed ratios (TSR) from 5 < TSR < 11. Tests were performed at two rotor depths (1.3D and 2.25D) with and without waves. The average turbine performance characteristics were largely unchanged by depth or the presence of waves. However, tests with waves indicate large variations in thrust, rotational speed, and torque occurred with the passage of the wave. These results demonstrate the impact of surface gravity waves on power production and structural loading and suggest that turbines should be positioned vertically within the water column at a depth which maximizes power output while minimizing material fatigue. Keywords-- marine current turbine, tidal turbine, towing-tank experiments, surface gravity waves, fatigue loading, phase averaging

  5. Hybrid anomaly and gravity mediation for electroweak supersymmetry

    NASA Astrophysics Data System (ADS)

    Zhu, Bin; Ding, Ran; Li, Tianjun

    2018-03-01

    In this paper, we propose a hybrid mediation and hybrid supersymmetry breaking. In particular, the RG-invariant anomaly mediation is considered. Together with additional gravity mediation, the slepton tachyon problem of anomaly mediation is solved automatically. The special properties are that all color sparticles masses fall into several TeV regions due to the large m0 and m32 which are well beyond the scope of current LHC Run II limits. Unlike the gauge mediation, the dark matter candidate is still the lightest neutralino and the correct dark matter relic density can be realized within the framework of mixed axion-Wino dark matter. Due to the existence of multi-component axion-Wino dark matter, the direct detection cross-section is suppressed to evade the tightest LUX, PandaX bound.

  6. Beyond Positivity Bounds and the Fate of Massive Gravity

    NASA Astrophysics Data System (ADS)

    Bellazzini, Brando; Riva, Francesco; Serra, Javi; Sgarlata, Francesco

    2018-04-01

    We constrain effective field theories by going beyond the familiar positivity bounds that follow from unitarity, analyticity, and crossing symmetry of the scattering amplitudes. As interesting examples, we discuss the implications of the bounds for the Galileon and ghost-free massive gravity. The combination of our theoretical bounds with the experimental constraints on the graviton mass implies that the latter is either ruled out or unable to describe gravitational phenomena, let alone to consistently implement the Vainshtein mechanism, down to the relevant scales of fifth-force experiments, where general relativity has been successfully tested. We also show that the Galileon theory must contain symmetry-breaking terms that are at most one-loop suppressed compared to the symmetry-preserving ones. We comment as well on other interesting applications of our bounds.

  7. Beyond Positivity Bounds and the Fate of Massive Gravity.

    PubMed

    Bellazzini, Brando; Riva, Francesco; Serra, Javi; Sgarlata, Francesco

    2018-04-20

    We constrain effective field theories by going beyond the familiar positivity bounds that follow from unitarity, analyticity, and crossing symmetry of the scattering amplitudes. As interesting examples, we discuss the implications of the bounds for the Galileon and ghost-free massive gravity. The combination of our theoretical bounds with the experimental constraints on the graviton mass implies that the latter is either ruled out or unable to describe gravitational phenomena, let alone to consistently implement the Vainshtein mechanism, down to the relevant scales of fifth-force experiments, where general relativity has been successfully tested. We also show that the Galileon theory must contain symmetry-breaking terms that are at most one-loop suppressed compared to the symmetry-preserving ones. We comment as well on other interesting applications of our bounds.

  8. First Search for Nontensorial Gravitational Waves from Known Pulsars

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Buchner, S.; Cognard, I.; Corongiu, A.; Freire, P. C. C.; Guillemot, L.; Hobbs, G. B.; Kerr, M.; Lyne, A. G.; Possenti, A.; Ridolfi, A.; Shannon, R. M.; Stappers, B. W.; Weltevrede, P.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-01-01

    We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity.

  9. First Search for Nontensorial Gravitational Waves from Known Pulsars.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; AultONeal, K; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bawaj, M; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chatterjee, D; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Duncan, J; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gabel, M; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garufi, F; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Ramirez, K E; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Taylor, J A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, M; Wang, Y-F; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J; Buchner, S; Cognard, I; Corongiu, A; Freire, P C C; Guillemot, L; Hobbs, G B; Kerr, M; Lyne, A G; Possenti, A; Ridolfi, A; Shannon, R M; Stappers, B W; Weltevrede, P

    2018-01-19

    We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity.

  10. Search for deviations from the inverse square law of gravity at nm range using a pulsed neutron beam

    NASA Astrophysics Data System (ADS)

    Haddock, Christopher C.; Oi, Noriko; Hirota, Katsuya; Ino, Takashi; Kitaguchi, Masaaki; Matsumoto, Satoru; Mishima, Kenji; Shima, Tatsushi; Shimizu, Hirohiko M.; Snow, W. Michael; Yoshioka, Tamaki

    2018-03-01

    We describe an experimental search for deviations from the inverse-square law of gravity at the nanometer length scale using neutron scattering from noble gases on a pulsed slow neutron beam line. By measuring the neutron momentum transfer (q ) dependence of the differential cross section for xenon and helium and comparing to their well-known analytical forms, we place an upper bound on the strength of a new interaction as a function of interaction length λ which improves upon previous results in the region λ <0.1 nm , and remains competitive in the larger-λ region. A pseudoexperimental simulation is developed for this experiment and its role in the data analysis is described. We conclude with plans for improving sensitivity in the larger-λ region.

  11. A novel serogenetic approach determines the community prevalence of celiac disease and informs improved diagnostic pathways.

    PubMed

    Anderson, Robert P; Henry, Margaret J; Taylor, Roberta; Duncan, Emma L; Danoy, Patrick; Costa, Marylia J; Addison, Kathryn; Tye-Din, Jason A; Kotowicz, Mark A; Knight, Ross E; Pollock, Wendy; Nicholson, Geoffrey C; Toh, Ban-Hock; Brown, Matthew A; Pasco, Julie A

    2013-08-28

    Changing perspectives on the natural history of celiac disease (CD), new serology and genetic tests, and amended histological criteria for diagnosis cast doubt on past prevalence estimates for CD. We set out to establish a more accurate prevalence estimate for CD using a novel serogenetic approach. The human leukocyte antigen (HLA)-DQ genotype was determined in 356 patients with 'biopsy-confirmed' CD, and in two age-stratified, randomly selected community cohorts of 1,390 women and 1,158 men. Sera were screened for CD-specific serology. Only five 'biopsy-confirmed' patients with CD did not possess the susceptibility alleles HLA-DQ2.5, DQ8, or DQ2.2, and four of these were misdiagnoses. HLA-DQ2.5, DQ8, or DQ2.2 was present in 56% of all women and men in the community cohorts. Transglutaminase (TG)-2 IgA and composite TG2/deamidated gliadin peptide (DGP) IgA/IgG were abnormal in 4.6% and 5.6%, respectively, of the community women and 6.9% and 6.9%, respectively, of the community men, but in the screen-positive group, only 71% and 75%, respectively, of women and 65% and 63%, respectively, of men possessed HLA-DQ2.5, DQ8, or DQ2.2. Medical review was possible for 41% of seropositive women and 50% of seropositive men, and led to biopsy-confirmed CD in 10 women (0.7%) and 6 men (0.5%), but based on relative risk for HLA-DQ2.5, DQ8, or DQ2.2 in all TG2 IgA or TG2/DGP IgA/IgG screen-positive subjects, CD affected 1.3% or 1.9%, respectively, of females and 1.3% or 1.2%, respectively, of men. Serogenetic data from these community cohorts indicated that testing screen positives for HLA-DQ, or carrying out HLA-DQ and further serology, could have reduced unnecessary gastroscopies due to false-positive serology by at least 40% and by over 70%, respectively. Screening with TG2 IgA serology and requiring biopsy confirmation caused the community prevalence of CD to be substantially underestimated. Testing for HLA-DQ genes and confirmatory serology could reduce the numbers of unnecessary gastroscopies.

  12. Mars Gravity Field and Upper Atmosphere from MGS, Mars Odyssey, and MRO

    NASA Astrophysics Data System (ADS)

    Genova, A.; Goossens, S. J.; Lemoine, F. G.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2015-12-01

    The NASA orbital missions Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) have been exploring and monitoring the planet Mars since 1997. MGS executed its mapping mission between 1999 and 2006 in a frozen sun-synchronous, near-circular, polar orbit with the periapsis altitude at ~370 km and the dayside equatorial crossing at 2 pm Local Solar Time (LST). The spacecraft was equipped with onboard instrumentation to acquire radio science data and to measure spacecraft ranges to the Martian surface (Mars Orbiter Laser Altimeter). These measurements resulted in static and time-varying gravity field and high-resolution global topography of the planet. ODY and MRO are still orbiting about Mars in two different sun-synchronous orbits, providing radio tracking data that indirectly measure both the static and time-varying gravity field and the atmospheric density. The orbit of ODY has its periapsis at ~390 km altitude and descending node at 4-5 pm LST. However, the spacecraft also collected measurements at lower altitudes (~220 km) in 2002 prior to the mapping phase. Since November 2006, MRO is in a low-altitude orbit with a periapsis altitude of 255 km and descending node at 3 pm LST. Radio data from MRO help improve the resolution of the static gravity field and measure the mass distribution of the polar caps, but the atmospheric drag at those altitudes may limit the benefits of these radio tracking observations. We present a combined solution of the Martian gravity field to degree and order 110 and atmospheric density profiles with radio tracking data from MGS, ODY and MRO. The gravity field solution is combined with the MOLA topography yielding an updated map of Mars crustal thickness. We also show our solution of the Love number k2 and time-variable gravity zonal harmonics (C20 and C30, in particular). The recovered atmospheric density profiles may be used in atmospheric models to constrain the long-term variability of the constituents in the upper atmosphere.

  13. Weight bearing cone beam CT scan versus gravity stress radiography for analysis of supination external rotation injuries of the ankle.

    PubMed

    Marzo, John M; Kluczynski, Melissa A; Clyde, Corey; Anders, Mark J; Mutty, Christopher E; Ritter, Christopher A

    2017-12-01

    For AO 44-B2 ankle fractures of uncertain stability, the current diagnostic standard is to obtain a gravity stress radiograph, but some have advocated for the use of weight-bearing radiographs. The primary aim was to compare measures of medial clear space (MCS) on weight-bearing cone beam computed tomography (CBCT) scans versus gravity stress radiographs for determining the state of stability of ankle fractures classified as AO SER 44-B2 or Weber B. The secondary aim was to evaluate the details offered by CBCT scans with respect to other findings that may be relevant to patient care. Nine patients were enrolled in this cross-sectional study between April 2016 and February 2017 if they had an AO SER 44-B2 fracture of uncertain stability, had a gravity stress radiograph, and were able to undergo CT scan within seven days. The width of the MCS was measured at the level of the talar dome on all radiographs and at the mid coronal slice on CT. Wilcoxon signed-ranks tests were used to compare MCS between initial radiographs, gravity stress radiographs and weight-bearing CBCT scans. MCS on weight-bearing CBCT scan (1.41±0.41 mm) was significantly less than standard radiographs (3.28±1.63 mm, P=0.004) and gravity stress radiographs (5.82±1.93 mm, P=0.02). There was no statistically significant difference in MCS measured on standard radiographs versus gravity stress radiographs (P=0.11). Detailed review of the multiplanar CT images revealed less than perfect anatomical reduction of the fractures, with residual fibular shortening, posterior displacement, and fracture fragments in the incisura as typical findings. Similar to weight-bearing radiographs, weight-bearing CBCT scan can predict stability of AO 44-B2 ankle fractures by showing restoration of the MCS, and might be used to indicate patients for non-operative treatment. None of the fractures imaged in this study were perfectly reduced however, and further clinical research is necessary to determine if any of the detailed weight-bearing CBCT findings are related to patient outcomes.

  14. Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking

    NASA Technical Reports Server (NTRS)

    Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.

    2003-01-01

    The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In the tropics, only with the AD parameterization can the model produce realistic semiannual oscillations.

  15. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    NASA Astrophysics Data System (ADS)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  16. The physiological determinants of low-level urine cadmium: an assessment in a cross-sectional study among schoolchildren.

    PubMed

    Wang, Hongyu; Dumont, Xavier; Haufroid, Vincent; Bernard, Alfred

    2017-09-12

    Recent studies in children have reported associations of urinary cadmium (U-Cd), used as biomarker of Cd body burden, with renal dysfunction, retarded growth and impaired cognitive development in children. Little is known, however, about factors influencing U-Cd in children and likely to act as confounders. In a cross-sectional study involving 249 schoolchildren (mean age, 5.72 years; 138 boys), we measured the urine concentrations of cadmium, zinc, lead, albumin, alpha 1 -microglobulin (A1M), retinol-binding protein, β 2 -microglobulin and club cell protein (CC16). Determinants of U-Cd expressed per creatinine or adjusted to specific gravity were identified by multiple regression analyses. Girls and boys had similar median concentrations of U-Cd (0.22 and 0.24 μg/L, 0.33 and 0.35 μg/g creatinine, respectively). When models were run without including creatinine or specific gravity among independent variables, urinary zinc, urinary A1M and age emerged as the strongest predictors of U-Cd expressed per g creatinine or adjusted to SG. When adding creatinine among predictors, urinary creatinine emerged as an additional strong predictor correlating negatively with U-Cd per g creatinine. This strong residual influence of diuresis, not seen when adding specific gravity among predictors, linked U-Cd to U-A1M or U-CC16 through secondary associations mimicking those induced by Cd nephrotoxity. In young children U-Cd largely varies with diuresis, zinc metabolism and urinary A1M. These physiological determinants, unrelated to Cd body burden, may confound the child renal and developmental outcomes associated with low-level U-Cd.

  17. MASPROP- MASS PROPERTIES OF A RIGID STRUCTURE

    NASA Technical Reports Server (NTRS)

    Hull, R. A.

    1994-01-01

    The computer program MASPROP was developed to rapidly calculate the mass properties of complex rigid structural systems. This program's basic premise is that complex systems can be adequately described by a combination of basic elementary structural shapes. Thirteen widely used basic structural shapes are available in this program. They are as follows: Discrete Mass, Cylinder, Truncated Cone, Torus, Beam (arbitrary cross section), Circular Rod (arbitrary cross section), Spherical Segment, Sphere, Hemisphere, Parallelepiped, Swept Trapezoidal Panel, Symmetric Trapezoidal Panels, and a Curved Rectangular Panel. MASPROP provides a designer with a simple technique that requires minimal input to calculate the mass properties of a complex rigid structure and should be useful in any situation where one needs to calculate the center of gravity and moments of inertia of a complex structure. Rigid body analysis is used to calculate mass properties. Mass properties are calculated about component axes that have been rotated to be parallel to the system coordinate axes. Then the system center of gravity is calculated and the mass properties are transferred to axes through the system center of gravity by using the parallel axis theorem. System weight, moments of inertia about the system origin, and the products of inertia about the system center of mass are calculated and printed. From the information about the system center of mass the principal axes of the system and the moments of inertia about them are calculated and printed. The only input required is simple geometric data describing the size and location of each element and the respective material density or weight of each element. This program is written in FORTRAN for execution on a CDC 6000 series computer with a central memory requirement of approximately 62K (octal) of 60 bit words. The development of this program was completed in 1978.

  18. Joint Tomographic Imaging of 3-­-D Density Structure Using Cosmic Ray Muons and High-­-Precision Gravity Data

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Guardincerri, E.; Roy, M.; Dichter, M.

    2015-12-01

    As part of the CO2 reservoir muon imaging project headed by the Pacific Northwest National Laboraory (PNNL) under the U.S. Department of Energy Subsurface Technology and Engineering Research, Development, and Demonstration (SubTER) iniative, Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) plan to leverage the recently decommissioned and easily accessible Tunnel Vault on LANL property to test the complementary modeling strengths of muon radiography and high-precision gravity surveys. This tunnel extends roughly 300 feet into the hillside, with a maximum depth below the surface of approximately 300 feet. We will deploy LANL's Mini Muon Tracker (MMT), a detector consisting of 576 drift tubes arranged in alternating parallel planes of orthogonally oriented tubes. This detector is capable of precise determination of trajectories for incoming muons with angular resolution of a few milliradians. We will deploy the MMT at several locations within the tunnel, to obtain numerous crossing muon trajectories and permit a 3D tomographic image of the overburden to be built. In the same project, UNM will use a Scintrex digital gravimeter to collect high-precision gravity data from a dense grid on the hill slope above the tunnel as well as within the tunnel itself. This will provide both direct and differential gravity readings for density modeling of the overburden. By leveraging detailed geologic knowledge of the canyon and the lithology overlying the tunnel, as well as the structural elements, elevations and blueprints of the tunnel itself, we will evaluate the muon and gravity data both independently and in a simultaneous, joint inversion to build a combined 3D density model of the overburden.

  19. Along-axis segmentation and isostasy in the Western rift, East Africa

    NASA Astrophysics Data System (ADS)

    Upcott, N. M.; Mukasa, R. K.; Ebinger, C. J.; Karner, G. D.

    1996-02-01

    Structural variations along the southern sectors of the Western rift, East Africa, have previously been described, but subsurface structures in the northern sector (Uganda, Zaire) are virtually unknown. Our aims are to investigate the along-axis segmentation of the northern sector, thereby adding to the structural picture of the Western rift, and to study the isostatic compensation of the varying rift morphology along the sector's length. This study describes the first gravity survey to be carried out on the shallow Lake Albert, forward models of these and existing gravity data, and the results from inverse modeling of existing aeromagnetic data designed to delimit border and transfer fault systems. Our tectonic model shows that the northern rift sector is segmented along-axis into five 25 to 65-km-wide, 80 to 100-km-long rift segments, characterized by closed-contour Bouguer anomaly lows, and bounded by steep gravity, aeromagnetic, and topographic/bathymetric gradients. Werner and Euler deconvolution results and gravity anomaly data reveal that some faulted basins are separated by structural highs and cross-rift ramps or faults and suggest sedimentary basin depths of 4-6 km. Forward modeling of structural and free-air gravity profiles across individual basins and flanks using a model that assumes flexural compensation also suggests sediment thicknesses of up to 5.5 km, similar to the estimates from magnetic data. The basin and flank morphology can be explained by 6-9 km of extension of a lithosphere with an effective elastic thickness (Te) of 25 km (equivalent to a flexural rigidity of 1.4 × 1023 N m), similar to results in other Western rift basins. Potential field data and lithospheric strength estimates in the Western rift system show small along-axis variations in lithospheric structure, regardless of the presence or absence of Cenozoic magmatism.

  20. Chilean Tsunami Rocks the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.

  1. Gravity field over the Sea of Galilee: Evidence for a composite basin along a transform fault

    USGS Publications Warehouse

    Ben-Avraham, Z.; ten Brink, Uri S.; Bell, R.; Reznikov, M.

    1996-01-01

    The Sea of Galilee (Lake Kinneret) is located at the northern portion of the Kinneret-Bet Shean basin, in the northern Dead Sea transform. Three hundred kilometers of continuous marine gravity data were collected in the lake and integrated with land gravity data to a distance of more than 20 km around the lake. Analyses of the gravity data resulted in a free-air anomaly map, a variable density Bouguer anomaly map, and a horizontal first derivative map of the Bouguer anomaly. These maps, together with gravity models of profiles across the lake and the area south of it, were used to infer the geometry of the basins in this region and the main faults of the transform system. The Sea of Galilee can be divided into two units. The southern half is a pull-apart that extends to the Kinarot Valley, south of the lake, whereas the northern half was formed by rotational opening and transverse normal faults. The deepest part of the basinal area is located well south of the deepest bathymetric depression. This implies that the northeastern part of the lake, where the bathymetry is the deepest, is a young feature that is actively subsiding now. The pull-apart basin is almost symmetrical in the southern part of the lake and in the Kinarot Valley south of the lake. This suggests that the basin here is bounded by strike-slip faults on both sides. The eastern boundary fault extends to the northern part of the lake, while the western fault does not cross the northern part. The main factor controlling the structural complexity of this area is the interaction of the Dead Sea transform with a subperpendicular fault system and rotated blocks.

  2. Origin of a major cross-element zone: Moroccan Rif

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    1987-08-01

    Alpine age (Oligocene-Miocene) deformation in the western Mediterranean formed the Rif mountain belt of northern Morocco. A linear east-northeast-west-southwest trend of cross elements from Jebah (Mediterranean coast) to Arbaoua (near the Atlantic coast) extends through several thrust sheets in the western Rif. The cross elements are manifest as a lateral ramp, the northern limit of a large culmination, and they affect syntectonic turbidite sandstone distribution. Gravity anomalies indicate that the cross-element zone is coincident with a transition zone from normal thickness to thinner continental crust. It is suggested that an early Mesozoic strike-slip fault system related to rifting of North America from North Africa caused a strong east-northeast-west-southwest, basement block-fault trend to form on the normal thickness side of the thick-to-thin continental crustal transition zone. This trend later influenced the position of the Alpine age cross-element zone that traverses several different Mesozoic and Tertiary basins, inverted during the Alpine deformation.

  3. Origin of a major cross-element zone: Moroccan Rif

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morley, C.K.

    1987-08-01

    Alpine age (Oligocene-Miocene) deformation in the western Mediterranean formed the Rif mountain belt of northern Morocco. A linear east-northeast-west-southwest trend of cross elements from Jebah (Mediterranean coast) to Arbaoua (near the Atlantic coast) extends through several thrust sheets in the western Rif. The cross elements are manifest as a lateral ramp, the northern limit of a large culmination, and they affect syntectonic turbidite sandstone distribution. Gravity anomalies indicate that the cross-element zone is coincident with a transition zone from normal thickness to thinner continental crust. It is suggested that an early Mesozoic strike-slip fault system related to rifting of Northmore » America from North Africa caused a strong east-northeast-west-southwest, basement block-fault trend to form on the normal thickness side of the thick-to-thin continental crustal transition zone. This trend later influenced the position of the Alpine age cross-element zone that traverses several different Mesozoic and Tertiary basins, inverted during the Alpine deformation.« less

  4. Design and Analysis of Coordinated Bank-to-Turn (CBTT) Autopilots for Bank-to-Turn (BTT) Missiles.

    DTIC Science & Technology

    1983-12-01

    with the acceleration command shown in Figures 4.3 it was necessary to modify the antigravity command as follows to S..assure an anti-gravity bias of...and the kinematic cross-coupling of -B.P into a. Also the antigravity command coso cose is inserted into nz. This model is shown in Figure 4.1. The

  5. Near infrared spectroscopy for the nondestructive estimation of clear wood properties of Pinus taeda L. from the southern United States

    Treesearch

    Laurence R. Schimleck; P. David Jones; Alexander Clark; Richard F. Daniels; Gary F. Peter

    2005-01-01

    The estimation of specific gravity (SG), modulus of elasticity (MOE), and modulus of rupture (MOR) of loblolly pine (Pinus taeda L.) clear wood samples from a diverse range of sites across the southern United States was investigated using near infrared (NIR) spectroscopy. NIR spectra were obtained from the radial and cross sectional (original, rough...

  6. Imaging Gravity Waves in Lower Stratospheric AMSU-A Radiances. Part 1: Simple Forward Model

    DTIC Science & Technology

    2006-08-14

    brightening” of microwave radiances acquired from purely vertical background temperature profiles by cross- track scanners. Waves propagating along track...three-dimensional wave fields. For example, some limb sensors return high- resolution vertical temperature profiles with wave oscilla- tions...provide only ver- tical profiles of wave oscillations, similar to radiosonde and rocketsonde data. Similarly, limb-tracking measurements from the

  7. Mean gravity anomalies and sea surface heights derived from GEOS-3 altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1978-01-01

    Approximately 2000 GEOS-3 altimeter arcs were analyzed to improve knowledge of the geoid and gravity field. An adjustment procedure was used to fit the sea surface heights (geoid undulations) in an adjustment process that incorporated cross-over constraints. The error model used for the fit was a one or two parameter model which was designed to remove altimeter bias and orbit error. The undulations on the adjusted arcs were used to produce geoid maps in 20 regions. The adjusted data was used to derive 301 5 degree equal area anomalies and 9995 1 x 1 degree anomalies in areas where the altimeter data was most dense, using least squares collocation techniques. Also emphasized was the ability of the altimeter data to imply rapid anomaly changes of up to 240 mgals in adjacent 1 x 1 degree blocks.

  8. Constraining models of f(R) gravity with Planck and WiggleZ power spectrum data

    NASA Astrophysics Data System (ADS)

    Dossett, Jason; Hu, Bin; Parkinson, David

    2014-03-01

    In order to explain cosmic acceleration without invoking ``dark'' physics, we consider f(R) modified gravity models, which replace the standard Einstein-Hilbert action in General Relativity with a higher derivative theory. We use data from the WiggleZ Dark Energy survey to probe the formation of structure on large scales which can place tight constraints on these models. We combine the large-scale structure data with measurements of the cosmic microwave background from the Planck surveyor. After parameterizing the modification of the action using the Compton wavelength parameter B0, we constrain this parameter using ISiTGR, assuming an initial non-informative log prior probability distribution of this cross-over scale. We find that the addition of the WiggleZ power spectrum provides the tightest constraints to date on B0 by an order of magnitude, giving log10(B0) < -4.07 at 95% confidence limit. Finally, we test whether the effect of adding the lensing amplitude ALens and the sum of the neutrino mass ∑mν is able to reconcile current tensions present in these parameters, but find f(R) gravity an inadequate explanation.

  9. Anti-gravity: The key to 21st century physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyes, H.P.

    1993-01-01

    The masses coupling constants and cosmological parameters obtained using our discrete and combinatorial physics based on discrimination between bit-strings indicate that we can achieve the unification of quantum mechanics with relativity which had become the goal of twentieth century physics. To broaden our case we show that limitations on measurement of the position and velocity of an individual massive particle observed in a colliding beam scattering experiment imply real, rational commutation relations between position and velocity. Prior to this limit being pushed down to quantum effects, the lower bound is set by the available technology, but is otherwise scale invariant.more » Replacing force by force per unit mass and force per unit charge allows us to take over the Feynman-Dyson proof of the Maxwell Equations and extend it to weak gravity. The crossing symmetry of the individual scattering processes when one or more particles are replaced by anti-particles predicts both Coulomb attraction (for charged particles) and a Newtonian repulsion between any particle and its anti-particle. Previous quantum results remain intact, and predict the expected relativistic fine structure and spin dependencies. Experimental confirmation of this anti-gravity prediction would inaugurate the physics of the twenty-first century.« less

  10. Anti-gravity: The key to 21st century physics

    NASA Astrophysics Data System (ADS)

    Noyes, H. P.

    1993-01-01

    The masses coupling constants and cosmological parameters obtained using our discrete and combinatorial physics based on discrimination between bit-strings indicate that we can achieve the unification of quantum mechanics with relativity which had become the goal of twentieth century physics. To broaden our case we show that limitations on measurement of the position and velocity of an individual massive particle observed in a colliding beam scattering experiment imply real, rational commutation relations between position and velocity. Prior to this limit being pushed down to quantum effects, the lower bound is set by the available technology, but is otherwise scale invariant. Replacing force by force per unit mass and force per unit charge allows us to take over the Feynman-Dyson proof of the Maxwell Equations and extend it to weak gravity. The crossing symmetry of the individual scattering processes when one or more particles are replaced by anti-particles predicts both Coulomb attraction (for charged particles) and a Newtonian repulsion between any particle and its anti-particle. Previous quantum results remain intact, and predict the expected relativistic fine structure and spin dependencies. Experimental confirmation of this anti-gravity prediction would inaugurate the physics of the twenty-first century.

  11. Investigation of mesoscale trace gas distributions across an Arctic tropopause fold affected by gravity wave activity

    NASA Astrophysics Data System (ADS)

    Woiwode, Wolfgang; Oelhaf, Hermann; Dörnbrack, Andreas; Bramberger, Martina; Diekmann, Christopher; Friedl-Vallon, Felix; Höpfner, Michael; Hoor, Peter; Johansson, Sören; Krause, Jens; Kunkel, Daniel; Orphal, Johannes; Preusse, Peter; Ruhnke, Roland; Schlage, Romy; Schröter, Jennifer; Sinnhuber, Björn-Martin; Ungermann, Jörn; Zahn, Andreas

    2017-04-01

    Tropopause folds are known of enabling efficient exchange of trace constituents between the stratosphere and troposphere. In particular, the modification of the vertical distributions of radiatively important H2O and other reactive trace gases associated with tropopause folds is relevant for accurate model simulations of the upper troposphere and lower stratosphere composition. During the POLSTRACC/GW-LCYCLE/SALSA flight on 12 January 2016, the HALO (High Altitude LOng range) aircraft crossed twice an extended tropopause fold in the vicinity of the Arctic polar vortex. At the same time, the ECMWF operational analysis shows that the meteorological scenario probed above Italy was accompanied by wide-spread gravity wave activity induced by north-westerly winds. Using high spectral resolution limb-observations by the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) spectrometer aboard HALO and associated observations, we investigate the vertical distributions of H2O, O3, temperature, and associated parameters across the tropopause fold. In combination with a high-resolution simulation by the ICON-ART (ICOsahedral Nonhydrostatic- Aerosol and Reactive Trace gases) model, we search for indications for irreversible trace gas exchange between the stratosphere and troposphere and the potential influence of gravity waves.

  12. Study of the convective fluid flows with evaporation on the basis of the exact solution in a three-dimensional infinite channel

    NASA Astrophysics Data System (ADS)

    Bekezhanova, V. B.; Goncharova, O. N.

    2017-09-01

    The solution of special type of the Boussinesq approximation of the Navier - Stokes equations is used to simulate the two-layer evaporative fluid flows. This solution is the 3D generalization of the Ostroumov - Birikh solution of the equations of free convection. Modeling of the 3D fluid flows is performed in an infinite channel of the rectangular cross section without assumption of the axis-symmetrical character of the flows. Influence of gravity and evaporation on the dynamic and thermal phenomena in the system is studied. The fluid flow patterns are determined by various thermal, mechanical and structural effects. Numerical investigations are performed for the liquid - gas system like ethanol - nitrogen and HFE-7100 - nitrogen under conditions of normal and low gravity. The solution allows one to describe a formation of the thermocapillary rolls and multi-vortex structures in the system. Alteration of topology and character of the flows takes place with change of the intensity of the applied thermal load, thermophysical properties of working media and gravity action. Flows with translational, translational-rotational or partially reverse motion can be formed in the system.

  13. Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues.

    PubMed

    Senot, Patrice; Zago, Myrka; Lacquaniti, Francesco; McIntyre, Joseph

    2005-12-01

    Intercepting an object requires a precise estimate of its time of arrival at the interception point (time to contact or "TTC"). It has been proposed that knowledge about gravitational acceleration can be combined with first-order, visual-field information to provide a better estimate of TTC when catching falling objects. In this experiment, we investigated the relative role of visual and nonvisual information on motor-response timing in an interceptive task. Subjects were immersed in a stereoscopic virtual environment and asked to intercept with a virtual racket a ball falling from above or rising from below. The ball moved with different initial velocities and could accelerate, decelerate, or move at a constant speed. Depending on the direction of motion, the acceleration or deceleration of the ball could therefore be congruent or not with the acceleration that would be expected due to the force of gravity acting on the ball. Although the best success rate was observed for balls moving at a constant velocity, we systematically found a cross-effect of ball direction and acceleration on success rate and response timing. Racket motion was triggered on average 25 ms earlier when the ball fell from above than when it rose from below, whatever the ball's true acceleration. As visual-flow information was the same in both cases, this shift indicates an influence of the ball's direction relative to gravity on response timing, consistent with the anticipation of the effects of gravity on the flight of the ball.

  14. Thermal structure of the crust in Inner East Anatolia from aeromagnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Bektaş, Özcan

    2013-08-01

    Inner East Anatolia has many hot spring outcomes. In this study, the relationship between the thermal structure and hot spring outcomes is investigated. The residual aeromagnetic and gravity anomalies of the Inner East Anatolia, surveyed by the Mineral Research and Exploration (MTA) of Turkey, show complexities. The magnetic data were analyzed to produce Curie point depth estimates. The depth of magnetic dipole was calculated by azimuthally averaged power spectrum method for the whole area. The Curie point depth (CPD) map covering the Inner East Anatolia has been produced. The Curie point depths of the region between Sivas and Malatya vary from 16.5 to 18.7 km. Values of heat flow were calculated according to continental geotherm from the model. The heat flow values vary between 89 and 99 mW m-2. Heat flow values are incorporated with surface heat flow values. Gravity anomalies were modeled by means of a three-dimensional method. The deepest part of the basin (12-14 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Two-dimensional cross sections produced from the basin depths, Curie values and MOHO depths. Based on the analysis of magnetic, gravity anomalies, thermal structures and geology, it seems likely that the hot springs are not related to rising asthenosphere, in the regions of shallow CPDs (∼16.5 km), and mostly hot springs are related to faulting systems in Inner East Anatolia.

  15. Push versus gravity for intermittent bolus gavage tube feeding of premature and low birth weight infants.

    PubMed

    Dawson, Jennifer A; Summan, Ravinder; Badawi, Nadia; Foster, Jann P

    2012-11-14

    Many small, sick and premature infants are unable to coordinate sucking, swallowing and breathing, and therefore, require gavage feeding. In gavage feeding, milk feeds are delivered through a tube passed via the nose or mouth into the stomach. Intermittent bolus milk feeds may be administered using a syringe to gently push milk into the infant's stomach (push feed). Alternatively, milk can be poured into a syringe attached to the tube and allowed to drip in by gravity (gravity feed). To determine whether the use of push compared with gravity gavage feeding results in a more rapid establishment of full gavage feeds without increasing adverse events in preterm or low birth weight, infants who require intermittent bolus gavage feeding. We searched the following electronic databases to locate randomised controlled or quasi-randomised trials: Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, 2012, Issue 5), MEDLINE (from 1966 to May 2012), EMBASE (from 1980 to May 2012), and CINAHL (from 1982 to May 2012). We used the standard search strategy of the Cochrane Neonatal Review Group. Randomised or quasi-randomised controlled trials comparing push versus gravity intermittent gavage tube feeding in premature or low birth weight, or both, infants. We assessed the methodology of trials regarding blinding of randomisation and outcome measurement. We evaluated treatment effect with a fixed-effect model using risk ratio (RR), relative risk reduction, risk difference (RD) and number needed to treat (NNT) for categorical data; and using mean, standard deviation and weighted mean difference (WMD) for continuous data. We analysed outcomes measured as count data, for example frequency of apnoea, bradycardia and episodes of pulse oximeter oxygen (SpO(2)) desaturation, by comparing rates of events and the rate ratio. We evaluated heterogeneity to help determine the suitability of pooling results. Only one small cross-over trial met the criteria for inclusion in this review and therefore meta-analysis for any of the treatment outcomes was not performed. Symon 1994 reported a trend towards a higher respiratory rate at 10 to 30 minutes following push gavage feeding and no statistical difference in the time taken to give the feeds regardless of the method used. There was one small cross-over study that was included in this review. There is insufficient evidence to recommend either method of gavage feeding. A randomised trial is needed to evaluate the benefits and harms of push versus gravity bolus tube feeding in preterm infants. Infants should be stratified by gestational age at birth (above and below 32 weeks) or birth weight (above and below 1500 grams) and respiratory support (ventilated versus non-ventilated) and the sample size should be of sufficient size to evaluate the primary outcomes outlined in this review (time to establish full tube feeds and feeding intolerance).

  16. Ceramic Life Prediction Parameters

    DTIC Science & Technology

    1980-05-01

    preferential. A standard creep testing Satec machine with a modified load train assembly was used for tensile stress-rupture testing. The specimen is...to the standard Satec machine head which includes crossed (90°) knife edges. The assembly procedure includes hanging the load train parts from...the Satec head as influenced by gravity. At this point the lower Satec crossarm is lowered to snub the train in this position. The load train

  17. 61. (Credit CBF) Operating floor of filter room, c1912. A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. (Credit CBF) Operating floor of filter room, c1912. A remodeled Hyatt pressure filter, now operating as a tub, gravity, rapid sand filter, is in the foreground (the remodeling took place c1908-1909). The remodeled New York horizontal pressure filters (installed 01900, remodeled c1908-1909) are in the background. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  18. Particle dynamics and deposition in true-scale pulmonary acinar models.

    PubMed

    Fishler, Rami; Hofemeier, Philipp; Etzion, Yael; Dubowski, Yael; Sznitman, Josué

    2015-09-11

    Particle transport phenomena in the deep alveolated airways of the lungs (i.e. pulmonary acinus) govern deposition outcomes following inhalation of hazardous or pharmaceutical aerosols. Yet, there is still a dearth of experimental tools for resolving acinar particle dynamics and validating numerical simulations. Here, we present a true-scale experimental model of acinar structures consisting of bifurcating alveolated ducts that capture breathing-like wall motion and ensuing respiratory acinar flows. We study experimentally captured trajectories of inhaled polydispersed smoke particles (0.2 to 1 μm in diameter), demonstrating how intrinsic particle motion, i.e. gravity and diffusion, is crucial in determining dispersion and deposition of aerosols through a streamline crossing mechanism, a phenomenon paramount during flow reversal and locally within alveolar cavities. A simple conceptual framework is constructed for predicting the fate of inhaled particles near an alveolus by identifying capture and escape zones and considering how streamline crossing may shift particles between them. In addition, we examine the effect of particle size on detailed deposition patterns of monodispersed microspheres between 0.1-2 μm. Our experiments underline local modifications in the deposition patterns due to gravity for particles ≥0.5 μm compared to smaller particles, and show good agreement with corresponding numerical simulations.

  19. Particle dynamics and deposition in true-scale pulmonary acinar models

    PubMed Central

    Fishler, Rami; Hofemeier, Philipp; Etzion, Yael; Dubowski, Yael; Sznitman, Josué

    2015-01-01

    Particle transport phenomena in the deep alveolated airways of the lungs (i.e. pulmonary acinus) govern deposition outcomes following inhalation of hazardous or pharmaceutical aerosols. Yet, there is still a dearth of experimental tools for resolving acinar particle dynamics and validating numerical simulations. Here, we present a true-scale experimental model of acinar structures consisting of bifurcating alveolated ducts that capture breathing-like wall motion and ensuing respiratory acinar flows. We study experimentally captured trajectories of inhaled polydispersed smoke particles (0.2 to 1 μm in diameter), demonstrating how intrinsic particle motion, i.e. gravity and diffusion, is crucial in determining dispersion and deposition of aerosols through a streamline crossing mechanism, a phenomenon paramount during flow reversal and locally within alveolar cavities. A simple conceptual framework is constructed for predicting the fate of inhaled particles near an alveolus by identifying capture and escape zones and considering how streamline crossing may shift particles between them. In addition, we examine the effect of particle size on detailed deposition patterns of monodispersed microspheres between 0.1–2 μm. Our experiments underline local modifications in the deposition patterns due to gravity for particles ≥0.5 μm compared to smaller particles, and show good agreement with corresponding numerical simulations. PMID:26358580

  20. Satellite Geodetic Constraints On Earthquake Processes: Implications of the 1999 Turkish Earthquakes for Fault Mechanics and Seismic Hazards on the San Andreas Fault

    NASA Technical Reports Server (NTRS)

    Reilinger, Robert

    2005-01-01

    Our principal activities during the initial phase of this project include: 1) Continued monitoring of postseismic deformation for the 1999 Izmit and Duzce, Turkey earthquakes from repeated GPS survey measurements and expansion of the Marmara Continuous GPS Network (MAGNET), 2) Establishing three North Anatolian fault crossing profiles (10 sitedprofile) at locations that experienced major surface-fault earthquakes at different times in the past to examine strain accumulation as a function of time in the earthquake cycle (2004), 3) Repeat observations of selected sites in the fault-crossing profiles (2005), 4) Repeat surveys of the Marmara GPS network to continue to monitor postseismic deformation, 5) Refining block models for the Marmara Sea seismic gap area to better understand earthquake hazards in the Greater Istanbul area, 6) Continuing development of models for afterslip and distributed viscoelastic deformation for the earthquake cycle. We are keeping close contact with MIT colleagues (Brad Hager, and Eric Hetland) who are developing models for S. California and for the earthquake cycle in general (Hetland, 2006). In addition, our Turkish partners at the Marmara Research Center have undertaken repeat, micro-gravity measurements at the MAGNET sites and have provided us estimates of gravity change during the period 2003 - 2005.

  1. An Improved 3D Joint Inversion Method of Potential Field Data Using Cross-Gradient Constraint and LSQR Method

    NASA Astrophysics Data System (ADS)

    Joulidehsar, Farshad; Moradzadeh, Ali; Doulati Ardejani, Faramarz

    2018-06-01

    The joint interpretation of two sets of geophysical data related to the same source is an appropriate method for decreasing non-uniqueness of the resulting models during inversion process. Among the available methods, a method based on using cross-gradient constraint combines two datasets is an efficient approach. This method, however, is time-consuming for 3D inversion and cannot provide an exact assessment of situation and extension of anomaly of interest. In this paper, the first attempt is to speed up the required calculation by substituting singular value decomposition by least-squares QR method to solve the large-scale kernel matrix of 3D inversion, more rapidly. Furthermore, to improve the accuracy of resulting models, a combination of depth-weighing matrix and compacted constraint, as automatic selection covariance of initial parameters, is used in the proposed inversion algorithm. This algorithm was developed in Matlab environment and first implemented on synthetic data. The 3D joint inversion of synthetic gravity and magnetic data shows a noticeable improvement in the results and increases the efficiency of algorithm for large-scale problems. Additionally, a real gravity and magnetic dataset of Jalalabad mine, in southeast of Iran was tested. The obtained results by the improved joint 3D inversion of cross-gradient along with compacted constraint showed a mineralised zone in depth interval of about 110-300 m which is in good agreement with the available drilling data. This is also a further confirmation on the accuracy and progress of the improved inversion algorithm.

  2. Research on cross - Project software defect prediction based on transfer learning

    NASA Astrophysics Data System (ADS)

    Chen, Ya; Ding, Xiaoming

    2018-04-01

    According to the two challenges in the prediction of cross-project software defects, the distribution differences between the source project and the target project dataset and the class imbalance in the dataset, proposing a cross-project software defect prediction method based on transfer learning, named NTrA. Firstly, solving the source project data's class imbalance based on the Augmented Neighborhood Cleaning Algorithm. Secondly, the data gravity method is used to give different weights on the basis of the attribute similarity of source project and target project data. Finally, a defect prediction model is constructed by using Trad boost algorithm. Experiments were conducted using data, come from NASA and SOFTLAB respectively, from a published PROMISE dataset. The results show that the method has achieved good values of recall and F-measure, and achieved good prediction results.

  3. Ribbon Synaptic Plasticity in Gravity Sensors of Rats Flown on Neurolab

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Varelas, Joseph

    2003-01-01

    Previous spaceflight experiments (Space Life Sciences-1 and -2 (SLS-1 and SLS-2)) first demonstrated the extraordinary ability of gravity sensor hair cells to change the number, kind, and distribution of connections (synapses) they make to other cells while in weightlessness. The number of synapses in hair cells in one part of the inner ear (the utricle) was markedly elevated on flight day 13 (FD13) of SLS-2. Unanswered questions, however, were whether these increases in synapses occur rapidly and whether they remain stable in weightlessness. The answers have implications for long-duration human space travel. If gravity sensors can adapt quickly, crews may be able to move easily between different gravity levels, since the sensors will adapt rapidly to weightlessness on the spacecraft and then back to Earth's gravity when the mission ends. This ability to adapt is also important for recovery from balance disorders. To further our understanding of this adaptive potential (a property called neuronal synaptic plasticity), the present Neurolab research was undertaken. Our experiment examined whether: (a) increases in synapses would remain stable throughout the flight, (b) changes in the number of synapses were uniform across different portions of the gravity sensors (the utricle and saccule), and (c) synaptic changes were similar for the different types of hair cells (Type I and Type II). Utricular and saccular maculae (the gravity-sensing portions of the inner ear) were collected in flight from rats on FD2 and FD14. Samples were also collected from control rats on the ground. Tissues were prepared for ultrastructural study. Hair cells and their ribbon synapses were examined in a transmission electron microscope. Synapses were counted in all hair cells in 50 consecutive sections that crossed the striolar zone. Results indicate that utricular hair cell synapses initially increased significantly in number in both types of hair cells by FD2. Counts declined by FD14, but the mean number of synapses in utricular Type II cells remained significantly higher than in the ground control rats. For saccular samples, synaptic number in Type I and Type II cells declined on FD2, but returned to near-baseline values by FD14. These findings indicate that: (a) synaptic plasticity occurs rapidly in weightlessness, and (b) synaptic changes are not identical for the two types of hair cells or for the two maculae.

  4. Quasi-12 h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6° E, 69.0° S)

    NASA Astrophysics Data System (ADS)

    Shibuya, Ryosuke; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru; Tomikawa, Yoshihiro; Nishimura, Koji; Kohma, Masashi

    2017-05-01

    The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS Radar) installed at Syowa Station (39.6° E, 69.0° S) were successfully performed from 16 to 24 March 2015. Over this period, quasi-half-day period (12 h) disturbances in the lower mesosphere at heights of 70 to 80 km were observed. Estimated vertical wavelengths, wave periods and vertical phase velocities of the disturbances were approximately 13.7 km, 12.3 h and -0.3 m s-1, respectively. Under the working hypothesis that such disturbances are attributable to inertia-gravity waves, wave parameters are estimated using a hodograph analysis. The estimated horizontal wavelengths are longer than 1100 km, and the wavenumber vectors tend to point northeastward or southwestward. Using the nonhydrostatic numerical model with a model top of 87 km, quasi-12 h disturbances in the mesosphere were successfully simulated. We show that quasi-12 h disturbances are due to wave-like disturbances with horizontal wavelengths longer than 1400 km and are not due to semidiurnal migrating tides. Wave parameters, such as horizontal wavelengths, vertical wavelengths and wave periods, simulated by the model agree well with those estimated by the PANSY radar observations under the abovementioned assumption. The parameters of the simulated waves are consistent with the dispersion relationship of the inertia-gravity wave. These results indicate that the quasi-12 h disturbances observed by the PANSY radar are attributable to large-scale inertia-gravity waves. By examining a residual of the nonlinear balance equation, it is inferred that the inertia-gravity waves are likely generated by the spontaneous radiation mechanism of two different jet streams. One is the midlatitude tropospheric jet around the tropopause while the other is the polar night jet. Large vertical fluxes of zonal and meridional momentum associated with large-scale inertia-gravity waves are distributed across a slanted region from the midlatitude lower stratosphere to the polar mesosphere in the meridional cross section. Moreover, the vertical flux of the zonal momentum has a strong negative peak in the mesosphere, suggesting that some large-scale inertia-gravity waves originate in the upper stratosphere.

  5. Insights into the dynamics of Etna volcano from 20-year time span microgravity and GPS observations

    NASA Astrophysics Data System (ADS)

    Bonforte, Alessandro; Fanizza, Giovanni; Greco, Filippo; Matera, Alfredo; Sulpizio, Roberto

    2016-04-01

    A common ground deformation and microgravity array of benchmarks lies on the southern slope of Mt. Etna volcano and is routinely measured by GPS and relative gravimetry methods. The array was installed for monitoring the ground motion and underground mass changes along the southern rift of the volcano and data are usually processed and interpreted independently. The benchmarks have been installed mainly along a main road crossing the southern side of the volcano with an E-W direction and reaching 2000 m of altitude. The gravity array covers the entire path of the road, while the ground deformation one only the upper one, due to the woods at lower altitude preventing good GPS measurements. Furthermore, microgravity surveys are usually carried out more frequently with respect to the GPS ones. In this work, an integrated analysis of microgravity and ground deformation is performed over a 20-year time span (1994-2014). Gravity variations have been first corrected for the free-air effect using the GPS observed vertical deformation and the theoretical vertical gravity gradient (-308.6 μGal/m). The free-air corrected gravity changes were then reduced from the high frequency variations (noise) and the seasonal fluctuations, mainly due to water-table fluctuations. This long-term dataset constitutes a unique opportunity to examine the behavior of Etna in a period in which the volcano exhibited different styles of activity characterized by recharging phases, flank eruptions and fountaining episodes. The gravity and deformation data allow investigating the response of the volcano in a wider perspective providing insights into the definition of its dynamic behavior and posing the basis to track the unrest evolution and to forecast the style of the eruption. The joint analysis highlights common periods, in which the signals underwent contemporaneous changes occurring mainly in the central and eastern stations. On the other hand, no significant changes in the behavior of deformation and gravity signals have been observed in the westernmost stations. Specifically, we observed at least four periods characterized by different correlation between the two time series. Indeed, the integrated analysis of the spatio-temporal variations of the gravity and the ground deformation data highlights different volcanic processes controlling the dynamical behavior of Etna volcano in this sector.

  6. Control of deep lithospheric roots on crustal scale GOCE gravity and gradient fields evident in Gondwana reconstructions

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla; Mariani, Patrizia

    2015-04-01

    The GOCE gravity field is globally homogeneous at the resolution of about 80km or better allowing for the first time to analyze tectonic structures at continental scale. Geologic correlation studies based on age determination and mineral composition of rock samples propose to continue the tectonic lineaments across continents to the pre-breakup position. Tectonic events which induce density changes, as metamorphic events and magmatic events, should then show up in the gravity field. Therefore gravity can be used as a globally available supportive tool for interpolation of isolated samples. Applying geodynamic plate reconstructions to the GOCE gravity field places today's observed field at the pre-breakup position. In order to test the possible deep control of the crustal features, the same reconstruction is applied to the seismic velocity models, and a joint gravity-velocity analysis is performed. The geophysical fields allow to control the likeliness of the hypothesized continuation of lineations based on sparse surface outcrops. Total absence of a signal, makes the cross-continental continuation of the lineament improbable, as continental-wide lineaments are controlled by rheologic and compositional differences of lithospheric mantle. It is found that the deep lithospheric roots as those found below cratons control the position of the positive gravity values. The explanation is that the deep lithospheric roots focus asthenospheric upwelling outboard of the root protecting the overlying craton from magmatic intrusions. The study is carried out over the African and South American continents. The background for the study can be found in the following publications where the techniques which have been used are described: Braitenberg, C., Mariani, P. and De Min, A. (2013). The European Alps and nearby orogenic belts sensed by GOCE, Boll. Bollettino di Geofisica Teorica ed Applicata, 54(4), 321-334. doi:10.4430/bgta0105 Braitenberg, C. and Mariani, P. (2015). Geological implications from complete Gondwana GOCE-products reconstructions and link to lithospheric roots. Proceedings of 5th International GOCE User Workshop, 25 - 28 November 2014. Braitenberg, C. (2015). Exploration of tectonic structures with GOCE in Africa and across-continents. Int. J.Appl. Earth Observ. Geoinf. 35, 88-95. http://dx.doi.org/10.1016/j.jag.2014.01.013 Braitenberg, C. (2015). A grip on geological units with GOCE, IAG Symp. 141, in press.

  7. OCT structure, COB location and magmatic type of the SE Brazilian & S Angolan margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.; Horn, B.

    2013-12-01

    Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are slightly less than expected for 'normal' oceanic crust. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing ~300m of anomalous uplift attributed to mantle dynamic uplift. Gravity inversion, RDA and subsidence analysis have also been used to determine OCT structure and COB location along the ION-GXT BS1-575 profile, crossing the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin. Gravity inversion, RDA and subsidence analysis predict the COB to be located SE of the Florianopolis Ridge. Analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts normal oceanic basement seismic velocities and densities and beneath the Sao Paulo Plateau and Florianopolis Ridge predicts crustal basement thicknesses between 10-15km. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived 'synthetic' RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography.

  8. Dark matter influence on black objects thermodynamics

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek; Wojnar, Aneta

    2018-05-01

    Physical process version of the first law of black hole thermodynamics in Einstein-Maxwell dark matter gravity was derived. The dark matter sector is mimicked by the additional U(1)-gauge field coupled to the ordinary Maxwell one. By considering any cross section of the black hole event horizon to the future of the bifurcation surface, the equilibrium state version of the first law of black hole mechanics was achieved. The considerations were generalized to the case of Einstein-Yang-Mills dark matter gravity theory. The main conclusion is that the influence of dark matter is crucial in the formation process of black objects. This fact may constitute the explanation of the recent observations of the enormous mass of the super luminous quasars formed in a relatively short time after Big Bang. We also pay attention to the compact binaries thermodynamics, when dark matter sector enters the game.

  9. Evidence of large empty lava tubes on the Moon using GRAIL gravity

    NASA Astrophysics Data System (ADS)

    Chappaz, Loic; Sood, Rohan; Melosh, Henry J.; Howell, Kathleen C.; Blair, David M.; Milbury, Colleen; Zuber, Maria T.

    2017-01-01

    NASA's GRAIL mission employed twin spacecraft in polar orbits around the Moon to measure the lunar gravity field at unprecedentedly high accuracy and resolution. The low spacecraft altitude in the extended mission enables the detection of small-scale surface or subsurface features. We analyzed these data for evidence of empty lava tubes beneath the lunar maria. We developed two methods, gradiometry and cross correlation, to isolate the target signal of long, narrow, sinuous mass deficits from a host of other features present in the GRAIL data. Here we report the discovery of several strong candidates that are either extensions of known lunar rilles, collocated with the recently discovered "skylight" caverns, or underlying otherwise unremarkable surfaces. Owing to the spacecraft polar orbits, our techniques are most sensitive to east-west trending near-surface structures and empty lava tubes with minimum widths of several kilometers, heights of hundreds of meters, and lengths of tens of kilometers.

  10. Search for strong gravity in multijet final states produced in pp collisions at √s = 13 TeV using the ATLAS detector at the LHC

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-03-07

    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13 TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (H T) greater than 1 TeV. No excess is seen at large H T and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with H T > 5.8 TeV are excluded. As amore » result, limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions.« less

  11. Vibration effect on the Soret-induced convection of ternary mixture in a rectangular cavity heated from below

    NASA Astrophysics Data System (ADS)

    Lyubimova, T. P.; Zubova, N. A.

    2017-06-01

    This paper presents the results of numerical simulation of the Soret-induced convection of ternary mixture in the rectangular cavity elongated in horizontal direction in gravity field. The cavity has rigid impermeable boundaries. It is heated from the bellow and undergoes translational linearly polarized vibrations of finite amplitude and frequency in the horizontal direction. The problem is solved by finite difference method in the framework of full unsteady non-linear approach. The procedure of diagonalization of the molecular diffusion coefficient matrix is applied, allowing to eliminate cross-diffusion components in the equations and to reduce the number of the governing parameters. The calculations are performed for model ternary mixture with positive separation ratios of the components. The data on the vibration effect on temporal evolution of instantaneous and average fields and integral characteristics of the flow and heat and mass transfer at different levels of gravity are obtained.

  12. Quadratic curvature terms and deformed Schwarzschild-de Sitter black hole analogues in the laboratory

    NASA Astrophysics Data System (ADS)

    da Rocha, R.; Sobreiro, R. F.; Tomaz, A. A.

    2017-12-01

    Sound waves on a fluid stream, in a de Laval nozzle, are shown to correspond to quasinormal modes emitted by black holes that are physical solutions in a quadratic curvature gravity with cosmological constant. Sound waves patterns in transsonic regimes at a laboratory are employed here to provide experimental data regarding generalized theories of gravity, comprised by the exact de Sitter-like solution and a perturbative solution around the Schwarzschild-de Sitter standard solution as well. Using the classical tests of General Relativity to bound free parameters in these solutions, acoustic perturbations on fluid flows in nozzles are then regarded, to study quasinormal modes of these black holes solutions, providing deviations of the de Laval nozzle cross-sectional area, when compared to the Schwarzschild solution. The fluid sonic point in the nozzle, for sound waves in the fluid, is shown to implement the acoustic event horizon corresponding to quasinormal modes.

  13. The effects of prolonged spaceflight on the regional distribution of fluid, muscle and fat: Biostereometric results from Skylab

    NASA Technical Reports Server (NTRS)

    Whittle, M. W.; Herron, R. L.; Cuzzi, J. R.; Keys, C. W.

    1977-01-01

    Biostereometric analysis of body form was performed several times preflight and postflight on the astronauts of all three skylab flights. The analysis was made by deriving the three-dimensional coordinates of numerous points on the body surface from stereoscopic pairs of photographs of the subject, using a stereoplotter. The volume of segments of the body, and of the body as a whole, was calculated by integration of cross sectional areas derived from the coordinate data. All nine astronauts demonstrated regional changes in volume distribution which could be related to changes in total body water, muscle mass, and fat deposits. The change in water resulted from a redistribution of fluid in response to zero gravity. Changes in muscle mass resulted from an alternation in patterns of musclar activity in the absence of gravity, and changes in fat resulted from discrepancies between the individual's caloric needs and his food consumption.

  14. A Reconstructed Discontinuous Galerkin Method for the Euler Equations on Arbitrary Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Luqing Luo; Robert Nourgaliev

    2012-11-01

    A reconstruction-based discontinuous Galerkin (RDG(P1P2)) method, a variant of P1P2 method, is presented for the solution of the compressible Euler equations on arbitrary grids. In this method, an in-cell reconstruction, designed to enhance the accuracy of the discontinuous Galerkin method, is used to obtain a quadratic polynomial solution (P2) from the underlying linear polynomial (P1) discontinuous Galerkin solution using a least-squares method. The stencils used in the reconstruction involve only the von Neumann neighborhood (face-neighboring cells) and are compact and consistent with the underlying DG method. The developed RDG method is used to compute a variety of flow problems onmore » arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG(P1P2) method is third-order accurate, and outperforms the third-order DG method (DG(P2)) in terms of both computing costs and storage requirements.« less

  15. The problem of natural funnel asymmetries: a simulation analysis of meta-analysis in macroeconomics.

    PubMed

    Callot, Laurent; Paldam, Martin

    2011-06-01

    Effect sizes in macroeconomic are estimated by regressions on data published by statistical agencies. Funnel plots are a representation of the distribution of the resulting regression coefficients. They are normally much wider than predicted by the t-ratio of the coefficients and often asymmetric. The standard method of meta-analysts in economics assumes that the asymmetries are because of publication bias causing censoring and adjusts the average accordingly. The paper shows that some funnel asymmetries may be 'natural' so that they occur without censoring. We investigate such asymmetries by simulating funnels by pairs of data generating processes (DGPs) and estimating models (EMs), in which the EM has the problem that it disregards a property of the DGP. The problems are data dependency, structural breaks, non-normal residuals, non-linearity, and omitted variables. We show that some of these problems generate funnel asymmetries. When they do, the standard method often fails. Copyright © 2011 John Wiley & Sons, Ltd. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Arctic and N Atlantic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Alvey, Andy

    2014-05-01

    The ocean basins of the Arctic and N. Atlantic formed during the Mesozoic and Cenozoic as a series of distinct ocean basins, both small and large, leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The plate tectonic framework of this region was demonstrated by the pioneering work of Peter Ziegler in AAPG Memoir 43 " Evolution of the Arctic-North Atlantic and the Western Tethys" published in 1988. The spatial evolution of Arctic Ocean and N Atlantic ocean basin geometry and bathymetry are critical not only for hydrocarbon exploration but also for understanding regional palaeo-oceanography and ocean gateway connectivity, and its influence on global climate. Mapping crustal thickness and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion we have produced comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic and N Atlantic region, We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Gravity anomaly and bathymetry data used in the gravity inversion are from the NGA (U) Arctic Gravity Project and IBCAO respectively; sediment thickness is from a new regional compilation. The resulting maps of crustal thickness and continental lithosphere thinning factor are used to determine continent-ocean boundary location and the distribution of oceanic lithosphere. Crustal cross-sections using Moho depth from the gravity inversion allow continent-ocean transition structure to be determined and magmatic type (magma poor, "normal" or magma rich). Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Eurasia, Canada, Makarov, Podvodnikov and Baffin Basins consistent with these basins being oceanic. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Crustal basement thicknesses of 10-15 km are predicted under the Laptev Sea which is interpreted as highly thinned continental crust formed at the eastward continuation of Eurasia Basin sea-floor spreading. Thin continental or oceanic crust of thickness 7 km or less is predicted under the North Chukchi Basin and has major implications for understanding the Mesozoic and Cenozoic plate tectonic history of the Siberian and Chukchi Amerasia Basin margins. Restoration of crustal thickness and continent-ocean boundary location from gravity inversion may be used to test and refine plate tectonic reconstructions. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory within the Arctic and N Atlantic basins. By restoring crustal thickness & continental lithosphere thinning maps of the Eurasia Basin & NE Atlantic to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. We interpret gravity inversion crustal thicknesses underneath Morris Jessop Rise & Yermak Plateau as continental crust which provided a barrier to the tectonic and palaeo-oceanic linkage between the Arctic & North Atlantic until the Oligocene. Before this time, we link the seafloor spreading within the Eurasia Basin to that in Baffin Bay.

  17. Advanced methods of low cost mission design for Jovian moons exploration

    NASA Astrophysics Data System (ADS)

    Grushevskii, Alexey; Koryanov, Victor; Tuchin, Andrey; Golubev, Yury; Tuchin, Denis

    2016-07-01

    DeltaV-low-cost gravity assists tours mission design of for the Jovian Moons exploration is considered (orbiters and probes around Io, Europa, Ganymede, Callisto), taking radiation hazard into account. Limited dynamic opportunities of using flybys require multiple gravity assists. Relevance of regular creation of optimum scenarios - sequences of passing of celestial bodies with definition of conditions of their execution is obvious. This work is devoted to the description of criteria for creation of such chains. New Multi-Tisserand coordinates [1,2] for this purpose are introduced for the best study of features for the radiation hazard decrease and the spacecraft asymptotic velocity reduction. One of main problems of the Jovian system mission design (JIMO, JUICE, Laplas P) is that the reduction of the asymptotic velocity of the spacecraft with respect to the satellite for the Jovian moon's capture is impossible. A valid reason is in the invariance of Jacobi integral and Tisserand parameter in a restricted three-body model (RTBP) [3]. Furthermore, the same-body flybys tour falls into the hazard radiation zone according the Tisserand-Poincaré graph. Formalized beam's algorithm to overcome this "problem of the ballistic destiny" with using full ephemeris model and with several coupled RTBP engaging has been implemented. Withal low-cost reduction of the spacecraft asymptotic velocity for the capture of the moon is required. The corresponding numerical scheme was developed with using Tisserand-Poincaré graph and the simulation of tens of millions of options. The Delta V-low cost searching was utilized also with help of the modeling of the multiple rebounds (cross gravity assists) of the beam of trajectories. The techniques are developed by the authors specifically to the needs of the mission "Laplas P" of Roscosmos. If we have answers to the questions "what kind of gravity assists", we need answer on the question "when". New Multi-Tisserand coordinates for this purpose are introduced. They are Tisserand parameters of SC relative some small bodies in several local RTBP. The Multi-Tisserand graph built based on them. It is shown that the "cross" gravity assists at the early stage of SC orbital energy reduction for TID-comfortable tour are required. As a result, a reasonable increase in the duration of the missions of the Jovian Moons exploration can be exchanged on a sharp decline TID and "comfortable" (in TID) tours scenario can be found in the Jovian system (less than 200-300 Krad for the "light" SC with the 4-5 mm Al shield, or less than 70 Krad for standard SC protection 8-10 mm Al). References 1. Grushevskii, A. et al. Adaptive low radiation multibody gravity assist tours design in Jovian system for the landing on Jovian's moons // Proceedings 65th International Astronautical Congress - IAC 2014, Toronto, Canada, 2014. 2. Golubev Yu.F., Grushevskii A.V., Koryanov V.V., Tuchin A.G., and Tuchin D.A. Bifurcation Points during Gravity Assist Tours in the Jovian System// Doklady Physics, Pleiades Publishing, Ltd., 2015. Vol. 60, No. 5, pp. 210-213. DOI: 10.1134/S1028335815050043. 3. Campagnola, S. and Russell, R. "Endgame Problem. Part 2: Multi-Body Technique and TP Graph," Journal of Guidance, Control, and Dynamics," Vol. 33, No. 2, pp. 476-486, 2010.

  18. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    USGS Publications Warehouse

    Blakely, Richard J.; Sherrod, Brian; Weaver, Craig S.; Wells, Ray; Rohay, Alan C.

    2014-01-01

    The Yakima fold and thrust belt (YFTB) in central Washington has accommodated regional, mostly north-directed, deformation of the Cascadia backarc since prior to emplacement of Miocene flood basalt of the Columbia River Basalt Group (CRBG). The YFTB consists of two structural domains. Northern folds of the YFTB strike eastward and terminate at the western margin of a 20-mGal negative gravity anomaly, the Pasco gravity low, straddling the North American continental margin. Southern folds of the YFTB strike southeastward, form part of the Olympic–Wallowa lineament (OWL), and pass south of the Pasco gravity low as the Wallula fault zone. An upper crustal model based on gravity and magnetic anomalies suggests that the Pasco gravity low is caused in part by an 8-km-deep Tertiary basin, the Pasco sub-basin, abutting the continental margin and concealed beneath CRBG. The Pasco sub-basin is crossed by north-northwest-striking magnetic anomalies caused by dikes of the 8.5 Ma Ice Harbor Member of the CRBG. At their northern end, dikes connect with the eastern terminus of the Saddle Mountains thrust of the YFTB. At their southern end, dikes are disrupted by the Wallula fault zone. The episode of NE–SW extension that promoted Ice Harbor dike injection apparently involved strike-slip displacement on the Saddle Mountains and Wallula faults. The amount of lateral shear on the OWL impacts the level of seismic hazard in the Cascadia region. Ice Harbor dikes, as mapped with aeromagnetic data, are dextrally offset by the Wallula fault zone a total of 6.9 km. Assuming that dike offsets are tectonic in origin, the Wallula fault zone has experienced an average dextral shear of 0.8 mm/y since dike emplacement 8.5 Ma, consistent with right-lateral stream offsets observed at other locations along the OWL. Southeastward, the Wallula fault transfers strain to the north-striking Hite fault, the possible location of the M 5.7 Milton-Freewater earthquake in 1936.

  19. A Self-Affine Multi-Fractal Wave/Turbulence Discrimination Method Using Data from Single Point Fast Response Sensors in a Nocturnal Atmospheric Boundary Layer

    DTIC Science & Technology

    1992-04-10

    and passive tracer concentrations, and their cross correlations have generally been used to estimate the magnitude of dispersive atmospheric transport...of gravity waves and turbulence. . 10 III. METHODS .......... ........................ 12 A. Data .......... ........................ 12 B. Analysis ...unstable, i.e., strange. For waves or even limit cycle motion about fixed attractors, self-similarity does not occur. Pertinent to time series analysis , this

  20. Development of Conceptual Designs for the Prevention of Ice Formation in the Proposed Maple River Aqueduct

    DTIC Science & Technology

    2014-09-18

    USA 1907 Reinforced concrete 50 × 6 × up to 350 ft various heights 35 ft 1675 2244 7 creeks and the Green River/ Hennepin Canal Solid...2 1 1 2 2e xs f U Uh L S C g g α α = + − (4) where Lxs = the distance between cross sections, g = the acceleration of gravity, α1 and α2 = the

  1. The Tactical Center of Gravity: How Useful is the Concept?

    DTIC Science & Technology

    1990-01-06

    through the Huertgen Forest, across the Kall River, capture the town of Kommerscheidt, and then capture Schmidt. The regiment also was required to protect...south through the woods, cross country to the Kall River, to take Kommerscheidt. The 3rd Battalion was to follow the 1st Battalion and take Schmidt on...desperate struggle. The lead battalions were destroyed piecemeal by the Germans in Kommerscheidt and Schmidt and along the Kall Trail. Poor

  2. Materials processing in space bibliography, 1983, revised

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1983-01-01

    Flight experiments utilizing a low gravity environment to elucidate and control various processes, or ground based activities that provide supporting research are compiled. Six major categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; glasses and ceramics; ultrahigh vacuum and containerless processing technologies; and combustion are included. A list of patents and appendices providing a compilation of anonymously authored collections and reports and a cross reference index are included.

  3. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.

    PubMed

    Richter, Christiane; Kotz, Frederik; Giselbrecht, Stefan; Helmer, Dorothea; Rapp, Bastian E

    2016-06-01

    The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier-Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier-Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier-Stokes equation for arbitrary channel cross-sections.

  4. Calcium/Calmodulin-Mediated Gravitropic Response in Plants

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.

    2002-01-01

    The goal of this project was to gain a fundamental understanding of how calcium/calmodulin-mediated signaling is involved in gravity signal transduction in plants. During the period of support, significant progress was made in elucidating the role of calmodulin and its target proteins in gravitropism. This laboratory has made breakthroughs by cloning and characterizing genes that are involved in calcium/calmodulin-mediated signaling. Some of these genes show altered expression under hypergravity and simulated microgravity conditions. A major advance was made in our attempts to understand gravity signal transduction by cloning and characterizing a catalase which requires calcium/calmodulin for its activation. Our results suggest that calcium/calmodulin have dual roles in regulating the level of hydrogen peroxide (H202), a signal molecule that plays a major role in gravitropism. It is well established that auxin plays a major role in gravitropism. Our results indicate that there is a 'cross-talk' between calcium/calmodulin-mediated signaling and auxin-mediated signal transduction. Auxin-regulated SAUR proteins that are involved in gravitropism bind to calmodulin in a calcium-dependent manner. A novel chimeric calcium/calmodulin-dependent protein kinase was cloned and characterized and its role in gravity signal transduction was investigated. These studies have provided some answers to the fundamental questions about how signal molecules such as calcium, H202, and hormones such as auxin bring about the ultimate gravitropic response and the integral role of calmodulin in gravity signal transduction. This NASA-funded study has led to some spinoffs that have applications in solving agricultural problems. The Washington State University Research Foundation has obtained several patents related to this work.

  5. Linear and non-linear Modified Gravity forecasts with future surveys

    NASA Astrophysics Data System (ADS)

    Casas, Santiago; Kunz, Martin; Martinelli, Matteo; Pettorino, Valeria

    2017-12-01

    Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable way, that can be parameterized by two generic functions (η and μ) of time and space. We bin their time dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with two different semi-analytical approximations. In addition to these future observables, we use a prior covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this work we neglect the information from the cross correlation of these observables, and treat them as independent. Our results show that η and μ in different redshift bins are significantly correlated, but including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to two particular parameterizations of μ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI: we find in this case that future surveys will be able to constrain the current values of η and μ at the 2-5% level when using only linear scales (wavevector k < 0 . 15 h/Mpc), depending on the specific time parameterization; sensitivity improves to about 1% when non-linearities are included.

  6. Methods for removal of unwanted signals from gravity time-series: Comparison using linear techniques complemented with analysis of system dynamics

    NASA Astrophysics Data System (ADS)

    Valencio, Arthur; Grebogi, Celso; Baptista, Murilo S.

    2017-10-01

    The presence of undesirable dominating signals in geophysical experimental data is a challenge in many subfields. One remarkable example is surface gravimetry, where frequencies from Earth tides correspond to time-series fluctuations up to a thousand times larger than the phenomena of major interest, such as hydrological gravity effects or co-seismic gravity changes. This work discusses general methods for the removal of unwanted dominating signals by applying them to 8 long-period gravity time-series of the International Geodynamics and Earth Tides Service, equivalent to the acquisition from 8 instruments in 5 locations representative of the network. We compare three different conceptual approaches for tide removal: frequency filtering, physical modelling, and data-based modelling. Each approach reveals a different limitation to be considered depending on the intended application. Vestiges of tides remain in the residues for the modelling procedures, whereas the signal was distorted in different ways by the filtering and data-based procedures. The linear techniques employed were power spectral density, spectrogram, cross-correlation, and classical harmonics decomposition, while the system dynamics was analysed by state-space reconstruction and estimation of the largest Lyapunov exponent. Although the tides could not be completely eliminated, they were sufficiently reduced to allow observation of geophysical events of interest above the 10 nm s-2 level, exemplified by a hydrology-related event of 60 nm s-2. The implementations adopted for each conceptual approach are general, so that their principles could be applied to other kinds of data affected by undesired signals composed mainly by periodic or quasi-periodic components.

  7. [Method to calculate the additional hospital stay in patients with cross infection].

    PubMed

    Angeles-Garay, Ulises; Velázquez-Chávez, Yesenia; Molinar-Ramos, Fernando; Anaya-Flores, Verónica E; Uribe-Márquez, Samuel E

    2009-01-01

    To calculate additional hospital stay due to specific cross infection. Cases and controls study; matched by age +/- 2 years, sex, specialty in which were taken care, diagnosis, surgical procedure and hospitalization stay, between July 2005-June 2006. t test, chi(2) to calculate death risk, Kaplan-Meier analysis to calculate survival, Hosmer-Lemeshow test to know the contribution of cross infection for additional hospital stay due to cross infection (AHSDCI). We identified 851 patients with 1347 cross infection in 16 528 discharges. We could match 677. The cases stayed 25.42 days and the controls 13.29 (p < 0.01). The death risk for the cases was 5.8 (CI 95 % = 3.7-8.6, p < 0.01), four weeks survival 55.3 % for cases and 79.2 % for the controls. The AHSDCI for pneumonia was 10.39 days, urinary-tract-infection 6.28, bacteremia 8.92, vascular-catheter-related infection 3.31, surgical site infections 7.42, and skin and soft-tissue-infection 3.31 (p < 0.05). We used a multivariate model fitted to patient's gravity and complexity to extract the proportion days of AHSDCI of each cross infection.

  8. Default network connectivity decodes brain states with simulated microgravity.

    PubMed

    Zeng, Ling-Li; Liao, Yang; Zhou, Zongtan; Shen, Hui; Liu, Yadong; Liu, Xufeng; Hu, Dewen

    2016-04-01

    With great progress of space navigation technology, it becomes possible to travel beyond Earth's gravity. So far, it remains unclear whether the human brain can function normally within an environment of microgravity and confinement. Particularly, it is a challenge to figure out some neuroimaging-based markers for rapid screening diagnosis of disrupted brain function in microgravity environment. In this study, a 7-day -6° head down tilt bed rest experiment was used to simulate the microgravity, and twenty healthy male participants underwent resting-state functional magnetic resonance imaging scans at baseline and after the simulated microgravity experiment. We used a multivariate pattern analysis approach to distinguish the brain states with simulated microgravity from normal gravity based on the functional connectivity within the default network, resulting in an accuracy of no less than 85 % via cross-validation. Moreover, most discriminative functional connections were mainly located between the limbic system and cortical areas and were enhanced after simulated microgravity, implying a self-adaption or compensatory enhancement to fulfill the need of complex demand in spatial navigation and motor control functions in microgravity environment. Overall, the findings suggest that the brain states in microgravity are likely different from those in normal gravity and that brain connectome could act as a biomarker to indicate the brain state in microgravity.

  9. High energy scattering in QCD and in quantum gravity

    NASA Astrophysics Data System (ADS)

    Lipatov, L. N.

    2014-06-01

    The theory of the high energy scattering in QCD is based on the BFKL equation for the Pomeron wave function and on its generalization for composite multi-gluon states in the crossing channel. At a large number of colors the equations for the gluon composite states have remarkable mathematical properties including their Möbius invariance, holomorphic separability, duality symmetry and integrability. High energy QCD interactions local in the particle rapidities are formulated in the form of the gauge invariant effective action. In the maximally extended N = 4 super-symmetry the Pomeron turns out to be dual to the reggeized graviton in the 10-dimensional anti-de-Sitter space. As a result, the Gribov calculus for the Pomeron interactions should be reformulated here as a generally covariant effective field theory for the reggeized gravitons. We construct the corresponding effective action, which gives a possibility to calculate their trajectory and couplings. The graviton trajectory in the leading order contains an ultraviolet divergency meaning the presence of the double-logarithmic (DL) terms. We sum the DL contributions in all orders of the perturbation theory in the Einstein-Hilbert gravity and in its super-symmetric generalizations. In the N = 8 super gravity the ratio of the scattering amplitude in the DL approximation to the Born expression tends to zero at large energies.

  10. Acoustic Gravity Waves in the Ionosphere and Thermosphere During the 2017 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Lin, C. Y. T.; Deng, Y.

    2017-12-01

    During the 2017 solar eclipse, as the sudden cavity of solar radiation created by the lunar shadow moves across the United States on August 21, 2017, decreases in local IT temperature and density are expected. The average velocity of the total solar eclipse across the United States is 700 m/s. The forefront and wake of the lunar shadow are expected to induce acoustic gravity waves according to previous studies of atmosphere waves induced by traveling wave packets moving at different velocities. Meanwhile, moving toward the cross-track direction of the obscuration footprint, weaker transitions will likely create mesoscale to large-scale traveling disturbances. We will use the Global Ionosphere Thermosphere Model, a global circulation model solving for non-hydrostatic equations, with high-resolution settings to investigate the IT responses related to the acoustic-gravity wave perturbations during the 2017 solar eclipse. The simulation will be performed with a sub-degree resolution in longitude and latitude for 3 hours when the atmosphere of the North America sector is mostly obscured. The observable differences between the eclipsed and non-eclipsed scenarios will be examined in detail and be interpreted as consequences from the solar eclipse. We will investigate the evolution of waves during the event and establish a theoretical baseline for further comparisons with observations.

  11. Joint two dimensional inversion of gravity and magnetotelluric data using correspondence maps

    NASA Astrophysics Data System (ADS)

    Carrillo Lopez, J.; Gallardo, L. A.

    2016-12-01

    Inverse problems in Earth sciences are inherently non-unique. To improve models and reduce the number of solutions we need to provide extra information. In geological context, this information could be a priori information, for example, geological information, well log data, smoothness, or actually, information of measures of different kind of data. Joint inversion provides an approach to improve the solution and reduce the errors due to suppositions of each method. To do that, we need a link between two or more models. Some approaches have been explored successfully in recent years. For example, Gallardo and Meju (2003), Gallardo and Meju (2004, 2011), and Gallardo et. al. (2012) used the directions of properties to measure the similarity between models minimizing their cross gradients. In this work, we proposed a joint iterative inversion method that use spatial distribution of properties as a link. Correspondence maps could be better characterizing specific Earth systems due they consider the relation between properties. We implemented a code in Fortran to do a two dimensional inversion of magnetotelluric and gravity data, which are two of the standard methods in geophysical exploration. Synthetic tests show the advantages of joint inversion using correspondence maps against separate inversion. Finally, we applied this technique to magnetotelluric and gravity data in the geothermal zone located in Cerro Prieto, México.

  12. Local subsystems in gauge theory and gravity

    DOE PAGES

    Donnelly, William; Freidel, Laurent

    2016-09-16

    We consider the problem of defining localized subsystems in gauge theory and gravity. Such systems are associated to spacelike hypersurfaces with boundaries and provide the natural setting for studying entanglement entropy of regions of space. We present a general formalism to associate a gauge-invariant classical phase space to a spatial slice with boundary by introducing new degrees of freedom on the boundary. In Yang-Mills theory the new degrees of freedom are a choice of gauge on the boundary, transformations of which are generated by the normal component of the nonabelian electric field. In general relativity the new degrees of freedommore » are the location of a codimension-2 surface and a choice of conformal normal frame. These degrees of freedom transform under a group of surface symmetries, consisting of diffeomorphisms of the codimension-2 boundary, and position-dependent linear deformations of its normal plane. We find the observables which generate these symmetries, consisting of the conformal normal metric and curvature of the normal connection. We discuss the implications for the problem of defining entanglement entropy in quantum gravity. Finally, our work suggests that the Bekenstein-Hawking entropy may arise from the different ways of gluing together two partial Cauchy surfaces at a cross-section of the horizon.« less

  13. Otoconin-90 deletion leads to imbalance but normal hearing: a comparison with other otoconia mutants.

    PubMed

    Zhao, X; Jones, S M; Yamoah, E N; Lundberg, Y Wang

    2008-04-22

    Our sense of gravitation and linear acceleration is mediated by stimulation of vestibular hair cells through displacement of otoconia in the utricle and saccule (the gravity receptor organ). We recently showed that otoconin-90 (Oc90) deletion led to formation of giant otoconia. In the present study, we determined the extent to which the giant otoconia affected balance and gravity receptor sensory input and compared the findings with other otoconia mutants. We employed a wide spectrum of balance behavioral tests, including reaching and air-righting reflexes, gait, swimming, beam-crossing, rotorod latencies, and a direct measure of gravity receptor input, vestibular evoked potentials (VsEPs). All tests on homozygous adult mutants consistently ranked the order of imbalance as (from worst to best) Nox3(het)

  14. Earth's structure and evolution inferred from topography, gravity, and seismicity.

    NASA Astrophysics Data System (ADS)

    Watkinson, A. J.; Menard, J.; Patton, R. L.

    2016-12-01

    Earth's wavelength-dependent response to loading, reflected in observed topography, gravity, and seismicity, can be interpreted in terms of a stack of layers under the assumption of transverse isotropy. The theory of plate tectonics holds that the outermost layers of this stack are mobile, produced at oceanic ridges, and consumed at subduction zones. Their toroidal motions are generally consistent with those of several rigid bodies, except in the world's active mountain belts where strains are partitioned and preserved in tectonite fabrics. Even portions of the oceanic lithosphere exhibit non-rigid behavior. Earth's gravity-topography cross-spectrum exhibits notable variations in signal amplitude and character at spherical harmonic degrees l=13, 116, 416, and 1389. Corresponding Cartesian wavelengths are approximately equal to the respective thicknesses of Earth's mantle, continental mantle lithosphere, oceanic thermal lithosphere, and continental crust, all known from seismology. Regional variations in seismic moment release with depth, derived from the global Centroid Moment Tensor catalog, are also evident in the crust and mantle lithosphere. Combined, these observations provide powerful constraints for the structure and evolution of the crust, mantle lithosphere, and mantle as a whole. All that is required is a dynamically consistent mechanism relating wavelength to layer thickness and shear-strain localization. A statistically-invariant 'diharmonic' relation exhibiting these properties appears as the leading order approximation to toroidal motions on a self-gravitating body of differential grade-2 material. We use this relation, specifically its predictions of weakness and rigidity, and of folding and shear banding response as a function of wavelength-to-thickness ratio, to interpret Earth's gravity, topography, and seismicity in four-dimensions. We find the mantle lithosphere to be about 255-km thick beneath the Himalaya and the Andes, and the long-wavelength (l < 14) low-amplitude portion of Earth's gravity field to be consistent with loading of the mesosphere by subducted slabs. The Earth that emerges from this work might be characterized as a self-gravitating, self-peeling onion.

  15. Tip-localized actin polymerization and remodeling, reflected by the localization of ADF, profilin and villin, are fundamental for gravity-sensing and polar growth in characean rhizoids.

    PubMed

    Braun, Markus; Hauslage, Jens; Czogalla, Aleksander; Limbach, Christoph

    2004-07-01

    Polar organization and gravity-oriented, polarized growth of characean rhizoids are dependent on the actin cytoskeleton. In this report, we demonstrate that the prominent center of the Spitzenkörper serves as the apical actin polymerization site in the extending tip. After cytochalasin D-induced disruption of the actin cytoskeleton, the regeneration of actin microfilaments (MFs) starts with the reappearance of a flat, brightly fluorescing actin array in the outermost tip. The actin array rounds up, produces actin MFs that radiate in all directions and is then relocated into its original central position in the center of the Spitzenkörper. The emerging actin MFs rearrange and cross-link to form the delicate, subapical meshwork, which then controls the statolith positioning, re-establishes the tip-high calcium gradient and mediates the reorganization of the Spitzenkörper with its central ER aggregate and the accumulation of secretory vesicles. Tip growth and gravitropic sensing, which includes control of statolith positioning and gravity-induced sedimentation, are not resumed until the original polar actin organization is completely restored. Immunolocalization of the actin-binding proteins, actin-depolymerizing factor (ADF) and profilin, which both accumulate in the center of the Spitzenkörper, indicates high actin turnover and gives additional support for the actin-polymerizing function of this central, apical area. Association of villin immunofluorescence with two populations of thick undulating actin cables with uniform polarity underlying rotational cytoplasmic streaming in the basal region suggests that villin is the major actin-bundling protein in rhizoids. Our results provide evidence that the precise coordination of apical actin polymerization and dynamic remodeling of actin MFs by actin-binding proteins play a fundamental role in cell polarization, gravity sensing and gravity-oriented polarized growth of characean rhizoids.

  16. Two-stage crossed beam cooling with ⁶Li and ¹³³Cs atoms in microgravity.

    PubMed

    Luan, Tian; Yao, Hepeng; Wang, Lu; Li, Chen; Yang, Shifeng; Chen, Xuzong; Ma, Zhaoyuan

    2015-05-04

    Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment. According to our simulations, the temperature of 6Li atoms can be cooled to T = 29.5 pK and T/TF = 0.59 with several thousand atoms, which propose a novel way to get ultracold fermion atoms with quantum degeneracy near pico-Kelvin.

  17. Macrosegregation Caused by Convection Associated with Directional Solidification through Cross-Section Change

    NASA Technical Reports Server (NTRS)

    Ghods, M.; Lauer, M.; Tewari, S. N.; Poirier, D. R..; Grugel, R. N.

    2015-01-01

    Al-7 wt% Si and Pb-6 wt% Sb alloy samples were directionally solidified (DS), with liquid above and solid below and gravity pointing down, in cylindrical graphite crucibles through an abrupt cross-section change. Fraction eutectic distribution in the microstructure, primary dendrite spacing and primary dendrite trunk diameters have been measured in the DS samples in the vicinity of section change in order to examine the effect of convection associated with the combined influence of thermosolutal factors and solidification shrinkage. It is observed that convection not only produces extensive radial and axial macrosegregation near cross-section change, it also affects the dendritic array morphology. Primary dendrite spacing and primary dendrite trunk diameter, both, are influenced by this convection. In addition to the experimental results, preliminary results from a numerical model which includes solidification shrinkage and thermosolutal convection in the mushy zone in its analysis will also be presented

  18. Validation of two-phase CFD models for propellant tank self-pressurization: Crossing fluid types, scales, and gravity levels

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2018-01-01

    This paper examines our computational ability to capture the transport and phase change phenomena that govern cryogenic storage tank pressurization and underscores our strengths and weaknesses in this area in terms of three computational-experimental validation case studies. In the first study, 1g pressurization of a simulant low-boiling point fluid in a small scale transparent tank is considered in the context of the Zero-Boil-Off Tank (ZBOT) Experiment to showcase the relatively strong capability that we have developed in modelling the coupling between the convective transport and stratification in the bulk phases with the interfacial evaporative and condensing heat and mass transfer that ultimately control self-pressurization in the storage tank. Here, we show that computational predictions exhibit excellent temporal and spatial fidelity under the moderate Ra number - high Bo number convective-phase distribution regimes. In the second example, we focus on 1g pressurization and pressure control of the large-scale K-site liquid hydrogen tank experiment where we show that by crossing fluid types and physical scales, we enter into high Bo number - high Ra number flow regimes that challenge our ability to predict turbulent heat and mass transfer and their impact on the tank pressurization correctly, especially, in the vapor domain. In the final example, we examine pressurization results from the small scale simulant fluid Tank Pressure Control Experiment (TCPE) performed in microgravity to underscore the fact that in crossing into a low Ra number - low Bo number regime in microgravity, the temporal evolution of the phase front as affected by the time-dependent residual gravity and impulse accelerations becomes an important consideration. In this case detailed acceleration data are needed to predict the correct rate of tank self-pressurization.

  19. OCT structure, COB location and magmatic type of the S Angolan & SE Brazilian margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Horn, Brian

    2014-05-01

    Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.

  20. The interior structure of Enceladus from Cassini gravity measurements

    NASA Astrophysics Data System (ADS)

    Iess, Luciano

    2015-04-01

    The Cassini spacecraft flew by the small Saturnian moon Enceladus in three close flybys (April 28, 2010, November 30, 2010 and May 2, 2012, to carry out measurements of the satellite's gravity field [1]. One of the main motivations was the search for a hemispherical asymmetry in the gravity field, the gravitational counterpart of the striking North-South asymmetry shown by optical imaging and other Cassini instruments in the geological features of the moon. The estimation of Enceladus' gravity field by Cassini was especially complex because of the small surface gravity (0.11 m/s2), the short duration of the gravitational interaction (only a few minutes) and the small, nearly impulsive, neutral particles drag occurring when the spacecraft crossed the south polar plume during the first and the third flyby. Including the non-gravitational acceleration due to the plume in the dynamical model was crucial to obtain a reliable solution for the gravity field. In order to maximize the sensitivity to the hemispherical asymmetry, controlled by the spherical harmonic coefficient J3, the closest approaches occurred at the low altitudes (respectively 100, 48 and 70 km), and at high latitudes in both hemispheres (89°S, 62°N, and 72°S). Enceladus' gravity field is dominated by large quadrupole terms not far from those expected for a body in a relaxed shape. Although the deviations from the hydrostaticity are weak (J2/C22=3.55±0.05), the straightforward application of the Radau-Darwin approximation yields a value of the moment of inertia factor (MOIF=C/MR2) that is incompatible (0.34) with the differentiated interior structure suggested by cryovolcanism and the large heat flow. The other remarkable feature of the gravity field is the small but still statistically significant value of J3 (106 x J3 = -115.3±22.9). A differentiated interior structure (corresponding to a smaller MOIF) may be reconciled with the gravity measurement by assuming that the rocky core has retained some memory of a faster rotation rate (about 10% above current). J3, whose value is uncontaminated by tides and rotation, provides a way to separate the non-hydrostatic contribution to J2 and C22, from which we infer a MOIF of about 0.336, now compatible with a differentiated structure. Similar conclusions are obtained from the analysis of the admittance. The interpretation of J3 and the associated, negative gravity anomaly (about 2.5 mGal) is non-unique. In a proposed explanation, the anomaly originates in the core and is not directly related to the presence of liquid masses beneath the surface. Our interpretation seeks the source of the anomaly in the observed 1 km depression in the southern polar region. This mass deficiency generates indeed a negative anomaly, but its magnitude is far smaller (about 20%) than expected from an uncompensated topography. An obvious source of compensation is a reservoir of liquid water at depth, in contact with the rocky core. This interpretation is consistent with the observed cryovolcanism and the presence of silicate grains in the plumes. The estimated gravity field is more consistent with a reservoir that extends in latitude about halfway to the equator, but our data cannot rule out a thin, global ocean.

  1. Global Terrestrial Water Storage Changes and Connections to ENSO Events

    NASA Astrophysics Data System (ADS)

    Ni, Shengnan; Chen, Jianli; Wilson, Clark R.; Li, Jin; Hu, Xiaogong; Fu, Rong

    2018-01-01

    Improved data quality of extended record of the Gravity Recovery and Climate Experiment (GRACE) satellite gravity solutions enables better understanding of terrestrial water storage (TWS) variations. Connections of TWS and climate change are critical to investigate regional and global water cycles. In this study, we provide a comprehensive analysis of global connections between interannual TWS changes and El Niño Southern Oscillation (ENSO) events, using multiple sources of data, including GRACE measurements, land surface model (LSM) predictions and precipitation observations. We use cross-correlation and coherence spectrum analysis to examine global connections between interannual TWS changes and the Niño 3.4 index, and select four river basins (Amazon, Orinoco, Colorado, and Lena) for more detailed analysis. The results indicate that interannual TWS changes are strongly correlated with ENSO over much of the globe, with maximum cross-correlation coefficients up to 0.70, well above the 95% significance level ( 0.29) derived by the Monte Carlo experiments. The strongest correlations are found in tropical and subtropical regions, especially in the Amazon, Orinoco, and La Plata basins. While both GRACE and LSM TWS estimates show reasonably good correlations with ENSO and generally consistent spatial correlation patterns, notably higher correlations are found between GRACE TWS and ENSO. The existence of significant correlations in middle-high latitudes shows the large-scale impact of ENSO on the global water cycle.

  2. Gravity and magnetic anomalies used to delineate geologic features associated with earthquakes and aftershocks in the central Virginia seismic zone

    NASA Astrophysics Data System (ADS)

    Shah, A. K.; Horton, J.; McNamara, D. E.; Spears, D.; Burton, W. C.

    2013-12-01

    Estimating seismic hazard in intraplate environments can be challenging partly because events are relatively rare and associated data thus limited. Additionally, in areas such as the central Virginia seismic zone, numerous pre-existing faults may or may not be candidates for modern tectonic activity, and other faults may not have been mapped. It is thus important to determine whether or not specific geologic features are associated with seismic events. Geophysical and geologic data collected in response to the Mw5.8 August 23, 2011 central Virginia earthquake provide excellent tools for this purpose. Portable seismographs deployed within days of the main shock showed a series of aftershocks mostly occurring at depths of 3-8 km along a southeast-dipping tabular zone ~10 km long, interpreted as the causative fault or fault zone. These instruments also recorded shallow (< 4 km) aftershocks clustered in several areas at distances of ~2-15 km from the main fault zone. We use new airborne geophysical surveys (gravity, magnetics, radiometrics, and LiDAR) to delineate the distribution of various surface and subsurface geologic features of interest in areas where the earthquake and aftershocks took place. The main (causative fault) aftershock cluster coincides with a linear, NE-trending gravity gradient (~ 2 mgal/km) that extends over 20 km in either direction from the Mw5.8 epicenter. Gravity modeling incorporating seismic estimates of Moho variations suggests the presence of a shallow low-density body overlying the main aftershock cluster, placing it within the upper 2-4 km of the main-fault hanging wall. The gravity, magnetic, and radiometric data also show a bend in generally NE-SW orientation of anomalies close to the Mw5.8 epicenter. Most shallow aftershock clusters occur near weaker short-wavelength gravity gradients of one to several km length. In several cases these gradients correspond to geologic contacts mapped at the surface. Along the gravity gradients, the aftershocks appear to cluster near areas with cross-cutting geologic features such as Jurassic diabase dikes. These associations suggest that local variations in rock density and/or rheology may have contributed to modifications of local stress regimes in a manner encouraging localized seismicity associated with the Mw5.8 event and its aftershocks. Such associations are comparable to results of previous studies recognizing correspondences between seismicity and features such as intrusive bodies and failed rifts in the New Madrid seismic zone and elsewhere. To explore whether similar correspondences may have occurred in the past, we use regional gravity and magnetic data to consider possible relations between historical earthquakes and comparable geologic features elsewhere in the central Virginia seismic zone.

  3. Crustal structure of an exhumed IntraCONtinental Sag (ICONS): the Mekele Basin in Northern Ethiopia.

    NASA Astrophysics Data System (ADS)

    Alemu, T. B.; Abdelsalam, M. G.

    2017-12-01

    The Mekele Sedimentary Basin (MSB) in Ethiopia is a Paleozoic-Mesozoic IntraCONtinental Sag (ICONS) exposed due to Cenozoic domal and rift flank uplift associated with the Afar mantle plume and Afar Depression (AD). ICONS are formed over stable lithosphere, and in contrast to rift and foreland basins, show circular-elliptical shape in map view, saucer shaped in cross section, and concentric gravity minima. Surface geological features of the MSB have been shown to exhibit geologic characteristics similar to those of other ICONS. We used the World Gravity Map (WGM 2012) data to investigate subsurface-crustal structure of the MSB. We also used 2D power spectrum analysis and inversion of the gravity field to estimate the Moho depth. Our results show the Bouguer anomalies of the WGM 2012 ranges between 130 mGal and - 110 mGal with the highest values within the AD. Despite the effect of the AD on the gravity anomalies, the MSB is characterized by the presence of gravity low anomaly that reaches in places -110 mGal, especially in its western part. The Moho depth estimates, from both spectral analysis and inversion of the gravity data, is between 36 and 40 km depth over most of the western and southern margins of the MSB. However, as the AD is approached, in the eastern margins of the MSB, crustal thickness estimates are highly affected by the anomalously thin and magmatic segment of the AD, and the Moho depth range between 30 and 25 km. Our results are consistent with that of seismic studies in areas far from the MSB, but within the Northwestern Ethiopian Plateau where the MSB is located. Those studies have reported an abrupt decrease in Moho depth from 40 km beneath the Northwestern plateau, to 20 km in the adjacent AD. Though the MSB is small (100 kmX100 km) compared to other ICONS, and affected by the neighboring AD, it is characterized by elliptical gravity minima and a relatively thicker crust that gradually thickens away from the rift. In addition, seismic imaging of faster shear wave velocity beneath the southwestern MSB at 80 km depth by previous studies mimic the surface and shallow subsurface features that we interpret as indicative of major characteristics of ICONS. Due to their location away from active plate boundaries, most ICONS are buried since the time of their formation. The MSB represents a rare example of a completely exhumed ICONS.

  4. Galileon gravity in light of ISW, CMB, BAO and H0 data

    NASA Astrophysics Data System (ADS)

    Renk, Janina; Zumalacárregui, Miguel; Montanari, Francesco; Barreira, Alexandre

    2017-10-01

    Cosmological models with Galileon gravity are an alternative to the standard ΛCDM paradigm with testable predictions at the level of its self-accelerating solutions for the expansion history, as well as large-scale structure formation. Here, we place constraints on the full parameter space of these models using data from the cosmic microwave background (CMB) (including lensing), baryonic acoustic oscillations (BAO) and the Integrated Sachs-Wolfe (ISW) effect. We pay special attention to the ISW effect for which we use the cross-spectra, ClTg, of CMB temperature maps and foreground galaxies from the WISE survey. The sign of ClTg is set by the time evolution of the lensing potential in the redshift range of the galaxy sample: it is positive if the potential decays (like in ΛCDM), negative if it deepens. We constrain three subsets of Galileon gravity separately known as the Cubic, Quartic and Quintic Galileons. The cubic Galileon model predicts a negative ClTg and exhibits a 7.8σ tension with the data, which effectively rules it out. For the quartic and quintic models the ISW data also rule out a significant portion of the parameter space but permit regions where the goodness-of-fit is comparable to ΛCDM. The data prefers a non zero sum of the neutrino masses (∑mν ≈ 0.5eV) with ~ 5σ significance in these models. The best-fitting models have values of H0 consistent with local determinations, thereby avoiding the tension that exists in ΛCDM. We also identify and discuss a ~ 2σ tension that Galileon gravity exhibits with recent BAO measurements. Our analysis shows overall that Galileon cosmologies cannot be ruled out by current data but future lensing, BAO and ISW data hold strong potential to do so.

  5. Experimental Investigation of Heat Pipe Startup Under Reflux Mode

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2018-01-01

    In the absence of body forces such as gravity, a heat pipe will start as soon as its evaporator temperature reaches the saturation temperature. If the heat pipe operates under a reflux mode in ground testing, the liquid puddle will fill the entire cross sectional area of the evaporator. Under this condition, the heat pipe may not start when the evaporator temperature reaches the saturation temperature. Instead, a superheat is required in order for the liquid to vaporize through nucleate boiling. The amount of superheat depends on several factors such as the roughness of the heat pipe internal surface and the gravity head. This paper describes an experimental investigation of the effect of gravity pressure head on the startup of a heat pipe under reflux mode. In this study, a heat pipe with internal axial grooves was placed in a vertical position with different tilt angles relative to the horizontal plane. Heat was applied to the evaporator at the bottom and cooling was provided to the condenser at the top. The liquid-flooded evaporator was divided into seven segments along the axial direction, and an electrical heater was attached to each evaporator segment. Heat was applied to individual heaters in various combinations and sequences. Other test variables included the condenser sink temperature and tilt angle. Test results show that as long as an individual evaporator segment was flooded with liquid initially, a superheat was required to vaporize the liquid in that segment. The amount of superheat required for liquid vaporization was a function of gravity pressure head imposed on that evaporator segment and the initial temperature of the heat pipe. The most efficient and effective way to start the heat pipe was to apply a heat load with a high heat flux to the lowest segment of the evaporator.

  6. Employing 2D Forward Modeling of Gravity and Magnetic Data to Further Constrain the Magnitude of Extension Recorded by the Caetano Caldera, Nevada

    NASA Astrophysics Data System (ADS)

    Ritzinger, B. T.; Glen, J. M. G.; Athens, N. D.; Denton, K. M.; Bouligand, C.

    2015-12-01

    Regionally continuous Cenozoic rocks in the Basin and Range that predate the onset of major mid-Miocene extension provide valuable insight into the sequence of faulting and magnitude of extension. An exceptional example of this is Caetano caldera, located in north-central Nevada, that formed during the eruption of the Caetano Tuff at the Eocene-Oligocene transition. The caldera and associated deposits, as well as conformable caldera-filling sedimentary and volcanic units allow for the reconstruction of post Oligocene extensional faulting. Extensive mapping and geochronologic, geochemical and paleomagnetic analyses have been conducted over the last decade to help further constrain the eruptive and extensional history of the Caetano caldera and associated deposits. Gravity and magnetic data, that highlight contrasts in density and magnetic properties (susceptibility and remanence), respectively, are useful for mapping and modeling structural and lithic discontinuities. By combining existing gravity and aeromagnetic data with newly collected high-resolution gravity data, we are performing detailed potential field modeling to better characterize the subsurface within and surrounding the caldera. Modeling is constrained by published geologic map and cross sections and by new rock properties for these units determined from oriented drill core and hand samples collected from outcrops that span all of the major rock units in the study area. These models will enable us to better map the margins of the caldera and more accurately determine subsurface lithic boundaries and complex fault geometries, as well as aid in refining estimates of the magnitude of extension across the caldera. This work highlights the value in combining geologic and geophysical data to build an integrated structural model to help characterize the subsurface and better constrain the extensional tectonic history if this part of the Great Basin.

  7. Floating Debris Control: A Literature Review

    DTIC Science & Technology

    1987-06-01

    8, which are photographs of the Appalachian Power Company facility at the Winfield Lock and Dam on the Kanawha River. The cross section of the boom...gravity = 32.2 w weight of 1 cu ft of water, lb 62.5 T total tension in the boom, lb 18 Then, Figure 7. Debris diversion boom and debris... Appalachian Power Company Station at Winfield Lock and Dam, Kanawha River, West Virginia. 2 T = wRdv (sin a) = 1.94 Rdv2 (sin a) g (2) Ample allowances

  8. Solid Modeling Aerospace Research Tool (SMART) user's guide, version 2.0

    NASA Technical Reports Server (NTRS)

    Mcmillin, Mark L.; Spangler, Jan L.; Dahmen, Stephen M.; Rehder, John J.

    1993-01-01

    The Solid Modeling Aerospace Research Tool (SMART) software package is used in the conceptual design of aerospace vehicles. It provides a highly interactive and dynamic capability for generating geometries with Bezier cubic patches. Features include automatic generation of commonly used aerospace constructs (e.g., wings and multilobed tanks); cross-section skinning; wireframe and shaded presentation; area, volume, inertia, and center-of-gravity calculations; and interfaces to various aerodynamic and structural analysis programs. A comprehensive description of SMART and how to use it is provided.

  9. View of Arabella, one of two Skylab spiders and her web

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A close-up view of Arabella, one of the two Skylab 3 common cross spiders 'aranous diadematus,' and the web it had spun in the zero gravity of space aboard the Skylab space station cluster in Earth orbit. During the 59 day Skylab 3 mission the two spiders Arabella and Anita, were housed in an enclosure onto which a motion picture and still camera were attached to record the spiders' attempts to build a web in the weightless environment.

  10. Materials processing in space bibliography

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1982-01-01

    Literature dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes or with ground based activities that provide supporting research is listed. Included are Government reports, contractor reports, conference proceedings, and journal articles. Subdivisions of the bibliography include the five categories: crystal growth; metals, alloys, and composites, fluids and transport; glasses and ceramics; and Ultrahigh Vacuum and Containerless Processing Technologies, in addition to a list of patents and a compilation of anonymously authored collections and reports and a cross reference index.

  11. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  12. Making Waves in the Sky off of Africa

    NASA Image and Video Library

    2017-12-08

    On June 26, 2016, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image of cloud gravity waves off the coast of Angola and Namibia. “I [regularly] look at this area on Worldview because you quite often have these gravity waves,” said Bastiaan Van Diedenhoven, a researcher for Columbia University and NASA's Goddard Institute for Space Studies interested in cloud formations. “On this day, there was so much going on—so many different waves from different directions—that they really started interfering.” A distinctive criss-cross pattern formed in unbroken stretches hundreds of kilometers long. Similar to a boat’s wake, which forms as the water is pushed upward by the boat and pulled downward again by gravity, these clouds are formed by the rise and fall of colliding air columns. Off of west Africa, dry air coming off the Namib desert—after being cooled by the night—moves out under the balmy, moist air over the ocean and bumps it upwards. As the humid air rises to a higher altitude, the moisture condenses into droplets, forming clouds. Gravity rolls these newly formed clouds into a wave-like shape. When moist air goes up, it cools, and then gravity pushes it down again. As it plummets toward the earth, the moist air is pushed up again by the dry air. Repeated again and again, this process creates gravity waves. Clouds occur at the upward wave motions, while they evaporate at the downward motions. Such waves will often propagate in the morning and early afternoon, said Van Diedenhoven. During the course of the day, the clouds move out to sea and stretch out, as the dry air flowing off the land pushes the moist ocean air westward. NASA Earth Observatory image by Jesse Allen, using data from the Land Atmosphere Near real-time Capability for EOS (LANCE). via @NASAEarth go.nasa.gov/29Btxcy NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.

  14. Seismic and Gravity Data Help Constrain the Stratigraphic and Tectonic History of Offshore New Harbor, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Speece, M. A.; Pekar, S. F.; Wilson, G. S.; Sunwall, D. A.; Tinto, K. J.

    2010-12-01

    The ANDRILL (ANtarctic geological DRILLing) Program’s Offshore New Harbor (ONH) Project successfully conducted multi-channel seismic and gravity surveys in 2008 to investigate the stratigraphic and tectonic history of westernmost Southern McMurdo Sound, Ross Sea, Antarctica, during the Greenhouse World (Eocene) into the start of the Icehouse World (Oligocene). Approximately 48 km of multi-channel seismic reflection data were collected on a sea-ice platform east of New Harbor. The seismic survey used and improved upon methods employed successfully by ANDRILL’s surveys in Southern McMurdo Sound (2005) and in Mackay Sea Valley (2007). These methods include using an air gun and snow streamer of gimbaled geophones. Upgrades in the ONH project’s field equipment substantially increased the rate at which seismic data could be acquired in a sea-ice environment compared to all previous surveys. In addition to the seismic survey, gravity data were collected from the sea ice in New Harbor with the aim of defining basin structural controls. Both the seismic and gravity data indicate thick sediment accumulation above the hanging wall of a major range front fault. This clearly identified fault could be the postulated master fault of the Transantarctic Mountains. An approximately 5 km thick sequence of sediments is present east of the CIROS-1 drill hole. CIROS-1 was drilled adjacent to the range front fault and recovered 702 m of sediments that cross the Eocene/Oligocene boundary. The new geophysical data indicate that substantial sediment core below the Eocene/Oligocene boundary could be recovered to the east of CIROS-1 during future drilling. Inshore of the range front fault, the data show fault bounded half grabens with sediment fill thickening eastward against localized normal faults. Modeling of the gravity data, that extends farther inland than the seismic profiles, suggests that over 1 km of sediments could be present locally offshore Taylor Valley. Future drilling of offshore Taylor Valley could help to constrain the East Antarctic Ice Sheet’s contributions to glacial-interglacial cyclicity in southern McMurdo Sound as far back as the middle Miocene. Unfortunately, the 2008 ONH seismic profiles do not extend far enough up Taylor Valley or Ferrar Fjord to fully define drilling targets. As a result, valley parallel seismic profiles are proposed to extend our seismic interpretations inland and substantiate the gravity models.

  15. On a generating mechanism for Yanai waves and the 25-day oscillation

    NASA Technical Reports Server (NTRS)

    Kelly, Brian G.; Meyers, Steven D.; O'Brien, James J.

    1995-01-01

    A spectral Chebyshev-collocation method applied to the linear, 1.5 layer reduced-gravity ocean model equations is used to study the dynamics of Yanai (or mixed Rossby-gravity) wave packets. These are of interest because of the observations of equatorial instability waves (which have the characteristics of Yanai waves) and their role in the momentum and heat budgets in the tropics. A series of experiments is performed to investigate the generation of the waves by simple cross-equatorial wind stress forcings in various configurations and the influence of a western boundary on the waves. They may be generated in the interior ocean as well as from a western boundary. The observations from all the oceans indicate that the waves have a preferential period and wavelength of around 25 days and 1000 km respectively. These properties are also seen in the model results and a plausible explanation is provided as being due to the dispersive properties of Yanai waves.

  16. Isolation and characterization of beta-glucan synthase: A potential biochemical regulator of gravistimulated differential cell wall loosening

    NASA Technical Reports Server (NTRS)

    Kuzmanoff, K. M.

    1984-01-01

    In plants, gravity stimulates differential growth in the upper and lower halves of horizontally oriented organs. Auxin regulation of cell wall loosening and elongation is the basis for most models of this phenomenon. Auxin treatment of pea stem tissue rapidly increases the activity of Golgi-localized Beta-1,4-glucan synthase, an enzyme involved in biosynthesis of wall xyloglucan which apparently constitutes the substrate for the wall loosening process. The primary objective is to determine if auxin induces de novo formation of Golgi glucan synthase and increases the level of this glucan synthase mRNA. This shall be accomplished by (a) preparation of a monoclonal antibody to the synthase, (b) isolation, and characterization of the glucan synthase, and (c) examination for cross reactivity between the antibody and translation products of auxin induced mRNAs in pea tissue. The antibody will also be used to localize the glucan synthase in upper and lower halves of pea stem tissue before, during and after the response to gravity.

  17. Effects of 5-Days Head-Down Bed-Rest, with and without Artificial Gravity Countermeasure, on Left Ventricular Dimensions

    NASA Astrophysics Data System (ADS)

    Caiani, E. G.; Massabuau, P.; Weinert, L.; Lairez, O.; Berry, M.; Vaida, P.; Lang, R. M.

    2013-02-01

    Our aims were: 1) to assess the effects of 5-days of strict head-down (-6 degrees) bed-rest (BR) deconditioning on left ventricular (LV) size and mass by echocardiography; 2) to test the effectiveness of artificial gravity (AG) to prevent LV changes. Methods. Twelve healthy men (mean age 33±7) were enrolled in a cross-over design: each subject repeated the BR (MEDES, Toulouse) without countermeasures (CTRL), with AG applied daily for 30’ continuously (AG1), and for 30’ intermittently (AG2). Transthoracic echocardiography (iE33, Philips) was performed before (BCD-5), at the end of BR (R+0), and 3 days after (R+2). Two-way ANOVA with repeated measures was applied. Results. Despite the smaller changes in AG1 and AG2, no differences were found between groups and interactions. Cardiac adaptation to deconditioning affected LV mass and volumes, and AG countermeasure, when applied either continuously or intermittently, was not effective in preventing their loss.

  18. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  19. Space station preliminary design report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of a 3 month preliminary design and analysis effort is presented. The configuration that emerged consists of a very stiff deployable truss structure with an overall triangular cross section having universal modules attached at the apexes. Sufficient analysis was performed to show feasibility of the configuration. An evaluation of the structure shows that desirable attributes of the configuration are: (1) the solar cells, radiators, and antennas will be mounted to stiff structure to minimize control problems during orbit maintenance and correction, docking, and attitude control; (2) large flat areas are available for mounting and servicing of equipment; (3) Large mass items can be mounted near the center of gravity of the system to minimize gravity gradient torques; (4) the trusses are lightweight structures and can be transported into orbit in one Shuttle flight; (5) the trusses are expandable and will require a minimum of EVA; and (6) the modules are anticipated to be structurally identical except for internal equipment to minimize cost.

  20. Generalized teleparallel cosmology and initial singularity crossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Nashed, Gamal, E-mail: Adel.Awad@bue.edu.eg, E-mail: gglnashed@sci.asu.edu.eg

    We present a class of cosmological solutions for a generalized teleparallel gravity with f ( T )= T +α̃ (− T ) {sup n} , where α̃ is some parameter and n is an integer or half-integer. Choosing α̃ ∼ G {sup n} {sup −1}, where G is the gravitational constant, and working with an equation of state p = w ρ, one obtains a cosmological solution with multiple branches. The dynamics of the solution describes standard cosmology at late times, but the higher-torsion correction changes the nature of the initial singularity from big bang to a sudden singularity. Themore » milder behavior of the sudden singularity enables us to extend timelike or lightlike curves, through joining two disconnected branches of solution at the singularity, leaving the singularity traversable. We show that this extension is consistent with the field equations through checking the known junction conditions for generalized teleparallel gravity. This suggests that these solutions describe a contracting phase a prior to the expanding phase of the universe.« less

  1. Evidence of Tropospheric 90 Day Oscillations in the Thermosphere

    NASA Astrophysics Data System (ADS)

    Gasperini, F.; Hagan, M. E.; Zhao, Y.

    2017-10-01

    In the last decade evidence demonstrated that terrestrial weather greatly impacts the dynamics and mean state of the thermosphere via small-scale gravity waves and global-scale solar tidal propagation and dissipation effects. While observations have shown significant intraseasonal variability in the upper mesospheric mean winds, relatively little is known about this variability at satellite altitudes (˜250-400 km). Using cross-track wind measurements from the Challenging Minisatellite Payload and Gravity field and steady-state Ocean Circulation Explorer satellites, winds from a Modern-Era Retrospective Analysis for Research and Applications/Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model simulation, and outgoing longwave radiation data, we demonstrate the existence of a prominent and global-scale 90 day oscillation in the thermospheric zonal mean winds and in the diurnal eastward propagating tide with zonal wave number 3 (DE3) during 2009-2010 and present evidence of its connection to variability in tropospheric convective activity. This study suggests that strong coupling between the troposphere and the thermosphere occurs on intraseasonal timescales.

  2. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  3. Measurement of the inertial properties of the Helios F-1 spacecraft

    NASA Technical Reports Server (NTRS)

    Gayman, W. H.

    1975-01-01

    A gravity pendulum method of measuring lateral moments of inertia of large structures with an error of less than 1% is outlined. The method is based on the fact that in a physical pendulum with a knife-edge support the distance from the axis of rotation to the system center of gravity determines the minimal period of oscillation and is equal to the system centroidal radius of gyration. The method is applied to results of a test procedure in which the Helios F-1 spacecraft was placed in a roll fixture with crossed flexure pivots as elastic constraints and system oscillation measurements were made with each of a set of added moment-of-inertia increments. Equations of motion are derived with allowance for the effect of the finite pivot radius and an error analysis is carried out to find the criterion for maximum accuracy in determining the square of the centroidal radius of gyration. The test procedure allows all measurements to be made with the specimen in upright position.

  4. Fundamental Parameters of Nearby Young Stars

    NASA Astrophysics Data System (ADS)

    McCarthy, Kyle; Wilhelm, R. J.

    2013-06-01

    We present high resolution (R ~ 60,000) spectroscopic data of F and G members of the nearby, young associations AB Doradus and β Pictoris obtained with the Cross-Dispersed Echelle Spectrograph on the 2.7 meter telescope at the McDonald Observatory. Effective temperatures, log(g), [Fe/H], and microturbulent velocities are first estimated using the TGVIT code, then finely tuned using MOOG. Equivalent width (EW) measurements were made using TAME alongside a self-produced IDL routine to constrain EW accuracy and improve computed fundamental parameters. MOOG is also used to derive the chemical abundance of several elements including Mn which is known to be over abundant in planet hosting stars. Vsin(i) are also computed using a χ2 analysis of our observed data to Atlas9 model atmospheres passed through the SPECTRUM spectral synthesis code on lines which do not depend strongly on surface gravity. Due to the limited number of Fe II lines which govern the surface gravity fit in both TGVIT and MOOG, we implement another χ2 analysis of strongly log(g) dependent lines to ensure the values are correct. Coupling the surface gravities and temperatures derived in this study with the luminosities found in the Tycho-2 catalog, we estimate masses for each star and compare these masses to several evolutionary models to begin the process of constraining pre-main sequence evolutionary models.

  5. On the propagation of particulate gravity currents in circular and semi-circular channels partially filled with homogeneous or stratified ambient fluid

    NASA Astrophysics Data System (ADS)

    Zemach, T.; Chiapponi, L.; Petrolo, D.; Ungarish, M.; Longo, S.; Di Federico, V.

    2017-10-01

    We present a combined theoretical-experimental investigation of particle-driven gravity currents advancing in circular cross section channels in the high-Reynolds number Boussinesq regime; the ambient fluid is either homogeneous or linearly stratified. The predictions of the theoretical model are compared with experiments performed in lock-release configuration; experiments were performed with conditions of both full-depth and partial-depth locks. Two different particles were used for the turbidity current, and the full range 0 ≤S ≤1 of the stratification parameter was explored (S = 0 corresponds to the homogeneous case and S = 1 when the density of the ambient fluid and of the current are equal at the bottom). In addition, a few saline gravity currents were tested for comparison. The results show good agreement for the full-depth configuration, with the initial depth of the current in the lock being equal to the depth of the ambient fluid. The agreement is less good for the partial-depth cases and is improved by the introduction of a simple adjustment coefficient for the Froude number at the front of the current and accounting for dissipation. The general parameter dependencies and behaviour of the current, although influenced by many factors (e.g., mixing and internal waves), are well predicted by the relatively simple model.

  6. Inner structure of the Puy de Dôme volcano: cross-comparison of geophysical models (ERT, Gravimetry, Muonic Imagery)

    NASA Astrophysics Data System (ADS)

    Portal, A.; Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; Dupieux, P.; Fehr, F.; Gay, P.; Labazuy, P.; Laktineh, I.; Lénat, J.-F.; Miallier, D.; Mirabito, L.; Niess, V.; Vulpescu, B.

    2012-09-01

    Muon imagery of volcanoes and geological structures are presently and actively developed by several groups in the world. It has the potential to provide a 2-D or 3-D density distribution with an accuracy of a few percent. However, at this stage of the development of the method, comparisons with the results from established geophysical methods are necessary to validate its results. An experiment is currently carried out at the Puy de Dôme volcano involving the concurrent acquisition of muon imagery, electrical resistivity (2-D tomography) and gravity survey. Here, we present the preliminary results for the last two methods. North-south and east-west resistivity sections have been obtained in June 2011 and May 2012. These electric data allow to model of the distribution of the resistivity values down to the base of the dome. The dome and its surroundings are now mapped with more than 300 gravity stations measured during a detailed gravity survey carried out in March and May 2012. The computed Bouguer anomaly can be interpreted by models of the density distribution within the dome. This will be directly comparable with the results from the muon imagery. Our ultimate goal is to derive a model of the dome using the joint interpretation of all the sets of data.

  7. Investigation of the deep structure of the Sivas Basin (innereast Anatolia, Turkey) with geophysical methods

    NASA Astrophysics Data System (ADS)

    Onal, K. Mert; Buyuksarac, Aydin; Aydemir, Attila; Ates, Abdullah

    2008-11-01

    Sivas Basin is the easternmost and third largest basin of the Central Anatolian Basins. In this study, gravity, aeromagnetic and seismic data are used to investigate the deep structure of the Sivas Basin, together with the well seismic velocity data, geological observations from the surface and the borehole data of the Celalli-1 well. Basement depth is modeled three-dimensionally (3D) using the gravity anomalies, and 2D gravity and magnetic models were constructed along with a N-S trending profile. Densities of the rock samples were obtained from the distinct parts of the basin surface and in-situ susceptibilities were also measured and evaluated in comparison with the other geophysical and geological data. Additionally, seismic sections, in spite of their low resolution, were used to define the velocity variation in the basin in order to compare depth values and geological cross-section obtained from the modeling studies. Deepest parts of the basin (12-13 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Geometry, extension and wideness of the basin, together with the thickness and lithologies of the sedimentary units are reasonably appropriate for further hydrocarbon exploration in the Sivas Basin that is still an unexplored area with the limited number of seismic lines and only one borehole.

  8. The Effect of Seasonal and Long-Period Geopotential Variations on the GPS Orbits

    NASA Technical Reports Server (NTRS)

    Melachroinos, Stavros A.; Lemoine, Frank G.; Chinn, Douglas S.; Zelensky, Nikita P.; Nicholas, Joseph B.; Beckley, Brian D.

    2013-01-01

    We examine the impact of using seasonal and long-period time-variable gravity field (TVG) models on GPS orbit determination, through simulations from 1994 to 2012. The models of time-variable gravity that we test include the GRGS release RL02 GRACE-derived 10-day gravity field models up to degree and order 20 (grgs20x20), a 4 x 4 series of weekly coefficients using GGM03S as a base derived from SLR and DORIS tracking to 11 satellites (tvg4x4), and a harmonic fit to the above 4 x 4 SLR-DORIS time series (goco2s_fit2). These detailed models are compared to GPS orbit simulations using a reference model (stdtvg) based on the International Earth Rotation Service (IERS) and International GNSS Service (IGS) repro1 standards. We find that the new TVG modeling produces significant along, cross-track orbit differences as well as annual, semi-annual, draconitic and long-period effects in the Helmert translation parameters (Tx, Ty, Tz) of the GPS orbits with magnitudes of several mm. We show that the simplistic TVG modeling approach used by all of the IGS Analysis Centers, which is based on the models provided by the IERS standards, becomes progressively less adequate following 2006 when compared to the seasonal and long-period TVG models.

  9. Gravity interpretation to image the geologic structures of the coastal zone in Al Qunfudhah area, southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Sulaiman, Aseem; Elawadi, Eslam; Mogren, Saad

    2018-06-01

    This study provides interpretation and modeling of gravity survey data to map the subsurface basement relief and controlling structures of a coastal area in the southwestern part of Saudi Arabia as an aid to groundwater potential assessment. The gravity survey data were filtered and analyzed using different edge detection and depth estimation techniques and concluded by 2-D modeling conducted along representative profiles to obtain the topography and depth variations of the basement surface in the area. The basement rocks are exposed in the eastern part of the area but dip westward beneath a sedimentary cover to depths of up to 2200 m in the west, while showing repeated topographic expressions related to a tilted fault-block structure that is dominant in the Red Sea rift zone. Two fault systems were recognized in the area. The first is a normal fault system trending in the NNW-SSE direction that is related to the Red Sea rift, and the second is a cross-cutting oblique fault system trending in the NE-SW direction. The interaction between these two fault systems resulted in the formation of a set of closed basins elongated in the NNW-SSE direction and terminated by the NE-SW fault system. The geomorphology and sedimentary sequences of these basins qualify them as potential regions of groundwater accumulation.

  10. The gravity-induced re-localization of auxin efflux carrier CsPIN1 in cucumber seedlings: spaceflight experiments for immunohistochemical microscopy.

    PubMed

    Yamazaki, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Takahashi, Hideyuki

    2016-01-01

    Reorientation of cucumber seedlings induces re-localization of CsPIN1 auxin efflux carriers in endodermal cells of the transition zone between hypocotyl and roots. This study examined whether the re-localization of CsPIN1 was due to the graviresponse. Immunohistochemical analysis indicated that, when cucumber seedlings were grown entirely under microgravity conditions in space, CsPIN1 in endodermal cells was mainly localized to the cell side parallel to the minor axis of the elliptic cross-section of the transition zone. However, when cucumber seeds were germinated in microgravity for 24 h and then exposed to 1 g centrifugation in a direction crosswise to the seedling axis for 2 h in space, CsPIN1 was re-localized to the bottom of endodermal cells of the transition zone. These results reveal that the localization of CsPIN1 in endodermal cells changes in response to gravity. Furthermore, our results suggest that the endodermal cell layer becomes a canal by which auxin is laterally transported from the upper to the lower flank in response to gravity. The graviresponse-regulated re-localization of CsPIN1 could be responsible for the decrease in auxin level, and thus for the suppression of peg formation, on the upper side of the transition zone in horizontally placed seedlings of cucumber.

  11. The gravity-induced re-localization of auxin efflux carrier CsPIN1 in cucumber seedlings: spaceflight experiments for immunohistochemical microscopy

    PubMed Central

    Yamazaki, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Takahashi, Hideyuki

    2016-01-01

    Reorientation of cucumber seedlings induces re-localization of CsPIN1 auxin efflux carriers in endodermal cells of the transition zone between hypocotyl and roots. This study examined whether the re-localization of CsPIN1 was due to the graviresponse. Immunohistochemical analysis indicated that, when cucumber seedlings were grown entirely under microgravity conditions in space, CsPIN1 in endodermal cells was mainly localized to the cell side parallel to the minor axis of the elliptic cross-section of the transition zone. However, when cucumber seeds were germinated in microgravity for 24 h and then exposed to 1g centrifugation in a direction crosswise to the seedling axis for 2 h in space, CsPIN1 was re-localized to the bottom of endodermal cells of the transition zone. These results reveal that the localization of CsPIN1 in endodermal cells changes in response to gravity. Furthermore, our results suggest that the endodermal cell layer becomes a canal by which auxin is laterally transported from the upper to the lower flank in response to gravity. The graviresponse-regulated re-localization of CsPIN1 could be responsible for the decrease in auxin level, and thus for the suppression of peg formation, on the upper side of the transition zone in horizontally placed seedlings of cucumber. PMID:28725738

  12. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown that the protein-import function of the complex, not the presence of a large acidic domain of TOC132 within the cytoplasm, is needed for gravity signal transduction. Furthermore, mutations in several genes encoding distinct members of the TOC complex also enhanced the gravitropic defect of arg1. Together, these data suggest that the TOC complex works indirectly in gravity signal transduction through its ability to target specific cytoplasmically synthesized proteins, possibly gravity signal transducers, into the plastid. We have used a proteomic strategy to identify root-tip proteins that are differentially expressed between wild type and mar2 mutant plants. The corresponding list of differentially expressed proteins, which includes a surprisingly small number of plastid-targeted molecules, mainly contains proteins that are predicted to be associated with distinct cellular compartments. Several of the corresponding genes were found to also be differentially expressed between wild type and mar2 mutant root tips at the transcriptional level, suggesting cross-talk between amyloplasts and nucleus in these cells. Some of the differentially represented proteins are encoded by genes that are differentially expressed in the root tip in response to gravistimulation, further suggesting their contribution to gravity signal transduction. Work in underway to elucidate their function and potential contribution to this pathway. This work was funded by grants from the National Science Foundation.

  13. Emergence of spacetime dynamics in entropy corrected and braneworld models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheykhi, A.; Dehghani, M.H.; Hosseini, S.E., E-mail: asheykhi@shirazu.ac.ir, E-mail: mhd@shirazu.ac.ir, E-mail: elahehhosseini90@gmail.com

    2013-04-01

    A very interesting new proposal on the origin of the cosmic expansion was recently suggested by Padmanabhan [arXiv:1206.4916]. He argued that the difference between the surface degrees of freedom and the bulk degrees of freedom in a region of space drives the accelerated expansion of the universe, as well as the standard Friedmann equation through relation ΔV = Δt(N{sub sur}−N{sub bulk}). In this paper, we first present the general expression for the number of degrees of freedom on the holographic surface, N{sub sur}, using the general entropy corrected formula S = A/(4L{sub p}{sup 2})+s(A). Then, as two example, by applyingmore » the Padmanabhan's idea we extract the corresponding Friedmann equations in the presence of power-law and logarithmic correction terms in the entropy. We also extend the study to RS II and DGP braneworld models and derive successfully the correct form of the Friedmann equations in these theories. Our study further supports the viability of Padmanabhan's proposal.« less

  14. Tungsten and iridium multilayered structure by DGP as ablation-resistance coatings for graphite

    NASA Astrophysics Data System (ADS)

    Wu, Wangping; Chen, Zhaofeng; Cheng, Han; Wang, Liangbing; Zhang, Ying

    2011-06-01

    Oxidation protection of carbon material under ultra-high temperature is a serious problem. In this paper, a newly designed multilayer coating of W/Ir was produced onto the graphite substrate by double glow plasma. As comparison, the Ir single-layer coating on the graphite was also prepared. The ablation property and thermal stability of the coatings were studied at 2000 °C in an oxyacetylene torch flame. Ablation tests showed that the coated graphite substrates were protected more effectively by W/Ir multilayer coating than Ir single-layer coating. Ir single-layer coating after ablation kept the integrality, although there was a poor adhesion of the Ir coating to the graphite substrate because of the thermal expansion mismatch and the non-wetting of the carbon by Ir coating. The mass loss rate of the W/Ir-coated specimen after ablation was about 1.62%. The interface of W/Ir multilayer coating and the graphite substrate exhibited good adherence no evidence of delamination after ablation. W/Ir multilayer coating could be useful for protecting graphite in high-temperature application for a short time.

  15. Macrosegregation and Grain Formation Caused by Convection Associated with Directional Solidification Through Cross-Section Increase

    NASA Technical Reports Server (NTRS)

    Ghods, Masoud; Lauer, Mark; Tewari, Surendra; Poirier, David; Grugel, Richard

    2016-01-01

    Cylindrical Al-7 wt% Silicon, Al-19 wt% Copper and Lead-6 wt% Antimony alloy samples were directionally solidified (DS) with liquid above, solid below, and gravity pointing down, in graphite crucibles having an abrupt cross-sectional increase. These alloys have similar solidification shrinkage but are expected to have different degrees of thermosolutal convection during solidification. Microstructures in the DS samples in the vicinity of the section change have been studied in order to examine the effect of convection associated with the combined influence of thermosolutal effects and solidification shrinkage. Extensive radial and axial macrosegregation associated with cross-section change is observed. It also appears that steepling and local primary alpha-phase remelting resulting from convection are responsible for stray grain formation at the reentrant corners. Preliminary results from a numerical model, which includes solidification shrinkage and thermosolutal convection in the mushy zone, indicate that these regions are prone to solutal remelting of dendrites.

  16. Chromosome mechanics of fungi under spaceflight conditions--tetrad analysis of two-factor crosses between spore color mutants of Sordaria macrospora.

    PubMed

    Hahn, A; Hock, B

    1999-01-01

    Spore color mutants of the fungus Sordaria macrospora Auersw. were crossed under spaceflight conditions on the space shuttle to MIR mission S/MM 05 (STS-81). The arrangement of spores of different colors in the asci allowed conclusions on the influence of spaceflight conditions on sexual recombination in fungi. Experiments on a 1-g centrifuge in space and in parallel on the ground were used for controls. The samples were analyzed microscopically on their return to earth. Each fruiting body was assessed separately. Statistical analysis of the data showed a significant increase in gene recombination frequencies caused by the heavy ion particle stream in space radiation. The lack of gravity did not influence crossing-over frequencies. Hyphae of the flown samples were assessed for DNA strand breaks. No increase in damage was found compared with the ground samples. It was shown that S. macrospora is able to repair radiation-induced DNA strand breaks within hours.

  17. 3D free-air gravity anomaly modeling for the Southeast Indian Ridge

    NASA Astrophysics Data System (ADS)

    Girolami, Chiara; Heyde, Ingo; Rinaldo Barchi, Massimiliano; Pauselli, Cristina

    2016-04-01

    In this study we analyzed the free-air gravity anomalies measured on the northwestern part of the Southeast Indian Ridge (hereafter SEIR) during the BGR cruise INDEX2012 with RV FUGRO GAUSS. The survey area covered the ridge from the Rodriguez Triple Junction along about 500 km towards the SSE direction. Gravity and magnetic data were measured along 65 profiles with a mean length of 60 km running approximately perpendicular to the ridge axis. The final gravity data were evaluated every 20 seconds along each profile. This results in a sampling interval of about 100 m. The mean spacing of the profiles is about 7 km. Together with the geophysical data also the bathymetry was measured along all profiles with a Kongsberg Simrad EM122 multibeam echosounder system. Previous studies reveal that the part of the ridge covered by the high resolution profiles is characterized by young geologic events (the oldest one dates back to 1 Ma) and that the SEIR is an intermediate spreading ridge. We extended the length of each profile to the area outside the ridge, integrating INDEX2012 high resolution gravity and bathymetric data with low resolution data derived from satellite radar altimeter measurements. The 3D forward gravity modeling made it possible to reconstruct a rough crustal density model for an extended area (about 250000 km2) of the SEIR. We analyzed the gravity signal along those 2D sections which cross particular geological features (uplifted areas, accommodation zones, hydrothermal fields and areas with hints for extensional processes e.g. OCCs) in order to establish a correlation between the gravity anomaly signal and the surface geology. We started with a simple "layer-cake" geologic model consisting of four density bodies which represent the sea, upper oceanic crust, lower oceanic crust and the upper mantle. Considering that in the study area the oceanic crust is young, we did not include the sediment layer. We assumed the density values of these bodies considering the relation between the density and the seismic P-wave velocity VP. We choose the velocity data from the scientific literature. We found that the "layer-cake" model does not explain the measured anomalies satisfyingly and lateral density changes have to be considered for the area beneath the ridge axis. Accordingly we reduced the density values of the lower crust and the upper mantle beneath the axial ridge introducing in the model two additional bodies called partial melted crust and anomalous mantle. Finally we present isobaths maps of the anomalous mantle which highlight the lateral heterogeneity of the oceanic crust beneath the ridge axis. In particular there are areas characterized by crustal thickening related to magmatic accretion and areas of crustal thinning related to depleted accretion of the mantle which can lead to the exposure of OCCs.

  18. Mathematical modeling of the flow field and particle motion in a rotating bioreactor at unit gravity and microgravity

    NASA Technical Reports Server (NTRS)

    Boyd, Ernest J.

    1990-01-01

    The biotechnology group at NASA Johnson Space Center is developing systems for culturing mammalian cells that stimulate some aspect of microgravity and provide a low shear environment for microgravity-based studies on suspension and anchorage dependent cells. The design of these vessels for culturing cells is based on the need to suspend cells and aggregates of cells and microcarrier beads continually in the culturing medium. The design must also provide sufficient circulation for adequate mass transfer of nutrients to the cells and minimize the total force on the cells. Forces, resulting from sources such as hydrodynamic fluid shear and collisions of cells and walls of the vessels, may damage delicate cells and degrade the formation of three dimensional structures. This study examines one particular design in both unit gravity and microgravity based on two concentric cylinders rotating in the same direction at different speeds to create a Couette flow between them. A numerical simulation for the flow field and the trajectories of particles in the vessel. The flow field for the circulation of the culturing medium is modeled by the Navier-Stokes equations. The forces on a particle are assumed to be drag from the fluid's circulation, buoyancy from the gravitational force and centrifugal force from the rotation of the vessel. The problem requires first solving the system of partial differential equations for the fluid flow by a finite difference method and then solving the system of ordinary differential equations for the trajectories by Gear's stiff method. Results of the study indicate that the trajectories in unit gravity and microgravity are very similar except for small spatial deviations on the fast time scale in unit gravity. The total force per unit cross sectional area on a particle in microgravity, however, is significantly smaller than the corresponding value in unit gravity, which is also smaller than anticipated. Hence, this study indicates that this design for a bioreactor with optimal rates of rotation can provide a good environment for culturing cells in microgravity with adequate circulation and minimal force on the cells.

  19. The Importance of Urine Concentration on the Diagnostic Performance of the Urinalysis for Pediatric Urinary Tract Infection.

    PubMed

    Chaudhari, Pradip P; Monuteaux, Michael C; Shah, Pinkey; Bachur, Richard G

    2017-07-01

    The presence of leukocyte esterase by urine dipstick and microscopic pyuria are both indicators of possible urinary tract infection. The effect of urine concentration on the diagnostic performance of the urinalysis for pediatric urinary tract infection has not been studied. Our objective is to determine whether the urinalysis performance for detecting urinary tract infection varies by urine concentration as measured by specific gravity. This was a retrospective cross-sectional study of the urine laboratory results of children younger than 13 years who presented to the emergency department during 68 months and had a paired urinalysis and urine culture obtained. Urinary tract infection was defined as pure growth of a uropathogen at standard culture thresholds. Test characteristics were calculated across 4 specific gravity groups (1.000 to 1.010, 1.011 to 1.020, 1.021 to 1.030, and >1.030). In total, 14,971 cases were studied. Median age was 1.5 years (interquartile range 0.4 to 5.5 years) and 60% were female patients. Prevalence of urinary tract infection was 7.7%. For the presence of leukocyte esterase and a range of pyuria cut points, the positive likelihood ratios decreased with increasing specific gravity. From most dilute to most concentrated urine, the positive likelihood ratio decreased from 12.1 (95% confidence interval [CI] 10.7 to 13.7) to 4.2 (95% CI 3.0 to 5.8) and 9.5 (95% CI 8.6 to 10.6) to 5.5 (95% CI 3.3 to 9.1) at a threshold of greater than or equal to 5 WBCs per high-power field and presence of leukocyte esterase, respectively. The negative likelihood ratios increased with increasing specific gravity for leukocyte esterase and microscopic pyuria. For the detection of pediatric urinary tract infection, the diagnostic performance of both dipstick leukocyte esterase and microscopic pyuria varies by urine concentration, and therefore the specific gravity should be considered when the urinalysis is interpreted. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  20. Gravity and gravity gradient changes caused by a point dislocation

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Liang; Li, Hui; Li, Rui-Hao

    1995-02-01

    In this paper we studied gravitational potential, gravity and its gradient changes, which are caused by a point dislocation, and gave the concise mathematical deduction with definite physical implication in dealing with the singular integral at a seismic source. We also analysed the features of the fields of gravity and gravity gradient, gravity-vertical-displacement gradient. The conclusions are: (1) Gravity and gravity gradient changes are very small with the change of vertical position; (2) Gravity change is much greater than the gravity gradient change which is not so distinct; (3) The gravity change due to redistribution of mass accounts for 10 50 percent of the total gravity change caused by dislocation. The signs (positive or negative) of total gravity change and vertical displacement are opposite each other at the same point for strike slip and dip slip; (4) Gravity-vertical-displacement-gradient is not constant; it manifests a variety of patterns for different dislocation models; (5) Gravity-vertical-displacement-gradient is approximately equal to apparent gravity-vertical-displacement-gradient.

  1. Location of deeply buried, offshore Mesozoic transform fault along the western margin of the Gulf of Mexico inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Nguyen, L. C.; Mann, P.; Bird, D. E.

    2013-12-01

    Several workers have proposed that a Jurassic age, 500-km-long, right-lateral transform fault along the western margin of the Gulf of Mexico, possibly extending southward and onshore for another 500 km onto the isthmus area of southern Mexico, was formed as the ocean basin opened. This proposed transform fault plays a critical role in the most widely accepted tectonic model for the Mesozoic opening of the Gulf of Mexico by a ~40 degree, CCW rotation of the Yucatan block about a pole near southern Florida. Previously proposed names for the fault include the Tamaulipas-Chiapas transform fault and the Western Main transform fault for the offshore fault and the Orizaba transform fault for the southern, onland continuation of the fault into southern Mexico. There are few direct geologic or geophysical observations on the location or characteristics of the proposed offshore transform because it is buried beneath an over 10-km-thick sedimentary wedge along the continental margin of eastern Mexico. To better define this offshore fault, we identify a 500-km-long, 40-km-wide gravity anomaly, concentric with, and located about 60-70 km off the eastern coast of Mexico. Two east-west 200/1200-km-long gravity models constructed to cross the anomaly at right angles are parallel to existing multi-channel seismic lines with age-correlated stratigraphy. Both gravity models reveal an abrupt crustal thickness change beneath the gravity anomaly: from 27 km to 12 km over a distance of 65 km in the southern profile, and from 23 km to 16 km over a distance of 30 km in northern profile. The linearity of the anomaly in map view combined with the abrupt change in thickness inferred from gravity modeling is consistent with the tectonic origin of a right-lateral transform fault separating continental rocks of Mexico from Mesozoic seafloor produced by the opening of the Gulf of Mexico. Magnetic profiles were analyzed using a Werner depth-to-magnetic source technique, coincident with the gravity models, estimate the depth to top of crystalline basement for the northern (9 km) and southern (11 km) transects. Subsidence analysis along both transects shows that sedimentation rates sharply peaked during the Laramide orogeny in the latest Cretaceous-Eocene, but otherwise conform to steady thermal subsidence of oceanic crust in the deep Gulf of Mexico that formed during the Jurassic CCW rotation of the Yucatan block. The more precisely defined offshore fault aligns well with the onland right-lateral Orizaba transform fault of southern Mexico that is thought to have been active in Mesozoic time.

  2. View of Arabella, one of the two Skylab 3 spiders used in experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A close-up view of Arabella, one of the two Skylab 3 common cross spiders 'Araneus diadematus,' and the web it had spun in the zero gravity of space aboard the Skylab space station cluster in Earth orbit. This is a photographic reproduction made from a color television transmission aboard Skylab. Arabella and Anita, were housed in an enclosure onto which a motion picture camera and a still camera were attached to record the spiders' attempts to build a web in the weightless environment.

  3. Boundary-layer effects on cold fronts at a coastline

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1986-07-01

    The present note discusses one physical mechanism which may contribute to cold air channelling, manifest as a frontal bulge on a surface-analysis chart, in the coastal region of Victoria in southeast Australia. This involves the modification of boundary-layer air in both offshore (prefrontal) and onshore (postfrontal) flow, and the effect on cross-frontal thermal contrast. The problem is discussed in terms of a north-south-oriented cold front behaving as an atmospheric gravity current, propagating along an east-west-oriented coastline, in the presence of a prefrontal offshore stream.

  4. The effective intensity of Coriolis, cross-coupling stimulation is gravitoinertial force dependent - Implications for space motion sickness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1986-01-01

    The effect of gravity on the severity of the Coriolis-induced motion sickness was investigated in ten individuals subjected to high and low G-force phases of parabolic flight maneuvers using constant level Coriolis, cross-coupled angular acceleration stimulation. Using seven levels of severity in the diagnosis of motion sickness, it was found that the subjects were less susceptible at 0 G than at +2 Gz, and that the perceived intensity and provocativeness of Coriolis stimulation decreased in 0 G and increased in +2 Gz relative to the +1 Gz baseline values. The changes in the apparent intensity of Coriolis stimulation occur virtually immediately when the background gravitatioinertial force level is varied. These findings explain why the Skylab astronauts were refractory to motion sickness during Coriolis stimulation in-flight.

  5. Detection of oil spills using 13.3 GHz radar scatterometer

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1972-01-01

    The results of an analysis of 13.3-GHz single polarized scatterometer data collected during NASA/MSC Mission 135, flown on March 16, 1970 are reported. Data were gathered over a crude oil spill on the Gulf of Mexico off the Mississippi Delta. With the aid of RC-8 camera photographs, the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles decreased by 5 db to 10 db in the presence of the oil spill. This was attributed to oil's damping of small gravity and capillary waves. The composite scattering theory and the scatterometer acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected using high frequency radar systems.

  6. Boundary effects on forced drainage through aqueous foam

    NASA Astrophysics Data System (ADS)

    Brannigan, G.; de Alcantara Bonfim, O. F.

    2001-03-01

    The flow of liquid through foam confined in vertical tubes was investigated by measuring the velocity vf of the liquid front forced down by gravity for various flow rates Q. The power law relating the velocity to flow rate of the incoming liquid (v_f ~ Q^α) was observed for tubes of various cross-sectional areas, A. The exponent α was found to vary linearly with the reciprocal of the area: α= 0.325 + 13.7 mm^2/A . This further supports the node-dominated foam drainage model, which predicts α= 1/3 in the limit of infinite cross-sectional area. This relation appears to be independent of bubble size, suggesting that using smaller foam bubbles may not alleviate boundary effects. The results of these experiments also partially explain the discrepancies in measurements of α reported in previous works.

  7. NASA's Platform for Cross-Disciplinary Microchannel Research

    NASA Technical Reports Server (NTRS)

    Son, Sang Young; Spearing, Scott; Allen, Jeffrey; Monaco, Lisa A.

    2003-01-01

    A team from the Structural Biology group located at the NASA Marshall Space Flight Center in Huntsville, Alabama is developing a platform suitable for cross-disciplinary microchannel research. The original objective of this engineering development effort was to deliver a multi-user flight-certified facility for iterative investigations of protein crystal growth; that is, Iterative Biological Crystallization (IBC). However, the unique capabilities of this facility are not limited to the low-gravity structural biology research community. Microchannel-based research in a number of other areas may be greatly accelerated through use of this facility. In particular, the potential for gas-liquid flow investigations and cellular biological research utilizing the exceptional pressure control and simplified coupling to macroscale diagnostics inherent in the IBC facility will be discussed. In conclusion, the opportunities for research-specific modifications to the microchannel configuration, control, and diagnostics will be discussed.

  8. Lunar Gravity Field Determination Using SELENE Same-Beam Differential VLBI Tracking Data

    NASA Technical Reports Server (NTRS)

    Goossens, S.; Matsumoto, K.; Liu, Q.; Kikuchi, F.; Sato, K.; Hanada, H.; Ishihara, Y.; Noda, H.; Kawano, N.; Namiki, N.; hide

    2010-01-01

    A lunar gravity field model up to degree and order 100 in spherical harmonics, named SGM 100i, has been determined from SELENE and historical tracking data, with an emphasis on using same-beam S-band differential VLBI data obtained in the SELENE mission between January 2008 and February 2009. Orbit consistency throughout the entire mission period of SELENE as determined from orbit overlaps for the two sub-satellites of SELENE involved in the VLBI tracking improved consistently from several hundreds of metres to several tens of metres by including differential VLBI data. Through orbits that are better determined, the gravity field model is also improved by including these data. Orbit determination performance for the new model shows improvements over earlier 100th degree and order models, especially for edge-on orbits over the deep far side. Lunar Prospector orbit determination shows an improvement of orbit consistency from I-day predictions for 2-day arcs of 6 m in a total sense, with most improvement in the along and cross-track directions. Data fit for the types and satellites involved is also improved. Formal errors for the lower degrees are smaller, and the new model also shows increased correlations with topography over the far side. The estimated value for the lunar GM for this model equals 4902.80080 +/- 0.0009 cu km/sq s (10 sigma). The lunar degree 2 potential Love number k2 was also estimated, and has a value of 0.0255 +/- 0.0016 (10 sigma as well).

  9. Environmental screening of dark matter haloes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Shi, Difu; Li, Baojiu; Han, Jiaxin

    2017-07-01

    In certain theories of modified gravity, Solar system constraints on deviations from general relativity (GR) are satisfied by virtue of a so-called screening mechanism, which enables the theory to revert to GR in regions where the matter density is high or the gravitational potential is deep. In the case of chameleon theories, the screening has two contributions - self-screening, which is due to the mass of an object itself, and environmental screening, which is caused by the surrounding matter - which are often entangled, with the second contribution being more crucial for less massive objects. A quantitative understanding of the effect of the environment on the screening can prove critical in observational tests of such theories using systems such as the Local Group and dwarf galaxies, for which the environment may be inferred in various ways. We use the high-resolution liminality simulation of Shi et al. to test the fidelity of different definitions of environment. We find that, although the different ways to define environment in practice do not agree with one another perfectly, they can provide useful guidance, and cross checks about how well a dark matter halo is screened. In addition, the screening of subhaloes in dark matter haloes is primarily determined by the environment, with the subhalo mass playing a minor role, which means that lower resolution simulations where subhaloes are not well resolved can still be useful for understanding the modification of gravity inside subhaloes.

  10. Determination of Critical Rock Mass in a Bucket of a Dinting Loader

    NASA Astrophysics Data System (ADS)

    Remiorz, Eryk

    2017-09-01

    The extraction of hard coal deposits lying in increasing depth causes significant problems with maintenance of roadways (maingates, tailgates, etc.). The reduction of the cross section of such excavations, caused by the floor upheaval, leads to the occurrence of many problems with transport and ventilation. Dinting loaders are employed to restore the original size of roadways tightened due to the activity of adverse stresses occurring in the rock mass. These are tracked machines, usually with small width of about 1 m. They often work in roadways with high longitudinal and lateral inclination, as a result of which they are especially susceptible to overturning. The article presents a mathematical model allowing to determine the critical mass of broken rock in a bucket. The model also allows to determine spatial coordinates of a dinting loader's centre of gravity depending on temporary position of movable elements of the loader such as a turntable, boom, coupler and bucket, and depending on the level of loading the bucket with broken rock. It also enables to determine critical angles of the roadways' longitudinal and lateral inclination. The outcomes of computer studies of variations in the position of the loader's centre of gravity depending on deflection angles of moving elements of the loader and the mass of broken rock in the bucket are also presented. Variability ranges of spatial coordinates of the centre of gravity of the loader are also established and examples are given for values of the critical mass of broken rock in the bucket.

  11. Ultrasonographic finding of internal jugular vein during anti-G straining maneuver: is it associated with gravity-induced loss of consciousness?

    PubMed

    Choi, Hyun Seok; Sul, Jin Gon; Yi, Kyung Sik; Seo, Jeong-Min; Chung, Ki Young

    2010-07-01

    Gravity-induced loss of consciousness (G-LOC) is caused by loss of cerebral blood flow during high +Gz (head-to-foot inertial forces). The resistance of the jugular vein is a significant factor in decrease in cerebral blood flow. Ultrasonography of thoracic inlet veins, including internal jugular vein, is feasible to visualize the internal jugular vein and hemodynamic information. Anti-gravity straining maneuver (AGSM) was widely recognized as one of the important factors in preventing G-LOC. The purpose of this study was to evaluate the relationship between the ultrasonographic shape and size of internal jugular vein during AGSM and G-LOC. 47 trainee pilots who participated in human centrifuge education program were enrolled. They were all men, and their mean age was 23.9 +/- 1.38 years. Questionnaire sheets were used to collect information about well-being sensation, smoking, drinking, height, and weight. Using ultrasonography, we monitored shape and size of internal jugular vein during AGSM. After ultrasonographic examination, 47 subjects underwent human centrifuge on the same day. The protocol of human centrifuge training was maximal 6G with sustaining time of 30 s. G-LOC occurred to ten out of 47 subjects in human centrifuge. To find presumptive variable associated with G-LOC, we performed logistic regression analysis. Concave contour and smaller cross-sectional area of internal jugular vein during AGSM were associated with G-LOC.

  12. Global Mapping of Oceanic and Continental Shelf Crustal Thickness and Ocean-Continent Transition Structure

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Alvey, Andy; Roberts, Alan

    2017-04-01

    The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT bathymetric anomalies with respect to expected oceanic values. This includes flexural backstripping to produce bathymetry corrected for sediment loading. (iii) Subsidence analysis which is used to determine the distribution of continental lithosphere thinning. (iv) Joint inversion of time-domain deep seismic reflection and gravity anomaly data which is used to determine lateral variations in crustal basement density and velocity across the OCT, and to validate deep seismic reflection interpretations of Moho depth. The combined interpretation of these independent quantitative measurements is used to determine crustal thickness and composition across the ocean-continent-transition. This integrated approach has been validated on the Iberian margin where ODP drilling provides ground-truth of ocean-continent-transition crustal structure, continent-ocean-boundary location and magmatic type.

  13. Progress in the Determination of the Earth's Gravity Field

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H. (Editor)

    1989-01-01

    Topics addressed include: global gravity model development; methods for approximation of the gravity field; gravity field measuring techniques; global gravity field applications and requirements in geophysics and oceanography; and future gravity missions.

  14. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.

    PubMed

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-05-14

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.

  15. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database

    PubMed Central

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-01-01

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS’s solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method. PMID:29757983

  16. Evaluation of global satellite gravity models using terrestrial gravity observations over the Kingdom of Saudi Arabia A. Alothman and B. Elsaka

    NASA Astrophysics Data System (ADS)

    Alothman, Abdulaziz; Elsaka, Basem

    The gravity field models from the GRACE and GOCE missions have increased the knowledge of the earth’s global gravity field. The latter GOCE mission has provided accuracies of about 1-2 cm and 1milli-Gal level in the global geoid and gravity anomaly, respectively. However, determining all wavelength ranges of the gravity field spectrum cannot be only achieved from satellite gravimetry but from the allowed terrestrial gravity data. In this contribution, we use a gravity network of 42 first-order absolute gravity stations, observed by LaCosta Romberg gravimeter during the period 1967-1969 by Ministry of Petroleum and Mineral Resources, to validate the GOCE gravity models in order to gain more detailed regional gravity information. The network stations are randomly distributed all over the country with a spacing of about 200 km apart. The results show that the geoid height and gravity anomaly determined from terrestrial gravity data agree with the GOCE based models and give additional information to the satellite gravity solutions.

  17. On the spreading and instability of gravity current fronts of arbitrary shape

    NASA Astrophysics Data System (ADS)

    Zgheib, N.; Bonometti, T.; Balachandar, S.

    2012-11-01

    Experiments, simulations and theoretical analysis were carried out to study the influence of geometry on the spreading of gravity currents. The horizontal spreading of three different intial planforms of initial release were investigated: an extended ellipse, a cross, and a circle. The experiments used a pulley system for a swift nearly instantaneous release. The case of the axisymmetric cylinder compared favorably with earlier simulations. We ran experiments for multiple aspect ratios for all three configurations. Perhaps the most intriguing of the three cases is the ``ellipse,'' which within a short period of release flipped the major and minor axes. This behavior cannot be captured by current theoretical methods (such as the Box Model). These cases have also been investigated using shallow water and direct numerical simulations. Also, in this study, we investigate the possibility of a Rayleigh-Taylor (RT) instability of the radially moving, but decelerating front. We present a simple theoretical framework based on the inviscid Shallow Water Equations. The theoretical results are supplemented and compared to highly resolved three-dimensional simulations with the Boussinesq approximation. Chateaubriand Fellowship - NSF PIRE grant OISE-0968313.

  18. Study of stratospheric-ionospheric coupling during thunderstorms and tornadoes

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1977-01-01

    A continuous-wave-spectrum high-frequency Doppler sounder array with three transmitters at each of three sites was used to observe the dynamics of the coupling of energy between the stratosphere and the ionosphere. During times of severe weather activity wavelike disturbances have been detected on ground-based ionospheric sounding records as perturbations in electron densities. Infrasonic waves with wave periods of 3-7 min and with horizontal phase velocities of 600-800 m/s were observed when there was thunderstorm activity; gravity waves with wave periods of 10-15 min and horizontal phase velocities of 100-200 m/s were detected when there was tornado activity. Both triangulations from the cross correlation functions of the Doppler records based on an assumption of no background wind shear and ray-tracing computations including an assumed background wind shear indicate that the waves originated in the vicinity of the thunderstorms and tornadoes. A comparison of the wavelengths of the infrasonic and gravity waves observed at ionospheric heights and those in cloud-top pictures from satellites show that they are all of the order of 100-300 km.

  19. Experimental Methods in Reduced-gravity Soldering Research

    NASA Technical Reports Server (NTRS)

    Pettegrew, Richard D.; Struk, Peter M.; Watson, John K.; Haylett, Daniel R.

    2002-01-01

    The National Center for Microgravity Research, NASA Glenn Research Center, and NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. An improved understanding of the effects of the acceleration environment is important to application of soldering during current and future human space missions. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole and surface mounted devices are being investigated. This paper focuses on the experimental methodology employed in this project and the results of macroscopic sample examination. The specific soldering process, sample configurations, materials, and equipment were selected to be consistent with those currently on-orbit. Other apparatus was incorporated to meet requirements imposed by operation onboard NASA's KC-135 research aircraft and instrumentation was provided to monitor both the atmospheric and acceleration environments. The contingent of test operators was selected to include both highly skilled technicians and less skilled individuals to provide a population cross-section that would be representative of the skill mix that might be encountered in space mission crews.

  20. Upper crustal structure beneath East Java from ambient noise tomography: A preliminary result

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martha, Agustya Adi; Graduate Research on Earthquakes and Active Tectonics, Institut Teknologi Bandung, Bandung; Widiyantoro, Sri

    East Java has a fairly complex geological structure. Physiographically East Java can be divided into three zones, i.e. the Southern Mountains zone in the southern part, the Kendeng zone in the middle part, and the Rembang zone in the northern part. Most of the seismic hazards in this region are due to processes in the upper crust. In this study, the Ambient Noise Tomography (ANT) method is used to image the upper crustal structure beneath East Java. We have used seismic waveform data recorded by 8Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 16 portable seismographs installed formore » 2 to 8 weeks. The data were processed to obtain waveforms fromnoise cross-correlation between pairs of seismographic stations. Our preliminary results indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly as shown by our tomographic images.« less

  1. Phytochrome-mediated agravitropism in Arabidopsis hypocotyls requires GIL1 and confers a fitness advantage.

    PubMed

    Allen, Trudie; Ingles, Patricia J; Praekelt, Uta; Smith, Harry; Whitelam, Garry C

    2006-05-01

    Plants use specialized photoreceptors to detect the amount, quality, periodicity and direction of light and to modulate their growth and development accordingly. These regulatory light signals often interact with other environmental cues. Exposure of etiolated Arabidopsis seedlings to red (R) or far-red (FR) light causes hypocotyls to grow in random orientations with respect to the gravitational vector, thus overcoming the signal from gravity to grow upwards. This light response, mediated by either phytochrome A or phytochrome B, represents a prime example of cross-talk between environmental signalling systems. Here, we report the isolation the mutant gil1 (for gravitropic in the light) in which hypocotyls continue to grow upwards after exposure of seedlings to R or FR light. The gil1 mutant displays no other phenotypic alterations in response to gravity or light. Cloning of GIL1 has identified a novel gene that is necessary for light-dependent randomization of hypocotyl growth orientation. Using gil1, we have demonstrated that phytochrome-mediated randomization of Arabidopsis hypocotyl orientation provides a fitness advantage to seedlings developing in patchy, low-light environments.

  2. Cavity detection and delineation research. Part 4: Microgravimetric survey: Manatee Springs Site, Florida

    NASA Astrophysics Data System (ADS)

    Butler, D. K.; Whitten, C. B.; Smith, F. L.

    1983-03-01

    Results of a microgravimetric survey at Manatee Springs, Levy County, Fla., are presented. The survey area was 100 by 400 ft, with 20-ft gravity station spacing, and with the long dimension of the area approximately perpendicular to the known trend of the main cavity. The main cavity is about 80 to 100 ft below the surface and has a cross section about 16 to 20 ft in height and 30 to 40 ft in width beneath the survey area. Using a density contrast of -1.3 g/cucm, the gravity anomaly is calculated to be -35 micro Gal with a width at half maximum of 205 ft. The microgravimetric survey results clearly indicate a broad negative anomaly coincident with the location and trend of the cavity system across the survey area. The anomaly magnitude and width are consistent with those calculated from the known depth and dimensions of the main cavity. In addition, a small, closed negative anomaly feature, superimposed on the broad negative feature due to the main cavity, satisfactorily delineated a small secondary cavity feature which was discovered and mapped by cave divers.

  3. Jamming of Monodisperse Cylindrical Grains in Featureless Vertical Channels

    NASA Astrophysics Data System (ADS)

    Friedl, Nicholas; Baxter, G. William

    2014-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel under the influence of gravity. These grains have an aspect-ratio less than two (H/D < 2) and resemble aspirin tablets, 35mm film canisters, poker chips, or coins. Monodisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. No combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  4. Terrain Classification on Venus from Maximum-Likelihood Inversion of Parameterized Models of Topography, Gravity, and their Relation

    NASA Astrophysics Data System (ADS)

    Eggers, G. L.; Lewis, K. W.; Simons, F. J.; Olhede, S.

    2013-12-01

    Venus does not possess a plate-tectonic system like that observed on Earth, and many surface features--such as tesserae and coronae--lack terrestrial equivalents. To understand Venus' tectonics is to understand its lithosphere, requiring a study of topography and gravity, and how they relate. Past studies of topography dealt with mapping and classification of visually observed features, and studies of gravity dealt with inverting the relation between topography and gravity anomalies to recover surface density and elastic thickness in either the space (correlation) or the spectral (admittance, coherence) domain. In the former case, geological features could be delineated but not classified quantitatively. In the latter case, rectangular or circular data windows were used, lacking geological definition. While the estimates of lithospheric strength on this basis were quantitative, they lacked robust error estimates. Here, we remapped the surface into 77 regions visually and qualitatively defined from a combination of Magellan topography, gravity, and radar images. We parameterize the spectral covariance of the observed topography, treating it as a Gaussian process assumed to be stationary over the mapped regions, using a three-parameter isotropic Matern model, and perform maximum-likelihood based inversions for the parameters. We discuss the parameter distribution across the Venusian surface and across terrain types such as coronoae, dorsae, tesserae, and their relation with mean elevation and latitudinal position. We find that the three-parameter model, while mathematically established and applicable to Venus topography, is overparameterized, and thus reduce the results to a two-parameter description of the peak spectral variance and the range-to-half-peak variance (in function of the wavenumber). With the reduction the clustering of geological region types in two-parameter space becomes promising. Finally, we perform inversions for the JOINT spectral variance of topography and gravity, in which the INITIAL loading by topography retains the Matern form but the FINAL topography and gravity are the result of flexural compensation. In our modeling, we pay explicit attention to finite-field spectral estimation effects (and their remedy via tapering), and to the implementation of statistical tests (for anisotropy, for initial-loading process correlation, to ascertain the proper density contrasts and interface depth in a two-layer model), robustness assessment and uncertainty quantification, as well as to algorithmic intricacies related to low-dimensional but poorly scaled maximum-likelihood inversions. We conclude that Venusian geomorphic terrains are well described by their 2-D topographic and gravity (cross-)power spectra, and the spectral properties of distinct geologic provinces on Venus are worth quantifying via maximum-likelihood-based methods under idealized three-parameter Matern distributions. Analysis of fitted parameters and the fitted-data residuals reveals natural variability in the (sub)surface properties on Venus, as well as some directional anisotropy. Geologic regions tend to cluster according to terrain type in our parameter space, which we analyze to confirm their shared geologic histories and utilize for guidance in ongoing mapping efforts of Venus and other terrestrial bodies.

  5. Gravity anomaly and crustal structure characteristics in North-South Seismic Belt of China

    NASA Astrophysics Data System (ADS)

    Shen, Chongyang; Xuan, Songtbai; Yang, Guangliang; Wu, Guiju

    2017-04-01

    The North-South Seismic Belt (NSSB) is the binary system boundary what is formed by the western Indian plate subduction pushing and the eastern west Pacific asthenosphere rising, and it is one of the three major seismic belts (Tianshan, Taiwan and NSSB) and mainly located between E102°and E107°. And it is mainly composed of topographic gradient zones, faults, cenozoic basins and strong earthquake zones, which form two distinct parts of tectonic and physical features in the west and east. The research results of geophysical and deep tectonic setting in the NSSB show that it is not only a gravity anomaly gradient zone, it is but also a belt of crustal thickness increasing sharply westward of abrupt change. Seismic tomography results show that the anomaly zone is deeper than hundreds of kilometers in the NSSB, and the composition and structure of the crust are more complex. We deployed multiple Gravity and GNSS synchronous detection profiles in the NSSB, and these profiles crossed the mainly faults structure and got thousands of points data. In the research, source analysis, density structure inversion, residual gravity related imaging and normalized full gradient methods were used, and analyzed gravity field, density and their structure features in different positions, finally obtained the crustal density structure section characteristics and depth structure differences. The research results showed that the gravity Bouguer anomaly is similar to the existing large scale result. The Bouguer anomaly is rising significantly from west to east, its trend variation coincides well with the trend change of Moho depth, which is agreeing with the material flows to the peripheral situation of the Tibetan plateau. The obvious difference changes of the residual anomaly is relative to the boundary of structure or main tectonics, it's also connected with the stop degree of the eurasian plate when the material migrates around. The density structure of the gravity profiles mainly reflects basic frame work of the regional crust structure. The earth's crust basically present three layer structure, nearly horizontally distributes, undulation of Moho is obvious, which is consistent with the results of seismic sounding and seismic array detection; in the local area, there are lower density layer zonal distribution in the earth's crust what accelerates the lateral movement in up and middle crust; when the substance of the Tibetan plateau spreads around, the integrity in up and middle crust is well, and it is basically a coupling movement together; in the lower crust, the thickness of the Tibetan plateau is outward gradually thinning, there is decoupling phenomenon in crust-mantle; The results of the gravity and the crustal density structure show that the research area can be divided into several part such as Qinghai-Tibet Plateau, Sichuan-Yunnan block, Ordos block and Alxa block, the transitional zones of the Qinghai-Tibet Plateau and Sichuan basin, and Alxa and Ordos are complex, and Moho slope is bigger, where is the part of strong tectonic activity and strong earthquakes occur easily. The research is of great significance for study the crustal deep structure, geodynamic evolution process and environment of earthquake gestation of the NSSB region.

  6. Kinematic evolution of a regional-scale gravity-driven deepwater fold-and-thrust belt: The Lamu Basin case-history (East Africa)

    NASA Astrophysics Data System (ADS)

    Cruciani, F.; Barchi, M. R.; Koyi, H. A.; Porreca, M.

    2017-08-01

    The deepwater fold-and-thrust belts (DWFTBs) are geological structures recently explored thanks to advances in offshore seismic imaging by oil industry. In this study we present a kinematic analysis based on three balanced cross-sections of depth-converted, 2-D seismic profiles along the offshore Lamu Basin (East African passive margin). This margin is characterized by a regional-scale DWFTB (> 450 km long), which is the product of gravity-driven contraction on the shelf that exhibits complex structural styles and differing amount of shortening along strike. Net shortening is up to 48 km in the northern wider part of the fold-and-thrust belt (≈ 180 km), diminishing to < 15 km toward the south, where the belt is markedly narrower (≈ 50 km). The three balanced profiles show a shortening percentage around 20% (comparable with the maximum values documented in other gravity-driven DWFTBs), with a significant variability along dip: higher values are achieved in the outer (i.e. down-dip) portion of the system, dominated by basinward-verging, imbricate thrust sheets. Fold wavelength increases landward, where doubly-verging structures and symmetric detachment folds accommodate a lower amount of shortening. Similar to other cases, a linear and systematic relationship between sedimentary thickness and fold wavelength is observed. Reconstruction of the rate of shortening through time within a fold-and-thrust belt shows that after an early phase of slow activation (Late Cretaceous), > 95% of net shortening was produced in < 10 Myr (during Paleocene). During this acme phase, which followed a period of high sedimentation rate, thrusts were largely synchronous and the shortening rate reached a maximum value of 5 mm/yr. The kinematic evolution reconstructed in this study suggests that the structural evolution of gravity-driven fold-and-thrust belts differs from the accretionary wedges and the collisional fold-and-thrust belts, where thrusts propagate in-sequence and shortening is uniformly accommodated along dip.

  7. Crustal structure of the northern Menderes Massif, western Turkey, imaged by joint gravity and magnetic inversion

    NASA Astrophysics Data System (ADS)

    Gessner, Klaus; Gallardo, Luis A.; Wedin, Francis; Sener, Kerim

    2016-10-01

    In western Anatolia, the Anatolide domain of the Tethyan orogen is exposed in one of the Earth's largest metamorphic core complexes, the Menderes Massif. The Menderes Massif experienced a two-stage exhumation: tectonic denudation in the footwall of a north-directed Miocene extensional detachment, followed by fragmentation by E-W and NW-SE-trending graben systems. Along the northern boundary of the core complex, the tectonic units of the Vardar-Izmir-Ankara suture zone overly the stage one footwall of the core complex, the northern Menderes Massif. In this study, we explore the structure of the upper crust in the northern Menderes Massif with cross-gradient joint inversion of gravity and aeromagnetic data along a series of 10-km-deep profiles. Our inversions, which are based on gravity and aeromagnetic measurements and require no geological and petrophysical constraints, reveal the salient features of the Earth's upper crust. We image the northern Menderes Massif as a relatively homogenous domain of low magnetization and medium to high density, with local anomalies related to the effect of interspersed igneous bodies and shallow basins. In contrast, both the northern and western boundaries of the northern Menderes Massif stand out as domains where dense mafic, metasedimentary and ultramafic domains with a weak magnetic signature alternate with low-density igneous complexes with high magnetization. With our technique, we are able to delineate Miocene basins and igneous complexes, and map the boundary between intermediate to mafic-dominated subduction-accretion units of the suture zone and the underlying felsic crust of the Menderes Massif. We demonstrate that joint gravity and magnetic inversion are not only capable of imaging local and regional changes in crustal composition, but can also be used to map discontinuities of geodynamic significance such as the Vardar-Izmir-Ankara suture and the West Anatolia Transfer Zone.

  8. Do gravity waves significantly impact PSC occurrence in the Antarctic?

    NASA Astrophysics Data System (ADS)

    McDonald, A. J.; George, S. E.; Woollands, R. M.

    2009-02-01

    This study uses a combination of POAM III aerosol extinction measurements and CHAMP GPS/RO temperature measurements to examine the role of atmospheric gravity waves in Polar Stratospheric Cloud (PSC) formation in the Antarctic. POAM III aerosol extinction observations are used to identify Type I Polar Stratospheric Clouds using an unsupervised clustering algorithm. The seasonal and spatial distribution of PSCs observed by POAM III is examined to determine whether there is a bias towards regions of high wave activity early in the Antarctic winter which may enhance PSC formation. Examination of the probability of temperatures below the Type Ia formation temperature threshold based on UKMO analyses displays a good correspondence to the PSC occurrence derived from POAM III extinction data in general. However, in June the POAM III observations of PSC are more abundant than expected from temperature thresholds. In addition the PSC occurrence based on temperature thresholds in September and October is often significantly higher than the PSC occurrence observed by POAM III, this observation probably being due to dehydration and denitrification. Use of high resolution temperatures from CHAMP GPS/RO observations provide a slightly improved relationship to the POAM III derived values. Analysis of the CHAMP temperature observations indicates that temperature perturbations associated with gravity waves may explain the enhanced PSC incidence observed in June compared to the UKMO analyses. Comparison of the UKMO analyses temperatures relative to corresponding CHAMP observations also suggests a small warm bias in the UKMO analyses during June. Examination of the longitudinal structure PSC occurrence in June 2005 also shows that regions of enhancement are associated with data near the Antarctic peninsula a known Mountain wave "hotspot". The impact of temperature perturbations causing enhanced temperature threshold crossings is shown to be particularly important early in the Antarctic winter while later in the season temperature perturbations associated with gravity waves could contribute to about 15% of the PSC observed, a value which corresponds well to several previous studies.

  9. Gravity as a Strong Prior: Implications for Perception and Action.

    PubMed

    Jörges, Björn; López-Moliner, Joan

    2017-01-01

    In the future, humans are likely to be exposed to environments with altered gravity conditions, be it only visually (Virtual and Augmented Reality), or visually and bodily (space travel). As visually and bodily perceived gravity as well as an interiorized representation of earth gravity are involved in a series of tasks, such as catching, grasping, body orientation estimation and spatial inferences, humans will need to adapt to these new gravity conditions. Performance under earth gravity discrepant conditions has been shown to be relatively poor, and few studies conducted in gravity adaptation are rather discouraging. Especially in VR on earth, conflicts between bodily and visual gravity cues seem to make a full adaptation to visually perceived earth-discrepant gravities nearly impossible, and even in space, when visual and bodily cues are congruent, adaptation is extremely slow. We invoke a Bayesian framework for gravity related perceptual processes, in which earth gravity holds the status of a so called "strong prior". As other strong priors, the gravity prior has developed through years and years of experience in an earth gravity environment. For this reason, the reliability of this representation is extremely high and overrules any sensory information to its contrary. While also other factors such as the multisensory nature of gravity perception need to be taken into account, we present the strong prior account as a unifying explanation for empirical results in gravity perception and adaptation to earth-discrepant gravities.

  10. Reconstruction of the Exhumed Mantle Across the North Iberian Margin by Crustal-Scale 3-D Gravity Inversion and Geological Cross Section

    NASA Astrophysics Data System (ADS)

    Pedrera, A.; García-Senz, J.; Ayala, C.; Ruiz-Constán, A.; Rodríguez-Fernández, L. R.; Robador, A.; González Menéndez, L.

    2017-12-01

    Recent models support the view that the Pyrenees were formed after the inversion of a previously highly extended continental crust that included exhumed upper mantle rocks. Mantle rocks remain near to the surface after compression and mountain building, covered by the latest Cretaceous to Paleogene sequences. 3-D lithospheric-scale gravity inversion demands the presence of a high-density mantle body placed within the crust in order to justify the observed anomalies. Exhumed mantle, having 50 km of maximum width, continuously extends beneath the Basque-Cantabrian Basin and along the northern side of the Pyrenees. The association of this body with rift, postrift, and inversion structural geometries is tested in a balanced cross section across the Basque-Cantabrian Basin that incorporates a major south-dipping ramp-flat-ramp extensional detachment active between Valanginian and early Cenomanian times. Results indicate that horizontal extension progressed 48 km at variable strain rates that increased from 1 to 4 mm/yr in middle Albian times. Low-strength Triassic Keuper evaporites and mudstones above the basement favor the decoupling of the cover with formation of minibasins, expulsion rollovers, and diapirs. The inversion of the extensional system is accommodated by doubly verging basement thrusts due to the reactivation of the former basin bounding faults in Eocene-Oligocene times. Total shortening is estimated in 34 km and produced the partial subduction of the continental lithosphere beneath the two sides of the exhumed mantle. Obtained results help to pinpoint the original architecture of the North Iberian Margin and the evolution of the hyperextended aborted intracontinental basins.

  11. Preprocessing of gravity gradients at the GOCE high-level processing facility

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes; Rispens, Sietse; Gruber, Thomas; Koop, Radboud; Schrama, Ernst; Visser, Pieter; Tscherning, Carl Christian; Veicherts, Martin

    2009-07-01

    One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/ f behaviour for low frequencies. In the outlier detection, the 1/ f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/ f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.

  12. Evaluation of ames Multistix-SG for urine specific gravity versus refractometer specific gravity.

    PubMed

    Adams, L J

    1983-12-01

    A comparison of urine specific gravity by a commercially available multiple reagent strip (Multistix-SG; Ames Division, Miles Laboratory) versus refractometer specific gravity (TS Meter; American Optical Corporation) was performed on 214 routine urine specimens. Agreement to +/- 0.005 was found in 72% of the specimens (r = 0.80). Urine specific gravity by the Multistix-SG showed a significant positive bias at urine pHs less than or equal to 6.0 and a negative bias at urine pHs greater than 7.0 in comparison to refractometer specific gravity. At concentrated (specific gravity greater than or equal to 1.020) specific gravities, up to 25% of urine specimens were misclassified as not concentrated by Multistix-SG specific gravity in comparison to refractometer specific gravity. The additional cost of the specific gravity reagent to a multiple reagent test strip in addition to the poor performance relative to refractometer specific gravity leads to the conclusion that including this specific gravity methodology on a multiple reagent strip is neither cost effective nor clinically useful.

  13. 2006 Compilation of Alaska Gravity Data and Historical Reports

    USGS Publications Warehouse

    Saltus, Richard W.; Brown, Philip J.; Morin, Robert L.; Hill, Patricia L.

    2008-01-01

    Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.

  14. Evaluating Material Flammability in Microgravity and Martian Gravity Compared to the NASA Standard Normal Gravity Test

    NASA Technical Reports Server (NTRS)

    Oslon, Sandra. L.; Ferkul, Paul

    2012-01-01

    Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.

  15. Accuracy of mapping the Earth's gravity field fine structure with a spaceborne gravity gradiometer mission

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.

    1984-01-01

    The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.

  16. Effects of background gravity stimuli on gravity-controlled behavior

    NASA Technical Reports Server (NTRS)

    Mccoy, D. F.

    1976-01-01

    Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.

  17. Gravity as a Strong Prior: Implications for Perception and Action

    PubMed Central

    Jörges, Björn; López-Moliner, Joan

    2017-01-01

    In the future, humans are likely to be exposed to environments with altered gravity conditions, be it only visually (Virtual and Augmented Reality), or visually and bodily (space travel). As visually and bodily perceived gravity as well as an interiorized representation of earth gravity are involved in a series of tasks, such as catching, grasping, body orientation estimation and spatial inferences, humans will need to adapt to these new gravity conditions. Performance under earth gravity discrepant conditions has been shown to be relatively poor, and few studies conducted in gravity adaptation are rather discouraging. Especially in VR on earth, conflicts between bodily and visual gravity cues seem to make a full adaptation to visually perceived earth-discrepant gravities nearly impossible, and even in space, when visual and bodily cues are congruent, adaptation is extremely slow. We invoke a Bayesian framework for gravity related perceptual processes, in which earth gravity holds the status of a so called “strong prior”. As other strong priors, the gravity prior has developed through years and years of experience in an earth gravity environment. For this reason, the reliability of this representation is extremely high and overrules any sensory information to its contrary. While also other factors such as the multisensory nature of gravity perception need to be taken into account, we present the strong prior account as a unifying explanation for empirical results in gravity perception and adaptation to earth-discrepant gravities. PMID:28503140

  18. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  19. Gravity gradient preprocessing at the GOCE HPF

    NASA Astrophysics Data System (ADS)

    Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.

    2009-04-01

    One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.

  20. Gravity: Simple Experiments for Young Scientists.

    ERIC Educational Resources Information Center

    White, Larry

    This book contains 12 simple experiments through which students can learn about gravity and its implications. Some of the topics included are weight, weightlessness, artificial gravity, the pull of gravity on different shapes, center of gravity, the universal law of gravity, and balancing. Experiments include: finding the balancing point; weighing…

  1. Gravity data from the Sierra Vista Subwatershed, Upper San Pedro Basin, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.

    2015-01-01

    This report (1) summarizes changes to the Sierra Vista Subwatershed regional time-lapse gravity network with respect to station locations and (2) presents 2014 and 2015 gravity measurements and gravity values at each station. A prior gravity network, established between 2000 and 2005, was revised in 2014 to cover a larger number of stations over a smaller geographic area in order to decrease measurement and interpolation uncertainty. The network currently consists of 59 gravity stations, including 14 absolute-gravity stations. Following above-average rainfall during summer 2014, gravity increased at all but one of the absolute-gravity stations that were observed in both June 2014 and January 2015. This increase in gravity indicates increased groundwater storage in the aquifer and (or) unsaturated zone as a result of rainfall and infiltration.

  2. Lorentz violation, gravitoelectromagnetic field and Bhabha scattering

    NASA Astrophysics Data System (ADS)

    Santos, A. F.; Khanna, Faqir C.

    2018-01-01

    Lorentz symmetry is a fundamental symmetry in the Standard Model (SM) and in General Relativity (GR). This symmetry holds true for all models at low energies. However, at energies near the Planck scale, it is conjectured that there may be a very small violation of Lorentz symmetry. The Standard Model Extension (SME) is a quantum field theory that includes a systematic description of Lorentz symmetry violations in all sectors of particle physics and gravity. In this paper, SME is considered to study the physical process of Bhabha Scattering in the Gravitoelectromagnetism (GEM) theory. GEM is an important formalism that is valid in a suitable approximation of general relativity. A new nonminimal coupling term that violates Lorentz symmetry is used in this paper. Differential cross-section for gravitational Bhabha scattering is calculated. The Lorentz violation contributions to this GEM scattering cross-section are small and are similar in magnitude to the case of the electromagnetic field.

  3. Search for low-scale gravity signatures in multi-jet final states with the ATLAS detector at $$\\sqrt{s}=8 $$ TeV

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2015-07-07

    A search for evidence of physics beyond the Standard Model in final states with multiple high-transverse-momentum jets is performed using 20.3 fb -1 of proton-proton collision data at √s = 8 TeV recorded by the ATLAS detector at the LHC. No significant excess of events beyond Standard Model expectations is observed, and upper limits on the visible cross sections for non-Standard Model production of multi-jet final states are set. A wide variety of models for black hole and string ball production and decay are considered, and the upper limit on the cross section times acceptance is as low as 0.16more » fb at the 95% confidence level. For these models, excluded regions are also given as function of the main model parameters.« less

  4. Effect of chronic centrifugation of the musculoskeletal system of the dog.

    PubMed

    Amtmann, E; Oyama, J; Fisher, G L

    1976-04-21

    Sixteen male Beagle dogs, 293 to 509 days old, were exposed almost continuously for 3 months to 2.0 G on a 7.9 meter radius centrifuge. The dogs were maintained on the centrifuge, by means of a specially designed automated waste disposal and life support system. As compared to the mean values of normal gravity controls, centrifuged dogs showed no differences in femur length; cross-sectional area, outer and inner radii at mid-shaft of the femur; dry weights of the biceps femoris, quadriceps femoris, and gastrocnemius muscles. It was shown by analysis of covariance that chronic centrifugation has no effect on the relationship between the length and the cross-sectional dimensions at mid-shaft of the femur. Photon absorptiometry, however, revealed significant mineral content increases averaging 1.5% at 3 sites, i.e., at the 1/4, 1/2 and 3/4 length of the femur.

  5. An experimental study of stratospheric gravity waves - Design and preliminary results

    NASA Astrophysics Data System (ADS)

    Talagrand, O.; Ovarlez, H.

    1984-02-01

    The design of balloon-borne experimental apparatus for long-term gravitational-wave measurements in the stratosphere is reported, and preliminary results of a first test flight are presented. Two gondolas (each containing a pressure sensor; a temperature sensor; horizontal and vertical sonic anemometers; a fin equipped with crossed magnetometers; and data-processing, data-transmission, and control electronics) are suspended 100 and 300 m below a solar/terrestrial-IR-absorption-heated hot-air balloon drifting between altitudes 22 km (night) and 28 km (day); power is supplied by NiCd batteries recharged by solar cells. The path of the first flight, a circumnavigation beginning in Pretoria, South Africa and crossing South America and northern Australia, from December 11, 1982, to February 2, 1983 (when transmission ceased over southern Africa) is shown on a map, and sample data for a 36-h period are summarized in a graph.

  6. The Complete Book of Spaceflight: From Apollo 1 to Zero Gravity

    NASA Astrophysics Data System (ADS)

    Darling, David

    2002-11-01

    A commanding encyclopedia of the history and principles of spaceflight-from earliest conceptions to faster-than-light galaxy-hopping Here is the first truly comprehensive guide to space exploration and propulsion, from the first musings of the Greeks to current scientific speculation about interstellar travel using "warp drives" and wormholes. Space buffs will delight in its in-depth coverage of all key manned and unmanned missions and space vehicles-past, present, and projected-and its clear explanations of the technologies involved. Over the course of more than 2,000 extensively cross-referenced entries, astronomer David Darling also provides fascinating insights into the cultural development of spaceflight. In vivid accounts of the major characters and historical events involved, he provides fascinating tales of early innovators, the cross-pollination that has long existed between science fiction and science fact, and the sometimes obscure links between geopolitics, warfare, and advances in rocketry.

  7. The Excursion set approach: Stratonovich approximation and Cholesky decomposition

    NASA Astrophysics Data System (ADS)

    Nikakhtar, Farnik; Ayromlou, Mohammadreza; Baghram, Shant; Rahvar, Sohrab; Tabar, M. Reza Rahimi; Sheth, Ravi K.

    2018-05-01

    The excursion set approach is a framework for estimating how the number density of nonlinear structures in the cosmic web depends on the expansion history of the universe and the nature of gravity. A key part of the approach is the estimation of the first crossing distribution of a suitably chosen barrier by random walks having correlated steps: The shape of the barrier is determined by the physics of nonlinear collapse, and the correlations between steps by the nature of the initial density fluctuation field. We describe analytic and numerical methods for calculating such first up-crossing distributions. While the exact solution can be written formally as an infinite series, we show how to approximate it efficiently using the Stratonovich approximation. We demonstrate its accuracy using Monte-Carlo realizations of the walks, which we generate using a novel Cholesky-decomposition based algorithm, which is significantly faster than the algorithm that is currently in the literature.

  8. Detection of oil spills using a 13.3-GHz radar scatterometer.

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1973-01-01

    This paper describes the results of an analysis of 13.3-GHz single-polarized scatterometer data collected during NASA/MSC mission 135, flown on March 16, 1970. Data were gathered over a crude oil spill on the Gulf of Mexico (test site 128) off the Mississippi delta. With the aid of RC-8 camera photographs the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles (25 to 50 deg) decreased by 5-10 db in the presence of the oil spill. This was attributed to the damping by oil of small gravity and capillary waves. The composite scattering theory and the scatterometer-acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected with high-frequency radar systems.

  9. Association between mild cognitive impairment and trajectory-based spatial parameters during timed up and go test using a laser range sensor.

    PubMed

    Nishiguchi, Shu; Yorozu, Ayanori; Adachi, Daiki; Takahashi, Masaki; Aoyama, Tomoki

    2017-08-08

    The Timed Up and Go (TUG) test may be a useful tool to detect not only mobility impairment but also possible cognitive impairment. In this cross-sectional study, we used the TUG test to investigate the associations between trajectory-based spatial parameters measured by laser range sensor (LRS) and cognitive impairment in community-dwelling older adults. The participants were 63 community-dwelling older adults (mean age, 73.0 ± 6.3 years). The trajectory-based spatial parameters during the TUG test were measured using an LRS. In each forward and backward phase, we calculated the minimum distance from the marker, the maximum distance from the x-axis (center line), the length of the trajectories, and the area of region surrounded by the trajectory of the center of gravity and the x-axis (center line). We measured mild cognitive impairment using the Mini-Mental State Examination score (26/27 was the cut-off score for defining mild cognitive impairment). Compared with participants with normal cognitive function, those with mild cognitive impairment exhibited the following trajectory-based spatial parameters: short minimum distance from the marker (p = 0.044), narrow area of center of gravity in the forward phase (p = 0.012), and a large forward/whole phase ratio of the area of the center of gravity (p = 0.026) during the TUG test. In multivariate logistic regression analyses, a short minimum distance from the marker (odds ratio [OR]: 0.82, 95% confidence interval [CI]: 0.69-0.98), narrow area of the center of gravity in the forward phase (OR: 0.01, 95% CI: 0.00-0.36), and large forward/whole phase ratio of the area of the center of gravity (OR: 0.94, 95% CI: 0.88-0.99) were independently associated with mild cognitive impairment. In conclusion, our results indicate that some of the trajectory-based spatial parameters measured by LRS during the TUG test were independently associated with cognitive impairment in older adults. In particular, older adults with cognitive impairment exhibit shorter minimum distances from the marker and asymmetrical trajectories during the TUG test.

  10. Human whole-body reaching in normal gravity and microgravity reveals a strong temporal coordination between postural and focal task components.

    PubMed

    Patron, Jerome; Stapley, Paul; Pozzo, Thierry

    2005-08-01

    Previous experiments by our group in normal gravity (1 G) have revealed spatial relationships between postural and focal components of whole-body reaching and pointing movements. We suggested that these relationships could be explained partly through the use of gravity to displace the CoM and attain the object or target position. In this study we compared human whole-body reaching in 1 G and microgravity (0 G) in order to more fully investigate how gravity contributes to strategies adopted for task execution and to determine possible invariant temporal relationships between multiple segments. Whole-body reaching movements made from the standing position in two experimental conditions of execution speed (naturally paced and as fast as possible) were recorded during periods of 1 G and 0 G in parabolic flight. Overall, at each speed of reaching, movement times were significantly slower when performed in 0 G than in 1 G for two of the three subjects, but all subjects were able to produce significantly faster movements in 0 G than in 1 G. Despite similar general trends across subjects observed in 1 G, angular displacements of reaching movements performed in 0 G differed greatly between subjects. There were changes at all joints, but above all at the shoulder and the ankle. However, despite a high intersubject and intratrial variability in 0 G, in both gravity conditions all subjects demonstrated times to peak curvilinear velocity for the finger (end effector) and the whole-body centre of mass (CoM) that coincided, regardless of the speed of execution. Moreover, cross-correlations between multiple segment curvilinear velocities and those of the CoM revealed tight, highly correlated temporal relationships between segments proximal to the CoM (which was expected). However, for more distal segments, the correlations were weaker, and the movements lagged behind movements of the CoM. The major and most interesting finding of this study was that although the finger was the most distal within the segment chain, with respect to the CoM, it was highly correlated with the CoM (0.99--0.98, all conditions) and with no time lag. Despite the large intersubject and inter-environmental variability recorded in this study, temporal relationships between postural task components (CoM displacements) and those of the focal movement (end-effector trajectory) were consistently conserved.

  11. Actin Cytoskeleton-Based Plant Synapse as Gravitransducer in the Transition Zone of the Root Apex

    NASA Astrophysics Data System (ADS)

    Baluska, Frantisek; Barlow, Peter; Volkmann, Dieter; Mancuso, Stefano

    The actin cytoskeleton was originally proposed to act as the signal transducer in the plant gravity sensory-motoric circuit. Surprisingly, however, several studies have documented that roots perfom gravisensing and gravitropism more effectively if exposed to diverse anti-F-actin drugs. Our study, using decapped maize root apices, has revealed that depolymerization of F-actin stimulates gravity perception in cells of the transition zone where root gravitropism is initiated (Mancuso et al. 2006). It has been proposed (Balǔka et al. 2005, 2009a) that s the non-growing adhesive end-poles, enriched with F-actin and myosin VIII, and active in endocytic recycling of both PIN transporters and cell wall pectins cross-linked with calcium and boron, act as the gravisensing domains, and that these impinge directly upon the root motoric responses via control of polar auxin transport. This model suggests that mechanical asymmetry at these plant synapses determines vectorial gravity-controlled auxin transport. Due to the gravity-imposed mechanical load upon the protoplast, a tensional stress is also imposed upon the plasma membrane of the physically lower synaptic cell pole. This stress is then relieved by shifting the endocytosis-exocytosis balance towards exocytosis (Balǔka et al. s 2005, 2009a,b). This `Synaptic Auxin Secretion' hypothesis does not conflict with the `Starch Statolith' hypothesis, which is based on amyloplast sedimentation. In fact, the `Synaptic Auxin Secretion' hypothesis has many elements which allow its unification with the Starch-Statolith model (Balǔka et al. 2005, 2009a,b). s References Balǔka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion s domains for cell-to-cell communication. Trends Plant Sci 10: 106-111 Balǔka F, Schlicht M, s Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopoldina 96: 103-122 Balǔka s F, Mancuso S, Volkmann D, Barlow PW (2009b) The 'root-brain' hypothesis of Charles and Francis Darwin: Revival after more than 125 years. Plant Signal Behav 4: 1121-1127 Mancuso S, Barlow PW, Volkmann D, Balǔka F (2006). Actin turnover-mediated gravity response in s maize root apices: gravitropism of decapped roots implicates gravisensing outside of the root cap. Plant Signal Behav 1: 52-58

  12. Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites

    NASA Astrophysics Data System (ADS)

    Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav; Kostelecký, Jan

    2014-02-01

    The aim of our work is to generate Earth's gravity field models from GPS positions of low Earth orbiters. Our inversion method is based on Newton's second law, which relates the observed acceleration of the satellite with forces acting on it. The observed acceleration is obtained as numerical second derivative of kinematic positions. Observation equations are formulated using the gradient of the spherical harmonic expansion of the geopotential. Other forces are either modelled (lunisolar perturbations, tides) or provided by onboard measurements (nongravitational perturbations). From this linear regression model the geopotential harmonic coefficients are obtained. To this basic scheme of the acceleration approach we added some original elements, which may be useful in other inversion techniques as well. We tried to develop simple, straightforward and still statistically correct model of observations. (i) The model is linear in the harmonic coefficients, no a priori gravity field model is needed, no regularization is applied. (ii) We use the generalized least squares to successfully mitigate the strong amplification of noise due to numerical second derivative. (iii) The number of other fitted parameters is very small, in fact we use only daily biases, thus we can monitor their behaviour. (iv) GPS positions have correlated errors. The sample autocorrelation function and especially the partial autocorrelation function indicate suitability of an autoregressive model to represent the correlation structure. The decorrelation of residuals improved the accuracy of harmonic coefficients by a factor of 2-3. (v) We found it better to compute separate solutions in the three local reference frame directions than to compute them together at the same time; having obtained separate solutions for along-track, cross-track and radial components, we combine them using the normal matrices. Relative contribution of the along-track component to the combined solution is 50 percent on average. (vi) The computations were performed on an ordinary PC up to maximum degree and order 120. We applied the presented method to orbits of CHAMP and GRACE spanning seven years (2003-2009) and to two months of GOCE (Nov/Dec 2009). The obtained long-term static gravity field models are of similar or better quality compared to other published solutions. We also tried to extract the time-variable gravity signal from CHAMP and GRACE orbits. The acquired average annual signal shows clearly the continental areas with important and known hydrological variations.

  13. Digital Isostatic Gravity Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Ponce, David A.; Mankinen, E.A.; Davidson, J.G.; Morin, R.L.; Blakely, R.J.

    2000-01-01

    An isostatic gravity map of the Nevada Test Site area was prepared from publicly available gravity data (Ponce, 1997) and from gravity data recently collected by the U.S. Geological Survey (Mankinen and others, 1999; Morin and Blakely, 1999). Gravity data were processed using standard gravity data reduction techniques. Southwest Nevada is characterized by gravity anomalies that reflect the distribution of pre-Cenozoic carbonate rocks, thick sequences of volcanic rocks, and thick alluvial basins. In addition, regional gravity data reveal the presence of linear features that reflect large-scale faults whereas detailed gravity data can indicate the presence of smaller-scale faults.

  14. Differential results integrated with continuous and discrete gravity measurements between nearby stations

    NASA Astrophysics Data System (ADS)

    Xu, Weimin; Chen, Shi; Lu, Hongyan

    2016-04-01

    Integrated gravity is an efficient way in studying spatial and temporal characteristics of the dynamics and tectonics. Differential measurements based on the continuous and discrete gravity observations shows highly competitive in terms of both efficiency and precision with single result. The differential continuous gravity variation between the nearby stations, which is based on the observation of Scintrex g-Phone relative gravimeters in every single station. It is combined with the repeated mobile relative measurements or absolute results to study the regional integrated gravity changes. Firstly we preprocess the continuous records by Tsoft software, and calculate the theoretical earth tides and ocean tides by "MT80TW" program through high precision tidal parameters from "WPARICET". The atmospheric loading effects and complex drift are strictly considered in the procedure. Through above steps we get the continuous gravity in every station and we can calculate the continuous gravity variation between nearby stations, which is called the differential continuous gravity changes. Then the differential results between related stations is calculated based on the repeated gravity measurements, which are carried out once or twice every year surrounding the gravity stations. Hence we get the discrete gravity results between the nearby stations. Finally, the continuous and discrete gravity results are combined in the same related stations, including the absolute gravity results if necessary, to get the regional integrated gravity changes. This differential gravity results is more accurate and effective in dynamical monitoring, regional hydrologic effects studying, tectonic activity and other geodynamical researches. The time-frequency characteristics of continuous gravity results are discussed to insure the accuracy and efficiency in the procedure.

  15. A contrastive study on the influences of radial and three-dimensional satellite gravity gradiometry on the accuracy of the Earth's gravitational field recovery

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Hsu, Hou-Tse; Zhong, Min; Yun, Mei-Juan

    2012-10-01

    The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE), up to 250 degrees, influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation, respectively. Firstly, the new analytical error model of the cumulative geoid height, influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are established, respectively. In 250 degrees, the GOCE cumulative geoid height error measured by the radial gravity gradient Vzz is about 2½ times higher than that measured by the three-dimensional gravity gradient Vij. Secondly, the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij by numerical simulation, respectively. The study results show that when the measurement error of the gravity gradient is 3 × 10-12/s2, the cumulative geoid height errors using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are 12.319 cm and 9.295 cm at 250 degrees, respectively. The accuracy of the cumulative geoid height using the three-dimensional gravity gradient Vij is improved by 30%-40% on average compared with that using the radial gravity gradient Vzz in 250 degrees. Finally, by mutual verification of the analytical error model and numerical simulation, the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients, respectively. Therefore, it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10-13/s2-10-15/s2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.

  16. Hartley and Itokawa: small comet and asteroid with similar morphologies and structures

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2011-10-01

    " Orbits ma ke s tructures " [1-3]. This three-word sentence means that as all cosmic bodies moves in non-circular keplerian orbits they all are subjected to an action of inertia -gravity warping waves. These waves arise in bodies as a result of periodically changing accelerations causing inertia-gravity forces. These forces are absorbed by bodies masses and make them to warp. This warping is smoothed by gravity making globular shapes of the larger bodies. But smaller bodies with rather weak gravity keep their warped shapes. The wave nature warping happens in four interfering direct ions (ortho - and diagonal) and in various wavelengths. The fundamental wave 1 long 2π R makes ubiquitous tectonic dichotomy: an oppos ition of the uplifted segment-hemisphere and the subsided one. For small bodies a result of this is in their convexo-concave shape [3] (Fig. 1-7). The uplifted bulging segment expands and is breaking by cracks, faults, rifts. The opposed subsided concave segment contracts. As a result in the middle of an oblong body is formed a narrow thoroughly squeezed and degassed portion - a neck or waist (wringed out wet linen). Subsequently here at a weakened place could happen a break - formation of binaries, polycomponental bodies, satellites. Figures 1 to 4 show development stages of small bodies leading to a full separation of two parts. Traces of warping waves of four directions are often seen on surfaces of many celestial bodies as cross -cutting lineations. A recent example of the small core of the Hartley 2 comet (2 km long) is very impressive. At received points of view are clearly seen at least three ortho- and diagonal lineations often marked by small outgassing craters (Fig. 1). Crossing lineations produce square forms (craters ) earlier s een on the Eros ' s urface. Wave comp res s ion lineations make the Hart ley 2 t o appear as a wafer ca ke. A " wa is t" (neck) is formed as a res ult of nearing a concave depression, from one side, and deep cracks at the convex bulge, from the antipodean side (Fig. 5). The smaller rocky asteroid Itokawa (0.5 km long, Fig. 2) is surprisingly similar in shape and structure to the icy core of Hart ley. It is also bent and rich in cross-cutting lineations o 4 direct ions marked by small holes-craters. But here they are ext inct and lack of gas -dust jets. One sees a transition from a volat ile rich comet core to an ext inct mostly rocky mass - asteroid. In both cases (comet core and as teroid) in the middle develops a smooth "wais t". The bulged convex and antipodal concave segments -hemispheres in rotating bodies require somewhat different densities of composing them masses to equilibrate angular momentum of two halves (compare with the Ea rth's hemis pheres : the eas tern continental "granitic" and wes tern Pacific "bas altic"). The near-IR images of two asteroids (Fig.6-7) confirm this. The concave and convex s ides are co mpos itionally d ifferent. In the Eros ' cas e the concave s ide is rich er in pyroxene, thus denser.

  17. Microgravity science and applications bibliography, 1984 revision

    NASA Technical Reports Server (NTRS)

    Pentecost, E.

    1984-01-01

    A compilation of Government reports, contractor reports, conference proceedings, and journal articles dealing is presented that deal with flight experiments utilizing a low gravity environment to elucidate and control various processes or with ground based activities that provide supporting research. Subdivisions include six major categories: (1) Electronic Materials; (2) Metals, Alloys, and Composites; (3) Fluid Dynamics and Transports; (4) Biotechnology; (5) Glasses and Ceramics; and (6) Combustion. Also included are publications from the European, Soviet, and Japanese MSA programs. In addition, there is a list of patents and appendices providing a compilation of anonymously authored reports and a cross reference index.

  18. A new method for detection of distant supernova neutrino bursts

    NASA Astrophysics Data System (ADS)

    Cline, D.; Fenyves, E.; Foshe, T.; Fuller, G.; Meyer, B.; Wilson, J.

    1990-03-01

    The feasibility of astrophysical neutrino detectors is studied, which is based on the detection of neutrons produced in neutrino-nucleus inelastic scattering events. Collective nuclear effects greatly enhancing the relevant interaction cross sections over those of single particle interactions are discussed. These effects can help to reduce the mass required for neutrino detectors. An example of a simple detector based on CaCO3 neutrino targets and BF3 neutron counters is presented. Neutron background limitations are discussed and the possibility of forming a coincidence between neutrino detectors and future gravity wave detectors is also considered.

  19. Gravity data of Nevada

    USGS Publications Warehouse

    Ponce, David A.

    1997-01-01

    Gravity data for the entire state of Nevada and adjacent parts of California, Utah, and Arizona are available on this CD-ROM. About 80,000 gravity stations were compiled primarily from the National Geophysical Data Center and the U.S. Geological Survey. Gravity data was reduced to the Geodetic Reference System of 1967 and adjusted to the Gravity Standardization Net 1971 gravity datum. Data were processed to complete Bouguer and isostatic gravity anomalies by applying standard gravity corrections including terrain and isostatic corrections. Selected principal fact references and a list of sources for data from the National Geophysical Data Center are included.

  20. Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport

    NASA Astrophysics Data System (ADS)

    Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh

    2013-09-01

    From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport Malaysia. Based on recorded zero gravity flights of the fighter jet, an F-5E will be able to produce 45 seconds of zero gravity time, long enough for effective zero gravity experiments. An A300 in operation in Europe is also being considered to be operated bySpaceport Malaysia. Even though this airplane can only produce less than half the zero gravity time produced by F-5E, the A300 has the advantage off passengers to experience zero gravity. Both zero gravity platforms have been promoting Spaceport Malaysia project and suborbital flights to be operational at the spaceport as both zero gravity flights and suborbital flights attract the interest from similar and preferred operators and markets. Therefore based on Spaceport Malaysia as a case study, zero gravity flights are the most effective embryonic operation for a planned commercial spaceport.

  1. Celiac Disease: Diagnostic Standards and Dilemmas

    PubMed Central

    Kaswala, Dharmesh H.; Veeraraghavan, Gopal; Kelly, Ciaran P.; Leffler, Daniel A.

    2015-01-01

    Celiac Disease (CD) affects at least 1% of the population and evidence suggests that prevalence is increasing. The diagnosis of CD depends on providers being alert to both typical and atypical presentations and those situations in which patients are at high risk for the disease. Because of variable presentation, physicians need to have a low threshold for celiac testing. Robust knowledge of the pathogenesis of this autoimmune disease has served as a catalyst for the development of novel diagnostic tools. Highly sensitive and specific serological assays including Endomysial Antibody (EMA), tissue transglutaminase (tTG), and Deamidated Gliadin Peptide (DGP) have greatly simplified testing for CD and serve as the foundation for celiac diagnosis. In addition, genetic testing for HLA DQ2 and DQ8 has become more widely available and there has been refinement of the gluten challenge for use in diagnostic algorithms. While diagnosis is usually straightforward, in special conditions including IgA deficiency, very young children, discrepant histology and serology, and adoption of a gluten free diet prior to testing, CD can be difficult to diagnose. In this review, we provide an overview of the history and current state of celiac disease diagnosis and provide guidance for evaluation of CD in difficult diagnostic circumstances. PMID:28943611

  2. The association between semaphorin 3A levels and gluten-free diet in patients with celiac disease.

    PubMed

    Kessel, Aharon; Lin, Chen; Vadasz, Zahava; Peri, Regina; Eiza, Nasren; Berkowitz, Drora

    2017-11-01

    Celiac disease (CD) is an inflammatory disease affecting the small intestine. We aim to assess serum level and expression of semaphorin 3A (Sema3A) on T regulatory (Treg) cells in CD patients. Twenty-six newly diagnosed celiac patients, 13 celiac patients on a gluten-free diet and 16 healthy controls included in the study. Sema3A protein level in the serum of celiac patients was significantly higher compared to healthy group (7.17±1.8ng/ml vs. 5.67±1.5ng/ml, p=0.012). Sema3A expression on Treg cells was statistically lower in celiac patients compared to healthy subjects (p=0.009) and significantly lower in celiac patients compared to celiac patients on gluten free diet (p=0.04). Negative correlation was found between Sema3A on Teg cells and the level of IgA anti-tTG antibodies (r=-0.346, p<0.01) and anti-DGP (r=-0.448, p<0.01). This study suggests involvement of the Sema3A in the pathogenesis of CD. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. GRAV-D Part II : Examining Airborne Gravity Processing Assumptions With an Aim Towards Producing a Better Gravimetric Geoid

    NASA Astrophysics Data System (ADS)

    Theresa, D. M.; Vicki, C.; Dan, R.; Dru, S.

    2008-12-01

    The primary objective of the GRAV-D (Gravity for the Redefinition of the American Vertical Datum) project is to redefine the American vertical datum by using an improved gravimetric geoid. This will be partially accomplished through an extensive airborne gravity measurement campaign, focusing first on the land/water interface (and later on interior areas) of the US and its holdings. This airborne campaign is designed specifically to capture intermediate wavelength gravity information by flying at high altitudes (35,000 ft, ~10 km) with a 10 km line spacing. The intermediate wavelengths captured by airborne gravity data are complementary to ground and satellite gravity data. Combining the GRAV-D airborne gravity data with the Gravity Recovery and Climate Experiment (GRACE) satellite gravity field will allow existing terrestrial data sets to be corrected for bias and trend problems. Ultimately, all three types of data can then be merged into a single accurate representation of the gravity field. Typically, the airborne gravity data reduction process is used to produce free-air anomalies for geological/geophysical applications that require more limited accuracy and precision than do geodetic applications. Thus we re-examine long-standing data reduction simplifications and assumptions with an aim toward improving both the accuracy and precision of airborne gravity data before their inclusion into a gravimetric geoid. The data reduction process is tested on a 400 km x 500 km airborne gravity survey in southern Alaska (in the vicinity of Anchorage) collected in the summer of 2008 as part of the GRAV-D project. Potential improvements in processing come from examining the impacts of various GPS processing schemes on free-air gravity results and re-considering all assumptions in standard airborne gravity processing methods, especially those that might introduce bias into absolute gravity levels.

  4. Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation.

    PubMed

    Wang, Hubiao; Wu, Lin; Chai, Hua; Xiao, Yaofei; Hsu, Houtse; Wang, Yong

    2017-08-10

    The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the gravity anomaly were constructed. Those characteristic values were calculated for 13 zones (105°-145° E, 0°-40° N) in the Western Pacific area, and simulation experiments of gravity matching-aided navigation were run. The influence of gravity variations on the accuracy of gravity matching-aided navigation was analyzed, and location accuracy of gravity matching in different zones was determined. Studies indicate that the new parameters may better characterize the marine gravity anomaly. Given the precision of current gravimeters and the resolution and accuracy of reference maps, the location accuracy of gravity matching in China's Western Pacific area is ~1.0-4.0 nautical miles (n miles). In particular, accuracy in regions around the South China Sea and Sulu Sea was the highest, better than 1.5 n miles. The gravity characteristic parameters identified herein and characteristic values calculated in various zones provide a reference for the selection of navigation area and planning of sailing routes under conditions requiring certain navigational accuracy.

  5. Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation

    PubMed Central

    Wang, Hubiao; Chai, Hua; Xiao, Yaofei; Hsu, Houtse; Wang, Yong

    2017-01-01

    The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the gravity anomaly were constructed. Those characteristic values were calculated for 13 zones (105°–145° E, 0°–40° N) in the Western Pacific area, and simulation experiments of gravity matching-aided navigation were run. The influence of gravity variations on the accuracy of gravity matching-aided navigation was analyzed, and location accuracy of gravity matching in different zones was determined. Studies indicate that the new parameters may better characterize the marine gravity anomaly. Given the precision of current gravimeters and the resolution and accuracy of reference maps, the location accuracy of gravity matching in China’s Western Pacific area is ~1.0–4.0 nautical miles (n miles). In particular, accuracy in regions around the South China Sea and Sulu Sea was the highest, better than 1.5 n miles. The gravity characteristic parameters identified herein and characteristic values calculated in various zones provide a reference for the selection of navigation area and planning of sailing routes under conditions requiring certain navigational accuracy. PMID:28796158

  6. Gsolve, a Python computer program with a graphical user interface to transform relative gravity survey measurements to absolute gravity values and gravity anomalies

    NASA Astrophysics Data System (ADS)

    McCubbine, Jack; Tontini, Fabio Caratori; Stagpoole, Vaughan; Smith, Euan; O'Brien, Grant

    2018-01-01

    A Python program (Gsolve) with a graphical user interface has been developed to assist with routine data processing of relative gravity measurements. Gsolve calculates the gravity at each measurement site of a relative gravity survey, which is referenced to at least one known gravity value. The tidal effects of the sun and moon, gravimeter drift and tares in the data are all accounted for during the processing of the survey measurements. The calculation is based on a least squares formulation where the difference between the absolute gravity at each surveyed location and parameters relating to the dynamics of the gravimeter are minimized with respect to the relative gravity observations, and some supplied gravity reference site values. The program additionally allows the user to compute free air gravity anomalies, with respect to the GRS80 and GRS67 reference ellipsoids, from the determined gravity values and calculate terrain corrections at each of the surveyed sites using a prism formula and a user supplied digital elevation model. This paper reviews the mathematical framework used to reduce relative gravimeter survey observations to gravity values. It then goes on to detail how the processing steps can be implemented using the software.

  7. Airborne gravimetry for geoid, geopotential models and GOCE - Himalaya and Antarctica cases (Invited)

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.

    2013-12-01

    DTU-Space has since many years carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM) side by side for increased reliability and redundancy. Typical gravity results are at the 2 mGal rms level, translating into 5-10 cm accuracy in geoid. However, in rough mountainous areas results can be more noisy, mainly due to long-period mountain waves and turbulence. In the paper we outline results of recent challenging campaigns in Nepal (2010) and Antarctica (Antarctic Peninsula and East Antarctica, 2010-13). The latest Antarctic campaign 2012/13, carried out in cooperation with the British Antarctic Survey, Norwegian Polar Institute, and the Argentine Antarctic Institute, involved air drops of fuel to a remote field camp in the Recovery Lakes region, one of the least explored region of deep interior Antarctica. The airborne data collected are validated by cross-over comparisons and comparisons to independent data (IceBridge), and serve at the same time as an independent validation of GOCE satellite gravity data, confirming the satellite data to contain information at half-wavelengths down to 80 km. With no bias between the airborne data and GOCE, airborne gravimetry is perfectly suited to cover the GOCE data gap south of 83 S. We recommend an international, coordinated airborne gravity effort should be carried out over the south polar gap as soon as possible, to ensure a uniform global accuracy of GOCE heritage future geopotential models.

  8. Bouguer gravity and crustal structure of the Dead Sea transform fault and adjacent mountain belts in Lebanon

    NASA Astrophysics Data System (ADS)

    Kamal; Khawlie, Mohamad; Haddad, Fuad; Barazangi, Muawia; Seber, Dogan; Chaimov, Thomas

    1993-08-01

    The northern extension of the Dead Sea transform fault in southern Lebanon bifurcates into several faults that cross Lebanon from south to north. The main strand, the Yammouneh fault, marks the boundary between the Levantine (eastern Mediterranean) and Arabian plates and separates the western mountain range (Mount Lebanon) from the eastern mountain range (Anti-Lebanon). Bouguer gravity contours in Lebanon approximately follow topographic contours; i.e., positive Bouguer anomalies are associated with the Mount Lebanon and Anti-Lebanon ranges. This suggests that the region is not in simple isostatic compensation. Gravity observations based on 2.5-dimensional modeling and other available geological and geophysical information have produced the following interpretations. (1) The crust of Lebanon thins from ˜35 km beneath the Anti-Lebanon range, near the Syrian border, to ˜27 km beneath the Lebanese coast. No crustal roots exist beneath the Lebanese ranges. (2) The depth to basement is ˜3.5-6 km below sea level under the ranges and is ˜8-10 km beneath the Bekaa depression. (3) The Yammouneh fault bifurcates northward into two branches; one passes beneath the Yammouneh Lake through the eastern part of Mount Lebanon and another bisects the northern part of the Bekaa Valley (i.e., Mid-Bekaa fault). The Lebanese mountain ranges and the Bekaa depression were formed as a result of transtension and later transpression associated with the relative motion of a few crustal blocks in response to the northward movement of the Arabian plate relative to the Levantine plate.

  9. Biomechanical modelling for breast image registration

    NASA Astrophysics Data System (ADS)

    Lee, Angela; Rajagopal, Vijay; Chung, Jae-Hoon; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2008-03-01

    Breast cancer is a leading cause of death in women. Tumours are usually detected by palpation or X-ray mammography followed by further imaging, such as magnetic resonance imaging (MRI) or ultrasound. The aim of this research is to develop a biophysically-based computational tool that will allow accurate collocation of features (such as suspicious lesions) across multiple imaging views and modalities in order to improve clinicians' diagnosis of breast cancer. We have developed a computational framework for generating individual-specific, 3D finite element models of the breast. MR images were obtained of the breast under gravity loading and neutrally buoyant conditions. Neutrally buoyant breast images, obtained whilst immersing the breast in water, were used to estimate the unloaded geometry of the breast (for present purposes, we have assumed that the densities of water and breast tissue are equal). These images were segmented to isolate the breast tissues, and a tricubic Hermite finite element mesh was fitted to the digitised data points in order to produce a customized breast model. The model was deformed, in accordance with finite deformation elasticity theory, to predict the gravity loaded state of the breast in the prone position. The unloaded breast images were embedded into the reference model and warped based on the predicted deformation. In order to analyse the accuracy of the model predictions, the cross-correlation image comparison metric was used to compare the warped, resampled images with the clinical images of the prone gravity loaded state. We believe that a biomechanical image registration tool of this kind will aid radiologists to provide more reliable diagnosis and localisation of breast cancer.

  10. Interpretation of Source Parameters from Total Gradient of Gravity and Magnetic Anomalies Caused by Thin Dyke using Nonlinear Global Optimization Technique

    NASA Astrophysics Data System (ADS)

    Biswas, A.

    2016-12-01

    A proficient way to deal with appraisal model parameters from total gradient of gravity and magnetic data in light of Very Fast Simulated Annealing (VFSA) has been exhibited. This is the first run through of applying VFSA in deciphering total gradient of potential field information with another detailing estimation brought on because of detached causative sources installed in the subsurface. The model parameters translated here are the amplitude coefficient (k), accurate origin of causative source (x0) depth (z0) and the shape factor (q). The outcome of VFSA improvement demonstrates that it can exceptionally decide all the model parameters when shape variable is fixed. The model parameters assessed by the present strategy, for the most part the shape and depth of the covered structures was observed to be in astounding concurrence with the genuine parameters. The technique has likewise the capability of dodging very uproarious information focuses and enhances the understanding results. Investigation of Histogram and cross-plot examination likewise proposes the translation inside the assessed ambiguity. Inversion of noise-free and noisy synthetic data information for single structures and field information shows the viability of the methodology. The procedure has been carefully and adequately connected to genuine field cases (Leona Anomaly, Senegal for gravity and Pima copper deposit, USA for magnetic) with the nearness of mineral bodies. The present technique can be to a great degree material for mineral investigation or ore bodies of dyke-like structure rooted in the shallow and more deep subsurface. The calculation time for the entire procedure is short.

  11. Reliability Coupled Sensitivity Based Design Approach for Gravity Retaining Walls

    NASA Astrophysics Data System (ADS)

    Guha Ray, A.; Baidya, D. K.

    2012-09-01

    Sensitivity analysis involving different random variables and different potential failure modes of a gravity retaining wall focuses on the fact that high sensitivity of a particular variable on a particular mode of failure does not necessarily imply a remarkable contribution to the overall failure probability. The present paper aims at identifying a probabilistic risk factor ( R f ) for each random variable based on the combined effects of failure probability ( P f ) of each mode of failure of a gravity retaining wall and sensitivity of each of the random variables on these failure modes. P f is calculated by Monte Carlo simulation and sensitivity analysis of each random variable is carried out by F-test analysis. The structure, redesigned by modifying the original random variables with the risk factors, is safe against all the variations of random variables. It is observed that R f for friction angle of backfill soil ( φ 1 ) increases and cohesion of foundation soil ( c 2 ) decreases with an increase of variation of φ 1 , while R f for unit weights ( γ 1 and γ 2 ) for both soil and friction angle of foundation soil ( φ 2 ) remains almost constant for variation of soil properties. The results compared well with some of the existing deterministic and probabilistic methods and found to be cost-effective. It is seen that if variation of φ 1 remains within 5 %, significant reduction in cross-sectional area can be achieved. But if the variation is more than 7-8 %, the structure needs to be modified. Finally design guidelines for different wall dimensions, based on the present approach, are proposed.

  12. Dynamical spacetimes in conformal gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Hongsheng; Zhang, Yi; Li, Xin-Zhou

    2017-08-01

    The conformal gravity remarkably boosts our prehension of gravity theories. We find a series of dynamical solutions in the W2-conformal gravity, including generalized Schwarzschild-Friedmann-Robertson-Walker (GSFRW), charged generalized Schwarzschild-Friedmann-Robertson-Walker (CGSFRW), especially rotating Friedmann-Robertson-Walker (RFRW), charged rotating Friedmann-Robertson-Walker (CRFRW), and a dynamical cylindrically symmetric solutions. The RFRW, CRFRW and the dynamical cylindrically symmetric solutions are never found in the Einstein gravity and modified gravities. The GSFRW and CGSFRW solutions take different forms from the corresponding solutions in the Einstein gravity.

  13. Venus gravity anomalies and their correlations with topography

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.

    1983-01-01

    This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.

  14. Interpretation of Local Gravity Anomalies in Northern New York

    NASA Astrophysics Data System (ADS)

    Revetta, F. A.

    2004-05-01

    About 10,000 new gravity measurements at a station spacing of 1 to 2 Km were made in the Adirondack Mountains, Lake Champlain Valley, St. Lawrence River Valley and Tug Hill Plateau. These closely spaced gravity measurements were compiled to construct computer contoured gravity maps of the survey areas. The gravity measurements reveal local anomalies related to seismicity, faults, mineral resources and gas fields that are not seen in the regional gravity mapping. In northern New York gravity and seismicity maps indicate epicenters are concentrated in areas of the most pronounced gravity anomalies along steep gravity gradients. Zones of weakness along the contacts of these lithologies of different density could possibly account for the earthquakes in this high stress area. Also, a computer contoured gravity map of the 5.3 magnitude Au Sable Forks earthquake of April 20, 2002 indicates the epicenter lies along a north-south trending gravity gradient produced by a high angle fault structure separating a gravity low in the west from high gravity in the east. In the St. Lawrence Valley, the Carthage-Colton Mylonite Zone, a major northeast trending structural boundary between the Adirondack Highlands and Northwest Lowlands, is represented as a steep gravity gradient extending into the eastern shore of Lake Ontario. At Russell, New York near the CCMZ, a small circular shaped gravity high coincides with a cluster of earthquakes. The coincidence of the epicenters over the high may indicate stress amplification at the boundary of a gabbro pluton. The Morristown fault located in the Morristown Quadrangle in St. Lawrence County produces both gravity and magnetic anomalies due to Precambrian Basement faulting. This faulting indicates control of the Morristown fault in the overlying Paleozoics by the Precambrian faults. Gravity and magnetic anomalies also occur over proposed extensions of the Gloucester and Winchester Springs faults into northern New York. Gravity and magnetic surveys were conducted at the closed Benson Mines magnetite mine and the Zinc Mines at Balmat, New York. The gravity and magnetic anomalies at Benson Mines indicate that significant amounts of magnetite remain in the subsurface and the steep gradients indicate a shallow depth. A gravity high of 35 gravity units in the Sylvia Lake Zinc District at Balmat, New York occurs over the upper marble and a 100 gu anomaly occurs just northeast of the zinc district. Abandoned natural gas fields exist along the southern and southwestern boundary of the Tug Hill Plateau. Gravity surveys were conducted in the vicinity of three of these gas fields in the Tug Hill Plateau (Camden, Sandy Creek and Pulaski). The Tug Hill Plateau is thought to be an uplifted-fault-bounded block which, if correct, might account for the existence of those gas fields. The trends of the gravity contours on the gravity maps lends credence to the fault interpretation. Also gravity and magnetic traverses were conducted across faults in the Trenton-Black River. These traverses show gravity anomalies across the faults which indicate control by faulting in the Precambrian.

  15. New Data Bases and Standards for Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Hildenbrand, T. G.; Webring, M. W.; Hinze, W. J.; Ravat, D.; Li, X.

    2008-12-01

    Ever since the use of high-precision gravimeters emerged in the 1950's, gravity surveys have been an important tool for geologic studies. Recent developments that make geologically useful measurements from airborne and satellite platforms, the ready availability of the Global Positioning System that provides precise vertical and horizontal control, improved global data bases, and the increased availability of processing and modeling software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases publicly available to the geoscience community by expanding their holdings and increasing the accuracy and precision of the data in them. Specifically the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States are being revised using new formats and standards to improve their coverage, standardization, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account the enhanced computational power available, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining the different components of gravity anomalies. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the calculated value of theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies in that long wavelength artifacts are removed. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. Although many types of gravity anomalies have been described, they fall into three main classes. The primary class incorporates planetary effects, which are analytically prescribed, to derive the predicted or modeled gravity, and thus, anomalies of this class are termed planetary. The most primitive version of a gravity anomaly is simply the difference between the value of gravity predicted by the effect of the reference ellipsoid and the observed gravity anomaly. When the height of the gravity station increases, the ellipsoidal gravity anomaly decreases because of the increased distance of measurement from the anomaly- producing masses. The two primary anomalies in geophysics, which are appropriately classified as planetary anomalies, are the Free-air and Bouguer gravity anomalies. They employ models that account for planetary effects on gravity including the topography of the earth. A second class of anomaly, geological anomalies, includes the modeled gravity effect of known or assumed masses leading to the predicted gravity by using geological data such as densities and crustal thickness. The third class of anomaly, filtered anomalies, removes arbitrary gravity effects of largely unknown sources that are empirically or analytically determined from the nature of the gravity anomalies by filtering.

  16. Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.

  17. Next Generation Robots for STEM Education andResearch at Huston Tillotson University

    DTIC Science & Technology

    2017-11-10

    dynamics through the following command: roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion : After...understood the system’s natural dynamics. roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion ...is created using the following command: roslaunch mtb_lab6_feedback_linearization gravity_inversion.launch Gravity inversion is just one

  18. Impact of infrasound atmospheric noise on gravity detectors used for astrophysical and geophysical applications

    NASA Astrophysics Data System (ADS)

    Fiorucci, Donatella; Harms, Jan; Barsuglia, Matteo; Fiori, Irene; Paoletti, Federico

    2018-03-01

    Density changes in the atmosphere produce a fluctuating gravity field that affects gravity strainmeters or gravity gradiometers used for the detection of gravitational waves and for geophysical applications. This work addresses the impact of the atmospheric local gravity noise on such detectors, extending previous analyses. In particular we present the effect introduced by the building housing the detectors, and we analyze local gravity-noise suppression by constructing the detector underground. We present also new sound spectra and correlation measurements. The results obtained are important for the design of future gravitational-wave detectors and gravity gradiometers used to detect prompt gravity perturbations from earthquakes.

  19. Butterfly effect in 3D gravity

    NASA Astrophysics Data System (ADS)

    Qaemmaqami, Mohammad M.

    2017-11-01

    We study the butterfly effect by considering shock wave solutions near the horizon of the anti-de Sitter black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We calculate the butterfly velocities of these models and also we consider the critical points and different limits in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a correspondence between the butterfly velocities and right-left moving degrees of freedom or the central charges of the dual 2D conformal field theories.

  20. Crustal density contrast detection by global gravity and topography models and in-situ gravity observations

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.

    2016-12-01

    Mass density contrasts in the Earth's crust can be detected using an inversion of terrestrial or airborne gravity data. This contribution shows a technique to detect short-scale density contrasts using in-situ gravity observations in combination with a high-resolution global gravity model that includes variations in the gravity field due to topography. The technique is exemplified at various test sites using the Global Gravity Model Plus (GGMplus), which is a 7.2 arcsec resolution model of the Earth's gravitational field, covering all land masses and near-coastal areas within +/- 60° latitude. The model is a composite of GRACE and GOCE satellite observations, the EGM2008 global gravity model, and short-scale topographic gravity effects. Since variations in the Earth's gravity field due to topography are successfully modelled by GGMplus, any remaining differences with in-situ gravity observations are primarily due to mass density variations. It is shown that this technique effectively filters out large-scale density variations, and highlights short-scale near-surface density contrasts in the Earth's crust. Numerical results using recent high-density gravity surveys are presented, which indicate a strong correlation between density contrasts found and known lines of geological significance.

  1. Nonsingular universe in massive gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.

    2017-06-01

    One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.

  2. An optimized workflow for building 3D models from balanced sections and potential field geophysics: a study case in NE Spain.

    NASA Astrophysics Data System (ADS)

    Ayala, Conxi; Izquierdo-Llavall, Esther; Pueyo, Emilio Luis; Rubio, Félix; Rodríguez-Pintó, Adriana; María Casas, Antonio; Oliva-Urcía, Belén; Rey-Moral, Carmen

    2015-04-01

    Obtaining an accurate 3D image of the geometry and physical properties of geological structures in depth is a challenge regardless the scale and the aim of the investigation. In this framework, assessing the origin of the uncertainties and reducing them is a key issue when building a 3D reconstruction of a target area. Usually, this process involves an interdisciplinary approach and also the use of different software whose inputs and outputs have to be interoperable. We have designed a new workflow for 2.5D and 3D geological and potential field modelling, especially useful in areas where no seismic data is available. The final aim is to obtain a 3D geological model, at a regional or local scale, with the smaller uncertainty as possible. Once the study area and the working scale are is decided, the first obvious step is to compile all preexisting data and to determine its uncertainties. If necessary, a survey will be carried out to acquire additional data (e.g., gravity, magnetic or petrophysical data) to have an appropriated coverage of information and rock samples. A thorough study of the petrophysical properties is made to determine the density, magnetic susceptibility and remanence that will be assigned to each lithology, together with its corresponding uncertainty. Finally, the modelling process is started, and it includes a feedback between geology and potential fields in order to progressively refine the model until it fits all the existing data. The procedure starts with the construction of balanced geological cross sections from field work, available geological maps as well as data from stratigraphic columns, boreholes, etc. These geological cross sections are exported and imported in GMSYS software to carry out the 2.5D potential field modelling. The model improves and its uncertainty is reduced through the feedback between the geologists and the geophysicists. Once the potential field anomalies are well adjusted, the cross sections are exported into 3DMove (Midland Valley) to construct a preliminary balanced 3D model. Inversion of the potential field data in GeoModeller is the final step to obtain a 3D model consistent with the input data and with the minimum possible uncertainty. Our case study is a 3D model from the Linking Zone between the Iberian Range and the Catalonian Costal ones (NE Spain, an extension of 11,325 km2). No seismic data was available, so we carried out several surveys to acquire new gravity data and rock samples to complete the data from IGME petrophysical databases. A total of 1470 samples have been used to define the physical properties for the modelled lithologies. The gravity data consists of 2902 stations. The initial model is based on the surface geology, eleven boreholes and 8 balanced geological cross sections built in the frame of this research. The final model resulted from gravimetric inversion has allowed us to define the geometry of the top of the basement as well as to identify two structures (anticlines) as potential CO2 reservoirs.

  3. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

  4. Combining GOCE and in-situ gravity data for precise gravity field determination and geophysical applications around the Japanese Antarctic station, Syowa, in Antarctica

    NASA Astrophysics Data System (ADS)

    Fukuda, Y.; Nogi, Y.; Matsuzaki, K.

    2012-12-01

    Syowa is the Japanese Antarctic wintering station in Lützow-Holm Bay, East Antarctica. The area around the station is considered to be a key for investigating the formation of Gondwana, because reconstruction models suggest a junction of the continents locates in the area. It is also important from a glaciological point of view, because there locates the Shirase Glacier, one of the major glaciers in Antarctica, near the station. Therefore the Japanese Antarctic Research Expedition (JARE) has been conducting in-situ gravity measurements in the area for a long period. The data sets accumulated are land gravity data since 1967, surface ship data since 1985, and airborne gravity data in 2006. However these in-situ gravity data usually suffered from the effects of instrumental drifts and lack of reference points, their accuracies are decreasing toward the longer wavelength more than several tens km. In particular in Antarctica where very few gravity reference points are available, the long wavelength accuracy and/or consistency among the data sets are quite limited. GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite launched in March 2009 by ESA (European Space Agency) aims at improving static gravity fields, in particular at short wavelengths. In addition to its low-altitude orbit (250km), the sensitive gravity gradiometer installed is expected to reveal 1 mgal gravity anomalies at the spatial resolution of 100km (half wavelength). Actually recently released GOCE EGMs (Earth Gravity Models) have improved the accuracy of the static gravity filed tremendously. These EGMs are expected to serve as the long wavelength references for the in-situ gravity data. Thus, firstly, we aims at determining an improved gravity fields around Syowa by combining the JARE gravity data and the recent EGMs. And then, using the gravity anomalies, we determine the subsurface density structures. We also evaluated the impacts of the EGMs for estimating the density structures.

  5. Terrestrial Gravity Fluctuations.

    PubMed

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10 -23 Hz -1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

  6. Gravity data from the San Pedro River Basin, Cochise County, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Winester, Daniel

    2011-01-01

    The U.S. Geological Survey, Arizona Water Science Center in cooperation with the National Oceanic and Atmospheric Administration, National Geodetic Survey has collected relative and absolute gravity data at 321 stations in the San Pedro River Basin of southeastern Arizona since 2000. Data are of three types: observed gravity values and associated free-air, simple Bouguer, and complete Bouguer anomaly values, useful for subsurface-density modeling; high-precision relative-gravity surveys repeated over time, useful for aquifer-storage-change monitoring; and absolute-gravity values, useful as base stations for relative-gravity surveys and for monitoring gravity change over time. The data are compiled, without interpretation, in three spreadsheet files. Gravity values, GPS locations, and driving directions for absolute-gravity base stations are presented as National Geodetic Survey site descriptions.

  7. Longitudinal Variations of Low-Latitude Gravity Waves and Their Impacts on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Cullens, C. Y.; England, S.; Immel, T. J.

    2014-12-01

    The lower atmospheric forcing has important roles in the ionospheric variability. However, influences of lower atmospheric gravity waves on the ionospheric variability are still not clear due to the simplified gravity wave parameterizations and the limited knowledge of gravity wave distributions. In this study, we aim to study the longitudinal variations of gravity waves and their impacts of longitudinal variations of low-latitude gravity waves on the ionospheric variability. Our SABER results show that longitudinal variations of gravity waves at the lower boundary of TIME-GCM are the largest in June-August and January-February. We have implemented these low-latitude gravity wave variations from SABER instrument into TIME-GCM model. TIME-GCM simulation results of ionospheric responses to longitudinal variations of gravity waves and physical mechanisms will be discussed.

  8. Calibration Matters: Advances in Strapdown Airborne Gravimetry

    NASA Astrophysics Data System (ADS)

    Becker, D.

    2015-12-01

    Using a commercial navigation-grade strapdown inertial measurement unit (IMU) for airborne gravimetry can be advantageous in terms of cost, handling, and space consumption compared to the classical stable-platform spring gravimeters. Up to now, however, large sensor errors made it impossible to reach the mGal-level using such type IMUs as they are not designed or optimized for this kind of application. Apart from a proper error-modeling in the filtering process, specific calibration methods that are tailored to the application of aerogravity may help to bridge this gap and to improve their performance. Based on simulations, a quantitative analysis is presented on how much IMU sensor errors, as biases, scale factors, cross couplings, and thermal drifts distort the determination of gravity and the deflection of the vertical (DOV). Several lab and in-field calibration methods are briefly discussed, and calibration results are shown for an iMAR RQH unit. In particular, a thermal lab calibration of its QA2000 accelerometers greatly improved the long-term drift behavior. Latest results from four recent airborne gravimetry campaigns confirm the effectiveness of the calibrations applied, with cross-over accuracies reaching 1.0 mGal (0.6 mGal after cross-over adjustment) and DOV accuracies reaching 1.1 arc seconds after cross-over adjustment.

  9. High-frequency analysis of Earth gravity field models based on terrestrial gravity and GPS/levelling data: a case study in Greece

    NASA Astrophysics Data System (ADS)

    Papanikolaou, T. D.; Papadopoulos, N.

    2015-06-01

    The present study aims at the validation of global gravity field models through numerical investigation in gravity field functionals based on spherical harmonic synthesis of the geopotential models and the analysis of terrestrial data. We examine gravity models produced according to the latest approaches for gravity field recovery based on the principles of the Gravity field and steadystate Ocean Circulation Explorer (GOCE) and Gravity Recovery And Climate Experiment (GRACE) satellite missions. Furthermore, we evaluate the overall spectrum of the ultra-high degree combined gravity models EGM2008 and EIGEN-6C3stat. The terrestrial data consist of gravity and collocated GPS/levelling data in the overall Hellenic region. The software presented here implements the algorithm of spherical harmonic synthesis in a degree-wise cumulative sense. This approach may quantify the bandlimited performance of the individual models by monitoring the degree-wise computed functionals against the terrestrial data. The degree-wise analysis performed yields insight in the short-wavelengths of the Earth gravity field as these are expressed by the high degree harmonics.

  10. Effects of altered gravity on a distribution of rDNA and nucleolar proteins and the expression of nucleolar proteins in plants

    NASA Astrophysics Data System (ADS)

    Sobol, Margaryta; Kordyum, Elizabeth; Medina, Francisco Javier

    The nucleolus is an inner nuclear organelle originated from the activity of hundreds of rRNA genes, typically spanning several megabases. It morphologically reflects the functional events leading to ribosome biogenesis, from the transcription of rDNA through the processing of nascent pre-rRNA to the assembly of pre-ribosomes. A typical nucleolus consists of three major elements, namely fibrillar centers (FCs), the dense fibrillar component (DFC), and granular component (GC). The rate of ribosome biosynthesis and the subnucleolar structure are reliable monitors of the general level of cell metabolism and, consequently, of the rate of cellular growth, being influenced with many external factors, among which altered gravity could be included. Thus, we can hypothesize that the structural organization of the nucleolar subcomponents and the level, distribution and quantitative/qualitative characteristics of the nucleolar proteins would be changed under conditions of altered gravity. To confirm our hypothesis, we applied parallel procedures, such as cytochemistry, immunofluorescence, confocal laser microscopy, immunogold electron microscopy, monoand bi-dimensional electrophoresis and immunoblotting in root meristematic cells from two-day cress seedlings grown under slow horizontal clinorotation (2 rpm) and in stationary control. The complex model of the ultrastructural organization and functions of the nucleolus was created based on the location of rDNA and the nucleolar proteins fibrillarin, NhL90 and NhL68, these latter being cress nucleolin homologues. The principal stages of ribosome biogenesis, namely ribosomal gene activation, rDNA transcription and pre-rRNA processing were reflected in this model. Compared to the pattern shown in control ground gravity conditions, we found firstly a redistribution of both rDNA and nucleolar proteins in nucleolar subcomponents, induced by clinorotation. Under the conditions of altered gravity, nucleolar DNA concentrated predominantly in FCs in the form of condensed chromatin inclusions and internal non condensed fibrils, redistributing from the DFC and the transition zone between FCs and the DFC, recognized as the site of rDNA transcription. Regarding nucleolar proteins, a general decrease in the levels of fibrillarin and the nucleolin homologues, evaluated by estimating the density of immunogold labeling on the nucleolus, was recorded firstly in clinorotated samples, compared to controls. Furthermore, the intranucleolar location of the investigated proteins was also observed to change in response to the growth in altered gravity conditions. In particular, a decrease in the quantity of these proteins in the transition zone FCs-DFC as well as in the bulk of the DFC was observed in the experimental samples, compared to controls, whereas the content of the proteins was much higher in the inner space of FCs. Concerning the two-dimensional nuclear proteome, we revealed a decrease in the isoelectric point (pI) range of soluble proteins, which are known to be actively engaged in RNA (including rRNA) metabolism, and a shortening in the molecular weight range of them under clinorotation. Besides, minor and major protein spots in clinorotated samples showed decreased optical densities in comparison to control ones. Moreover, we showed the shortening of both the pI and the molecular weight ranges of the spots corresponding to the major nucleolin homologue NhL90 (detected by cross-reaction with anti-onion NopA100) in the fraction of soluble proteins in altered gravity. Based on these data, an effect of altered gravity in lowering the level of rDNA transcription as well as rRNA processing, that could be the evidence of a decrease in the level of nucleolar functional activity, is suggested.

  11. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys to the new network, the regional compilation of Bouguer gravity data and a new updated Bouguer gravity anomaly map for northeastern Mexico.

  12. Cavitation studies in microgravity

    NASA Astrophysics Data System (ADS)

    Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele

    The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion. The aim of our future microgravity experiment is to assess the direct effects of gravity on cavitation bubble collapse through a comparison of single cavitation bubbles collapsing in mi-crogravity, normal gravity, and hypergravity. In particular, we shall investigate the shape of the bubble in its final collapse stage and the amount of energy dissipated in the dominant collapse channels, such as liquid jet, shock wave, and rebound bubble. The highly spherical bubbles will be produced via a point-like plasma generated by a high power laser beam. One major hypothesis that we will test is an increase in shock wave energy with decreasing gravity as a consequence of the higher final sphericity and suppression of liquid jets. To support this, we introduce an analytical model for the gravity-perturbed asymmetric collapse of spherical bubbles, and demonstrate that all initially spherical bubbles develop a gravity-related vertical jet along their collapse.

  13. Mean Gravity Anomaly Prediction Techniques with a Comparative Analysis of the Accuracy and Economy of Selected Methods.

    DTIC Science & Technology

    1982-03-01

    gravity anomaly values computed from measured gravity at discrete points (x,y) within the 10 x 10 area. If the Ag are Bouguer gravity anomalies, the Ag is...a 10 x 10 mean Bouguer anomaly. If the Ag are free-air gravity anomalies, the Ag is a 10 x 10 mean free-air gravity anomaly. Either anomaly form can...it requires less subjective judgment. Predictions in continental areas always are made using Bouguer gravity anomalies because this anomaly form is

  14. The report of the Gravity Field Workshop

    NASA Astrophysics Data System (ADS)

    Smith, D. E.

    1982-04-01

    A Gravity Field Workshop was convened to review the actions which could be taken prior to a GRAVSAT mission to improve the Earth's gravity field model. This review focused on the potential improvements in the Earth's gravity field which could be obtained using the current satellite and surface gravity data base. In particular, actions to improve the quality of the gravity field determination through refined measurement corrections, selected data augmentation and a more accurate reprocessing of the data were considered. In addition, recommendations were formulated which define actions which NASA should take to develop the necessary theoretical and computation techniques for gravity model determination and to use these approaches to improve the accuracy of the Earth's gravity model.

  15. Contributions of satellite-determined gravity results in geodesy

    NASA Technical Reports Server (NTRS)

    Khan, M. A.

    1974-01-01

    Different forms of the theoretical gravity formula are summarized and methods of standardization of gravity anomalies obtained from satellite gravity and terrestrial gravity data are discussed in the context of three most commonly used reference figures, e.g., International Reference Ellipsoid, Reference Ellipsoid 1967, and Equilibrium Reference Ellipsoid. These methods are important in the comparison and combination of satellite gravity and gravimetric data as well as the integration of surface gravity data, collected with different objectives, in a single reference system. For ready reference, tables for such reductions are computed. Nature of the satellite gravity anomalies is examined to aid the geophysical and geodetic interpretation of these anomalies in terms of the tectonic features of the earth and the structure of the earth's crust and mantle. Computation of the Potsdam correction from satellite-determined geopotential is reviewed. The contribution of the satellite gravity results in decomposing the total observed gravity anomaly into components of geophysical interest is discussed. Recent work on the possible temporal variations in the geogravity field is briefly reviewed.

  16. Geologic interpretation of gravity data from the Date Creek basin and adjacent areas, west-central Arizona

    USGS Publications Warehouse

    Otton, James K.; Wynn, Jeffrey C.

    1978-01-01

    A gravity survey of the Date Creek Basin and adjacent areas was conducted in June 1977 to provide information for the interpretation of basin geology. A comparison of facies relations in the locally uraniferous Chapin Wash Formation and the position of the Anderson mine gravity anomaly in the Date Creek Basin suggested that a relationship between gravity lows and the development of thick lacustrine sections in the region might exist. A second-order residual gravity map derived from the complete Bouguer gravity map for the survey area (derived from survey data and pre-existing U.S. Department of Defense data) shows an excellent correspondence between gravity lows and sediment-filled basins and suggests considerable variation in basin-fill thickness. Using the Anderson mine anomaly as a model, gravity data and facies relations suggest that the southeastern flank of the Aguila Valley gravity low and the gravity low at the western end of the Hassayampa Plain are likely areas for finding thick sections of tuffaceous lacustrine rocks.

  17. Failures in sand in reduced gravity environments

    NASA Astrophysics Data System (ADS)

    Marshall, Jason P.; Hurley, Ryan C.; Arthur, Dan; Vlahinic, Ivan; Senatore, Carmine; Iagnemma, Karl; Trease, Brian; Andrade, José E.

    2018-04-01

    The strength of granular materials, specifically sand is important for understanding physical phenomena on other celestial bodies. However, relatively few experiments have been conducted to determine the dependence of strength properties on gravity. In this work, we experimentally investigated relative values of strength (the peak friction angle, the residual friction angle, the angle of repose, and the peak dilatancy angle) in Earth, Martian, Lunar, and near-zero gravity. The various angles were captured in a classical passive Earth pressure experiment conducted on board a reduced gravity flight and analyzed using digital image correlation. The data showed essentially no dependence of the peak friction angle on gravity, a decrease in the residual friction angle between Martian and Lunar gravity, no dependence of the angle of repose on gravity, and an increase in the dilation angle between Martian and Lunar gravity. Additionally, multiple flow surfaces were seen in near-zero gravity. These results highlight the importance of understanding strength and deformation mechanisms of granular materials at different levels of gravity.

  18. Principal facts for 408 gravity stations in the vicinity of the Talkeetna Mountains, south-central Alaska

    USGS Publications Warehouse

    Morin, Robert L.; Glen, Jonathan M.G.

    2003-01-01

    Gravity data were collected between 1999 and 2002 along transects in the Talkeetna Mountains of south-central Alaska as part of a geological and geophysical study of the framework geology of the region. The study area lies between 61° 30’ and 63° 45’ N. latitude and 145° and 151° W. longitude. This data set includes 408 gravity stations. These data, combined with the pre-existing 3,286 stations, brings the total data in this area to 3,694 gravity stations. Principal facts for the 408 new gravity stations and the 15 gravity base stations used for control are listed in this report. During the summer of 1999, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 55 gravity stations were made. One gravity base station was used for control for this survey. This base station, STEP, is located at the Stephan Lake Lodge on Stephan Lake. The observed gravity of this station was calculated based on an indirect tie to base station ANCL in Anchorage. The temporary base used to tie between STEP and ANCL was REGL in Anchorage. During the summer of 2000, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 56 gravity stations were made. One gravity base station was used for control for this survey. This base station, GRHS, is located at the Gracious House Lodge on the Denali Highway. The observed gravity of this station was calculated based on multiple ties to base stations D87, and D57 along the Denali Highway. During the summer of 2001, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 90 gravity stations were made. One gravity base station was used for control for this survey. This base station, HLML, is located at the High Lake Lodge. The observed gravity of this station was calculated based on multiple ties to base stations ANCU in Anchorage, PALH in Palmer, WASA in Wasilla, and TLKM in Talkeetna. Also during the summer of 2001, a gravity survey was conducted in the vicinity of Tangle Lakes. Measurements at 86 gravity stations were made. The Tangle Lakes area is located about 25 km west of Paxson and north of the Denali Highway. One gravity base station was used for control for this survey. This base station, TLIN, is located at the Tangle Lakes Inn. The observed gravity of this station was calculated based on multiple ties to base stations ANCU in Anchorage, PALH in Palmer, BD27 in Gulkana, B-07 on the Richardson Highway, and base stations D42, and D57 along the Denali Highway. During the summer of 2002, measurements at an additional 107 gravity stations were made in the vicinity of Tangle Lakes. Base station TLIN at the Tangle Lakes Inn was again used for control. Additional ties to base stations ANCU and B-07 were made.

  19. Effects of Gravity on Processing Heavy Metal Fluoride Fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1997-01-01

    The effects of gravity on the crystal nucleation of heavy metal fluoride fibers have been studied in preliminary experiments utilizing NASA's KC-135 reduced gravity aircraft and a microgravity sounding rocket flight. Commercially produced fibers were heated to the crystallization temperature in normal and reduced gravity. The fibers processed in normal gravity showed complete crystallization while the fibers processed in reduced gravity did not show signs of crystallization.

  20. Gravity Waves in the Southern Hemisphere Extratropical Winter in the 7-km GEOS-5 Nature Run

    NASA Astrophysics Data System (ADS)

    Holt, L. A.; Alexander, M. J.; Coy, L.; Putman, W.; Molod, A.; Pawson, S.

    2016-12-01

    This study investigates winter Southern Hemisphere extratropical gravity waves and their sources in a 7-km horizontal resolution global climate simulation, the GEOS-5 Nature Run (NR). Gravity waves are evaluated by comparing brightness temperature anomalies to those from the Atmospheric Infrared Sounder (AIRS). Gravity wave amplitudes, wavelengths, and propagation directions are also computed in the NR and AIRS. The NR shows good agreement with AIRS in terms of spatial patterns of gravity wave activity and propagation directions, but the NR amplitudes are smaller by about a factor of 5 and the wavelengths are about a factor of 2 longer than in AIRS. In addition to evaluating gravity wave characteristics, gravity wave sources in the NR are also investigated by relating diagnostics of tropospheric sources of gravity waves, such as precipitation, frontogenesis, and potential vorticity anomalies to absolute gravity wave momentum fluxes in the lower stratosphere. Strong precipitation events are the most strongly correlated with absolute momentum flux, supporting previous studies highlighting the importance of moist processes in the generation of Southern Hemisphere extratropical gravity waves. Additionally, gravity wave absolute momentum fluxes over land are compared to those over ocean, and the contribution of orographic and nonorographic gravity waves to the total absolute momentum flux is examined.

  1. Contribution of the GOCE gradiometer components to regional gravity solutions

    NASA Astrophysics Data System (ADS)

    Naeimi, Majid; Bouman, Johannes

    2017-05-01

    The contribution of the GOCE gravity gradients to regional gravity field solutions is investigated in this study. We employ radial basis functions to recover the gravity field on regional scales over Amazon and Himalayas as our test regions. In the first step, four individual solutions based on the more accurate gravity gradient components Txx, Tyy, Tzz and Txz are derived. The Tzz component gives better solution than the other single-component solutions despite the less accuracy of Tzz compared to Txx and Tyy. Furthermore, we determine five more solutions based on several selected combinations of the gravity gradient components including a combined solution using the four gradient components. The Tzz and Tyy components are shown to be the main contributors in all combined solutions whereas the Txz adds the least value to the regional gravity solutions. We also investigate the contribution of the regularization term. We show that the contribution of the regularization significantly decreases as more gravity gradients are included. For the solution using all gravity gradients, regularization term contributes to about 5 per cent of the total solution. Finally, we demonstrate that in our test areas, regional gravity modelling based on GOCE data provide more reliable gravity signal in medium wavelengths as compared to pre-GOCE global gravity field models such as the EGM2008.

  2. A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons, 1. Planetary scales

    NASA Astrophysics Data System (ADS)

    Vial, F.; Hertzog, A.; Mechoso, C. R.; Basdevant, C.; Cocquerez, P.; Dubourg, V.; Nouel, F.

    2001-10-01

    In the late southern winter of 1998, Center National d'Études Spatiales (CNES), the French Space Agency, released six 10-m-diameter, superpressure balloons from a location near Quito, Ecuador. Three balloons collapsed soon after launching, but the remaining three drifted westward for a few weeks at altitudes between 19 and 20 km. Two of those balloons crossed the Pacific Ocean before falling above the ``maritime continent,'' while the other completed a revolution around the Earth and crossed the Pacific for a second time before its final fall. Despite the small number and the relatively short duration of the flights, the balloons provided a unique in situ data set for the lower equatorial stratosphere. This part 1 of a two-part paper describes this data set and analyzes outstanding features in the planetary scales. Part 2 focuses on gravity-wave scale. It is argued that balloon trajectories over the Pacific are primarily determined by the westward drift during the easterly phase of the equatorial quasi-biennial oscillation (QBO) and the meridional velocity field of a mixed Rossby-gravity (Yanai) wave with an apparent period of 4 days and zonal wave number 4. This wave appears to have two episodes of amplification during the balloon flights. It is also argued that the balloons show evidence of oscillations with periods between 2 and 4 days and of a Kelvin wave with an apparent period close to 10 days and zonal wave number 1. In this way, the balloon behavior provided a pictorial view of air parcel trajectory in the equatorial lower stratosphere. It is stated that larger balloon campaigns can provide excellent in situ data sets for studies on the dynamics and composition of the middle atmosphere.

  3. Apparatus for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, C.D.; Scott, T.C.; Davison, B.H.

    1998-03-19

    An apparatus is described for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column. 1 fig.

  4. Apparatus and method for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, Charles D.; Scott, Timothy C.; Davison, Brian H.

    1998-01-01

    An apparatus and method for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.

  5. Apparatus for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, Charles D.; Scott, Timothy C.; Davison, Brian H.

    1998-01-01

    An apparatus for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.

  6. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser.

    PubMed

    Müller, R Dietmar; Qin, Xiaodong; Sandwell, David T; Dutkiewicz, Adriana; Williams, Simon E; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2016-01-01

    The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.

  7. Two-layer Crustal Structure of the Contiguous United States from Joint Inversion of USArray Receiver Functions and Gravity

    NASA Astrophysics Data System (ADS)

    Ma, X.; Lowry, A. R.

    2015-12-01

    The composition and thickness of crustal layering is fundamental to understanding the evolution and dynamics of continental lithosphere. Lowry and Pérez-Gussinyé (2011) found that the western Cordillera of the United States, characterized by active deformation and high heat flow, is strongly correlated with low bulk crustal seismic velocity ratio. They interpreted this observation as evidence that quartz controls continental tectonism and deformation. We will present new imaging of two-layer crustal composition and structure from cross-correlation of observed receiver functions and model synthetics. The cross-correlation coefficient of the two-layer model increases significantly relative to an assumed one-layer model, and the lower crustal thickness map from raw two-layer modeling (prior to Bayesian filtering with gravity models and Optimal Interpolation) clearly shows Colorado plateau and Appalachian boundaries, which are not apparent in upper crustal models, and also the high vP/vS fill the most of middle continental region while low vP/vS are on the west and east continental edge. In the presentation, we will show results of a new algorithm for joint Bayesian inversion of thickness and vP/vS of two-layer continental crustal structure. Recent thermodynamical modeling of geophysical models based on lab experiment data (Guerri et al., 2015) found that a large impedance contrast can be expected in the midcrust due to a phase transition that decreases plagioclase and increases clinopyroxene, without invoking any change in crustal chemistry. The depth of the transition depends on pressure, temperature and hydration, and in this presentation we will compare predictions of layer thicknesses and vP/vS predicted by mineral thermodynamics to those we observe in the USArray footprint.

  8. Shear-wave velocities beneath the Harrat Rahat volcanic field, Saudi Arabia, using ambient seismic noise analysis

    NASA Astrophysics Data System (ADS)

    Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.

    2017-12-01

    We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.

  9. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser

    PubMed Central

    Müller, R. Dietmar; Qin, Xiaodong; Sandwell, David T.; Dutkiewicz, Adriana; Williams, Simon E.; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2016-01-01

    The pace of scientific discovery is being transformed by the availability of ‘big data’ and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth’s gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry. PMID:26960151

  10. 27 CFR 30.25 - Use of precision specific gravity hydrometers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... gravity hydrometers. 30.25 Section 30.25 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... precision specific gravity hydrometers. The provisions of § 30.23 respecting the care, handling, and use of... specific gravity hydrometers. Specific gravity hydrometers shall be read to the nearest subdivision...

  11. The Earth's Gravity and Its Geological Significance.

    ERIC Educational Resources Information Center

    Cook, A. H.

    1980-01-01

    Discussed is the earth's gravity and its geological significance. Variations of gravity around the earth can be produced by a great variety of possible distributions of density within the earth. Topics discussed include isostasy, local structures, geological exploration, change of gravity in time, and gravity on the moon and planets. (DS)

  12. 14 CFR 29.27 - Center of gravity limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  13. 14 CFR 29.27 - Center of gravity limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  14. 27 CFR 30.25 - Use of precision specific gravity hydrometers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... gravity hydrometers. 30.25 Section 30.25 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... precision specific gravity hydrometers. The provisions of § 30.23 respecting the care, handling, and use of... specific gravity hydrometers. Specific gravity hydrometers shall be read to the nearest subdivision...

  15. 27 CFR 30.25 - Use of precision specific gravity hydrometers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... gravity hydrometers. 30.25 Section 30.25 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... precision specific gravity hydrometers. The provisions of § 30.23 respecting the care, handling, and use of... specific gravity hydrometers. Specific gravity hydrometers shall be read to the nearest subdivision...

  16. 27 CFR 30.25 - Use of precision specific gravity hydrometers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... gravity hydrometers. 30.25 Section 30.25 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... precision specific gravity hydrometers. The provisions of § 30.23 respecting the care, handling, and use of... specific gravity hydrometers. Specific gravity hydrometers shall be read to the nearest subdivision...

  17. 27 CFR 30.25 - Use of precision specific gravity hydrometers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... gravity hydrometers. 30.25 Section 30.25 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... precision specific gravity hydrometers. The provisions of § 30.23 respecting the care, handling, and use of... specific gravity hydrometers. Specific gravity hydrometers shall be read to the nearest subdivision...

  18. 14 CFR 29.27 - Center of gravity limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  19. 14 CFR 29.27 - Center of gravity limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  20. 14 CFR 29.27 - Center of gravity limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  1. Present status of marine gravity

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1978-01-01

    The technique of measuring gravity at sea was greatly improved by the development of spring-type surface-ship gravimeters which can be operated in a wide variety of sea conditions. A brief review of the most recent developments in marine gravity is presented. The extent of marine gravity data coverage is illustrated in a compilation map of the world's free-air gravity anomaly maps of the world's oceans. A brief discussion of some of the main results in the interpretation of marine gravity is given. Some comments made on recent determinations of the gravity field in oceanic regions using satellite radar altimeters are also presented.

  2. (abstract) Venus Gravity Field

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Sjogren, W. L.

    1995-01-01

    A global gravity field model of Venus to degree and order 75 (5772 spherical harmonic coefficients) has been estimated from Doppler radio tracking of the orbiting spacecraft Pioneer Venus Orbiter (1979-1992) and Magellan (1990-1994). After the successful aerobraking of Magellan, a near circular polar orbit was attained and relatively uniform gravity field resolution (approximately 200 km) was obtained with formal uncertainties of a few milligals. Detailed gravity for several highland features are displayed as gravity contours overlaying colored topography. The positive correlation of typography with gravity is very high being unlike that of the Earth, Moon, and Mars. The amplitudes are Earth-like, but have significantly different gravity-topography ratios for different features. Global gravity, geoid, and isostatic anomaly maps as well as the admittance function are displayed.

  3. The Role of GRAIL Orbit Determination in Preprocessing of Gravity Science Measurements

    NASA Technical Reports Server (NTRS)

    Kruizinga, Gerhard; Asmar, Sami; Fahnestock, Eugene; Harvey, Nate; Kahan, Daniel; Konopliv, Alex; Oudrhiri, Kamal; Paik, Meegyeong; Park, Ryan; Strekalov, Dmitry; hide

    2013-01-01

    The Gravity Recovery And Interior Laboratory (GRAIL) mission has constructed a lunar gravity field with unprecedented uniform accuracy on the farside and nearside of the Moon. GRAIL lunar gravity field determination begins with preprocessing of the gravity science measurements by applying corrections for time tag error, general relativity, measurement noise and biases. Gravity field determination requires the generation of spacecraft ephemerides of an accuracy not attainable with the pre-GRAIL lunar gravity fields. Therefore, a bootstrapping strategy was developed, iterating between science data preprocessing and lunar gravity field estimation in order to construct sufficiently accurate orbit ephemerides.This paper describes the GRAIL measurements, their dependence on the spacecraft ephemerides and the role of orbit determination in the bootstrapping strategy. Simulation results will be presented that validate the bootstrapping strategy followed by bootstrapping results for flight data, which have led to the latest GRAIL lunar gravity fields.

  4. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation.

    PubMed

    Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-03-16

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.

  5. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  6. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation

    PubMed Central

    Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-01-01

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552

  7. Forced and natural convection in laminar-jet diffusion flames. [normal-gravity, inverted-gravity and zero-gravity flames

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1981-01-01

    An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.

  8. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, William; Freidel, Laurent

    We consider the problem of defining localized subsystems in gauge theory and gravity. Such systems are associated to spacelike hypersurfaces with boundaries and provide the natural setting for studying entanglement entropy of regions of space. We present a general formalism to associate a gauge-invariant classical phase space to a spatial slice with boundary by introducing new degrees of freedom on the boundary. In Yang-Mills theory the new degrees of freedom are a choice of gauge on the boundary, transformations of which are generated by the normal component of the nonabelian electric field. In general relativity the new degrees of freedommore » are the location of a codimension-2 surface and a choice of conformal normal frame. These degrees of freedom transform under a group of surface symmetries, consisting of diffeomorphisms of the codimension-2 boundary, and position-dependent linear deformations of its normal plane. We find the observables which generate these symmetries, consisting of the conformal normal metric and curvature of the normal connection. We discuss the implications for the problem of defining entanglement entropy in quantum gravity. Finally, our work suggests that the Bekenstein-Hawking entropy may arise from the different ways of gluing together two partial Cauchy surfaces at a cross-section of the horizon.« less

  10. Longitudinal changes in ventral and dorsal neck muscle layers during loading against gravity in healthy volunteers using speckle tracking.

    PubMed

    Peolsson, Anneli; Peolsson, Michael

    2014-05-01

    This study aimed to describe and compare the longitudinal mechanical activity, deformation, and deformation rate of the different layers of dorsal and ventral neck muscles in healthy volunteers during head lifts against gravity. The cross-sectional study included 19 healthy volunteers (mean age, 28 years; SD, 7 years). Ultrasound with speckle-tracking analysis was used to investigate longitudinal mechanical activation, deformation, and deformation rate of dorsal and ventral neck muscles in real time during a head lift. Significance levels were set as P = .025 or P = .0125, depending on the number of comparisons. The dorsal neck muscles did not significantly differ in deformation (P > .04); however, the multifidus had a higher deformation rate than all other dorsal muscles (P < .003). The sternocleidomastoid had significantly higher deformation than the longus capitis (P = .005) and colli (P = .001) but a lower deformation rate than the longus colli (P = .02). The sternocleidomastoid deformed more than the deeper muscles, but it did significantly slower than the longus colli. Among the dorsal muscles, the deepest (the multifidus) had the highest deformation rate. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  11. Forming Circumbinary Planets: N-body Simulations of Kepler-34

    NASA Astrophysics Data System (ADS)

    Lines, S.; Leinhardt, Z. M.; Paardekooper, S.; Baruteau, C.; Thebault, P.

    2014-02-01

    Observations of circumbinary planets orbiting very close to the central stars have shown that planet formation may occur in a very hostile environment, where the gravitational pull from the binary should be very strong on the primordial protoplanetary disk. Elevated impact velocities and orbit crossings from eccentricity oscillations are the primary contributors to high energy, potentially destructive collisions that inhibit the growth of aspiring planets. In this work, we conduct high-resolution, inter-particle gravity enabled N-body simulations to investigate the feasibility of planetesimal growth in the Kepler-34 system. We improve upon previous work by including planetesimal disk self-gravity and an extensive collision model to accurately handle inter-planetesimal interactions. We find that super-catastrophic erosion events are the dominant mechanism up to and including the orbital radius of Kepler-34(AB)b, making in situ growth unlikely. It is more plausible that Kepler-34(AB)b migrated from a region beyond 1.5 AU. Based on the conclusions that we have made for Kepler-34, it seems likely that all of the currently known circumbinary planets have also migrated significantly from their formation location with the possible exception of Kepler-47(AB)c.

  12. Dark matter, proton decay and other phenomenological constraints in F-SU(5)

    NASA Astrophysics Data System (ADS)

    Li, Tianjun; Maxin, James A.; Nanopoulos, Dimitri V.; Walker, Joel W.

    2011-07-01

    We study gravity mediated supersymmetry breaking in F-SU(5) and its low-energy supersymmetric phenomenology. The gaugino masses are not unified at the traditional grand unification scale, but we nonetheless have the same one-loop gaugino mass relation at the electroweak scale as minimal supergravity (mSUGRA). We introduce parameters testable at the colliders to measure the small second loop deviation from the mSUGRA gaugino mass relation at the electroweak scale. In the minimal SU(5) model with gravity mediated supersymmetry breaking, we show that the deviations from the mSUGRA gaugino mass relations are within 5%. However, in F-SU(5), we predict the deviations from the mSUGRA gaugino mass relations to be larger due to the presence of vector-like particles, which can be tested at the colliders. We determine the viable parameter space that satisfies all the latest experimental constraints and find it is consistent with the CDMS II experiment. Further, we compute the cross-sections of neutralino annihilations into gamma-rays and compare to the first published Fermi-LAT measurement. Finally, the corresponding range of proton lifetime predictions is calculated and found to be within reach of the future Hyper-Kamiokande and DUSEL experiments.

  13. A mobile work station concept for mechanically aided astronaut assembly of large space trusses

    NASA Technical Reports Server (NTRS)

    Heard, W. L., Jr.; Bush, H. G.; Wallson, R. E.; Jensen, J. K.

    1983-01-01

    This report presents results of a series of truss assembly tests conducted to evaluate a mobile work station concept intended to mechanically assist astronaut manual assembly of erectable space trusses. The tests involved assembly of a tetrahedral truss beam by a pair of test subjects with and without pressure (space) suits, both in Earth gravity and in simulated zero gravity (neutral buoyancy in water). The beam was assembled from 38 identical graphite-epoxy nestable struts, 5.4 m in length with aluminum quick-attachment structural joints. Struts and joints were designed to closely simulate flight hardware. The assembled beam was approximately 16.5 m long and 4.5 m on each of the four sides of its diamond-shaped cross section. The results show that average in-space assembly rates of approximately 38 seconds per strut can be expected for struts of comparable size. This result is virtually independent of the overall size of the structure being assembled. The mobile work station concept would improve astronaut efficiency for on-orbit manual assembly of truss structures, and also this assembly-line method is highly competitive with other construction methods being considered for large space structures.

  14. Insights into crustal structure of the Eastern North American Margin from community multichannel seismic and potential field data

    NASA Astrophysics Data System (ADS)

    Davis, J. K.; Becel, A.; Shillington, D. J.; Buck, W. R.

    2017-12-01

    In the fall of 2014, the R/V Marcus Langseth collected gravity, magnetic, and reflection seismic data as part of the Eastern North American Margin Community Seismic Experiment. The dataset covers a 500 km wide section of the Mid-Atlantic passive margin offshore North Carolina, which formed after the Mesozoic breakup of the supercontinent Pangaea. Using these seismic and potential field data, we present observations and interpretations along two cross margin and one along-margin profiles. Analyses and interpretations are conducted using pre-stack depth migrated reflection seismic profiles in conjunction with forward modeling of shipboard gravity and magnetic anomalies. Preliminary interpretations of the data reveal variations in basement character and structure across the entire transition between continental and oceanic domains. These interpretations help provide insight into the origin and nature of the prominent East Coast and Blake Spur magnetic anomalies, as well as the Inner Magnetic Quiet Zone which occupies the domain between the anomalies. Collectively, these observations can aid in deciphering the rift-to-drift transition during the breakup of North America and West Africa and formation of the Central Atlantic.

  15. Gravity Chromatic Imaging of the Eta Car's Core

    NASA Astrophysics Data System (ADS)

    Sanchez-Bermudez, Joel

    2018-04-01

    Eta Car is one of the most massive, and intriguing, Luminous Blue Variables known. In its core resides a binary with a 5.54 years orbital period. Visible, infrared, and X-raobservations suggest that the primary star exhibits a very dense wind with a terminal velocity of about 420 km/s, while the secondary shows a much faster and less dense wind with a terminal velocity of 3000 km/s. The wind-wind collision zone at the core of Eta Car is thus a complex region that deserves a detailed study to understand the effect of the binary interaction in the evolution of the system. Here, we will present a unique imaging campaign with GRAVITY/VLTI of the Eta Car's core. The superb quality of our interferometric data, together with state-of-the-art image reconstruction techniques, allowed us to obtain, with milliarcsecond resolution, continuum and chromatic images cross the BrG and HeI lines in the Eta Car K-band spectrum (R 4000). These new data together with models of the primary wind of Eta Car has letting us to characterize the spatial distribution of the dust and gas in the inner 40 AU wind-wind collision zone of the target.

  16. Scalaron from R2-gravity as a heavy field

    NASA Astrophysics Data System (ADS)

    Pi, Shi; Zhang, Ying-li; Huang, Qing-Guo; Sasaki, Misao

    2018-05-01

    We study a model of inflation in which a scalar field χ is non-minimally coupled to Starobinsky's R2 gravity. After transforming it to the Einstein frame, a new scalar field, the scalaron phi, will appear and couple to χ with a nontrivial field metric, while χ acquires a positive mass via the non-minimal coupling. Initially inflation occurs along the phi direction with χ trapped near its origin by this induced mass. After phi crosses a critical value, it starts rolling down rapidly and proceeds to damped oscillations around an effective local minimum determined by the value of χ, while inflation still continues, driven by the χ field at this second stage where the effect of the non-minimal coupling becomes negligible. The presence of the damped oscillations during the transition from the first to second stage of inflation causes enhancement and oscillation features in the power spectrum of the curvature perturbation. Assuming that the oscillations may be treated perturbatively, we calculate these features by using the δ N formalism, and discuss its observational implications to large scale CMB anomalies or primordial black hole formation, depending on the scale of the features.

  17. Gravity measurements in southeastern Alaska reveal negative gravity rate of change caused by glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Sun, W.; Miura, S.; Sato, T.; Sugano, T.; Freymueller, J.; Kaufman, M.; Larsen, C. F.; Cross, R.; Inazu, D.

    2010-12-01

    For the past 300 years, southeastern Alaska has undergone rapid ice-melting and land uplift attributable to global warming. Corresponding crustal deformation (3 cm/yr) caused by the Little Ice Age retreat is detectable with modern geodetic techniques such as GPS and tidal gauge measurements. Geodetic deformation provides useful information for assessing ice-melting rates, global warming effects, and subcrustal viscosity. Nevertheless, integrated geodetic observations, including gravity measurements, are important. To detect crustal deformation caused by glacial isostatic adjustment and to elucidate the viscosity structure in southeastern Alaska, Japanese and U.S. researchers began a joint 3-year project in 2006 using GPS, Earth tide, and absolute gravity measurements. A new absolute gravity network was established, comprising five sites around Glacier Bay, near Juneau, Alaska. This paper reports the network's gravity measurements during 2006-2008. The bad ocean model in this area hindered ocean loading correction: Large tidal residuals remain in the observations. Accurate tidal correction necessitated on-site tidal observation. Results show high observation precision for all five stations: <1 μGal. The gravity rate of change was found to be -3.5 to -5.6 μGal/yr in the gravity network. Furthermore, gravity results obtained during the 3 years indicate a similar gravity change rate. These gravity data are anticipated for application in geophysical studies of southeastern Alaska. Using gravity and vertical displacement data, we constructed a quantity to remove viscoelastic effects. The observations are thus useful to constrain present-day ice thickness changes. A gravity bias of about -13.2 ± 0.1 mGal exists between the Potsdam and current FG5 gravity data.

  18. Gravity Change at the Summit of Kīlauea Volcano, Hawaíi, during 2012-2014

    NASA Astrophysics Data System (ADS)

    Moore, S.; Poland, M. P.; Young, N. K.; Bagnardi, M.; Carbone, D.

    2014-12-01

    Monitoring of gravity change at a volcano is a valuable means of assessing mass change at depth and a good complement to other surveillance methods, like deformation and seismicity. At Kīlauea Volcano, Hawaíi, repeated gravity surveys of the summit region have been conducted since 1975, with hundreds of microgals of gravity increase measured at the center of the caldera but without the magnitude of surface uplift through 2008 that would be expected from the gravity increase. This gravity increase was attributed to magma accumulation in void space. Between 2009 and 2012, gravity increase and uplift were coincident, but the uplift was less than expected for the given gravity signal (assuming a basaltic magma density of 2500 kg/m3). The source of both deformation and gravity change was at 1.5 km depth beneath the east margin of Halemáumáu Crater, within Kīlauea Caldera, corresponding to the location of a known shallow magma reservoir. Densification of magma in this reservoir due to degassing through the open summit eruptive vent, active since 2008, is the preferred explanation of the observed gravity change and surface displacements. We conducted gravity surveys in 2013 and 2014 and found that both gravity change and surface displacements were negligible with respect to 2012. We interpret this lack of recent gravity change as an indication that the 1.5-km-depth magma reservoir has reached a steady-state density, where gas loss from the summit vent is compensated for by gas influx from below. Continued gravity surveys should identify any changes in this equilibrium that may presage changes in summit eruptive activity.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumbaugh, William D.; Cook, Kenneth L.

    During the summers of 1975 and 1976, a gravity survey was conducted in the Cove Fort - Sulphurdale KGRA and north Mineral Mountains area, Millard and Beaver counties, Utah. The survey consisted of 671 gravity stations covering an area of about 1300 km{sup 2}, and included two orthogonal gravity profiles traversing the area. The gravity data are presented as a terrain-corrected Bouguer gravity anomaly map with a contour interval of 1 mgal and as an isometric three-dimensional gravity anomaly surface. Selected anomaly separation techniques were applied to the hand-digitized gravity data (at 1-km intervals on the Universal Transverse Mercator grid)more » in both the frequency and space domains, including Fourier decomposition, second vertical derivative, strike-filter, and polynomial fitting analysis, respectively. Residual gravity gradients of 0.5 to 8.0 mgal/km across north-trending gravity contours observed through the Cove Fort area, the Sulphurdale area, and the areas east of the East Mineral Mountains, along the west flanks of the Tushar Mountains, and on both the east and west flanks of the north Mineral Mountains, were attributed to north-trending Basin and Range high-angle faults. Gravity highs exist over the community of Black Rock area, the north Mineral Mountains, the Paleozoic outcrops in the east Cove Creek-Dog Valley-White Sage Flats areas, the sedimentary thrust zone of the southern Payant Range, and the East Mineral Mountains. The gravity lows over north Milford Valley, southern Black Rock Desert, Cunningham Wash, and northern Beaver Valley are separated from the above gravity highs by steep gravity gradients attributed to a combination of crustal warping and faulting. A gravity low with a closure of 2 mgal corresponds with Sulphur Cove, a circular topographic features containing sulphur deposits.« less

  20. Seeking the Light: Gravity Without the Influence of Gravity

    NASA Technical Reports Server (NTRS)

    Sack, Fred; Kern, Volker; Reed, Dave; Etheridge, Guy (Technical Monitor)

    2002-01-01

    All living things sense gravity like humans might sense light or sound. The Biological Research In Canisters (BRIC-14) experiment, explores how moss cells sense and respond to gravity and light. This experiment studies how gravity influences the internal structure of moss cells and seeks to understand the influences of the spaceflight environment on cell growth. This knowledge will help researchers understand the role of gravity in the evolution of cells and life on earth.

Top