NASA Astrophysics Data System (ADS)
Dong, Keqiang; Zhang, Hong; Gao, You
2017-01-01
Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Fan, Jie; Gao, You
2015-12-01
Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.
Vulnerabilities, Influences and Interaction Paths: Failure Data for Integrated System Risk Analysis
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Fleming, Land
2006-01-01
We describe graph-based analysis methods for identifying and analyzing cross-subsystem interaction risks from subsystem connectivity information. By discovering external and remote influences that would be otherwise unexpected, these methods can support better communication among subsystem designers at points of potential conflict and to support design of more dependable and diagnosable systems. These methods identify hazard causes that can impact vulnerable functions or entities if propagated across interaction paths from the hazard source to the vulnerable target. The analysis can also assess combined impacts of And-Or trees of disabling influences. The analysis can use ratings of hazards and vulnerabilities to calculate cumulative measures of the severity and importance. Identification of cross-subsystem hazard-vulnerability pairs and propagation paths across subsystems will increase coverage of hazard and risk analysis and can indicate risk control and protection strategies.
Siblings versus parents and friends: longitudinal linkages to adolescent externalizing problems.
Defoe, Ivy N; Keijsers, Loes; Hawk, Skyler T; Branje, Susan; Dubas, Judith Semon; Buist, Kirsten; Frijns, Tom; van Aken, Marcel A G; Koot, Hans M; van Lier, Pol A C; Meeus, Wim
2013-08-01
It is well documented that friends' externalizing problems and negative parent-child interactions predict externalizing problems in adolescence, but relatively little is known about the role of siblings. This four-wave, multi-informant study investigated linkages of siblings' externalizing problems and sibling-adolescent negative interactions on adolescents' externalizing problems, while examining and controlling for similar linkages with friends and parents. Questionnaire data on externalizing problems and negative interactions were annually collected from 497 Dutch adolescents (M = 13.03 years, SD = 0.52, at baseline), as well as their siblings, mothers, fathers, and friends. Cross-lagged panel analyses revealed modest unique longitudinal paths from sibling externalizing problems to adolescent externalizing problems, for male and female adolescents, and for same-sex and mixed-sex sibling dyads, but only from older to younger siblings. Moreover, these paths were above and beyond significant paths from mother-adolescent negative interaction and friend externalizing problems to adolescent externalizing problems, 1 year later. No cross-lagged paths existed between sibling-adolescent negative interaction and adolescent externalizing problems. Taken together, it appears that especially older sibling externalizing problems may be a unique social risk factor for adolescent externalizing problems, equal in strength to significant parents' and friends' risk factors. © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.
Siblings versus parents and friends: longitudinal linkages to adolescent externalizing problems
Defoe, Ivy N; Keijsers, Loes; Hawk, Skyler T; Branje, Susan; Dubas, Judith Semon; Buist, Kirsten; Frijns, Tom; van Aken, Marcel AG; Koot, Hans M; van Lier, Pol AC; Meeus, Wim
2013-01-01
Background: It is well documented that friends’ externalizing problems and negative parent–child interactions predict externalizing problems in adolescence, but relatively little is known about the role of siblings. This four-wave, multi-informant study investigated linkages of siblings’ externalizing problems and sibling–adolescent negative interactions on adolescents’ externalizing problems, while examining and controlling for similar linkages with friends and parents. Methods: Questionnaire data on externalizing problems and negative interactions were annually collected from 497 Dutch adolescents (M = 13.03 years, SD = 0.52, at baseline), as well as their siblings, mothers, fathers, and friends. Results: Cross-lagged panel analyses revealed modest unique longitudinal paths from sibling externalizing problems to adolescent externalizing problems, for male and female adolescents, and for same-sex and mixed-sex sibling dyads, but only from older to younger siblings. Moreover, these paths were above and beyond significant paths from mother–adolescent negative interaction and friend externalizing problems to adolescent externalizing problems, 1 year later. No cross-lagged paths existed between sibling–adolescent negative interaction and adolescent externalizing problems. Conclusions: Taken together, it appears that especially older sibling externalizing problems may be a unique social risk factor for adolescent externalizing problems, equal in strength to significant parents’ and friends’ risk factors. PMID:23398022
Nearly deterministic quantum Fredkin gate based on weak cross-Kerr nonlinearity
NASA Astrophysics Data System (ADS)
Wu, Yun-xiang; Zhu, Chang-hua; Pei, Chang-xing
2016-09-01
A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, and a non-demolition measurement for photons can be implemented. Combined with the homodyne detection, classical feedforward, polarization beam splitters and Pauli-X operations, a controlled-path gate is constructed. Furthermore, a quantum Fredkin gate is built based on the controlled-path gate. The proposed Fredkin gate is simple in structure and feasible by current experimental technology.
Weighting of topologically different interactions in a model of two-dimensional polymer collapse.
Bedini, Andrea; Owczarek, Aleksander L; Prellberg, Thomas
2013-01-01
We study by computer simulation a recently introduced generalized model of self-interacting self-avoiding trails on the square lattice that distinguishes two topologically different types of self-interaction: namely, crossings where the trail passes across itself and collisions where the lattice path visits the same site without crossing. This model generalizes the canonical interacting self-avoiding trail model of polymer collapse, which has a strongly divergent specific heat at its transition point. We confirm the recent prediction that the asymmetry does not affect the universality class for a range of asymmetry. Certainly, where the weighting of collisions outweighs that of crossings this is well supported numerically. When crossings are weighted heavily relative to collisions, the collapse transition reverts to the canonical θ-point-like behavior found in interacting self-avoiding walks.
Contagion Shocks in One Dimension
NASA Astrophysics Data System (ADS)
Bertozzi, Andrea L.; Rosado, Jesus; Short, Martin B.; Wang, Li
2015-02-01
We consider an agent-based model of emotional contagion coupled with motion in one dimension that has recently been studied in the computer science community. The model involves movement with a speed proportional to a "fear" variable that undergoes a temporal consensus averaging based on distance to other agents. We study the effect of Riemann initial data for this problem, leading to shock dynamics that are studied both within the agent-based model as well as in a continuum limit. We examine the behavior of the model under distinguished limits as the characteristic contagion interaction distance and the interaction timescale both approach zero. The limiting behavior is related to a classical model for pressureless gas dynamics with "sticky" particles. In comparison, we observe a threshold for the interaction distance vs. interaction timescale that produce qualitatively different behavior for the system - in one case particle paths do not cross and there is a natural Eulerian limit involving nonlocal interactions and in the other case particle paths can cross and one may consider only a kinetic model in the continuum limit.
Cohen, Carmit; Einav, Monica; Hawlena, Hadas
2015-08-19
The parasite composition of wild host individuals often impacts their behavior and physiology, and the transmission dynamics of pathogenic species thereby determines disease risk in natural communities. Yet, the determinants of parasite composition in natural communities are still obscure. In particular, three fundamental questions remain open: (1) what are the relative roles of host and environmental characteristics compared with direct interactions between parasites in determining the community composition of parasites? (2) do these determinants affect parasites belonging to the same guild and those belonging to different guilds in similar manners? and (3) can cross-sectional and longitudinal analyses work interchangeably in detecting community determinants? Our study was designed to answer these three questions in a natural community of rodents and their fleas, ticks, and two vector-borne bacteria. We sampled a natural population of Gerbillus andersoni rodents and their blood-associated parasites on two occasions. By combining path analysis and model selection approaches, we then explored multiple direct and indirect paths that connect (i) the environmental and host-related characteristics to the infection probability of a host by each of the four parasite species, and (ii) the infection probabilities of the four species by each other. Our results suggest that the majority of paths shaping the blood-associated communities are indirect, mostly determined by host characteristics and not by interspecific interactions or environmental conditions. The exact effects of host characteristics on infection probability by a given parasite depend on its life history and on the method of sampling, in which the cross-sectional and longitudinal methods are complementary. Despite the awareness of the need of ecological investigations into natural host-vector-parasite communities in light of the emergence and re-emergence of vector-borne diseases, we lack sampling methods that are both practical and reliable. Here we illustrated how comprehensive patterns can be revealed from observational data by applying path analysis and model selection approaches and combining cross-sectional and longitudinal analyses. By employing this combined approach on blood-associated parasites, we were able to distinguish between direct and indirect effects and to predict the causal relationships between host-related characteristics and the parasite composition over time and space. We concluded that direct interactions within the community play only a minor role in determining community composition relative to host characteristics and the life history of the community members.
Cloutier, Marie-Soleil; Lachapelle, Ugo; d'Amours-Ouellet, Andrée-Anne; Bergeron, Jacques; Lord, Sébastien; Torres, Juan
2017-07-01
Because pedestrian crash rates remain lower than other collision types, surrogate measures such as traffic interactions are now used in road safety research to complement crash history. Using naturalistic data collection, we sought to assess 1) the likelihood of occurrence of interactions between pedestrians and vehicles based on individual and crossing characteristics; and 2) differences in interaction characteristics between children, adult and senior pedestrians. Observations of pedestrian crossing behaviours (n=4687) were recorded at 278 crossings. For recorded interactions (n=843), information was collected to characterize the behaviours of involved parties. A mixed-effect logit regression model was performed to assess the factors associated with interactions. Chi-square tests evaluated differences between age groups and characteristics of observed interactions. Older adults were those more likely to be involved in an interaction event. Bicycle paths, different crossing surface material and one-way streets were significantly associated with fewer interactions with vehicles, while parked vehicles nearby and crossings on arterial roads were significantly associated with more interactions. Children and the elderly (80 years of age or more) did have distinct patterns of interaction, with more careful drivers/cyclists behaviours being observed towards children and lesser regulation compliance towards the elderly. Given the growing emphasis and adoption of active transportation in many cities, the number of interactions between pedestrians and vehicles during street crossings is likely to increase. Educating drivers and pedestrians to respect each other's space requires an understanding of where, between whom, and under what circumstances interactions occur. Such an approach can also help identify which engineering and enforcement programs are needed to ensure safe pedestrian crossings since interactions can be good markers of uncomfortable crossing situations that may deter walking and lead to more collisions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teleconnection Paths via Climate Network Direct Link Detection.
Zhou, Dong; Gozolchiani, Avi; Ashkenazy, Yosef; Havlin, Shlomo
2015-12-31
Teleconnections describe remote connections (typically thousands of kilometers) of the climate system. These are of great importance in climate dynamics as they reflect the transportation of energy and climate change on global scales (like the El Niño phenomenon). Yet, the path of influence propagation between such remote regions, and weighting associated with different paths, are only partially known. Here we propose a systematic climate network approach to find and quantify the optimal paths between remotely distant interacting locations. Specifically, we separate the correlations between two grid points into direct and indirect components, where the optimal path is found based on a minimal total cost function of the direct links. We demonstrate our method using near surface air temperature reanalysis data, on identifying cross-latitude teleconnections and their corresponding optimal paths. The proposed method may be used to quantify and improve our understanding regarding the emergence of climate patterns on global scales.
HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous
1993-01-01
Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.
Airola, Antti; Pyysalo, Sampo; Björne, Jari; Pahikkala, Tapio; Ginter, Filip; Salakoski, Tapio
2008-11-19
Automated extraction of protein-protein interactions (PPI) is an important and widely studied task in biomedical text mining. We propose a graph kernel based approach for this task. In contrast to earlier approaches to PPI extraction, the introduced all-paths graph kernel has the capability to make use of full, general dependency graphs representing the sentence structure. We evaluate the proposed method on five publicly available PPI corpora, providing the most comprehensive evaluation done for a machine learning based PPI-extraction system. We additionally perform a detailed evaluation of the effects of training and testing on different resources, providing insight into the challenges involved in applying a system beyond the data it was trained on. Our method is shown to achieve state-of-the-art performance with respect to comparable evaluations, with 56.4 F-score and 84.8 AUC on the AImed corpus. We show that the graph kernel approach performs on state-of-the-art level in PPI extraction, and note the possible extension to the task of extracting complex interactions. Cross-corpus results provide further insight into how the learning generalizes beyond individual corpora. Further, we identify several pitfalls that can make evaluations of PPI-extraction systems incomparable, or even invalid. These include incorrect cross-validation strategies and problems related to comparing F-score results achieved on different evaluation resources. Recommendations for avoiding these pitfalls are provided.
MODELING TIME DISPERSION DUE TO OPTICAL PATH LENGTH DIFFERENCES IN SCINTILLATION DETECTORS*
Moses, W.W.; Choong, W.-S.; Derenzo, S.E.
2015-01-01
We characterize the nature of the time dispersion in scintillation detectors caused by path length differences of the scintillation photons as they travel from their generation point to the photodetector. Using Monte Carlo simulation, we find that the initial portion of the distribution (which is the only portion that affects the timing resolution) can usually be modeled by an exponential decay. The peak amplitude and decay time depend both on the geometry of the crystal, the position within the crystal that the scintillation light originates from, and the surface finish. In a rectangular parallelpiped LSO crystal with 3 mm × 3 mm cross section and polished surfaces, the decay time ranges from 10 ps (for interactions 1 mm from the photodetector) up to 80 ps (for interactions 50 mm from the photodetector). Over that same range of distances, the peak amplitude ranges from 100% (defined as the peak amplitude for interactions 1 mm from the photodetector) down to 4% for interactions 50 mm from the photodetector. Higher values for the decay time are obtained for rough surfaces, but the exact value depends on the simulation details. Estimates for the decay time and peak amplitude can be made for different cross section sizes via simple scaling arguments. PMID:25729464
Modeling Time Dispersion Due to Optical Path Length Differences in Scintillation Detectors
Moses, W. W.; Choong, W. -S.; Derenzo, S. E.
2014-08-20
In this paper, we characterize the nature of the time dispersion in scintillation detectors caused by path length differences of the scintillation photons as they travel from their generation point to the photodetector. Using Monte Carlo simulation, we find that the initial portion of the distribution (which is the only portion that affects the timing resolution) can usually be modeled by an exponential decay. The peak amplitude and decay time depend both on the geometry of the crystal, the position within the crystal that the scintillation light originates from, and the surface finish. In a rectangular parallelpiped LSO crystal withmore » 3 mm × 3 mm cross section and polished surfaces, the decay time ranges from 10 ps (for interactions 1 mm from the photodetector) up to 80 ps (for interactions 50 mm from the photodetector). Over that same range of distances, the peak amplitude ranges from 100% (defined as the peak amplitude for interactions 1 mm from the photodetector) down to 4% for interactions 50 mm from the photodetector. Higher values for the decay time are obtained for rough surfaces, but the exact value depends on the simulation details. Finally, estimates for the decay time and peak amplitude can be made for different cross section sizes via simple scaling arguments.« less
Multiple kernel learning in protein-protein interaction extraction from biomedical literature.
Yang, Zhihao; Tang, Nan; Zhang, Xiao; Lin, Hongfei; Li, Yanpeng; Yang, Zhiwei
2011-03-01
Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. The volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database administrators, responsible for content input and maintenance to detect and manually update protein interaction information. The objective of this work is to develop an effective approach to automatic extraction of PPI information from biomedical literature. We present a weighted multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, graph and part-of-speech (POS) path. In particular, we extend the shortest path-enclosed tree (SPT) and dependency path tree to capture richer contextual information. Our experimental results show that the combination of SPT and dependency path tree extensions contributes to the improvement of performance by almost 0.7 percentage units in F-score and 2 percentage units in area under the receiver operating characteristics curve (AUC). Combining two or more appropriately weighed individual will further improve the performance. Both on the individual corpus and cross-corpus evaluation our combined kernel can achieve state-of-the-art performance with respect to comparable evaluations, with 64.41% F-score and 88.46% AUC on the AImed corpus. As different kernels calculate the similarity between two sentences from different aspects. Our combined kernel can reduce the risk of missing important features. More specifically, we use a weighted linear combination of individual kernels instead of assigning the same weight to each individual kernel, thus allowing the introduction of each kernel to incrementally contribute to the performance improvement. In addition, SPT and dependency path tree extensions can improve the performance by including richer context information. Copyright © 2010 Elsevier B.V. All rights reserved.
The impact of path crossing on visuo-spatial serial memory: encoding or rehearsal effect?
Parmentier, Fabrice B R; Andrés, Pilar
2006-11-01
The determinants of visuo-spatial serial memory have been the object of little research, despite early evidence that not all sequences are equally remembered. Recently, empirical evidence was reported indicating that the complexity of the path formed by the to-be-remembered locations impacted on recall performance, defined for example by the presence of crossings in the path formed by successive locations (Parmentier, Elford, & Maybery, 2005). In this study, we examined whether this effect reflects rehearsal or encoding processes. We examined the effect of a retention interval and spatial interference on the ordered recall of spatial sequences with and without path crossings. Path crossings decreased recall performance, as did a retention interval. In line with the encoding hypothesis, but in contrast with the rehearsal hypothesis, the effect of crossing was not affected by the retention interval nor by tapping. The possible nature of the impact of path crossing on encoding mechanisms is discussed.
Antiproton beam polarizer using a dense polarized target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojtsekhowski, Bogdan
2011-05-01
We describe considerations regarding the spin filtering method for the antiproton beam. The proposed investigation of the double polarization cross section for antiproton to nucleon interaction is outlined. It will use a single path of the antiproton beam through a dense polarized target, e.g. 3He or CH2, followed by a polarimeter.
Optical model calculations of 14.6A GeV silicon fragmentation cross sections
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Khan, Ferdous; Tripathi, Ram K.
1993-01-01
An optical potential abrasion-ablation collision model is used to calculate hadronic dissociation cross sections for a 14.6 A GeV(exp 28) Si beam fragmenting in aluminum, tin, and lead targets. The frictional-spectator-interaction (FSI) contributions are computed with two different formalisms for the energy-dependent mean free path. These estimates are compared with experimental data and with estimates obtained from semi-empirical fragmentation models commonly used in galactic cosmic ray transport studies.
Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Hill, G. C.; Kyriacou, A.; Robertson, S.; Wallace, A.; Whelan, B. J.; Ackermann, M.; Bernardini, E.; Blot, S.; Bradascio, F.; Bretz, H.-P.; Brostean-Kaiser, J.; Franckowiak, A.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stachurska, J.; Stasik, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; van Santen, J.; Adams, J.; Bagherpour, H.; Aguilar, J. A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.; Ahlers, M.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Rameez, M.; Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Zoll, M.; Al Samarai, I.; Bron, S.; Carver, T.; Christov, A.; Montaruli, T.; Altmann, D.; Anton, G.; Glüsenkamp, T.; Katz, U.; Kittler, T.; Tselengidou, M.; Andeen, K.; Plum, M.; Anderson, T.; Delaunay, J. J.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Pankova, D. V.; Teši´, G.; Turley, C. F.; Weiss, M. J.; Argüelles, C.; Axani, S.; Collin, G. H.; Conrad, J. M.; Moulai, M.; Auffenberg, J.; Brenzke, M.; Glauch, T.; Haack, C.; Kalaczynski, P.; Koschinsky, J. P.; Leuermann, M.; Rädel, L.; Reimann, R.; Rongen, M.; Sälzer, T.; Schoenen, S.; Schumacher, L.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Waza, A.; Wiebusch, C. H.; Bai, X.; Barron, J. P.; Giang, W.; Grant, D.; Kopper, C.; Moore, R. W.; Nowicki, S. C.; Herrera, S. E. Sanchez; Sarkar, S.; Wandler, F. D.; Weaver, C.; Wood, T. R.; Woolsey, E.; Yanez, J. P.; Barwick, S. W.; Yodh, G.; Baum, V.; Böser, S.; di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Köpke, L.; Krückl, G.; Momenté, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K.; Bay, R.; Filimonov, K.; Price, P. B.; Woschnagg, K.; Beatty, J. J.; Tjus, J. Becker; Bos, F.; Eichmann, B.; Kroll, M.; Schöneberg, S.; Tenholt, F.; Becker, K.-H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Lauber, F.; Naumann, U.; Pollmann, A. Obertacke; Soldin, D.; Benzvi, S.; Cross, R.; Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K. D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G. W.; Besson, D. Z.; Binder, G.; Klein, S. R.; Miarecki, S.; Palczewski, T.; Tatar, J.; Börner, M.; Fuchs, T.; Hünnefeld, M.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P.; Soedingrekso, J.; Werthebach, J.; Bose, D.; Dujmovic, H.; in, S.; Jeong, M.; Kang, W.; Kim, J.; Rott, C.; Botner, O.; Burgman, A.; Hallgren, A.; Pérez de Los Heros, C.; Unger, E.; Bourbeau, J.; Braun, J.; Casey, J.; Chirkin, D.; Day, M.; Desiati, P.; Díaz-Vélez, J. C.; Fahey, S.; Ghorbani, K.; Griffith, Z.; Halzen, F.; Hanson, K.; Hokanson-Fasig, B.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Liu, Q. R.; Luszczak, W.; Mancina, S.; McNally, F.; Merino, G.; Schneider, A.; Tobin, M. N.; Tosi, D.; Ty, B.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Wolf, M.; Wood, J.; Xu, D. L.; Yuan, T.; Brayeur, L.; Casier, M.; de Clercq, C.; de Vries, K. D.; de Wasseige, G.; Kunnen, J.; Lünemann, J.; Maggi, G.; Toscano, S.; van Eijndhoven, N.; Clark, K.; Classen, L.; Kappes, A.; Coenders, S.; Huber, M.; Krings, K.; Rea, I. C.; Resconi, E.; Turcati, A.; Cowen, D. F.; de André, J. P. A. M.; Deyoung, T.; Hignight, J.; Lennarz, D.; Mahn, K. B. M.; Micallef, J.; Neer, G.; Rysewyk, D.; Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.; De Ridder, S.; Labare, M.; Ryckbosch, D.; van Driessche, W.; Vanheule, S.; Vraeghe, M.; de With, M.; Hebecker, D.; Kolanoski, H.; Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.; Gallagher, J.; Gerhardt, L.; Goldschmidt, A.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Ishihara, A.; Kim, M.; Kuwabara, T.; Lu, L.; Mase, K.; Relich, M.; Stößl, A.; Yoshida, S.; Japaridze, G. S.; Jones, B. J. P.; Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.; Kohnen, G.; Kopper, S.; Nakarmi, P.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Kowalski, M.; Kurahashi, N.; Relethford, B.; Richman, M.; Wills, L.; Madsen, J.; Seunarine, S.; Spiczak, G. M.; Maruyama, R.; Rawlins, K.; Sarkar, S.; Sutherland, M.; Taboada, I.; Tung, C. F.; IceCube Collaboration
2017-11-01
Neutrinos interact only very weakly, so they are extremely penetrating. The theoretical neutrino-nucleon interaction cross-section, however, increases with increasing neutrino energy, and neutrinos with energies above 40 teraelectronvolts (TeV) are expected to be absorbed as they pass through the Earth. Experimentally, the cross-section has been determined only at the relatively low energies (below 0.4 TeV) that are available at neutrino beams from accelerators. Here we report a measurement of neutrino absorption by the Earth using a sample of 10,784 energetic upward-going neutrino-induced muons. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the neutrino-nucleon interaction cross-section for neutrino energies 6.3-980 TeV, more than an order of magnitude higher than previous measurements. The measured cross-section is about 1.3 times the prediction of the standard model, consistent with the expectations for charged- and neutral-current interactions. We do not observe a large increase in the cross-section with neutrino energy, in contrast with the predictions of some theoretical models, including those invoking more compact spatial dimensions or the production of leptoquarks. This cross-section measurement can be used to set limits on the existence of some hypothesized beyond-standard-model particles, including leptoquarks.
Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption.
2017-11-30
Neutrinos interact only very weakly, so they are extremely penetrating. The theoretical neutrino-nucleon interaction cross-section, however, increases with increasing neutrino energy, and neutrinos with energies above 40 teraelectronvolts (TeV) are expected to be absorbed as they pass through the Earth. Experimentally, the cross-section has been determined only at the relatively low energies (below 0.4 TeV) that are available at neutrino beams from accelerators. Here we report a measurement of neutrino absorption by the Earth using a sample of 10,784 energetic upward-going neutrino-induced muons. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the neutrino-nucleon interaction cross-section for neutrino energies 6.3-980 TeV, more than an order of magnitude higher than previous measurements. The measured cross-section is about 1.3 times the prediction of the standard model, consistent with the expectations for charged- and neutral-current interactions. We do not observe a large increase in the cross-section with neutrino energy, in contrast with the predictions of some theoretical models, including those invoking more compact spatial dimensions or the production of leptoquarks. This cross-section measurement can be used to set limits on the existence of some hypothesized beyond-standard-model particles, including leptoquarks.
Social Skills Difficulty: Model of Culture Shock for International Graduate Students
ERIC Educational Resources Information Center
Chapdelaine, Raquel Faria; Alexitch, Louise R.
2004-01-01
This study expanded and tested Furnham and Bochner's (1982) model of culture shock, employing a sample of 156 male international students in a Canadian university. Path analysis was used to assess the effects of cultural differences, size of co-national group, family status, cross-cultural experience, and social interaction with hosts on culture…
Gomez, Carlos; Poza, Jesus; Gomez-Pilar, Javier; Bachiller, Alejandro; Juan-Cruz, Celia; Tola-Arribas, Miguel A; Carreres, Alicia; Cano, Monica; Hornero, Roberto
2016-08-01
The aim of this pilot study was to analyze spontaneous electroencephalography (EEG) activity in Alzheimer's disease (AD) by means of Cross-Sample Entropy (Cross-SampEn) and two local measures derived from graph theory: clustering coefficient (CC) and characteristic path length (PL). Five minutes of EEG activity were recorded from 37 patients with dementia due to AD and 29 elderly controls. Our results showed that Cross-SampEn values were lower in the AD group than in the control one for all the interactions among EEG channels. This finding indicates that EEG activity in AD is characterized by a lower statistical dissimilarity among channels. Significant differences were found mainly for fronto-central interactions (p <; 0.01, permutation test). Additionally, the application of graph theory measures revealed diverse neural network changes, i.e. lower CC and higher PL values in AD group, leading to a less efficient brain organization. This study suggests the usefulness of our approach to provide further insights into the underlying brain dynamics associated with AD.
Analysis of crossing path crashes
DOT National Transportation Integrated Search
2001-07-01
This report defines the problem of crossing path crashes in the United States. This crash type involves one moving vehicle that cuts across the path of another when their initial approach comes from either lateral or opposite directions and they typi...
Transition path time distributions for Lévy flights
NASA Astrophysics Data System (ADS)
Janakiraman, Deepika
2018-07-01
This paper presents a study of transition path time distributions for Lévy noise-induced barrier crossing. Transition paths are short segments of the reactive trajectories and span the barrier region of the potential without spilling into the reactant/product wells. The time taken to traverse this segment is referred to as the transition path time. Since the transition path is devoid of excursions in the minimum, the corresponding time will give the exclusive barrier crossing time, unlike . This work explores the distribution of transition path times for superdiffusive barrier crossing, analytically. This is made possible by approximating the barrier by an inverted parabola. Using this approximation, the distributions are evaluated in both over- and under-damped limits of friction. The short-time behaviour of the distributions, provide analytical evidence for single-step transition events—a feature in Lévy-barrier crossing as observed in prior simulation studies. The average transition path time is calculated as a function of the Lévy index (α), and the optimal value of α leading to minimum average transition path time is discussed, in both the limits of friction. Langevin dynamics simulations corroborating with the analytical results are also presented.
A scattering model for rain depolarization
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Stutzman, W. L.; Bostian, C. W.
1973-01-01
A method is presented for calculating the amount of depolarization caused by precipitation for a propagation path. In the model the effects of each scatterer and their interactions are accounted for by using a series of simplifying steps. It is necessary only to know the forward scattering properties of a single scatterer. For the case of rain the results of this model for attenuation, differential phase shift, and cross polarization agree very well with the results of the only other model available, that of differential attenuation and differential phase shift. Calculations presented here show that horizontal polarization is more sensitive to depolarization than is vertical polarization for small rain drop canting angle changes. This effect increases with increasing path length.
Slant Path Low Visibility Atmospheric Conditions.
1980-09-01
situation. a) An optical propagation slant test path , of a length over which infrared transmissometer measurements can be made that are in a magnitude...transmission measure - ments which are close to 100% and therefore do not accurately relate to absolute transmissivity. A path which is too long will result in...is available for measurement of backscatter cross section along the chosen transmissometer path . 3. Rough Cross Cut of the Works unde Contract in
Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng
2016-09-19
Dual-comb lasers simultaneously generating asynchronous ultrashort pulses could be an intriguing alternative to the current dual-laser comb source. When generated through a common light path, the low common-mode noises and good coherence between the pulse trains could be realized. Here we demonstrate the completely common-path, unidirectional dual-comb lasing using a carbon nanotube saturable absorber with additional pulse narrowing and broadening mechanisms. The interactions between multiple soliton formation mechanisms result in bifurcation into unusual two-pulse states with pulses of four-fold bandwidth difference and tens-of-Hz repetition rate difference. Coherence between the pulses is verified by the asynchronous cross-sampling and dual-comb spectroscopy measurements.
Homing by path integration when a locomotion trajectory crosses itself.
Yamamoto, Naohide; Meléndez, Jayleen A; Menzies, Derek T
2014-01-01
Path integration is a process with which navigators derive their current position and orientation by integrating self-motion signals along a locomotion trajectory. It has been suggested that path integration becomes disproportionately erroneous when the trajectory crosses itself. However, there is a possibility that this previous finding was confounded by effects of the length of a traveled path and the amount of turns experienced along the path, two factors that are known to affect path integration performance. The present study was designed to investigate whether the crossover of a locomotion trajectory truly increases errors of path integration. In an experiment, blindfolded human navigators were guided along four paths that varied in their lengths and turns, and attempted to walk directly back to the beginning of the paths. Only one of the four paths contained a crossover. Results showed that errors yielded from the path containing the crossover were not always larger than those observed in other paths, and the errors were attributed solely to the effects of longer path lengths or greater degrees of turns. These results demonstrated that path crossover does not always cause significant disruption in path integration processes. Implications of the present findings for models of path integration are discussed.
Hybrid VLSI/QCA Architecture for Computing FFTs
NASA Technical Reports Server (NTRS)
Fijany, Amir; Toomarian, Nikzad; Modarres, Katayoon; Spotnitz, Matthew
2003-01-01
A data-processor architecture that would incorporate elements of both conventional very-large-scale integrated (VLSI) circuitry and quantum-dot cellular automata (QCA) has been proposed to enable the highly parallel and systolic computation of fast Fourier transforms (FFTs). The proposed circuit would complement the QCA-based circuits described in several prior NASA Tech Briefs articles, namely Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), Vol. 25, No. 10 (October 2001), page 42; Compact Interconnection Networks Based on Quantum Dots (NPO-20855) Vol. 27, No. 1 (January 2003), page 32; and Bit-Serial Adder Based on Quantum Dots (NPO-20869), Vol. 27, No. 1 (January 2003), page 35. The cited prior articles described the limitations of very-large-scale integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCAbased signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes.
Path Dependency and the Politics of Socialized Health Care.
Brady, David; Marquardt, Susanne; Gauchat, Gordon; Reynolds, Megan M
2016-06-01
Rich democracies exhibit vast cross-national and historical variation in the socialization of health care. Yet, cross-national analyses remain relatively rare in the health policy literature, and health care remains relatively neglected in the welfare state literature. We analyze pooled time series models of the public share of total health spending for eighteen rich democracies from 1960 to 2010. Building on path dependency theory, we present a strategy for modeling the relationship between the initial 1960 public share and the current public share. We also examine two contrasting accounts for how the 1960 public share interacts with conventional welfare state predictors: the self-reinforcing hypothesis expecting positive feedbacks and the counteracting hypothesis expecting negative feedbacks. We demonstrate that most of the variation from 1960 to 2010 in the public share can be explained by a country's initial value in 1960. This 1960 value has a large significant effect in models of 1961-2010, and including the 1960 value alters the coefficients of conventional welfare state predictors. To investigate the mechanism whereby prior social policy influences public opinion about current social policy, we use the 2006 International Social Survey Programme (ISSP). This analysis confirms that the 1960 values predict individual preferences for government spending on health. Returning to the pooled time series, we demonstrate that the 1960 values interact significantly with several conventional welfare state predictors. Some interactions support the self-reinforcing hypothesis, while others support the counteracting hypothesis. Ultimately, this study illustrates how historical legacies of social policy exert substantial influence on the subsequent politics of social policy. Copyright © 2016 by Duke University Press.
Diversified Control Paths: A Significant Way Disease Genes Perturb the Human Regulatory Network
Wang, Bingbo; Gao, Lin; Zhang, Qingfang; Li, Aimin; Deng, Yue; Guo, Xingli
2015-01-01
Background The complexity of biological systems motivates us to use the underlying networks to provide deep understanding of disease etiology and the human diseases are viewed as perturbations of dynamic properties of networks. Control theory that deals with dynamic systems has been successfully used to capture systems-level knowledge in large amount of quantitative biological interactions. But from the perspective of system control, the ways by which multiple genetic factors jointly perturb a disease phenotype still remain. Results In this work, we combine tools from control theory and network science to address the diversified control paths in complex networks. Then the ways by which the disease genes perturb biological systems are identified and quantified by the control paths in a human regulatory network. Furthermore, as an application, prioritization of candidate genes is presented by use of control path analysis and gene ontology annotation for definition of similarities. We use leave-one-out cross-validation to evaluate the ability of finding the gene-disease relationship. Results have shown compatible performance with previous sophisticated works, especially in directed systems. Conclusions Our results inspire a deeper understanding of molecular mechanisms that drive pathological processes. Diversified control paths offer a basis for integrated intervention techniques which will ultimately lead to the development of novel therapeutic strategies. PMID:26284649
NASA Astrophysics Data System (ADS)
Mattern, Nancy Page Garland
Four causal models describing the relationships between attitudes and achievement have been proposed in the literature. The cross-effects, or reciprocal effects, model highlights the effects of prior attitudes on later achievement (over and above the effect of previous achievement) and of prior achievement on later attitudes (above the effect of previous attitudes). In the achievement predominant model, the effect of prior achievement on later attitudes is emphasized, controlling for the effect of previous attitudes. The effect of prior attitudes on later achievement, controlling for the effect of previous achievement, is emphasized in the attitudes predominant model. In the no cross-effects model there are no significant cross paths from prior attitudes to later achievement or from prior achievement to later attitudes. To determine the best-fitting model for rural seventh and eighth grade science girls and boys, the causal relationships over time between attitudes toward science and achievement in science were examined by gender using structural equation modeling. Data were collected in two waves, over one school year. A baseline measurement model was estimated in simultaneous two-group solutions and was a good fit to the data. Next, the four structural models were estimated and model fits compared. The three models nested within the structural cross-effects model showed significant decay of fit when compared to the fit of the cross-effects model. The cross-effects model was the best fit overall for middle school girls and boys. The cross-effects model was then tested for invariance across gender. There was significant decay of fit when model form, factor path loadings, and structural paths were constrained to be equal for girls and boys. Two structural paths, the path from prior achievement to later attitudes, and the path from prior attitudes to later attitudes, were the sources of gender non-invariance. Separate models were estimated for girls and boys, and the fits of nested models were compared. The no cross-effects model was the best-fitting model for rural middle school girls. The new no attitudes-path model was the best-fitting model for boys. Implications of these findings for teaching middle school students were discussed.
Polarization Rotation Caused by Cross-Beam Energy Transfer in Direct-Drive Implosions
NASA Astrophysics Data System (ADS)
Edgell, D. H.; Follett, R. K.; Katz, J.; Myatt, J. F.; Shaw, J. G.; Turnbull, D.; Froula, D. H.
2017-10-01
The first evidence of polarization rotation caused by cross-beam energy transfer (CBET) during direct-drive implosions has been provided by a new beamlets diagnostic that was fielded on OMEGA. Beamlet images are, in essence, the end points of beamlets of light originating from different regions of each beam profile and following paths determined by refraction through the coronal plasma. The intensity of each beamlet varies because of absorption and many CBET interactions along that path. The new diagnostic records images in two time windows and includes a Wollaston prism to split each beamlet into two orthogonal polarization images recording the polarization of each beamlet. Only the common polarization components couple during CBET so when each beam is linearly polarized, CBET rotates the polarization of each beam. A 3-D CBET postprocessor for hydrodynamics codes was used to model the beamlet images. The predicted images are compared to the images recorded by the new diagnostic. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Development of a prototype multi-processing interactive software invocation system
NASA Technical Reports Server (NTRS)
Berman, W. J.
1983-01-01
The Interactive Software Invocation System (NASA-ISIS) was first transported to the M68000 microcomputer, and then rewritten in the programming language Path Pascal. Path Pascal is a significantly enhanced derivative of Pascal, allowing concurrent algorithms to be expressed using the simple and elegant concept of Path Expressions. The primary results of this contract was to verify the viability of Path Pascal as a system's development language. The NASA-ISIS implementation using Path Pascal is a prototype of a large, interactive system in Path Pascal. As such, it is an excellent demonstration of the feasibility of using Path Pascal to write even more extensive systems. It is hoped that future efforts will build upon this research and, ultimately, that a full Path Pascal/ISIS Operating System (PPIOS) might be developed.
Pössel, Patrick; Winkeljohn Black, Stephanie; Bjerg, Annie C; Jeppsen, Benjamin D; Wooldridge, Don T
2014-06-01
Significant associations of private prayer with mental health have been found, while mechanisms underlying these associations are largely unknown. This cross-sectional online study (N = 325, age 35.74, SD 18.50, 77.5 % females) used path modeling to test if trust-based beliefs (whether, when, and how prayers are answered) mediated the associations of prayer frequency with the Anxiety, Confusion, and Depression Profile of Mood States-Short Form scales. The association of prayer and depression was fully mediated by trust-based beliefs; associations with anxiety and confusion were partially mediated. Further, the interaction of prayer frequency by stress was associated with anxiety.
DOT National Transportation Integrated Search
2006-01-01
This project entailed the design, development, testing, and evaluation of intersection decision support (IDS) systems to address straight crossing path (SCP) intersection crashes. This type of intersection crash is responsible for more than 100,000 c...
Transition path time distributions
NASA Astrophysics Data System (ADS)
Laleman, M.; Carlon, E.; Orland, H.
2017-12-01
Biomolecular folding, at least in simple systems, can be described as a two state transition in a free energy landscape with two deep wells separated by a high barrier. Transition paths are the short part of the trajectories that cross the barrier. Average transition path times and, recently, their full probability distribution have been measured for several biomolecular systems, e.g., in the folding of nucleic acids or proteins. Motivated by these experiments, we have calculated the full transition path time distribution for a single stochastic particle crossing a parabolic barrier, including inertial terms which were neglected in previous studies. These terms influence the short time scale dynamics of a stochastic system and can be of experimental relevance in view of the short duration of transition paths. We derive the full transition path time distribution as well as the average transition path times and discuss the similarities and differences with the high friction limit.
NASA Astrophysics Data System (ADS)
Gelikonov, V. M.; Romashov, V. N.; Shabanov, D. V.; Ksenofontov, S. Yu.; Terpelov, D. A.; Shilyagin, P. A.; Gelikonov, G. V.; Vitkin, I. A.
2018-05-01
We consider a cross-polarization optical coherence tomography system with a common path for the sounding and reference waves and active maintenance of the circular polarization of a sounding wave. The system is based on the formation of birefringent characteristics of the total optical path, which are equivalent to a quarter-wave plate with a 45° orientation of its optical axes with respect to the linearly polarized reference wave. Conditions under which any light-polarization state can be obtained using a two-element phase controller are obtained. The dependence of the local cross-scattering coefficient of light in a model medium and biological tissue on the sounding-wave polarization state is demonstrated. The necessity of active maintenance of the circular polarization of a sounding wave in this common path system (including a flexible probe) is shown to realize uniform optimal conditions for cross-polarization studies of biological tissue.
Courbin, Nicolas; Fortin, Daniel; Dussault, Christian; Fargeot, Viviane; Courtois, Réhaume
2013-09-01
1. Habitat selection strategies translate into movement tactics, which reckon with the predator-prey spatial game. Strategic habitat selection analysis can therefore illuminate behavioural games. Cover types at potential encounter sites (i.e. intersections between movement paths of predator and prey) can be compared with cover types available (i) within the area of home-range-overlap (HRO) between predator and prey; and (ii) along the path (MP) of each species. Unlike the HRO scale, cover-type availability at MP scale differs between interacting species due to species-specific movement decisions. Scale differences in selection could therefore inform on divergences in fitness rewarding actions between predators and prey. 2. We used this framework to evaluate the spatial game between GPS-collared wolves (Canis lupus) versus caribou (Rangifer tarandus), and wolf versus moose (Alces alces). 3. Changes in cover-type availability between HRO and MP revealed differences in how each species fine-tuned its movements to habitat features. In contrast to caribou, wolves increased their encounter rate with regenerating cuts along their paths (MP) relative to the HRO level. As a consequence, wolves were less likely to cross caribou paths in areas with higher percentage of regenerating cuts than expected based on the availability along their paths, whereas caribou had a higher risk of intersecting wolf paths by crossing these areas, relative to random expectation along their paths. Unlike for caribou, availability of mixed and deciduous areas decreased from HRO to MP level for wolves and moose. Overall, wolves displayed stronger similarities in movement decisions with moose than with caribou, thereby revealing the focus of wolves on moose. 4. Our study reveals how differences in fine-scale movement tactics between species create asymmetric relative encounter probabilities between predators and prey, given their paths. Increase in relative risk of encounter for prey and decrease for predators associated with specific cover types emerging from HRO to MP scale analysis can disclose potential weaknesses in current movement tactics involved the predator-prey game, such as caribou use of cutovers in summer-autumn. In turn, these weaknesses can inform on subsequent changes in habitat selection tactics that might arise due to evolutionary forces. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Fartoukh, Stéphane; Valishev, Alexander; Papaphilippou, Yannis; ...
2015-12-01
Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β* and type of optics (flat or round), and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J.P. Koutchouk,more » CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC project), and compare it to alternative scenarios, or so-called ''configurations,'' where modifications are applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring. Furthermore, for all these configurations, the beneficial impact of beam-beam compensation devices is then demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the nonlinear beam dynamics as the main figures of merit.« less
Sunrise effects on VLF signals propagating over a long north-south path
NASA Astrophysics Data System (ADS)
Clilverd, Mark A.; Thomson, Neil R.; Rodger, Craig J.
1999-07-01
We present a detailed study of the times of amplitude minima observed on the 12-Mm path from NAA (24 kHz, 1 MW, Cutler, Maine) to Faraday, Antarctica, during the period 1990-1995. (NAA is a naval transmitter call sign.) This study represents the first account of the effect of the sunrise terminator when it is parallel to a propagation path at some times of the year. Since the NAA-Faraday path is within 3° of the north-south meridian, parallel orientation happens close to the equinoxes, while the maximum angle of incidence occurs during the solstices. During the solstices the terminator takes a significant length of time to cross the entire propagation path, so modal conversion effects are observed over a range of hours. During the equinoxes, however, the leading edge of the night-day transition region crosses the whole propagation path within 20 min. The interpretation of the timing of minima is consistent with modal conversion taking place as the sunrise terminator crosses the NAA-Faraday transmission path at specific, consistent locations. The timing of minima is remarkably consistent from year to year. Long wave propagation modeling is used to show that the location of nightside minima at an altitude of 45-75 km in the subionospheric waveguide represents the location of the sunrise terminator on the great circle path when dayside minima occur.
Pedestrians' crossing behaviors and safety at unmarked roadway in China.
Zhuang, Xiangling; Wu, Changxu
2011-11-01
Pedestrians' crossing out of crosswalks (unmarked roadway) contributed to many traffic accidents, but existing pedestrian studies mainly focus on crosswalk crossing in developed countries specifically. Field observation of 254 pedestrians at unmarked roadway in China showed that 65.7% of them did not look for vehicles after arriving at the curb. Those who did look and pay attention to the traffic did so for duration of time that followed an exponential distribution. Pedestrians preferred crossing actively in tentative ways rather than waiting passively. The waiting time at the curb, at the median, and at the roadway all followed exponential distributions. During crossing, all pedestrians looked at the oncoming vehicles. When interacting with these vehicles, 31.9% of them ran and 11.4% stepped backwards. Running pedestrians usually began running at the borderline rather than within the lanes. Pedestrians preferred safe to short paths and they crossed second half of the road with significantly higher speed. These behavioral patterns were rechecked at an additional site with 105 pedestrians and the results showed much accordance. In terms of safety, pedestrians who were middle aged, involved in bigger groups, looked at vehicles more often before crossing or interacted with buses rather than cars were safer while those running were more dangerous. Potential applications of these findings, including building accurate simulation models of pedestrians and education of drivers and pedestrians in developing countries were also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Passage through Science: Crossing Disciplinary Boundaries.
ERIC Educational Resources Information Center
Small, Henry
1999-01-01
Presents a methodology for creating pathways through the scientific literature following strong cocitation links. A path is described starting in economics and ending in astrophysics, traversing 331 documents. Attention is given to where the path crosses disciplinary boundaries and how analogy can be used to model the thought processes involved in…
Edwards, James P; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
NASA Astrophysics Data System (ADS)
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
NASA Astrophysics Data System (ADS)
Douglas, Jack
2014-03-01
One of the things that puzzled me when I was a PhD student working under Karl Freed was the curious unity between the theoretical descriptions of excluded volume interactions in polymers, the hydrodynamic properties of polymers in solution, and the critical properties of fluid mixtures, gases and diverse other materials (magnets, superfluids,etc.) when these problems were formally expressed in terms of Wiener path integration and the interactions treated through a combination of epsilon expansion and renormalization group (RG) theory. It seemed that only the interaction labels changed from one problem to the other. What do these problems have in common? Essential clues to these interrelations became apparent when Karl Freed, myself and Shi-Qing Wang together began to study polymers interacting with hyper-surfaces of continuously variable dimension where the Feynman perturbation expansions could be performed through infinite order so that we could really understand what the RG theory was doing. It is evidently simply a particular method for resuming perturbation theory, and former ambiguities no longer existed. An integral equation extension of this type of exact calculation to ``surfaces'' of arbitrary fixed shape finally revealed the central mathematical object that links these diverse physical models- the capacity of polymer chains, whose value vanishes at the critical dimension of 4 and whose magnitude is linked to the friction coefficient of polymer chains, the virial coefficient of polymers and the 4-point function of the phi-4 field theory,...Once this central object was recognized, it then became possible solve diverse problems in material science through the calculation of capacity, and related ``virials'' properties, through Monte Carlo sampling of random walk paths. The essential ideas of this computational method are discussed and some applications given to non-trivial problems: nanotubes treated as either rigid rods or ensembles worm-like chains having finite cross-section, DNA, nanoparticles with grafted chain layers and knotted polymers. The path-integration method, which grew up from research in Karl Freed's group, is evidently a powerful tool for computing basic transport properties of complex-shaped objects and should find increasing application in polymer science, nanotechnological applications and biology.
In recent years, a new class of enclosed, closed-path gas analyzers suitable for eddy covariance applications has come to market, designed to combine the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path syst...
Rozo, Jairo A; Rodríguez-Moreno, Antonio
2015-01-01
Santiago Ramón y Cajal was not only a great scientist but he was also a dedicated teacher who managed to create his own School in Spain. Cajal was active at the end of the XIX and the beginning of the XX century, a period in which Ivan Petrovich Pavlov, another great contemporary scientist, also established a strong School in Russia. While these two acclaimed scientists shared a similar vision on science, a view they also conveyed to their disciples, they applied quite distinct criteria in the way they dealt with their followers. Interestingly, despite the geographic and idiomatic barriers that had to be overcome, the paths of these two great figures of XX century science crossed at least three times. First when they competed for the City of Moscow Prize, second when they both attended the "Congreso Internacional de Medicina de Madrid" (Medicine International Congress in Madrid) in 1903 and finally, they competed on four consecutive occasions for the Nobel Prize in Physiology or Medicine. Here we discuss their scientific vision, their different attitudes in the interaction with disciples and the distinct circumstances in which their paths crossed.
System Data Model (SDM) Source Code
2012-08-23
CROSS_COMPILE=/opt/gumstix/build_arm_nofpu/staging_dir/bin/arm-linux-uclibcgnueabi- 8 : CC=$(CROSS_COMPILE)gcc 9: CXX=$(CROSS_COMPILE)g++ 10 : AR...and flags to pass to it 6: LEX=flex 7: LEXFLAGS=-B 8 : 9: ## The parser generator to invoke and flags to pass to it 10 : YACC=bison 11: YACCFLAGS...5: # Point to default PetaLinux root directory 6: ifndef ROOTDIR 7: ROOTDIR=$(PETALINUX)/software/petalinux-dist 8 : endif 9: 10 : PATH:=$(PATH
Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.
Hung, Yun-Ting; Huang, Chen-Bin; Huang, Jer-Shing
2012-08-27
To enable multiple functions of plasmonic nanocircuits, it is of key importance to control the propagation properties and the modal distribution of the guided optical modes such that their impedance matches to that of nearby quantum systems and desired light-matter interaction can be achieved. Here, we present efficient mode converters for manipulating guided modes on a plasmonic two-wire transmission line. The mode conversion is achieved through varying the path length, wire cross section and the surrounding index of refraction. Instead of pure optical interference, strong near-field coupling of surface plasmons results in great momentum splitting and modal profile variation. We theoretically demonstrate control over nanoantenna radiation and discuss the possibility to enhance nanoscale light-matter interaction. The proposed converter may find applications in surface plasmon amplification, index sensing and enhanced nanoscale spectroscopy.
Interactogeneous: Disease Gene Prioritization Using Heterogeneous Networks and Full Topology Scores
Gonçalves, Joana P.; Francisco, Alexandre P.; Moreau, Yves; Madeira, Sara C.
2012-01-01
Disease gene prioritization aims to suggest potential implications of genes in disease susceptibility. Often accomplished in a guilt-by-association scheme, promising candidates are sorted according to their relatedness to known disease genes. Network-based methods have been successfully exploiting this concept by capturing the interaction of genes or proteins into a score. Nonetheless, most current approaches yield at least some of the following limitations: (1) networks comprise only curated physical interactions leading to poor genome coverage and density, and bias toward a particular source; (2) scores focus on adjacencies (direct links) or the most direct paths (shortest paths) within a constrained neighborhood around the disease genes, ignoring potentially informative indirect paths; (3) global clustering is widely applied to partition the network in an unsupervised manner, attributing little importance to prior knowledge; (4) confidence weights and their contribution to edge differentiation and ranking reliability are often disregarded. We hypothesize that network-based prioritization related to local clustering on graphs and considering full topology of weighted gene association networks integrating heterogeneous sources should overcome the above challenges. We term such a strategy Interactogeneous. We conducted cross-validation tests to assess the impact of network sources, alternative path inclusion and confidence weights on the prioritization of putative genes for 29 diseases. Heat diffusion ranking proved the best prioritization method overall, increasing the gap to neighborhood and shortest paths scores mostly on single source networks. Heterogeneous associations consistently delivered superior performance over single source data across the majority of methods. Results on the contribution of confidence weights were inconclusive. Finally, the best Interactogeneous strategy, heat diffusion ranking and associations from the STRING database, was used to prioritize genes for Parkinson’s disease. This method effectively recovered known genes and uncovered interesting candidates which could be linked to pathogenic mechanisms of the disease. PMID:23185389
The calculation of radial dose from heavy ions: predictions of biological action cross sections
NASA Technical Reports Server (NTRS)
Katz, R.; Cucinotta, F. A.; Zhang, C. X.; Wilson, J. W. (Principal Investigator)
1996-01-01
The track structure model of heavy ion cross sections was developed by Katz and co-workers in the 1960s. In this model the action cross section is evaluated by mapping the dose-response of a detector to gamma rays (modeled from biological target theory) onto the radial dose distribution from delta rays about the path of the ion. This is taken to yield the radial distribution of probability for a "hit" (an interaction leading to an observable end-point). Radial integration of the probability yields the cross section. When different response from ions of different Z having the same stopping power is observed this model may be indicated. Since the 1960s there have been several developments in the computation of the radial dose distribution, in the measurement of these distributions, and in new radiobiological data against which to test the model. The earliest model, by Butts and Katz made use of simplified delta ray distribution functions, of simplified electron range-energy relations, and neglected angular distributions. Nevertheless it made possible the calculation of cross sections for the inactivation of enzymes and viruses, and allowed extension to tracks in nuclear emulsions and other detectors and to biological cells. It set the pattern for models of observable effects in the matter through which the ion passed. Here we outline subsequent calculations of radial dose which make use of improved knowledge of the electron emission spectrum, the electron range-energy relation, the angular distribution, and some considerations of molecular excitation, of particular interest both close to the path of the ion and the outer limits of electron penetration. These are applied to the modeling of action cross sections for the inactivation of several strains of E-coli and B. subtilis spores where extensive measurements in the "thin-down" region have been made with heavy ion beams. Such calculations serve to test the radial dose calculations at the outer limit of electron penetration. We lack data from which to test these calculations in regions close to the path of the ion aside from our earliest work on latent tracks in plastics, though it appears that the criterion then suggested for the threshold of track formation, of a minimal dose at a minimal distance (of about 20 angstroms, in plastics), remains valid.
Interactive cutting path analysis programs
NASA Technical Reports Server (NTRS)
Weiner, J. M.; Williams, D. S.; Colley, S. R.
1975-01-01
The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.
Measurements of hadron mean free path for the particle-producing collisions in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
It is not obvious a priority that the cross-section for a process in hadron collisions with free nucleons is the same as that for the process in hadron collisions with nucleons inside a target nucleus. The question arises: what is the cross-section for a process in a hadron collision with nucleon on inside the atomic nucleus. The answer to it must be found in experiments. The mean free path for particle-producing collisions of pions in nuclear matter is determined experimentally using pion-xenon nucleus collisions at 3.5 GeV/c momentum. Relation between the mean free path in question lambda sub in nucleons fm squared and the cross-section in units of fm squared/nucleon for collisions of the hadron with free nucleon is: lambda sub i = k/cross section sub i, where k = 3.00 plus or minus 0.26.
Saiano, Mario; Pellegrino, Laura; Casadio, Maura; Summa, Susanna; Garbarino, Eleonora; Rossi, Valentina; Dall'Agata, Daniela; Sanguineti, Vittorio
2015-02-19
Lack of social skills and/or a reduced ability to determine when to use them are common symptoms of Autism Spectrum Disorder (ASD). Here we examine whether an integrated approach based on virtual environments and natural interfaces is effective in teaching safety skills in adults with ASD. We specifically focus on pedestrian skills, namely street crossing with or without traffic lights, and following road signs. Seven adults with ASD explored a virtual environment (VE) representing a city (buildings, sidewalks, streets, squares), which was continuously displayed on a wide screen. A markerless motion capture device recorded the subjects' movements, which were translated into control commands for the VE according to a predefined vocabulary of gestures. The treatment protocol consisted of ten 45-minutes sessions (1 session/week). During a familiarization phase, the participants practiced the vocabulary of gestures. In a subsequent training phase, participants had to follow road signs (to either a police station or a pharmacy) and to cross streets with and without traffic lights. We assessed the performance in both street crossing (number and type of errors) and navigation (walking speed, path length and ability to turn without stopping). To assess their understanding of the practiced skill, before and after treatment subjects had to answer a test questionnaire. To assess transfer of the learned skill to real-life situations, another specific questionnaire was separately administered to both parents/legal guardians and the subjects' personal caregivers. One subject did not complete the familiarization phase because of problems with depth perception. The six subjects who completed the protocol easily learned the simple body gestures required to interact with the VE. Over sessions they significantly improved their navigation performance, but did not significantly reduce the errors made in street crossing. In the test questionnaire they exhibited no significant reduction in the number of errors. However, both parents and caregivers reported a significant improvement in the subjects' street crossing performance. Their answers were also highly consistent, thus pointing at a significant transfer to real-life behaviors. Rehabilitation of adults with ASD mainly focuses on educational interventions that have an impact in their quality of life, which includes safety skills. Our results confirm that interaction with VEs may be effective in facilitating the acquisition of these skills.
NASA Astrophysics Data System (ADS)
Kamala Latha, B.; Murthy, K. P. N.; Sastry, V. S. S.
2017-09-01
General quadratic Hamiltonian models, describing the interaction between liquid-crystal molecules (typically with D2 h symmetry), take into account couplings between their uniaxial and biaxial tensors. While the attractive contributions arising from interactions between similar tensors of the participating molecules provide for eventual condensation of the respective orders at suitably low temperatures, the role of cross coupling between unlike tensors is not fully appreciated. Our recent study with an advanced Monte Carlo technique (entropic sampling) showed clearly the increasing relevance of this cross term in determining the phase diagram (contravening in some regions of model parameter space), the predictions of mean-field theory, and standard Monte Carlo simulation results. In this context, we investigated the phase diagrams and the nature of the phases therein on two trajectories in the parameter space: one is a line in the interior region of biaxial stability believed to be representative of the real systems, and the second is the extensively investigated parabolic path resulting from the London dispersion approximation. In both cases, we find the destabilizing effect of increased cross-coupling interactions, which invariably result in the formation of local biaxial organizations inhomogeneously distributed. This manifests as a small, but unmistakable, contribution of biaxial order in the uniaxial phase. The free-energy profiles computed in the present study as a function of the two dominant order parameters indicate complex landscapes. On the one hand, these profiles account for the unusual thermal behavior of the biaxial order parameter under significant destabilizing influence from the cross terms. On the other, they also allude to the possibility that in real systems, these complexities might indeed be inhibiting the formation of a low-temperature biaxial order itself—perhaps reflecting the difficulties in their ready realization in the laboratory.
Crossing fitness canyons by a finite population
NASA Astrophysics Data System (ADS)
Saakian, David B.; Bratus, Alexander S.; Hu, Chin-Kun
2017-06-01
We consider the Wright-Fisher model of the finite population evolution on a fitness landscape defined in the sequence space by a path of nearly neutral mutations. We study a specific structure of the fitness landscape: One of the intermediate mutations on the mutation path results in either a large fitness value (climbing up a fitness hill) or a low fitness value (crossing a fitness canyon), the rest of the mutations besides the last one are neutral, and the last sequence has much higher fitness than any intermediate sequence. We derive analytical formulas for the first arrival time of the mutant with two point mutations. For the first arrival problem for the further mutants in the case of canyon crossing, we analytically deduce how the mean first arrival time scales with the population size and fitness difference. The location of the canyon on the path of sequences has a crucial role. If the canyon is at the beginning of the path, then it significantly prolongs the first arrival time; otherwise it just slightly changes it. Furthermore, the fitness hill at the beginning of the path strongly prolongs the arrival time period; however, the hill located near the end of the path shortens it. We optimize the first arrival time by applying a nonzero selection to the intermediate sequences. We extend our results and provide a scaling for the valley crossing time via the depth of the canyon and population size in the case of a fitness canyon at the first position. Our approach is useful for understanding some complex evolution systems, e.g., the evolution of cancer.
Zomorrodi, Ali R; Segrè, Daniel
2017-11-16
Metabolite exchanges in microbial communities give rise to ecological interactions that govern ecosystem diversity and stability. It is unclear, however, how the rise of these interactions varies across metabolites and organisms. Here we address this question by integrating genome-scale models of metabolism with evolutionary game theory. Specifically, we use microbial fitness values estimated by metabolic models to infer evolutionarily stable interactions in multi-species microbial "games". We first validate our approach using a well-characterized yeast cheater-cooperator system. We next perform over 80,000 in silico experiments to infer how metabolic interdependencies mediated by amino acid leakage in Escherichia coli vary across 189 amino acid pairs. While most pairs display shared patterns of inter-species interactions, multiple deviations are caused by pleiotropy and epistasis in metabolism. Furthermore, simulated invasion experiments reveal possible paths to obligate cross-feeding. Our study provides genomically driven insight into the rise of ecological interactions, with implications for microbiome research and synthetic ecology.
NASA Astrophysics Data System (ADS)
Heo, Jino; Hong, Chang-Ho; Lim, Jong-In; Yang, Hyung-Jin
2015-05-01
We propose an arbitrary controlled-unitary (CU) gate and a bidirectional quantum teleportation (BQTP) scheme. The proposed CU gate utilizes photonic qubits (photons) with cross-Kerr nonlinearities (XKNLs), X-homodyne detectors, and linear optical elements, and consists of the consecutive operation of a controlled-path (C-path) gate and a gathering-path (G-path) gate. It is almost deterministic and feasible with current technology when a strong coherent state and weak XKNLs are employed. Based on the CU gate, we present a BQTP scheme that simultaneously teleports two unknown photons between distant users by transmitting only one photon in a path-polarization intra-particle hybrid entangled state. Consequently, it is possible to experimentally implement BQTP with a certain success probability using the proposed CU gate. Project supported by the Ministry of Science, ICT&Future Planning, Korea, under the C-ITRC (Convergence Information Technology Research Center) Support program (NIPA-2013-H0301-13-3007) supervised by the National IT Industry Promotion Agency.
Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.
2011-04-01
Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for severalmore » other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.« less
Interactions of information transfer along separable causal paths
NASA Astrophysics Data System (ADS)
Jiang, Peishi; Kumar, Praveen
2018-04-01
Complex systems arise as a result of interdependences between multiple variables, whose causal interactions can be visualized in a time-series graph. Transfer entropy and information partitioning approaches have been used to characterize such dependences. However, these approaches capture net information transfer occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within a subgraph of interest through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [Phys. Rev. E 92, 062829 (2015), 10.1103/PhysRevE.92.062829] to develop a framework for quantifying information partitioning along separable causal paths. Momentary information transfer along causal paths captures the amount of information transfer between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique, and redundant information transfer through separable causal paths. Through a graphical model, we analyze the impact of the separable and nonseparable causal paths and the causality structure embedded in the graph as well as the noise effect on information partitioning by using synthetic data generated from two coupled logistic equation models. Our approach can provide a valuable reference for an autonomous information partitioning along separable causal paths which form a causal subgraph influencing a target.
K. Novick; J. Walker; W.S. Chan; A. Schmidt; C. Sobek; J.M. Vose
2013-01-01
A new class of enclosed path gas analyzers suitable for eddy covariance applications combines the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path systems (good spectral response, low power requirements), and permits estimates of instantaneous gas mixing ratio. Here, the extent to which these...
Path length differencing and energy conservation of the S[sub N] Boltzmann/Spencer-Lewis equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippone, W.L.; Monahan, S.P.
It is shown that the S[sub N] Boltzmann/Spencer-Lewis equations conserve energy locally if and only if they satisfy particle balance and diamond differencing is used in path length. In contrast, the spatial differencing schemes have no bearing on the energy balance. Energy is conserved globally if it is conserved locally and the multigroup cross sections are energy conserving. Although the coupled electron-photon cross sections generated by CEPXS conserve particles and charge, they do not precisely conserve energy. It is demonstrated that these cross sections can be adjusted such that particles, charge, and energy are conserved. Finally, since a conventional negativemore » flux fixup destroys energy balance when applied to path legend, a modified fixup scheme that does not is presented.« less
Resource Letter OSE-1: Observing Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Fraknoi, Andrew
2017-07-01
This Resource Letter provides a guide to the available literature, listing selected books, articles, and online resources about scientific, cultural, and practical issues related to observing solar eclipses. It is timely, given that a total solar eclipse will cross the continental United States on August 21, 2017. The next total solar eclipse path crossing the U.S. and Canada will be on April 8, 2024. In 2023, the path of annularity of an annular eclipse will cross Mexico, the United States, and Canada, with partial phases visible throughout those countries.
Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil
2013-01-01
Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.
Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Rees, Eileen C; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y; Newman, Scott H; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil
2013-01-01
Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.
CMPF: class-switching minimized pathfinding in metabolic networks.
Lim, Kevin; Wong, Limsoon
2012-01-01
The metabolic network is an aggregation of enzyme catalyzed reactions that converts one compound to another. Paths in a metabolic network are a sequence of enzymes that describe how a chemical compound of interest can be produced in a biological system. As the number of such paths is quite large, many methods have been developed to score paths so that the k-shortest paths represent the set of paths that are biologically meaningful or efficient. However, these approaches do not consider whether the sequence of enzymes can be manufactured in the same pathway/species/localization. As a result, a predicted sequence might consist of groups of enzymes that operate in distinct pathway/species/localization and may not truly reflect the events occurring within cell. We propose a path weighting method CMPF (Class-switching Minimized Pathfinder) to search for routes in a metabolic network which minimizes pathway switching. In biological terms, a pathway is a series of chemical reactions which define a specific function (e.g. glycolysis). We conjecture that routes that cross many pathways are inefficient since different pathways define different metabolic functions. In addition, native routes are also well characterized within pathways, suggesting that reasonable paths should not involve too many pathway switches. Our method can be generalized when reactions participate in a class set (e.g., pathways, species or cellular localization) so that the paths predicted have minimal class crossings. We show that our method generates k-paths that involve the least number of class switching. In addition, we also show that native paths are recoverable and alternative paths deviates less from native paths compared to other methods. This suggests that paths ranked by our method could be a way to predict paths that are likely to occur in biological systems.
Health Literacy Scale and Causal Model of Childhood Overweight.
Intarakamhang, Ungsinun; Intarakamhang, Patrawut
2017-01-28
WHO focuses on developing health literacy (HL) referring to cognitive and social skills. Our objectives were to develop a scale for evaluating the HL level of Thai childhood overweight, and develop a path model of health behavior (HB) for preventing obesity. A cross-sectional study. This research used a mixed method. Overall, 2,000 school students were aged 9 to 14 yr collected by stratified random sampling from all parts of Thailand in 2014. Data were analyzed by CFA, LISREL. Reliability of HL and HB scale ranged 0.62 to 0.82 and factor loading ranged 0.33 to 0.80, the subjects had low level of HL (60.0%) and fair level of HB (58.4%), and the path model of HB, could be influenced by HL from three paths. Path 1 started from the health knowledge and understanding that directly influenced the eating behavior (effect sized - β was 0.13, P<0.05. Path 2 the health knowledge and understanding that influenced managing their health conditions, media literacy, and making appropriate health-related decision β=0.07, 0.98, and 0.05, respectively. Path 3 the accessing the information and services that influenced communicating for added skills, media literacy, and making appropriate health-related decision β=0.63, 0.93, 0.98, and 0.05. Finally, basic level of HL measured from health knowledge and understanding and accessing the information and services that influenced HB through interactive, and critical level β= 0.76, 0.97, and 0.55, respectively. HL Scale for Thai childhood overweight should be implemented as a screening tool developing HL by the public policy for health promotion.
A Deterministic Transport Code for Space Environment Electrons
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.
2010-01-01
A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.
Preselected Sub-Poissonian Correlations
NASA Technical Reports Server (NTRS)
Pavicic, Mladen
1996-01-01
The simplest possible photon-number-squeezed states containing only two photons and exhibiting sub-poissonian statistics with the Fano factor approaching 0.5 have been used for a proposal of a loophole-free Bell experiment requiring only 67 percent of detection efficiency. The states are obtained by the fourth order interference first of two downconverted photons at an asymmetrical beam splitter and thereupon of two photons from two independent singlets at an asymmetrical beam splitter. In the latter set-up, the other two photons which nowhere interacted and whose paths never crossed appear entangled in a singlet-like correlated state.
Initial Results of Interdisciplinary Science Enabled by Eclipse 2017: NASA Perspective
NASA Astrophysics Data System (ADS)
Guhathakurta, M.
2017-12-01
The exceptionally long path over land of the August 21st total and partial solar eclipse provided an unprecedented opportunity for cross disciplinary studies of the sun, moon, Earth, and their interactions. NASA supported research using ground-based measurements, balloons and planes that "chased" the eclipse as well as data taken from a vast array of orbiting spacecraft, all of which helped scientists take continuous measurements of the sun and the effects of the eclipse on the ionosphere and Earth for relatively long periods of time. This talk will summarize some of the initial findings from these research.
RELATIONS BETWEEN COPARENTING AND FATHER INVOLVEMENT IN FAMILIES WITH PRESCHOOL AGED CHILDREN
Jia, Rongfang; Schoppe-Sullivan, Sarah J.
2012-01-01
One-hundred twelve primarily European American and middle-class two-parent families with resident fathers and a 4-year-old child (48% girls) participated in a longitudinal study of associations between coparenting and father involvement. At the initial assessment and one year later, fathers reported on their involvement in play and caregiving activities with the focal child, and coparenting behavior was observed during triadic family interactions. SEM was used to test cross-lagged associations between coparenting behavior and father involvement. Overall, paths from father involvement to coparenting behavior were significant, but paths from coparenting behavior to father involvement were not. Specifically, greater father involvement in play was associated with an increase in supportive and a decrease in undermining coparenting behavior over time. In contrast, greater father involvement in caregiving was associated with a decrease in supportive and an increase in undermining coparenting behavior. Multi-group analysis further showed that these cross-lagged relations did not differ for dual earner families and single (father) earner families, but these relations appeared to differ for families with focal daughters and families with focal sons. These findings highlight the potential for fathering to affect coparenting and the importance of considering the role of contextual factors in coparenting-fathering relations. PMID:21244153
Chinese engineering students' cross-cultural adaptation in graduate school
NASA Astrophysics Data System (ADS)
Jiang, Xinquan
This study explores cross-cultural adaptation experience of Chinese engineering students in the U.S. I interact with 10 Chinese doctoral students in engineering from a public research university through in-depth interviews to describe (1) their perceptions of and responses to key challenges they encountered in graduate school, (2) their perspectives on the challenges that stem from cross-cultural differences, and (3) their conceptualization of cross-cultural adaptation in the context of graduate school. My findings reveal that the major challenges participants encounter during graduate school are academic issues related to cultural differences and difficulties of crossing cultural boundaries and integrating into the university community. These challenges include finding motivation for doctoral study, becoming an independent learner, building a close relationship with faculty, interacting and forming relationships with American people, and gaining social recognition and support. The engineering students in this study believe they are less successful in their social integration than they are in accomplishing academic goals, mainly because of their preoccupation with academics, language barriers and cultural differences. The presence of a large Chinese student community on campus has provided a sense of community and social support for these students, but it also contributes to diminishing their willingness and opportunities to interact with people of different cultural backgrounds. Depending on their needs and purposes, they have different insights into the meaning of cross-cultural adaptation and therefore, and choose different paths to establish themselves in a new environment. Overall, they agree that cross-cultural adaptation involves a process of re-establishing themselves in new academic, social, and cultural communities, and adaptation is necessary for their personal and professional advancement in the U.S. They also acknowledge that encountering and adjusting to cross-cultural challenges allow them to grow as a person and develop a new sense of self and identity, and negotiating cultural differences help them gain a deeper understanding of their own and other cultures. These findings offer insights into understanding the interconnections among international students' academic life, socialization, and cross-cultural adaptation.
Interaction of a Rectangular Jet with a Flat-Plate Placed Parallel to the Flow
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Brown, C. A.; Bridges, J. A.
2013-01-01
An experimental study is carried out addressing the flowfield and radiated noise from the interaction of a large aspect ratio rectangular jet with a flat plate placed parallel to but away from the direct path of the jet. Sound pressure level spectra exhibit an increase in the noise levels for both the 'reflected' and 'shielded' sides of the plate relative to the free-jet case. Detailed cross-sectional distributions of flowfield properties obtained by hot-wire anemometry are documented for a low subsonic condition. Corresponding mean Mach number distributions obtained by Pitot-probe surveys are presented for high subsonic conditions. In the latter flow regime and for certain relative locations of the plate, a flow resonance accompanied by audible tones is encountered. Under the resonant condition the jet cross-section experiences an 'axis-switching' and flow visualization indicates the presence of an organized 'vortex street'. The trends of the resonant frequency variation with flow parameters exhibit some similarities to, but also marked differences with, corresponding trends of the well-known edgetone phenomenon.
Witbrodt, Jane; Ye, Yu; Bond, Jason; Chi, Felicia; Weisner, Constance; Mertens, Jennifer
2014-04-01
This study explored causal relationships between post-treatment 12-step attendance and abstinence at multiple data waves and examined indirect paths leading from treatment initiation to abstinence 9-years later. Adults (N = 1945) seeking help for alcohol or drug use disorders from integrated healthcare organization outpatient treatment programs were followed at 1-, 5-, 7- and 9-years. Path modeling with cross-lagged partial regression coefficients was used to test causal relationships. Cross-lagged paths indicated greater 12-step attendance during years 1 and 5 and were casually related to past-30-day abstinence at years 5 and 7 respectfully, suggesting 12-step attendance leads to abstinence (but not vice versa) well into the post-treatment period. Some gender differences were found in these relationships. Three significant time-lagged, indirect paths emerged linking treatment duration to year-9 abstinence. Conclusions are discussed in the context of other studies using longitudinal designs. For outpatient clients, results reinforce the value of lengthier treatment duration and 12-step attendance in year 1. Copyright © 2014 Elsevier Inc. All rights reserved.
Pseudo-random tool paths for CNC sub-aperture polishing and other applications.
Dunn, Christina R; Walker, David D
2008-11-10
In this paper we first contrast classical and CNC polishing techniques in regard to the repetitiveness of the machine motions. We then present a pseudo-random tool path for use with CNC sub-aperture polishing techniques and report polishing results from equivalent random and raster tool-paths. The random tool-path used - the unicursal random tool-path - employs a random seed to generate a pattern which never crosses itself. Because of this property, this tool-path is directly compatible with dwell time maps for corrective polishing. The tool-path can be used to polish any continuous area of any boundary shape, including surfaces with interior perforations.
Measuring the Muon Neutrino Charged Current Cross Section on Water using the Near Detector of T2K
NASA Astrophysics Data System (ADS)
Das, Rajarshi
2012-10-01
The Near Detector of the T2K Long Baseline Neutrino Oscillation Experiment comprises of several sub-detectors working together to study neutrino interactions. The neutrinos are provided by a powerful off-axis, accelerator generated neutrino beam located at the J-PARC facility in Tokai, Japan. The first sub-detector in the path of travelling neutrinos, the Pi-Zero Detector (P0D), is made of layers of scintillating plastic, lead, brass and bags of water. The next sub-detector, the Tracker, consists of alternating Time Projection Chambers (TPC) and Fine Grained scintillator Detectors (FGD). We outline the procedure for extracting a muon neutrino charged current cross section on water-only by selecting muons originating in the P0D and travelling through the Tracker. We compare data collected while the P0D water bags are filled with water against data from P0D water bags filled with air. A detailed detector simulation utilizing NEUT and GENIE neutrino interaction generators is used in conjunction with a Bayesian Unfolding scheme to correct for detector effects in the data. The end result is a model-independent double differential neutrino cross section as a function of muon momentum and direction.
Live minimal path for interactive segmentation of medical images
NASA Astrophysics Data System (ADS)
Chartrand, Gabriel; Tang, An; Chav, Ramnada; Cresson, Thierry; Chantrel, Steeve; De Guise, Jacques A.
2015-03-01
Medical image segmentation is nowadays required for medical device development and in a growing number of clinical and research applications. Since dedicated automatic segmentation methods are not always available, generic and efficient interactive tools can alleviate the burden of manual segmentation. In this paper we propose an interactive segmentation tool based on image warping and minimal path segmentation that is efficient for a wide variety of segmentation tasks. While the user roughly delineates the desired organs boundary, a narrow band along the cursors path is straightened, providing an ideal subspace for feature aligned filtering and minimal path algorithm. Once the segmentation is performed on the narrow band, the path is warped back onto the original image, precisely delineating the desired structure. This tool was found to have a highly intuitive dynamic behavior. It is especially efficient against misleading edges and required only coarse interaction from the user to achieve good precision. The proposed segmentation method was tested for 10 difficult liver segmentations on CT and MRI images, and the resulting 2D overlap Dice coefficient was 99% on average..
Umari, A.; Earle, J.D.; Fahy, M.F.
2006-01-01
As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 ?? 10-2 for an individual flow path to 2.0 ?? 10 -1 for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer.
Heating and acceleration of escaping planetary ions
NASA Astrophysics Data System (ADS)
Nilsson, Hans
2010-05-01
The magnetic field of the Earth acts like a shield against the solar wind, leading to a magnetopause position many planetary radii away from the planet, in contrast to the situation at non- or weakly magnetized planets such as Mars and Venus. Despite this there is significant ion outflow due to solar wind interaction from the cusp and polar cap regions of the Earth's ionosphere. Effective interaction regions form, in particular in the ionospheric projection of the cusp, where ionospheric plasma flows up along the field-lines in response to magnetospheric energy input. Strong wave-particle interaction at altitudes above the ionosphere further accelerates the particles so that gravity is overcome. For the particles to enter a direct escape path they must be accelerated along open magnetic field lines so that they cross the magnetopause or reach a distance beyond the region of return flow in the tail. This return flow may also be either lost to space or returned to the atmosphere. Throughout this transport chain the heating and acceleration experienced by the particles will have an influence on the final fate of the particles. We will present quantitative estimates of centrifugal acceleration and perpendicular heating along the escape path from the cusp, through the high altitude polar cap/mantle, based on Cluster spacecraft data. We will open up for a discussion on the benefits of a ponderomotive force description of the acceleration affecting the ion circulation and escape. Finally we will compare with the situation at the unmagnetized planets Mars and Venus and discuss to what extent a magnetic field protects an atmosphere from loss through solar wind interaction.
Abdala, Nadia; Li, Fangyong; Shaboltas, Alla V; Skochilov, Roman V; Krasnoselskikh, Tatiana V
2016-03-01
The relationship between level of childhood abuse (physical and emotional) and sexual risk behavior of sexually transmitted disease clinic patients in St. Petersburg, Russia was examined through path analyses. Mediating variables investigated were: Alcohol Use Disorder Identification Test (AUDIT), drinking motives (for social interaction, to enhance mood, to facilitate sexual encounters), intimate partner violence (IPV), anxiety, and depression symptoms. Results showed a significant indirect effect of childhood abuse on women's sexual risk behavior: higher level of childhood abuse was associated with a greater likelihood of IPV, motivations to drink, leading to higher AUDIT scores and correlated to higher likelihood of having multiple, new or casual sexual partner(s). No significant effect was identified in paths to condom use. Among men, childhood abuse had no significant effect on sexual risk behavior. Reduction in alcohol-related sexual risk behavior may be achieved by addressing the effects of childhood abuse among female participants.
Abdala, Nadia; Li, Fangyong; Shaboltas, Alla V.; Skochilov, Roman V.; Krasnoselskikh, Tatiana V.
2015-01-01
The relationship between level of childhood abuse (physical and emotional) and sexual risk behavior of sexually transmitted disease (STD) clinic patients in St. Petersburg, Russia was examined through path analyses. Mediating variables investigated were: Alcohol Use Disorder Identification Test (AUDIT), drinking motives (for social interaction, to enhance mood, to facilitate sexual encounters), intimate partner violence (IPV), anxiety, and depression symptoms. Results showed a significant indirect effect of childhood abuse on women’s sexual risk behavior: higher level of childhood abuse was associated with a greater likelihood of IPV, motivations to drink, leading to higher AUDIT scores and correlated to higher likelihood of having multiple, new or casual sexual partner(s). No significant effect was identified in paths to condom use. Among men, childhood abuse had no significant effect on sexual risk behavior. Reduction in alcohol-related sexual risk behavior may be achieved by addressing the effects of childhood abuse among female participants. PMID:25801476
Pairing-induced speedup of nuclear spontaneous fission
NASA Astrophysics Data System (ADS)
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.
2014-12-01
Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.
Pairing-induced speedup of nuclear spontaneous fission
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...
2014-12-22
Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less
Observations of Traveling Crossflow Resonant Triad Interactions on a Swept Wing
NASA Technical Reports Server (NTRS)
Eppink, Jenna L.; Wlezien, Richard
2012-01-01
Experimental evidence indicates the presence of a triad resonance interaction between traveling crossflow modes in a swept wing flow. Results indicate that this interaction occurs when the stationary and traveling crossflow modes have similar and relatively low amplitudes (approx.1% to 6% of the total freestream velocity). The resonant interaction occurs at instability amplitudes well below those typically known to cause transition, yet transition is observed to occur just downstream of the resonance. In each case, two primary linearly unstable traveling crossflow modes are nonlinearly coupled to a higher frequency linearly stable mode at the sum of their frequencies. The higher-frequency mode is linearly stable and presumed to exist as a consequence of the interaction of the two primary modes. Autoand cross-bicoherence are used to determine the extent of phase-matching between the modes, and wavenumber matching confirms the triad resonant nature of the interaction. The bicoherence results indicate a spectral broadening mechanism and the potential path to early transition. The implications for laminar flow control in swept wing flows are significant. Even if stationary crossflow modes remain subcritical, traveling crossflow interactions can lead to early transition.
Method and system for modulation of gain suppression in high average power laser systems
Bayramian, Andrew James [Manteca, CA
2012-07-31
A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.
Enzymatic reaction paths as determined by transition path sampling
NASA Astrophysics Data System (ADS)
Masterson, Jean Emily
Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems, we observed changes in the reaction mechanism and altered contributions of the mutated residues to the enzymatic reaction coordinate, but we did not detect a substantial change in the time of barrier crossing. These results confirm the importance of maintaining the dynamics and structural scaffolding of the hhLDH PV in order to facilitate facile barrier passage. We also utilized TPS to investigate the possible role of fast protein dynamics in the enzymatic reaction coordinate of human dihydrofolate reductase (hsDHFR). We found that sub-picosecond dynamics of hsDHFR do contribute to the reaction coordinate, whereas this is not the case in the E. coli version of the enzyme. This result indicates a shift in the DHFR family to a more dynamic version of catalysis. The second inquiry we addressed in this thesis regarding enzymatic barrier passage concerns the variability of paths through reactive phase space for a given enzymatic reaction. We further investigated the hhLDH-catalyzed reaction using a high-perturbation TPS algorithm. Though we saw that alternate reaction paths were possible, the dominant reaction path we observed corresponded to that previously elucidated in prior hhLDH TPS studies. Since the additional reaction paths we observed were likely high-energy, these results indicate that only the dominant reaction path contributes significantly to the overall reaction rate. In conclusion, we show that the enzymes hhLDH and hsDHFR exhibit paths through reactive phase space where fast protein motions are involved in the enzymatic reaction coordinate and exhibit a non-negligible contribution to chemical barrier crossing.
Error analysis and prevention of cosmic ion-induced soft errors in static CMOS RAMs
NASA Astrophysics Data System (ADS)
Diehl, S. E.; Ochoa, A., Jr.; Dressendorfer, P. V.; Koga, P.; Kolasinski, W. A.
1982-12-01
Cosmic ray interactions with memory cells are known to cause temporary, random, bit errors in some designs. The sensitivity of polysilicon gate CMOS static RAM designs to logic upset by impinging ions has been studied using computer simulations and experimental heavy ion bombardment. Results of the simulations are confirmed by experimental upset cross-section data. Analytical models have been extended to determine and evaluate design modifications which reduce memory cell sensitivity to cosmic ions. A simple design modification, the addition of decoupling resistance in the feedback path, is shown to produce static RAMs immune to cosmic ray-induced bit errors.
Cross over of recurrence networks to random graphs and random geometric graphs
NASA Astrophysics Data System (ADS)
Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.
2017-02-01
Recurrence networks are complex networks constructed from the time series of chaotic dynamical systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the topology of every recurrence network unique with the degree distribution determined by the probability density variations of the representative attractor from which it is constructed. Here we numerically investigate the properties of recurrence networks from standard low-dimensional chaotic attractors using some basic network measures and show how the recurrence networks are different from random and scale-free networks. In particular, we show that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to the time series and into the classical random graphs by increasing the range of interaction to the system size. We also highlight the effectiveness of a combined plot of characteristic path length and clustering coefficient in capturing the small changes in the network characteristics.
Large volume multiple-path nuclear pumped laser
NASA Technical Reports Server (NTRS)
Hohl, F.; Deyoung, R. J. (Inventor)
1981-01-01
Large volumes of gas are excited by using internal high reflectance mirrors that are arranged so that the optical path crosses back and forth through the excited gaseous medium. By adjusting the external dielectric mirrors of the laser, the number of paths through the laser cavity can be varied. Output powers were obtained that are substantially higher than the output powers of previous nuclear laser systems.
Haase, Claudia M.; Holley, Sarah; Bloch, Lian; Verstaen, Alice; Levenson, Robert W.
2016-01-01
Objectively coded interpersonal emotional behaviors that emerged during a 15-minute marital conflict interaction predicted the development of physical symptoms in a 20-year longitudinal study of long-term marriages. Dyadic latent growth curve modeling showed that anger behavior predicted increases in cardiovascular symptoms and stonewalling behavior predicted increases in musculoskeletal symptoms. Both associations were found for husbands (although cross-lagged path models also showed some support for wives) and were controlled for sociodemographic characteristics (age, education) and behaviors (i.e., exercise, smoking, alcohol consumption, caffeine consumption) known to influence health. Both associations did not exist at the start of the study, but only emerged over the ensuing 20 years. There was some support for the specificity of these relationships (i.e., stonewalling behavior did not predict cardiovascular symptoms; anger behavior did not predict musculoskeletal symptoms; neither symptom was predicted by fear nor sadness behavior), with the anger-cardiovascular relationship emerging as most robust. Using cross-lagged path models to probe directionality of these associations, emotional behaviors predicted physical health symptoms over time (with some reverse associations found as well). These findings illuminate longstanding theoretical and applied issues concerning the association between interpersonal emotional behaviors and physical health and suggest opportunities for preventive interventions focused on specific emotions to help address major public health problems. PMID:27213730
From the physics of interacting polymers to optimizing routes on the London Underground
Yeung, Chi Ho; Saad, David; Wong, K. Y. Michael
2013-01-01
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise. PMID:23898198
From the physics of interacting polymers to optimizing routes on the London Underground.
Yeung, Chi Ho; Saad, David; Wong, K Y Michael
2013-08-20
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise.
Coupled auralization and virtual video for immersive multimedia displays
NASA Astrophysics Data System (ADS)
Henderson, Paul D.; Torres, Rendell R.; Shimizu, Yasushi; Radke, Richard; Lonsway, Brian
2003-04-01
The implementation of maximally-immersive interactive multimedia in exhibit spaces requires not only the presentation of realistic visual imagery but also the creation of a perceptually accurate aural experience. While conventional implementations treat audio and video problems as essentially independent, this research seeks to couple the visual sensory information with dynamic auralization in order to enhance perceptual accuracy. An implemented system has been developed for integrating accurate auralizations with virtual video techniques for both interactive presentation and multi-way communication. The current system utilizes a multi-channel loudspeaker array and real-time signal processing techniques for synthesizing the direct sound, early reflections, and reverberant field excited by a moving sound source whose path may be interactively defined in real-time or derived from coupled video tracking data. In this implementation, any virtual acoustic environment may be synthesized and presented in a perceptually-accurate fashion to many participants over a large listening and viewing area. Subject tests support the hypothesis that the cross-modal coupling of aural and visual displays significantly affects perceptual localization accuracy.
NASA Astrophysics Data System (ADS)
Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.
2016-05-01
The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.
Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH).
Tierney, Adam; Kraus, Nina
2014-01-01
Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills.
Sandler, I N; Tein, J Y; West, S G
1994-12-01
The authors conducted a cross-sectional and prospective longitudinal study of stress, coping, and psychological symptoms in children of divorce. The sample consisted of 258 children (mean age = 10.1; SD = 1.2), of whom 196 were successfully followed 5.5 months later. A 4-dimensional model of coping was found using confirmatory factor analysis, with the factors being active coping, avoidance, distraction, and support. In the cross-sectional model avoidance coping partially mediated the relations between negative events and symptoms while active coping moderated the relations between negative events and conduct problems. In the longitudinal model significant negative paths were found from active coping and distraction Time 1 to internalizing symptoms Time 2, while Time 1 support coping had a positive path coefficient to Time 2 depression. Positive paths were found between negative events at Time 1 and anxiety at Time 2, and between all symptoms at Time 1 and negative events at Time 2.
NASA Astrophysics Data System (ADS)
Divay, C.; Colin, J.; Cussol, D.; Finck, Ch.; Karakaya, Y.; Labalme, M.; Rousseau, M.; Salvador, S.; Vanstalle, M.
2017-04-01
During a carbon therapy treatment, the beam undergoes inelastic nuclear reactions leading to the production of secondary fragments. These nuclear interactions tend to delocate a part of the dose into healthy tissues and create a mixed radiation field. In order to accurately estimate the dose deposited into the tissues, the production rate of these fragments all along the beam path have to be taken into account. But the double differential carbon fragmentation cross sections are not well known in the energy range needed for a treatment (up to 400 MeV/nucleon). Therefore, a series of experiments aiming to measure the double differential fragmentation cross sections of carbon on thin targets of medical interest has been started by our collaboration. In March 2015 we performed an experiment to study the fragmentation of a 50 MeV/nucleon 12C beam on thin targets at GANIL. During this experiment, energy and angular cross-section distributions on H, C, O, Al, and natTi have been measured. The experimental set-up will be detailed as well as the systematic error study and all the experimental results will be presented.
Alovisi, M; Cemenasco, A; Mancini, L; Paolino, D; Scotti, N; Bianchi, C C; Pasqualini, D
2017-04-01
To evaluate the ability of ProGlider instruments, PathFiles and K-files to maintain canal anatomy during glide path preparation using X-ray computed micro-tomography (micro-CT). Forty-five extracted maxillary first permanent molars were selected. Mesio-buccal canals were randomly assigned (n = 15) to manual K-file, PathFile or ProGlider groups for glide path preparation. Irrigation was achieved with 5% NaOCl and 10% EDTA. After glide path preparation, each canal was shaped with ProTaper Next X1 and X2 to working length. Specimens were scanned (isotropic voxel size 9.1 μm) for matching volumes and surface areas and post-treatment analyses. Canal volume, surface area, centroid shift, canal geometry variation through ratio of diameter ratios and ratio of cross-sectional areas were assessed in the apical and coronal levels and at the point of maximum canal curvature. One-way factorial anovas were used to evaluate the significance of instrument in the various canal regions. Post-glide path analysis revealed that instrument factor was significant at the apical level for both the ratio of diameter ratios and the ratio of cross-sectional areas (P < 0.001), with an improved maintenance of root canal geometry by ProGlider and PathFile. At the coronal level and point of maximum canal curvature, ProGlider demonstrated a tendency to pre-flare the root canal compared with K-file and PathFile. PathFile and ProGlider demonstrated a significantly lower centroid shift compared with K-file at the apical level (P = 0.023). Post-shaping analysis demonstrated a more centred preparation of ProGlider, compared with PathFile and K-files, with no significant differences for other parameters. Use of ProGlider instruments led to less canal transportation than PathFiles and K-files. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Evaluating the intersection of a regional wildlife connectivity network with highways.
Cushman, Samuel A; Lewis, Jesse S; Landguth, Erin L
2013-01-01
Reliable predictions of regional-scale population connectivity are needed to prioritize conservation actions. However, there have been few examples of regional connectivity models that are empirically derived and validated. The central goals of this paper were to (1) evaluate the effectiveness of factorial least cost path corridor mapping on an empirical resistance surface in reflecting the frequency of highway crossings by American black bear, (2) predict the location and predicted intensity of use of movement corridors for American black bear, and (3) identify where these corridors cross major highways and rank the intensity of these crossings. We used factorial least cost path modeling coupled with resistant kernel analysis to predict a network of movement corridors across a 30.2 million hectare analysis area in Montana and Idaho, USA. Factorial least cost path corridor mapping was associated with the locations of actual bear highway crossings. We identified corridor-highway intersections and ranked these based on corridor strength. We found that a major wildlife crossing overpass structure was located close to one of the most intense predicted corridors, and that the vast majority of the predicted corridor network was "protected" under federal management. However, narrow, linear corridors connecting the Greater Yellowstone Ecosystem to the rest of the analysis area had limited protection by federal ownership, making these additionally vulnerable to habitat loss and fragmentation. Factorial least cost path modeling coupled with resistant kernel analysis provides detailed, synoptic information about connectivity across populations that vary in distribution and density in complex landscapes. Specifically, our results could be used to quantify the structure of the connectivity network, identify critical linkage nodes and core areas, map potential barriers and fracture zones, and prioritize locations for mitigation, restoration and conservation actions.
Pasqualini, Damiano; Bianchi, Caterina Chiara; Paolino, Davide Salvatore; Mancini, Lucia; Cemenasco, Andrea; Cantatore, Giuseppe; Castellucci, Arnaldo; Berutti, Elio
2012-03-01
X-ray computed micro-tomography scanning allows high-resolution 3-dimensional imaging of small objects. In this study, micro-CT scanning was used to compare the ability of manual and mechanical glide path to maintain the original root canal anatomy. Eight extracted upper first permanent molars were scanned at the TOMOLAB station at ELETTRA Synchrotron Light Laboratory in Trieste, Italy, with a microfocus cone-beam geometry system. A total of 2,400 projections on 360° have been acquired at 100 kV and 80 μA, with a focal spot size of 8 μm. Buccal root canals of each specimen (n = 16) were randomly assigned to PathFile (P) or stainless-steel K-file (K) to perform glide path at the full working length. Specimens were then microscanned at the apical level (A) and at the point of the maximum curvature level (C) for post-treatment analyses. Curvatures of root canals were classified as moderate (≤35°) or severe (≥40°). The ratio of diameter ratios (RDRs) and the ratio of cross-sectional areas (RAs) were assessed. For each level of analysis (A and C), 2 balanced 2-way factorial analyses of variance (P < .05) were performed to evaluate the significance of the instrument factor and of canal curvature factor as well as the interactions of the factors both with RDRs and RAs. Specimens in the K group had a mean curvature of 35.4° ± 11.5°; those in the P group had a curvature of 38° ± 9.9°. The instrument factor (P and K) was extremely significant (P < .001) for both the RDR and RA parameters, regardless of the point of analysis. Micro-CT scanning confirmed that NiTi rotary PathFile instruments preserve the original canal anatomy and cause less canal aberrations. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
UCAV path planning in the presence of radar-guided surface-to-air missile threats
NASA Astrophysics Data System (ADS)
Zeitz, Frederick H., III
This dissertation addresses the problem of path planning for unmanned combat aerial vehicles (UCAVs) in the presence of radar-guided surface-to-air missiles (SAMs). The radars, collocated with SAM launch sites, operate within the structure of an Integrated Air Defense System (IADS) that permits communication and cooperation between individual radars. The problem is formulated in the framework of the interaction between three sub-systems: the aircraft, the IADS, and the missile. The main features of this integrated model are: The aircraft radar cross section (RCS) depends explicitly on both the aspect and bank angles; hence, the RCS and aircraft dynamics are coupled. The probabilistic nature of IADS tracking is accounted for; namely, the probability that the aircraft has been continuously tracked by the IADS depends on the aircraft RCS and range from the perspective of each radar within the IADS. Finally, the requirement to maintain tracking prior to missile launch and during missile flyout are also modeled. Based on this model, the problem of UCAV path planning is formulated as a minimax optimal control problem, with the aircraft bank angle serving as control. Necessary conditions of optimality for this minimax problem are derived. Based on these necessary conditions, properties of the optimal paths are derived. These properties are used to discretize the dynamic optimization problem into a finite-dimensional, nonlinear programming problem that can be solved numerically. Properties of the optimal paths are also used to initialize the numerical procedure. A homotopy method is proposed to solve the finite-dimensional, nonlinear programming problem, and a heuristic method is proposed to improve the discretization during the homotopy process. Based upon the properties of numerical solutions, a method is proposed for parameterizing and storing information for later recall in flight to permit rapid replanning in response to changing threats. Illustrative examples are presented that confirm the standard flying tactics of "denying range, aspect, and aim," by yielding flight paths that "weave" to avoid long exposures of aspects with large RCS.
Ocimum basilicum miRNOME revisited: A cross kingdom approach.
Patel, Maulikkumar; Patel, Shanaya; Mangukia, Naman; Patel, Saumya; Mankad, Archana; Pandya, Himanshu; Rawal, Rakesh
2018-05-15
O. basilicum is medicinally important herb having inevitable role in human health. However, the mechanism of action is largely unknown. Present study aims to understand the mechanism of regulation of key human target genes that could plausibly modulated by O. basilicum miRNAs in cross kingdom manner using computational and system biology approach. O. basilicum miRNA sequences were retrieved and their corresponding human target genes were identified using psRNA target and interaction analysis of hub nodes. Six O. basilicum derived miRNAs were found to modulate 26 human target genes which were associated `with PI3K-AKTand MAPK signaling pathways with PTPN11, EIF2S2, NOS1, IRS1 and USO1 as top 5 Hub nodes. O. basilicum miRNAs not only regulate key human target genes having a significance in various diseases but also paves the path for future studies that might explore potential of miRNA mediated cross-kingdom regulation, prevention and treatment of various human diseases including cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
Man-machine cooperation in advanced teleoperation
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Das, Hari; Lee, Sukhan
1993-01-01
Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.
Resonant Interaction of a Rectangular Jet with a Flat-Plate
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Fagan, A. F.; Clem, M. M.; Brown, C. A.
2014-01-01
A resonant interaction between a large aspect ratio rectangular jet and a flat-plate is addressed in this experimental study. The plate is placed parallel to but away from the direct path of the jet. At high subsonic conditions and for certain relative locations of the plate, the resonance accompanied by an audible tone is encountered. The trends of the tone frequency variation exhibit some similarities to, but also marked differences from, corresponding trends of the well-known edge-tone phenomenon. Under the resonant condition flow visualization indicates a periodic flapping motion of the jet column. Phase-averaged Mach number data obtained near the plate's trailing edge illustrate that the jet cross-section goes through large contortions within the period of the tone. Farther downstream a clear 'axis switching' takes place. These results suggest that the assumption of two-dimensionality should be viewed with caution in any analysis of the flow.
NASA Astrophysics Data System (ADS)
Lang, Helen M.; Gilotti, Jane A.
2015-06-01
Pseudosection modeling constrains the pressure-temperature (P-T) exhumation path of partially melted ultrahigh-pressure (UHP) metapelites exposed in the North-East Greenland UHP terrane. A robust peak P and T estimate of 3.6 GPa and 970 °C based on mineral assemblages in nearby kyanite eclogites is the starting point for the P-T path. Although the peak assemblage for the metapelite is not preserved, the calculated modeled peak assemblage contained substantial clinopyroxene, garnet, phengite, K-feldspar and coesite with minor kyanite and rutile. Combining the pseudosection and observed textures, the decompression path crosses the coesite-quartz transition before reaching the dry phengite dehydration melting reaction where phengite is abruptly consumed. In the range of 2.5 to 2.2 GPa, clinopyroxene is completely consumed and garnet grows to its maximum volume and grossular content, matching the high grossular rims of relict megacrysts. Plagioclase joins the assemblage and the pseudosection predicts up to 12-13 vol.% melt in the supersolidus assemblage, which contained garnet, liquid, K-feldspar, plagioclase, kyanite, quartz and rutile. At this stage, the steep decompression path flattened out and became nearly isobaric. The melt crystallization assemblage that formed when the path crossed the solidus with decreasing temperature contains phengite, garnet, biotite, 2 feldspars, kyanite, quartz and rutile. Therefore, the path must have intersected the solidus at approximately 1.2 GPa, 825 °C. The pseudosection predicts that garnet is consumed on the cooling path, but little evidence of late garnet consumption or other retrograde effects is observed. This may be due to partial melt loss from the rock. Isochemical PT-n and PT-X sections calculated along the P-T path display changes in mineral assemblage and composition that are consistent with preserved assemblages.
Interactive Learning Environment for Bio-Inspired Optimization Algorithms for UAV Path Planning
ERIC Educational Resources Information Center
Duan, Haibin; Li, Pei; Shi, Yuhui; Zhang, Xiangyin; Sun, Changhao
2015-01-01
This paper describes the development of BOLE, a MATLAB-based interactive learning environment, that facilitates the process of learning bio-inspired optimization algorithms, and that is dedicated exclusively to unmanned aerial vehicle path planning. As a complement to conventional teaching methods, BOLE is designed to help students consolidate the…
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineer Joey Mercer reviews flight paths using the UAS traffic management research platform UTM coordinator app to verify and validate flight paths.
minepath.org: a free interactive pathway analysis web server.
Koumakis, Lefteris; Roussos, Panos; Potamias, George
2017-07-03
( www.minepath.org ) is a web-based platform that elaborates on, and radically extends the identification of differentially expressed sub-paths in molecular pathways. Besides the network topology, the underlying MinePath algorithmic processes exploit exact gene-gene molecular relationships (e.g. activation, inhibition) and are able to identify differentially expressed pathway parts. Each pathway is decomposed into all its constituent sub-paths, which in turn are matched with corresponding gene expression profiles. The highly ranked, and phenotype inclined sub-paths are kept. Apart from the pathway analysis algorithm, the fundamental innovation of the MinePath web-server concerns its advanced visualization and interactive capabilities. To our knowledge, this is the first pathway analysis server that introduces and offers visualization of the underlying and active pathway regulatory mechanisms instead of genes. Other features include live interaction, immediate visualization of functional sub-paths per phenotype and dynamic linked annotations for the engaged genes and molecular relations. The user can download not only the results but also the corresponding web viewer framework of the performed analysis. This feature provides the flexibility to immediately publish results without publishing source/expression data, and get all the functionality of a web based pathway analysis viewer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Liheng; Zhang, Jun; Li, Ting
2013-09-20
We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup –1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wavemore » transit, the original redshift increased by about 3 km s{sup –1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.« less
Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).
Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko
2010-10-11
We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.
Analysis of photogenerated random telegraph signal in single electron detector (photo-SET).
Troudi, M; Sghaier, Na; Kalboussi, A; Souifi, A
2010-01-04
In this paper, we analyzed slow single traps, situated inside the tunnel oxide of small area single electron photo-detector (photo-SET or nanopixel). The relationship between excitation signal (photons) and random-telegraph-signal (RTS) was evidenced. We demonstrated that photoinduced RTS observed on a photo-detector is due to the interaction between single photogenerated charges that tunnel from dot to dot and current path. Based on RTS analysis for various temperatures, gate bias and optical power we determined the characteristics of these single photogenerated traps: the energy position within the silicon bandgap, capture cross section and the position within the Si/SiO(x = 1.5) interfaces.
Going clean: structure and dynamics of peptides in the gas phase and paths to solvation.
Baldauf, Carsten; Rossi, Mariana
2015-12-16
The gas phase is an artificial environment for biomolecules that has gained much attention both experimentally and theoretically due to its unique characteristic of providing a clean room environment for the comparison between theory and experiment. In this review we give an overview mainly on first-principles simulations of isolated peptides and the initial steps of their interactions with ions and solvent molecules: a bottom up approach to the complexity of biological environments. We focus on the accuracy of different methods to explore the conformational space, the connections between theory and experiment regarding collision cross section evaluations and (anharmonic) vibrational spectra, and the challenges faced in this field.
NASA Astrophysics Data System (ADS)
Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng
2016-09-01
Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.
Thomason, Elizabeth; Volling, Brenda L.; Flynn, Heather A.; McDonough, Susan C.; Marcus, Sheila M.; Lopez, Juan F.; Vazquez, Delia M.
2015-01-01
Despite the consistent link between parenting stress and postpartum depressive symptoms, few studies have explored the relationships longitudinally. The purpose of this study was to test bidirectional and unidirectional models of depressive symptoms and parenting stress. Uniquely, three specific domains of parenting stress were examined: parental distress, difficult child stress, and parent–child dysfunctional interaction (PCDI). One hundred and five women completed the Beck Depression Inventory and the Parenting Stress Index–Short Form at 3, 7, and 14 months after giving birth. Structural equation modeling revealed that total parenting stress predicted later depressive symptoms, however, there were different patterns between postpartum depressive symptoms and different types of parenting stress. A unidirectional model of parental distress predicting depressive symptoms best fit the data, with significant stability paths but non-significant cross-lagged paths. A unidirectional model of depressive symptoms predicted significant later difficult child stress. No model fit well with PCDI. Future research should continue to explore the specific nature of the associations of postpartum depression and different types of parenting stress on infant development and the infant–mother relationship. PMID:24956500
Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites
NASA Astrophysics Data System (ADS)
Fang, Guodong; Chen, Chenghua; Yuan, Shenggang; Meng, Songhe; Liang, Jun
2018-06-01
A tracking and recognizing algorithm is proposed to automatically generate irregular cross-sections and central path of braid yarn within the 3D braided composites by using sets of high resolution tomography images. Only the initial cross-sections of braid yarns in a tomography image after treatment are required to be calibrated manually as searching cross-section template. The virtual geometry of 3D braided composites including some detailed geometry information, such as the braid yarn squeezing deformation, braid yarn distortion and braid yarn path deviation etc., can be reconstructed. The reconstructed geometry model can reflect the change of braid configurations during solidification process. The geometry configurations and mechanical properties of the braided composites are analyzed by using the reconstructed geometry model.
Genetic conversion of a fungal plant pathogen to a non-pathogenic, endophytic mutualist
Freeman, Stanley; Rodriguez, Rusty J.
1993-01-01
The filamentous fungal ascomycete Colletotrichum magna causes anthracnose in cucurbit plants. Isolation of a nonpathogenic mutant of this species (path-1) resulted in maintained wild-type levels of in vitro sporulation, spore adhesion, appressorial formation, and infection. Path-1 grew throughout host tissues as an endophyte and retained the wild-type host range, which indicates that the genetics involved in pathogenicity and host specificity are distinct. Prior infection with path-1 protected plants from disease caused by Colletotrichum and Fusarium.Genetic analysis of a cross between path-1 and wild-type strains indicated mutation of a single locus.
Interactive multi-objective path planning through a palette-based user interface
NASA Astrophysics Data System (ADS)
Shaikh, Meher T.; Goodrich, Michael A.; Yi, Daqing; Hoehne, Joseph
2016-05-01
n a problem where a human uses supervisory control to manage robot path-planning, there are times when human does the path planning, and if satisfied commits those paths to be executed by the robot, and the robot executes that plan. In planning a path, the robot often uses an optimization algorithm that maximizes or minimizes an objective. When a human is assigned the task of path planning for robot, the human may care about multiple objectives. This work proposes a graphical user interface (GUI) designed for interactive robot path-planning when an operator may prefer one objective over others or care about how multiple objectives are traded off. The GUI represents multiple objectives using the metaphor of an artist's palette. A distinct color is used to represent each objective, and tradeoffs among objectives are balanced in a manner that an artist mixes colors to get the desired shade of color. Thus, human intent is analogous to the artist's shade of color. We call the GUI an "Adverb Palette" where the word "Adverb" represents a specific type of objective for the path, such as the adverbs "quickly" and "safely" in the commands: "travel the path quickly", "make the journey safely". The novel interactive interface provides the user an opportunity to evaluate various alternatives (that tradeoff between different objectives) by allowing her to visualize the instantaneous outcomes that result from her actions on the interface. In addition to assisting analysis of various solutions given by an optimization algorithm, the palette has additional feature of allowing the user to define and visualize her own paths, by means of waypoints (guiding locations) thereby spanning variety for planning. The goal of the Adverb Palette is thus to provide a way for the user and robot to find an acceptable solution even though they use very different representations of the problem. Subjective evaluations suggest that even non-experts in robotics can carry out the planning tasks with a great deal of flexibility using the adverb palette.
Understanding Information Flow Interaction along Separable Causal Paths in Environmental Signals
NASA Astrophysics Data System (ADS)
Jiang, P.; Kumar, P.
2017-12-01
Multivariate environmental signals reflect the outcome of complex inter-dependencies, such as those in ecohydrologic systems. Transfer entropy and information partitioning approaches have been used to characterize such dependencies. However, these approaches capture net information flow occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within an interested subsystem through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [2015] to develop a framework for quantifying information decomposition along separable causal paths. Momentary information transfer along causal paths captures the amount of information flow between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique and redundant information flow through separable causal paths. Multivariate analysis using this novel approach reveals precise understanding of causality and feedback. We illustrate our approach with synthetic and observed time series data. We believe the proposed framework helps better delineate the internal structure of complex systems in geoscience where huge amounts of observational datasets exist, and it will also help the modeling community by providing a new way to look at the complexity of real and modeled systems. Runge, Jakob. "Quantifying information transfer and mediation along causal pathways in complex systems." Physical Review E 92.6 (2015): 062829.
Topology and static response of interaction networks in molecular biology
Radulescu, Ovidiu; Lagarrigue, Sandrine; Siegel, Anne; Veber, Philippe; Le Borgne, Michel
2005-01-01
We introduce a mathematical framework describing static response of networks occurring in molecular biology. This formalism has many similarities with the Laplace–Kirchhoff equations for electrical networks. We introduce the concept of graph boundary and we show how the response of the biological networks to external perturbations can be related to the Dirichlet or Neumann problems for the corresponding equations on the interaction graph. Solutions to these two problems are given in terms of path moduli (measuring path rigidity with respect to the propagation of interaction along the graph). Path moduli are related to loop products in the interaction graph via generalized Mason–Coates formulae. We apply our results to two specific biological examples: the lactose operon and the genetic regulation of lipogenesis. Our applications show consistency with experimental results and in the case of lipogenesis check some hypothesis on the behaviour of hepatic fatty acids on fasting. PMID:16849230
De Lillo, Carlo; Kirby, Melissa; Poole, Daniel
2016-01-01
Immediate serial spatial recall measures the ability to retain sequences of locations in short-term memory and is considered the spatial equivalent of digit span. It is tested by requiring participants to reproduce sequences of movements performed by an experimenter or displayed on a monitor. Different organizational factors dramatically affect serial spatial recall but they are often confounded or underspecified. Untangling them is crucial for the characterization of working-memory models and for establishing the contribution of structure and memory capacity to spatial span. We report five experiments assessing the relative role and independence of factors that have been reported in the literature. Experiment 1 disentangled the effects of spatial clustering and path-length by manipulating the distance of items displayed on a touchscreen monitor. Long-path sequences segregated by spatial clusters were compared with short-path sequences not segregated by clusters. Recall was more accurate for sequences segregated by clusters independently from path-length. Experiment 2 featured conditions where temporal pauses were introduced between or within cluster boundaries during the presentation of sequences with the same paths. Thus, the temporal structure of the sequences was either consistent or inconsistent with a hierarchical representation based on segmentation by spatial clusters but the effect of structure could not be confounded with effects of path-characteristics. Pauses at cluster boundaries yielded more accurate recall, as predicted by a hierarchical model. In Experiment 3, the systematic manipulation of sequence structure, path-length, and presence of path-crossings of sequences showed that structure explained most of the variance, followed by the presence/absence of path-crossings, and path-length. Experiments 4 and 5 replicated the results of the previous experiments in immersive virtual reality navigation tasks where the viewpoint of the observer changed dynamically during encoding and recall. This suggested that the effects of structure in spatial span are not dependent on perceptual grouping processes induced by the aerial view of the stimulus array typically afforded by spatial recall tasks. These results demonstrate the independence of coding strategies based on structure from effects of path characteristics and perceptual grouping in immediate serial spatial recall. PMID:27891101
Newberry EGS Seismic Velocity Model
Templeton, Dennise
2013-10-01
We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.
NASA Technical Reports Server (NTRS)
2008-01-01
This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time. All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet. Phoenix will land just south of Mars's north polar ice cap.Garnier, Simon; Combe, Maud; Jost, Christian; Theraulaz, Guy
2013-01-01
Interactions between individuals and the structure of their environment play a crucial role in shaping self-organized collective behaviors. Recent studies have shown that ants crossing asymmetrical bifurcations in a network of galleries tend to follow the branch that deviates the least from their incoming direction. At the collective level, the combination of this tendency and the pheromone-based recruitment results in a greater likelihood of selecting the shortest path between the colony's nest and a food source in a network containing asymmetrical bifurcations. It was not clear however what the origin of this behavioral bias is. Here we propose that it results from a simple interaction between the behavior of the ants and the geometry of the network, and that it does not require the ability to measure the angle of the bifurcation. We tested this hypothesis using groups of ant-like robots whose perceptual and cognitive abilities can be fully specified. We programmed them only to lay down and follow light trails, avoid obstacles and move according to a correlated random walk, but not to use more sophisticated orientation methods. We recorded the behavior of the robots in networks of galleries presenting either only symmetrical bifurcations or a combination of symmetrical and asymmetrical bifurcations. Individual robots displayed the same pattern of branch choice as individual ants when crossing a bifurcation, suggesting that ants do not actually measure the geometry of the bifurcations when travelling along a pheromone trail. Finally at the collective level, the group of robots was more likely to select one of the possible shorter paths between two designated areas when moving in an asymmetrical network, as observed in ants. This study reveals the importance of the shape of trail networks for foraging in ants and emphasizes the underestimated role of the geometrical properties of transportation networks in general. PMID:23555202
75 FR 38170 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
...-rail grade crossings. PATH is in the process of replacing its entire fleet of electric MU rail cars used in passenger service. To date, 122 new cars have been delivered and are in compliance with horn... electric MU railcars manufactured prior to the September 18, 2006, date that require testing. PATH will...
ERIC Educational Resources Information Center
Mann, Heather M.; Rutstein, Daisy W.; Hancock, Gregory R.
2009-01-01
Multisample measured variable path analysis is used to test whether causal/structural relations among measured variables differ across populations. Several invariance testing approaches are available for assessing cross-group equality of such relations, but the associated test statistics may vary considerably across methods. This study is a…
A diffusion tensor imaging tractography algorithm based on Navier-Stokes fluid mechanics.
Hageman, Nathan S; Toga, Arthur W; Narr, Katherine L; Shattuck, David W
2009-03-01
We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color images of the DTI dataset.
A Diffusion Tensor Imaging Tractography Algorithm Based on Navier-Stokes Fluid Mechanics
Hageman, Nathan S.; Toga, Arthur W.; Narr, Katherine; Shattuck, David W.
2009-01-01
We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color (DEC) images of the DTI dataset. PMID:19244007
Why Does Mptcp Have To Make Things So Complicated : Cross Path Nids Evasion And Countermeasures
2016-09-01
previously only establish communication channels over single network paths to communicate over multiple network paths. MPTCP is an enhancement toTCP that...the attacker would fail to create a Command and Control (C2) channel unless the attacker had created a new mapping to the target on the splicing...machine. This would allow the attacker to conduct C2 over a spliced channel . This may even make the attacker’s C2 more evasive. In fact, the effect
2017-01-01
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications. PMID:28966933
Frederiksen, Rune; Tutuncuoglu, Gozde; Matteini, Federico; Martinez, Karen L; Fontcuberta I Morral, Anna; Alarcon-Llado, Esther
2017-09-20
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.
Van der Ende, Jan; Verhulst, Frank C; Tiemeier, Henning
2016-08-01
Internalizing and externalizing problems are associated with poor academic performance, both concurrently and longitudinally. Important questions are whether problems precede academic performance or vice versa, whether both internalizing and externalizing are associated with academic problems when simultaneously tested, and whether associations and their direction depend on the informant providing information. These questions were addressed in a sample of 816 children who were assessed four times. The children were 6-10 years at baseline and 14-18 years at the last assessment. Parent-reported internalizing and externalizing problems and teacher-reported academic performance were tested in cross-lagged models to examine bidirectional paths between these constructs. These models were compared with cross-lagged models testing paths between teacher-reported internalizing and externalizing problems and parent-reported academic performance. Both final models revealed similar pathways from mostly externalizing problems to academic performance. No paths emerged from internalizing problems to academic performance. Moreover, paths from academic performance to internalizing and externalizing problems were only found when teachers reported on children's problems and not for parent-reported problems. Additional model tests revealed that paths were observed in both childhood and adolescence. Externalizing problems place children at increased risk of poor academic performance and should therefore be the target for interventions.
Statistical estimation of ultrasonic propagation path parameters for aberration correction.
Waag, Robert C; Astheimer, Jeffrey P
2005-05-01
Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.
Remote sensing of atmospheric winds using a coherent, CW lidar and speckle-turbulence interaction
NASA Technical Reports Server (NTRS)
Holmes, J. F.; Amzajerdian, F.; Gudimetla, V. S. R.; Hunt, J. M.
1986-01-01
Speckle turbulence interaction has the potential for allowing single ended remote sensing of the path averaged vector crosswind in a plane perpendicular to the line of sight to a target. If a laser transmitter is used to illuminate a target, the resultant speckle field generated by the target is randomly perturbed by the atmospheric turbulence as it propagates back to the location of the transmitter-receiver. When a cross wind is present, this scintillation pattern will move with time across the receiver. A continuous wave (cw) laser transmitter of modest power level in conjunction with optical heterodyne detection was used to exploit the speckel turbulence interaction and measure the crosswind. The use of a cw transmitter at 10.6 microns and optical heterodyne detection has many advantages over direct detection and a double pulsed source in the visible or near infrared. These advantages include the availability of compact, reliable and inexpensive transmitters, better penetration of smoke, dust and fog; stable output power; low beam pointing jitter; and considerably reduced complexity in the receiver electronics.
Manglos, Stephen H.
1989-06-06
A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.
Unraveling spurious properties of interaction networks with tailored random networks.
Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus
2011-01-01
We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.
Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks
Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus
2011-01-01
We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures – known for their complex spatial and temporal dynamics – we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis. PMID:21850239
Chasing the shadows, a trip to spice island
NASA Astrophysics Data System (ADS)
Yamani, A.; Soegijoko, W.; Baskoro, A. A.; Satyaningsih, R.; Simatupang, F. M.; Maulana, F.; Suherli, J.; Syamara, R.; Canas, L.; Stevenson, T.; Oktariani, F.; Santosa, I.; Ariadi, F.; Carvalho, N.; Soegijoko, K.
2016-11-01
The 2016 Total Solar Eclipse provided us an opportunity to introduce astronomy to a much wider audience. The path of totality crossed the Indonesia from Sumatra to the Maluku Islands and ended its journey in the Pacific Ocean. Its path crossed over 4 major islands, 12 provinces and many cities. Most of the cities have minimum exposure to astronomy. langitselatan travelled to observe the eclipse and to do astronomy outreach at the eastern most island under the eclipse path. We chose Maba, a small village in East Halmahera, North Maluku as our site to observe the eclipse as well as conduct a workshop for teachers and students. The aim of the workshop is to introduce astronomy taking advantage of the eclipse as well as raise awareness and curiosity among students. In this paper, we will share a short report regarding the whole trip and event in Maba.
The effects of composition and thermal path on hot ductility of forging steels
NASA Astrophysics Data System (ADS)
Connolly, Brendan M.
This work examines the effects of composition and thermal path on the hot ductility of several forging steels with varied aluminum and nitrogen content. The primary mechanisms and controlling factors related to hot ductility are identified with a focus on the role of precipitates and segregation. The unique thermal paths and solidification structures of large cross-section forging ingots are discussed. Hot ductility testing is performed in a manner that approximates industrial conditions experienced by large cross-section forging ingots. A computer model for precipitation of aluminum nitride and vanadium nitride in austenite is presented. Industrial material is examined for comparison to experimental findings. It is found that increased aluminum and nitrogen content coarsens the as-solidified structure. The combined effects of microsegregation and uphill diffusion during deformation allow for carbide precipitation at prior austenite grain boundaries which reduces the hot ductility.
Surface Hold Advisor Using Critical Sections
NASA Technical Reports Server (NTRS)
Law, Caleb Hoi Kei (Inventor); Hsiao, Thomas Kun-Lung (Inventor); Mittler, Nathan C. (Inventor); Couluris, George J. (Inventor)
2013-01-01
The Surface Hold Advisor Using Critical Sections is a system and method for providing hold advisories to surface controllers to prevent gridlock and resolve crossing and merging conflicts among vehicles traversing a vertex-edge graph representing a surface traffic network on an airport surface. The Advisor performs pair-wise comparisons of current position and projected path of each vehicle with other surface vehicles to detect conflicts, determine critical sections, and provide hold advisories to traffic controllers recommending vehicles stop at entry points to protected zones around identified critical sections. A critical section defines a segment of the vertex-edge graph where vehicles are in crossing or merging or opposite direction gridlock contention. The Advisor detects critical sections without reference to scheduled, projected or required times along assigned vehicle paths, and generates hold advisories to prevent conflicts without requiring network path direction-of-movement rules and without requiring rerouting, rescheduling or other network optimization solutions.
Cross-layer shared protection strategy towards data plane in software defined optical networks
NASA Astrophysics Data System (ADS)
Xiong, Yu; Li, Zhiqiang; Zhou, Bin; Dong, Xiancun
2018-04-01
In order to ensure reliable data transmission on the data plane and minimize resource consumption, a novel protection strategy towards data plane is proposed in software defined optical networks (SDON). Firstly, we establish a SDON architecture with hierarchical structure of data plane, which divides the data plane into four layers for getting fine-grained bandwidth resource. Then, we design the cross-layer routing and resource allocation based on this network architecture. Through jointly considering the bandwidth resource on all the layers, the SDN controller could allocate bandwidth resource to working path and backup path in an economical manner. Next, we construct auxiliary graphs and transform the shared protection problem into the graph vertex coloring problem. Therefore, the resource consumption on backup paths can be reduced further. The simulation results demonstrate that the proposed protection strategy can achieve lower protection overhead and higher resource utilization ratio.
Automatic alignment of double optical paths in excimer laser amplifier
NASA Astrophysics Data System (ADS)
Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun
2013-05-01
A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.
MacNeilage, Paul R.; Turner, Amanda H.
2010-01-01
Gravitational signals arising from the otolith organs and vertical plane rotational signals arising from the semicircular canals interact extensively for accurate estimation of tilt and inertial acceleration. Here we used a classical signal detection paradigm to examine perceptual interactions between otolith and horizontal semicircular canal signals during simultaneous rotation and translation on a curved path. In a rotation detection experiment, blindfolded subjects were asked to detect the presence of angular motion in blocks where half of the trials were pure nasooccipital translation and half were simultaneous translation and yaw rotation (curved-path motion). In separate, translation detection experiments, subjects were also asked to detect either the presence or the absence of nasooccipital linear motion in blocks, in which half of the trials were pure yaw rotation and half were curved path. Rotation thresholds increased slightly, but not significantly, with concurrent linear velocity magnitude. Yaw rotation detection threshold, averaged across all conditions, was 1.45 ± 0.81°/s (3.49 ± 1.95°/s2). Translation thresholds, on the other hand, increased significantly with increasing magnitude of concurrent angular velocity. Absolute nasooccipital translation detection threshold, averaged across all conditions, was 2.93 ± 2.10 cm/s (7.07 ± 5.05 cm/s2). These findings suggest that conscious perception might not have independent access to separate estimates of linear and angular movement parameters during curved-path motion. Estimates of linear (and perhaps angular) components might instead rely on integrated information from canals and otoliths. Such interaction may underlie previously reported perceptual errors during curved-path motion and may originate from mechanisms that are specialized for tilt-translation processing during vertical plane rotation. PMID:20554843
Pedagogical Border Crossings: "Testimonio y Reflexiones de una Mexicana Académica"
ERIC Educational Resources Information Center
Flores Carmona, Judith
2018-01-01
I am an assistant professor at New Mexico State University; however, the path to getting to this position has been about crossing borders, about learning in and from the borderlands. The borderlands that my body has had to cross, physically and figuratively, have left many "heridas abiertas" (open wounds) but have also provided me with…
Ybe, Joel A; Mishra, Sanjay; Helms, Stephen; Nix, Jay
2007-03-16
Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids, and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here, we report the X-ray structure of the coiled-coil domain of HIP1 (residues 482-586) that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel with S1 and S2. We present structural evidence supporting a role for the S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast.
Likelihood of Entanglement when Materials are Dropped Vertically onto a Rotating PTO Knuckle.
Schwab, Charles V; Rempe, Isaac J
2017-11-20
Power take-off (PTO) is a common method of transferring power from a tractor to a towed piece of machinery. The PTO is also a well-documented cause of severe and often permanent disabling injuries to farm operators. The physical conditions that cause entanglements are not well established. Several studies have explored the parameters of PTO entanglements as materials have been drawn across a rotating PTO knuckle to test for entanglement probability. The objective of this study was to determine probability of entanglement when materials are dropped vertically onto a PTO knuckle spinning at 540 rpm. A total of 360 randomized trials were conducted with ten replications for each of the six positions (center of yoke, edge of yoke rotating downward, edge of yoke rotating upward, center of cross, edge of cross rotating downward, and edge of cross rotating upward) and six different materials (woven cotton athletic shoe lace, cotton workboot lace, leather workboot lace, cotton twine, denim strip, and Tyvek strip). Not a single entanglement was recorded. Dramatic high-speed video imagery authenticated the material's motion and path as it interacted with the rotating PTO knuckle. Copyright© by the American Society of Agricultural Engineers.
ERIC Educational Resources Information Center
Probst, Janice C.; Baek, Jong-Deuk; Laditka, Sarah B.
2009-01-01
Context: Most nursing home care is provided by certified nursing assistants (CNAs), but little is known about rural CNAs. Purpose: To develop a representative geographic profile of the CNA workforce, focusing on paths leading to present job. Methods: Cross-sectional analysis of data from the 2004 National Nursing Assistant Survey (NNAS), a…
Support at Work and Home: The Path to Satisfaction through Balance
ERIC Educational Resources Information Center
Ferguson, Merideth; Carlson, Dawn; Zivnuska, Suzanne; Whitten, Dwayne
2012-01-01
This study examines social support (from both coworkers and partners) and its path to satisfaction through work-family balance. This study fills a gap by explaining how support impacts satisfaction in the same domain, across domains, and how it crosses over to impact the partner's domain. Using a matched dataset of 270 job incumbents and their…
ERIC Educational Resources Information Center
Kelly, Aidan; Brannick, Teresa; Hulpke, John; Levine, Jacqueline; To, Michelle
2003-01-01
Human resource management data were collected from 149 Irish, 201 Hong Kong, 92 Singaporean, and 144 Chinese organizations. Career patterns and training practices showed distinct differences. Irish organizations were more likely to have lower levels of career paths; their training practices suggested more new forms of careers. Fewer paths indicate…
THE INTERACTION MEAN FREE PATH OF PROTONS AT 3 Tev
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, G.; Gauld, C.F.; McCusker, C.B.A.
1963-02-16
The mean free path ( F ) of singly charged primary particles in the energy region of 3 Tev is determined using a maximum-likelihood technique. With all events taken into account a value of F = 22 cm is obtained. Considering only those events with a potential path greater than 20 cm, F becomes 27 cm. (auth)
Multifold paths of neutrons in the three-beam interferometer detected by a tiny energy kick
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Hermann; Denkmayr, Tobias; Sponar, Stephan; Lemmel, Hartmut; Jenke, Tobias; Hasegawa, Yuji
2018-05-01
A neutron optical experiment is presented to investigate the paths taken by neutrons in a three-beam interferometer. In various beam paths of the interferometer, the energy of the neutrons is partially shifted so that the faint traces are left along the beam path. By ascertaining an operational meaning to "the particle's path," which-path information is extracted from these faint traces with minimal perturbations. Theory is derived by simply following the time evolution of the wave function of the neutrons, which clarifies the observation in the framework of standard quantum mechanics. Which-way information is derived from the intensity, sinusoidally oscillating in time at different frequencies, which is considered to result from the interfering cross terms between stationary main component and the energy-shifted which-way signals. Final results give experimental evidence that the (partial) wave functions of the neutrons in each beam path are superimposed and present in multiple locations in the interferometer.
A theoretical framework to predict the most likely ion path in particle imaging.
Collins-Fekete, Charles-Antoine; Volz, Lennart; Portillo, Stephen K N; Beaulieu, Luc; Seco, Joao
2017-03-07
In this work, a generic rigorous Bayesian formalism is introduced to predict the most likely path of any ion crossing a medium between two detection points. The path is predicted based on a combination of the particle scattering in the material and measurements of its initial and final position, direction and energy. The path estimate's precision is compared to the Monte Carlo simulated path. Every ion from hydrogen to carbon is simulated in two scenarios, (1) where the range is fixed and (2) where the initial velocity is fixed. In the scenario where the range is kept constant, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.50 mm) and the helium path estimate (0.18 mm), but less so up to the carbon path estimate (0.09 mm). However, this scenario is identified as the configuration that maximizes the dose while minimizing the path resolution. In the scenario where the initial velocity is fixed, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.29 mm) and the helium path estimate (0.09 mm) but increases for heavier ions up to carbon (0.12 mm). As a result, helium is found to be the particle with the most accurate path estimate for the lowest dose, potentially leading to tomographic images of higher spatial resolution.
Uludag, K; Kohl, M; Steinbrink, J; Obrig, H; Villringer, A
2002-01-01
Using the modified Lambert-Beer law to analyze attenuation changes measured noninvasively during functional activation of the brain might result in an insufficient separation of chromophore changes ("cross talk") due to the wavelength dependence of the partial path length of photons in the activated volume of the head. The partial path length was estimated by performing Monte Carlo simulations on layered head models. When assuming cortical activation (e.g., in the depth of 8-12 mm), we determine negligible cross talk when considering changes in oxygenated and deoxygenated hemoglobin. But additionally taking changes in the redox state of cytochrome-c-oxidase into account, this analysis results in significant artifacts. An analysis developed for changes in mean time of flight--instead of changes in attenuation--reduces the cross talk for the layers of cortical activation. These results were validated for different oxygen saturations, wavelength combinations and scattering coefficients. For the analysis of changes in oxygenated and deoxygenated hemoglobin only, low cross talk was also found when the activated volume was assumed to be a 4-mm-diam sphere.
Trajectory specification for high capacity air traffic control
NASA Technical Reports Server (NTRS)
Paielli, Russell A. (Inventor)
2010-01-01
Method and system for analyzing and processing information on one or more aircraft flight paths, using a four-dimensional coordinate system including three Cartesian or equivalent coordinates (x, y, z) and a fourth coordinate .delta. that corresponds to a distance estimated along a reference flight path to a nearest reference path location corresponding to a present location of the aircraft. Use of the coordinate .delta., rather than elapsed time t, avoids coupling of along-track error into aircraft altitude and reduces effects of errors on an aircraft landing site. Along-track, cross-track and/or altitude errors are estimated and compared with a permitted error bounding space surrounding the reference flight path.
Solvable four-state Landau-Zener model of two interacting qubits with path interference
Sinitsyn, Nikolai A.
2015-11-30
In this paper, I identify a nontrivial four-state Landau-Zener model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. The model describes an experimentally accessible system of two interacting qubits, such as a localized state in a Dirac material with both valley and spin degrees of freedom or a singly charged quantum dot (QD) molecule with spin orbit coupling. Application of the linearly time-dependent magnetic field induces a sequence of quantum level crossings with possibility of interference of different trajectories in a semiclassical picture. I argue that this system satisfies the criteria ofmore » integrability in the multistate Landau-Zener theory, which allows one to derive explicit exact analytical expressions for the transition probability matrix. Finally, I also argue that this model is likely a special case of a larger class of solvable systems, and present a six-state generalization as an example.« less
Methamphetamine Use among Homeless Former Foster Youth: The Mediating Role of Social Networks
Yoshioka-Maxwell, Amanda; Rice, Eric; Rhoades, Harmony; Winetrobe, Hailey
2015-01-01
Objectives Social network analysis can provide added causal insight into otherwise confusing epidemiologic findings in public health research. Although foster care and homelessness are risk factors for methamphetamine use, current research has failed to explicate why homeless youth with foster care experience engage in methamphetamine use at higher rates than other homeless young adults. This study examined the mediating effect of network engagement and time spent homeless on the relationship between foster care experience and recent methamphetamine use among homeless youth in Los Angeles. Methods Egocentric network data from a cross-sectional community-based sample (n = 652) of homeless youth aged 13–25 were collected from drop-in centers in Los Angeles. Questions addressed foster care experience, time spent homeless, methamphetamine use, and perceived drug use in social networks. Path analysis was performed in SAS to examine mediation. Results Controlling for all other variables, results of path analysis regarding recent methamphetamine use indicated a direct effect between foster care experience and recent methamphetamine use (B = .269, t = 2.73, p < .01). However, this direct effect became statistically nonsignificant when time spent homeless and network methamphetamine use were added to the model, and indirect paths from time spent homeless and network methamphetamine use became statistically significant. Conclusions Foster care experience influenced recent methamphetamine use indirectly through time spent homeless and methamphetamine use by network members. Efforts to reduce methamphetamine use should focus on securing stable housing and addressing network interactions among homeless former foster youth. PMID:26146647
ERIC Educational Resources Information Center
Hendriks, Henriette; Hickmann, Maya
2015-01-01
Languages vary considerably in how they represent motion. One major source of variation (Talmy, 2000) depends on whether linguistic systems lexicalize path in the verb (verb-framed languages) or in satellites (satellite-framed languages). This typological difference involves more than different verb types in that it also affects elements outside…
The effects of narrow and elevated path walking on aperture crossing.
Hackney, Amy L; Cinelli, Michael E; Denomme, Luke T; Frank, James S
2015-06-01
The study investigated the impact that action capabilities have on identifying possibilities for action, particularly how postural threat influences the passability of apertures. To do this, the ability to maintain balance was challenged by manipulating the level of postural threat while walking. First, participants walked along a 7m path and passed through two vertical obstacles spaced 1.1-1.5×the shoulder width apart during normal walking. Next, postural threat was manipulated by having participants complete the task either walking on a narrow, ground level path or on an elevated/narrow path. Despite a decrease in walking speed as well as an increase in trunk sway in both the narrow and elevated/narrow walking conditions, the passability of apertures was only affected when the consequence of instability was greatest. In the elevated/narrow walking condition, individuals maintained a larger critical point (rotated their shoulders for larger aperture widths) compared to normal walking. However, this effect was not observed for the narrow path walking suggesting that the level of postural threat was not enough to impose similar changes to the critical point. Therefore, it appears that manipulating action capabilities by increasing postural threat does indeed influence aperture crossing behavior, however the consequence associated with instability must be high before both gait characteristics and the critical point are affected. Copyright © 2015 Elsevier B.V. All rights reserved.
Generation of Collapsed Cross Sections for Hatch 1 Cycles 1-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian J
2012-11-01
Under NRC JCN V6361, Oak Ridge National Laboratory (ORNL) was tasked to develop and run SCALE/TRITON models for generation of collapsed few-group cross sections and to convert the cross sections to PMAXS format using the GENPMAXS conversion utility for use in PARCS/PATHS simulations of Hatch Unit 1, cycles 1-3. This letter report documents the final models used to produce the Hatch collapsed cross sections.
Koivisto, J; Dalbe, M-J; Alava, M J; Santucci, S
2016-08-31
Crack propagation is tracked here with Digital Image Correlation analysis in the test case of two cracks propagating in opposite directions in polycarbonate, a material with high ductility and a large Fracture Process Zone (FPZ). Depending on the initial distances between the two crack tips, one may observe different complex crack paths with in particular a regime where the two cracks repel each other prior to being attracted. We show by strain field analysis how this can be understood according to the principle of local symmetry: the propagation is to the direction where the local shear - mode KII in fracture mechanics language - is zero. Thus the interactions exhibited by the cracks arise from symmetry, from the initial geometry, and from the material properties which induce the FPZ. This complexity makes any long-range prediction of the path(s) impossible.
Tip-path-plane angle effects on rotor blade-vortex interaction noise levels and directivity
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Martin, Ruth M.
1988-01-01
Acoustic data of a scale model BO-105 main rotor acquired in a large aeroacoustic wind tunnel are presented to investigate the parametric effects of rotor operating conditions on blade-vortex interaction (BVI) impulsive noise. Contours of a BVI noise metric are employed to quantify the effects of rotor advance ratio and tip-path-plane angle on BVI noise directivity and amplitude. Acoustic time history data are presented to illustrate the variations in impulsive characteristics. The directionality, noise levels and impulsive content of both advancing and retreating side BVI are shown to vary significantly with tip-path-plane angle and advance ratio over the range of low and moderate flight speeds considered.
Ybe, Joel A.; Mishra, Sanjay; Helms, Stephen; Nix, Jay
2007-01-01
Summary Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here we report the X-ray structure of the coiled-coil domain of HIP1 from 482–586 that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel to S1 and S2. We present structural evidence supporting a role for S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast. PMID:17257618
Mizukami, Masato; Yamaguchi, Joji; Nemoto, Naru; Kawajiri, Yuko; Hirata, Hirooki; Uchiyama, Shingo; Makihara, Mitsuhiro; Sakata, Tomomi; Shimoyama, Nobuhiro; Oda, Kazuhiro
2011-07-20
A 128×128 three-dimensional MEMS optical switch module and a switching-control algorithm for high-speed connection and optical power stabilization are described. A prototype switch module enables the simultaneous switching of all optical paths. The insertion loss is less than 4.6 dB and is 2.3 dB on average. The switching time is less than 38 ms and is 8 ms on average. We confirmed that the maximum optical power can be obtained and optical power stabilization control is possible. The results confirm that the module is suitable for practical use in optical cross-connect systems. © 2011 Optical Society of America
Dynamic compression and volatile release of carbonates
NASA Technical Reports Server (NTRS)
Tyburczy, J. A.; Ahrens, T. J.
1984-01-01
Particle velocity profiles upon shock compression and isentropic releases were measured for polycrystalline calcite. The Solenhofen limestone release paths lie, close to the Hugoniot. Calcite 3 to 2 transition, upon release, was observed, but rarefaction shocks were not detected. The equation of state is used to predict the fraction of material devolatilized upon isentropic release as a function of shock pressure. The effect of ambient partial pressure of CO2 on the calculations is demonstrated and considered in models of atmospheric evolution by impact induced mineral devolatilization. The radiative characteristics of shocked calcite indicate that localization of thermal energy occurs under shock compression. Shock entropy calculations result in a minimum estimate of 90% devolatilization upon complete release from 10 GPa. Isentropic release paths from calculated continuum Hugoniot temperatures cross into the CaO (solid) + CO2 (vapor) field at improbably low pressures. It is found that release paths from measured shock temperatures cross into the melt plus vapor field at pressures greater than .5 GPa, which suggests that devolatilization is initiated at the shear banding sites.
Transparent aligners: An invisible approach to correct mild skeletal class III malocclusion
Yezdani, A. Arif
2015-01-01
This case report highlights the treatment of a mild skeletal class III malocclusion with an invisible thermoplastic retainer. A 15-year-old female patient presented with a mild skeletal class III malocclusion with a retrognathic maxilla, orthognathic mandible, a low mandibular plane angle with Angle's class III malocclusion with maxillary lateral incisors in anterior cross-bite with crowding of maxillary anteriors, imbricated and rotated mandibular incisors and deep bite. Accurate upper and lower impressions and a bite registration were taken with polyvinyl siloxane rubber base impression material. This was then sent to the lab for the processing of a series of ClearPath aligners. The ClearPath virtual set-up sent from the lab provided the treatment plan and interproximal reduction estimation complete with posttreatment results. This enabled the clinician to actively participate in the treatment plan and provide the necessary suggestions. The ClearPath three-dimensional aligner was found to have effectively corrected the anterior cross-bite and crowding of the maxillary anteriors. PMID:26015738
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelzer, Gerald; Meinke, Rainer; Senti, Mark
A conductor assembly and method for constructing an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one embodiment the method provides a first insulative layer tubular in shape and including a surface along which a conductor segment may be positioned. A channel formed in the surface of the insulative layer defines a first conductor path and includes a surface of first contour in cross section along a first plane transverse to the conductor path. A segment of conductor having a surface ofmore » second contour in cross section is positioned at least partly in the channel and extends along the conductor path. Along the first plane, contact between the conductor surface of second contour and the channel surface of first contour includes at least two separate regions of contact.« less
Folegot, Thomas; Martinelli, Giovanna; Guerrini, Piero; Stevenson, J Mark
2008-11-01
An algorithm allowing simultaneous detection and localization of multiple submerged targets crossing an acoustic tripwire based on forward scattering is described and then evaluated based upon data collected at sea. This paper quantifies the agreement between the theoretical performance and the results obtained from processing data gathered at sea for crossings at several depths and ranges. Targets crossing the acoustic field produce shadows on each side of the barrier, for specific sensors and for specific acoustic paths. In post-processing, a model is invoked to associate expected paths with the observed shadows. This process allows triangulation of the target's position inside the acoustic field. Precise localization is achieved by taking advantage of the multipath propagation structure of the received signal, together with the diversity of the source and receiver locations. Environmental robustness is demonstrated using simulations and can be explained by the use of an array of sources spatially distributed through the water column.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doug Blankenship
Archive of ArcGIS data from the West Flank FORGE site located in Coso, California. Archive contains the following eight shapefiles: Polygon of the 3D geologic model (WestFlank3DGeologicModelExtent) Polylines of the traces 3D modeled faults (WestFlank3DModeledFaultTraces) Polylines of the fault traces from Duffield and Bacon, 1980 (WestFlankFaultsfromDuffieldandBacon) Polygon of the West Flank FORGE site (WestFlankFORGEsite) Polylines of the traces of the geologic cross-sections (cross-sections in a separate archive in the GDR) (WestFlankGeologicCrossSections) Polylines of the traces of the seismic reflection profiles through and adjacent to the West Flank site (seismic reflection profiles in a separate archive in the GDR) (WestFlankSiesmicReflectionProfiles) Pointsmore » of the well collars in and around the West Flank site (WestFlankWellCollars) Polylines of the surface expression of the West Flank well paths (WestFlankWellPaths)« less
Cross Cultural Perspectives of Gender and Management in Universities
ERIC Educational Resources Information Center
White, K.; Riordan, S.; Ozkanli, O.; Neale, J.
2010-01-01
Aim: This article presents preliminary results of a cross cultural study of gender and management in universities. Methodology: Qualitative interviews with senior managers in each country were analysed in relation to key concepts of career paths, support, gate keeping, management skills, disciplinary factors, gendered leadership styles and…
ERIC Educational Resources Information Center
Harrison, Neil; Agnew, Steve
2016-01-01
This study examines the construction of debt attitudes among 439 first-year undergraduates in England and New Zealand. It works from a conceptual model that predicts that attitudes will be partly determined by a range of social factors, mediated through personality and 'financial literacy'. Path analysis is used to explore this model. The proposed…
ERIC Educational Resources Information Center
Mitchall, Allison Michelle
2015-01-01
Low-income, first-generation students face numerous barriers on the path to college. However, millions of these students persevere and ultimately enroll. How do these students remain motivated on the road to higher education despite these challenges? This collective case study explored influences on the motivation of low-income, first generation…
Research on cutting path optimization of sheet metal parts based on ant colony algorithm
NASA Astrophysics Data System (ADS)
Wu, Z. Y.; Ling, H.; Li, L.; Wu, L. H.; Liu, N. B.
2017-09-01
In view of the disadvantages of the current cutting path optimization methods of sheet metal parts, a new method based on ant colony algorithm was proposed in this paper. The cutting path optimization problem of sheet metal parts was taken as the research object. The essence and optimization goal of the optimization problem were presented. The traditional serial cutting constraint rule was improved. The cutting constraint rule with cross cutting was proposed. The contour lines of parts were discretized and the mathematical model of cutting path optimization was established. Thus the problem was converted into the selection problem of contour lines of parts. Ant colony algorithm was used to solve the problem. The principle and steps of the algorithm were analyzed.
Solving a Class of Spatial Reasoning Problems: Minimal-Cost Path Planning in the Cartesian Plane.
1987-06-01
as in Figure 72. By the Theorem of Pythagoras : Z1 <a z 2 < C Yl(bl+b 2)uI, the cost of going along (a,b,c) is greater that the...preceding lemmas to an indefinite number of boundary-crossing episodes is accomplished by the following theorems . Theorem 1 extends the result of Lemma 1... Theorem 1: Any two Snell’s-law paths within a K-explored wedge defined by Snell’s-law paths RL and R. do not intersect within the K-explored portion of
Masticatory path pattern during mastication of chewing gum with regard to gender difference.
Kobayashi, Yoshinori; Shiga, Hiroshi; Arakawa, Ichiro; Yokoyama, Masaoki; Nakajima, Kunihisa
2009-01-01
To clarify the masticatory path patterns of the mandibular incisal point during mastication of softened chewing gum with regard to gender difference. One hundred healthy subjects (50 males and 50 females) were asked to chew softened chewing gum on one side at a time (right side and left side) and the movement of the mandibular incisal point was recorded using MKG K6I. After a catalog of path patterns was made, the movement path was classified into one of the pattern groups, and then the frequency of each pattern was investigated. A catalog of path patterns consisting of the three types of opening path (op1, linear or concave path; op2, path toward the chewing side after toward the non-working side; op3, convex path) and two types of closing path (cl1, convex path; cl2, concave path) was made. The movement path was classified into one of seven patterns, with six patterns being from the catalog and a final extra pattern in which the opening and closing paths crossed. The most common pattern among the subjects was Pattern I, followed by Patterns III, II, IV, V, VII, and VI, in that order. The majority of cases, 149 (74.5%) of 200 cases, showed either Pattern I (op1 and cl1) or Pattern III (op2 and cl1). There was no significant difference between the two genders in the frequency of each pattern. The movement path could be classified into seven patterns and no gender-related difference was found in the frequency of each pattern.
Secular evolution of asteroid families: the role of Ceres
NASA Astrophysics Data System (ADS)
Novaković, Bojan; Tsirvoulis, Georgios; Marò, Stefano; Đošović, Vladimir; Maurel, Clara
2016-01-01
We consider the role of the dwarf planet Ceres on the secular dynamics of the asteroid main belt. Specifically, we examine the post impact evolution of asteroid families due to the interaction of their members with the linear nodal secular resonance with Ceres. First, we find the location of this resonance and identify which asteroid families are crossed by its path. Next, we summarize our results for three asteroid families, namely (1726) Hoffmeister, (1128) Astrid and (1521) Seinajoki which have irregular distributions of their members in the proper elements space, indicative of the effect of the resonance. We confirm this by performing a set of numerical simulations, showcasing that the perturbing action of Ceres through its linear nodal secular resonance is essential to reproduce the actual shape of the families.
Combining path integration and remembered landmarks when navigating without vision.
Kalia, Amy A; Schrater, Paul R; Legge, Gordon E
2013-01-01
This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information.
Combining Path Integration and Remembered Landmarks When Navigating without Vision
Kalia, Amy A.; Schrater, Paul R.; Legge, Gordon E.
2013-01-01
This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information. PMID:24039742
Optimum Pathways of Fish Spawning Migrations in Rivers
NASA Astrophysics Data System (ADS)
McElroy, B. J.; Jacobson, R. B.; Delonay, A.
2010-12-01
Many fish species migrate large distances upstream in rivers to spawn. These migrations require energetic expenditures that are inversely related to fecundity of spawners. Here we present the theory necessary to quantify relative energetic requirements of upstream migration pathways and then test the hypothesis that least-cost paths are taken by the federally endangered pallid sturgeon (Scaphyrhyncus Albus), a benthic rheophile, in the lower Missouri River, USA. Total work done by a fish through a migratory path is proportional to the size of the fish, the total drag on the fish, and the distance traversed. Normalizing by the work required to remain stationary at the beginning of a path, relative work expenditure at each point of the path is found to be the cube of the ratio of the velocity along the path to the velocity at the start of the path. This is the velocity of the fish relative to the river flow. A least-cost migratory pathway can be determined from the velocity field in a reach as the path that minimizes a fish's relative work expenditure. We combine location data from pallid sturgeon implanted with telemetric tags and pressure-sensitive data storage tags with depth and velocity data collected with an acoustic Doppler profiler. During spring 2010 individual sturgeon were closely followed as they migrated up the Missouri River to spawn. These show that, within a small margin, pallid sturgeon in the lower Missouri River select least-cost paths as they swim upstream (typical velocities near 1.0 - 1.2 m/s). Within the range of collected data, it is also seen that many alternative paths not selected for migration are two orders of magnitude more energetically expensive (typical velocities near 2.0 - 2.5 m/s). In general these sturgeon migrated along the inner banks of bends avoiding high velocities in the thalweg, crossing the channel where the thalweg crosses in the opposite direction in order to proceed up the inner bank of subsequent bends. Overall, these results suggest a management strategy for increasing fecundity and reproductive success could be to manage flows to lower levels during prespawn migrations thereby decreasing expenditure necessary to reach spawning sites.
Land-mobile satellite excess path loss measurements
NASA Astrophysics Data System (ADS)
Hess, G. C.
1980-05-01
An experiment conducted with the ATS-6 satellite to determine the additional path loss over free-space loss experienced by land-mobile communication links is described. This excess path loss is measured as a function of 1) local environment, 2) vehicle heading, 3) link frequency, 4) satellite elevation angle, and 5) street side. A statistical description of excess loss developed from the data shows that the first two parameters dominate. Excess path loss on the order of 25 dB is typical in urban situations, but decreases to under 10 dB in suburban/rural areas. Spaced antenna selection diversity is found to provide only a slight decrease (4 dB, typically) in the urban excess path loss observed. Level crossing rates are depressed in satellite links relative to those of Rayleigh-faded terrestrial links, but increases in average fade durations tend to offset that advantage. The measurements show that the excess path loss difference between 860-MHz links and 1550-MHz links is generally negligible.
An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers
NASA Astrophysics Data System (ADS)
Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi
As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.
2014-01-01
Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility. PMID:25276860
NASA Astrophysics Data System (ADS)
Lubrica, Joel V.; Abiasen, Jovalson T.; Dolipas, Bretel B.; Ramos, Jennifer Lyn S.
2017-01-01
In this article, we present results of our endeavours as physics educators to facilitate and support pedagogical change and development in the educational system of a developing country, the Philippines. We have discovered that the interaction of junior high school (years 7-10) students with physics apparatus can influence students’ interest in pursuing a career in science, technology, engineering and mathematics (STEM). This assertion stems from self-reports of students who gave their views immediately after their exposure to interactive apparatus in their own school, outside of their usual lessons. Participants claimed that their interest in following a STEM career path was ‘greatly increased’ due to their exposure to these apparatus. This was true even for students who were intending to take a non-STEM career path. Thus, we recommend that, in settings that have constraints involving access to practical equipment, ways to introduce school level interactive physics apparatus to secondary school students be conducted in order to attract more students towards STEM courses. Possibly, policies encouraging this type of exposure should also be formulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitra Sivaraman, PNNL
Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration (Nd) will increase and droplet size will decrease, for a given liquid water path. This will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation; however, the magnitude and variability of these processes under different environmental conditions is still uncertain.McComiskey et al. (2009) have implemented a method, based onBoers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloudmore » interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions. In order to provide data sets for studying aerosol-cloud interactions, the McComiskey et al. (2009) method was implemented as the Droplet Number Concentration (NDROP) value-added product (VAP).« less
Role of low-energy phonons with mean-free-paths >0.8 μm in heat conduction in silicon
Jiang, Puqing; Lindsay, Lucas R.; Koh, Yee Kan
2016-06-30
Despite recent progress in the first-principles calculations and measurements of phonon mean-free-paths (ℓ), contribution of low-energy phonons to heat conduction in silicon is still inconclusive, as exemplified by the discrepancies as large as 30% between different first-principles calculations. In this study, we investigate the contribution of low-energy phonons with ℓ>0.8 μm by accurately measuring the cross-plane thermal conductivity (Λ cross) of crystalline silicon films by time-domain thermoreflectance (TDTR), over a wide range of film thicknesses 1≤ h f ≤ 10 μm and temperatures 100 ≤ T ≤ 300 K. We employ a dual-frequency TDTR approach to improve the accuracy ofmore » our Λ cross measurements. We find from our Λ cross measurements that phonons with ℓ>0.8 μm contribute 53 W m -1 K -1 (37%) to heat conduction in natural Si at 300 K while phonons with ℓ>3 μm contribute 523 W m -1 K -1 (61%) at 100 K, >20% lower than first-principles predictions of 68 W m -1 K -1 (47%) and 717 W m -1 K -1 (76%), respectively. Using a relaxation time approximation (RTA) model, we demonstrate that macroscopic damping (e.g., Akhieser s damping) eliminates the contribution of phonons with mean-free-paths >20 μm at 300 K, which contributes 15 W m -1 K -1 (10%) to calculated heat conduction in Si. Thus, we propose that omission of the macroscopic damping for low-energy phonons in the first-principles calculations could be one of the possible explanations for the observed differences between our measurements and calculations. Finally, our work provides an important benchmark for future measurements and calculations of the distribution of phonon mean-free-paths in crystalline silicon.« less
Assessment of the Performance of a Dual-Frequency Surface Reference Technique
NASA Technical Reports Server (NTRS)
Meneghini, Robert; Liao, Liang; Tanelli, Simone; Durden, Stephen
2013-01-01
The high correlation of the rain-free surface cross sections at two frequencies implies that the estimate of differential path integrated attenuation (PIA) caused by precipitation along the radar beam can be obtained to a higher degree of accuracy than the path-attenuation at either frequency. We explore this finding first analytically and then by examining data from the JPL dual-frequency airborne radar using measurements from the TC4 experiment obtained during July-August 2007. Despite this improvement in the accuracy of the differential path attenuation, solving the constrained dual-wavelength radar equations for parameters of the particle size distribution requires not only this quantity but the single-wavelength path attenuation as well. We investigate a simple method of estimating the single-frequency path attenuation from the differential attenuation and compare this with the estimate derived directly from the surface return.
Cross-sensory reference frame transfer in spatial memory: the case of proprioceptive learning.
Avraamides, Marios N; Sarrou, Mikaella; Kelly, Jonathan W
2014-04-01
In three experiments, we investigated whether the information available to visual perception prior to encoding the locations of objects in a path through proprioception would influence the reference direction from which the spatial memory was formed. Participants walked a path whose orientation was misaligned to the walls of the enclosing room and to the square sheet that covered the path prior to learning (Exp. 1) and, in addition, to the intrinsic structure of a layout studied visually prior to walking the path and to the orientation of stripes drawn on the floor (Exps. 2 and 3). Despite the availability of prior visual information, participants constructed spatial memories that were aligned with the canonical axes of the path, as opposed to the reference directions primed by visual experience. The results are discussed in the context of previous studies documenting transfer of reference frames within and across perceptual modalities.
Buliung, Ron N; Larsen, Kristian; Faulkner, Guy E J; Stone, Michelle R
2013-09-01
School route measurement often involves estimating the shortest network path. We challenged the relatively uncritical adoption of this method in school travel research and tested the route discordance hypothesis that several types of difference exist between shortest network paths and reported school routes. We constructed the mapped and shortest path through network routes for a sample of 759 children aged 9 to 13 years in grades 5 and 6 (boys = 45%, girls = 54%, unreported gender = 1%), in Toronto, Ontario, Canada. We used Wilcoxon signed-rank tests to compare reported with shortest-path route measures including distance, route directness, intersection crossings, and route overlap. Measurement difference was explored by mode and location. We found statistical evidence of route discordance for walkers and children who were driven and detected it more often for inner suburban cases. Evidence of route discordance varied by mode and school location. We found statistically significant differences for route structure and built environment variables measured along reported and geographic information systems-based shortest-path school routes. Uncertainty produced by the shortest-path approach challenges its conceptual and empirical validity in school travel research.
Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.
Pan, Shuyang; Aksay, Ilhan A
2011-05-24
We have studied the effect of the oxidation path and the mechanical energy input on the size of graphene oxide sheets derived from graphite oxide. The cross-planar oxidation of graphite from the (0002) plane results in periodic cracking of the uppermost graphene oxide layer, limiting its lateral dimension to less than 30 μm. We use an energy balance between the elastic strain energy associated with the undulation of graphene oxide sheets at the hydroxyl and epoxy sites, the crack formation energy, and the interaction energy between graphene layers to determine the cell size of the cracks. As the effective crack propagation rate in the cross-planar direction is an order of magnitude smaller than the edge-to-center oxidation rate, graphene oxide single sheets larger than those defined by the periodic cracking cell size are produced depending on the aspect ratio of the graphite particles. We also demonstrate that external energy input from hydrodynamic drag created by fluid motion or sonication, further reduces the size of the graphene oxide sheets through tensile stress buildup in the sheets.
Interference between extrinsic and intrinsic losses in x-ray absorption fine structure
NASA Astrophysics Data System (ADS)
Campbell, L.; Hedin, L.; Rehr, J. J.; Bardyszewski, W.
2002-02-01
The interference between extrinsic and intrinsic losses in x-ray absorption fine structure (XAFS) is treated within a Green's-function formalism, without explicit reference to final states. The approach makes use of a quasiboson representation of excitations and perturbation theory in the interaction potential between electrons and quasibosons. These losses lead to an asymmetric broadening of the main quasiparticle peak plus an energy-dependent satellite in the spectral function. The x-ray absorption spectra (XAS) is then given by a convolution of an effective spectral function over a one-electron cross section. It is shown that extrinsic and intrinsic losses tend to cancel near excitation thresholds, and correspondingly, the strength in the main peak increases. At high energies, the theory crosses over to the sudden approximation. These results thus explain the observed weakness of multielectron excitations in XAS. The approach is applied to estimate the many-body corrections to XAFS, beyond the usual mean-free path, using a phasor summation over the spectral function. The asymmetry of the spectral function gives rise to an additional many-body phase shift in the XAFS formula.
Hershey, Douglas A; Henkens, Kene; Van Dalen, Hendrik P
2010-01-01
Current theoretical models support the existence of interactions between the individual and socio-environmental forces when it comes to the formation and enactment of life plans (Friedman & Scholnick, 1997; Shanahan & Elder, 2002). In this investigation, we examine the social, economic, and psychological forces that impact financial planning for retirement. The collective force of these three broad sets of influences was examined from developmental and cross-cultural perspectives, among respondents from two countries with very different retirement financing systems. Participants were 419 American and 556 Dutch working adults, 25-64 years of age. Path analysis models were created to examine differences in planning associated with age and national origin. Compared to younger individuals, older respondents in both countries were more involved in nearly all aspects of the financial planning process. Differences across cultures were also observed in the social support mechanisms that underlie planning and the impact economic forces have on perceptions of saving adequacy. The discussion focuses on the value of developing interdisciplinary theoretical models of planning, and how such models can inform the development of savings-oriented intervention and public policy initiatives.
Cross-layer restoration with software defined networking based on IP over optical transport networks
NASA Astrophysics Data System (ADS)
Yang, Hui; Cheng, Lei; Deng, Junni; Zhao, Yongli; Zhang, Jie; Lee, Young
2015-10-01
The IP over optical transport network is a very promising networking architecture applied to the interconnection of geographically distributed data centers due to the performance guarantee of low delay, huge bandwidth and high reliability at a low cost. It can enable efficient resource utilization and support heterogeneous bandwidth demands in highly-available, cost-effective and energy-effective manner. In case of cross-layer link failure, to ensure a high-level quality of service (QoS) for user request after the failure becomes a research focus. In this paper, we propose a novel cross-layer restoration scheme for data center services with software defined networking based on IP over optical network. The cross-layer restoration scheme can enable joint optimization of IP network and optical network resources, and enhance the data center service restoration responsiveness to the dynamic end-to-end service demands. We quantitatively evaluate the feasibility and performances through the simulation under heavy traffic load scenario in terms of path blocking probability and path restoration latency. Numeric results show that the cross-layer restoration scheme improves the recovery success rate and minimizes the overall recovery time.
A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks
Costa, Daniel G.; Guedes, Luiz Affonso
2011-01-01
Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks. PMID:22163908
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; Roberts, C. M.; White, D. D.; Larson, K. L.; Brewis, A.
2013-06-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences based on development status and, to a lesser extent, water scarcity. People in less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in more developed sites. Thematically, people in less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community based solutions, while people in more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in water-rich sites. Thematically, people in water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
Cross-taxon congruence and environmental conditions.
Toranza, Carolina; Arim, Matías
2010-07-16
Diversity patterns of different taxa typically covary in space, a phenomenon called cross-taxon congruence. This pattern has been explained by the effect of one taxon diversity on taxon diversity, shared biogeographic histories of different taxa, and/or common responses to environmental conditions. A meta-analysis of the association between environment and diversity patterns found that in 83 out of 85 studies, more than 60% of the spatial variability in species richness was related to variables representing energy, water or their interaction. The role of the environment determining taxa diversity patterns leads us to hypothesize that this would explain the observed cross-taxon congruence. However, recent analyses reported the persistence of cross-taxon congruence when environmental effect was statistically removed. Here we evaluate this hypothesis, analyzing the cross-taxon congruence between birds and mammals in the Brazilian Cerrado, and assess the environmental role on the spatial covariation in diversity patterns. We found a positive association between avian and mammal richness and a positive latitudinal trend for both groups in the Brazilian Cerrado. Regression analyses indicated an effect of latitude, PET, and mean temperature over both biological groups. In addition, we show that NDVI was only associated with avian diversity; while the annual relative humidity, was only correlated with mammal diversity. We determined the environmental effects on diversity in a path analysis that accounted for 73% and 76% of the spatial variation in avian and mammal richness. However, an association between avian and mammal diversity remains significant. Indeed, the importance of this link between bird and mammal diversity was also supported by a significant association between birds and mammal spatial autoregressive model residuals. Our study corroborates the main role of environmental conditions on diversity patterns, but suggests that other important mechanisms, which have not been properly evaluated, are involved in the observed cross-taxon congruence. The approaches introduced here indicate that the prevalence of a significant association among taxa, after considering the environmental determinant, could indicate both the need to incorporate additional processes (e.g. biogeographic and evolutionary history or trophic interactions) and/or the existence of a shared trend in detection biases among taxa and regions.
Aerial Refueling Clearance Process Guide
2014-08-21
using multinational/bi-lateral agreements such as the ATARES Agreement, cross servicing agreements, replacement in kind agreements, Foreign Military...Lighting 8.7.8 External Paint Scheme 8.8 External Weapons/Drop Tanks 9.0 Physical /Aerodynamic Influences 9.1 Boom Clear Path To Receptacle dhkARSAG DOC...Cold Nose Sw. 8.5 External Fuel Tanks 9.0 Physical /Aerodynamic Influence R. 9.1 Probe Clear Path ie: Obstructions, Instruments etc. 9.2 Drogue Hookup
Mitri, F G
2015-09-01
The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. Copyright © 2015 Elsevier B.V. All rights reserved.
Happiness Is the Way: Paths to Civic Engagement between Young Adulthood and Midlife
ERIC Educational Resources Information Center
Fang, Shichen; Galambos, Nancy L.; Johnson, Matthew D.; Krahn, Harvey J.
2018-01-01
Directional associations between civic engagement and happiness were explored with longitudinal data from a community sample surveyed four times from age 22 to 43 (n = 690). Autoregressive cross-lagged models, controlling for cross-time stabilities in happiness and civic engagement, examined whether happiness predicted future civic engagement,…
Co-development of manner and path concepts in language, action, and eye-gaze behavior.
Lohan, Katrin S; Griffiths, Sascha S; Sciutti, Alessandra; Partmann, Tim C; Rohlfing, Katharina J
2014-07-01
In order for artificial intelligent systems to interact naturally with human users, they need to be able to learn from human instructions when actions should be imitated. Human tutoring will typically consist of action demonstrations accompanied by speech. In the following, the characteristics of human tutoring during action demonstration will be examined. A special focus will be put on the distinction between two kinds of motion events: path-oriented actions and manner-oriented actions. Such a distinction is inspired by the literature pertaining to cognitive linguistics, which indicates that the human conceptual system can distinguish these two distinct types of motion. These two kinds of actions are described in language by more path-oriented or more manner-oriented utterances. In path-oriented utterances, the source, trajectory, or goal is emphasized, whereas in manner-oriented utterances the medium, velocity, or means of motion are highlighted. We examined a video corpus of adult-child interactions comprised of three age groups of children-pre-lexical, early lexical, and lexical-and two different tasks, one emphasizing manner more strongly and one emphasizing path more strongly. We analyzed the language and motion of the caregiver and the gazing behavior of the child to highlight the differences between the tutoring and the acquisition of the manner and path concepts. The results suggest that age is an important factor in the development of these action categories. The analysis of this corpus has also been exploited to develop an intelligent robotic behavior-the tutoring spotter system-able to emulate children's behaviors in a tutoring situation, with the aim of evoking in human subjects a natural and effective behavior in teaching to a robot. The findings related to the development of manner and path concepts have been used to implement new effective feedback strategies in the tutoring spotter system, which should provide improvements in human-robot interaction. Copyright © 2014 Cognitive Science Society, Inc.
Velocity Structure Determination Through Seismic Waveform Modeling and Time Deviations
NASA Astrophysics Data System (ADS)
Savage, B.; Zhu, L.; Tan, Y.; Helmberger, D. V.
2001-12-01
Through the use of seismic waveforms recorded by TriNet, a dataset of earthquake focal mechanisms and deviations (time shifts) relative to a standard model facilitates the investigation of the crust and uppermost mantle of southern California. The CAP method of focal mechanism determination, in use by TriNet on a routine basis, provides time shifts for surface waves and Pnl arrivals independently relative to the reference model. These shifts serve as initial data for calibration of local and regional seismic paths. Time shifts from the CAP method are derived by splitting the Pnl section of the waveform, the first arriving Pn to just before the arrival of the S wave, from the much slower surface waves then cross-correlating the data with synthetic waveforms computed from a standard model. Surface waves interact with the entire crust, but the upper crust causes the greatest effect. Whereas, Pnl arrivals sample the deeper crust, upper mantle, and source region. This natural division separates the upper from lower crust for regional calibration and structural modeling and allows 3-D velocity maps to be created using the resulting time shifts. Further examination of Pnl and other arrivals which interact with the Moho illuminate the complex nature of this boundary. Initial attempts at using the first 10 seconds of the Pnl section to determine upper most mantle structure have proven insightful. Two large earthquakes north of southern California in Nevada and Mammoth Lakes, CA allow the creation of record sections from 200 to 600 km. As the paths swing from east to west across southern California, simple 1-D models turn into complex structure, dramatically changing the waveform character. Using finite difference models to explain the structure, we determine that a low velocity zone is present at the base of the crust and extends to 100 km in depth. Velocity variations of 5 percent of the mantle in combination with steeply sloping edges produces complex waveform variations. Characteristics of this complex propagation appear from the southern Sierra Nevada Mountains, in the west, to Death Valley in the east. The structure does not cross the Garlock fault to the south, but we are unsure of the structures northern extent.
A common-path phase-shift interferometry surface plasmon imaging system
NASA Astrophysics Data System (ADS)
Su, Y.-T.; Chen, Shean-Jen; Yeh, T.-L.
2005-03-01
A biosensing imaging system is proposed based on the integration of surface plasmon resonance (SPR) and common-path phase-shift interferometry (PSI) techniques to measure the two-dimensional spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR phase imaging system can offer high resolution and high-throughout screening capabilities to analyze microarray biomolecular interaction without the need for additional labeling. With the long-term stability advantage of the common-path PSI technique even with external disturbances such as mechanical vibration, buffer flow noise, and laser unstable issue, the system can match the demand of real-time kinetic study for biomolecular interaction analysis (BIA). The SPR-PSI imaging system has achieved a detection limit of 2×10-7 refraction index change, a long-term phase stability of 2.5x10-4π rms over four hours, and a spatial phase resolution of 10-3 π with a lateral resolution of 100μm.
ARM Evaluation Product : Droplet Number Concentration Value-Added Product
Riihimaki, Laura
2014-05-15
Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.
Shielded transient self-interaction of a bunch entering a circle from a straight path
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, R.; Bohn, C.L.; Bisognano, J.J.
1997-08-01
Recent developments in electron-gun and injector technologies enable production of short (mm-length), high-charge (nC-regime) bunches. In this parameter regime, the curvature effect on the bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces as the beam traverses magnet bends, may cause serious emittance degradation. In this paper, the authors study an electron bunch orbiting between two infinite, parallel conducting plates. The bunch moves on a trajectory from a straight path to a circular orbit and begins radiating. Transient effects, arising from CSR and space-charge forces generated from source particles both on the bend and on the straightmore » path prior to the bend, are analyzed using Lienard-Wiechert fields, and their overall net effect is obtained. The influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. Results for emittance degradation induced by this self-interaction are also presented.« less
Using GPS telemetry to determine roadways most susceptible to deer-vehicle collisions
Kramer, David W.; Prebyl, Thomas J.; Stickles, James H.; Osborn, David A.; Irwin, Brian J.; Nibbelink, Nathan P.; Warren, Robert J.; Miller, Karl V.
2016-01-01
More than 1 million wildlife-vehicle collisions occur annually in the United States. The majority of these accidents involve white-tailed deer (Odocoileus virginianus) and result in >US $4.6 billion in damage and >200 human fatalities. Prior research has used collision locations to assess sitespecific as well as landscape features that contribute to risk of deer-vehicle collisions. As an alternative approach, we calculated road-crossing locations from 25 GPS-instrumented white-tailed deer near Madison, Georgia (n=154,131 hourly locations). We identified crossing locations by creating movement paths between subsequent GPS points and then intersecting the paths with road locations. Using AIC model selection, we determined whether 10 local and landscape variables were successful at identifying areas where higher frequencies of deer crossings were likely to occur. Our findings indicate that traffic volume, distance to riparian areas, and the amount of forested area influenced the frequency of road crossings. Roadways that were predominately located in wooded landscapes and 200–300 m from riparian areas were crossed frequently. Additionally, we found that areas of low traffic volume (e.g., county roads) had the highest frequencies of deer crossings. Analyses utilizing only records of deer-vehicle collision locations cannot separate the relative contribution of deer crossing rates and traffic volume. Increased frequency of road crossings by deer in low-traffic, forested areas may lead to a greater risk of deer-vehicle collision than suggested by evaluations of deer-vehicle collision frequency alone.
Low profile, highly configurable, current sharing paralleled wide band gap power device power module
McPherson, Brice; Killeen, Peter D.; Lostetter, Alex; Shaw, Robert; Passmore, Brandon; Hornberger, Jared; Berry, Tony M
2016-08-23
A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.
Influence of Processing Parameters on the Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, J. A.; Nunes, A. C., Jr.
2006-01-01
Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.
Theory of bright-field scanning transmission electron microscopy for tomography
NASA Astrophysics Data System (ADS)
Levine, Zachary H.
2005-02-01
Radiation transport theory is applied to electron microscopy of samples composed of one or more materials. The theory, originally due to Goudsmit and Saunderson, assumes only elastic scattering and an amorphous medium dominated by atomic interactions. For samples composed of a single material, the theory yields reasonable parameter-free agreement with experimental data taken from the literature for the multiple scattering of 300-keV electrons through aluminum foils up to 25μm thick. For thin films, the theory gives a validity condition for Beer's law. For thick films, a variant of Molière's theory [V. G. Molière, Z. Naturforschg. 3a, 78 (1948)] of multiple scattering leads to a form for the bright-field signal for foils in the multiple-scattering regime. The signal varies as [tln(e1-2γt/τ)]-1 where t is the path length of the beam, τ is the mean free path for elastic scattering, and γ is Euler's constant. The Goudsmit-Saunderson solution interpolates numerically between these two limits. For samples with multiple materials, elemental sensitivity is developed through the angular dependence of the scattering. From the elastic scattering cross sections of the first 92 elements, a singular-value decomposition of a vector space spanned by the elastic scattering cross sections minus a delta function shows that there is a dominant common mode, with composition-dependent corrections of about 2%. A mathematically correct reconstruction procedure beyond 2% accuracy requires the acquisition of the bright-field signal as a function of the scattering angle. Tomographic reconstructions are carried out for three singular vectors of a sample problem with four elements Cr, Cu, Zr, and Te. The three reconstructions are presented jointly as a color image; all four elements are clearly identifiable throughout the image.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Khatirkar, Rajesh Kisni; Gupta, Aman; Shekhawat, Satish K.; Suwas, Satyam
2018-06-01
In the present work, the influence of strain path on the evolution of microstructure, crystallographic texture, and magnetic properties of a two-phase Fe-Cr-Ni alloy was investigated. The Fe-Cr-Ni alloy had nearly equal proportion of austenite and ferrite and was cold rolled up to a true strain of 1.6 (thickness reduction) using two different strain paths—unidirectional rolling and multi-step cross rolling. The microstructures were characterized by scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD), while crystallographic textures were determined using X-ray diffraction. For magnetic characterization, B-H loops and M-H curves were measured and magnetic force microscopy was performed. After unidirectional rolling, ferrite showed the presence of strong α-fiber (rolling direction, RD//<110>) and austenite showed strong brass type texture (consisting of Brass (Bs) ({110}<112>), Goss ({110}<001>), and S ({123}<634>)). After multi-step cross rolling, strong rotated cube ({100}<110>) was developed in ferrite, while austenite showed ND (normal direction) rotated brass ( 10 deg) texture. The strain-induced martensite (SIM) was found to be higher in unidirectionally rolled samples than multi-step cross-rolled samples. The coherently diffracting domain size, micro-strain, coercivity, and core loss also showed a strong correlation with strain and strain path. More strain was partitioned into austenite than ferrite during deformation (unidirectional as well as cross rolling). Further, the strain partitioning (in both austenite and ferrite) was found to be higher in unidirectionally rolled samples.
Reply to "Comment on `Particle path through a nested Mach-Zehnder interferometer' "
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2017-06-01
The correctness of the consistent histories analysis of weakly interacting probes, related to the path of a particle, is maintained against the criticisms in the Comment, and against the alternative approach described there, which receives no support from standard (textbook) quantum mechanics.
Employer Resource Manual. Project Path.
ERIC Educational Resources Information Center
Kane, Karen R.; Del George, Eve
Project Path at Illinois' College of DuPage was established to provide pre-employment training and career counseling for disabled students. To encourage the integration of qualified individuals with disabilities into the workplace, the project compiled this resource manual for area businesses, providing tips for interacting with disabled people…
NASA Astrophysics Data System (ADS)
Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui
2016-12-01
Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.
2014-01-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
ERIC Educational Resources Information Center
Sandler, Irwin N.; And Others
1994-01-01
Examined stress and coping symptoms of 258 children whose parents were divorced. Found that, in the cross-sectional model, avoidance coping partially mediated the relations between negative events and symptoms; while active coping moderated between negative events and conduct problems. In the longitudinal model, significant negative paths were…
Geometric phase effects in ultracold chemistry
NASA Astrophysics Data System (ADS)
Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.
2016-05-01
In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).
Larsen, Kristian; Faulkner, Guy E. J.; Stone, Michelle R.
2013-01-01
Objectives. School route measurement often involves estimating the shortest network path. We challenged the relatively uncritical adoption of this method in school travel research and tested the route discordance hypothesis that several types of difference exist between shortest network paths and reported school routes. Methods. We constructed the mapped and shortest path through network routes for a sample of 759 children aged 9 to 13 years in grades 5 and 6 (boys = 45%, girls = 54%, unreported gender = 1%), in Toronto, Ontario, Canada. We used Wilcoxon signed-rank tests to compare reported with shortest-path route measures including distance, route directness, intersection crossings, and route overlap. Measurement difference was explored by mode and location. Results. We found statistical evidence of route discordance for walkers and children who were driven and detected it more often for inner suburban cases. Evidence of route discordance varied by mode and school location. Conclusions. We found statistically significant differences for route structure and built environment variables measured along reported and geographic information systems–based shortest-path school routes. Uncertainty produced by the shortest-path approach challenges its conceptual and empirical validity in school travel research. PMID:23865648
Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen).
Rambaut, Andrew; Lam, Tommy T; Max Carvalho, Luiz; Pybus, Oliver G
2016-01-01
Gene sequences sampled at different points in time can be used to infer molecular phylogenies on a natural timescale of months or years, provided that the sequences in question undergo measurable amounts of evolutionary change between sampling times. Data sets with this property are termed heterochronous and have become increasingly common in several fields of biology, most notably the molecular epidemiology of rapidly evolving viruses. Here we introduce the cross-platform software tool, TempEst (formerly known as Path-O-Gen), for the visualization and analysis of temporally sampled sequence data. Given a molecular phylogeny and the dates of sampling for each sequence, TempEst uses an interactive regression approach to explore the association between genetic divergence through time and sampling dates. TempEst can be used to (1) assess whether there is sufficient temporal signal in the data to proceed with phylogenetic molecular clock analysis, and (2) identify sequences whose genetic divergence and sampling date are incongruent. Examination of the latter can help identify data quality problems, including errors in data annotation, sample contamination, sequence recombination, or alignment error. We recommend that all users of the molecular clock models implemented in BEAST first check their data using TempEst prior to analysis.
NASA Astrophysics Data System (ADS)
Nugraha, A. T.; Agustinah, T.
2018-01-01
Quadcopter an unstable system, underactuated and nonlinear in quadcopter control research developments become an important focus of attention. In this study, following the path control method for position on the X and Y axis, used structure-Generator Tracker Command (CGT) is tested. Attitude control and position feedback quadcopter is compared using the optimal output. The addition of the H∞ performance optimal output feedback control is used to maintain the stability and robustness of quadcopter. Iterative numerical techniques Linear Matrix Inequality (LMI) is used to find the gain controller. The following path control problems is solved using the method of LQ regulators with output feedback. Simulations show that the control system can follow the paths that have been defined in the form of a reference signal square shape. The result of the simulation suggest that the method which used can bring the yaw angle at the expected value algorithm. Quadcopter can do automatically following path with cross track error mean X=0.5 m and Y=0.2 m.
NASA Technical Reports Server (NTRS)
Hirasaki, P. N.
1971-01-01
Shielding a spacecraft from the severe thermal environment of an atmospheric entry requires a sophisticated thermal protection system (TPS). Thermal computer program models were developed for two such TPS designs proposed for the space shuttle orbiter. The multilayer systems, a reusable surface insulation TPS, and a re-radiative metallic skin TPS, were sized for a cross-section of trajectories in the entry corridor. This analysis indicates the relative influence of the entry parameters on the weight of each TPS concept. The results are summarized graphically. The trajectory variables considered were down-range, cross-range, orbit inclination, entry interface velocity and flight path angle, maximum heating rate level, angle of attack, and ballistic coefficient. Variations in cross-range and flight path angle over the ranges considered had virtually no effect on the required entry TPS weight. The TPS weight was significantly more sensitive to variations in angle of attack than to dispersions in the other trajectory considered.
Beamlike photon pairs entangled by a 2x2 fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Hsin-Pin; Department of Electrophysics, National Chiao-Tung University, Hsinchu, 300, Taiwan; Yabushita, Atsushi
Polarization-entangled photon pairs have been widely used as a light source of quantum communication. The polarization-entangled photon pairs are generally obtained at the crossing points of the light cones that are generated from a type-II nonlinear crystal. However, it is hard to pick up the photon pairs coming out from the crossing points because of their invisible wavelength and low intensity. In our previous work, we succeeded in generating polarization-entangled photon pairs by overlapping two light paths for the photon-pair generation. The photon pairs could be entangled in all of the generated photon pairs without clipping the crossing points, evenmore » with some difficulty in its alignment to overlap the two light paths. In this paper, we have developed an optical system which generates polarization-entangled photon pairs using a beamlike photon pair, without the difficulty in alignment. The measured results show that the photon pairs generated in the system are entangled in their polarizations.« less
Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning
NASA Astrophysics Data System (ADS)
Ruan, Xiaozhou; Thompson, Andrew F.; Flexas, Mar M.; Sprintall, Janet
2017-11-01
The ocean's global overturning circulation regulates the transport and storage of heat, carbon and nutrients. Upwelling across the Southern Ocean's Antarctic Circumpolar Current and into the mixed layer, coupled to water mass modification by surface buoyancy forcing, has been highlighted as a key process in the closure of the overturning circulation. Here, using twelve high-resolution hydrographic sections in southern Drake Passage, collected with autonomous ocean gliders, we show that Circumpolar Deep Water originating from the North Atlantic, known as Lower Circumpolar Deep Water, intersects sloping topography in narrow and strong boundary currents. Observations of strong lateral buoyancy gradients, enhanced bottom turbulence, thick bottom mixed layers and modified water masses are consistent with growing evidence that topographically generated submesoscale flows over continental slopes enhance near-bottom mixing, and that cross-density upwelling occurs preferentially over sloping topography. Interactions between narrow frontal currents and topography occur elsewhere along the path of the Antarctic Circumpolar Current, which leads us to propose that such interactions contribute significantly to the closure of the overturning in the Southern Ocean.
Viscous self interacting dark matter and cosmic acceleration
NASA Astrophysics Data System (ADS)
Atreya, Abhishek; Bhatt, Jitesh R.; Mishra, Arvind
2018-02-01
Self interacting dark matter (SIDM) provides us with a consistent solution to certain astrophysical observations in conflict with collision-less cold DM paradigm. In this work we estimate the shear viscosity (η) and bulk viscosity (ζ) of SIDM, within kinetic theory formalism, for galactic and cluster size SIDM halos. To that extent we make use of the recent constraints on SIDM cross-section for the dwarf galaxies, LSB galaxies and clusters. We also estimate the change in solution of Einstein's equation due to these viscous effects and find that σ/m constraints on SIDM from astrophysical data provide us with sufficient viscosity to account for the observed cosmic acceleration at present epoch, without the need of any additional dark energy component. Using the estimates of dark matter density for galactic and cluster size halo we find that the mean free path of dark matter ~ few Mpc. Thus the smallest scale at which the viscous effect start playing the role is cluster scale. Astrophysical data for dwarf, LSB galaxies and clusters also seems to suggest the same. The entire analysis is independent of any specific particle physics motivated model for SIDM.
Validating Laser-Induced Birefringence Theory with Plasma Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Cecilia; Cornell Univ., Ithaca, NY
2015-09-02
Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variationsmore » of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.« less
Piloting Systems Reset Path Integration Systems during Position Estimation
ERIC Educational Resources Information Center
Zhang, Lei; Mou, Weimin
2017-01-01
During locomotion, individuals can determine their positions with either idiothetic cues from movement (path integration systems) or visual landmarks (piloting systems). This project investigated how these 2 systems interact in determining humans' positions. In 2 experiments, participants studied the locations of 5 target objects and 1 single…
Career Paths and the Superintendency: Women Speak Out
ERIC Educational Resources Information Center
Seyfried, Nancy Hergenrother; Diamantes, Thomas
2005-01-01
The purpose for conducting this study was to explore, with credentialed and qualified women educators, career paths in educational administration. The research was qualitative. Data were collected through focus groups and mailed surveys. Six persons attended two focus groups that lasted approximately 90 minutes each. The interaction of the members…
2017 Total Solar Eclipse Science Briefing
2017-06-21
During a June 21 media briefing from the Newseum in Washington, representatives from NASA, other federal agencies, and science organizations discussed the opportunity for scientific study offered by the total solar eclipse that will cross the U.S. on August 21. Over the course of 100 minutes, 14 states across the United States will experience more than two minutes of darkness in the middle of the day. Additionally, a partial eclipse will be viewable across all of North America. The eclipse will provide a unique opportunity to study the sun, Earth, moon and their interaction because of the eclipse’s long path over land coast to coast. Scientists will be able to take ground-based and airborne observations over a period of an hour and a half to complement the wealth of data and images provided by space assets.
A path integral approach to the full Dicke model with dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Aparicio Alcalde, M.; Stephany, J.; Svaiter, N. F.
2011-12-01
We consider the full Dicke spin-boson model composed by a single bosonic mode and an ensemble of N identical two-level atoms with different couplings for the resonant and anti-resonant interaction terms, and incorporate a dipole-dipole interaction between the atoms. Assuming that the system is in thermal equilibrium with a reservoir at temperature β-1, we compute the free energy in the thermodynamic limit N → ∞ in the saddle-point approximation to the path integral and determine the critical temperature for the super-radiant phase transition. In the zero temperature limit, we recover the critical coupling of the quantum phase transition, presented in the literature.
Total Solar Eclipse of 2001 June 21
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1999-01-01
On 2001 June 21, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and Madagascar, and ends at sunset in the Indian Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern South America and the southern two thirds of Africa. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
Total Solar Eclipse of 2002 December 04
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
2001-01-01
On 2002 December 04, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and the Indian Ocean, and ends at sunset in southern Australia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the southern two thirds of Africa, Antarctica, Indian Ocean and Australia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
Continuous correction of differential path length factor in near-infrared spectroscopy
Moore, Jason H.; Diamond, Solomon G.
2013-01-01
Abstract. In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p<0.001). The cross-correlations among residuals at different wavelengths were found to be significantly reduced by the EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p<0.001). This observed reduction in residual cross-correlation is consistent with reduced cross-talk error in the hemodynamic estimates from the proposed EKF method. PMID:23640027
Continuous correction of differential path length factor in near-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Talukdar, Tanveer; Moore, Jason H.; Diamond, Solomon G.
2013-05-01
In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p<0.001). The cross-correlations among residuals at different wavelengths were found to be significantly reduced by the EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p<0.001). This observed reduction in residual cross-correlation is consistent with reduced cross-talk error in the hemodynamic estimates from the proposed EKF method.
Path-integral Monte Carlo method for Rényi entanglement entropies.
Herdman, C M; Inglis, Stephen; Roy, P-N; Melko, R G; Del Maestro, A
2014-07-01
We introduce a quantum Monte Carlo algorithm to measure the Rényi entanglement entropies in systems of interacting bosons in the continuum. This approach is based on a path-integral ground state method that can be applied to interacting itinerant bosons in any spatial dimension with direct relevance to experimental systems of quantum fluids. We demonstrate how it may be used to compute spatial mode entanglement, particle partitioned entanglement, and the entanglement of particles, providing insights into quantum correlations generated by fluctuations, indistinguishability, and interactions. We present proof-of-principle calculations and benchmark against an exactly soluble model of interacting bosons in one spatial dimension. As this algorithm retains the fundamental polynomial scaling of quantum Monte Carlo when applied to sign-problem-free models, future applications should allow for the study of entanglement entropy in large-scale many-body systems of interacting bosons.
NASA Astrophysics Data System (ADS)
Reifarth, R.; Dababneh, S.; Fiebiger, S.; Glorius, J.; Göbel, K.; Heil, M.; Hillmann, P.; Heftrich, T.; Langer, C.; Meusel, O.; Plag, R.; Schmidt, S.; Slavkovská, Z.; Veltum, D.; Weigand, M.; Wiesner, C.; Wolf, C.; Zadeh, A.
2018-01-01
The neutron capture cross section of radioactive isotopes for neutron energies in the keV region will be measured by a time-of-flight (TOF) experiment. NAUTILUS will provide a unique facility realizing the TOF technique with an ultra-short flight path at the FRANZ setup at Goethe-University Frankfurt am Main, Germany. A highly optimized spherical photon calorimeter will be built and installed at an ultra-short flight path. This new method allows the measurement of neutron capture cross sections on extremely small sample as needed in the case of 85Kr, which will be produced as an isotopically pure radioactive sample. The successful measurement will provide insights into the dynamics of the late stages of stars, an important independent check of the evolution of the Universe and the proof of principle.
Feelings of energy, exercise-related self-efficacy, and voluntary exercise participation.
Yoon, Seok; Buckworth, Janet; Focht, Brian; Ko, Bomna
2013-12-01
This study used a path analysis approach to examine the relationship between feelings of energy, exercise-related self-efficacy beliefs, and exercise participation. A cross-sectional mailing survey design was used to measure feelings of physical and mental energy, task and scheduling self-efficacy beliefs, and voluntary moderate and vigorous exercise participation in 368 healthy, full-time undergraduate students (mean age = 21.43 ± 2.32 years). The path analysis revealed that the hypothesized path model had a strong fit to the study data. The path model showed that feelings of physical energy had significant direct effects on task and scheduling self-efficacy beliefs as well as exercise behaviors. In addition, scheduling self-efficacy had direct effects on moderate and vigorous exercise participation. However, there was no significant direct relationship between task self-efficacy and exercise participation. The path model also revealed that scheduling self-efficacy partially mediated the relationship between feelings of physical energy and exercise participation.
A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2007-01-01
This document describes an algorithm for the generation of a four dimensional aircraft trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival Route (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint.
Tsai, Tsai-Hsuan; Chang, Hsien-Tsung; Ho, Yi-Lun
2016-01-01
Many studies have noted that the use of social networks sites (SNSs) can enhance social interaction among the elderly and that the motivation for the elderly to use SNSs is to keep in contact with remote friends and family or the younger generation. Memotree is designed to promote intergenerational family communication. The system incorporates the Family Tree design concept and provides family communication mechanisms based on the Family Communication Scale. In addition, the system optimizes hardware and interface use to conform to the specific needs of older and substantially younger individuals. Regarding the impact of variables on SNS with respect to the interaction of usability variables in the construction of a cross-generational communication platform, we adopted the TAM model and Chung et al.’s suggestions to promote user acceptance of the proposed Memotree system. A total of 39 grandchildren and 39 grandparents met the criteria and were included in the study. The elderly and young respondents revealed substantial willingness to use and/or satisfaction with using the Memotree system. Empirical results indicate that technology affordances and perceived ease of use have a positive impact on perceived usefulness, while perceived ease of use is affected by technology affordances. Internet self-efficacy and perceived usefulness have a positive impact on the user’s behavioral intention toward the system. In addition, this study investigated age as a moderating variable in the model. The results indicate that grandchildren have a larger significant effect on the path between perceived usefulness and behavioral intention than grandparents. This study proposes a more complete framework for investigating the user’s behavioral intention and provides a more appropriate explanation of related services for cross-generational interaction with SNS services. PMID:27270915
Tsai, Tsai-Hsuan; Chang, Hsien-Tsung; Ho, Yi-Lun
2016-01-01
Many studies have noted that the use of social networks sites (SNSs) can enhance social interaction among the elderly and that the motivation for the elderly to use SNSs is to keep in contact with remote friends and family or the younger generation. Memotree is designed to promote intergenerational family communication. The system incorporates the Family Tree design concept and provides family communication mechanisms based on the Family Communication Scale. In addition, the system optimizes hardware and interface use to conform to the specific needs of older and substantially younger individuals. Regarding the impact of variables on SNS with respect to the interaction of usability variables in the construction of a cross-generational communication platform, we adopted the TAM model and Chung et al.'s suggestions to promote user acceptance of the proposed Memotree system. A total of 39 grandchildren and 39 grandparents met the criteria and were included in the study. The elderly and young respondents revealed substantial willingness to use and/or satisfaction with using the Memotree system. Empirical results indicate that technology affordances and perceived ease of use have a positive impact on perceived usefulness, while perceived ease of use is affected by technology affordances. Internet self-efficacy and perceived usefulness have a positive impact on the user's behavioral intention toward the system. In addition, this study investigated age as a moderating variable in the model. The results indicate that grandchildren have a larger significant effect on the path between perceived usefulness and behavioral intention than grandparents. This study proposes a more complete framework for investigating the user's behavioral intention and provides a more appropriate explanation of related services for cross-generational interaction with SNS services.
Funnel for localizing biological cell placement and arrangement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soscia, David; Benett, William J.; Mukerjee, Erik V.
2018-03-06
The present disclosure relates to a funnel apparatus for channeling cells onto a plurality of distinct, closely spaced regions of a seeding surface. The funnel apparatus has a body portion having an upper surface and a lower surface. The body portion forms a plurality of flow paths, at least one of which is shaped to have a decreasing cross-sectional area from the upper surface to the lower surface. The flow paths are formed at the lower surface to enable cells deposited into the flow paths at the upper surface of the funnel apparatus to be channeled into a plurality ofmore » distinct, closely spaced regions on the seeding surface positioned adjacent the lower surface.« less
Research on NC laser combined cutting optimization model of sheet metal parts
NASA Astrophysics Data System (ADS)
Wu, Z. Y.; Zhang, Y. L.; Li, L.; Wu, L. H.; Liu, N. B.
2017-09-01
The optimization problem for NC laser combined cutting of sheet metal parts was taken as the research object in this paper. The problem included two contents: combined packing optimization and combined cutting path optimization. In the problem of combined packing optimization, the method of “genetic algorithm + gravity center NFP + geometric transformation” was used to optimize the packing of sheet metal parts. In the problem of combined cutting path optimization, the mathematical model of cutting path optimization was established based on the parts cutting constraint rules of internal contour priority and cross cutting. The model played an important role in the optimization calculation of NC laser combined cutting.
Outrunning damage: Electrons vs X-rays-timescales and mechanisms.
Spence, John C H
2017-07-01
Toward the end of his career, Zewail developed strong interest in fast electron spectroscopy and imaging, a field to which he made important contributions toward his aim of making molecular movies free of radiation damage. We therefore compare here the atomistic mechanisms leading to destruction of protein samples in diffract-and-destroy experiments for the cases of high-energy electron beam irradiation and X-ray laser pulses. The damage processes and their time-scales are compared and relevant elastic, inelastic, and photoelectron cross sections are given. Inelastic mean-free paths for ejected electrons at very low energies in insulators are compared with the bioparticle size. The dose rate and structural damage rate for electrons are found to be much lower, allowing longer pulses, reduced beam current, and Coulomb interactions for the formation of smaller probes. High-angle electron scattering from the nucleus, which has no parallel in the X-ray case, tracks the slowly moving nuclei during the explosion, just as the gain of the XFEL (X-ray free-electron laser) has no parallel in the electron case. Despite reduced damage and much larger elastic scattering cross sections in the electron case, leading to not dissimilar elastic scattering rates (when account is taken of the greatly increased incident XFEL fluence), progress for single-particle electron diffraction is seen to depend on the effort to reduce emittance growth due to Coulomb interactions, and so allow formation of intense sub-micron beams no larger than a virus.
Outrunning damage: Electrons vs X-rays—timescales and mechanisms
Spence, John C. H.
2017-01-01
Toward the end of his career, Zewail developed strong interest in fast electron spectroscopy and imaging, a field to which he made important contributions toward his aim of making molecular movies free of radiation damage. We therefore compare here the atomistic mechanisms leading to destruction of protein samples in diffract-and-destroy experiments for the cases of high-energy electron beam irradiation and X-ray laser pulses. The damage processes and their time-scales are compared and relevant elastic, inelastic, and photoelectron cross sections are given. Inelastic mean-free paths for ejected electrons at very low energies in insulators are compared with the bioparticle size. The dose rate and structural damage rate for electrons are found to be much lower, allowing longer pulses, reduced beam current, and Coulomb interactions for the formation of smaller probes. High-angle electron scattering from the nucleus, which has no parallel in the X-ray case, tracks the slowly moving nuclei during the explosion, just as the gain of the XFEL (X-ray free-electron laser) has no parallel in the electron case. Despite reduced damage and much larger elastic scattering cross sections in the electron case, leading to not dissimilar elastic scattering rates (when account is taken of the greatly increased incident XFEL fluence), progress for single-particle electron diffraction is seen to depend on the effort to reduce emittance growth due to Coulomb interactions, and so allow formation of intense sub-micron beams no larger than a virus. PMID:28653018
Extending the Actor-Partner Interdependence Model to Include Cross-Informant Data
ERIC Educational Resources Information Center
van Dulmen, Manfred H. M.; Goncy, Elizabeth A.
2010-01-01
This paper illustrates an extension of the APIM technique within a path analysis framework by using cross-informant data on the outcome variable. Data for the current study were derived from a sample of young adult heterosexual couples who had been in a romantic relationship for at least four months (N = 115 couples). The findings from the current…
Liu, Pei; Sun, Jiangtao
2017-07-07
A stereoselective, gold-catalyzed, cross-coupling reaction of enynones with diazo compounds has been developed, affording 2-alkenylfurans in moderate to good yields with excellent E-stereoselectivity. Upon using diazo compounds as nucleophiles to trap the in situ formed gold furyl carbene, this protocol provides a novel path toward the formation of unsymmetrical tetrasubstituted alkenes.
Safe trajectory estimation at a pedestrian crossing to assist visually impaired people.
Alghamdi, Saleh; van Schyndel, Ron; Khalil, Ibrahim
2012-01-01
The aim of this paper is to present a service for blind and people with low vision to assist them to cross the street independently. The presented approach provides the user with significant information such as detection of pedestrian crossing signal from any point of view, when the pedestrian crossing signal light is green, the detection of dynamic and fixed obstacles, predictions of the movement of fellow pedestrians and information on objects which may intersect his path. Our approach is based on capturing multiple frames using a depth camera which is attached to a user's headgear. Currently a testbed system is built on a helmet and is connected to a laptop in the user's backpack. In this paper, we discussed efficiency of using Speeded-Up Robust Features (SURF) algorithm for object recognition for purposes of blind people assistance. The system predicts the movement of objects of interest to provide the user with information on the safest path to navigate and information on the surrounding area. Evaluation of this approach on real sequence video frames provides 90% of human detection and more than 80% for recognition of other related objects.
Modeling Cultural Context for Aspiring Women Educational Leaders
ERIC Educational Resources Information Center
Sperandio, Jill
2010-01-01
Purpose: The purpose of the paper is to discuss and examine the development of frameworks and models to guide future research into studies of women's paths to educational leadership worldwide. Design/methodology/approach: A grounded theory approach to the development of a model of the factors and their interaction that determine the path to…
Challenging prior evidence for a shared syntactic processor for language and music.
Perruchet, Pierre; Poulin-Charronnat, Bénédicte
2013-04-01
A theoretical landmark in the growing literature comparing language and music is the shared syntactic integration resource hypothesis (SSIRH; e.g., Patel, 2008), which posits that the successful processing of linguistic and musical materials relies, at least partially, on the mastery of a common syntactic processor. Supporting the SSIRH, Slevc, Rosenberg, and Patel (Psychonomic Bulletin & Review 16(2):374-381, 2009) recently reported data showing enhanced syntactic garden path effects when the sentences were paired with syntactically unexpected chords, whereas the musical manipulation had no reliable effect on the processing of semantic violations. The present experiment replicated Slevc et al.'s (2009) procedure, except that syntactic garden paths were replaced with semantic garden paths. We observed the very same interactive pattern of results. These findings suggest that the element underpinning interactions is the garden path configuration, rather than the implication of an alleged syntactic module. We suggest that a different amount of attentional resources is recruited to process each type of linguistic manipulations, hence modulating the resources left available for the processing of music and, consequently, the effects of musical violations.
TPX: Contractor preliminary design review. Volume 3, Design and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-30
Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presentedmore » as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Puqing; Lindsay, Lucas R.; Koh, Yee Kan
Despite recent progress in the first-principles calculations and measurements of phonon mean-free-paths (ℓ), contribution of low-energy phonons to heat conduction in silicon is still inconclusive, as exemplified by the discrepancies as large as 30% between different first-principles calculations. In this study, we investigate the contribution of low-energy phonons with ℓ>0.8 μm by accurately measuring the cross-plane thermal conductivity (Λ cross) of crystalline silicon films by time-domain thermoreflectance (TDTR), over a wide range of film thicknesses 1≤ h f ≤ 10 μm and temperatures 100 ≤ T ≤ 300 K. We employ a dual-frequency TDTR approach to improve the accuracy ofmore » our Λ cross measurements. We find from our Λ cross measurements that phonons with ℓ>0.8 μm contribute 53 W m -1 K -1 (37%) to heat conduction in natural Si at 300 K while phonons with ℓ>3 μm contribute 523 W m -1 K -1 (61%) at 100 K, >20% lower than first-principles predictions of 68 W m -1 K -1 (47%) and 717 W m -1 K -1 (76%), respectively. Using a relaxation time approximation (RTA) model, we demonstrate that macroscopic damping (e.g., Akhieser s damping) eliminates the contribution of phonons with mean-free-paths >20 μm at 300 K, which contributes 15 W m -1 K -1 (10%) to calculated heat conduction in Si. Thus, we propose that omission of the macroscopic damping for low-energy phonons in the first-principles calculations could be one of the possible explanations for the observed differences between our measurements and calculations. Finally, our work provides an important benchmark for future measurements and calculations of the distribution of phonon mean-free-paths in crystalline silicon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battum, LJ van; Heukelom, S
Purpose This study investigates the origin of lateral optical density (OD) variation for Gafchromic film (EBT and EBT2) scanned in transmission mode with Epson flatbed scanners (1680 Expression Pro and 10000XL). Effects investigated are: cross talk, optical path length and polarization. Methods Cross talk has been examined with triangular shaped light-transmission sheets with OD ranging from 0 to opaque. Optical path length has been studied with absorptive and reflective OD-filters (OD range 0.2 to 2.0). Dependency on light-polarization on the scanner read out has been investigated using linear polarizer sheets. All experiments have been performed at centre scanner position (normmore » point) and at several lateral scan positions, without and with (un)irradiated EBT-film. Dose values used ranged between 0.2 to 9 Gy, yielding an OD-range between 0.25 to 1.1. Results The lateral OD variation is dose dependent and increases up to 14% at most lateral position for dose up to 9 Gy. Cross talk effect contributes to 0.5% in clinical used OD ranges but equals 2% for extreme high dose gradients. Film induced optical path length will effect the lateral OD variation up to 3% at most lateral points. Light polarization is inherent present in these scanners due to multiple reflection on mirrors. In addition film induced polarization is the most important effect generating the observed lateral OD variation. Both Gafchromic film base and sensitive layer have polarizing capabilities; for the sensitive layer its influence is dose dependent. Conclusions Lateral OD variation origins from optical physics (i.e. polarization and reflection) related to scanner and film construction. Cross talk can be ignored in film dosimetry for clinical used dose values and gradients. Therefore it is recommended to determine the lateral OD variation per film type and scanner.« less
Inverse modeling of flow tomography experiments in fractured media
NASA Astrophysics Data System (ADS)
Klepikova, Maria; Le Borgne, Tanguy; Bour, Olivier; de Dreuzy, Jean-Raynald
2014-05-01
Inverse modeling of fracture hydraulic properties and connectivity is a very challenging objective due to the strong heterogeneity of the medium at multiple scales and the scarcity of data. Cross-borehole flowmeter tests, which consist of measuring changes in vertical borehole flows when pumping a neighboring borehole, were shown to be an efficient technique to provide information on the properties of the flow zones that connect borehole pairs (Paillet, 1998, Le Borgne et al., 2007). The interpretation of such experiments may, however, be quite uncertain when multiple connections exist. We propose the flow tomography approach (i.e., sequential cross-borehole flowmeter tests) to characterize the connectivity and transmissivity of preferential permeable flow paths in fractured aquifers (Klepikova et al., 2013). An inverse model approach is developed to estimate log-transformed transmissivity values of hydraulically active fractures between the pumping and observation wells by inverting cross-borehole flow and water level data. Here a simplified discrete fracture network approach that highlights main connectivity structures is used. This conceptual model attempts to reproduce fracture network connectivity without taking fracture geometry (length, orientation, dip) into account. We demonstrate that successively exchanging the roles of pumping and observation boreholes improves the quality of available information and reduces the under-determination of the problem. The inverse method is validated for several synthetic flow scenarios. It is shown to provide a good estimation of connectivity patterns and transmissivities of main flow paths. It also allows the estimation of the transmissivity of fractures that connect the flow paths but do not cross the boreholes, although the associated uncertainty may be high for some geometries. The results of this investigation encourage the application of flow tomography to natural fractured aquifers.
Visualizer: 3D Gridded Data Visualization Software for Geoscience Education and Research
NASA Astrophysics Data System (ADS)
Harwood, C.; Billen, M. I.; Kreylos, O.; Jadamec, M.; Sumner, D. Y.; Kellogg, L. H.; Hamann, B.
2008-12-01
In both research and education learning is an interactive and iterative process of exploring and analyzing data or model results. However, visualization software often presents challenges on the path to learning because it assumes the user already knows the locations and types of features of interest, instead of enabling flexible and intuitive examination of results. We present examples of research and teaching using the software, Visualizer, specifically designed to create an effective and intuitive environment for interactive, scientific analysis of 3D gridded data. Visualizer runs in a range of 3D virtual reality environments (e.g., GeoWall, ImmersaDesk, or CAVE), but also provides a similar level of real-time interactivity on a desktop computer. When using Visualizer in a 3D-enabled environment, the software allows the user to interact with the data images as real objects, grabbing, rotating or walking around the data to gain insight and perspective. On the desktop, simple features, such as a set of cross-bars marking the plane of the screen, provide extra 3D spatial cues that allow the user to more quickly understand geometric relationships within the data. This platform portability allows the user to more easily integrate research results into classroom demonstrations and exercises, while the interactivity provides an engaging environment for self-directed and inquiry-based learning by students. Visualizer software is freely available for download (www.keckcaves.org) and runs on Mac OSX and Linux platforms.
Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.
Tränkle, B; Ruh, D; Rohrbach, A
2016-03-14
Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.
The navigation system of the JPL robot
NASA Technical Reports Server (NTRS)
Thompson, A. M.
1977-01-01
The control structure of the JPL research robot and the operations of the navigation subsystem are discussed. The robot functions as a network of interacting concurrent processes distributed among several computers and coordinated by a central executive. The results of scene analysis are used to create a segmented terrain model in which surface regions are classified by traversibility. The model is used by a path planning algorithm, PATH, which uses tree search methods to find the optimal path to a goal. In PATH, the search space is defined dynamically as a consequence of node testing. Maze-solving and the use of an associative data base for context dependent node generation are also discussed. Execution of a planned path is accomplished by a feedback guidance process with automatic error recovery.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineers Priya Venkatesan and Joey Mercer review flight paths using the UAS traffic management research platform at flight operations mission control at NASA’s UTM TCL2 test.
Path correction of free flight projectiles by cross firing of subsidiary projectiles
NASA Astrophysics Data System (ADS)
Stroem, L.
1982-10-01
Terminal guidance of gun-fired shells is described. The path is corrected by shooting out throw-bodies from the shell casing. The drawbacks of the method, e.g., casing deformation, were eliminated. Using deflagrating substances instead of explosives, higher impulses were obtained, and at lower pressure levels. At acceleration distances of only 10 to 15 mm throw-body speeds of 400 to 500 m/sec were noted, allowing this method to be applied to rotation-stabilized shells.
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.
1994-01-01
System for remote control of robotic land vehicle requires only small radio-communication bandwidth. Twin video cameras on vehicle create stereoscopic images. Operator views cross-polarized images on two cathode-ray tubes through correspondingly polarized spectacles. By use of cursor on frozen image, remote operator designates path. Vehicle proceeds to follow path, by use of limited degree of autonomous control to cope with unexpected conditions. System concept, called "computer-aided remote driving" (CARD), potentially useful in exploration of other planets, military surveillance, firefighting, and clean-up of hazardous materials.
Total Solar Eclipse of 1999 August 11
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1997-01-01
On 1999 August 11, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Eastern Hemisphere. The path of the Moon's umbral shadow begins in the Atlantic and crosses central Europe, the Middle East, and India, where it ends at sunset in the Bay of Bengal. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, all of Europe, northern Africa, and the western half of Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 1400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
Curvature and torsion in growing actin networks
NASA Astrophysics Data System (ADS)
Shaevitz, Joshua W.; Fletcher, Daniel A.
2008-06-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.
Liu, Qixin; Cai, Zhiyong
2014-01-01
This paper presents studies on the characteristics of gas molecular mean free path in nanopores by molecular dynamics simulation. Our study results indicate that the mean free path of all molecules in nanopores depend on both the radius of the nanopore and the gas-solid interaction strength. Besides mean free path of all molecules in the nanopore, this paper highlights the gas molecular mean free path at different positions of the nanopore and the anisotropy of the gas molecular mean free path at nanopores. The molecular mean free path varies with the molecule’s distance from the center of the nanopore. The least value of the mean free path occurs at the wall surface of the nanopore. The present paper found that the gas molecular mean free path is anisotropic when gas is confined in nanopores. The radial gas molecular mean free path is much smaller than the mean free path including all molecular collisions occuring in three directions. Our study results also indicate that when gas is confined in nanopores the gas molecule number density does not affect the gas molecular mean free path in the same way as it does for the gas in unbounded space. These study results may bring new insights into understanding the gas flow’s characteristic at nanoscale. PMID:25046745
Li, Wan; Chen, Lina; Li, Xia; Jia, Xu; Feng, Chenchen; Zhang, Liangcai; He, Weiming; Lv, Junjie; He, Yuehan; Li, Weiguo; Qu, Xiaoli; Zhou, Yanyan; Shi, Yuchen
2013-12-01
Network motifs in central positions are considered to not only have more in-coming and out-going connections but are also localized in an area where more paths reach the networks. These central motifs have been extensively investigated to determine their consistent functions or associations with specific function categories. However, their functional potentials in the maintenance of cross-talk between different functional communities are unclear. In this paper, we constructed an integrated human signaling network from the Pathway Interaction Database. We identified 39 essential cancer-related motifs in central roles, which we called cancer-related marketing centrality motifs, using combined centrality indices on the system level. Our results demonstrated that these cancer-related marketing centrality motifs were pivotal units in the signaling network, and could mediate cross-talk between 61 biological pathways (25 could be mediated by one motif on average), most of which were cancer-related pathways. Further analysis showed that molecules of most marketing centrality motifs were in the same or adjacent subcellular localizations, such as the motif containing PI3K, PDK1 and AKT1 in the plasma membrane, to mediate signal transduction between 32 cancer-related pathways. Finally, we analyzed the pivotal roles of cancer genes in these marketing centrality motifs in the pathogenesis of cancers, and found that non-cancer genes were potential cancer-related genes.
Al-Samman, A. M.; Rahman, T. A.; Azmi, M. H.; Hindia, M. N.; Khan, I.; Hanafi, E.
2016-01-01
This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios. PMID:27654703
Al-Samman, A M; Rahman, T A; Azmi, M H; Hindia, M N; Khan, I; Hanafi, E
This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios.
Nakagawa, R K L; Alves, J L; Buono, V T L; Bahia, M G A
2014-03-01
To assess and compare the flexibility and torsional resistance of PathFile, RaCe ISO 10 and Scout RaCe instruments in relation to stainless steel K-File hand instruments. Rotary PathFile (sizes 13, 16 and 19; .02 taper), Race ISO 10 (size 10; 0.02, 0.04 and 0.06 tapers), Scout RaCe (sizes 10, 15 and 20; 0.02 taper) and hand K-File (sizes 10, 15 and 20; 0.02 taper) instruments were evaluated. Alloy chemical composition, phases present and transformation temperatures were determined for the NiTi instruments. For all instruments, diameters at each millimetre from the tip as well as cross-sectional areas at 3 mm from the tip were measured based on ANSI/ADA Specification No. 101 using image analysis software. Resistance to bending and torsional resistance were determined according to specification ISO 3630-1. Vickers microhardness measurements were also taken in all instruments to assess their strength. Data were analysed using analysis of variance (α = 0.05). The alloys used in the manufacture of the three types of NiTi instruments had approximately the same chemical composition, but the PathFile instruments had a higher Af transformation temperature and contained a small amount of B19' martensite. All instruments had diameter values within the standard tolerance. The bending and torsional resistance values were significantly increased relative to the instrument diameter and cross-sectional area. PathFile instruments were the most flexible and the least torque resistant, whilst the stainless steel instruments were the least flexible although they were more torque resistant than the NiTi instruments. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks
NASA Astrophysics Data System (ADS)
Kachan, Devin Michael
Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I speculate that cells take advantage of this equilibrium effect by tuning near the transition point, where small changes in free cross-linker density will affect large structural rearrangements between free filament networks and networks of bundles. Cells are naturally found far from equilibrium, where the active influx of energy from ATP consumption controls the dynamics. Motor proteins actively generate forces within biopolymer networks, and one may ask how these differ from the random stresses characteristic of equilibrium fluctuations. Besides the trivial observation that the magnitude is independent of temperature, I find that the processive nature of the motors creates a temporally correlated, or colored, noise spectrum. I model the network with a nonlinear scalar elastic theory in the presence of active driving, and study the long distance and large scale properties of the system with renormalization group techniques. I find that there is a new critical point associated with diverging correlation time, and that the colored noise produces novel frequency dependence in the renormalized transport coefficients. Finally, I study marginally elastic solids which have vanishing shear modulus due to the presence of soft modes, modes with zero deformation cost. Although network coordination is a useful metric for determining the mechanical response of random spring networks in mechanical equilibrium, it is insufficient for describing networks under external stress. In particular, under-constrained networks which are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in numerical simulations and experimentally in many biopolymer networks. Drawing upon analogies to the stress induced unjamming of emulsions, I develop a kinetic theory to explain the rigidity transition in spring and filament networks. Describing the dynamic evolution of non-affine deformation via a simple mechanistic picture, I recover the emergent nonlinear strain-stiffening behavior and compare this behavior to the yield stress flow seen in soft glassy fluids. I extend this theory to account for coordination number inhomogeneities and predict a breakdown of universal scaling near the critical point at sufficiently high disorder, and discuss the utility for this type of model in describing biopolymer networks.
Wake Geometry Effects on Rotor Blade-Vortex Interaction Noise Directivity
NASA Technical Reports Server (NTRS)
Martin, R. M.; Marcolini, Michael A.; Splettstoesser, W. R.; Schultz, K.-J.
1990-01-01
Acoustic measurements from a model rotor wind tunnel test are presented which show that the directionality of rotor blade vortex interaction (BVI) noise is strongly dependent on the rotor advance ratio and disk attitude. A rotor free wake analysis is used to show that the general locus of interactions on the rotor disk is also strongly dependent on advance ratio and disk attitude. A comparison of the changing directionality of the BVI noise with changes in the interaction locations shows that the strongest noise radiation occurs in the direction of motion normal to the blade span at the time of interaction, for both advancing and retreating side BVI. For advancing side interactions, the BVI radiation angle down from the tip-path plane appears relatively insensitive to rotor operating condition and is typically between 40 and 55 deg below the disk. However, the azimuthal radiation direction shows a clear trend with descent speed, moving towards the right of the flight path with increasing descent speed. The movement of the strongest radiation direction is attributed to the movement of the interaction locations on the rotor disk with increasing descent speed.
ERIC Educational Resources Information Center
Chang, Hsiu-Ju
2016-01-01
This research focus on the temporal path analysis of learning stress, test anxiety, peer stress (classmate relatedness), teacher relatedness, autonomy, and self-regulative performance in junior high school. Owing to the processes of self-determination always combines several negotiations with the interactive perceptions of personal experiences and…
NASA Astrophysics Data System (ADS)
Agueny, Hicham; Makhoute, Abdelkader; Dubois, Alain
2017-06-01
We theoretically investigate quantum virtual path interference caused by the dynamic Stark effect in bound-bound electronic transitions. The effect is studied in an intermediate resonant region and in connection with the energetic electron impact excitation of a helium atom embedded in a weak low-frequency laser field. The process under investigation is dealt with via a Born-Floquet approach. Numerical calculations show a resonant feature in laser-assisted cross sections. The latter is found to be sensitive to the intensity of the laser field dressing. We show that this feature is a signature of quantum beats which result from the coherent mixture of different quantum virtual pathways, and that excitation may follow in order to end up with a common final channel. This mixture arises from the dynamic Stark effect, which produces a set of avoided crossings in laser-dressed states. The effect allows one to coherently control quantum virtual path interference by varying the intensity of the laser field dressing. Our findings suggest that the combination of an energetic electron and a weak laser field is a useful tool for the coherent control of nonadiabatic transitions in an intermediate resonant region.
Total Solar Eclipse: “Through The Eyes of NASA,” Part 4
2017-08-21
During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. The eclipse’s long path over land provided a unique opportunity to study the Sun, Earth, Moon and their interaction.
Total Solar Eclipse: “Through The Eyes of NASA,” Part 3
2017-08-21
During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. The eclipse’s long path over land provided a unique opportunity to study the Sun, Earth, Moon and their interaction.
Microdunes and other aeolian bedforms on Venus - Wind Tunnel simulations
NASA Technical Reports Server (NTRS)
Greeley, R.; Marshall, J. R.; Leach, R. N.
1984-01-01
The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind Tunnel. It is found that the development of specific bedforms, including ripples, dunes, and 'waves', as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.
Microdunes and Other Aeolian Bedforms on Venus: Wind Tunnel Simulations
NASA Technical Reports Server (NTRS)
Greeley, R.; Marshall, J. R.; Leach, R. N.
1985-01-01
The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind tunnel. It is found that the development of specific bedforms, including ripples, dunes, and waves, as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.
NASA Astrophysics Data System (ADS)
Bernede, Adrien; Poëtte, Gaël
2018-02-01
In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose composition evolves with time due to interactions. As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. A common resolution strategy consists in a splitting between the MC/transport phase and the time discretization scheme/medium evolution phase. After going over and illustrating the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new solver is essentially based on a Monte Carlo scheme with time dependent cross sections implying the on-the-fly resolution of a reduced model for each MC particle describing the time evolution of the matter along their flight path.
Xu, Wenzhao; Collingsworth, Paris D.; Bailey, Barbara; Carlson Mazur, Martha L.; Schaeffer, Jeff; Minsker, Barbara
2017-01-01
This paper proposes a geospatial analysis framework and software to interpret water-quality sampling data from towed undulating vehicles in near-real time. The framework includes data quality assurance and quality control processes, automated kriging interpolation along undulating paths, and local hotspot and cluster analyses. These methods are implemented in an interactive Web application developed using the Shiny package in the R programming environment to support near-real time analysis along with 2- and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The results show that the framework can be used to track river plume dynamics and provide insights on mixing, which could be related to wind and seiche events.
Demonstration of universal parametric entangling gates on a multi-qubit lattice
Reagor, Matthew; Osborn, Christopher B.; Tezak, Nikolas; Staley, Alexa; Prawiroatmodjo, Guenevere; Scheer, Michael; Alidoust, Nasser; Sete, Eyob A.; Didier, Nicolas; da Silva, Marcus P.; Acala, Ezer; Angeles, Joel; Bestwick, Andrew; Block, Maxwell; Bloom, Benjamin; Bradley, Adam; Bui, Catvu; Caldwell, Shane; Capelluto, Lauren; Chilcott, Rick; Cordova, Jeff; Crossman, Genya; Curtis, Michael; Deshpande, Saniya; El Bouayadi, Tristan; Girshovich, Daniel; Hong, Sabrina; Hudson, Alex; Karalekas, Peter; Kuang, Kat; Lenihan, Michael; Manenti, Riccardo; Manning, Thomas; Marshall, Jayss; Mohan, Yuvraj; O’Brien, William; Otterbach, Johannes; Papageorge, Alexander; Paquette, Jean-Philip; Pelstring, Michael; Polloreno, Anthony; Rawat, Vijay; Ryan, Colm A.; Renzas, Russ; Rubin, Nick; Russel, Damon; Rust, Michael; Scarabelli, Diego; Selvanayagam, Michael; Sinclair, Rodney; Smith, Robert; Suska, Mark; To, Ting-Wai; Vahidpour, Mehrnoosh; Vodrahalli, Nagesh; Whyland, Tyler; Yadav, Kamal; Zeng, William; Rigetti, Chad T.
2018-01-01
We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity with the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all these permutations, an average fidelity of ℱ = 91.6 ± 2.6% is observed. These results thus offer a path to a scalable architecture with high selectivity and low cross-talk. PMID:29423443
Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring
Soto, Matias; Esteva, Milton; Martínez-Romero, Oscar; Baez, Jesús; Elías-Zúñiga, Alex
2015-01-01
A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss–Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature. PMID:28793594
Hefron, Ryan; Borghetti, Brett; Schubert Kabban, Christine; Christensen, James; Estepp, Justin
2018-04-26
Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three important contributions: (1) The performance of ensembles of individually-trained models is statistically indistinguishable from group-trained methods at most sequence lengths. These ensembles can be trained for a fraction of the computational cost compared to group-trained methods and enable simpler model updates. (2) While increasing temporal sequence length improves mean accuracy, it is not sufficient to overcome distributional dissimilarities between individuals’ EEG data, as it results in statistically significant increases in cross-participant variance. (3) Compared to all other networks evaluated, a novel convolutional-recurrent model using multi-path subnetworks and bi-directional, residual recurrent layers resulted in statistically significant increases in predictive accuracy and decreases in cross-participant variance.
Hefron, Ryan; Borghetti, Brett; Schubert Kabban, Christine; Christensen, James; Estepp, Justin
2018-01-01
Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three important contributions: (1) The performance of ensembles of individually-trained models is statistically indistinguishable from group-trained methods at most sequence lengths. These ensembles can be trained for a fraction of the computational cost compared to group-trained methods and enable simpler model updates. (2) While increasing temporal sequence length improves mean accuracy, it is not sufficient to overcome distributional dissimilarities between individuals’ EEG data, as it results in statistically significant increases in cross-participant variance. (3) Compared to all other networks evaluated, a novel convolutional-recurrent model using multi-path subnetworks and bi-directional, residual recurrent layers resulted in statistically significant increases in predictive accuracy and decreases in cross-participant variance. PMID:29701668
Interaction in Balanced Cross Nested Designs
NASA Astrophysics Data System (ADS)
Ramos, Paulo; Mexia, João T.; Carvalho, Francisco; Covas, Ricardo
2011-09-01
Commutative Jordan Algebras, CJA, are used in the study of mixed models obtained, through crossing and nesting, from simpler ones. In the study of cross nested models the interaction between nested factors have been systematically discarded. However this can constitutes an artificial simplification of the models. We point out that, when two crossed factors interact, such interaction is symmetric, both factors playing in it equivalent roles, while when two nested factors interact, the interaction is determined by the nesting factor. These interactions will be called interactions with nesting. In this work we present a coherent formulation of the algebraic structure of models enabling the choice of families of interactions between cross and nested factors using binary operations on CJA.
NASA Technical Reports Server (NTRS)
Oeffinger, Thomas R. (Inventor); Tocci, Leonard R. (Inventor)
1977-01-01
There is described a passive replicator device to be used in magnetic bubble domain systems. The replicator is passive, i.e., does not require an active element such as a current source or the like, and both propagates and replicates bubble domains. In a preferred embodiment, the replicator uses chevron type elements arranged in an appropriate pattern so as to interact with a pair of propagation paths wherein bubble domains are propagated. A bubble in one propagation path is routinely transferred therealong and, concurrently, replicated by the instant device into another propagation path. A plurality of elements arranged in juxtaposition to the chevrons assists in controlling the propagation of the bubbles through the respective propagation paths and, at the appropriate time, provides a cutting action wherein a bubble which is elongated between the chevrons of the two propagation paths is split into two separate bubbles.
Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation
NASA Astrophysics Data System (ADS)
Li, Hongliang; Wang, Liangbing; Dai, Yizhou; Pu, Zhengtian; Lao, Zhuohan; Chen, Yawei; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Si, Rui; Ma, Chao; Zeng, Jie
2018-05-01
Exploring the interaction between two neighbouring monomers has great potential to significantly raise the performance and deepen the mechanistic understanding of heterogeneous catalysis. Herein, we demonstrate that the synergetic interaction between neighbouring Pt monomers on MoS2 greatly enhanced the CO2 hydrogenation catalytic activity and reduced the activation energy relative to isolated monomers. Neighbouring Pt monomers were achieved by increasing the Pt mass loading up to 7.5% while maintaining the atomic dispersion of Pt. Mechanistic studies reveal that neighbouring Pt monomers not only worked in synergy to vary the reaction barrier, but also underwent distinct reaction paths compared with isolated monomers. Isolated Pt monomers favour the conversion of CO2 into methanol without the formation of formic acid, whereas CO2 is hydrogenated stepwise into formic acid and methanol for neighbouring Pt monomers. The discovery of the synergetic interaction between neighbouring monomers may create a new path for manipulating catalytic properties.
Nagasaka, Masanari; Kondoh, Hiroshi; Nakai, Ikuyo; Ohta, Toshiaki
2007-01-28
The dynamics of adsorbate structures during CO oxidation on Pt(111) surfaces and its effects on the reaction were studied by the dynamic Monte Carlo method including lateral interactions of adsorbates. The lateral interaction energies between adsorbed species were calculated by the density functional theory method. Dynamic Monte Carlo simulations were performed for the oxidation reaction over a mesoscopic scale, where the experimentally determined activation energies of elementary paths were altered by the calculated lateral interaction energies. The simulated results reproduced the characteristics of the microscopic and mesoscopic scale adsorbate structures formed during the reaction, and revealed that the complicated reaction kinetics is comprehensively explained by a single reaction path affected by the surrounding adsorbates. We also propose from the simulations that weakly adsorbed CO molecules at domain boundaries promote the island-periphery specific reaction.
NASA Astrophysics Data System (ADS)
Yan, Yangqian; Blume, D.
2016-06-01
The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b4 of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4 , our b4 agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiotelis, Nicos; Popolo, Antonino Del, E-mail: adelpopolo@oact.inaf.it, E-mail: hiotelis@ipta.demokritos.gr
We construct an integral equation for the first crossing distributions for fractional Brownian motion in the case of a constant barrier and we present an exact analytical solution. Additionally we present first crossing distributions derived by simulating paths from fractional Brownian motion. We compare the results of the analytical solutions with both those of simulations and those of some approximated solutions which have been used in the literature. Finally, we present multiplicity functions for dark matter structures resulting from our analytical approach and we compare with those resulting from N-body simulations. We show that the results of analytical solutions aremore » in good agreement with those of path simulations but differ significantly from those derived from approximated solutions. Additionally, multiplicity functions derived from fractional Brownian motion are poor fits of the those which result from N-body simulations. We also present comparisons with other models which are exist in the literature and we discuss different ways of improving the agreement between analytical results and N-body simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangadurai, P.; Lumelsky, Yulia; Silverstein, Michael S.
Transmission electron microscopy (TEM) cross-section specimens of PMMA in contact with gold and Si were prepared by focused ion beam (FIB) and compared with plan-view PMMA specimens prepared by a dip-coating technique. The specimens were characterized by TEM and electron energy loss spectroscopy (EELS). In the cross-section specimens, the thin films of PMMA were located in a Si-PMMA-Au multilayer. Different thicknesses of PMMA films were spin-coated on the Si substrates. The thickness of the TEM specimens prepared by FIB was estimated using EELS to be 0.65 of the plasmon mean-free-path. Along the PMMA-Au interface, Au particle diffusion into the PMMAmore » was observed, and the size of the Au particles was in the range of 2-4 nm. Dip-coating of PMMA directly on Cu TEM grids resulted in thin specimens with a granular morphology, with a thickness of 0.58 of the plasmon mean-free-path. The dip-coated specimens were free from ion milling induced artifacts, and thus serve as control specimens for comparison with the cross-sectioned specimens prepared by FIB.« less
Aaltonen, Sari; Latvala, Antti; Rose, Richard J.; Kujala, Urho M.; Kaprio, Jaakko; Silventoinen, Karri
2016-01-01
Physical activity and academic performance are positively associated, but the direction of the association is poorly understood. This longitudinal study examined the direction and magnitude of the associations between leisure-time physical activity and academic performance throughout adolescence and young adulthood. The participants were Finnish twins (from 2,859 to 4,190 individuals/study wave) and their families. In a cross-lagged path model, higher academic performance at ages 12, 14 and 17 predicted higher leisure-time physical activity at subsequent time-points (standardized path coefficient at age 14: 0.07 (p < 0.001), age 17: 0.12 (p < 0.001) and age 24: 0.06 (p < 0.05)), whereas physical activity did not predict future academic performance. A cross-lagged model of co-twin differences suggested that academic performance and subsequent physical activity were not associated due to the environmental factors shared by co-twins. Our findings suggest that better academic performance in adolescence modestly predicts more frequent leisure-time physical activity in late adolescence and young adulthood. PMID:27976699
Aaltonen, Sari; Latvala, Antti; Rose, Richard J; Kujala, Urho M; Kaprio, Jaakko; Silventoinen, Karri
2016-12-15
Physical activity and academic performance are positively associated, but the direction of the association is poorly understood. This longitudinal study examined the direction and magnitude of the associations between leisure-time physical activity and academic performance throughout adolescence and young adulthood. The participants were Finnish twins (from 2,859 to 4,190 individuals/study wave) and their families. In a cross-lagged path model, higher academic performance at ages 12, 14 and 17 predicted higher leisure-time physical activity at subsequent time-points (standardized path coefficient at age 14: 0.07 (p < 0.001), age 17: 0.12 (p < 0.001) and age 24: 0.06 (p < 0.05)), whereas physical activity did not predict future academic performance. A cross-lagged model of co-twin differences suggested that academic performance and subsequent physical activity were not associated due to the environmental factors shared by co-twins. Our findings suggest that better academic performance in adolescence modestly predicts more frequent leisure-time physical activity in late adolescence and young adulthood.
DOT National Transportation Integrated Search
2001-10-01
Traffic control in highway weaving sections is complicated since vehicles are crossing paths, changing lanes, or merging with through traffic as they enter or exit an expressway. There are two types of weaving sections: (a) single weaving sections wh...
NASA Astrophysics Data System (ADS)
Maries, Alexandru; Sayer, Ryan; Singh, Chandralekha
2017-12-01
Research suggests that introductory physics students often have difficulty using a concept in contexts different from the ones in which they learned it without explicit guidance to help them make the connection between the different contexts. We have been investigating advanced students' learning of quantum mechanics concepts and have developed interactive tutorials which strive to help students learn these concepts. Two such tutorials, focused on the Mach-Zehnder interferometer (MZI) and the double-slit experiment (DSE), help students learn how to use the concept of "which-path" information to reason about the presence or absence of interference in these two experiments in different situations. After working on a pretest that asked students to predict interference in the MZI with single photons and polarizers of various orientations placed in one or both paths of the MZI, students worked on the MZI tutorial which, among other things, guided them to reason in terms of which-path information in order to predict interference in similar situations. We investigated the extent to which students were able to use reasoning related to which-path information learned in the MZI tutorial to answer analogous questions on the DSE (before working on the DSE tutorial). After students worked on the DSE pretest they worked on a DSE tutorial in which they learned to use the concept of which-path information to answer questions about interference in the DSE with single particles with mass sent through the two slits and a monochromatic lamp placed between the slits and the screen. We investigated if this additional exposure to the concept of which-path information promoted improved learning and performance on the DSE questions with single photons and polarizers placed after one or both slits. We find evidence that both tutorials promoted which-path information reasoning and helped students use this reasoning appropriately in contexts different from the ones in which they had learned it.
Probabilistic Multi-Factor Interaction Model for Complex Material Behavior
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2008-01-01
The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points, the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.
Probabilistic Multi-Factor Interaction Model for Complex Material Behavior
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2008-01-01
The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.
Novak, Alison C; Deshpande, Nandini
2014-06-01
The ability to safely negotiate obstacles is an important component of independent mobility, requiring adaptive locomotor responses to maintain dynamic balance. This study examined the effects of aging and visual-vestibular interactions on whole-body and segmental control during obstacle crossing. Twelve young and 15 older adults walked along a straight pathway and stepped over one obstacle placed in their path. The task was completed under 4 conditions which included intact or blurred vision, and intact or perturbed vestibular information using galvanic vestibular stimulation (GVS). Global task performance significantly increased under suboptimal vision conditions. Vision also significantly influenced medial-lateral center of mass displacement, irrespective of age and GVS. Older adults demonstrated significantly greater trunk pitch and head roll angles under suboptimal vision conditions. Similar to whole-body control, no GVS effect was found for any measures of segmental control. The results indicate a significant reliance on visual but not vestibular information for locomotor control during obstacle crossing. The lack of differences in GVS effects suggests that vestibular information is not up-regulated for obstacle avoidance. This is not differentially affected by aging. In older adults, insufficient visual input appears to affect ability to minimize anterior-posterior trunk movement despite a slower obstacle crossing time and walking speed. Combined with larger medial-lateral deviation of the body COM with insufficient visual information, the older adults may be at a greater risk for imbalance or inability to recover from a possible trip when stepping over an obstacle. Copyright © 2014 Elsevier B.V. All rights reserved.
Measuring excess free energies of self-assembled membrane structures.
Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus
2010-01-01
Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.
Sun, Yanzhao; Zhang, Tao; Zheng, Dandan
2018-04-10
Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to -17%. In addition, the rationality of the simulation was proved by experiments.
Zhang, Tao; Zheng, Dandan
2018-01-01
Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to −17%. In addition, the rationality of the simulation was proved by experiments. PMID:29642577
Nickel, Nathan C; Chateau, Dan G; Martens, Patricia J; Brownell, Marni D; Katz, Alan; Burland, Elaine M J; Walld, Randy; Hu, Mingming; Taylor, Carole R; Sarkar, Joykrishna; Goh, Chun Yan
2014-10-01
The PATHS Data Resource is a unique database comprising data that follow individuals from the prenatal period to adulthood. The PATHS Resource was developed for conducting longitudinal epidemiological research into child health and health equity. It contains individual-level data on health, socioeconomic status, social services and education. Individuals' data are linkable across these domains, allowing researchers to follow children through childhood and across a variety of sectors. PATHS includes nearly all individuals that were born between 1984 and 2012 and registered with Manitoba's universal health insurance programme at some point during childhood. All PATHS data are anonymized. Key concepts, definitions and algorithms necessary to work with the PATHS Resource are freely accessible online and an interactive forum is available to new researchers working with these data. The PATHS Resource is one of the richest and most complete databases assembled for conducting longitudinal epidemiological research, incorporating many variables that address the social determinants of health and health equity. Interested researchers are encouraged to contact [mchp_access@cpe.umanitoba.ca] to obtain access to PATHS to use in their own programmes of research. © The Author 2014. Published by Oxford University Press on behalf of the International Epidemiological Association.
Direct multiple path magnetospheric propagation - A fundamental property of nonducted VLF waves
NASA Technical Reports Server (NTRS)
Sonwalkar, V. S.; Bell, T. F.; Helliwell, R. A.; Inan, U. S.
1984-01-01
An elongation of 20-200 ms, attributed to closely spaced multiple propagation paths between the satellite and the ground, is noted in well defined pulses observed by the ISEE 1 satellite in nonducted whistler mode signals from the Siple Station VLF transmitter. Electric field measurements show a 2 to 10 dB amplitude variation in the observed amplitude fading pattern which is also consistent with direct multiple path propagation. The results obtained for two cases, one outside and one inside the plasmapause, establish that the direct signals transmitted from the ground arrive almost simultaneously at any point in the magnetosphere along two or more closely spaced direct ray paths. It is also shown that multiple paths can be explained by assuming field-aligned irregularities, and the implications of these results for nonducted wave-particle interaction in the magnetosphere are discussed. For reasonable parameters of nonducted, multiple path propagation, a cyclotron-resonant electron will experience a wave Doppler broadening of a few tens to a few hundreds of Hz.
Shah, Eric D; Fisch, Brandon M A; Arceci, Robert J; Buckley, Jonathan D; Reaman, Gregory H; Sorensen, Poul H; Triche, Timothy J; Reynolds, C Patrick
2014-05-01
Academic laboratories are developing increasingly large amounts of data that describe the genomic landscape and gene expression patterns of various types of cancers. Such data can potentially identify novel oncology molecular targets in cancer types that may not be the primary focus of a drug sponsor's initial research for an investigational new drug. Obtaining preclinical data that point toward the potential for a given molecularly targeted agent, or a novel combination of agents requires knowledge of drugs currently in development in both the academic and commercial sectors. We have developed the DrugPath database ( http://www.drugpath.org ) as a comprehensive, free-of-charge resource for academic investigators to identify agents being developed in academics or industry that may act against molecular targets of interest. DrugPath data on molecular targets overlay the Michigan Molecular Interactions ( http://mimi.ncibi.org ) gene-gene interaction map to facilitate identification of related agents in the same pathway. The database catalogs 2,081 drug development programs representing 751 drug sponsors and 722 molecular and genetic targets. DrugPath should assist investigators in identifying and obtaining drugs acting on specific molecular targets for biological and preclinical therapeutic studies.
TabPath: interactive tables for metabolic pathway analysis.
Moraes, Lauro Ângelo Gonçalves de; Felestrino, Érica Barbosa; Assis, Renata de Almeida Barbosa; Matos, Diogo; Lima, Joubert de Castro; Lima, Leandro de Araújo; Almeida, Nalvo Franco; Setubal, João Carlos; Garcia, Camila Carrião Machado; Moreira, Leandro Marcio
2018-03-15
Information about metabolic pathways in a comparative context is one of the most powerful tool to help the understanding of genome-based differences in phenotypes among organisms. Although several platforms exist that provide a wealth of information on metabolic pathways of diverse organisms, the comparison among organisms using metabolic pathways is still a difficult task. We present TabPath (Tables for Metabolic Pathway), a web-based tool to facilitate comparison of metabolic pathways in genomes based on KEGG. From a selection of pathways and genomes of interest on the menu, TabPath generates user-friendly tables that facilitate analysis of variations in metabolism among the selected organisms. TabPath is available at http://200.239.132.160:8686. lmmorei@gmail.com.
The food-energy-water nexus and urban complexity
NASA Astrophysics Data System (ADS)
Romero-Lankao, Patricia; McPhearson, Timon; Davidson, Debra J.
2017-04-01
While tackling interdependencies among food, energy, and water security is promising, three fundamental challenges to effective operationalization need addressing: the feasibility of science-policy integration, cross-scale inequalities, and path-dependencies in infrastructure and socio-institutional practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odette, G. Robert
The objective of this work was to characterize the alloy 14YWT-PM2, which is an extruded and cross-rolled precursor alloy to a large heat of 14YWT being produced using an alternative processing path that incorporates Y during gas atomization process.
Appraisals of negative events by preadolescent children of divorce.
Sheets, V; Sandler, I; West, S G
1996-10-01
This study investigated the appraisals of the significance of negative events made by 256 preadolescent children of divorce. Appraisals were assessed by a 24-item self-report scale. Confirmatory factor analysis of this scale found support for a 3-dimensional model: negative self-appraisal, negative other-appraisal, and material loss. Differentiation between the dimensions of appraisal increased with age in both cross-sectional and over-time data. Evidence for convergent and discriminant validity of the self-report measure of appraisals was found with scores derived from children's open-ended descriptions of their appraisals. Cross-sectional structural equation models found significant paths between negative appraisal and psychological symptoms, over and above the direct effects of the traditional life event measure of stress. Structural equation modeling of longitudinal (5.5 months) data found a significant path from Time 1 appraisal to Time 2 anxiety for the older children.
Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices
Nilson, Robert; Griffiths, Stewart
2005-10-04
The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.
Classical field configurations and infrared slavery
NASA Astrophysics Data System (ADS)
Swanson, Mark S.
1987-09-01
The problem of determining the energy of two spinor particles interacting through massless-particle exchange is analyzed using the path-integral method. A form for the long-range interaction energy is obtained by analyzing an abridged vertex derived from the parent theory. This abridged vertex describes the radiation of zero-momentum particles by pointlike sources. A path-integral formalism for calculating the energy of the radiation field associated with this abridged vertex is developed and applications are made to determine the energy necessary for adiabatic separation of two sources in quantum electrodynamics and for an SU(2) Yang-Mills theory. The latter theory is shown to be consistent with confinement via infrared slavery.
Robust path planning for flexible needle insertion using Markov decision processes.
Tan, Xiaoyu; Yu, Pengqian; Lim, Kah-Bin; Chui, Chee-Kong
2018-05-11
Flexible needle has the potential to accurately navigate to a treatment region in the least invasive manner. We propose a new planning method using Markov decision processes (MDPs) for flexible needle navigation that can perform robust path planning and steering under the circumstance of complex tissue-needle interactions. This method enhances the robustness of flexible needle steering from three different perspectives. First, the method considers the problem caused by soft tissue deformation. The method then resolves the common needle penetration failure caused by patterns of targets, while the last solution addresses the uncertainty issues in flexible needle motion due to complex and unpredictable tissue-needle interaction. Computer simulation and phantom experimental results show that the proposed method can perform robust planning and generate a secure control policy for flexible needle steering. Compared with a traditional method using MDPs, the proposed method achieves higher accuracy and probability of success in avoiding obstacles under complicated and uncertain tissue-needle interactions. Future work will involve experiment with biological tissue in vivo. The proposed robust path planning method can securely steer flexible needle within soft phantom tissues and achieve high adaptability in computer simulation.
Clark, Allan K.; Journey, Celeste A.
2006-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, conducted a 4-year study during 2001– 04 to identify major ground-water flow paths in the Edwards aquifer in northern Medina and northeastern Uvalde Counties, Texas. The study involved use of geologic structure, surfacewater and ground-water data, and geochemistry to identify ground-water flow paths. Relay ramps and associated faulting in northern Medina County appear to channel ground-water flow along four distinct flow paths that move water toward the southwest. The northwestern Medina flow path is bounded on the north by the Woodard Cave fault and on the south by the Parkers Creek fault. Water moves downdip toward the southwest until the flow encounters a cross fault along Seco Creek. This barrier to flow might force part or most of the flow to the south. Departure hydrographs for two wells and discharge departure for a streamflow-gaging station provide evidence for flow in the northwestern Medina flow path. The north-central Medina flow path (northern part) is bounded by the Parkers Creek fault on the north and the Medina Lake fault on the south. The adjacent north-central Medina flow path (southern part) is bounded on the north by the Medina Lake fault and on the south by the Diversion Lake fault. The north-central Medina flow path is separated into a northern and southern part because of water-level differences. Ground water in both parts of the northcentral Medina flow path moves downgradient (and down relay ramp) from eastern Medina County toward the southwest. The north-central Medina flow path is hypothesized to turn south in the vicinity of Seco Creek as it begins to be influenced by structural features. Departure hydrographs for four wells and Medina Lake and discharge departure for a streamflow-gaging station provide evidence for flow in the north-central Medina flow path. The south-central Medina flow path is bounded on the north by the Seco Creek and Diversion Lake faults and on the south by the Haby Crossing fault. Because of bounding faults oriented northeast-southwest and adjacent flow paths directed south by other geologic structures, the south-central Medina flow path follows the configuration of the adjacent flow paths—oriented initially southwest and then south. Immediately after turning south, the south-central Medina flow path turns sharply east. Departure hydrographs for four wells and discharge departure for a streamflow-gaging station provide evidence for flow in the south-central Medina flow path. Statistical correlations between water-level departures for 11 continuously monitored wells provide additional evidence for the hypothesized flow paths. Of the 55 combinations of departure dataset pairs, the stronger correlations (those greater than .6) are all among wells in the same flow path, with one exception. Simulations of compositional differences in water chemistry along a hypothesized flow path in the Edwards aquifer and between ground-water and surface-water systems near Medina Lake were developed using the geochemical model PHREEQC. Ground-water chemistry for samples from five wells in the Edwards aquifer in the northwestern Medina flow path were used to evaluate the evolution of ground-water chemistry in the northwestern Medina flow path. Seven simulations were done for samples from pairs of these wells collected during 2001–03; three of the seven yielded plausible models. Ground-water samples from 13 wells were used to evaluate the evolution of ground-water chemistry in the north-central Medina flow path (northern and southern parts). Five of the wells in the most upgradient part of the flow path were completed in the Trinity aquifer; the remaining eight were completed in the Edwards aquifer. Nineteen simulations were done for samples from well pairs collected during 1995–2003; eight of the 19 yielded plausible models. Ground-water samples from seven wells were used to evaluate the evolution of ground-water chemistry in the south-central Medina flow path. One well was the Trinity aquifer end-member well upgradient from all flow paths, and another was a Trinity aquifer well in the most upgradient part of the flow path; all other wells were completed in the Edwards aquifer. Nine simulations were done for samples from well pairs collected during 1996–2003; seven of the nine yielded plausible models. The plausible models demonstrate that the four hypothesized flow paths can be partially supported geochemically.
NASA Technical Reports Server (NTRS)
Portscht, R.
1977-01-01
Measurements of spectral transmission factors in smoky optical transmission paths reveal a difference between wavelength exponents of the extinction cross section of high absorption capacity and those of low absorption capacity. A theoretical explanation of this behavior is presented. In certain cases, it is possible to obtain data on the absorption index of aerosol particles in the optical path by measuring the spectral decadic extinction coefficient at, at least, two wavelengths. In this manner it is possible, for instance, to distinguish smoke containing soot from water vapor.
A Revised Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2010-01-01
This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. This version of the algorithm accommodates descent Mach values that are different from the cruise Mach values. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint.
Facilitating Self-Transcendence: An Intervention to Enhance Well-Being in Late Life.
McCarthy, Valerie Lander; Hall, Lynne A; Crawford, Timothy N; Connelly, Jennifer
2018-06-01
This randomized controlled pilot study evaluated the effects of the Psychoeducational Approach to Transcendence and Health (PATH) Program, an 8-week intervention hypothesized to increase self-transcendence and improve well-being in community-dwelling women aged 60 years and older ( N = 20). The PATH combined mindfulness exercises, group processes, creative activities, and at-home practice using community engaged research methods. Findings provided some support for the effectiveness of PATH. Although there was no significant Group × Time interaction, self-transcendence, psychological well-being, and life satisfaction differed significantly pre- and postintervention in the wait-listed control group, which received a revised version of the program. Further study is needed with a larger sample to determine the effectiveness of PATH. Potentially, PATH may be a convenient and affordable activity to support personal development and improve well-being among older adults at senior centers, retirement communities, nursing homes, church groups, and other places where older adults gather.
Measurements of wake vortices interacting with the ground
DOT National Transportation Integrated Search
2005-09-01
Although wake vortices are known to decay more rapidly near the ground than away from the ground, the details of the ground interaction are not well understood. Propeller anemometer arrays located under the approach path have been used to study vorte...
Matter-wave propagation in optical lattices: geometrical and flat-band effects
Metcalf, Mekena; Chern, Gia-Wei; Di Ventra, Massimiliano; ...
2016-03-17
Here we report that the geometry of optical lattices can be engineered allowing the study of atomic transport along paths arranged in patterns that are otherwise difficult to probe in the solid state. A question feasible to atomic systems is related to the speed of propagation of matter-waves as a function of the lattice geometry. To address this issue, we have investigated theoretically the quantum transport of non-interacting and weakly-interacting ultracold fermionic atoms in several 2D optical lattice geometries. We find that the triangular lattice has a higher propagation velocity compared to the square lattice, and the cross-linked square latticemore » has an even faster propagation velocity. The increase results from the mixing of the momentum states which leads to different group velocities in quantum systems. Standard band theory provides an explanation and allows for a systematic way to search and design systems with controllable matter-wave propagation. Moreover, the presence of a flat band such as in a two-leg ladder geometry leads to a dynamical density discontinuity due to its localized atoms. Lastly, we discuss possible realizations of those dynamical phenomena.« less
AISIM (Automated Interactive Simulation Modeling System) VAX Version Training Manual.
1985-02-01
node to which the link is to run, a-nd-(3) a user-given name of the link. To pi’ace a link called " LINKI " from NODE1 to NODE2, type CON NODE1,NODE2...example, to eliminate the connection between NODEI and NODE2 type DELETE LINKI The result on the screen would be that the link named "LINK1" would...the user should now enter the command: DEFINE PATH,NODE2 ,NODE4, LINKI ,LINK4 not only would the path from NODE2 to NODE4 be established, but the path
Bhatt, Divesh; Zuckerman, Daniel M.
2010-01-01
We performed “weighted ensemble” path–sampling simulations of adenylate kinase, using several semi–atomistic protein models. The models have an all–atom backbone with various levels of residue interactions. The primary result is that full statistically rigorous path sampling required only a few weeks of single–processor computing time with these models, indicating the addition of further chemical detail should be readily feasible. Our semi–atomistic path ensembles are consistent with previous biophysical findings: the presence of two distinct pathways, identification of intermediates, and symmetry of forward and reverse pathways. PMID:21660120
Debebe, Abel; Singh, Harijat; Tefera, Hailu
2014-01-01
This experiment was conducted at Debre Zeit and Akaki during 2004-2005 cropping season on F2-derived F4 bulk families of three crosses, viz, DZ-01-974 x DZ-01-2786, DZ-01-974 x DZ-Cr-37 and Alba x Kaye Murri. To estimate the correlations and path coefficients between yield and yield components, 63 F4 families were taken randomly from each of the three crosses. The 189 F4 families, five parents and two checks were space planted following in 14 x 14 simple lattice design. Study of associations among traits indicated that yield was positively associated with shoot biomass, harvest index, lodging index and panicle kernel weight at phenotypic level at Debre Zeit. At Akaki, yield had significant positive correlation with shoot biomass, harvest index, plant height, panicle length and panicle weight. At genotypic level, grain yield per plot exhibited positive association with harvest index, shoot biomass, lodging index and panicle kernel weight at Debre Zeit. By contrast, days to heading, days to maturity, plant height and panicle length showed negative association with yield. At Akaki, kernel yield per plot was positively correlated at genotypic level with all the traits considered where lodging index had the highest correlation followed by shoot biomass, panicle kernel weight and harvest index. Path coefficient analysis at both phenotypic and genotypic levels for both the locations suggested those shoot biomass and harvest indexes are the two important yield determining traits. These two traits might be useful in indirect selection for yield improvement in the material generated from the three crosses under consideration.
A Vision-Aided 3D Path Teaching Method before Narrow Butt Joint Welding
Zeng, Jinle; Chang, Baohua; Du, Dong; Peng, Guodong; Chang, Shuhe; Hong, Yuxiang; Wang, Li; Shan, Jiguo
2017-01-01
For better welding quality, accurate path teaching for actuators must be achieved before welding. Due to machining errors, assembly errors, deformations, etc., the actual groove position may be different from the predetermined path. Therefore, it is significant to recognize the actual groove position using machine vision methods and perform an accurate path teaching process. However, during the teaching process of a narrow butt joint, the existing machine vision methods may fail because of poor adaptability, low resolution, and lack of 3D information. This paper proposes a 3D path teaching method for narrow butt joint welding. This method obtains two kinds of visual information nearly at the same time, namely 2D pixel coordinates of the groove in uniform lighting condition and 3D point cloud data of the workpiece surface in cross-line laser lighting condition. The 3D position and pose between the welding torch and groove can be calculated after information fusion. The image resolution can reach 12.5 μm. Experiments are carried out at an actuator speed of 2300 mm/min and groove width of less than 0.1 mm. The results show that this method is suitable for groove recognition before narrow butt joint welding and can be applied in path teaching fields of 3D complex components. PMID:28492481
A collaborative network middleware project by Lambda Station, TeraPaths, and Phoebus
NASA Astrophysics Data System (ADS)
Bobyshev, A.; Bradley, S.; Crawford, M.; DeMar, P.; Katramatos, D.; Shroff, K.; Swany, M.; Yu, D.
2010-04-01
The TeraPaths, Lambda Station, and Phoebus projects, funded by the US Department of Energy, have successfully developed network middleware services that establish on-demand and manage true end-to-end, Quality-of-Service (QoS) aware, virtual network paths across multiple administrative network domains, select network paths and gracefully reroute traffic over these dynamic paths, and streamline traffic between packet and circuit networks using transparent gateways. These services improve network QoS and performance for applications, playing a critical role in the effective use of emerging dynamic circuit network services. They provide interfaces to applications, such as dCache SRM, translate network service requests into network device configurations, and coordinate with each other to setup up end-to-end network paths. The End Site Control Plane Subsystem (ESCPS) builds upon the success of the three projects by combining their individual capabilities into the next generation of network middleware. ESCPS addresses challenges such as cross-domain control plane signalling and interoperability, authentication and authorization in a Grid environment, topology discovery, and dynamic status tracking. The new network middleware will take full advantage of the perfSONAR monitoring infrastructure and the Inter-Domain Control plane efforts and will be deployed and fully vetted in the Large Hadron Collider data movement environment.
A Vision-Aided 3D Path Teaching Method before Narrow Butt Joint Welding.
Zeng, Jinle; Chang, Baohua; Du, Dong; Peng, Guodong; Chang, Shuhe; Hong, Yuxiang; Wang, Li; Shan, Jiguo
2017-05-11
For better welding quality, accurate path teaching for actuators must be achieved before welding. Due to machining errors, assembly errors, deformations, etc., the actual groove position may be different from the predetermined path. Therefore, it is significant to recognize the actual groove position using machine vision methods and perform an accurate path teaching process. However, during the teaching process of a narrow butt joint, the existing machine vision methods may fail because of poor adaptability, low resolution, and lack of 3D information. This paper proposes a 3D path teaching method for narrow butt joint welding. This method obtains two kinds of visual information nearly at the same time, namely 2D pixel coordinates of the groove in uniform lighting condition and 3D point cloud data of the workpiece surface in cross-line laser lighting condition. The 3D position and pose between the welding torch and groove can be calculated after information fusion. The image resolution can reach 12.5 μm. Experiments are carried out at an actuator speed of 2300 mm/min and groove width of less than 0.1 mm. The results show that this method is suitable for groove recognition before narrow butt joint welding and can be applied in path teaching fields of 3D complex components.
Historical Trauma and Substance Use among Native Hawaiian College Students
Pokhrel, Pallav; Herzog, Thaddeus A.
2016-01-01
Objectives To test the relationships among historical trauma, perceived discrimination, and substance use (cigarette, alcohol, and marijuana use) among Native Hawaiians. Methods Cross sectional self-report data were collected online from 128 Native Hawaiian community college students (M age = 27.5; SD = 9.5; 65% Women). Hypotheses were tested using structural equation modeling. Results Historical trauma had 2 paths to substance use: an indirect path to higher substance use through higher perceived discrimination and a direct path to lower substance use. Conclusions Thoughts, knowledge, or experience associated with historical trauma may enhance substance use behavior via increased perceived discrimination and may also be protective against substance use, possibly via increased pride in one's cultural heritage. This research has implications for historical trauma, discrimination, and substance use research concerning Native Hawaiians. PMID:24636038
Alborghetti, Marcos Rodrigo; Furlan, Ariane da Silva; da Silva, Júlio César; Sforça, Maurício Luís; Honorato, Rodrigo Vargas; Granato, Daniela Campos; dos Santos Migueleti, Deivid Lucas; Neves, Jorge L; de Oliveira, Paulo Sergio Lopes; Paes-Leme, Adriana Franco; Zeri, Ana Carolina de Mattos; de Torriani, Iris Concepcion Linares; Kobarg, Jörg
2013-01-01
Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.
da Silva, Júlio César; Sforça, Maurício Luís; Honorato, Rodrigo Vargas; Granato, Daniela Campos; dos Santos Migueleti, Deivid Lucas; Neves, Jorge L.; de Oliveira, Paulo Sergio Lopes; Paes-Leme, Adriana Franco; Zeri, Ana Carolina de Mattos; de Torriani, Iris Concepcion Linares; Kobarg, Jörg
2013-01-01
Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth. PMID:24116125
CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models
Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.
2013-01-01
The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.
Crossing Boundaries: Nativity, Ethnicity, and Mate Selection
Qian, Zhenchao; Glick, Jennifer E.; Baston, Christie
2016-01-01
The influx of immigrants has increased diversity among ethnic minorities and indicates that they may take multiple integration paths in American society. Previous research on ethnic integration often focuses on panethnic differences and few have explored ethnic diversity within a racial or panethnic context. Using 2000 U.S. census data for Puerto Rican, Mexican, Chinese, and Filipino origin individuals, we examine differences in marriage and cohabitation with whites, with other minorities, within a panethnic group, and within an ethnic group by nativity status. Ethnic endogamy is strong and, to a less extent, so is panethnic endogamy. Yet, marital or cohabiting unions with whites remain an important path of integration but differ significantly by ethnicity, nativity, age at arrival, and educational attainment. Meanwhile, ethnic differences in marriage and cohabitation with other racial or ethnic minorities are strong. Our analysis supports that unions with whites remain a major path of integration, but other paths of integration also become viable options for all ethnic groups. PMID:22350840
Brink, K H
2016-01-01
Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress.
Impacts of two super typhoons on the Kuroshio and marginal seas on the Pacific coast of Japan
NASA Astrophysics Data System (ADS)
Tada, Hiroaki; Uchiyama, Yusuke; Masunaga, Eiji
2018-02-01
High-resolution downscaling ocean modeling was conducted to investigate the impacts of two super typhoons on the Kuroshio in the fall of 2014 off the Kyushu and Shikoku Islands, Japan. The model result was compared with field observations and satellite altimetry. The synoptic and mesoscale oceanic structures around the Kuroshio exhibit a good reproducibility. The typhoons generated near-inertial oscillations (NIOs) and near-inertial internal waves (NIIWs) around the Kuroshio path, particularly on the right side of the typhoon tracks. The NIOs developed in the mixed layer to alter the direction of the Kuroshio by 30°. The associated velocity off the Shikoku and Kyushu Islands was significantly decelerated by 0.2 ms-1. The velocity almost vanished off Kyushu Island and thus induced an unstable fluctuating path shortly after both typhoons passed over that region. The NIIWs were also excited at the thermocline, resulting in the oscillation of the Kuroshio path occurred in the entire water column. In contrast, off Shikoku Island, the typhoons shifted the Kuroshio path northward to enhance the interactions with the topographies. This shift caused considerable eddy shedding from the capes that resulted in mesoscale counterclockwise circulations as cyclonic quasi-standing eddies with a shedding period of 3 days in the north of the Kuroshio path. The magnitude, direction, and meridional location of the path of the Kuroshio prominently fluctuated with the propagation of these eddies, manifested off Shikoku Island. Furthermore, these eddies induced sporadic northward intrusions of the Kuroshio warm water through the Kii Channel into the Seto Inland Sea (SIS), where a weak but persisting southward outflow prevails under normal conditions. Therefore, the process could collectively be called the "typhoon-Kuroshio-eddy interaction", which conceptually differs from the "typhoon-eddy-Kuroshio interaction" in the previous studies, where the Kuroshio was modulated by eddy collision. The wind stress curl and intrusions associated with the typhoons jointly provoked the inversion of the counterclockwise SIS residual circulation. The resultant spatially averaged volume flux was 8 times as high as that under normal conditions.
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2010-01-01
The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points--the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.
An analysis of transient flow in upland watersheds: interactions between structure and process
David Lawrence Brown
1995-01-01
The physical structure and hydrological processes of upland watersheds interact in response to forcing functions such as rainfall, leading to storm runoff generation and pore pressure evolution. Transient fluid flow through distinct flow paths such as the soil matrix, macropores, saprolite, and bedrock may be viewed as a consequence of such interactions. Field...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yohannes, I; Vasiliniuc, S; Hild, S
2015-06-15
Purpose: A material has been designed to be employed as water-equivalent in particle therapy using a previously established stoichiometric analysis method (SAM). After manufacturing, experimental verification of the material’s water-equivalent path length (WEPL) and analysis of its total inelastic nuclear interaction cross sections for proton beams were performed. Methods: Using the SAM, we optimized the material composed of three base materials, i.e., polyurethane, calcium carbonate and microspheres. From the elemental composition of the compound, electron density, linear attenuation coefficients, particle stopping powers and inelastic nuclear cross sections for protons using data from ICRU 63 were calculated. The calculations were thenmore » compared to Hounsfield units (HUs) measured with 350 mAs at 80, 100, 120 and 140 kV and the WEPLs measured with three different ions: proton (106.8 MeV/u), helium (107.93 MeV/u) and carbon (200.3 MeV/u). Results: The material’s measured HUs (0.7±3.0 to 2.6±6.2 HU) as well as its calculated relative electron density (1.0001) are in close agreement with water as reference. The WEPLs measured on a 20.00 mm thick target were 20.16±0.12, 20.29±0.12 and 20.38±0.12 mmH2O for proton, helium and carbon ions, respectively. Within measurement uncertainties, these values verified the calculated WEPLs of 20.28 mmH2O (proton), 20.28 mmH2O (helium) and 20.26 mmH2O (carbon). Moreover, the calculated proton inelastic cross sections of the material differed only by 0.89% (100 MeV/u) and 0.01% (200 MeV/u) when compared to water. Conclusion: The SAM is capable of optimizing material with defined properties, e.g., HU, electron density, WEPL and inelastic nuclear interaction cross section for particle therapy. Such material will have a wide range of applications amongst others absolute dosimetry. This work was supported by grant ZIM KF2137107AK4 from the German Federal Ministry for Economic Affairs and Energy.« less
Ramos, A G; García-Garrido, V J; Mancho, A M; Wiggins, S; Coca, J; Glenn, S; Schofield, O; Kohut, J; Aragon, D; Kerfoot, J; Haskins, T; Miles, T; Haldeman, C; Strandskov, N; Allsup, B; Jones, C; Shapiro, J
2018-03-15
Transoceanic Gliders are Autonomous Underwater Vehicles (AUVs) for which there is a developing and expanding range of applications in open-seas research, technology and underwater clean transport. Mature glider autonomy, operating depth (0-1000 meters) and low energy consumption without a CO 2 footprint enable evolutionary access across ocean basins. Pursuant to the first successful transatlantic glider crossing in December 2009, the Challenger Mission has opened the door to long-term, long-distance routine transoceanic AUV missions. These vehicles, which glide through the water column between 0 and 1000 meters depth, are highly sensitive to the ocean current field. Consequently, it is essential to exploit the complex space-time structure of the ocean current field in order to plan a path that optimizes scientific payoff and navigation efficiency. This letter demonstrates the capability of dynamical system theory for achieving this goal by realizing the real-time navigation strategy for the transoceanic AUV named Silbo, which is a Slocum deep-glider (0-1000 m), that crossed the North Atlantic from April 2016 to March 2017. Path planning in real time based on this approach has facilitated an impressive speed up of the AUV to unprecedented velocities resulting in major battery savings on the mission, offering the potential for routine transoceanic long duration missions.
Salmela-Aro, Katariina; Upadyaya, Katja; Hakkarainen, Kai; Lonka, Kirsti; Alho, Kimmo
2017-02-01
Recent research shows an increased concern with well-being at school and potential problems associated with students' use of socio-digital technologies, i.e., the mobile devices, computers, social media, and the Internet. Simultaneously with supporting creative social activities, socio-digital participation may also lead to compulsive and addictive behavioral patterns affecting both general and school-related mental health problems. Using two longitudinal data waves gathered among 1702 (53 % female) early (age 12-14) and 1636 (64 % female) late (age 16-18) Finnish adolescents, we examined cross-lagged paths between excessive internet use, school engagement and burnout, and depressive symptoms. Structural equation modeling revealed reciprocal cross-lagged paths between excessive internet use and school burnout among both adolescent groups: school burnout predicted later excessive internet use and excessive internet use predicted later school burnout. Reciprocal paths between school burnout and depressive symptoms were also found. Girls typically suffered more than boys from depressive symptoms and, in late adolescence, school burnout. Boys, in turn, more typically suffered from excessive internet use. These results show that, among adolescents, excessive internet use can be a cause of school burnout that can later spill over to depressive symptoms.
NASA Astrophysics Data System (ADS)
Chuang, Po-Yu; Chia, Yeeping; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping
2016-11-01
Recent advances in borehole geophysical techniques have improved characterization of cross-hole fracture flow. The direct detection of preferential flow paths in fractured rock, however, remains to be resolved. In this study, a novel approach using nanoscale zero-valent iron (nZVI or `nano-iron') as a tracer was developed for detecting fracture flow paths directly. Generally, only a few rock fractures are permeable while most are much less permeable. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. When nano-iron particles are released in an injection well, they can migrate through the connecting permeable fracture and be attracted to a magnet array when arriving in an observation well. Such an attraction of incoming iron nanoparticles by the magnet can provide quantitative information for locating the position of the tracer inlet. A series of field experiments were conducted in two wells in fractured rock at a hydrogeological research station in Taiwan, to test the cross-hole migration of the nano-iron tracer through permeable connected fractures. The fluid conductivity recorded in the observation well confirmed the arrival of the injected nano-iron slurry. All of the iron nanoparticles attracted to the magnet array in the observation well were found at the depth of a permeable fracture zone delineated by the flowmeter. This study has demonstrated that integrating the nano-iron tracer test with flowmeter measurement has the potential to characterize preferential flow paths in fractured rock.
Geospatial Analysis of Low-frequency Radio Signals Collected During the 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Liles, W. C.; Nelson, J.; Kerby, K. C.; Lukes, L.; Henry, J.; Oputa, J.; Lemaster, G.
2017-12-01
The total solar eclipse of 2017, with a path that crosses the continental United States, offers a unique opportunity to gather geospatially diverse data. The EclipseMob project has been designed to crowdsource this data by building a network of citizen scientists across the country. The project focuses on gathering low-frequency radio wave data before, during, and after the eclipse. WWVB, a 60 KHz transmitter in Ft. Collins, CO operated by the National Institutes of Standard and Technology, will provide the transmit signal that will be observed by project participants. Participating citizen scientists are building simple antennas and receivers designed by the EclipseMob team and provided to participants in the form of "receiver kits." The EclipseMob receiver downsamples the 60 KHz signal to 18 KHz and supplies the downsampled signal to the audio jack of a smartphone. A dedicated app is used to collect data and upload it to the EclipseMob server. By studying the variations in WWVB amplitude observed during the eclipse at over 150 locations across the country, we aim to understand how the ionization of the D layer of the ionosphere is impacted by the eclipse as a function of both time and space (location). The diverse locations of the EclipseMob participants will provide data from a wide variety of propagation paths - some crossing the path of the total eclipse, and some remaining on the same side of the eclipse path as the transmitter. Our initial data analysis will involve identifying characteristics that define geospatial relationships in the behavior of observed WWVB signal amplitudes.
Butaciu, Sinziana; Senila, Marin; Sarbu, Costel; Ponta, Michaela; Tanaselia, Claudiu; Cadar, Oana; Roman, Marius; Radu, Emil; Sima, Mihaela; Frentiu, Tiberiu
2017-04-01
The study proposes a combined model based on diagrams (Gibbs, Piper, Stuyfzand Hydrogeochemical Classification System) and unsupervised statistical approaches (Cluster Analysis, Principal Component Analysis, Fuzzy Principal Component Analysis, Fuzzy Hierarchical Cross-Clustering) to describe natural enrichment of inorganic arsenic and co-occurring species in groundwater in the Banat Plain, southwestern Romania. Speciation of inorganic As (arsenite, arsenate), ion concentrations (Na + , K + , Ca 2+ , Mg 2+ , HCO 3 - , Cl - , F - , SO 4 2- , PO 4 3- , NO 3 - ), pH, redox potential, conductivity and total dissolved substances were performed. Classical diagrams provided the hydrochemical characterization, while statistical approaches were helpful to establish (i) the mechanism of naturally occurring of As and F - species and the anthropogenic one for NO 3 - , SO 4 2- , PO 4 3- and K + and (ii) classification of groundwater based on content of arsenic species. The HCO 3 - type of local groundwater and alkaline pH (8.31-8.49) were found to be responsible for the enrichment of arsenic species and occurrence of F - but by different paths. The PO 4 3- -AsO 4 3- ion exchange, water-rock interaction (silicates hydrolysis and desorption from clay) were associated to arsenate enrichment in the oxidizing aquifer. Fuzzy Hierarchical Cross-Clustering was the strongest tool for the rapid simultaneous classification of groundwaters as a function of arsenic content and hydrogeochemical characteristics. The approach indicated the Na + -F - -pH cluster as marker for groundwater with naturally elevated As and highlighted which parameters need to be monitored. A chemical conceptual model illustrating the natural and anthropogenic paths and enrichment of As and co-occurring species in the local groundwater supported by mineralogical analysis of rocks was established. Copyright © 2016 Elsevier Ltd. All rights reserved.
Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization
NASA Astrophysics Data System (ADS)
Subramani, Deepak N.; Lermusiaux, Pierre F. J.
2016-04-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.
An Investigation of Laser Lighting Systems to Assist Aircraft
DOT National Transportation Integrated Search
1979-01-01
A model for the visual detectability of narrow light beams was developed and used to evaluate the system performance of two laser lighting system configurations: (1) a laser VASI and (2) a crossed beam glide path indicator. Laboratory experiments con...
Entrepreneurial Intention as Developmental Outcome
ERIC Educational Resources Information Center
Obschonka, Martin; Silbereisen, Rainer K.; Schmitt-Rodermund, Eva
2010-01-01
What predicts adults' entrepreneurial intentions? Utilizing a cross-sectional sample of 496 German scientists, we investigated a path model for the effects of entrepreneurial personality (Big Five profile), control beliefs, and recalled early entrepreneurial competence in adolescence (early inventions, leadership, commercial activities) on two…
Layer-switching cost and optimality in information spreading on multiplex networks
Min, Byungjoon; Gwak, Sang-Hwan; Lee, Nanoom; Goh, K. -I.
2016-01-01
We study a model of information spreading on multiplex networks, in which agents interact through multiple interaction channels (layers), say online vs. offline communication layers, subject to layer-switching cost for transmissions across different interaction layers. The model is characterized by the layer-wise path-dependent transmissibility over a contact, that is dynamically determined dependently on both incoming and outgoing transmission layers. We formulate an analytical framework to deal with such path-dependent transmissibility and demonstrate the nontrivial interplay between the multiplexity and spreading dynamics, including optimality. It is shown that the epidemic threshold and prevalence respond to the layer-switching cost non-monotonically and that the optimal conditions can change in abrupt non-analytic ways, depending also on the densities of network layers and the type of seed infections. Our results elucidate the essential role of multiplexity that its explicit consideration should be crucial for realistic modeling and prediction of spreading phenomena on multiplex social networks in an era of ever-diversifying social interaction layers. PMID:26887527
NASA Astrophysics Data System (ADS)
Yan, Yangqian; Blume, D.
2016-05-01
The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astro physics. This work determines the fourth-order virial coefficient b4 of such a strongly-interacting Fermi gas using a customized ab inito path integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4, our b4 agrees with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly anti-symmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions. We gratefully acknowledge support by the NSF.
Yan, Yangqian; Blume, D
2016-06-10
The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.
The strain path dependence of plastic deformation response of AA5754: Experiment and modeling
NASA Astrophysics Data System (ADS)
Pham, Minh-Son; Hu, Lin; Iadicola, Mark; Creuziger, Adam; Rollett, Anthony D.
2013-12-01
This work presents modeling of experiments on a balanced biaxial (BB) pre-strained AA5754 alloy, subsequently reloaded uniaxially along the rolling direction and transverse direction. The material exhibits a complex plastic deformation response during the change in strain path due to 1) crystallographic texture, 2) aging (interactions between dislocations and Mg atoms) and 3) recovery (annihilation and re-arrangement of dislocations). With a BB prestrain of about 5 %, the aging process is dominant, and the yield strength for uniaxially deformed samples is observed to be higher than the flow stress during BB straining. The strain hardening rate after changing path is, however, lower than that for pre-straining. Higher degrees of pre-straining make the dynamic recovery more active. The dynamic recovery at higher strain levels compensates for the aging effect, and results in: 1) a reduction of the yield strength, and 2) an increase in the hardening rate of re-strained specimens along other directions. The yield strength of deformed samples is further reduced if these samples are left at room temperature to let static recovery occur. The synergistic influences of texture condition, aging and recovery processes on the material response make the modeling of strain path dependence of mechanical behavior of AA5754 challenging. In this study, the influence of crystallographic texture is taken into account by incorporating the latent hardening into a visco-plastic self-consistent model. Different strengths of dislocation glide interaction models in 24 slip systems are used to represent the latent hardening. Moreover, the aging and recovery effects are also included into the latent hardening model by considering strong interactions between dislocations and dissolved atom Mg and the microstructural evolution. These microstructural considerations provide a powerful capability to successfully describe the strain path dependence of plastic deformation behavior of AA5754.
Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.
1985-03-19
Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.
Esteves, A; Patarata, L; Aymerich, T; Garriga, M; Martins, C
2007-03-01
Sources and tracing of Staphylococcus aureus in alheira (garlic sausage) production were evaluated by multifactorial correspondence analysis (MCA) of occurrence data and a random amplified polymorphic DNA (RAPD) on S. aureus isolates. Samples from four production lines, four different production batches, and 14 different sampling sites (including raw material, different contact surfaces, and several stages of alheira manufacturing) were analyzed at four sampling times. From the 896 microbial analyses completed, a collection of 170 S. aureus isolates was obtained. Although analysis of the occurrence data alone was not elucidative enough, MCA and RAPD-PCR were able to assess the sources of contamination and to trace the spread of this microorganism along the production lines. MCA results indicated that the presence of S. aureus in alheira was related to its presence in the intermediate manufacturing stages after heat treatment but before stuffing in the casings. It was also possible to associate a cross-contamination path related to handler procedures. RAPD-PCR typing in accordance to MCA results confirmed the cross-contamination path between the raw material and casings and the role of handlers as an important cross-contamination vehicle.
Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths
NASA Astrophysics Data System (ADS)
Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred
2017-09-01
Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.
Critical Velocities in Open Capillary Flow
NASA Technical Reports Server (NTRS)
Dreyer, Michael; Langbein, Dieter; Rath, Hans J.
1996-01-01
This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.
Nuclear physics in particle therapy: a review
NASA Astrophysics Data System (ADS)
Durante, Marco; Paganetti, Harald
2016-09-01
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
Liu, Xinyu; Wang, Xinhua; Zhang, Yange; Wei, Ke; Zheng, Yingkui; Kang, Xuanwu; Jiang, Haojie; Li, Junfeng; Wang, Wenwu; Wu, Xuebang; Wang, Xianping; Huang, Sen
2018-06-12
Constant-capacitance deep-level transient Fourier spectroscopy is utilized to characterize the interface between a GaN epitaxial layer and a SiN x passivation layer grown by low-pressure chemical vapor deposition (LPCVD). A near-conduction band (NCB) state E LP ( E C - E T = 60 meV) featuring a very small capture cross section of 1.5 × 10 -20 cm -2 was detected at 70 K at the LPCVD-SiN x /GaN interface. A partially crystallized Si 2 N 2 O thin layer was detected at the interface by high-resolution transmission electron microscopy. Based on first-principles calculations of crystallized Si 2 N 2 O/GaN slabs, it was confirmed that the NCB state E LP mainly originates from the strong interactions between the dangling bonds of gallium and its vicinal atoms near the interface. The partially crystallized Si 2 N 2 O interfacial layer might also give rise to the very small capture cross section of the E LP owing to the smaller lattice mismatch between the Si 2 N 2 O and GaN epitaxial layer and a larger mean free path of the electron in the crystallized portion compared with an amorphous interfacial layer.
Nuclear physics in particle therapy: a review.
Durante, Marco; Paganetti, Harald
2016-09-01
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
An Assessment of the Crossed Porro Prism Resonator
1980-08-01
to P n 7 + 4tan-{(4( 1 - 2/(n) 2) In the laser, the plane polarised beam from the polarising beam splitter ERL-OI(2-TM - 2 - will, on emerging from... Beam intensities in resonators 17. Ray path rotation in crossed porro resonator 18. Elliptically polarised light ray - I I•HI,-O ,-0162-IM I...military laser rangefinder and designator applications. This paper reviews the properties of these devices and examines the advantages over normal mirror
Multi-Sensory Features for Personnel Detection at Border Crossings
2011-07-08
challenging problem. Video sensors consume high amounts of power and require a large volume for storage. Hence, it is preferable to use non- imaging sensors...temporal distribution of gait beats [5]. At border crossings, animals such as mules, horses, or donkeys are often known to carry loads. Animal hoof...field, passive ultrasonic, sonar, and both infrared and visi- ble video sensors. Each sensor suite is placed along the path with a spacing of 40 to
ERIC Educational Resources Information Center
Henseler, Jorg; Chin, Wynne W.
2010-01-01
In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…
PathJam: a new service for integrating biological pathway information.
Glez-Peña, Daniel; Reboiro-Jato, Miguel; Domínguez, Rubén; Gómez-López, Gonzalo; Pisano, David G; Fdez-Riverola, Florentino
2010-10-28
Biological pathways are crucial to much of the scientific research today including the study of specific biological processes related with human diseases. PathJam is a new comprehensive and freely accessible web-server application integrating scattered human pathway annotation from several public sources. The tool has been designed for both (i) being intuitive for wet-lab users providing statistical enrichment analysis of pathway annotations and (ii) giving support to the development of new integrative pathway applications. PathJam’s unique features and advantages include interactive graphs linking pathways and genes of interest, downloadable results in fully compatible formats, GSEA compatible output files and a standardized RESTful API.
NASA Astrophysics Data System (ADS)
Chen, Lei; Huang, Tao; Zhang, Yu-Hang; Jiang, Yang; Zheng, Mingyue; Cai, Yu-Dong
2016-07-01
Tumors are formed by the abnormal proliferation of somatic cells with disordered growth regulation under the influence of tumorigenic factors. Recently, the theory of “cancer drivers” connects tumor initiation with several specific mutations in the so-called cancer driver genes. According to the differentiation of four basic levels between tumor and adjacent normal tissues, the cancer drivers can be divided into the following: (1) Methylation level, (2) microRNA level, (3) mutation level, and (4) mRNA level. In this study, a computational method is proposed to identify novel lung adenocarcinoma drivers based on dysfunctional genes on the methylation, microRNA, mutation and mRNA levels. First, a large network was constructed using protein-protein interactions. Next, we searched all of the shortest paths connecting dysfunctional genes on different levels and extracted new candidate genes lying on these paths. Finally, the obtained candidate genes were filtered by a permutation test and an additional strict selection procedure involving a betweenness ratio and an interaction score. Several candidate genes remained, which are deemed to be related to two different levels of cancer. The analyses confirmed our assertions that some have the potential to contribute to the tumorigenesis process on multiple levels.
Ackermann, Mark; Diels, Jean-Claude
2005-06-28
A scatterometer utilizes the dead zone resulting from lockup caused by scatter from a sample located in the optical path of a ring laser at a location where counter-rotating pulses cross. The frequency of one pulse relative to the other is varied across the lockup dead zone.
DOT National Transportation Integrated Search
2015-12-01
Characterization test procedures have been developed to quantify the performance of intersection collision avoidance (ICA) systems based on vehicle-to-vehicle communications. These systems warn the driver of an imminent crossing-path collision at a r...
Wang, Meng; Wu, Kai; Lu, Changhong; Kong, Xiangyin
2015-01-01
Prostate cancer is a type of cancer that occurs in the male prostate, a gland in the male reproductive system. Because prostate cancer cells may spread to other parts of the body and can influence human reproduction, understanding the mechanisms underlying this disease is critical for designing effective treatments. The identification of as many genes and chemicals related to prostate cancer as possible will enhance our understanding of this disease. In this study, we proposed a computational method to identify new candidate genes and chemicals based on currently known genes and chemicals related to prostate cancer by applying a shortest path approach in a hybrid network. The hybrid network was constructed according to information concerning chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions. Many of the obtained genes and chemicals are associated with prostate cancer. PMID:26504486
Kjørmo, Odd; Halvari, Hallgeir
2002-06-01
A model tested among 136 Norwegian Olympic-level athletes yielded two paths related to performance. The first path indicated that self-confidence, modeled as an antecedent of competitive anxiety, is negatively correlated with anxiety. Competitive anxiety in turn is negatively correlated with performance. The second path indicated that group cohesion is positively correlated with group goal-clarity, which in turn is positively correlated with performance. Competitive anxiety mediates the relation between self-confidence and performance, whereas group goal-clarity mediates the relation between group cohesion and performance. Results from multiple regression analyses supported the model in the total sample and among individual sport athletes organized in training groups (n = 100). Among team sport athletes (n = 36), personality and group measures are more strongly intercorrelated than among individual sport athletes, and the relation with performance is more complex for the former group. The interaction of self-confidence and competitive anxiety is related to performance among team sport athletes.
Simplified path integral for supersymmetric quantum mechanics and type-A trace anomalies
NASA Astrophysics Data System (ADS)
Bastianelli, Fiorenzo; Corradini, Olindo; Iacconi, Laura
2018-05-01
Particles in a curved space are classically described by a nonlinear sigma model action that can be quantized through path integrals. The latter require a precise regularization to deal with the derivative interactions arising from the nonlinear kinetic term. Recently, for maximally symmetric spaces, simplified path integrals have been developed: they allow to trade the nonlinear kinetic term with a purely quadratic kinetic term (linear sigma model). This happens at the expense of introducing a suitable effective scalar potential, which contains the information on the curvature of the space. The simplified path integral provides a sensible gain in the efficiency of perturbative calculations. Here we extend the construction to models with N = 1 supersymmetry on the worldline, which are applicable to the first quantized description of a Dirac fermion. As an application we use the simplified worldline path integral to compute the type-A trace anomaly of a Dirac fermion in d dimensions up to d = 16.
Modeling the blockage of Lg waves from 3-D variations in crustal structure
NASA Astrophysics Data System (ADS)
Sanborn, Christopher J.; Cormier, Vernon F.
2018-05-01
Comprised of S waves trapped in Earth's crust, the high frequency (2-10 Hz) Lg wave is important to discriminating earthquakes from explosions by comparing its amplitude and waveform to those of Pg and Pn waves. Lateral variations in crustal structure, including variations in crustal thickness, intrinsic attenuation, and scattering, affect the efficiency of Lg propagation and its consistency as a source discriminant at regional (200-1500 km) distances. To investigate the effects of laterally varying Earth structure on the efficiency of propagation of Lg and Pg, we apply a radiative transport algorithm to model complete, high-frequency (2-4 Hz), regional coda envelopes. The algorithm propagates packets of energy with ray theory through large-scale 3-D structure, and includes stochastic effects of multiple-scattering by small-scale heterogeneities within the large-scale structure. Source-radiation patterns are described by moment tensors. Seismograms of explosion and earthquake sources are synthesized in canonical models to predict effects on waveforms of paths crossing regions of crustal thinning (pull-apart basins and ocean/continent transitions) and thickening (collisional mountain belts), For paths crossing crustal thinning regions, Lg is amplified at receivers within the thinned region but strongly disrupted and attenuated at receivers beyond the thinned region. For paths crossing regions of crustal thickening, Lg amplitude is attenuated at receivers within the thickened region, but experiences little or no reduction in amplitude at receivers beyond the thickened region. The length of the Lg propagation within a thickened region and the complexity of over- and under-thrust crustal layers, can produce localized zones of Lg amplification or attenuation. Regions of intense scattering within laterally homogeneous models of the crust increase Lg attenuation but do not disrupt its coda shape.
Transient Deformation of Stable Continental Lithosphere by the 2011 M9.0 Tohoku-Oki Megatrust
NASA Astrophysics Data System (ADS)
Hong, T. K.; Chi, D.
2015-12-01
The Korean Peninsula was dislocated laterally by 1-6cm after the 11 March 2011 M9.0 Tohoku-Oki megathrust at a distance of ~1300 km. These lateral displacements produced apparent tensional stresses of 1-7 kPa in the crust of the peninsula, perturbing the medium. Temporal variation of seismic velocities is investigated to assess the lithospheric responses to the megatrust. The Green's function over inter-station paths are retrieved from ambient noises recorded at broadband seismic stations that are densely deployed over the peninsula. The ambient noises are bandpass-filtered between 0.03 and 0.08 Hz, and spectral whitening and one-bit normalization are applied. The fundamental-mode Rayleigh waves are retrieved by stacking the cross-correlation functions of 10-days-long ambient noises from 2010 to 2015. The traveltime changes of Rayleigh waves with respect to the reference traveltimes are calculated by comparing the stacked cross-correlation functions. The reference Rayleigh waves are calculated by stacking the cross-correlation functions for 4 to 6 months before the megathrust. The traveltime changes are normalized by the inter-station distances. Abrupt traveltime delays are observed right after the megathrust, which are particularly strong along paths subparallel to the great-circle direction to the megathrust. The peak traveltime delay reaches 0.028 s/km, which corresponds to shear velocity decrease of 8.9 %. The traveltime delays are weak along the paths deviated from the great-circle directions. The observation suggests that the transient tension stress field caused longitudinal lithospheric perturbation with preferential mineral orientation and fluid migration, decreasing the seismic velocities. The traveltime delays were recovered with rates of 0.000025 to 0.000059 s/km per day, completing the recovery in several hundred days after the megathrust.
The Properties of Amyloid-β Fibrils Are Determined by their Path of Formation.
Brännström, Kristoffer; Islam, Tohidul; Gharibyan, Anna L; Iakovleva, Irina; Nilsson, Lina; Lee, Cheng Choo; Sandblad, Linda; Pamrén, Annelie; Olofsson, Anders
2018-06-22
Fibril formation of the amyloid-β peptide (Aβ) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aβ are observed in vivo, but Aβ1-40 and Aβ1-42 are the dominant forms. The fibril architectures of Aβ1-40 and Aβ1-42 differ and Aβ1-42 assemblies are generally considered more pathogenic. We show here that monomeric Aβ1-42 can be cross-templated and incorporated into the ends of Aβ1-40 fibrils, while incorporation of Aβ1-40 monomers into Aβ1-42 fibrils is very poor. We also show that via cross-templating incorporated Aβ monomers acquire the properties of the parental fibrils. The suppressed ability of Aβ1-40 to incorporate into the ends of Aβ1-42 fibrils and the capacity of Aβ1-42 monomers to adopt the properties of Aβ1-40 fibrils may thus represent two mechanisms reducing the total load of fibrils having the intrinsic, and possibly pathogenic, features of Aβ1-42 fibrils in vivo. We also show that the transfer of fibrillar properties is restricted to fibril-end templating and does not apply to cross-nucleation via the recently described path of surface-catalyzed secondary nucleation, which instead generates similar structures to those acquired via de novo primary nucleation in the absence of catalyzing seeds. Taken together these results uncover an intrinsic barrier that prevents Aβ1-40 from adopting the fibrillar properties of Aβ1-42 and exposes that the transfer of properties between amyloid-β fibrils are determined by their path of formation. Copyright © 2018. Published by Elsevier Ltd.
Capture cross sections on unstable nuclei
NASA Astrophysics Data System (ADS)
Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.
2017-09-01
Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.
Cross channel dependency requirements of the multi-path redundant avionics suite
NASA Astrophysics Data System (ADS)
Martin, Fred; Adams, Darryl
Requirements for cross channel dependencies in the multipath redundant avionics suite (MPRAS) architecture are described. MPRAS is a data synchronous avionics architecture for space launch vehicle applications. The MPRAS cross channel data link (CCDL) provides the mechanism, required by data synchronous architectures, to exchange data and maintain synchronization among redundant channels. MPRAS architectural requirements impose a variety of characteristics for cross channel dependencies which make traditional CCDL solutions unacceptable for MPRAS target applications. The MPRAS CCDL requirements have led to a CCDL design which maintains resilience to faults, does not introduce large cross channel bandwidth reductions, and meets the other established MPRAS CCDL requirements. A review of fault-tolerant system principles applicable to CCDL issues is presented as well as a top-level functional description of the MPRAS CCDL design.
Liu, Jun; Khattak, Asad J
2017-12-01
Drivers undertaking risky behaviors at highway-rail grade crossings are often severely injured in collisions with trains. Among these behaviors, gate-violation (referring to driving around or through the gates that were activated and lowered by an approaching train) seems to be one of the most dangerous actions a driver might take at a gated crossing; it may compromise the intended safety improvement made by adding gates at crossings. This study develops a nuanced conceptual framework that uses path analysis to explore the contributing factors to gate-violation behaviors and the correlation between gate-violation behaviors and the crash consequence - the driver injury severity. Further, using geo-spatial modeling techniques, this study explores whether the correlates of gate-violation behaviors and their associations with injury severity are stationary across diverse geographic contexts of the United States. Geo-spatial modeling shows that the correlates of gate-violation and its associations with injury severity vary substantially across the United States. Spatial variations in correlates of gate-violation and injury severity are mapped by estimating geographically weighted regressions; the maps can serve as an instrument for screening safety improvements and help identify regions that need safety improvements. For example, the results show that two-quadrant gates are more likely to have gate-violation crashes than four-quadrant gates in Iowa, Illinois, Wisconsin and Minnesota. These states may need to receive more attentions on the enforcement of inhibiting gate-violation at crossings with two-quadrant gates or have the priority over other states to upgrade these crossings to four-quadrant gates if financially feasible. Copyright © 2017. Published by Elsevier Ltd.
Rogers, Geoffrey
2018-06-01
The Yule-Nielsen effect is an influence on halftone color caused by the diffusion of light within the paper upon which the halftone ink is printed. The diffusion can be characterized by a point spread function. In this paper, a point spread function for paper is derived using the multiple-path model of reflection. This model treats the interaction of light with turbid media as a random walk. Using the multiple-path point spread function, a general expression is derived for the average reflectance of light from a frequency-modulated halftone, in which dot size is constant and the number of dots is varied, with the arrangement of dots random. It is also shown that the line spread function derived from the multiple-path model has the form of a Lorentzian function.
Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.
Yang, Xiaoxi; Forouzan, Omid; Burns, Jennie M; Shevkoplyas, Sergey S
2011-10-07
Traffic of leukocytes in microvascular networks (particularly through arteriolar bifurcations and venular convergences) affects the dynamics of capillary blood flow, initiation of leukocyte adhesion during inflammation, and localization and development of atherosclerotic plaques in vivo. Recently, a growing research effort has been focused on fabricating microvascular networks comprising artificial vessels with more realistic, rounded cross-sections. This paper investigated the impact of the cross-sectional geometry of microchannels on the traffic of leukocytes flowing with human whole blood through a non-symmetrical bifurcation that consisted of a 50 μm mother channel bifurcating into 30 μm and 50 μm daughter branches. Two versions of the same bifurcation comprising microchannels with rectangular and rounded cross-sections were fabricated using conventional multi-layer photolithography to produce rectangular microchannles that were then rounded in situ using a recently developed method of liquid PDMS/air bubble injection. For microchannels with rounded cross-sections, about two-thirds of marginated leukocytes traveling along a path in the top plane of the bifurcation entered the smallest 30 μm daughter branch. This distribution was reversed in microchannels with rectangular cross-sections--the majority of leukocytes traveling along a similar path continued to follow the 50 μm microchannels after the bifurcation. This dramatic difference in the distribution of leukocyte traffic among the branches of the bifurcation can be explained by preferential margination of leukocytes towards the corners of the 50 μm mother microchannels with rectangular cross-sections, and by the additional hindrance to leukocyte entry created by the sharp transition from the 50 μm mother microchannel to the 30 μm daughter branch at the intersection. The results of this study suggest that the trajectories of marginated leukocytes passing through non-symmetrical bifurcations are significantly affected by the cross-sectional geometry of microchannels and emphasize the importance of using microfludic systems with geometrical configurations closely matching physiological configurations when modeling the dynamics of whole blood flow in the microcirculation.
DOAS (differential optical absorption spectroscopy) urban pollution measurements
NASA Astrophysics Data System (ADS)
Stevens, Robert K.; Vossler, T. L.
1991-05-01
During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. Over path 1 (1099 m) and path 2 (1824 m), ozone (03), sulfur dioxide (SO2) nitrogen dioxide (NO2), nitrous acid (HNO2) formaldehyde (HCHO), benzene, toluene, and o-xylene were measured. Nitric oxide (NO) and ammonia (NH3) were monitored over path 3 (143 m). The data quality and data capture depended on the compound being measured and the path over which it was measured. Data quality criteria for each compound were chosen such that the average relative standard deviation would be less than 25%. Data capture ranged from 43% for o-xylene for path 1 to 95% for ozone for path 2. Benzene, toluene, and o-xylene concentrations measured over path 2, which crossed over an interstate highway, were higher than concentrations measured over path 1, implicating emissions from vehicles on the highway as a significant source of these compounds. Federal Reference Method (FRN) instruments were located near the DOAS light receivers and measurements of 03, NO2, and NO were made concurrently with the DOAS. Correlation coefficients greater than 0.85 were obtained between the DOAS and FRM's; however, there was a difference between the mean values obtained by the two methods for 03 and NO. A gas chromatograph for measuring volatile organic compounds was operated next to the FRN's. Correlation coefficients of about 0.66 were obtained between the DOAS and GC measurements of benzene and o- xylene. However, the correlation coefficient between the DOAS and GC measurements of toluene averaged only 0.15 for the two DOAS measurement paths. The lack of correlation and other factors indicate the possibility of a localized source of toluene near the GC. In general, disagreements between the two measurement methods could be caused by atmospheric inhomogeneities or interferences in the DOAS and other methods.
Communication Accommodation between Chinese and Australian Students and Academic Staff.
ERIC Educational Resources Information Center
Gallois, Cynthia; And Others
A study tested paths predicted by Communication Accommodation Theory (CAT) in the context of interactions between 105 Chinese and 283 Anglo-Australian students and 98 academic staff in situations of potential conflict. Videotapes of student-lecturer interactions in which speakers accommodated, over-accommodated, or under-accommodated were rated by…
Rotorcraft Blade-Vortex Interaction Controller
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H. (Inventor)
1995-01-01
Blade-vortex interaction noises, sometimes referred to as 'blade slap', are avoided by increasing the absolute value of inflow to the rotor system of a rotorcraft. This is accomplished by creating a drag force which causes the angle of the tip-path plane of the rotor system to become more negative or more positive.
The Relationship of Principal's Leadership Priorities and Teachers' Classroom Management Skills.
ERIC Educational Resources Information Center
Galligan, Betsy J.
Investigating the interaction of a number of complex variables, this study looked at whether the relationship between principal and teacher behavior involved an interaction among salient situational characteristics and principal leadership, as is proposed by the Path-Goal Theory. Specifically, researchers asked whether the relationship between the…
Spatial Organization of the Core Region of Yeast TFIIIB-DNA Complexes
Persinger, Jim; Sengupta, Sarojini M.; Bartholomew, Blaine
1999-01-01
The interaction of yeast TFIIIB with the region upstream of the SUP4 tRNATyr gene was extensively probed by use of photoreactive phosphodiesters, deoxyuridines, and deoxycytidines that are site specifically incorporated into DNA. The TATA binding protein (TBP) was found to be in close proximity to the minor groove of a TATA-like DNA sequence that starts 30 nucleotides upstream of the start site of transcription. TBP was cross-linked to the phosphate backbone of DNA from bp −30 to −20 in the nontranscribed strand and from bp −28 to −24 in the transcribed strand (+1 denotes the start site of transcription). Most of the major groove of DNA in this region was shown not to be in close proximity to TBP, thus resembling the binding of TBP to the TATA box, with one notable exception. TBP was shown to interact with the major groove of DNA primarily at bp −23 and to a lesser degree at bp −25 in the transcribed strand. The stable interaction of TBP with the major groove at bp −23 was shown to require the B" subunit of TFIIIB. The S4 helix and flanking region of TBP were shown to be proximal to the major groove of DNA by peptide mapping of the region of TBP cross-linked at bp −23. Thus, TBP in the TFIIIB-SUP4 gene promoter region is bound in the same direction as TBP bound to the TATA box with respect to the transcription start site. The B" and TFIIB-related factor (BRF) subunits of TFIIIB are positioned on opposite sides of the TBP-DNA core of the TFIIIB complex, as indicated by correlation of cross-linking data to the crystal structure of the TBP-TATA box complex. Evidence is given for BRF binding near the C-terminal stirrup of TBP, similar to that of TFIIB near the TBP-TATA box complex. The protein clamp formed around the TBP-DNA complex by BRF and B" would help explain the long half-life of the TFIIIB-DNA complex and its resistance to polyanions and high salt. The path of DNA traversing the surface of TBP at the 3′ end of the TATA-like element in the SUP4 tRNA gene is not the same as that of TBP bound to a TATA box element, as shown by the cross-linking of TBP at bp −23. PMID:10373570
Hotspots and superswell beneath Africa inferred from surface wave anisotropic tomography.
NASA Astrophysics Data System (ADS)
Sebai, A.; Stutzmann, E.; Montagner, J.-P.; Sicilia, D.; Beucler, E.
2003-04-01
In order to study the interaction at depth of hotspots with lithosphere and asthenosphere beneath Africa, we have determined an anisotropic tomographic model using Rayleigh and Love waves. We computed phase velocities along 1480 Rayleigh wave and 452 Love wave paths crossing Africa. For each path, fundamental mode and overtone phase velocities are computed in the period range 46-240sec by waveform inversion using the method derived by Beucler at al. (2003). These phase velocities are corrected for the effect of shallow layers and their lateral variations in velocity and anisotropy are then obtained using the method of Montagner (1986). Rayleigh and Love wave phase velocity maps are inverted together with the corresponding errors to obtain the anisotropic 3D S-wave velocity model. In this model, the Afar hotspot corresponds to the strongest negative velocity anomaly. The Tibesti and Darfur hotspots are located close to the Afar zone and the possible connection between the two areas is investigated. At shallow depth, the rift system of West and Central Africa is characterized by a negative velocity anomaly where it is difficult to separate the influence of the Mt Cameroun, Darfur and Tibesti hospots. In the superswell area, the positive anomaly at shallow depth is consistent with the existence of elevated plateaux and high bathymetry suggesting that the superplume is pushing the lithosphere upward. Anisotropy directions are in agreement with the convergence of Africa toward Eurasia with a roughly North-South fast direction.
Understanding parenting concerns in cancer survivors with minor and young-adult children.
Inhestern, Laura; Bultmann, Johanna Christine; Beierlein, Volker; Möller, Birgit; Romer, Georg; Koch, Uwe; Bergelt, Corinna
2016-08-01
Parents with cancer are concerned about the impact of their disease on their children. However, parenting concerns and associated factors in cancer survivors have not previously been analyzed. The purpose of this study is to examine parenting concerns and to test a path model for understanding parenting concerns in cancer survivors. In a cross-sectional study, a total of 1416 parents with cancer (mean age 47.5years, 74% women) having minor or young-adult children were recruited through two cancer registries. Parenting concerns were assessed using the Parenting Concerns Questionnaire. Structural equation modeling (SEM) was used to analyze the associations between social support, parenting confidence, emotional distress, family functioning and parenting concerns. Mothers reported higher total parenting concerns than fathers (p<0.001). We observed strong effects of emotional distress and parenting confidence on parenting concerns. Family dysfunctioning was associated with lower concerns. An indirect association between social support and parenting concerns was identified. Parenting concerns in cancer survivors display the need for interventions and after care programs that focus on affected families with minor and young adult children. The results of the structural path model illustrate the associations between psychological and interactional factors. Supporting parents with cancer in their parenting confidence and strengthen social support and family functioning may not only reduce the long-term burden on the parents themselves but also the burden on the entire family. Copyright © 2016 Elsevier Inc. All rights reserved.
2016-04-14
Swanson AEDC Path 1: Magnetized electron transport impeded across magnetic field lines; transport via electron-particle collisions Path 2*: Electron...T&E (higher pressure, metallic walls) → Impacts stability, performance, plume properties, thruster lifetime Magnetic Field Lines Plasma Plume...Development of T&E Methodologies • Current-Voltage- Magnetic Field (I-V-B) Mapping • Facility Interaction Studies • Background Pressure • Plasma Wall
Soda Lake Well Lithology Data and Geologic Cross-Sections
Faulds, James E.
2013-12-31
Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross‐sections in Adobe Illustrator format.
MODAS Validation in Littoral Areas Using GRASP
2002-09-30
result (4 hr) is guiding new work on calculation efficiency. Figure 4. Near-optimal coordinated passive search plan against a complex transitor ... Transitor tracks form a river of roughly parallel potential paths. The two searcher tracks criss- cross this river like shoe lacings over much of
Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro
NASA Astrophysics Data System (ADS)
Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang
2010-03-01
The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.
Peitzsch, Erich H.; Fagre, Daniel B.; Dundas, Mark
2010-01-01
Snow avalanche paths are key geomorphologic features in Glacier National Park, Montana, and an important component of mountain ecosystems: they are isolated within a larger ecosystem, they are continuously disturbed, and they contain unique physical characteristics (Malanson and Butler, 1984). Avalanches impact subalpine forest structure and function, as well as overall biodiversity (Bebi et al., 2009). Because avalanches are dynamic phenomena, avalanche path geometry and spatial extent depend upon climatic regimes. The USGS/GNP Avalanche Program formally began in 2003 as an avalanche forecasting program for the spring opening of the ever-popular Going-to-the-Sun Road (GTSR), which crosses through 37 identified avalanche paths. Avalanche safety and forecasting is a necessary part of the GTSR spring opening procedures. An avalanche atlas detailing topographic parameters and oblique photographs was completed for the GTSR corridor in response to a request from GNP personnel for planning and resource management. Using ArcMap 9.2 GIS software, polygons were created for every avalanche path affecting the GTSR using aerial imagery, field-based observations, and GPS measurements of sub-meter accuracy. Spatial attributes for each path were derived within the GIS. Resulting products include an avalanche atlas book for operational use, a geoPDF of the atlas, and a Google Earth flyover illustrating each path and associated photographs. The avalanche atlas aids park management in worker safety, infrastructure planning, and natural resource protection by identifying avalanche path patterns and location. The atlas was created for operational and planning purposes and is also used as a foundation for research such as avalanche ecology projects and avalanche path runout modeling.
Soliman, Saied M; Barakat, Assem
2016-12-06
Intermolecular interactions play a vital role in crystal structures. Therefore, we conducted a topological study, using Hirshfeld surfaces and atom in molecules (AIM) analysis, to decompose and analyze, respectively, the different intermolecular interactions in six hydrazone-diacetyl platinum(II) complexes. Using AIM and natural bond orbital (NBO) analyses, we determined the type, nature, and strength of the interactions. All the studied complexes contain C-H⋯O interactions, and the presence of bond critical points along the intermolecular paths underlines their significance. The electron densities (ρ(r)) at the bond critical points (0.0031-0.0156 e/a₀³) fall within the typical range for H-bonding interactions. Also, the positive values of the Laplacian of the electron density (∇²ρ(r)) revealed the depletion of electronic charge on the interatomic path, another characteristic feature of closed-shell interactions. The ratios of the absolute potential energy density to the kinetic energy density (| V (r)|/ G (r)) and ρ(r) are highest for the O2⋯H15-N3 interaction in [Pt(COMe)₂(2-pyCMe=NNH₂)] (1); hence, this interaction has the highest covalent character of all the O⋯H intermolecular interactions. Interestingly, in [Pt(COMe)₂(H₂NN=CMe-CMe=NNH₂)] (3), there are significant N-H⋯Pt interactions. Using the NBO method, the second-order interaction energies, E (2) , of these interactions range from 3.894 to 4.061 kJ/mol. Furthermore, the hybrid Pt orbitals involved in these interactions are comprised of d xy , d xz , and s atomic orbitals.
Shi, Xiulin; Lin, Mingzhu; Liu, Changqin; Xiao, Fangsen; Liu, Yongwen; Huang, Peiying; Zeng, Xin; Yan, Bing; Liu, Suhuan; Li, Xiaoying; Yang, Shuyu; Li, Xuejun; Li, Zhibin
2016-07-29
Evidence on the role of irisin in insulin resistance is limited and controversial, and pathways between them remain unknown. We aimed to examine the independent effects of circulating irisin and different adiposity measurements, as well as their potential interactions, on insulin resistance. We also aimed to explore possible pathways among circulating irisin, adiposity, glucose and insulin levels and insulin resistance. A cross-sectional study of 1,115 community- living obese Chinese adults, with data collection on clinical characteristics, glucose and lipid metabolic parameters and circulating irisin levels. Among the 1,115 subjects, 667 (59.8 %) were identified as insulin-resistance, and showed significantly decreased serum irisin than their controls (log-transformed irisin: 1.19 ± 2.34 v.s. 1.46 ± 2.05 ng/ml, p = 0.042). With adjustment for potential confounders, elevated circulating irisin was significantly associated with reduced risk of insulin resistance, with adjusted odds ratio per standard deviation increase of irisin of 0.871 (0.765-0.991, p = 0.036). As for different adiposity measurements, body fat percentage, but neither BMI nor waist, was significantly associated with increased risk of insulin resistance (OR: 1.152 (1.041-1.275), p = 0.006). No significant interaction effect between serum irisin and adiposity on insulin resistance was found. A one pathway model about the relationship between serum irisin and insulin resistance fits well (χ (2) = 44.09, p < 0.001; CFI-0.994; TLI =0.986; and RMSEA = 0.067), and shows that elevated circulating irisin might improve insulin resistance indirectly through lowering fasting insulin levels (standardized path coefficient = -0.046, p = 0.032). Elevated circulating irisin is associated with lower risk of insulin resistance indirectly through lowering fasting insulin.
Meet Your Future: An Interactive Panel on Industry Careers
NASA Astrophysics Data System (ADS)
Lambert, Steven
There will be a brief presentation showing some statistics about careers in physics followed by a panel discussion. The panelists are: Pavel Kornilovich, HP Inc., Senior Technologist Erik Lucero, Google Santa Barbara, Hardware Engineer Raja Rajasekaran, Toptica-USA, Western Regional Sales & Application Manager Tiffany Santos, Western Digital, Principal Research Engineer Krysta Svore, Microsoft, Principal Researcher & Research Manager Each panelist will introduce themselves and give a brief overview of their career path. We'll then open it up to audience participation. Bring your questions about working in the private sector: daily responsibilities, work environment, how to prepare for this path, making contacts, and anything else you'd like to hear about. We look forward to an interactive and lively session.
Gollob, Stephan; Kocur, Georg Karl; Schumacher, Thomas; Mhamdi, Lassaad; Vogel, Thomas
2017-02-01
In acoustic emission analysis, common source location algorithms assume, independently of the nature of the propagation medium, a straight (shortest) wave path between the source and the sensors. For heterogeneous media such as concrete, the wave travels in complex paths due to the interaction with the dissimilar material contents and with the possible geometrical and material irregularities present in these media. For instance, cracks and large air voids present in concrete influence significantly the way the wave travels, by causing wave path deviations. Neglecting these deviations by assuming straight paths can introduce significant errors to the source location results. In this paper, a novel source localization method called FastWay is proposed. It accounts, contrary to most available shortest path-based methods, for the different effects of material discontinuities (cracks and voids). FastWay, based on a heterogeneous velocity model, uses the fastest rather than the shortest travel paths between the source and each sensor. The method was evaluated both numerically and experimentally and the results from both evaluation tests show that, in general, FastWay was able to locate sources of acoustic emissions more accurately and reliably than the traditional source localization methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann
2011-01-01
During speech communication, visual information may interact with the auditory system at various processing stages. Most noteworthy, recent magnetoencephalography (MEG) data provided first evidence for early and preattentive phonetic/phonological encoding of the visual data stream--prior to its fusion with auditory phonological features [Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. Time course of early audiovisual interactions during speech and non-speech central-auditory processing: An MEG study. Journal of Cognitive Neuroscience, 21, 259-274, 2009]. Using functional magnetic resonance imaging, the present follow-up study aims to further elucidate the topographic distribution of visual-phonological operations and audiovisual (AV) interactions during speech perception. Ambiguous acoustic syllables--disambiguated to /pa/ or /ta/ by the visual channel (speaking face)--served as test materials, concomitant with various control conditions (nonspeech AV signals, visual-only and acoustic-only speech, and nonspeech stimuli). (i) Visual speech yielded an AV-subadditive activation of primary auditory cortex and the anterior superior temporal gyrus (STG), whereas the posterior STG responded both to speech and nonspeech motion. (ii) The inferior frontal and the fusiform gyrus of the right hemisphere showed a strong phonetic/phonological impact (differential effects of visual /pa/ vs. /ta/) upon hemodynamic activation during presentation of speaking faces. Taken together with the previous MEG data, these results point at a dual-pathway model of visual speech information processing: On the one hand, access to the auditory system via the anterior supratemporal “what" path may give rise to direct activation of "auditory objects." On the other hand, visual speech information seems to be represented in a right-hemisphere visual working memory, providing a potential basis for later interactions with auditory information such as the McGurk effect.
Impact of debris dams on hyporheic interaction along a semi-arid stream
NASA Astrophysics Data System (ADS)
Lautz, Laura K.; Siegel, Donald I.; Bauer, Robert L.
2006-01-01
Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi-arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface.Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi-arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS-P, a one-dimensional, surface-water, solute-transport model from which we extracted the storage exchange rate and cross-sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short-term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non-gaining reach, stream water was diverted to the subsurface by debris dams and captured by large-scale near-stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams.
NASA Astrophysics Data System (ADS)
Everaers, Ralf
2012-08-01
We show that the front factor appearing in the shear modulus of a phantom network, Gph=(1-2/f)(ρkBT)/Ns, also controls the ratio of the strand length, Ns, and the number of monomers per Kuhn length of the primitive paths, NphPPKuhn, characterizing the average network conformation. In particular, NphPPKuhn=Ns/(1-2/f) and Gph=(ρkBT)/NphPPKuhn. Neglecting the difference between cross-links and slip-links, these results can be transferred to entangled systems and the interpretation of primitive path analysis data. In agreement with the tube model, the analogy to phantom networks suggest that the rheological entanglement length, Nerheo=(ρkBT)/Ge, should equal NePPKuhn. Assuming binary entanglements with f=4 functional junctions, we expect that Nerheo should be twice as large as the topological entanglement length, Netopo. These results are in good agreement with reported primitive path analysis results for model systems and a wide range of polymeric materials. Implications for tube and slip-link models are discussed.
Tao, Yufeng; Xia, Wei; Wang, Ming; Guo, Dongmei; Hao, Hui
2017-02-06
Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.
Pérez-Garín, Daniel; Molero, Fernando; Bos, Arjan E R
2017-04-01
The goal of this study is to test a model in which personal discrimination predicts internalized stigma, while group discrimination predicts a greater willingness to engage in collective action. Internalized stigma and collective action, in turn, are associated to positive and negative affect. A cross-sectional study with 213 people with mental illness was conducted. The model was tested using path analysis. Although the data supported the model, its fit was not sufficiently good. A respecified model, in which a direct path from collective action to internalized stigma was added, showed a good fit. Personal and group discrimination appear to impact subjective well-being through two different paths: the internalization of stigma and collective action intentions, respectively. These two paths, however, are not completely independent, as collective action predicts a lower internalization of stigma. Thus, collective action appears as an important tool to reduce internalized stigma and improve subjective well-being. Future interventions to reduce the impact of stigma should fight the internalization of stigma and promote collective action are suggested.
Offdiagonal complexity: A computationally quick complexity measure for graphs and networks
NASA Astrophysics Data System (ADS)
Claussen, Jens Christian
2007-02-01
A vast variety of biological, social, and economical networks shows topologies drastically differing from random graphs; yet the quantitative characterization remains unsatisfactory from a conceptual point of view. Motivated from the discussion of small scale-free networks, a biased link distribution entropy is defined, which takes an extremum for a power-law distribution. This approach is extended to the node-node link cross-distribution, whose nondiagonal elements characterize the graph structure beyond link distribution, cluster coefficient and average path length. From here a simple (and computationally cheap) complexity measure can be defined. This offdiagonal complexity (OdC) is proposed as a novel measure to characterize the complexity of an undirected graph, or network. While both for regular lattices and fully connected networks OdC is zero, it takes a moderately low value for a random graph and shows high values for apparently complex structures as scale-free networks and hierarchical trees. The OdC approach is applied to the Helicobacter pylori protein interaction network and randomly rewired surrogates.
Extended wave-packet model to calculate energy-loss moments of protons in matter
NASA Astrophysics Data System (ADS)
Archubi, C. D.; Arista, N. R.
2017-12-01
In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.
Accuracy of WAAS-Enabled GPS-RF Warning Signals When Crossing a Terrestrial Geofence
Grayson, Lindsay M.; Keefe, Robert F.; Tinkham, Wade T.; Eitel, Jan U. H.; Saralecos, Jarred D.; Smith, Alistair M. S.; Zimbelman, Eloise G.
2016-01-01
Geofences are virtual boundaries based on geographic coordinates. When combined with global position system (GPS), or more generally global navigation satellite system (GNSS) transmitters, geofences provide a powerful tool for monitoring the location and movements of objects of interest through proximity alarms. However, the accuracy of geofence alarms in GNSS-radio frequency (GNSS-RF) transmitter receiver systems has not been tested. To achieve these goals, a cart with a GNSS-RF locator was run on a straight path in a balanced factorial experiment with three levels of cart speed, three angles of geofence intersection, three receiver distances from the track, and three replicates. Locator speed, receiver distance and geofence intersection angle all affected geofence alarm accuracy in an analysis of variance (p = 0.013, p = 2.58 × 10−8, and p = 0.0006, respectively), as did all treatment interactions (p < 0.0001). Slower locator speed, acute geofence intersection angle, and closest receiver distance were associated with reduced accuracy of geofence alerts. PMID:27322287
Accuracy of WAAS-Enabled GPS-RF Warning Signals When Crossing a Terrestrial Geofence.
Grayson, Lindsay M; Keefe, Robert F; Tinkham, Wade T; Eitel, Jan U H; Saralecos, Jarred D; Smith, Alistair M S; Zimbelman, Eloise G
2016-06-18
Geofences are virtual boundaries based on geographic coordinates. When combined with global position system (GPS), or more generally global navigation satellite system (GNSS) transmitters, geofences provide a powerful tool for monitoring the location and movements of objects of interest through proximity alarms. However, the accuracy of geofence alarms in GNSS-radio frequency (GNSS-RF) transmitter receiver systems has not been tested. To achieve these goals, a cart with a GNSS-RF locator was run on a straight path in a balanced factorial experiment with three levels of cart speed, three angles of geofence intersection, three receiver distances from the track, and three replicates. Locator speed, receiver distance and geofence intersection angle all affected geofence alarm accuracy in an analysis of variance (p = 0.013, p = 2.58 × 10(-8), and p = 0.0006, respectively), as did all treatment interactions (p < 0.0001). Slower locator speed, acute geofence intersection angle, and closest receiver distance were associated with reduced accuracy of geofence alerts.
NASA Technical Reports Server (NTRS)
Fearn, R. L.; Weston, R. P.
1979-01-01
A subsonic round jet injected from a flat plate into a subsonic crosswind of the same temperature was investigated. Velocity and pressure measurements in planes perpendicular to the path of the jet were made for nominal jet injection angles of 45 deg, 60 deg, 75 deg, 90 deg, and 105 deg and for jet/cross flow velocity ratios of four and eight. The velocity measurements were obtained to infer the properties of the vortex pair associated with a jet in a cross flow. Jet centerline and vortex trajectories were determined and fit with an empirical equation that includes the effects of jet injection angle, jet core length, and jet/cross flow velocity ratios.
Analyzing and interpreting genome data at the network level with ConsensusPathDB.
Herwig, Ralf; Hardt, Christopher; Lienhard, Matthias; Kamburov, Atanas
2016-10-01
ConsensusPathDB consists of a comprehensive collection of human (as well as mouse and yeast) molecular interaction data integrated from 32 different public repositories and a web interface featuring a set of computational methods and visualization tools to explore these data. This protocol describes the use of ConsensusPathDB (http://consensuspathdb.org) with respect to the functional and network-based characterization of biomolecules (genes, proteins and metabolites) that are submitted to the system either as a priority list or together with associated experimental data such as RNA-seq. The tool reports interaction network modules, biochemical pathways and functional information that are significantly enriched by the user's input, applying computational methods for statistical over-representation, enrichment and graph analysis. The results of this protocol can be observed within a few minutes, even with genome-wide data. The resulting network associations can be used to interpret high-throughput data mechanistically, to characterize and prioritize biomarkers, to integrate different omics levels, to design follow-up functional assay experiments and to generate topology for kinetic models at different scales.
Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA
Fagre, Daniel B.; Peitzsch, Erich H.
2010-01-01
Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.
Adolescent Dating Violence Stability and Mutuality: A 4-Year Longitudinal Study.
Fernández-González, Liria; Calvete, Esther; Orue, Izaskun
2017-03-01
This 4-year longitudinal study explored the stability of dating violence (DV) during adolescence and the reciprocal associations between perpetration and victimization over time. Participants were 991 high school students (52.4% females; mean age at baseline = 14.80 years) from Bizkaia (Spain), who completed a measure of DV perpetration and victimization at four measurement points spaced 1 year apart. Findings evidenced stability of teen perpetration and victimization of DV, which appears to increase in late adolescence. Moreover, longitudinal reciprocal influences were demonstrated, but in general, the cross-lagged paths from one's partner's aggression to one's own perpetration and vice versa were lower than the autoregressive paths obtained from stability. The model showed an adequate fit for both females and males, although some paths were significantly higher for the females than for the males. Preventive interventions should consider these findings about stability and longitudinal reciprocal associations of DV during adolescence.
Codeless GPS Applications to Multi-Path: CGAMP
NASA Technical Reports Server (NTRS)
Macdoran, P. F.; Miller, R. B.; Jenkins, D.; Lemmon, J.; Gold, K.; Schreiner, W.; Snyder, G.
1990-01-01
Cordless Global Positioning System (GPS) Applications to Multi-Path (CGAMP) is meeting the challenge of exploiting the L-band signals from the Global Positioning System (GPS) satellites for the measurement of the impulse response of radio transmission channels over space-Earth paths. This approach was originally suggested by E. K. Smith and has been pursued by J. Lemmon, without an affordable implementation being identifiable. In addition to the high cost of a suitable P code correlating GPS receiver, there is also the major impediment of the often announced Department of Defense policy of selective availability/anti-spoof (SA/AS) that clouds reliable access to the wideband (20 MHz) P channel of the GPS signals without cryptographic access. A technique proposed by MacDoran utilizes codeless methods for exploiting the P channel signals implemented by the use of a pair of antennas and cross correlation signal detection.
Method and apparatus for an increased output for a pumped laser using a moving aperture
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPlante, M.J.; Bender, H.A. III; Carbaugh, W.D. Jr.
1993-08-03
An enhanced pumped laser system is described comprising: (a) at least one laser medium for forming a laser beam, said laser beam having a laser beam axis, (b) at least one means for pumping at least a portion of said at least one laser medium, wherein said pumping causes a population inversion in at least a portion of said at least one laser medium, (c) at least one means for defining an allowable laser beam path, wherein said allowable laser beam path is smaller than the cross-section of said at least one laser medium, (d) at least one means formore » sweeping said allowable laser beam path through said population inverted region of said at least one laser medium, (e) at least one first mirror to reflect at least a portion of said laser beam,« less
Recent advances in corneal collagen cross-linking
Sachdev, Gitansha Shreyas; Sachdev, Mahipal
2017-01-01
Corneal collagen cross-linking has become the preferred modality of treatment for corneal ectasia since its inception in late 1990s. Numerous studies have demonstrated the safety and efficacy of the conventional protocol. Our understanding of the cross-linking process is ever evolving, with its wide implications in the form of accelerated and pulsed protocols. Newer advancements in technology include various riboflavin formulations and the ability to deliver higher fluence protocols with customised irradiation patterns. A greater degree of customisation is likely the path forward, which will aim at achieving refractive improvements along with disease stability. The use of cross-linking for myopic correction is another avenue under exploration. Combination of half fluence cross-linking with refractive correction for high errors to prevent post LASIK regression is gaining interest. This review aims to highlight the various advancements in the cross-linking technology and its clinical applications. PMID:28905820
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
Integrated flight path planning system and flight control system for unmanned helicopters.
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).
Iterative blip-summed path integral for quantum dynamics in strongly dissipative environments
NASA Astrophysics Data System (ADS)
Makri, Nancy
2017-04-01
The iterative decomposition of the blip-summed path integral [N. Makri, J. Chem. Phys. 141, 134117 (2014)] is described. The starting point is the expression of the reduced density matrix for a quantum system interacting with a harmonic dissipative bath in the form of a forward-backward path sum, where the effects of the bath enter through the Feynman-Vernon influence functional. The path sum is evaluated iteratively in time by propagating an array that stores blip configurations within the memory interval. Convergence with respect to the number of blips and the memory length yields numerically exact results which are free of statistical error. In situations of strongly dissipative, sluggish baths, the algorithm leads to a dramatic reduction of computational effort in comparison with iterative path integral methods that do not implement the blip decomposition. This gain in efficiency arises from (i) the rapid convergence of the blip series and (ii) circumventing the explicit enumeration of between-blip path segments, whose number grows exponentially with the memory length. Application to an asymmetric dissipative two-level system illustrates the rapid convergence of the algorithm even when the bath memory is extremely long.
Adsorption effect on the formation of conductive path in defective TiO2: ab initio calculations
NASA Astrophysics Data System (ADS)
Li, Lei; Li, Wenshi; Qin, Han; Yang, Jianfeng; Mao, Ling-Feng
2017-10-01
Although the metal/TiO2/metal junctions providing resistive switching properties have attracted lots of attention in recent decades, revealing the atomic-nature of conductive path in TiO2 active layer remains a critical challenge. Here the effects of metal adsorption on defective TiO2(1 1 0) surface are theoretically investigated via ab initio calculations. The dependence of the conductive path on the adsorption of Ti/Zr/Cu/Pt/O atoms above a lattice Ti-ion in (1 1 0) plane and at 〈1 1 0〉 direction of the defective TiO2(0 0 1) surface are compared. It is found that Ti adsorptions in both sites give larger contributions to the presence of conductive path with more stability and larger transport coefficients at Fermi level, whereas the O adsorptions at both sites fail to produce conductive path. Moreover, the adsorptions of Zr/Cu/Pt atoms reduce the existence possibility of conductive path, especially absorbed above the lattice Ti-ion at 〈1 1 0〉 direction. Thus, it is helpful to clarify the interaction of the metal electrode and oxide layer in resistive random access memory.
Appraisals of Negative Events by Preadolescent Children of Divorce.
ERIC Educational Resources Information Center
Sheets, Virgil; And Others
1996-01-01
Investigated children's appraisals of the significance of negative events. Subjects were 256 preadolescent children of divorced parents. Cross-sectional structural equation models found significant paths between negative appraisal and psychological symptoms, over and above the direct effects of the traditional life event measure of stress. (MDM)
Vehicle Guidance and Control Along Circular Trajectories
1992-09-01
the line of sight, while Chism [2] studied a cross track error based control law. Hawkinson [3] extended the results to the multiple input case when...Thesis, Naval Postgraduate School, Monterey, California, June. 2. Chism , S., (1990) "Robust path tracking of autonomous underwater vehicles using sliding
NASA Astrophysics Data System (ADS)
Coe, D. B.; Wopat, M. A.; Lindsay, D.; Stanish, S.; Boone, M.; Beck, B.; Wyman, A.; Bull, J.
2012-12-01
The potential for water-quality impacts in intensively-managed forested watersheds depends partly upon the frequency of overland flow paths linking logging-related hillslope sediment sources to the channel network, as well as the volume of sediment delivered along these flow paths. In response to public concerns over perceived water-quality impacts from clearcut timber harvesting, the Battle Creek Task Force, composed of subject-matter experts from 4 different state agencies, performed a rapid assessment for visible evidence of sediment delivery pathways from multiple logging-associated features in the upper Battle Creek watershed - an area underlain predominantly by Holocene- and Late Pleistocene-aged volcanic rock types, with highly permeable soils, and relatively few streams. Logging-associated features were selected for assessment based on erosion potential and proximity to stream channels. Identified sediment-delivery pathways were then characterized by dominant erosion process and the relative magnitude of sediment delivery (i.e., low, moderate, and high) was estimated. Approximately 26 km of stream buffers adjacent to 55 clearcut harvest units were assessed, and the single detected instance of sediment delivery was found to be of low magnitude and the result of illegal encroachment by logging equipment into a 5-m wide stream-adjacent equipment-limitation zone. The proportion of sampled sites delivering sediment was found to be highest for tractor-stream crossings, followed by road-stream crossings, stream-adjacent road segments, stream-adjacent landings, and clearcut harvest units, respectively. All 5 tractor-stream crossings delivered sediment, but were generally delivering a low magnitude of sediment derived from sheetwash and rilling. Road-stream crossings (n=39) and stream-adjacent road segments (n=24) delivered observable sediment 69 and 67 percent of the time, respectively. The highest magnitudes of sediment delivery from roads were associated with substandard design or maintenance practices (e.g., poor road drainage) and/or poor location (e.g., roads less than 15 m from a stream), but the magnitude of sediment delivery was generally low or unobservable where Best Management Practices (BMPs) had been implemented. Conceptually, water-quality impacts are limited by the low density of streams in the watershed, relatively low hillslope gradients, relatively high permeability of the soils, and the implementation of BMPs. Assessment results suggest that direct water-quality impacts from overland flow paths in these types of watersheds are best minimized by disconnecting flow paths linking roads to streams, and by implementing BMPs.
Polarization and wavelength diversities of Gulf Stream fronts imaged by AIRSAR
NASA Technical Reports Server (NTRS)
Lee, J. S.; Jansen, R. W.; Marmorino, G. O.; Chubb, S. R.
1995-01-01
During the 1990 Gulf Stream Experiment, NASA/JPL AIRSAR imaged the north edge of the Gulf Stream near the coast of Virginia. Simultaneous in-situ measurements of currents, temperatures, salinities, etc. were made for several crossings of the north edge by the R/V Cape Henlopen. Measurements identified two fronts with shearing and converging flows. The polarimetric SAR images from the fronts showed two bright linear features. One of them corresponds to the temperature front, which separated the warm Gulf Stream water to the south from a cool, freshwater filament to the north. The other line, located about 8 km north of the temperature front, is believed to correspond to the velocity front between the filament and the slope water. At these fronts, wave-current interactions produced narrow bands of steep and breaking waves manifesting higher radar returns in polarimetric SAR images. In general, our AIRSAR imagery shows that the signal-to-clutter ratio of radar cross sections for the temperature front is higher than that of the velocity front. In this paper, we study the polarization and wavelength diversities of radar response of these two fronts using the P-, L-, and C-Band Polarimetric SAR data. The north-south flight path of the AIRSAR crossed the temperature front several times and provided valuable data for analysis. Three individual passes are investigated. We found that for the temperature front, the cross-pol (HV) responses are much higher than co-pol responses (VV and HH), and that P-Band HV has the highest signal to clutter ratio. For the velocity front, the ratio is the strongest in P-Band VV, and it is indistinguishable for all polarizations in C-Band. The radar cross sections for all three polarization (HH, HV, and VV) and for all three bands are modelled using an ocean wave model and a composite Bragg scattering model. In our initial investigations, the theoretical model agrees qualitatively with the AIRSAR observations.
Universal Shapes formed by Interacting Cracks
NASA Astrophysics Data System (ADS)
Fender, Melissa; Lechenault, Frederic; Daniels, Karen
2011-03-01
Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated curvature and stress geometries, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths known in the geologic literature as en passant cracks. While the fragmentation of solids via many interacting cracks has seen wide investigation, less attention has been paid to the details of individual crack-crack interactions. We investigate the origins of this widely observed crack pattern using a rectangular elastic plate which is notched on each long side and then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along approximately straight paths until the pass each other, after which they curve and release a lenticular fragment. We find that, for materials with diverse mechanical properties, the shape of this fragment has an aspect ratio of 2:1, with the length scale set by the initial cracks offset s and the time scale set by the ratio of s to the pulling velocity. The cracks have a universal square root shape, which we understand by using a simple geometric model and the crack-crack interaction.
Pseudo paths towards minimum energy states in network dynamics
NASA Astrophysics Data System (ADS)
Hedayatifar, L.; Hassanibesheli, F.; Shirazi, A. H.; Vasheghani Farahani, S.; Jafari, G. R.
2017-10-01
The dynamics of networks forming on Heider balance theory moves towards lower tension states. The condition derived from this theory enforces agents to reevaluate and modify their interactions to achieve equilibrium. These possible changes in network's topology can be considered as various paths that guide systems to minimum energy states. Based on this theory the final destination of a system could reside on a local minimum energy, ;jammed state;, or the global minimum energy, balanced states. The question we would like to address is whether jammed states just appear by chance? Or there exist some pseudo paths that bound a system towards a jammed state. We introduce an indicator to suspect the location of a jammed state based on the Inverse Participation Ratio method (IPR). We provide a margin before a local minimum where the number of possible paths dramatically drastically decreases. This is a condition that proves adequate for ending up on a jammed states.
Interactive Planning for Capability Driven Air & Space Operations
2008-04-30
Time, Routledge and Kegan , London, UK, 1980. [5] A. Bochman, Concerted instant–interval temporal semantics I: Temporal ontologies, Notre Dame Journal...then return true else deleteStatement (X, rj , Y ) end if end for return false Figure 8 shows the search space for instance in Table 2. The green ...nodes are those for which the set of relations cor- responding to the path from the root form a consistent set. A path from root to a green leaf node
Raman scattering in a whispering mode optical waveguide
Kurnit, Norman A.
1982-01-01
A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.
Optical pumping in a whispering-mode optical waveguide
Kurnit, N.A.
1981-08-11
A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.
The influence of tobacco marketing on adolescent smoking intentions via normative beliefs.
Brown, Abraham; Moodie, Crawford
2009-08-01
Using cross-sectional data from three waves of the Youth Tobacco Policy Study, which examines the impact of the UK's Tobacco Advertising and Promotion Act (TAPA) on adolescent smoking behaviour, we examined normative pathways between tobacco marketing awareness and smoking intentions. The sample comprised 1121 adolescents in Wave 2 (pre-ban), 1123 in Wave 3 (mid-ban) and 1159 in Wave 4 (post-ban). Structural equation modelling was used to assess the direct effect of tobacco advertising and promotion on intentions at each wave, and also the indirect effect, mediated through normative influences. Pre-ban, higher levels of awareness of advertising and promotion were independently associated with higher levels of perceived sibling approval which, in turn, was positively related to intentions. Independent paths from perceived prevalence and benefits fully mediated the effects of advertising and promotion awareness on intentions mid- and post-ban. Advertising awareness indirectly affected intentions via the interaction between perceived prevalence and benefits pre-ban, whereas the indirect effect on intentions of advertising and promotion awareness was mediated by the interaction of perceived prevalence and benefits mid-ban. Our findings indicate that policy measures such as the TAPA can significantly reduce adolescents' smoking intentions by signifying smoking to be less normative and socially unacceptable.
NASA Astrophysics Data System (ADS)
Charakopoulos, A. K.; Katsouli, G. A.; Karakasidis, T. E.
2018-04-01
Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.
The Cognitive Neuroscience of the Teacher-Student Interaction
ERIC Educational Resources Information Center
Battro, Antonio M.; Calero, Cecilia I.; Goldin, Andrea P.; Holper, Lisa; Pezzatti, Laura; Shalóm, Diego E.; Sigman, Mariano
2013-01-01
Pedagogy is the science and art of teaching. Each generation needs to explore the history, theory, and practice of the teacher-student interaction. Here we pave the path to develop a science that explores the cognitive and physiological processes involved in the human capacity to communicate knowledge through teaching. We review examples from our…
MOVANAID: An Interactive Aid for Analysis of Movement Capabilities.
ERIC Educational Resources Information Center
Cooper, George E.; And Others
A computer-drive interactive aid for movement analysis, called MOVANAID, has been developed to be of assistance in the performance of certain Army intelligence processing tasks in a tactical environment. It can compute fastest travel times and paths through road networks for military units of various types, as well as fastest times in which…
Calculating Least Risk Paths in 3d Indoor Space
NASA Astrophysics Data System (ADS)
Vanclooster, A.; De Maeyer, Ph.; Fack, V.; Van de Weghe, N.
2013-08-01
Over the last couple of years, research on indoor environments has gained a fresh impetus; more specifically applications that support navigation and wayfinding have become one of the booming industries. Indoor navigation research currently covers the technological aspect of indoor positioning and the modelling of indoor space. The algorithmic development to support navigation has so far been left mostly untouched, as most applications mainly rely on adapting Dijkstra's shortest path algorithm to an indoor network. However, alternative algorithms for outdoor navigation have been proposed adding a more cognitive notion to the calculated paths and as such adhering to the natural wayfinding behaviour (e.g. simplest paths, least risk paths). These algorithms are currently restricted to outdoor applications. The need for indoor cognitive algorithms is highlighted by a more challenged navigation and orientation due to the specific indoor structure (e.g. fragmentation, less visibility, confined areas…). As such, the clarity and easiness of route instructions is of paramount importance when distributing indoor routes. A shortest or fastest path indoors not necessarily aligns with the cognitive mapping of the building. Therefore, the aim of this research is to extend those richer cognitive algorithms to three-dimensional indoor environments. More specifically for this paper, we will focus on the application of the least risk path algorithm of Grum (2005) to an indoor space. The algorithm as proposed by Grum (2005) is duplicated and tested in a complex multi-storey building. The results of several least risk path calculations are compared to the shortest paths in indoor environments in terms of total length, improvement in route description complexity and number of turns. Several scenarios are tested in this comparison: paths covering a single floor, paths crossing several building wings and/or floors. Adjustments to the algorithm are proposed to be more aligned to the specific structure of indoor environments (e.g. no turn restrictions, restricted usage of rooms, vertical movement) and common wayfinding strategies indoors. In a later stage, other cognitive algorithms will be implemented and tested in both an indoor and combined indoor-outdoor setting, in an effort to improve the overall user experience during navigation in indoor environments.
Capture cross sections on unstable nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonchev, A. P.; Escher, J. E.; Scielzo, N.
2017-09-13
Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photonmore » beams. Here, challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.« less
A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts: Third Revision
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2012-01-01
This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. This version of the algorithm accommodates constant radius turns and cruise altitude waypoints with calibrated airspeed, versus Mach, constraints. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint. Wind data at each of these waypoints are also used for the calculation of ground speed and turn radius.
An application of interactive graphics to neutron spectrometry
NASA Technical Reports Server (NTRS)
Binney, S. E.
1972-01-01
The use of interactive graphics is presented as an attractive method for performing multi-parameter data analysis of proton recoil distributions to determine neutron spectra. Interactive graphics allows the user to view results on-line as the program is running and to maintain maximum control over the path along which the calculation will proceed. Other advantages include less time to obtain results and freedom from handling paper tapes and IBM cards.
Micalizzi, Lauren; Ronald, Angelica; Saudino, Kimberly J.
2015-01-01
A genetically informed cross-lagged model was applied to twin data to explore etiological links between autistic-like traits and affective problems in early childhood. The sample comprised 310 same-sex twin pairs (143 monozygotic and 167 dizygotic; 53% male). Autistic-like traits and affective problems were assessed at ages 2 and 3 using parent ratings. Both constructs were related within and across age (r = .30−.53) and showed moderate stability (r = .45−.54). Autistic-like traits and affective problems showed genetic and environmental influences at both ages. Whereas at age 2, the covariance between autistic-like traits and affective problems was entirely due to environmental influences (shared and nonshared), at age 3, genetic factors also contributed to the covariance between constructs. The stability paths, but not the cross-lagged paths, were significant, indicating that there is stability in both autistic-like traits and affective problems but they do not mutually influence each other across age. Stability effects were due to genetic, shared, and nonshared environmental influences. Substantial novel genetic and nonshared environmental influences emerge at age 3 and suggest change in the etiology of these constructs over time. During early childhood, autistic-like traits tend to occur alongside affective problems and partly overlapping genetic and environmental influences explain this association. PMID:26456961
NASA Astrophysics Data System (ADS)
Chella, Federico; Pizzella, Vittorio; Zappasodi, Filippo; Nolte, Guido; Marzetti, Laura
2016-05-01
Brain cognitive functions arise through the coordinated activity of several brain regions, which actually form complex dynamical systems operating at multiple frequencies. These systems often consist of interacting subsystems, whose characterization is of importance for a complete understanding of the brain interaction processes. To address this issue, we present a technique, namely the bispectral pairwise interacting source analysis (biPISA), for analyzing systems of cross-frequency interacting brain sources when multichannel electroencephalographic (EEG) or magnetoencephalographic (MEG) data are available. Specifically, the biPISA makes it possible to identify one or many subsystems of cross-frequency interacting sources by decomposing the antisymmetric components of the cross-bispectra between EEG or MEG signals, based on the assumption that interactions are pairwise. Thanks to the properties of the antisymmetric components of the cross-bispectra, biPISA is also robust to spurious interactions arising from mixing artifacts, i.e., volume conduction or field spread, which always affect EEG or MEG functional connectivity estimates. This method is an extension of the pairwise interacting source analysis (PISA), which was originally introduced for investigating interactions at the same frequency, to the study of cross-frequency interactions. The effectiveness of this approach is demonstrated in simulations for up to three interacting source pairs and for real MEG recordings of spontaneous brain activity. Simulations show that the performances of biPISA in estimating the phase difference between the interacting sources are affected by the increasing level of noise rather than by the number of the interacting subsystems. The analysis of real MEG data reveals an interaction between two pairs of sources of central mu and beta rhythms, localizing in the proximity of the left and right central sulci.
NVIDIA OptiX ray-tracing engine as a new tool for modelling medical imaging systems
NASA Astrophysics Data System (ADS)
Pietrzak, Jakub; Kacperski, Krzysztof; Cieślar, Marek
2015-03-01
The most accurate technique to model the X- and gamma radiation path through a numerically defined object is the Monte Carlo simulation which follows single photons according to their interaction probabilities. A simplified and much faster approach, which just integrates total interaction probabilities along selected paths, is known as ray tracing. Both techniques are used in medical imaging for simulating real imaging systems and as projectors required in iterative tomographic reconstruction algorithms. These approaches are ready for massive parallel implementation e.g. on Graphics Processing Units (GPU), which can greatly accelerate the computation time at a relatively low cost. In this paper we describe the application of the NVIDIA OptiX ray-tracing engine, popular in professional graphics and rendering applications, as a new powerful tool for X- and gamma ray-tracing in medical imaging. It allows the implementation of a variety of physical interactions of rays with pixel-, mesh- or nurbs-based objects, and recording any required quantities, like path integrals, interaction sites, deposited energies, and others. Using the OptiX engine we have implemented a code for rapid Monte Carlo simulations of Single Photon Emission Computed Tomography (SPECT) imaging, as well as the ray-tracing projector, which can be used in reconstruction algorithms. The engine generates efficient, scalable and optimized GPU code, ready to run on multi GPU heterogeneous systems. We have compared the results our simulations with the GATE package. With the OptiX engine the computation time of a Monte Carlo simulation can be reduced from days to minutes.
The temporal dynamics of heading perception in the presence of moving objects
Fajen, Brett R.
2015-01-01
Many forms of locomotion rely on the ability to accurately perceive one's direction of locomotion (i.e., heading) based on optic flow. Although accurate in rigid environments, heading judgments may be biased when independently moving objects are present. The aim of this study was to systematically investigate the conditions in which moving objects influence heading perception, with a focus on the temporal dynamics and the mechanisms underlying this bias. Subjects viewed stimuli simulating linear self-motion in the presence of a moving object and judged their direction of heading. Experiments 1 and 2 revealed that heading perception is biased when the object crosses or almost crosses the observer's future path toward the end of the trial, but not when the object crosses earlier in the trial. Nonetheless, heading perception is not based entirely on the instantaneous optic flow toward the end of the trial. This was demonstrated in Experiment 3 by varying the portion of the earlier part of the trial leading up to the last frame that was presented to subjects. When the stimulus duration was long enough to include the part of the trial before the moving object crossed the observer's path, heading judgments were less biased. The findings suggest that heading perception is affected by the temporal evolution of optic flow. The time course of dorsal medial superior temporal area (MSTd) neuron responses may play a crucial role in perceiving heading in the presence of moving objects, a property not captured by many existing models. PMID:26510765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlickeiser, R.; Lazar, M.; Vukcevic, M., E-mail: rsch@tp4.rub.d, E-mail: mlazar@tp4.ruhr-uni-bochum.d, E-mail: vuk.mira@gmail.co
2010-08-20
The influence of the polarization state and the dissipation range spectral steepening of slab plasma waves on the scattering mean free path of single-charged cosmic-ray particles is investigated in a turbulence model, where the crucial scattering of cosmic-ray particles with small pitch-angle cosines is caused by resonant cyclotron interactions with slab plasma waves. Analytical expressions for the mean free path of protons, antiprotons, negatrons, and positrons are derived for the case of constant frequency-independent magnetic helicity values {sigma} and different values of the dissipation range spectral index k for characteristic interplanetary and interstellar plasma conditions. The positron mean free pathmore » is not affected by the dissipation range spectral index k as these particles can only cyclotron-resonate for rigidity values larger than R {sub 0} = m{sub p}c = 938 MV. Proton and antiproton mean free paths are only slightly affected by the dissipation range spectral index k at small rigidities R < R {sub 0}. The negatron mean free path is severely affected by the dissipation range spectral index k at rigidities smaller than R {sub 0}. At high rigidities R >> R {sub 0}, all particle species approach the same power-law dependence {proportional_to}R {sup 2-s} determined by the inertial range spectral index s = 5/3. The magnetic helicity value {sigma} affects the value of the mean free path. At all rigidities, the ratio of the antiproton to proton mean free paths equals the constant (1 + {sigma})/(1 - {sigma}), which also agrees with the ratio of the negatron to the proton and positron mean free paths at relativistic rigidities. At relativistic rigidities the positron and proton mean free paths agree, as do the negatron and antiproton mean free paths.« less
Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin
2012-01-01
Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-14C]glucose 1-phosphate, [U-14C]sucrose, [U-14C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-14C]sucrose plus unlabelled equimolar glucose 1-phosphate. 14C-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced 14C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-14C]glucose 1-phosphate or adenosine-[U-14C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro 14C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells. PMID:22378944
Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin
2012-05-01
Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-¹⁴C]glucose 1-phosphate, [U-¹⁴C]sucrose, [U-¹⁴C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-¹⁴C]sucrose plus unlabelled equimolar glucose 1-phosphate. C¹⁴-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced ¹⁴C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-¹⁴C]glucose 1-phosphate or adenosine-[U-¹⁴C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C¹⁴C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells.
ERIC Educational Resources Information Center
Dana, Richard H., Ed.
This collection of papers includes: (1) "An Assessment-Intervention Model for Research and Practice with Multicultural Populations" (Richard H. Dana); (2) "An Africentric Perspective for Clinical Research and Practice" (Edward F. Morris); (3) "Myths about the Null Hypothesis and the Path to Reform" (Robert G.…
Substance Use and Health and Safety among Homeless Youth
ERIC Educational Resources Information Center
Rhule-Louie, Dana M.; Bowen, Sarah; Baer, John S.; Peterson, Peggy L.
2008-01-01
This study examines how substance use is associated with the health and safety of homeless youth using cross-sectional, self-report data from 285 homeless adolescents. Path models were used to examine concurrent relationships between youth's substance use and multiple aspects of their health and safety, including measures of psychological…
Novel Robotic Tools for Piping Inspection and Repair, Phase 1
2014-02-13
35 Figure 57 - Accowle ODVS cross section and reflective path ......................................... 36 Figure 58 - Leopard Imaging HD...mounted to iPhone ............................................................................. 39 Figure 63 - Kogeto mounted to Leopard Imaging HD...40 Figure 65 - Leopard Imaging HD camera pipe test (letters) ............................................. 40 Figure 66 - Leopard Imaging HD camera
Further Education Pathways of Canadian University Graduates
ERIC Educational Resources Information Center
Adamuti-Trache, Maria
2008-01-01
Through secondary analysis of the National Graduate Survey data, this study examines determinants of choice of further education pathways by Canadian university graduates in early 2000s. This paper extends the Cross' participation model by introducing a typology of path choices that are related to socio-demographic, post-secondary and situational…
Teaching quantum physics by the sum over paths approach and GeoGebra simulations
NASA Astrophysics Data System (ADS)
Malgieri, M.; Onorato, P.; De Ambrosis, A.
2014-09-01
We present a research-based teaching sequence in introductory quantum physics using the Feynman sum over paths approach. Our reconstruction avoids the historical pathway, and starts by reconsidering optics from the standpoint of the quantum nature of light, analysing both traditional and modern experiments. The core of our educational path lies in the treatment of conceptual and epistemological themes, peculiar of quantum theory, based on evidence from quantum optics, such as the single photon Mach-Zehnder and Zhou-Wang-Mandel experiments. The sequence is supported by a collection of interactive simulations, realized in the open source GeoGebra environment, which we used to assist students in learning the basics of the method, and help them explore the proposed experimental situations as modeled in the sum over paths perspective. We tested our approach in the context of a post-graduate training course for pre-service physics teachers; according to the data we collected, student teachers displayed a greatly improved understanding of conceptual issues, and acquired significant abilities in using the sum over path method for problem solving.
McDaniel, Tyler C; Wilson, Dawn K; Coulon, Sandra M; Hand, Gregory A; Siceloff, E Rebekah
2015-11-05
African Americans have the highest rate of obesity in the United States relative to other ethnic minority groups. Bioecological factors including neighborhood social and physical environmental variables may be important predictors of weight-related measures specifically body mass index (BMI) in African American adults. Baseline data from the Positive Action for Today's Health (PATH) trial were collected from 417 African American adults. Overall a multiple regression model for BMI was significant, showing positive associations with average daily moderate-to-vigorous physical activity (MVPA) (B =-.21, P<.01) and neighborhood social interaction (B =-.13, P<.01). Consistent with previous literature, results show that neighborhood social interaction was associated with healthier BMI, highlighting it as a potential critical factor for future interventions in underserved, African American communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zillich, Robert E., E-mail: robert.zillich@jku.at
2015-11-15
We construct an accurate imaginary time propagator for path integral Monte Carlo simulations for heterogeneous systems consisting of a mixture of atoms and molecules. We combine the pair density approximation, which is highly accurate but feasible only for the isotropic interactions between atoms, with the Takahashi–Imada approximation for general interactions. We present finite temperature simulations results for energy and structure of molecules–helium clusters X{sup 4}He{sub 20} (X=HCCH and LiH) which show a marked improvement over the Trotter approximation which has a 2nd-order time step bias. We show that the 4th-order corrections of the Takahashi–Imada approximation can also be applied perturbativelymore » to a 2nd-order simulation.« less
Neutrino Opacity in High Density Nuclear Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Sergio M. dos; Razeira, Moises; Vasconcellos, Cesar A.Z.
2004-12-02
We estimate the contribution of the nucleon weak magnetism on the neutrino absorption mean free path inside high density nuclear matter. In the mean field approach, three different ingredients are taken into account: (a) a relativistic generalization of the approach developed by Sanjay et al.; (b) the inclusion of the nucleon weak-magnetism (c) and the pseudo-scalar interaction involving the nucleons. Our main result shows that the neutrino absorption mean free path is three times the corresponding result obtained by those authors.
Effect of non-classical current paths in networks of 1-dimensional wires
NASA Astrophysics Data System (ADS)
Echternach, P. M.; Mikhalchuk, A. G.; Bozler, H. M.; Gershenson, M. E.; Bogdanov, A. L.; Nilsson, B.
1996-04-01
At low temperatures, the quantum corrections to the resistance due to weak localization and electron-electron interaction are affected by the shape and topology of samples. We observed these effects in the resistance of 2D percolation networks made from 1D wires and in a series of long 1D wires with regularly spaced side branches. Branches outside the classical current path strongly reduce the quantum corrections to the resistance and these reductions become a measure of the quantum lengths.
Electronic structure and microscopic model of CoNb2O6
NASA Astrophysics Data System (ADS)
Molla, Kaimujjaman; Rahaman, Badiur
2018-05-01
We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.
2005-12-31
are utilized with the eikonal equation of geometrical optics to propagate computationally the optical wavefronts in the near field. As long as the...aero-optical interactions. In terms of the refractive index field n and the optical path length (OPL), the eikonal equation is: |∇ (OPL)| = n , (9) (e.g...ray n(`, t) d` . (10) The OPL integral corresponds to inverting the eikonal equation 9. The physical distance along the beam propagation path for
PathNER: a tool for systematic identification of biological pathway mentions in the literature
2013-01-01
Background Biological pathways are central to many biomedical studies and are frequently discussed in the literature. Several curated databases have been established to collate the knowledge of molecular processes constituting pathways. Yet, there has been little focus on enabling systematic detection of pathway mentions in the literature. Results We developed a tool, named PathNER (Pathway Named Entity Recognition), for the systematic identification of pathway mentions in the literature. PathNER is based on soft dictionary matching and rules, with the dictionary generated from public pathway databases. The rules utilise general pathway-specific keywords, syntactic information and gene/protein mentions. Detection results from both components are merged. On a gold-standard corpus, PathNER achieved an F1-score of 84%. To illustrate its potential, we applied PathNER on a collection of articles related to Alzheimer's disease to identify associated pathways, highlighting cases that can complement an existing manually curated knowledgebase. Conclusions In contrast to existing text-mining efforts that target the automatic reconstruction of pathway details from molecular interactions mentioned in the literature, PathNER focuses on identifying specific named pathway mentions. These mentions can be used to support large-scale curation and pathway-related systems biology applications, as demonstrated in the example of Alzheimer's disease. PathNER is implemented in Java and made freely available online at http://sourceforge.net/projects/pathner/. PMID:24555844
Li, Hanqing; Watson, Ash; Olechwier, Agnieszka; Anaya, Michael; Sorooshyari, Siamak K; Harnett, Dermott P; Lee, Hyung-Kook (Peter); Vielmetter, Jost; Fares, Mario A; Garcia, K Christopher; Özkan, Engin
2017-01-01
An ‘interactome’ screen of all Drosophila cell-surface and secreted proteins containing immunoglobulin superfamily (IgSF) domains discovered a network formed by paralogs of Beaten Path (Beat) and Sidestep (Side), a ligand-receptor pair that is central to motor axon guidance. Here we describe a new method for interactome screening, the Bio-Plex Interactome Assay (BPIA), which allows identification of many interactions in a single sample. Using the BPIA, we ‘deorphanized’ four more members of the Beat-Side network. We confirmed interactions using surface plasmon resonance. The expression patterns of beat and side genes suggest that Beats are neuronal receptors for Sides expressed on peripheral tissues. side-VI is expressed in muscle fibers targeted by the ISNb nerve, as well as at growth cone choice points and synaptic targets for the ISN and TN nerves. beat-V genes, encoding Side-VI receptors, are expressed in ISNb and ISN motor neurons. PMID:28829740
Ecological multiplex interactions determine the role of species for parasite spread amplification
Stella, Massimo; Selakovic, Sanja; Antonioni, Alberto
2018-01-01
Despite their potential interplay, multiple routes of many disease transmissions are often investigated separately. As a unifying framework for understanding parasite spread through interdependent transmission paths, we present the ‘ecomultiplex’ model, where the multiple transmission paths among a diverse community of interacting hosts are represented as a spatially explicit multiplex network. We adopt this framework for designing and testing potential control strategies for Trypanosoma cruzi spread in two empirical host communities. We show that the ecomultiplex model is an efficient and low data-demanding method to identify which species enhances parasite spread and should thus be a target for control strategies. We also find that the interplay between predator-prey and host-parasite interactions leads to a phenomenon of parasite amplification, in which top predators facilitate T. cruzi spread, offering a mechanistic interpretation of previous empirical findings. Our approach can provide novel insights in understanding and controlling parasite spreading in real-world complex systems. PMID:29683427
Strong Constraints on Aerosol-Cloud Interactions from Volcanic Eruptions
NASA Technical Reports Server (NTRS)
Malavelle, Florent F.; Haywood, Jim M.; Jones, Andy; Gettelman, Andrew; Clarisse, Lieven; Bauduin, Sophie; Allan, Richard P.; Karset, Inger Helene H.; Kristjansson, Jon Egill; Oreopoulos, Lazaros;
2017-01-01
Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets - consistent with expectations - but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around minus 0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.
Strong constraints on aerosol-cloud interactions from volcanic eruptions.
Malavelle, Florent F; Haywood, Jim M; Jones, Andy; Gettelman, Andrew; Clarisse, Lieven; Bauduin, Sophie; Allan, Richard P; Karset, Inger Helene H; Kristjánsson, Jón Egill; Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Bellouin, Nicolas; Boucher, Olivier; Grosvenor, Daniel P; Carslaw, Ken S; Dhomse, Sandip; Mann, Graham W; Schmidt, Anja; Coe, Hugh; Hartley, Margaret E; Dalvi, Mohit; Hill, Adrian A; Johnson, Ben T; Johnson, Colin E; Knight, Jeff R; O'Connor, Fiona M; Partridge, Daniel G; Stier, Philip; Myhre, Gunnar; Platnick, Steven; Stephens, Graeme L; Takahashi, Hanii; Thordarson, Thorvaldur
2017-06-22
Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.
A vector-based representation of the chemical bond for the substituted torsion of biphenyl
NASA Astrophysics Data System (ADS)
Li, Jiahui; Huang, Weijie; Xu, Tianlv; Kirk, Steven R.; Jenkins, Samantha
2018-06-01
We use a new interpretation of the chemical bond within QTAIM, the bond-path framework set B = {p, q, r} with associated linkages with lengths H∗, H and the familiar bond-path length is used to describe a torsion θ, 0.0° ≤ θ < 22.0° of para-substituted biphenyl, C12H9-x, x = N(CH3)2, NH2, CH3, CHO, CN, NO2. We include consideration of the H--H bonding interactions and find that the lengths H > H∗ that we explain in terms of the most and least preferred directions of charge density accumulation. We also consider the fractional eigenvector-following path with lengths Hf and Hfθmin.
Observation and modeling of source effects in coda wave interferometry at Pavlof volcano
Haney, M.M.; van, Wijik K.; Preston, L.A.; Aldridge, D.F.
2009-01-01
Sorting out source and path effects for seismic waves at volcanoes is critical for the proper interpretation of underlying volcanic processes. Source or path effects imply that seismic waves interact strongly with the volcanic subsurface, either through partial resonance in a conduit (Garces et al., 2000; Sturton and Neuberg, 2006) or by random scattering in the heterogeneous volcanic edifice (Wegler and Luhr, 2001). As a result, both source and path effects can cause seismic waves to repeatedly sample parts of the volcano, leading to enhanced sensitivity to small changes in material properties at those locations. The challenge for volcano seismologists is to detect and reliably interpret these subtle changes for the purpose of monitoring eruptions. ?? 2009 Society of Exploration Geophysicists.
ERIC Educational Resources Information Center
Sjöman, Madeleine; Granlund, Mats; Almqvist, Lena
2016-01-01
This study examined social interaction as a mediator between externalized behaviour difficulties and children's engagement in preschool. Data from 663 children (340 boys), aged 18-71 months, were collected at 81 Swedish preschool units in six municipalities to test a path model that included child, teacher, and child groups. The results indicated…
Interactions of 2.1 GeV/n He-4, C-12, N-14 and O-16 nuclei in emulsion
NASA Technical Reports Server (NTRS)
Heckman, H. H.; Greiner, D. E.; Lindstrom, P. J.; Shwe, H.
1975-01-01
The interaction mean-free-path lengths for He-4, C-12, N-14 and O-16 nuclei at 2.1 GeV/n have been measured in nuclear emulsion detectors. The angular distributions of Z equals 1 and 2 secondaries from the interactions of C, N and O beams are determined, and the topology of projectile fragmentation of these ions is examined.
Particle-Surface Interaction Model and Method of Determining Particle-Surface Interactions
NASA Technical Reports Server (NTRS)
Hughes, David W. (Inventor)
2012-01-01
A method and model of predicting particle-surface interactions with a surface, such as the surface of a spacecraft. The method includes the steps of: determining a trajectory path of a plurality of moving particles; predicting whether any of the moving particles will intersect a surface; predicting whether any of the particles will be captured by the surface and/or; predicting a reflected trajectory and velocity of particles reflected from the surface.
A comparative study of inelastic scattering models at energy levels ranging from 0.5 keV to 10 keV
NASA Astrophysics Data System (ADS)
Hu, Chia-Yu; Lin, Chun-Hung
2017-03-01
Six models, including a single-scattering model, four hybrid models, and one dielectric function model, were evaluated using Monte Carlo simulations for aluminum and copper at incident beam energies ranging from 0.5 keV to 10 keV. The inelastic mean free path, mean energy loss per unit path length, and backscattering coefficients obtained by these models are compared and discussed to understand the merits of the various models. ANOVA (analysis of variance) statistical models were used to quantify the effects of inelastic cross section and energy loss models on the basis of the simulated results deviation from the experimental data for the inelastic mean free path, the mean energy loss per unit path length, and the backscattering coefficient, as well as their correlations. This work in this study is believed to be the first application of ANOVA models towards evaluating inelastic electron beam scattering models. This approach is an improvement over the traditional approach which involves only visual estimation of the difference between the experimental data and simulated results. The data suggests that the optimization of the effective electron number per atom, binding energy, and cut-off energy of an inelastic model for different materials at different beam energies is more important than the selection of inelastic models for Monte Carlo electron scattering simulation. During the simulations, parameters in the equations should be tuned according to different materials for different beam energies rather than merely employing default parameters for an arbitrary material. Energy loss models and cross-section formulas are not the main factors influencing energy loss. Comparison of the deviation of the simulated results from the experimental data shows a significant correlation (p < 0.05) between the backscattering coefficient and energy loss per unit path length. The inclusion of backscattering electrons generated by both primary and secondary electrons for backscattering coefficient simulation is recommended for elements with high atomic numbers. In hybrid models, introducing the inner shell ionization model improves the accuracy of simulated results.
Pan, Hsueh-Hsing; Shih, Hsiu-Ling; Wu, Li-Fen; Hung, Yu-Chun; Chu, Chi-Ming; Wang, Kwua-Yun
2017-08-17
The Taiwanese government has promoted palliative care consultation services (PCCS) to support terminally ill patients in acute ward settings to receive palliative care since 2005. Such an intervention can enhance the quality of life and dignity of terminally ill patients. However, research focusing on the relationship between the knowledge, attitude and practice of a PCCS using path modelling in nursing staff is limited. Therefore, the aim of this study was to elucidate the effect of path modeling on the knowledge, attitude and practice toward PCCS in Taiwanese nursing staff. This was a cross-sectional, descriptive study design using convenience sampling. Data collected included demographics, knowledge, attitude and practice as measured by the PCCS inventory (KAP-PCCSI). Two hundred and eighty-four nursing staff from a medical center in northern Taiwan participated in the study in 2013. We performed descriptive statistics, regression analysis, and path modeling using SPSS 19.0 and set p < 0.05 as the statistical significance threshold. The results showed that the identical factor significantly associated with knowledge, attitude, and practice toward PCCS among nurses was the frequency of contact with PCCS. In addition, higher level of knowledge toward PCCS was associated with working in haematology and oncology wards, and participation in education related to palliative care. A more positive attitude toward PCCS was associated with working in a haematology and oncology ward, and experience of friends or relatives dying. Higher level of practice toward PCCS was associated with nurses who participated in education related to palliative care. In the path modeling, we found that holders of a master's degree indirectly positive affected practice toward PCCS. Possession of a bachelor degree or above, being single, working within a haematology and oncology ward, and frequency of contact with PCCS positively affected practice toward PCCS. Based on this study, it is proposed that consultation with PCCS has a positive impact on the care of terminally ill patients. Encouragement of staff to undertake further education can improve the practice of ward staff providing palliative care.
Hydrocarbon fluid, ejector refrigeration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, G.J.; Foster, A.R.
1993-08-31
A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream ofmore » the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.« less
Alipour, Mohammad-Reza; Rastegar, Mazyar; Ghaderian, Mehdi; Namayandeh, Seyedeh-Mahdieh; Faraji, Reza; Pezeshkpour, Zohreh
2016-01-01
Background Information from pulse oximeter waves confirms the presence of a pulse and helps obtain waves from tissue when the supplying artery is not readily accessible. Objectives This study determined the predictive value of pulse oximeters for detecting improved arterial pulses after angiography. Patients and Methods This cross-sectional, multi-center study included 467 4-day-old to 12-year-old patients and was conducted from January 2012 to January 2016. Angiographies were performed on 12-year-old or younger children for various medical reasons using venous, arterial, or both types of paths. The posterior malleolar or dorsalis pedis were palpated in punctured lower extremities. In the absence of a pulse, pulse oximetry was performed to identify pulse curves at 1 hour, 6 hours, and 12 hours after each angiography. Results Pulse oximetry displayed the pulses of 319 patients immediately following each angiography. Of these, 262 patients had palpable pulses at 6 hours after angiography (P < 0.0001), while 57 patients had no palpable pulse. Of these 57 patients, 15 had no palpable pulse at 12 hours after angiography (P < 0.0001). The odds of pulse improvement in children 6 hours after catheter angiography were 76% for the arterial path, 90% for the venous path, and 83.2% for both paths. At 12 hours after catheter angiography, these values increased to 91.6% for the arterial path, 100% for the venous path, and 95.9% for both paths. Conclusions The pulse oximeter can display the pulse curve immediately (1 hour) after angiography and indicate pulse improvement at 12 hours maximally following an angiography. In this case, heparin alone may be used instead of thrombolytic agents. PMID:28203338
Portnoy, Sigal; Hersch, Ayelet; Sofer, Tal; Tresser, Sarit
2017-06-01
To test whether paired-play will induce longer path length and ranges of movement of the center of pressure (COP), which reflects on balance performance and stability, compared to solo-play and to test the difference in the path length and ranges of movement of the COP while playing the virtual reality (VR) game with the dominant hand compared to playing it with the nondominant hand. In this cross-sectional study 20 children (age 6.1 ± 0.7 years old) played an arm movement controlled VR game alone and with a peer while each of them stood on a pressure measuring pad to track the path length and ranges of movement of the COP. The total COP path was significantly higher during the paired-play (median 295.8 cm) compared to the COP path during the solo-play (median 189.2 cm). No significant differences were found in the reaction time and the mediolateral and anterior-posterior COP ranges between solo-play and paired-play. No significant differences were found between the parameters extracted during paired-play with the dominant or nondominant hand. Our findings imply that the paired-play is advantageous compared to solo-play since it induces a greater movement for the child, during which, higher COP velocities are reached that may contribute to improving the balance control of the child. Apart from the positive social benefits of paired-play, this positive effect on the COP path length is a noteworthy added value in the clinical setting when treating children with balance disorder.
Active Proton Interrogation for Homeland Security
NASA Astrophysics Data System (ADS)
Greene, Steven; Morris, Christopher; Canavan, Gregory; Chung, Kiwhan; Elson, Jay; Hogan, Gary; Makela, Mark; Mariam, Fesseha; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick
2010-02-01
Energetic proton beams may provide an attractive technology for active interrogation of nuclear threats because: they have large fission cross sections, long mean free paths and high penetration, and proton beams can be manipulated with magnetic optics. We have measured time-dependent cross sections for delayed neutrons and gamma rays using 800 MeV protons from the Los Alamos Neutron Science Center and 4 GeV protons from the Brookhaven Alternating Gradient Synchrotron for a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Results will be presented. )
The Trojan Horse Method in nuclear astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitaleri, C., E-mail: spitaleri@lns.infn.it; Mukhamedzhanov, A. M.; Blokhintsev, L. D.
2011-12-15
The study of energy production and nucleosynthesis in stars requires an increasingly precise knowledge of the nuclear reaction rates at the energies of interest. To overcome the experimental difficulties arising from the small cross sections at those energies and from the presence of the electron screening, the Trojan Horse Method has been introduced. The method provides a valid alternative path to measure unscreened low-energy cross sections of reactions between charged particles, and to retrieve information on the electron screening potential when ultra-low energy direct measurements are available.
Molloy, Kevin; Shehu, Amarda
2013-01-01
Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers.
Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall.
Mast, T D; Hinkelman, L M; Metlay, L A; Orr, M J; Waag, R C
1999-12-01
A finite-difference time-domain model for ultrasonic pulse propagation through soft tissue has been extended to incorporate absorption effects as well as longitudinal-wave propagation in cartilage and bone. This extended model has been used to simulate ultrasonic propagation through anatomically detailed representations of chest wall structure. The inhomogeneous chest wall tissue is represented by two-dimensional maps determined by staining chest wall cross sections to distinguish between tissue types, digitally scanning the stained cross sections, and mapping each pixel of the scanned images to fat, muscle, connective tissue, cartilage, or bone. Each pixel of the tissue map is then assigned a sound speed, density, and absorption value determined from published measurements and assumed to be representative of the local tissue type. Computational results for energy level fluctuations and arrival time fluctuations show qualitative agreement with measurements performed on the same specimens, but show significantly less waveform distortion than measurements. Visualization of simulated tissue-ultrasound interactions in the chest wall shows possible mechanisms for image aberration in echocardiography, including effects associated with reflection and diffraction caused by rib structures. A comparison of distortion effects for varying pulse center frequencies shows that, for soft tissue paths through the chest wall, energy level and waveform distortion increase markedly with rising ultrasonic frequency and that arrival-time fluctuations increase to a lesser degree.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyriakou, I., E-mail: ikyriak@cc.uoi.gr; Šefl, M.; Department of Dosimetry and Application of Ionizing Radiation, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 115 19 Prague
The most recent release of the open source and general purpose Geant4 Monte Carlo simulation toolkit (Geant4 10.2 release) contains a new set of physics models in the Geant4-DNA extension for improving the modelling of low-energy electron transport in liquid water (<10 keV). This includes updated electron cross sections for excitation, ionization, and elastic scattering. In the present work, the impact of these developments to track-structure calculations is examined for providing the first comprehensive comparison against the default physics models of Geant4-DNA. Significant differences with the default models are found for the average path length and penetration distance, as well asmore » for dose-point-kernels for electron energies below a few hundred eV. On the other hand, self-irradiation absorbed fractions for tissue-like volumes and low-energy electron sources (including some Auger emitters) reveal rather small differences (up to 15%) between these new and default Geant4-DNA models. The above findings indicate that the impact of the new developments will mainly affect those applications where the spatial pattern of interactions and energy deposition of very-low energy electrons play an important role such as, for example, the modelling of the chemical and biophysical stage of radiation damage to cells.« less
Total cross sections for ultracold neutrons scattered from gases
Seestrom, Susan Joyce; Adamek, Evan R.; Barlow, Dave; ...
2017-01-30
Here, we have followed up on our previous measurements of upscattering of ultracold neutrons (UCNs) from a series of gases by making measurements of total cross sections on the following gases hydrogen, ethane, methane, isobutene, n-butane, ethylene, water vapor, propane, neopentane, isopropyl alcohol, and 3He. The values of these cross sections are important for estimating the loss rate of trapped neutrons due to residual gas and are relevant to neutron lifetime measurements using UCNs. The effects of the UCN velocity and path-length distributions were accounted for in the analysis using a Monte Carlo transport code. Results are compared to ourmore » previous measurements and with the known absorption cross section for 3He scaled to our UCN energy. We find that the total cross sections for the hydrocarbon gases are reasonably described by a function linear in the number of hydrogen atoms in the molecule.« less
Ab initio calculation of atomic interactions on Al(110): implications for epitaxial growth
NASA Astrophysics Data System (ADS)
Fichthorn, Kristen; Tiwary, Yogesh
2007-03-01
Using first-principles calculations based on density-functional theory, we resolved atomic interactions between adsorbed Al atoms on Al(110). Relevant pair and trio interactions were quantified. We find that pair interactions extend to the third in-channel and second cross-channel neighbor on the anisotropic (110) surface. Beyond these distances, pair interactions are negligible. The nearest-neighbor interaction in the in-channel direction is attractive, but nearest-neighbor cross-channel interaction is repulsive. While nearest-neighbor, cross-channel repulsion does not support the experimental observation of 3D hut formation in Al/Al(110) homoepitaxial growth [1], we find that trio interactions can be significant and attractive and they support cross-channel bonding. The pair and trio interactions have direct and indirect components. We have quantified the electronic and elastic components of the indirect, substrate-mediated interactions. We also probe the influence of these interactions on the energy barriers for adatom hopping. [1] F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Phys. Rev. Lett. 91, 016102 (2003).
van Velsen, Evert F S; Niessen, Wiro J; de Weert, Thomas T; de Monyé, Cécile; van der Lugt, Aad; Meijering, Erik; Stokking, Rik
2007-07-01
Vessel image analysis is crucial when considering therapeutical options for (cardio-) vascular diseases. Our method, VAMPIRE (Vascular Analysis using Multiscale Paths Inferred from Ridges and Edges), involves two parts: a user defines a start- and endpoint upon which a lumen path is automatically defined, and which is used for initialization; the automatic segmentation of the vessel lumen on computed tomographic angiography (CTA) images. Both parts are based on the detection of vessel-like structures by analyzing intensity, edge, and ridge information. A multi-observer evaluation study was performed to compare VAMPIRE with a conventional method on the CTA data of 15 patients with carotid artery stenosis. In addition to the start- and endpoint, the two radiologists required on average 2.5 (SD: 1.9) additional points to define a lumen path when using the conventional method, and 0.1 (SD: 0.3) when using VAMPIRE. The segmentation results were quantitatively evaluated using Similarity Indices, which were slightly lower between VAMPIRE and the two radiologists (respectively 0.90 and 0.88) compared with the Similarity Index between the radiologists (0.92). The evaluation shows that the improved definition of a lumen path requires minimal user interaction, and that using this path as initialization leads to good automatic lumen segmentation results.
ERIC Educational Resources Information Center
Park, Julie J.
2012-01-01
This study examines how multiple facets of students' identities affect their experiences with cross-racial interaction. I consider how the intersection between two identity categories--race and religion--affected six Black students' experiences with cross-racial interaction in a multiracial religious student organization. While the pursuit of…
Mehta, Chirag M; White, Edward T; Litster, James D
2013-01-01
Interactions measurement is a valuable tool to predict equilibrium phase separation of a desired protein in the presence of unwanted macromolecules. In this study, cross-interactions were measured as the osmotic second virial cross-coefficients (B23 ) for the three binary protein systems involving lysozyme, ovalbumin, and α-amylase in salt solutions (sodium chloride and ammonium sulfate). They were correlated with solubility for the binary protein mixtures. The cross-interaction behavior at different salt concentrations was interpreted by either electrostatic or hydrophobic interaction forces. At low salt concentrations, the protein surface charge dominates cross-interaction behavior as a function of pH. With added ovalbumin, the lysozyme solubility decreased linearly at low salt concentration in sodium chloride and increased at high salt concentration in ammonium sulfate. The B23 value was found to be proportional to the slope of the lysozyme solubility against ovalbumin concentration and the correlation was explained by preferential interaction theory. © 2013 American Institute of Chemical Engineers.
Excitation of nucleobases from a computational perspective I: reaction paths.
Giussani, Angelo; Segarra-Martí, Javier; Roca-Sanjuán, Daniel; Merchán, Manuela
2015-01-01
The main intrinsic photochemical events in nucleobases can be described on theoretical grounds within the realm of non-adiabatic computational photochemistry. From a static standpoint, the photochemical reaction path approach (PRPA), through the computation of the respective minimum energy path (MEP), can be regarded as the most suitable strategy in order to explore the electronically excited isolated nucleobases. Unfortunately, the PRPA does not appear widely in the studies reported in the last decade. The main ultrafast decay observed experimentally for the gas-phase excited nucleobases is related to the computed barrierless MEPs from the bright excited state connecting the initial Franck-Condon region and a conical intersection involving the ground state. At the highest level of theory currently available (CASPT2//CASPT2), the lowest excited (1)(ππ*) hypersurface for cytosine has a shallow minimum along the MEP deactivation pathway. In any case, the internal conversion processes in all the natural nucleobases are attained by means of interstate crossings, a self-protection mechanism that prevents the occurrence of photoinduced damage of nucleobases by ultraviolet radiation. Many alternative and secondary paths have been proposed in the literature, which ultimately provide a rich and constructive interplay between experimentally and theoretically oriented research.
MEPSA: minimum energy pathway analysis for energy landscapes.
Marcos-Alcalde, Iñigo; Setoain, Javier; Mendieta-Moreno, Jesús I; Mendieta, Jesús; Gómez-Puertas, Paulino
2015-12-01
From conformational studies to atomistic descriptions of enzymatic reactions, potential and free energy landscapes can be used to describe biomolecular systems in detail. However, extracting the relevant data of complex 3D energy surfaces can sometimes be laborious. In this article, we present MEPSA (Minimum Energy Path Surface Analysis), a cross-platform user friendly tool for the analysis of energy landscapes from a transition state theory perspective. Some of its most relevant features are: identification of all the barriers and minima of the landscape at once, description of maxima edge profiles, detection of the lowest energy path connecting two minima and generation of transition state theory diagrams along these paths. In addition to a built-in plotting system, MEPSA can save most of the generated data into easily parseable text files, allowing more versatile uses of MEPSA's output such as the generation of molecular dynamics restraints from a calculated path. MEPSA is freely available (under GPLv3 license) at: http://bioweb.cbm.uam.es/software/MEPSA/ CONTACT: pagomez@cbm.csic.es. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Zhang, Jiayong; Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang
2016-09-07
A free-end adaptive nudged elastic band (FEA-NEB) method is presented for finding transition states on minimum energy paths, where the energy barrier is very narrow compared to the whole paths. The previously proposed free-end nudged elastic band method may suffer from convergence problems because of the kinks arising on the elastic band if the initial elastic band is far from the minimum energy path and weak springs are adopted. We analyze the origin of the formation of kinks and present an improved free-end algorithm to avoid the convergence problem. Moreover, by coupling the improved free-end algorithm and an adaptive strategy, we develop a FEA-NEB method to accurately locate the transition state with the elastic band cut off repeatedly and the density of images near the transition state increased. Several representative numerical examples, including the dislocation nucleation in a penta-twinned nanowire, the twin boundary migration under a shear stress, and the cross-slip of screw dislocation in face-centered cubic metals, are investigated by using the FEA-NEB method. Numerical results demonstrate both the stability and efficiency of the proposed method.
A rotating bluff-body disc for reduced variability in wind tunnel aerosol studies.
Koehler, Kirsten A; Anthony, T Renee; van Dyke, Michael; Volckens, John
2011-01-01
A rotating bluff-body disc (RBD) was developed to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. The RBD is designed to rotate eight personal aerosol samplers around a circular path in a forward-facing plane aligned with the wind tunnel cross section. Rotation of the RBD allows each sampler to traverse an identical path about the wind tunnel cross section, which reduces the effects of spatial heterogeneity associated with dispersing supermicron aerosol in low-velocity wind tunnels. Samplers are positioned on the face of the RBD via sampling ports, which connect to an air manifold on the back of the disc. Flow through each sampler was controlled with a critical orifice or needle valve, allowing air to be drawn through the manifold with a single pump. A metal tube, attached to this manifold, serves as both the axis of rotation and the flow conduction path (between the samplers and the vacuum source). Validation of the RBD was performed with isokinetic samplers and 37-mm cassettes. For facing-the-wind tests, the rotation of the RBD significantly decreased intra-sampler variability when challenged with particle diameters from 1 to 100 μm. The RBD was then employed to determine the aspiration efficiency of Institute of Occupational Medicine (IOM) personal samplers under a facing-the-wind condition. Operation of IOM samplers on the RBD reduced the between-sampler variability for all particle sizes tested.
Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.
Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo
2017-06-01
Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.
Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study
Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860
Penning ionization and ion fragmentation of formamide HCONH2 by He∗, Ne∗, and Ar∗ in molecular beams
NASA Astrophysics Data System (ADS)
Madison, Tamika A.; Siska, P. E.
2009-10-01
Mass spectra from Penning ionization by metastable atom bombardment (MAB) in the title system at kinetic energies near 1 kcal/mol are reported. The experiments employ a supersonic excited noble gas beam crossing an effusive beam of formamide vapor. Product ions are extracted perpendicular to the plane of the beams, analyzed by a quadrupole mass filter, and counted by a scintillation-type ion counter. Relative to 70 eV electron impact, the He∗ and Ne∗ spectra show more extensive breakage of C-N and C-H bonds despite the smaller available energy, while the Ar∗ spectrum shows only the molecular ion (m /z 45), H atom elimination (44), and the decarbonylation products CO+NH3+ (17). Fragmentation in the latter system has been analyzed using a combination of ab initio calculations and Rice-Ramsperger-Kassel-Marcus theory with tunneling correction; good agreement with the experimental 45/44/17 intensity ratio 100/6.8±0.7/6.2±1.7 is obtained. 15% of m/z 17 and 50% of m /z 44 is attributed to tunneling. The ab initio decarbonylation reaction path yields a hydrogen bonded H2N-HCO+ transition state, which transfers a proton while proceeding downhill to the observed products, while both the path and the energetics support the earlier conclusion that the lowest lying electronically excited state of the ion (2π or 2a″) crosses the ground state early along the reaction path, thereby dominating the dynamics of decarbonylation.
Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.
Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.
Barrozo, Ligia Vizeu; Cabral-Miranda, William; Cesar, Chester Luiz Galvão
2018-01-01
Cities that support cycling for transportation reap many public health benefits. However, the prevalence of this mode of transportation is low in Latin American countries and the association with facilities such as bike paths and train/subway stations have not been clarified. We conducted a cross-sectional analysis of the relationship between bike paths, train/subway stations and cycling for transportation in adults from the city of Sao Paulo. We used data from the Sao Paulo Health Survey (n = 3145). Cycling for transportation was evaluated by a questionnaire and bike paths and train/subway stations were geocoded using the geographic coordinates of the adults’ residential addresses in 1500-m buffers. We used multilevel logistic regression, taking account of clustering by census tract and households. The prevalence of cycling for transportation was low (5.1%), and was more prevalent in males, singles, those active in leisure time, and in people with bicycle ownership in their family. Cycling for transportation was associated with bike paths up to a distance of 500 m from residences (OR (Odds Ratio) = 2.54, 95% CI (Confidence interval) 1.16–5.54) and with the presence of train/subway stations for distances >500 m from residences (OR = 2.07, 95% CI 1.10–3.86). These results are important to support policies to improve cycling for transportation in megacities such as Sao Paulo. PMID:29561755
Florindo, Alex Antonio; Barrozo, Ligia Vizeu; Turrell, Gavin; Barbosa, João Paulo Dos Anjos Souza; Cabral-Miranda, William; Cesar, Chester Luiz Galvão; Goldbaum, Moisés
2018-03-21
Cities that support cycling for transportation reap many public health benefits. However, the prevalence of this mode of transportation is low in Latin American countries and the association with facilities such as bike paths and train/subway stations have not been clarified. We conducted a cross-sectional analysis of the relationship between bike paths, train/subway stations and cycling for transportation in adults from the city of Sao Paulo. We used data from the Sao Paulo Health Survey ( n = 3145). Cycling for transportation was evaluated by a questionnaire and bike paths and train/subway stations were geocoded using the geographic coordinates of the adults' residential addresses in 1500-m buffers. We used multilevel logistic regression, taking account of clustering by census tract and households. The prevalence of cycling for transportation was low (5.1%), and was more prevalent in males, singles, those active in leisure time, and in people with bicycle ownership in their family. Cycling for transportation was associated with bike paths up to a distance of 500 m from residences (OR (Odds Ratio) = 2.54, 95% CI (Confidence interval) 1.16-5.54) and with the presence of train/subway stations for distances >500 m from residences (OR = 2.07, 95% CI 1.10-3.86). These results are important to support policies to improve cycling for transportation in megacities such as Sao Paulo.
Yang, Yi; Song, Haiping; He, Dan; Zhang, Shuai; Dai, Shizhong; Xie, Xiao; Lin, Shixian; Hao, Ziyang; Zheng, Huangtao; Chen, Peng R
2017-10-01
Although protein-protein interactions (PPIs) have crucial roles in virtually all cellular processes, the identification of more transient interactions in their biological context remains challenging. Conventional photo-cross-linking strategies can be used to identify transient interactions, but these approaches often suffer from high background due to the cross-linked bait proteins. To solve the problem, we have developed membrane-permeable releasable photo-cross-linkers that allow for prey-bait separation after protein complex isolation and can be installed in proteins of interest (POIs) as unnatural amino acids. Here we describe the procedures for using two releasable photo-cross-linkers, DiZSeK and DiZHSeC, in both living Escherichia coli and mammalian cells. A cleavage after protein photo-cross-linking (CAPP ) strategy based on the photo-cross-linker DiZSeK is described, in which the prey protein pool is released from a POI after affinity purification. Prey proteins are analyzed using mass spectrometry or 2D gel electrophoresis for global comparison of interactomes from different experimental conditions. An in situ cleavage and mass spectrometry (MS)-label transfer after protein photo-cross-linking (IMAPP) strategy based on the photo-cross-linker DiZHSeC is also described. This strategy can be used for the identification of cross-linking sites to allow detailed characterization of PPI interfaces. The procedures for photo-cross-linker incorporation, photo-cross-linking of interaction partners and affinity purification of cross-linked complexes are similar for the two photo-cross-linkers. The final section of the protocol describes prey-bait separation (for CAPP) and MS-label transfer and identification (for IMAPP). After plasmid construction, the CAPP and IMAPP strategies can be completed within 6 and 7 d, respectively.
A horse’s locomotor signature: COP path determined by the individual limb
Hobbs, Sarah Jane; Back, Willem
2017-01-01
Introduction Ground reaction forces in sound horses with asymmetric hooves show systematic differences in the horizontal braking force and relative timing of break-over. The Center Of Pressure (COP) path quantifies the dynamic load distribution under the hoof in a moving horse. The objective was to test whether anatomical asymmetry, quantified by the difference in dorsal wall angle between the left and right forelimbs, correlates with asymmetry in the COP path between these limbs. In addition, repeatability of the COP path was investigated. Methods A larger group (n = 31) visually sound horses with various degree of dorsal hoof wall asymmetry trotted three times over a pressure mat. COP path was determined in a hoof-bound coordinate system. A relationship between correlations between left and right COP paths and degree of asymmetry was investigated. Results Using a hoof-bound coordinate system made the COP path highly repeatable and unique for each limb. The craniocaudal patterns are usually highly correlated between left and right, but the mediolateral patterns are not. Some patterns were found between COP path and dorsal wall angle but asymmetry in dorsal wall angle did not necessarily result in asymmetry in COP path and the same could be stated for symmetry. Conclusion This method is a highly sensitive method to quantify the net result of the interaction between all of the forces and torques that occur in the limb and its inertial properties. We argue that changes in motor control, muscle force, inertial properties, kinematics and kinetics can potentially be picked up at an early stage using this method and could therefore be used as an early detection method for changes in the musculoskeletal apparatus. PMID:28196073
Purple Unicorns, True Models, and Other Things I've Never Seen
ERIC Educational Resources Information Center
Edwards, Michael C.
2013-01-01
This author has had the privilege of knowing Professor Maydeu-Olivares for almost a decade and although their paths cross only occasionally, such instances were always enjoyable and enlightening. Edwards states that Maydeu-Olivares' target article for this issue, ("Goodness-of-Fit Assessment of Item Response Theory Models") provides…
Longitudinal Study on Reciprocity between Personality Traits and Parenting Stress
ERIC Educational Resources Information Center
Rantanen, Johanna; Tillemann, Kati; Metsäpelto, Riitta-Leena; Kokko, Katja; Pulkkinen, Lea
2015-01-01
Reciprocal associations between the Big Five personality traits and parenting stress--including both parents' feelings of their distress and perception of their incompetence as parents--were studied with 248 participants (49% of which were males). Longitudinal data, collected at ages 33/36, 42 and 50 years, were used. Cross-lagged path analysis…
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators.
Spatial and Temporal Variability of Cross-Basin Acoustic Ray Paths
1990-12-01
have greatly benefited from his guidance and the numerous discussions we have had. VI I. INTRODUCTION A. THE GREENHOUSE EFFECT Investigation of potential...from the earth’s surface. Increased levels of these gases in the atmosphere will thus raise the earth’s temperature, i.e., the " greenhouse effect ". Almost
An Analysis of the Development Path of Business English Teachers in Local Institutions of China
ERIC Educational Resources Information Center
Wang, Xin
2017-01-01
The application-oriented development of local institutions has become a trend. Business English, with its "compound and cross-disciplinary" characteristics and the development of local economy have put forward higher requirements for the development of business English teachers in local institutions. This paper surveys and analyzes the…
Photodetachment process for beam neutralization
Fink, Joel H. [Livermore, CA; Frank, Alan M. [Livermore, CA
1979-02-20
A process for neutralization of accelerated ions employing photo-induced charge detachment. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process.
A Path Model of Smoking Behaviour among Senior High School Students in Taiwan
ERIC Educational Resources Information Center
Chen, Yi-Chun; Huang, Hui-Wen; Cheng, Chung-Ping; Hsieh, Hsin-Chin; Huang, Chih-Ling
2016-01-01
Objective: The purpose of this study was to explore the ways in which social smoking expectations mediate the relationship between adolescent smoking behaviour and the smoking behaviour of family and peers. Design: Descriptive, cross-sectional survey. Setting: Taiwan, Republic of China. Method: The participants were 921 senior high school students…
Teachers' Collective Efficacy, Job Satisfaction, and Job Stress in Cross-Cultural Context
ERIC Educational Resources Information Center
Klassen, Robert M.; Usher, Ellen L.; Bong, Mimi
2010-01-01
This study examines how teachers' collective efficacy (TCE), job stress, and the cultural dimension of collectivism are associated with job satisfaction for 500 teachers from Canada, Korea (South Korea or Republic of Korea), and the United States. Multigroup path analysis revealed that TCE predicted job satisfaction across settings. Job stress was…
Using the Health Belief Model to Predict Bystander Behavior among College Students
ERIC Educational Resources Information Center
Blavos, Alexis A.; Glassman, Tavis; Sheu, Jiunn-Jye; Diehr, Aaron; Deakins, Bethany
2014-01-01
This investigation used the Health Belief Model (HBM) to examine perceived barriers and benefits college students hold concerning medical amnesty. Researchers employed a cross-sectional research design with 369 students completing the survey (97% response rate). A path analysis revealed that college students are more likely to seek help during an…
ERIC Educational Resources Information Center
Hall, Cristin M.; Welsh, Janet A.; Bierman, Karen L.; Nix, Robert
2016-01-01
The association between social withdrawal, school adjustment, and academic functioning in preschool and school entry is well-established. Children who experience social withdrawal in primary grades are at risk for decreased academic performance. The bidirectional relationships among early literacy and social withdrawal in primary grades have not…
Bell's twin rockets non-inertial length enigma resolved by real geometry
NASA Astrophysics Data System (ADS)
Coleman, Brian
A priori uniformity and monotonicity of the 'non-inertial length' expansion of a uniformly co-accelerating medium, uniquely yield an unfamiliar 'hemicoid' real-values metric surface ϒ in R3 . ϒ (τ, l) hosts congruent helicoidally distributed fixed-l 'hemix world-lines' tracing medium increments' clock times τ and crossed by fixed- τ medium helices of parameterized length λ sharing comoving 'non-inertial frames'. Radar intervals and expansion factor ∂λ / ∂l = √ (1 +v2 /c2) conform to requirements established in Coleman, Results in Physics,6, 2016-Minkowski spacetime does not apply to a homogeneously accelerating medium. Co-directional radar paths on ϒ mapped from home frame chart diagonals crossing hyperbolic world-lines, surf 'horizon' increment hemices, whereas counter-directional radar paths tend to 'overlap' horizon medium helices. They also traverse each medium expansion helix at respectively identical angles and geodesic curvatures, independently of differing rocket emission times. Surface ϒ 's real metric is: ds2 = dτ2 + dλ2 +[ 2 tanhτ . (tanhτ - 1 / coshτ) / √ (1 +tanh2 τ) ] dτ . dλ .
Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites
NASA Astrophysics Data System (ADS)
Mat Zali, Nurazila; Yazid, Hafizal; Megat Ahmad, Megat Harun Al Rashid
2018-01-01
Many shielding materials have been designed against the harm of different types of radiation to the human body. Today, polymer-based lightweight composites have been chosen by the radiation protection industry. In the present study, thermoplastic natural rubber (TPNR) composites with different weight percent of boron carbide (B4C) fillers (0% to 30%) were fabricated as neutron shielding through melt blending method. Neutron attenuation properties of TPNR/B4C composites have been investigated. The macroscopic cross section (Σ), half value layer (HVL) and mean free path length (λ) of the composites have been calculated and the transmission curves have been plotted. The obtained results show that Σ, HVL and λ greatly depend on the B4C content. Addition of B4C fillers into TPNR matrix were found to enhance the macroscopic cross section values thus decrease the mean free path length (λ) and half value layer (HVL) of the composites. The transmission curves exhibited that the neutron transmission of the composites decreased with increasing shielding thickness. These results showed that TPNR/B4C composites have high potential for neutron shielding applications.
NASA Technical Reports Server (NTRS)
Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.
2000-01-01
Airborne meteorological radars typically operate at attenuating wavelengths. The path integrated attenuation (PIA) can be estimated using the surface reference technique (SRT). In this method, an initial value is determined for the radar cross section of the earth surface in a rain-free area in relatively close proximity to the rain cloud. During subsequent observations of precipitation any decrease 'in the observed surface cross section from the reference value s assumed to be a result of the two-way attenuation along the propagation path. In this paper we present selected instances of high PIA observed over land by an airborne radar. The observations were taken in Brazil and Florida during TRMM (Tropical Rainfall Measurement Mission) field campaigns. We compared these observations with collocated and nearly simultaneous ground-based radar observations by an S-band radar that is not subject to significant attenuation. In this preliminary evaluation, a systematic difference in the attenuation in the two storms is attributed to a difference in the raindrop size distributions; this is supported by observations of ZDR (differential reflectivity).
Phonon Conduction in Silicon Nanobeam Labyrinths
Park, Woosung; Romano, Giuseppe; Ahn, Ethan C.; ...
2017-07-24
Here we study single-crystalline silicon nanobeams having 470 nm width and 80 nm thickness cross section, where we produce tortuous thermal paths (i.e. labyrinths) by introducing slits to control the impact of the unobstructed “line-of-sight” (LOS) between the heat source and heat sink. The labyrinths range from straight nanobeams with a complete LOS along the entire length to nanobeams in which the LOS ranges from partially to entirely blocked by introducing slits, s = 95, 195, 245, 295 and 395 nm. The measured thermal conductivity of the samples decreases monotonically from ~47 W m -1K -1 for straight beam tomore » ~31 W m -1 K -1 for slit width of 395 nm. A model prediction through a combination of the Boltzmann transport equation and ab initio calculations shows an excellent agreement with the experimental data to within ~8%. The model prediction for the most tortuous path (s = 395 nm) is reduced by ~14% compared to a straight beam of equivalent cross section. This study suggests that LOS is an important metric for characterizing and interpreting phonon propagation in nanostructures.« less
NASA Astrophysics Data System (ADS)
Wolf, C.; Glorius, J.; Reifarth, R.; Weigand, M.
2018-01-01
The determination of neutron capture cross sections of some radioactive isotopes like 85Kr is very important to improve the knowledge about the s process. Based on its own radioactive decay these isotopes can only be used in small samples inside a TOF facility, which is why the neutron flux of these facilities has to be very high. Unfortunately the neutron flux of the FRANZ setup at Goethe University Frankfurt, which will offer the highest neutron flux in astrophysical energy regions (keV region) [1], is still to low to investigate isotopes like 85Kr. Therefore a new setup called NAUTILUS is under development, which will reduce the flight path from 80 cm to a few centimeter to enhance the angular coverage of the sample and therefore increase the neutron flux by a factor of nearly 100. This implies a higher intensity of the γ-flash energy inside the detector and the neutron induced background. Hence the geometry, the scintillator material and the moderator were optimized by GEANT3 simulations.
Olariu, Victor; Manesso, Erica; Peterson, Carsten
2017-06-01
Depicting developmental processes as movements in free energy genetic landscapes is an illustrative tool. However, exploring such landscapes to obtain quantitative or even qualitative predictions is hampered by the lack of free energy functions corresponding to the biochemical Michaelis-Menten or Hill rate equations for the dynamics. Being armed with energy landscapes defined by a network and its interactions would open up the possibility of swiftly identifying cell states and computing optimal paths, including those of cell reprogramming, thereby avoiding exhaustive trial-and-error simulations with rate equations for different parameter sets. It turns out that sigmoidal rate equations do have approximate free energy associations. With this replacement of rate equations, we develop a deterministic method for estimating the free energy surfaces of systems of interacting genes at different noise levels or temperatures. Once such free energy landscape estimates have been established, we adapt a shortest path algorithm to determine optimal routes in the landscapes. We explore the method on three circuits for haematopoiesis and embryonic stem cell development for commitment and reprogramming scenarios and illustrate how the method can be used to determine sequential steps for onsets of external factors, essential for efficient reprogramming.
Scaling production and improving efficiency in DEA: an interactive approach
NASA Astrophysics Data System (ADS)
Rödder, Wilhelm; Kleine, Andreas; Dellnitz, Andreas
2017-10-01
DEA models help a DMU to detect its (in-)efficiency and to improve activities, if necessary. Efficiency is only one economic aim for a decision-maker; however, up- or downsizing might be a second one. Improving efficiency is the main topic in DEA; the long-term strategy towards the right production size should attract our attention as well. Not always the management of a DMU primarily focuses on technical efficiency but rather is interested in gaining scale effects. In this paper, a formula for returns to scale (RTS) is developed, and this formula is even applicable for interior points of technology. Particularly, technical and scale inefficient DMUs need sophisticated instruments to improve their situation. Considering RTS as well as efficiency, in this paper, we give an advice for each DMU to find an economically reliable path from its actual situation to better activities and finally to most productive scale size (mpss), perhaps. For realizing this path, we propose an interactive algorithm, thus harmonizing the scientific findings and the interests of the management. Small numerical examples illustrate such paths for selected DMUs; an empirical application in theatre management completes the contribution.
Zhu, Weimo; Nedovic-Budic, Zorica; Olshansky, Robert B; Marti, Jed; Gao, Yong; Park, Youngsik; McAuley, Edward; Chodzko-Zajko, Wojciech
2013-03-01
To introduce Agent-Based Model (ABM) to physical activity (PA) research and, using data from a study of neighborhood walkability and walking behavior, to illustrate parameters for an ABM of walking behavior. The concept, brief history, mechanism, major components, key steps, advantages, and limitations of ABM were first introduced. For illustration, 10 participants (age in years: mean = 68, SD = 8) were recruited from a walkable and a nonwalkable neighborhood. They wore AMP 331 triaxial accelerometers and GeoLogger GPA tracking devices for 21 days. Data were analyzed using conventional statistics and highresolution geographic image analysis, which focused on a) path length, b) path duration, c) number of GPS reporting points, and d) interaction between distances and time. Average steps by subjects ranged from 1810-10,453 steps per day (mean = 6899, SD = 3823). No statistical difference in walking behavior was found between neighborhoods (Walkable = 6710 ± 2781, Nonwalkable = 7096 ± 4674). Three environment parameters (ie, sidewalk, crosswalk, and path) were identified for future ABM simulation. ABM should provide a better understanding of PA behavior's interaction with the environment, as illustrated using a real-life example. PA field should take advantage of ABM in future research.
Olariu, Victor; Manesso, Erica
2017-01-01
Depicting developmental processes as movements in free energy genetic landscapes is an illustrative tool. However, exploring such landscapes to obtain quantitative or even qualitative predictions is hampered by the lack of free energy functions corresponding to the biochemical Michaelis–Menten or Hill rate equations for the dynamics. Being armed with energy landscapes defined by a network and its interactions would open up the possibility of swiftly identifying cell states and computing optimal paths, including those of cell reprogramming, thereby avoiding exhaustive trial-and-error simulations with rate equations for different parameter sets. It turns out that sigmoidal rate equations do have approximate free energy associations. With this replacement of rate equations, we develop a deterministic method for estimating the free energy surfaces of systems of interacting genes at different noise levels or temperatures. Once such free energy landscape estimates have been established, we adapt a shortest path algorithm to determine optimal routes in the landscapes. We explore the method on three circuits for haematopoiesis and embryonic stem cell development for commitment and reprogramming scenarios and illustrate how the method can be used to determine sequential steps for onsets of external factors, essential for efficient reprogramming. PMID:28680655
The two pathways to being an (un-)popular narcissist.
Küfner, Albrecht C P; Nestler, Steffen; Back, Mitja D
2013-04-01
Narcissism affects social relationships from the very first interactions. The overall positivity of social impressions narcissists evoke is, however, unclear-with previous research reporting positive, negative, or null effects on popularity at short-term acquaintance. Here we postulate a dual-pathway model, which explains the effects of narcissism on (un-)popularity as the result of two opposing behavioral pathways: assertiveness and aggressiveness. In two studies, unacquainted German college students (N = 100; N = 68) met in groups of four to six persons and engaged in group discussions. Afterward, they provided ratings of each other's assertiveness, aggressiveness, and likeability. In Study 2, we additionally videotaped the sessions and assessed participants' actual behavior. Results of both studies confirm our dual-pathway hypothesis: There was a "positive" and a "negative" path from targets' narcissism to being liked or not-dependent upon being seen as assertive or aggressive. Behavioral observations showed that expressive and dominant behaviors mediated the positive path, whereas arrogant and combative behaviors mediated the negative path. Initial (un-)popularity of narcissists at early stages of interpersonal interactions depends on the behavioral pathway that is triggered in the given situational context. © 2012 Wiley Periodicals, Inc.
Smartphone applications: A contemporary resource for dermatopathology.
Hanna, Matthew G; Parwani, Anil V; Pantanowitz, Liron; Punjabi, Vinod; Singh, Rajendra
2015-01-01
Smartphone applications in medicine are becoming increasingly prevalent. Given that most pathologists and pathology trainees today use smartphones, an obvious modality for pathology education is through smartphone applications. "MyDermPath" is a novel smartphone application that was developed as an interactive reference tool for dermatology and dermatopathology, available for iOS and Android. "MyDermPath" was developed using Apple Xcode and Google Android SDK. Dermatology images (static and virtual slides) were annotated and configured into an algorithmic format. Each image comprised educational data (diagnosis, clinical information, histopathology, special stains, differential diagnosis, clinical management, linked PubMed references). Added functionality included personal note taking, pop quiz, and image upload capabilities. A website was created (http://mydermpath.com) to mirror the app. The application was released in August 2011 and updated in November 2013. More than 1,100 reference diagnoses, with over 2,000 images are available via the application and website. The application has been downloaded approximately 14,000 times. The application is available for use on iOS and Android platforms. Smartphone applications have tremendous potential for advancing pathology education. "MyDermPath" represents an interactive reference tool for dermatology and dermatopathologists.
Simplified, inverse, ejector design tool
NASA Technical Reports Server (NTRS)
Dechant, Lawrence J.
1993-01-01
A simple lumped parameter based inverse design tool has been developed which provides flow path geometry and entrainment estimates subject to operational, acoustic, and design constraints. These constraints are manifested through specification of primary mass flow rate or ejector thrust, fully-mixed exit velocity, and static pressure matching. Fundamentally, integral forms of the conservation equations coupled with the specified design constraints are combined to yield an easily invertible linear system in terms of the flow path cross-sectional areas. Entrainment is computed by back substitution. Initial comparison with experimental and analogous one-dimensional methods show good agreement. Thus, this simple inverse design code provides an analytically based, preliminary design tool with direct application to High Speed Civil Transport (HSCT) design studies.
Religious beliefs along the suicidal path in northern Taiwan.
Fang, Chun-Kai; Lu, Hsin-Chin; Liu, Shen-ing; Sun, Yi-Wen
2011-01-01
This study aimed to understand the current inclinations toward depression and compulsion for members of four different religious groups, and to predict religious beliefs along the suicide path through analyzing the lifetime prevalence of suicidal ideation and suicide attempts for members of these religious groups. Participants in this cross-sectional study, which adopted purposive sampling, were members of Christianity, Catholicism, Buddhism, and Taoism in northern Taiwan. In the case of suicide experiences, suicides among people one knows, and tendency toward compulsion and depression, there are statistical differences between the four religions. According to the results, some people with suicidal tendency will attend religious activities; therefore, we predict that religious beliefs play an important role in suicide prevention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.
2016-02-13
A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.
Harris, Charlene; Vazsonyi, Alexander T.; Bolland, John M.
2016-01-01
The current study assessed for bidirectional relationships among supportive parenting (knowledge), negative parenting (permissiveness), and deviance in a sample (N = 5,325) of poor, inner-city African American youth from the Mobile Youth Survey (MYS) over 4 years. Cross-lagged path analysis provided evidence of significant bidirectional paths among parenting processes (knowledge and permissiveness) and deviance over time. Follow-up multigroup tests provided only modest evidence of dissimilar relationships by sex and by developmental periods. The findings improve our understanding of developmental changes between parenting behaviors and deviance during adolescence and extended current research of the bidirectionality of parent and child relationships among inner-city African American youth. PMID:28316460
Pseudorange error analysis for precise indoor positioning system
NASA Astrophysics Data System (ADS)
Pola, Marek; Bezoušek, Pavel
2017-05-01
There is a currently developed system of a transmitter indoor localization intended for fire fighters or members of rescue corps. In this system the transmitter of an ultra-wideband orthogonal frequency-division multiplexing signal position is determined by the time difference of arrival method. The position measurement accuracy highly depends on the directpath signal time of arrival estimation accuracy which is degraded by severe multipath in complicated environments such as buildings. The aim of this article is to assess errors in the direct-path signal time of arrival determination caused by multipath signal propagation and noise. Two methods of the direct-path signal time of arrival estimation are compared here: the cross correlation method and the spectral estimation method.
NASA Astrophysics Data System (ADS)
Dessup, Tommy; Coste, Christophe; Saint Jean, Michel
2017-01-01
We study the path toward equilibrium of pairs of solitary wave envelopes (bubbles) that modulate a regular zigzag pattern in an annular channel. We evidence that bubble pairs are metastable states, which spontaneously evolve toward a stable single bubble. We exhibit the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive, whereas it is repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: It is attractive for NF systems and repulsive for F systems and decreases exponentially with the bubbles distance. Moreover, for NF systems, the bubbles come closer and eventually merge as a single bubble, in a coalescence process. We also evidence a collapse process, in which one bubble shrinks in favor of the other one, overcoming an energetic barrier in phase space. This process is relevant for both NF systems and F systems. In NF systems, the coalescence prevails at low temperature, whereas thermally activated jumps make the collapse prevail at high temperature. In F systems, the path toward equilibrium involves a collapse process regardless of the temperature.
ERIC Educational Resources Information Center
Robinson, Thomas E.
2012-01-01
Interracial interactions between college students are responsible for important learning outcomes, however many colleges and universities have failed to purposefully encourage students to interact across racial backgrounds. As a result of a lack purposefully facilitated cross-racial interactions (CRIs), fewer interracial interactions occur on U.S.…
Interaction of a turbulent vortex with a lifting surface
NASA Technical Reports Server (NTRS)
Lee, D. J.; Roberts, L.
1985-01-01
The impulsive noise due to blade-vortex-interaction is analyzing in the time domain for the extreme case when the blade cuts through the center of the vortex core with the assumptions of no distortion of the vortex path or of the vortex core. An analytical turbulent vortex core model, described in terms of the tip aerodynamic parameters, is used and its effects on the unsteady loading and maximum acoustic pressure during the interaction are determined.
Statistical mechanics of neocortical interactions. Derivation of short-term-memory capacity
NASA Astrophysics Data System (ADS)
Ingber, Lester
1984-06-01
A theory developed by the author to describe macroscopic neocortical interactions demonstrates that empirical values of chemical and electrical parameters of synaptic interactions establish several minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima, their time scales of hysteresis and probable reverberations, and their nearest-neighbor columnar interactions are all consistent with well-established empirical rules of human short-term memory. Thus, aspects of conscious experience are derived from neuronal firing patterns, using modern methods of nonlinear nonequilibrium statistical mechanics to develop realistic explicit synaptic interactions.