Self-Consistent Field Lattice Model for Polymer Networks.
Tito, Nicholas B; Storm, Cornelis; Ellenbroek, Wouter G
2017-12-26
A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.
Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks.
Wu, Jinrong; Cai, Li-Heng; Weitz, David A
2017-10-01
Self-healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to "dry" elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent crosslinks are nonpolar motifs. These two types of bonds are intrinsically immiscible without cosolvents. Here, we design and fabricate a hybrid polymer network by crosslinking randomly branched polymers carrying motifs that can form both reversible hydrogen bonds and permanent covalent crosslinks. The randomly branched polymer links such two types of bonds and forces them to mix on the molecular level without cosolvents. This enables a hybrid "dry" elastomer that is very tough with fracture energy 13500 Jm -2 comparable to that of natural rubber. Moreover, the elastomer can self-heal at room temperature with a recovered tensile strength 4 MPa, which is 30% of its original value, yet comparable to the pristine strength of existing self-healing polymers. The concept of forcing covalent and reversible bonds to mix at molecular scale to create a homogenous network is quite general and should enable development of tough, self-healing polymers of practical usage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shao, Li; Sun, Jifu; Hua, Bin; Huang, Feihe
2018-05-08
Here a novel fluorescent supramolecular cross-linked polymer network with aggregation induced enhanced emission (AIEE) properties was constructed via pillar[5]arene-based host-guest recognition. Furthermore, the supramolecular polymer network can be used for explosive detection in both solution and thin films.
Liang, Ting; van Kuringen, Huub P C; Mulder, Dirk J; Tan, Shuai; Wu, Yong; Borneman, Zandrie; Nijmeijer, Kitty; Schenning, Albertus P H J
2017-10-11
In this work, the decisive role of rigidity, orientation, and order in the smectic liquid crystalline network on the anisotropic proton and adsorbent properties is reported. The rigidity in the hydrogen-bonded polymer network has been altered by changing the cross-link density, the order by using different mesophases (smectic, nematic, and isotropic phases), whereas the orientation of the mesogens was controlled by alignment layers. Adding more cross-linkers improved the integrity of the polymer films. For the proton conduction, an optimum was found in the amount of cross-linker and the smectic organization results in the highest anhydrous proton conduction. The polymer films show anisotropic proton conductivity with a 54 times higher conductivity in the direction perpendicular to the molecular director. After a base treatment of the smectic liquid crystalline network, a nanoporous polymer film is obtained that also shows anisotropic adsorption of dye molecules and again straight smectic pores are favored over disordered pores in nematic and isotropic networks. The highly cross-linked films show size-selective adsorption of dyes. Low cross-linked materials do not show this difference due to swelling, which decreases the order and creates openings in the two-dimensional polymer layers. The latter is, however, beneficial for fast adsorption kinetics.
Star polymers as unit cells for coarse-graining cross-linked networks
NASA Astrophysics Data System (ADS)
Molotilin, Taras Y.; Maduar, Salim R.; Vinogradova, Olga I.
2018-03-01
Reducing the complexity of cross-linked polymer networks by preserving their main macroscale properties is key to understanding them, and a crucial issue is to relate individual properties of the polymer constituents to those of the reduced network. Here we study polymer networks in a good solvent, by considering star polymers as their unit elements, and first quantify the interaction between their centers of masses. We then reduce the complexity of a network by replacing sets of its bridged star polymers by equivalent effective soft particles with dense cores. Our coarse graining allows us to approximate complex polymer networks by much simpler ones, keeping their relevant mechanical properties, as illustrated in computer experiments.
Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu
2014-10-08
Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers.
Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu
2014-01-01
Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers. PMID:25296246
Metal-coordination: Using one of nature’s tricks to control soft material mechanics
Holten-Andersen, Niels; Jaishankar, Aditya; Harrington, Matthew; Fullenkamp, Dominic E.; DiMarco, Genevieve; He, Lihong; McKinley, Gareth H.; Messersmith, Phillip B.; Lee, Ka Yee C.
2015-01-01
Growing evidence supports a critical role of dynamic metal-coordination crosslinking in soft biological material properties such as self-healing and underwater adhesion1. Using bio-inspired metal-coordinating polymers, initial efforts to mimic these properties have shown promise2. Here we demonstrate how bio-inspired aqueous polymer network mechanics can be easily controlled via metal-coordination crosslink dynamics; metal ion-based crosslink stability control allows aqueous polymer network relaxation times to be finely tuned over several orders of magnitude. In addition to further biological material insights, our demonstration of this compositional scaling mechanism should provide inspiration for new polymer material property-control designs. PMID:26413297
USDA-ARS?s Scientific Manuscript database
Novel biobased crosslinked polymer networks were prepared from vegetable oil with 2,5-furan diacrylate as a difunctional stiffener through UV photopolymerization, and the mechanical properties of the resulting films were evaluated. The vegetable oil raw materials used were acrylated epoxidized soybe...
Biodegradable Photo-Crosslinked Thin Polymer Networks Based on Vegetable Oil Hydroxyfatty Acids
USDA-ARS?s Scientific Manuscript database
Novel crosslinked thin polymer networks based on vegetable oil hydroxyfatty acids (HFAs) were prepared by UV photopolymerization and their mechanical properties were evaluated. Two raw materials, castor oil and 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) were used as sources of mono- and di-HFAs, r...
Zhang, Caixia; Liu, Yuhong; Liu, Zhifeng; Zhang, Hongyu; Cheng, Qiang; Yang, Congbin
2017-03-07
Poly(vinylphosphonic acid) (PVPA) cross-linked networks on Ti 6 Al 4 V show superlubricity behavior when sliding against polytetrafluoroethylene in water-based lubricants. The superlubricity can occur but only with the existence of salt ions in the polymer cross-linked networks. This is different from the phenomenon in most polymer brushes. An investigation into the mechanism revealed that cations and anions in the lubricants worked together to yield the superlubricity even under harsh conditions. It is proposed that the preferential interactions of cations with PVPA molecules rather than water molecules are the main reason for the superlubricity in water-based lubricants. The interaction of anions with water molecules regulates the properties of the tribological interfaces, which influences the magnitude of the friction coefficient. Owing to the novel cross-linked networks and the interactions between cations and polymer molecules, their superlubricity can be maintained even at a high salt ion concentration of 5 M. These excellent properties make PVPA-modified Ti 6 Al 4 V a potential candidate for application in artificial implants.
Modeling semiflexible polymer networks
NASA Astrophysics Data System (ADS)
Broedersz, C. P.; MacKintosh, F. C.
2014-07-01
This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have been motivated by their importance in biology. Indeed, cross-linked networks of semiflexible polymers form a major structural component of tissue and living cells. Reconstituted networks of such biopolymers have emerged as a new class of biological soft matter systems with remarkable material properties, which have spurred many of the theoretical developments discussed here. Starting from the mechanics and dynamics of individual semiflexible polymers, the physics of semiflexible bundles, entangled solutions, and disordered cross-linked networks are reviewed. Finally, recent developments on marginally stable fibrous networks, which exhibit critical behavior similar to other marginal systems such as jammed soft matter, are discussed.
The Formation Mechanism of Hydrogels.
Lu, Liyan; Yuan, Shiliang; Wang, Jing; Shen, Yun; Deng, Shuwen; Xie, Luyang; Yang, Qixiang
2017-06-12
Hydrogels are degradable polymeric networks, in which cross-links play a vital role in structure formation and degradation. Cross-linking is a stabilization process in polymer chemistry that leads to the multi-dimensional extension of polymeric chains, resulting in network structures. By cross-linking, hydrogels are formed into stable structures that differ from their raw materials. Generally, hydrogels can be prepared from either synthetic or natural polymers. Based on the types of cross-link junctions, hydrogels can be categorized into two groups: the chemically cross-linked and the physically cross-linked. Chemically cross-linked gels have permanent junctions, in which covalent bonds are present between different polymer chains, thus leading to excellent mechanical strength. Although chemical cross-linking is a highly resourceful method for the formation of hydrogels, the cross-linkers used in hydrogel preparation should be extracted from the hydrogels before use, due to their reported toxicity, while, in physically cross-linked gels, dissolution is prevented by physical interactions, such as ionic interactions, hydrogen bonds or hydrophobic interactions. Physically cross-linked methods for the preparation of hydrogels are the alternate solution for cross-linker toxicity. Both methods will be discussed in this essay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
1987-04-01
polymers such as poly[ diallyl dimethyl ammonium chloride] , poly [vinylbenzyl trimethyl ammonium chloride], poly[styrene sulfonic acid , sodium salt] and...poly[acrylic acid ], which would ordinarily dissolve from the electrode surface in aqueous solution unless crosslinked into a network, and several...Irradiation on a Water-Soluble Polymer: DDAC 8 E. Electrochemistry of DDAC Networks on Platinum and Graphite 10 F. Poly [acrylic acid ] Films on Graphite
Advancing reversible shape memory by tuning the polymer network architecture
Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...
2016-02-02
Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K –1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less
Reactive polymer fused deposition manufacturing
Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander
2017-05-16
Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.
Welsch, Nicole; Lyon, L Andrew
2017-01-01
We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties.
Lyon, L. Andrew
2017-01-01
We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties. PMID:28719648
Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo
2015-10-21
We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli.
Effect of pH on chitosan hydrogel polymer network structure.
Xu, Hongcheng; Matysiak, Silvina
2017-06-29
Chitosan is a molecule that can form water-filled 3D polymer networks with a wide range of applications. A new coarse-grained model for chitosan hydrogel was developed to explore its pH-dependent self-assembly behavior and mechanical properties. Our results indicate that the underlying polymer physical crosslinking pattern induced by solution pH has a significant effect on hydrogel elastic moduli. With this model, we obtain pH-dependent structural and mechanical property changes in agreement with experimental observations, and provide a molecular mechanism behind the changes in polymer crosslinking patterns.
Bio-inspired network optimization in soft materials — Insights from the plant cell wall
NASA Astrophysics Data System (ADS)
Vincent, R. R.; Cucheval, A.; Hemar, Y.; Williams, M. A. K.
2009-01-01
The dynamic-mechanical responses of ionotropic gels made from the biopolymer pectin have recently been investigated by microrheological experiments and found to exhibit behaviour indicative of semi-flexible polymer networks. In this work we investigate the gelling behaviour of pectin systems in which an enzyme (pectinmethylesterase, PME) is used to liberate ion-binding sites on initially inert polymers, while in the presence of ions. This is in contrast to the previous work, where it was the release of ions (rather than ion-binding groups) that was controlled and the polymers had pre-existing cross-linkable moieties. In stark contrast to the semi-flexible network paradigm of biological gels and the previous work on pectin, the gels studied herein exhibit the properties of chemically cross-linked networks of flexible polymers.
Assessing the Strength Enhancement of Heterogeneous Networks of Miscible Polymer Blends
NASA Astrophysics Data System (ADS)
Giller, Carl; Roland, Mike
2013-03-01
At the typical crosslink densities of elastomers, the failure properties vary inversely with mechanical stiffness, so that compounding entails a compromise between stiffness and strength. Our approach to circumvent this conventional limitation is by forming networks of two polymers that: (i) are thermodynamically miscible, whereby the chemical composition is uniform on the segmental level; and (ii) have markedly different reactivities for network formation. The resulting elastomer consists of one highly crosslinked component and one that is lightly or uncrosslinked. This disparity in crosslinking causes their respective contributions to the network mechanical response to differ diametrically. Earlier results showed some success with this approach for thermally crosslinked blends of 1,2-polybutadiene (PVE) and polyisoprene (PI), as well as ethylene-propylene copolymer (EPM) and ethylene-propylene-diene random terpolymer (EPDM), taking advantage of their differing reactivities to sulfur. In this work we demonstrate the miscibility of polyisobutylene (PIB) with butyl rubber (BR) (a copolymer of PIB and polyisoprene) and show that networks in which only the BR is crosslinked possess greater tensile strengths than neat BR over the same range of moduli. Office of Naval Research
Viscoplastic fracture transition of a biopolymer gel.
Frieberg, Bradley R; Garatsa, Ray-Shimry; Jones, Ronald L; Bachert, John O; Crawshaw, Benjamin; Liu, X Michael; Chan, Edwin P
2018-06-13
Physical gels are swollen polymer networks consisting of transient crosslink junctions associated with hydrogen or ionic bonds. Unlike covalently crosslinked gels, these physical crosslinks are reversible thus enabling these materials to display highly tunable and dynamic mechanical properties. In this work, we study the polymer composition effects on the fracture behavior of a gelatin gel, which is a thermoreversible biopolymer gel consisting of denatured collagen chains bridging physical network junctions formed from triple helices. Below the critical volume fraction for chain entanglement, which we confirm via neutron scattering measurements, we find that the fracture behavior is consistent with a viscoplastic type process characterized by hydrodynamic friction of individual polymer chains through the polymer mesh to show that the enhancement in fracture scales inversely with the squared of the mesh size of the gelatin gel network. Above this critical volume fraction, the fracture process can be described by the Lake-Thomas theory that considers fracture as a chain scission process due to chain entanglements.
Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang
2012-06-07
This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.
NASA Astrophysics Data System (ADS)
Bee, Soo-Tueen; Sin, Lee Tin; Hoe, Tie Teck; Ratnam, C. T.; Bee, Soo Ling; Rahmat, A. R.
2018-05-01
The purpose of this work was to investigate the effects of montmorillonite (MMT) loading level and electron beam irradiation on the physical-mechanical properties and thermal stability of ethylene vinyl acetate (EVA)- devulcanised waste rubber blends. The addition of MMT particles has significantly increased the d-spacing and interchain separation of deflection peak (0 0 2) of MMT particles. This indicates that MMT particles have effectively intercalated in polymer matrix of EVA-devulcanised waste rubber blends. Besides, the application of electron beam irradiation dosages <150 kGy could also significantly induce the effective intercalation effect of MMT particles in polymer matrix by introducing crosslinking networks. The increasing of electron beam irradiation dosages up to 250 kGy has gradually increased the gel content of all EVA-devulcanized rubber blends by inducing the formation of crosslinking networks in polymer matrix. Also, the tensile strength of all EVA-devulcanized waste rubber blends was gradually increased when irradiated up to 150 kGy. This is due to the occurrence of crosslinking networks by irradiation could significantly provide reinforcement effect to polymer matrix by effectively transferring the stress applied on polymer matrix throughout the whole polymer matrix.
Probing coal architecture by magnetic resonance microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botto, R. E.; Clifford, D. J.; Gregory, D. M.
1999-02-24
Time-resolved MRM investigations of a well-characterized suite of cross-linked polymers have yielded information on the nature of the solvent transport dynamics and mechanical relaxation of the networks. Network response parameters were then used to assess the macroscopic properties and cross-link densities of polymers with the degree of curing. This new approach is presently being developed to elucidate the complex macromolecular nature of coals and the variation with coal rank.
Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors
NASA Astrophysics Data System (ADS)
Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee
2016-01-01
Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.
Pillai, Jisha Jayadevan; Thulasidasan, Arun Kumar Theralikattu; Anto, Ruby John; Chithralekha, Devika Nandan; Narayanan, Ashwanikumar; Kumar, Gopalakrishnapillai Sankaramangalam Vinod
2014-07-15
The hydrogel based system is found to be rarely reported for the delivery of hydrophobic drug due to the incompatibility of hydrophilicity of the polymer network and the hydrophobicity of drug. This problem can be solved by preparing semi-interpenetrating network of cross-linked polymer for tuning the hydrophilicity so as to entrap the hydrophobic drugs. The current study is to develop a folic acid conjugated cross-linked pH sensitive, biocompatible polymeric hydrogel to achieve a site specific drug delivery. For that, we have synthesized a folic acid conjugated PEG cross-linked acrylic polymer (FA-CLAP) hydrogel and investigated its loading and release of curcumin. The formed polymer hydrogel was then conjugated with folic acid for the site specific delivery of curcumin to cancer cells and then further characterized and conducted the cell uptake and cytotoxicity studies on human cervical cancer cell lines (HeLa). In this study, we synthesized folic acid conjugated cross-linked acrylic hydrogel for the delivery of hydrophobic drugs to the cancer site. Poly (ethyleneglycol) (PEG) diacrylate cross-linked acrylic polymer (PAA) was prepared via inverse emulsion polymerization technique and later conjugated it with folic acid (FA-CLAP). Hydrophobic drug curcumin is entrapped into it and investigated the entrapment efficiency. Characterization of synthesized hydogel was done by using Fourier Transform-Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC). Polymerization and folate conjugation was confirmed by FT-IR spectroscopy. The release kinetics of drug from the entrapped form was studied which showed initial burst release followed by sustained release due to swelling and increased cross-linking. In vitro cytotoxicity and cell uptake studies were conducted in human cervical cancer (HeLa) cell lines. Results showed that curcumin entrapped folate conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel showed higher cellular uptake than the non folate conjugated form. So this can be suggested as a better delivery system for site specific release of hydrophobic cancer drugs.
Bio-Inspired Metal-Coordination Dynamics: A Unique Tool for Engineering Soft Matter Mechanics
NASA Astrophysics Data System (ADS)
Holten-Andersen, Niels
Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging. Using bio-inspired metal-binding polymers, initial efforts to mimic these properties with metal-coordination crosslinked polymer materials have shown promise. In addition, with polymer network mechanics strongly coupled to coordinate crosslink dynamics material properties can be easily tuned from visco-elastic fluids to solids. Given their exploitation in desirable material applications in Nature, bio-inspired metal-coordinate complex crosslinking provides an opportunity to further advance synthetic polymer materials design. Early lessons from this pursuit are presented.
NASA Astrophysics Data System (ADS)
Jin, Kailong; Li, Lingqiao; Torkelson, John
Rubber tires illustrate well the issues ranging from economic loss to environmental problems and sustainability issues that arise with spent, covalently crosslinked polymers. A nitroxide-mediated polymerization (NMP) strategy has been developed that allows for one-step synthesis of recyclable crosslinked polymers from monomers or polymers that contain carbon-carbon double bonds amenable to radical polymerization. Resulting materials possess dynamic alkoxyamine crosslinks that undergo reversible decrosslinking as a function of temperature. Using polybutadiene as starting material, and styrene, an appropriate nitroxide molecule and bifunctional initiator for initial crosslinking, a model for tire rubber can be produced by reaction at temperatures comparable to those employed in tire molding. Upon cooling, the crosslinks are made permanent due to the extraordinarily strong temperature dependence of the reverisible nitroxide capping and uncapping reaction. Based on thermomechanical property characterization, when the original crosslinked model rubber is chopped into bits and remolded in the melt state, a well-consolidated material is obtained which exhibits full recovery of properties reflecting crosslink density after multiple recycling steps.
Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications
Zhao, Fei; Shi, Ye; Pan, Lijia; ...
2017-06-26
Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocksmore » into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. CPGs also provide high surface area and solvent compatibility, similar to natural gels. With these improved properties, CPGs have been explored to enable novel conceptual devices in diverse applications from smart electronics and ultrasensitive biosensors, to energy storage and conversion devices. CPGs have also been adopted for developing hybrid materials with multifunctionalities, such as stimuli responsiveness, self-healing properties, and super-repellency to liquid. With synthetically tunable physical/chemical properties, CPGs emerge as a unique material platform to develop novel multifunctional materials that have the potential to impact electronics, energy, and environmental technologies. Our hope is that this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of CPGs.« less
Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Fei; Shi, Ye; Pan, Lijia
Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocksmore » into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. CPGs also provide high surface area and solvent compatibility, similar to natural gels. With these improved properties, CPGs have been explored to enable novel conceptual devices in diverse applications from smart electronics and ultrasensitive biosensors, to energy storage and conversion devices. CPGs have also been adopted for developing hybrid materials with multifunctionalities, such as stimuli responsiveness, self-healing properties, and super-repellency to liquid. With synthetically tunable physical/chemical properties, CPGs emerge as a unique material platform to develop novel multifunctional materials that have the potential to impact electronics, energy, and environmental technologies. Our hope is that this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of CPGs.« less
Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.
Zhao, Fei; Shi, Ye; Pan, Lijia; Yu, Guihua
2017-07-18
Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocks into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. CPGs also provide high surface area and solvent compatibility, similar to natural gels. With these improved properties, CPGs have been explored to enable novel conceptual devices in diverse applications from smart electronics and ultrasensitive biosensors, to energy storage and conversion devices. CPGs have also been adopted for developing hybrid materials with multifunctionalities, such as stimuli responsiveness, self-healing properties, and super-repellency to liquid. With synthetically tunable physical/chemical properties, CPGs emerge as a unique material platform to develop novel multifunctional materials that have the potential to impact electronics, energy, and environmental technologies. We hope that this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of CPGs.
Ductile thermoset polymers via controlling network flexibility.
Hameed, N; Salim, N V; Walsh, T R; Wiggins, J S; Ajayan, P M; Fox, B L
2015-06-18
We report the design and synthesis of a polymer structure from a cross-linkable epoxy-ionic liquid system which behaves like a hard and brittle epoxy thermoset, perfectly ductile thermoplastic and an elastomer, all depending on controllable network compositions.
Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki
2013-04-10
Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.
Yakacki, Christopher M.; Shandas, Robin; Lanning, Craig; Rech, Bryan; Eckstein, Alex; Gall, Ken
2009-01-01
Shape-memory materials have been proposed in biomedical device design due to their ability to facilitate minimally invasive surgery and recover to a predetermined shape in-vivo. Use of the shape-memory effect in polymers is proposed for cardiovascular stent interventions to reduce the catheter size for delivery and offer highly controlled and tailored deployment at body temperature. Shape-memory polymer networks were synthesized via photopolymerization of tert-butyl acrylate and poly (ethylene glycol) dimethacrylate to provide precise control over the thermomechanical response of the system. The free recovery response of the polymer stents at body temperature was studied as a function of glass transition temperature (Tg), crosslink density, geometrical perforation, and deformation temperature, all of which can be independently controlled. Room temperature storage of the stents was shown to be highly dependent on Tg and crosslink density. The pressurized response of the stents is also demonstrated to depend on crosslink density. This polymer system exhibits a wide range of shape-memory and thermomechanical responses to adapt and meet specific needs of minimally invasive cardiovascular devices. PMID:17296222
Flory-Stockmayer analysis on reprocessable polymer networks
NASA Astrophysics Data System (ADS)
Li, Lingqiao; Chen, Xi; Jin, Kailong; Torkelson, John
Reprocessable polymer networks can undergo structure rearrangement through dynamic chemistries under proper conditions, making them a promising candidate for recyclable crosslinked materials, e.g. tires. This research field has been focusing on various chemistries. However, there has been lacking of an essential physical theory explaining the relationship between abundancy of dynamic linkages and reprocessability. Based on the classical Flory-Stockmayer analysis on network gelation, we developed a similar analysis on reprocessable polymer networks to quantitatively predict the critical condition for reprocessability. Our theory indicates that it is unnecessary for all bonds to be dynamic to make the resulting network reprocessable. As long as there is no percolated permanent network in the system, the material can fully rearrange. To experimentally validate our theory, we used a thiol-epoxy network model system with various dynamic linkage compositions. The stress relaxation behavior of resulting materials supports our theoretical prediction: only 50 % of linkages between crosslinks need to be dynamic for a tri-arm network to be reprocessable. Therefore, this analysis provides the first fundamental theoretical platform for designing and evaluating reprocessable polymer networks. We thank McCormick Research Catalyst Award Fund and ISEN cluster fellowship (L. L.) for funding support.
Photo-induced Mass Transport through Polymer Networks
NASA Astrophysics Data System (ADS)
Meng, Yuan; Anthamatten, Mitchell
2014-03-01
Among adaptable materials, photo-responsive polymers are especially attractive as they allow for spatiotemporal stimuli and response. We have recently developed a macromolecular network capable of photo-induced mass transport of covalently bound species. The system comprises of crosslinked chains that form an elastic network and photosensitive fluorescent arms that become mobile upon irradiation. We form loosely crosslinked polymer networks by Michael-Addition between multifunctional thiols and small molecule containing acrylate end-groups. The arms are connected to the network by allyl sulfide, that undergoes addition-fragmentation chain transfer (AFCT) in the presence of free radicals, releasing diffusible fluorophore. The networks are loaded with photoinitiator to allow for spatial modulation of the AFCT reactions. FRAP experiments within bulk elastomers are conducted to establish correlations between the fluorophore's diffusion coefficient and experimental variables such as network architecture, temperature and UV intensity. Photo-induced mass transport between two contacted films is demonstrated, and release of fluorophore into a solvent is investigated. Spatial and temporal control of mass transport could benefit drug release, printing, and sensing applications.
Rapid Self-healing Nanocomposite Hydrogel with Tunable Dynamic Mechanics
NASA Astrophysics Data System (ADS)
Li, Qiaochu; Mishra, Sumeet; Chapman, Brian; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels
The macroscopic healing rate and efficiency in self-repairing hydrogel materials are largely determined by the dissociation dynamics of their polymer network, which is hardly achieved in a controllable manner. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its rapid self-healing property without the need for external stimuli.
Zhuang, Chen; Shi, Chengmei; Tao, Furong; Cui, Yuezhi
2017-12-01
The functionalized cellulose ester MCN was firstly synthesized and used to cross-link gelatin by amidation between -NH 2 in gelatin and active ester groups in MCN to form a composite polymer network Gel-MCN, which was confirmed by Van Slyke method, FTIR, XRD and TGA-DTG spectra. The model drug omeprazole was loaded in Gel-MCN composites mainly by electrostatic interaction and hydrogen bonds, which were certified by FTIR, XRD and TGA-DSC. Thermal stability, anti-biodegradability, mechanical property and surface hydrophobicity of the composites with different cross-linking extents and drug loading were systematically investigated. SEM images demonstrated the honeycomb structural cells of cross-linked gelatin networks and this ensured drug entrapment. The drug release mechanism was dominated by a combined effect of diffusion and degradation, and the release rate decreased with cross-linking degree increased. The developed drug delivery system had profound significance in improving pesticide effect and bioavailability of drugs. Copyright © 2017. Published by Elsevier B.V.
Shepodd, Timothy J.
2002-01-01
Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.
Anisotropically Swelling Gels Attained through Axis-Dependent Crosslinking of MOF Crystals.
Ishiwata, Takumi; Kokado, Kenta; Sada, Kazuki
2017-03-01
Anisotropically deforming objects have attracted considerable interest for use in molecular machines and artificial muscles. Herein, we focus on a new approach based on the crystal crosslinking of organic ligands in a pillared-layer metal-organic framework (PLMOF). The approach involves the transformation from crosslinked PLMOF to polymer gels through hydrolysis of the coordination bonds between the organic ligands and metal ions, giving a network polymer that exhibits anisotropic swelling. The anisotropic monomer arrangement in the PLMOF underwent axis-dependent crosslinking to yield anisotropically swelling gels. Therefore, the crystal crosslinking of MOFs should be a useful method for creating actuators with designable deformation properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
McBride, Matthew K; Podgorski, Maciej; Chatani, Shunsuke; Worrell, Brady T; Bowman, Christopher N
2018-06-21
Ductile, cross-linked films were folded as a means to program temporary shapes without the need for complex heating cycles or specialized equipment. Certain cross-linked polymer networks, formed here with the thiol-isocyanate reaction, possessed the ability to be pseudoplastically deformed below the glass transition, and the original shape was recovered during heating through the glass transition. To circumvent the large forces required to plastically deform a glassy polymer network, we have utilized folding, which localizes the deformation in small creases, and achieved large dimensional changes with simple programming procedures. In addition to dimension changes, three-dimensional objects such as swans and airplanes were developed to demonstrate applying origami principles to shape memory. We explored the fundamental mechanical properties that are required to fold polymer sheets and observed that a yield point that does not correspond to catastrophic failure is required. Unfolding occurred during heating through the glass transition, indicating the vitrification of the network that maintained the temporary, folded shape. Folding was demonstrated as a powerful tool to simply and effectively program ductile shape-memory polymers without the need for thermal cycling.
Design and Application of Nanogel-Based Polymer Networks
NASA Astrophysics Data System (ADS)
Dailing, Eric Alan
Crosslinked polymer networks have wide application in biomaterials, from soft hydrogel scaffolds for cell culture and tissue engineering to glassy, high modulus dental restoratives. Composite materials formed with nanogels as a means for tuning network structure on the nanoscale have been reported, but no investigation into nanogels as the primary network component has been explored to this point. This thesis was dedicated to studying network formation from the direct polymerization of nanogels and investigating applications for these unique materials. Covalently crosslinked polymer networks were synthesized from polymerizable nanogels without the use of reactive small monomers or oligomers. Network properties were controlled by the chemical and physical properties of the nanogel, allowing for materials to be designed from nanostructured macromolecular precursors. Nanogels were synthesized from a thermally initiated solution free radical polymerization of a monomethacrylate, a dimethacrylate, and a thiol-based chain transfer agent. Monomers with a range of hydrophilic and hydrophobic character were copolymerized, and polymerizable groups were introduced through an alcohol-isocyanate click reaction. Nanogels were dispersible in water up to 75 wt%, including nanogels that contained a relatively high fraction of a conventionally water-insoluble component. Nanogels with molecular weights that ranged from 10's to 100's of kDa and hydrodynamic radii between 4 and 10 nm were obtained. Macroscopic crosslinked polymer networks were synthesized from the photopolymerization of methacrylate-functionalized nanogels in inert solvent, which was typically water. The nanogel composition and internal branching density affected both covalent and non-covalent interparticle interactions, which dictated the final mechanical properties of the networks. Nanogels with progressively disparate hydrophilic and hydrophobic character were synthesized to explore the potential for creating densely crosslinked, small monomer free dental materials. Nanogel-based networks showed no decrease in flexural modulus between the dry and water-equilibrated states in contrast to nanogel-monomer composites that exhibited a decrease in modulus upon water infiltration. The nanogel networks also exhibited higher conversion and lower volumetric shrinkage compared to the composite networks. Adhesive nanogels were designed with amphiphilic character and specific hydrogen-bonding groups. These nanogels gelled within 10 s of low intensity UV light exposure and demonstrated the ability to bond strongly to both hydrophilic and hydrophobic substrates that were dry or under water. Nanogel-based coatings were explored as a means to create multistructured, multifunctional polymer networks. Shape memory polymers were coated with nanogels through a dip-coating and subsequent photocrosslinking method. The presence of the coating did not affect the shape recovery of the polymer, and coatings formed with dexamethasone-loaded nanogels were demonstrated to release a physiologically relevant amount of the anti-inflammatory drug. These materials have potential application as minimally invasive implantable devices. Coatings were also formed from interfacial redox polymerizations. Nanogels with varying crosslinking density were coated onto dexamethasone-loaded networks, which had the effect of changing the diffusion coefficient of dexamethasone as it was released from the core network. A fluorescein-loaded nanogel was coated onto a rhodamine-loaded network, which provided multidrug release from both the coating and the core material through two distinct release profiles.
Mesoscopic Simulations of Crosslinked Polymer Networks
NASA Astrophysics Data System (ADS)
Megariotis, Grigorios; Vogiatzis, Georgios G.; Schneider, Ludwig; Müller, Marcus; Theodorou, Doros N.
2016-08-01
A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1’4-polyisoprene’ is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation.
Fracture Simulation of Highly Crosslinked Polymer Networks: Triglyceride-Based Adhesives
NASA Astrophysics Data System (ADS)
Lorenz, Christian; Stevens, Mark; Wool, Richard
2003-03-01
The ACRES program at the U. of Delaware has shown that triglyceride oils derived from plants are a favorable alternative to the traditional adhesives. The triglyceride networks are formed from an initial mixture of styrene monomers, free-radical initiators and triglycerides. We have performed simulations to study the effect of physical composition and physical characteristics of the triglyceride network on the strength of triglyceride network. A coarse-grained, bead-spring model of the triglyceride system is used. The average triglyceride consists of 6 beads per chain, the styrenes are represented as a single bead and the initiators are two bead chains. The polymer network is formed using an off-lattice 3D Monte Carlo simulation, in which the initiators activate the styrene and triglyceride reactive sites and then bonds are randomly formed between the styrene and active triglyceride monomers producing a highly crosslinked polymer network. Molecular dynamics simulations of the network under tensile and shear strains were performed to determine the strength as a function of the network composition. The relationship between the network structure and its strength will also be discussed.
NASA Astrophysics Data System (ADS)
Fang, Chunliu; Toh, Xin Ni; Yao, Qiaofeng; Julius, David; Hong, Liang; Lee, Jim Yang
2013-03-01
Four series of semi-interpenetrating polymer network (SIPN) membranes are fabricated by thermally cross-linking aminated BPPO (brominated poly(2,6-dimethyl-1,4-phenylene oxide)) with different epoxide cross-linkers in the presence of sulfonated PPO (SPPO). The cross-link structure and hydrophobicity are found to impact the membrane morphology strongly - smaller and more hydrophobic cross-links form narrow and well-connected hydrophilic channels whereas bulky and less hydrophobic cross-links form wide but less-connected hydrophilic channels. The membranes of the former can support facile proton transport and suppress methanol crossover to result in higher proton conductivity and lower methanol permeability than the membranes of the latter. The membranes are also fabricated into membrane electrode assemblies (MEAs) and tested in single-stack direct methanol fuel cells (DMFCs). It is found that some of these SIPN membranes can surpass Nafion® 117 in maximum power density, demonstrating their potential as a proton exchange membrane (PEM) for the DMFCs.
Dependence of physical and mechanical properties on polymer architecture for model polymer networks
NASA Astrophysics Data System (ADS)
Guo, Ruilan
Effect of architecture at nanoscale on the macroscopic properties of polymer materials has long been a field of major interest, as evidenced by inhomogeneities in networks, multimodal network topologies, etc. The primary purpose of this research is to establish the architecture-property relationship of polymer networks by studying the physical and mechanical responses of a series of topologically different PTHF networks. Monodispersed allyl-tenninated PTHF precursors were synthesized through "living" cationic polymerization and functional end-capping. Model networks of various crosslink densities and inhomogeneities levels (unimodal, bimodal and clustered) were prepared by endlinking precursors via thiol-ene reaction. Thermal characteristics, i.e., glass transition, melting point, and heat of fusion, of model PTHF networks were investigated as functions of crosslink density and inhomogeneities, which showed different dependence on these two architectural parameters. Study of freezing point depression (FPD) of solvent confined in swollen networks indicated that the size of solvent microcrystals is comparable to the mesh size formed by intercrosslink chains depending on crosslink density and inhomogeneities. Relationship between crystal size and FPD provided a good reflection of the existing architecture facts in the networks. Mechanical responses of elastic chains to uniaxial strains were studied through SANS. Spatial inhomogeneities in bimodal and clustered networks gave rise to "abnormal butterfly patterns", which became more pronounced as elongation ratio increases. Radii of gyration of chains were analyzed at directions parallel and perpendicular to stretching axis. Dependence of Rg on lambda was compared to three rubber elasticity models and the molecular deformation mechanisms for unimodal, bimodal and clustered networks were explored. The thesis focused its last part on the investigation of evolution of free volume distribution of linear polymer (PE) subjected to uniaxial strain at various temperatures using a combination of MD, hard sphere probe method and Voronoi tessellation. Combined effects of temperature and strain on free volume were studied and mechanism of formation of large and ellipsoidal free volume voids was explored.
Water transport, free volume, and polymer dynamics in crosslinked polymer networks
NASA Astrophysics Data System (ADS)
Frieberg, Bradley; Soles, Christopher
Many technologies rely on amorphous polymer membranes that selectively transport small molecules or ions, which has led to a significant scientific interest in elucidating the mechanisms of transport. A recurring theme among several different materials systems is that free volume and polymer chain dynamics facilitate transport. In order to understand the interplay between free volume, transport and polymer dynamics we quantify these properties for a model epoxy network. The epoxy chemistry allows for systematically varying both the structural rigidity of the network as well as the cross-link density. We performed positron annihilation lifetime spectroscopy measurements to characterize the unoccupied volume and correlated the unoccupied volume to the equilibrium moisture uptake and effective diffusion coefficient. We have recently extended this work to include polymer dynamics measured by quasi-elastic neutron scattering on the NIST High Flux Backscatter Spectrometer. These measurements reveal a strong correlation between the MSD and the transport kinetics, which was even stronger than the correlation previously observed between free volume and water diffusion. These observations challenge previous theories that suggest free volume governs transport.
NASA Astrophysics Data System (ADS)
Fu, Guopeng; Dempsey, Janel; Izaki, Kosuke; Adachi, Kaoru; Tsukahara, Yasuhisa; Kyu, Thein
2017-08-01
In an effort to fabricate highly conductive, stable solid-state polymer electrolyte membranes (PEM), polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction between polyethylene glycol diamine and ethylene carbonate. Subsequently, dimethacrylate groups were chemically attached to both ends of PEGBC to afford polyethylene glycol-bis-carbamate dimethacrylate (PEGBCDMA) precursor having crosslinking capability. The melt-mixed ternary mixtures consisting of PEGBCDMA, succinonitrile plasticizer, and lithium trifluorosulphonyl imide salt were completely miscible in a wide compositional range. Upon photo-crosslinking, the neat PEGBCDMA network was completely amorphous exhibiting higher tensile strength, modulus, and extensibility relative to polyethylene glycol diacrylate (PEGDA) counterpart. Likewise, the succinonitrile-plasticized PEM network containing PEGBCDMA remained completely amorphous and transparent upon photo-crosslinking, showing superionic conductivity, improved thermal stability, and superior tensile properties with improved capacity retention during charge/discharge cycling as compared to the PEGDA-based PEM.
Hydrogels in a historical perspective: from simple networks to smart materials.
Buwalda, Sytze J; Boere, Kristel W M; Dijkstra, Pieter J; Feijen, Jan; Vermonden, Tina; Hennink, Wim E
2014-09-28
Over the past decades, significant progress has been made in the field of hydrogels as functional biomaterials. Biomedical application of hydrogels was initially hindered by the toxicity of crosslinking agents and limitations of hydrogel formation under physiological conditions. Emerging knowledge in polymer chemistry and increased understanding of biological processes resulted in the design of versatile materials and minimally invasive therapies. Hydrogel matrices comprise a wide range of natural and synthetic polymers held together by a variety of physical or chemical crosslinks. With their capacity to embed pharmaceutical agents in their hydrophilic crosslinked network, hydrogels form promising materials for controlled drug release and tissue engineering. Despite all their beneficial properties, there are still several challenges to overcome for clinical translation. In this review, we provide a historical overview of the developments in hydrogel research from simple networks to smart materials. Copyright © 2014 Elsevier B.V. All rights reserved.
Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto
2017-01-01
In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels. PMID:28100492
NASA Astrophysics Data System (ADS)
Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto; Barker, Thomas H.
2017-01-01
In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels.
Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller
2012-01-01
Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...
Effect of crosslink torsional stiffness on elastic behavior of semiflexible polymer networks
NASA Astrophysics Data System (ADS)
Hatami-Marbini, H.
2018-02-01
Networks of semiflexible filaments are building blocks of different biological and structural materials such as cytoskeleton and extracellular matrix. The mechanical response of these systems when subjected to an applied strain at zero temperature is often investigated numerically using networks composed of filaments, which are either rigidly welded or pinned together at their crosslinks. In the latter, filaments during deformation are free to rotate about their crosslinks while the relative angles between filaments remain constant in the former. The behavior of crosslinks in actual semiflexible networks is different than these idealized models and there exists only partial constraint on torques at crosslinks. The present work develops a numerical model in which two intersecting filaments are connected to each other by torsional springs with arbitrary stiffness. We show that fiber networks composed of rigid and freely rotating crosslinks are the limiting case of the present model. Furthermore, we characterize the effects of stiffness of crosslinks on effective Young's modulus of semiflexible networks as a function of filament flexibility and crosslink density. The effective Young's modulus is determined as a function of the mechanical properties of crosslinks and is found to vanish for networks composed of very weak torsional springs. Independent of the stiffness of crosslinks, it is found that the effective Young's modulus is a function of fiber flexibility and crosslink density. In low density networks, filaments primarily bend and the effective Young's modulus is much lower than the affine estimate. With increasing filament bending stiffness and/or crosslink density, the mechanical behavior of the networks becomes more affine and the stretching of filaments depicts itself as the dominant mode of deformation. The torsional stiffness of the crosslinks significantly affects the effective Young's modulus of the semiflexible random fiber networks.
Dual Sulfide-Disulfide Crosslinked Networks with Rapid and Room Temperature Self-Healability.
An, So Young; Noh, Seung Man; Nam, Joon Hyun; Oh, Jung Kwon
2015-07-01
Polymer-based crosslinked networks with intrinsic self-repairing ability have emerged due to their built-in ability to repair physical damages. Here, novel dual sulfide-disulfide crosslinked networks (s-ssPxNs) are reported exhibiting rapid and room temperature self-healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self-healable networks utilizes a combination of well-known crosslinking chemistry: photoinduced thiol-ene click-type radical addition, generating lightly sulfide-crosslinked polysulfide-based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s-ssPxNs. The resulting s-ssPxN networks show rapid self-healing within 30 s to 30 min at room temperature, as well as self-healing elasticity with reversible viscoelastic properties. These results, combined with tunable self-healing kinetics, demonstrate the versatility of the method as a new means to synthesize smart multifunctional polymeric materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.
Li, Xingjian; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin
2018-03-01
Fabricating a single polymer network with no need to design complex structures to achieve an ideal combination of tunable high-strain multiple-shape memory effects and highly recoverable shape memory property is a great challenge for the real applications of advanced shape memory devices. Here, a facile and general approach to recoverable high-strain multishape shape memory polymers is presented via a random copolymerization of acrylate monomers and a chain-extended multiblock copolymer crosslinker. As-prepared shape memory networks show a large width at the half-peak height of the glass transition, far wider than current classical multishape shape memory polymers. A combination of tunable high-strain multishape memory effect and as high as 1000% recoverable strain in a single chemical-crosslinking network can be obtained. To the best of our knowledge, this is the first thermosetting material with a combination of highly recoverable strain and tunable high-strain multiple-shape memory effects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin
2016-01-28
This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further investigation of their unique time-dependent properties.
Controlling toughness and dynamics of polymer networks via mussel-inspired dynamical bonds
NASA Astrophysics Data System (ADS)
Filippidi, Emmanouela
For dry, thermoset, polymer systems increasing the degree of cross-linking increases the elastic modulus. However, it simultaneously compromises the elongation under tension, usually reducing the overall total energy dissipated before fracture (toughness). Dynamic reformable bonds and complex network topologies have been used to circumnavigate this issue with moderate success, mainly in hydrated network systems. Hydration, however, which swells these networks limits how far one could increase the modulus, while their chemistry prevents improvement of the mechanics upon drying. Employing the mussel byssus-inspired strategy of iron-catechol coordination bonds, we have synthesized and studied epoxy networks comprising covalently attached catechol moieties capable of forming additional iron-catechol complex cross-links that still function in dry conditions. In such a fashion, we create a high modulus, high elongation, high toughness material. The iron-catechol coordination bonds play multiple roles that enhance the mechanical performance of the system: at low strain and fast strain rates, they act like permanent cross-links with bonding strength similar to covalent bonds, but start disassociating at high elongation. They are also reformable, enabling material self-healing in a matter of minutes in the absence of load. Finally, the dissociative crosslink cleavage alters the local chain topology, creating length scales that unfold upon elongation. The elegance of this system lies on its general versatility. Both the polymer and metal ion can be used as control parameters to study the interplay of covalent and dynamical bonds as well as explore the limits of the design of elastomers with enhanced toughness. MRSEC of NSF Award No. DMR-1121053.
Self-Healing Nanocomposite Hydrogel with Well-Controlled Dynamic Mechanics
NASA Astrophysics Data System (ADS)
Li, Qiaochu; Mishra, Sumeet; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels
Network dynamics is a crucial factor that determines the macroscopic self-healing rate and efficiency in polymeric hydrogel materials, yet its controllability is seldom studied in most reported self-healing hydrogel systems. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we next designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two hierarchical relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its fast self-healing property without the need for external stimuli.
Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels
NASA Astrophysics Data System (ADS)
Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike
2013-06-01
We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.
Oil and fat absorbing polymers
NASA Technical Reports Server (NTRS)
Marsh, H. E., Jr. (Inventor)
1977-01-01
A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.
Inter-crosslinking network gels having both shape memory and high ductility
NASA Astrophysics Data System (ADS)
Amano, Yoshitaka; Hidema, Ruri; Furukawa, Hidemitsu
2012-04-01
Medical treatment for injuries should be easy and quick in many accidents. Plasters or bandages are frequently used to wrap and fix injured parts. If plasters or bandages have additional smart functions, such as cooling, removability and repeatability, they will be much more useful and effective. Here we propose innovative biocompatible materials, that is, nontoxic high-strength shape-memory gels as novel smart medical materials. These smart gels were prepared from two monomers (DMAAm and SA), a polymer (HPC), and an inter-crosslinking agent (Karenz-MOI). In the synthesis of the gels, 1) a shape-memory copolymer network is made from the DMAAm and the SA, and 2) the copolymer and the HPC are crosslinked by the Karenz-MOI. Thus the crosslinking points are connected only between the different polymers. This is our original technique of developing a new network structure of gels, named Inter-Crosslinking Network (ICN). The ICN gels achieve high ductility, going up to 700% strain in tensile tests, while the ICN gels contain about 44% water. Moreover the SA has temperature dependence due to its crystallization properties; thus the ICN gels obtain shape memory properties and are named ICN-SMG. While the Young's modulus of the ICN-SMG is large below their crystallization temperature and the gels behave like plastic materials, the modulus becomes smaller above the temperature and the gels turn back to their original shape.
Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.
Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels
2016-01-26
Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.
NASA Astrophysics Data System (ADS)
Altuna, F. I.; Antonacci, J.; Arenas, G. F.; Pettarin, V.; Hoppe, C. E.; Williams, R. J. J.
2016-04-01
Green laser irradiation successfully activated self-healing processes in epoxy-acid networks modified with low amounts of gold nanoparticles (NPs). A bio-based polymer matrix, obtained by crosslinking epoxidized soybean oil (ESO) with an aqueous citric acid (CA) solution, was self-healed through molecular rearrangements produced by transesterification reactions of β-hydroxyester groups generated in the polymerization reaction. The temperature increase required for the triggering of these thermally activated reactions was attained by green light irradiation of the damaged area. Compression force needed to assure a good contact between crack faces was achieved by volume dilatation generated by the same temperature rise. Gold NPs dispersed in the polymer efficiently generated heat in the presence of electromagnetic radiation under plasmon resonance, acting as nanometric heating sources and allowing remote activation of the self-healing in the crosslinked polymer.
NASA Astrophysics Data System (ADS)
Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito
2016-09-01
This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.
Kulkarni, Raghavendra V; Patel, Foram S; Nanjappaiah, H M; Naikawadi, Akram A
2014-08-01
Interpenetrated polymer network (IPN) microparticles of sterculia gum and sodium alginate loaded with repaglinide were developed by ionic gelation and emulsion crosslinking method. The drug entrapment efficiency was as high as 91%. FTIR and TG analyses confirmed the crosslinking and IPN formation. Microparticles have demonstrated the drug release up to 24h depending upon type of crosslinking agents; the glutaraldehyde treatment of ionically crosslinked microparticles has resulted in decreased drug release rate. The in-vivo anti-diabetic activity performed on streptozotocin induced diabetic rats indicated that the pristine repaglinide has shown maximum percentage reduction of elevated blood glucose within 3h and then the percentage reduction in blood glucose was decreased. In the case of rats treated with KA8 IPN microparticles, percentage reduction of elevated glucose was slow as compared to pristine drug within 3h, but it was gradually increased to 81.27% up to 24h. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Yue; Ye, Fangmao; Sun, Wei; Yu, Jiangbo; Wu, I-Che; Rong, Yu; Zhang, Yong
2015-01-01
This paper describes a synthetic approach for photocrosslinkable polyfluorene (pc-PFO) semiconducting polymer dots, and demonstrates their superior ability to crosslink and form 3-D intermolecular polymer networks. The crosslinked pc-PFO Pdots are equipped with excellent encapsulating ability of functional small molecules. Optimum conditions of light irradiation on pc-PFO Pdots were investigated and clarified by using polymer thin films as a model. By employing the optimal light irradiation conditions, we successfully crosslinked pc-PFO Pdots and studied their particle sizes, photophysical, and colloidal properties. Single-particle imaging and dynamic-light-scattering measurements were conducted to understand the behaviors of photocrosslinked Pdots. Our results indicate pc-PFO Pdots can be easily photocrosslinked and the crosslinked species have excellent colloidal stability, physical and chemical stability, fluorescence brightness, and specific binding properties for cellular labeling. Considering that optical stimulus can work remotely, cleanly, and non-invasively, this study should pave the way for a promising approach to further develop stimuli-responsive ultrabright and versatile Pdot probes for biomedical imaging. PMID:25709806
The Development of a High-Throughput/Combinatorial Workflow for the Study of Porous Polymer Networks
2012-04-05
poragen composition , poragen level, and cure temperature. A total of 216 unique compositions were prepared. Changes in opacity of the blends as they cured...allowed for the identification of compositional variables and process variables that enabled the production of porous networks. Keywords: high...in polymer network cross-link density,poragen composition , poragen level, and cure temperature. A total of 216 unique compositions were prepared
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Brad H.; Wheeler, David R.; Black, Hayden T.
Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less
Epoxy thermoset networks derived from vegetable oils and their blends
NASA Astrophysics Data System (ADS)
Ryu, Chang; Ravalli, Matthew
2015-03-01
Epoxidized vegetable oils (EVOs), such as epoxidized soybean oil and linseed oils were prepared by the partial oxidation of the unsaturated double bonds in vegetable oils and used as monomers for preparing epoxy thermoset materials based on the cationic polymerization. These EVOs have been used to prepare epoxy thermosets of different network densities by cationic polymerization using onium salt catalyst. The crosslinked epoxy thermosets provide an ideal platform to study the structure-property-relationships of networked polymers. In particular, rheological studies on the epoxidized vegetable oil thermosets have been performed to measure the molecular weights between crosslinks (Mx) in the epoxy thermosets and to ultimately elucidate the role of functionality of epoxy groups in EVO on the mechanical and thermophysical properties of the epoxy thermoset materials. NSF DMR POLYMERS 1308617.
NASA Astrophysics Data System (ADS)
Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun
2018-01-01
Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1992-01-01
This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. An improved high temperature matrix resin is provided which is capable of performing at 316 C in air for several hundreds of hours. This resin has significantly improved toughness and microcracking resistance, excellent processability and mechanical performance, and cost effectiveness.
Liang, Yingkai; Kiick, Kristi L
2016-02-08
Novel, liposome-cross-linked hybrid hydrogels cross-linked by the Michael-type addition of thiols with maleimides were prepared via the use of maleimide-functionalized liposome cross-linkers and thiolated polyethylene glycol (PEG) polymers. Gelation of the materials was confirmed by oscillatory rheology experiments. These hybrid hydrogels are rendered degradable upon exposure to thiol-containing molecules such as glutathione (GSH), via the incorporation of selected thioether succinimide cross-links between the PEG polymers and liposome nanoparticles. Dynamic light scattering (DLS) characterization confirmed that intact liposomes were released upon network degradation. Owing to the hierarchical structure of the network, multiple cargo molecules relevant for chemotherapies, namely doxorubicin (DOX) and cytochrome c, were encapsulated and simultaneously released from the hybrid hydrogels, with differential release profiles that were driven by degradation-mediated release and Fickian diffusion, respectively. This work introduces a facile approach for the development of advanced, hybrid drug delivery vehicles that exhibit novel chemical degradation.
Stoyneva, Veselina; Momekova, Denitsa; Kostova, Bistra; Petrov, Petar
2014-01-01
Original pH sensitive cryogels, based on two biodegradable natural polymers chitosan (CS) and 2-hydroxyethylcellulose (HEC), were obtained via cryogenic treatment of semi-dilute aqueous solutions and UV induced crosslinking in frozen state. H₂O₂ and N,N'-methylenebisacrylamide (BisAAm) were used as photoinitiator and crosslinking agent, respectively. BisAAm facilitated the formation of polymer co-network and increased both the gel fraction yield and mechanical strength of cryogels. The influence of chitosan content on the physico-mechanical properties of HEC-CS cryogels was investigated. In general, the increase of CS fraction in the polymer co-network increased the degree of swelling and enhanced significantly the storage modulus of materials. All HEC-CS cryogels obtained were opalescent sponge-like materials, which quickly release/uptake water due to their open porous structure. The incorporation of CS provided pH dependent swelling and good bioadhesive properties of cryogels. HEC-CS cryogels were further exploited as drug delivery systems of the highly water soluble drug metronidazole belonging to BCS Class l. Copyright © 2013 Elsevier Ltd. All rights reserved.
Interfacial friction and adhesion of cross-linked polymer thin films swollen with linear chains.
Zhang, Qing; Archer, Lynden A
2007-07-03
The preparation and interfacial properties of a new type of tethered, thin-film lubricant coating are presented. These coatings are composed of three components: a dense self-assembled monolayer (SAM) underlayer that presents reactive vinyl groups at its surface; a cross-linked polydimethylsiloxane (PDMS) overlayer that is covalently tethered to the SAM; and free, mobile linear PDMS chains dispersed in the network. We investigate the influence of the molecular weight (Ms) and concentration of the free PDMS chains on the structure and equilibrium swelling properties of the cross-linked films. Using a bead-probe lateral force microscopy measurement technique, we also quantify the interfacial friction and adhesion characteristics of surfaces functionalized with these coatings. We find that both the volume fraction and the molecular weight of free PDMS molecules in the coatings influence their interfacial friction and adhesion properties. For example, the addition of short PDMS chains in dry, cross-linked PDMS thin films yields tethered surface coatings with ultralow friction coefficients (mu = 5.2 x 10(-3)). An analysis based on classical lubrication theory suggests that the reduction in friction force produced by free polymer is a consequence of the gradual separation of asperities on opposing surfaces and the consequent substitution of solid-solid friction by viscous drag of the free polymer chains in the network.
Reversible Thermoset Adhesives
NASA Technical Reports Server (NTRS)
Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)
2016-01-01
Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.
Influence of Network Structure on Glass Transition Temperature of Elastomers
Bandzierz, Katarzyna; Reuvekamp, Louis; Dryzek, Jerzy; Dierkes, Wilma; Blume, Anke; Bielinski, Dariusz
2016-01-01
It is generally believed that only intermolecular, elastically-effective crosslinks influence elastomer properties. The role of the intramolecular modifications of the polymer chains is marginalized. The aim of our study was the characterization of the structural parameters of cured elastomers, and determination of their influence on the behavior of the polymer network. For this purpose, styrene-butadiene rubbers (SBR), cured with various curatives, such as DCP, TMTD, TBzTD, Vulcuren®, DPG/S8, CBS/S8, MBTS/S8 and ZDT/S8, were investigated. In every series of samples a broad range of crosslink density was obtained, in addition to diverse crosslink structures, as determined by equilibrium swelling and thiol-amine analysis. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were used to study the glass transition process, and positron annihilation lifetime spectroscopy (PALS) to investigate the size of the free volumes. For all samples, the values of the glass transition temperature (Tg) increased with a rise in crosslink density. At the same time, the free volume size proportionally decreased. The changes in Tg and free volume size show significant differences between the series crosslinked with various curatives. These variations are explained on the basis of the curatives’ structure effect. Furthermore, basic structure-property relationships are provided. They enable the prediction of the effect of curatives on the structural parameters of the network, and some of the resulting properties. It is proved that the applied techniques—DSC, DMA, and PALS—can serve to provide information about the modifications to the polymer chains. Moreover, on the basis of the obtained results and considering the diversified curatives available nowadays, the usability of “part per hundred rubber” (phr) unit is questioned. PMID:28773731
Semi-interpenetrating polymer network's of polyimides: Fracture toughness
NASA Technical Reports Server (NTRS)
Hansen, Marion Glenn
1988-01-01
The objective was to improve the fracture toughness of the PMR-15 thermosetting polyimide by co-disolving LaRC-TPI, a thermoplastic polyimide. The co-solvation of a thermoplastic into a thermoset produces an interpenetration of the thermoplastic polymer into the thermoset polyimide network. A second research program was planned around the concept that to improve the fracture toughness of a thermoset polyimide polymer, the molecular weight between crosslink points would be an important macromolecular topological parameter in producing a fracture toughened semi-IPN polyimide.
Thomas, V; Jayabalan, M
2001-07-01
The effect of virtual crosslinking on the hydrolytic stability of completely aliphatic novel poly(urethane ureas), HFL9-PU1 (hard-segment content 57.5%) and HFL13-PU2 (hard-segment content 67.9%) based on 4,4'-methylene bis(cyclohexyl isocyanate) (H(12)MDI)-hydroxy-terminated polybutadiene-1,6-hexamethylene diamine, was studied. Fourier transform infrared-attenuated total reflectance and wide-angle X-ray diffraction studies revealed hydrogen-bonding interaction and microphase separation and formation of crystallites by short- and long-range ordering in hard-segment domains. Three-dimensional networks from hydrogen bonding in the present polymers lead to virtually crosslinking and insolubility. These polymers were noncytotoxic to L929 fibroblast cells. The hemolytic potential is below the accepted limit. The studies on in vitro biostability in Ringer's solution, phosphate buffered saline, and papain enzyme revealed no weight loss. The infrared spectral studies revealed changes in the surface, especially on HFL9-PU1 aged in Ringer's solution and phosphate buffered saline, and no changes when aged in papain. The marginal changes noticed in tensile properties were attributed to the changes in degree of hydrogen bonding and associated rearrangement of molecular structure in the bulk. The results revealed that the lesser the crosslinking in virgin polymer, the higher the crosslinking in aged polymer and vice versa. Increased crosslinking during aging provided increased tensile properties in the aged polymer over the virgin polymer and vice versa. For comparison, an aliphatic polyetherurethane urea (HFL16-PU3) was also synthesized using poly(oxy tetra methylene glycol) in addition to the above reactants. Though both HFL9-PU1 and HFL16-PU3 contained the same hard-segment content, the aged sample of the latter showed decreased tensile properties with increased crosslinking during aging in contrast to the former. This was attributed to less microphase separation in the virgin HFL16-PU3 polymer.
Direct detection of RDX vapor using a conjugated polymer network.
Gopalakrishnan, Deepti; Dichtel, William R
2013-06-05
1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) is a principal component of plastic explosives used in acts of terrorism and within improvised explosive devices, among others. Approaches to detect RDX compatible with remote, "stand-off" sampling that do not require preconcentration strategies, such as the swabs commonly employed in airports, will benefit military and civilian security. Such detection remains a significant challenge because RDX is 10(3) less volatile than 1,3,5-trinitrotoluene (TNT), corresponding to a parts-per-trillion vapor pressure under ambient conditions. Therefore, while fluorescence quenching of conjugated polymers is sufficiently sensitive to detect TNT vapors, RDX vapor detection is undemonstrated. Here we report a cross-linked phenylene vinylene polymer network whose fluorescence is quenched by trace amounts of RDX introduced from solution or the vapor phase. Fluorescence quenching is reduced, but remains significant, when partially degraded RDX is employed, suggesting that the polymer responds to RDX itself. The polymer network also responds to TNT and PETN similarly introduced from solution or the vapor phase. Pure solvents, volatile amines, and the outgassed vapors from lipstick or sunscreen do not quench polymer fluorescence. The established success of TNT sensors based on fluorescence quenching makes this a material of interest for real-world explosive sensors and will motivate further interest in cross-linked polymers and framework materials for sensing applications.
Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions.
Guo, Mingyu; Pitet, Louis M; Wyss, Hans M; Vos, Matthijn; Dankers, Patricia Y W; Meijer, E W
2014-05-14
Hydrogels were prepared with physical cross-links comprising 2-ureido-4[1H]-pyrimidinone (UPy) hydrogen-bonding units within the backbone of segmented amphiphilic macromolecules having hydrophilic poly(ethylene glycol) (PEG). The bulk materials adopt nanoscopic physical cross-links composed of UPy-UPy dimers embedded in segregated hydrophobic domains dispersed within the PEG matrix as comfirmed by cryo-electron microscopy. The amphiphilic network was swollen with high weight fractions of water (w(H2O) ≈ 0.8) owing to the high PEG weight fraction within the pristine polymers (w(PEG) ≈ 0.9). Two different PEG chain lengths were investigated and illustrate the corresponding consequences of cross-link density on mechanical properties. The resulting hydrogels exhibited high strength and resilience upon deformation, consistent with a microphase separated network, in which the UPy-UPy interactions were adequately shielded within hydrophobic nanoscale pockets that maintain the network despite extensive water content. The cumulative result is a series of tough hydrogels with tunable mechanical properties and tractable synthetic preparation and processing. Furthermore, the melting transition of PEG in the dry polymer was shown to be an effective stimulus for shape memory behavior.
Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent
Jones, Brad H.; Wheeler, David R.; Black, Hayden T.; ...
2017-06-29
Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less
Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Brad H.; Wheeler, David R.; Black, Hayden T.
Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less
A Synthetic Fibrin-Crosslinking Polymer for Modulating Clot Properties and Inducing Hemostasis
Chan, Leslie W.-G.; Wang, Xu; Wei, Hua; Pozzo, Lilo D.; White, Nathan J.; Pun, Suzie H.
2015-01-01
Clotting factor replacement is the standard management of acute bleeding in congenital and acquired bleeding disorders. We present a synthetic approach to hemostasis using an engineered hemostatic polymer (PolySTAT) that circulates innocuously in the blood, identifies sites of vascular injury, and promotes clot formation to stop bleeding. PolySTAT induces hemostasis by crosslinking the fibrin matrix within clots, mimicking the function of the transglutaminase Factor XIII. Furthermore, synthetic PolySTAT binds specifically to fibrin monomers and is uniformly integrated into fibrin fibers during fibrin polymerization, resulting in a fortified, hybrid polymer network with enhanced resistance to enzymatic degradation. In vivo hemostatic activity was confirmed in a rat model of trauma and fluid resuscitation in which intravenous administration of PolySTAT improved survival by reducing blood loss and resuscitation fluid requirements. PolySTAT-induced fibrin crosslinking is a novel approach to hemostasis utilizing synthetic polymers for non-invasive modulation of clot architecture with potentially wide-ranging therapeutic applications. PMID:25739763
Brush-Like Polymers: New Design Platforms for Soft, Dry Materials with Unique Property Relations
NASA Astrophysics Data System (ADS)
Daniel, William Francis McKemie, Jr.
Elastomers represent a unique class of engineering materials due to their light weight, low cost, and desirable combination of softness (105 -107 Pa) and large extensibilities (up to 1000%). Despite these advantages, there exist applications that require many times softer modulus, greater extensibility, and stronger strain hardening for the purpose of mimicking the mechanical properties of systems such as biological tissues. Until recently, only liquid-filled gels were suitable materials for such applications, including soft robotics and implants. A considerable amount of work has been done to create gels with superior properties, but despite unique strengths they also suffer from unique weaknesses. This class of material displays fundamental limitations in the form of heterogeneous structures, solvent loss and phase transitions at extreme temperatures, and loss of liquid fraction upon high deformations. In gels the solvent fraction also introduces a large solvent/polymer interaction parameter which must be carefully considered when designing the final mechanical properties. These energetic considerations further exaggerate the capacity for inconstant mechanical properties caused by fluctuations of the solvent fraction. In order to overcome these weaknesses, a new platform for single component materials with low modulus (<105 Pa) must be developed. Single component systems do not suffer from compositional changes over time and display more stable performance in a wider variety of temperatures and humidity conditions. A solvent-free system also has the potential to be homogeneous which replaces the large energetic interactions with comparatively small architectural interaction parameters. If a solvent-free alternative to liquid-filled gels is to be created, we must first consider the fundamental barrier to softer elastomers, i.e. entanglements - intrinsic topological restrains which define a lower limit of modulus ( 105 Pa). These entanglements are determined by chemistry specific parameters (repeat unit volume and Kuhn segment size) in the polymer liquid (melt) prior to crosslinking. Previous solvent free replacements for gels include elastomers end-linked in semidilute conditions. These materials are generated through crosslinking telechelic polymer chains in semidilute solutions at the onset of chain overlap. At such low polymer concentrations entanglements are greatly diluted and once the resulting gel is dried it creates a supersoft and super-elastic network. Although such methods have successfully generated materials with moduli below the 105 Pa limit and high extensibilities ( 1000%) they present their own limitations. Firstly, the semidilute crosslinking methods uses an impractically large volume of solvent which is unattractive in industry. Second, producing and crosslinking large monodisperse telechelic chains is a nontrivial process leading to large uncertainties in the final network architecture and properties. Specifically, telechelics have a distribution of end-to-end distances and in semidilute solutions with extremely low fraction of chain ends the crosslink reaction is diffusion limited, very slow, and imprecise. In order to achieve a superior solvent-free platform, we propose alteration of mechanical properties through the architectural disentanglement of brush-like polymer structures. In recent year there has been an increase in the synthetic conditions and crosslinking schemes available for producing brush-like structures. This makes brush-like materials an attractive alternative to more restrictive methods such as end-linking. Standard networks have one major control factor outside of chemistry, the network stand length. Brush-like architectures are created from long strands with regularly grafted side chains creating three characteristic length scales which may be independently manipulated. In collaboration with M. Rubinstein, we have utilized bottlebrush polymer architectures (a densely grafted brush-like polymer) to experimentally verify theoretical predictions of disentangled bottlebrush melts. By attaching well-defined side chains onto long polymer backbones, individual polymer strands are separated in space (similar to dilution with solvent) accompanied by a comparatively small increase in the rigidity of the strands. The end result is an architectural disentangled melt with an entanglement plateau modulus as much as three orders of magnitude lower than typical linear polymers and a broadly expanded potential for extensibility once crosslinked.
Synthesis of Poly(Propylene Fumarate)
Kasper, F. Kurtis; Tanahashi, Kazuhiro; Fisher, John P.; Mikos, Antonios G.
2010-01-01
This protocol describes the synthesis of 500 – 4000 Da poly(propylene fumarate) by a two-step reaction of diethyl fumarate and propylene glycol through a bis(hydroxypropyl) fumarate diester intermediate. Purified PPF can be covalently crosslinked to form degradable polymer networks, which have been widely explored for biomedical applications. The properties of crosslinked PPF networks depend upon the molecular properties of the constituent polymer, such as the molecular weight. The purity of the reactants and the exclusion of water from the reaction system are of utmost importance in the generation of high-molecular-weight PPF products. Additionally, the reaction time and temperature influence the molecular weight of the PPF product. The expected time required to complete this protocol is 3 d. PMID:19325548
Through the looking glass: Unraveling the network structure of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, D. M.; Stec, D. F.; Botto, R. E.
1999-12-23
Since the original idea by Sanada and Honda of treating coal as a three-dimensional cross-linked network, coal structure has been probed by monitoring ingress of solvents using traditional volumetric or gravimetric methods. However, using these techniques has allowed only an indirect observation of the swelling process. More recently, the authors have developed magnetic resonance microscopy (MRM) approaches for studying solvent ingress in polymeric systems, about which fundamental aspects of the swelling process can be deduced directly and quantitatively. The aim of their work is to utilize solvent transport and network response parameters obtained from these methods to assess fundamental propertiesmore » of the system under investigation. Polymer and coal samples have been studied to date. Numerous swelling parameters measured by magnetic resonance microscopy are found to correlate with cross-link density of the polymer network under investigation. Use of these parameters to assess the three-dimensional network structure of coal is discussed.« less
Photoinduced smart, self-healing polymer sealant for photovoltaics.
Banerjee, Sanjib; Tripathy, Ranjan; Cozzens, David; Nagy, Tibor; Keki, Sandor; Zsuga, Miklos; Faust, Rudolf
2015-01-28
Polyisobutylene (PIB)-based polymer networks potentially useful as smart coatings for photovoltaic devices have been developed. Low molecular weight coumarin functional triarm star PIB was synthesized via a single step SN2 reaction of bromoallyl functional triarm star PIB with 4-methylumbelliferone or umbelliferone in the presence of sodium hydride. Quantitative end functionality was confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. UVA (λmax = 365 nm) induced reversible photodimerization of the coumarin moieties resulted in cross-linked elastomeric films exhibiting self-healing behavior. The extent of photodimerization/photoscission was monitored by UV-vis spectroscopy. The low oxygen (1.9 × 10(-16) mol m m(-2) s(-1) Pa(-1)) and moisture (46 × 10(-16) mol m m(-2) s(-1) Pa(-1)) permeability of the cross-linked polymer films suggest excellent barrier properties of the cross-linked polymer films. The self-healing process was studied by atomic force microscopy (AFM). For this, mechanical cuts were introduced in the cross-linked PIB films through micromachining with an AFM tip and the rate of healing induced by UV, sunlight, or both was followed by taking AFM images of the film at different time intervals during the repair process.
Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy
2015-01-01
In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019
Synthesis of hydrazone functionalized epoxy polymers for non-linear optical device applications
NASA Astrophysics Data System (ADS)
Singh, Rajendra K.
A series of twelve, thermally crosslinkable, epoxy polymers bearing covalently attached NLO-active hydrazone chromophores were synthesized. The primary focus was on the synthesis of two series of NLO-active hydroxy functionalized hydrazone chromophores. The first series, called the monohydroxy series (Hydrazones I--VI) comprised of six monohydroxy functionalized hydrazones and the second series consisted of six dihydroxy functionalized hydrazones (Hydrazones VII--XII). These hydrazone chromophores were then grafted, via the hydroxy functionality, on to a commercial epoxy polymer to obtain twelve NLO-active soluble prepolymers. The grafting reaction yields multiple secondary hydroxyl sites due to opening of the epoxide rings and these hydroxyl groups were used for further crosslinking by formulating the prepolymers with a blocked polyisocyanate commercial crosslinker. This formulation was spin coated on glass slides to form 2--2.5 m m thick uniform, defect free, transparent films. The films were corona poled, above their Tg, to align the chromophores in a noncentrosymmetric fashion and simultaneously complete the thermal cure that results in a highly crosslinked network. Finally the thermal characteristics of the second order nonlinearity of the twelve polymers are compared to illustrate the key structure-property relationships underlying the performance of the films.
Modification of polylactide bioplastic using hyperbranched polymer based nanostructures
NASA Astrophysics Data System (ADS)
Bhardwaj, Rahul
Polylactide (PLA) is the most well known renewable resource based biodegradable polymer. The inherent brittleness and poor processability of PLA pose considerable technical challenges and limit its range of commercial applications. The broad objective of this research was to investigate novel pathways for polylactide modification to enhance its mechanical and rheological properties. The focus of this work was to tailor the architecture of a dendritic hyperbranched polymer (HBP) and study its influence on the mechanical and rheological properties of PLA bioplastic. The hyperbranched polymers under consideration are biodegradable aliphatic hydroxyl-functional hyperbranched polyesters having nanoscale dimensions, unique physical properties and high peripheral functionalities. This work relates to identifying a new and industrially relevant research methodology to develop PLA based nanoblends having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer was crosslinked in-situ with a polyanhydride (PA) in the PLA matrix during melt processing, leading to the generation of new nanoscale hyperbranched polymer based domains in the PLA matrix. Transmission electron microscopy and atomic force microscopy revealed the "sea-island" morphology of PLA-crosslinked HBP blends. The domain size of a large portion of the crosslinked HBP particles in PLA matrix was less than 100 nm. The presence of crosslinked hyperbranched polymers exhibited more than 500% and 800% improvement in the tensile toughness and elongation at break values of PLA, respectively, with a minimal sacrifice of tensile strength and modulus as compared to unmodified PLA. The toughening mechanism of PLA in the presence of crosslinked HBP particles was comprised of shear yielding and crazing. The volume fraction of crosslinked HBP particles and matrix ligament thickness (inter-particle distance) were found to be the critical parameters for the toughening of PLA. The maximum average matrix ligament thickness was 114 nm for a toughened polylactide nanoblend and correlated well with the theoretical prediction of the matrix ligament thickness. Fourier transform infrared spectroscopy and dynamic mechanical thermal analysis proved the crosslinking of the HBP phase in the PLA matrix. The crosslinked HBP was effective at hydroxyl (-OH) to anhydride molar ratios of: 2:1, 1:1 or 1:2. The glass transition temperature values of the crosslinked HBP phase at these molar ratios were observed to deviate from the predictions made by the Fox equation. The hydrophilic nature of the hyperbranched polymer was altered to hydrophobic by incorporation of polyanhydride crosslinker, as demonstrated by the increase in the contact angle with water. Rheological studies showed that there was a network formation in the PLA matrix after in-situ crosslinking of HBP. The HBP was found to reduce the melt viscosity of PLA dramatically and this effect was maintained even after its in-situ crosslinking in the PLA matrix. Finally, the current research unwraps the new opportunities provided by the unique physical and chemical properties of highly functional hyperbranched polymers in generating new nanostructured multiphase polymer systems with enhanced properties.
Polymers used to absorb fats and oils: A concept
NASA Technical Reports Server (NTRS)
Marsh, H. E., Jr.
1974-01-01
One approach to problem of excessive oils and fats is to develop method by which oil is absorbed into solid mixture for elimination as solid waste. Materials proposed for these purposes are cross-linked (network) polymers that have high affinity for aliphatic substances, i. e., petroleum, animal, and vegetable oils.
Construction of monomer-free, highly crosslinked, water-compatible polymers.
Dailing, E A; Lewis, S H; Barros, M D; Stansbury, J W
2014-12-01
Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. © International & American Associations for Dental Research.
The rational design of recognitive polymeric networks for sensing applications
NASA Astrophysics Data System (ADS)
Noss, Kimberly Ryanne Dial
Testosterone recognitive networks were synthesized with varying feed crosslinking percentages and length of the bi-functional crosslinking agent to analyze the effect of changing structural parameters on template binding properties such as affinity, selectivity, capacity, and diffusional transport. The crosslinking percentage of the crosslinking monomer ethylene glycol dimethacrylate was varied from 50% to 90% and associated networks experienced a 2 fold increase in capacity and a 4 fold increase in affinity with the equilibrium association constants, Ka, ranging from 0.32 +/- 0.02 x 10 4 M-1 to 1.3 +/- 0.1 x 104 M -1, respectively. The higher concentration of crosslinking monomer increased the crosslinking points available for inter-chain stabilization creating an increased number of stable cavities for template association. However, by increasing the length of the crosslinking agent and increasing the feed crosslinking percentage from 77% crosslinked poly(methacrylic acid- co-ethylene glycol dimethacrylate) (poly(MAA-co-EGDMA)) to 50% crosslinked poly(methacrylic acid-co-poly(ethylene glycol)200 dimethacrylate) (poly(MAA-co-PEG200DMA)), the mesh size of the network increased resulting in an increased template diffusion coefficient from (2.83 +/- 0.06) x 109 cm2/s to (4.3 +/- 0.06) x 109 cm2/s, respectively, which is approximately a 40% faster template diffussional transport. A 77% crosslinked poly (MAA-co-PEG200DMA) recognitive network had an association constant of (0.20 +/- 0.05) x 104 M -1 and bound (0.72 +/- 0.04) x 10-2 mmol testosterone/g dry polymer, which was less by 6 and 3 fold, respectively, compared to a similarly crosslinked poly(MAA-co-EGDMA) recognitive network. Structural manipulation of the macromolecular architecture illustrates the programmability of recognitive networks for specific template binding parameters and diffusional transport, which may lead to enhanced imprinted sensor materials and successful integration onto sensor platforms.
Chan, Ariel W; Neufeld, Ronald J
2009-10-01
Semisynthetic network alginate polymer (SNAP), synthesized by acetalization of linear alginate with di-aldehyde, is a pH-responsive tetrafunctionally linked 3D gel network, and has potential application in oral delivery of protein therapeutics and active biologicals, and as tissue bioscaffold for regenerative medicine. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions containing uni-univalent, uni-bivalent, bi-univalent or bi-bi-valent electrolyte solutions. Flory-Huggins interaction parameters as a function of ionic strength and characteristic ratio of alginates of various molecular weights were determined experimentally to numerically predict SNAP hydrogel swelling. SNAP hydrogel swells pronouncedly to 1000 times in dilute solution, compared to its compact polymer volume, while behaving as a neutral polymer with limited swelling in high ionic strength or low pH solutions. The derived model accurately describes the pH-responsive swelling of SNAP hydrogel in acid and alkaline solutions of wide range of ionic strength. The pore sizes of the synthesized SNAP hydrogels of various crosslink densities were estimated from the derived model to be in the range of 30-450 nm which were comparable to that measured by thermoporometry, and diffusion of bovine serum albumin. The derived equilibrium swelling model can characterize hydrogel structure such as molecular weight between crosslinks and crosslinking density, or can be used as predictive model for swelling, pore size and mechanical properties if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel.
De Gregorio, G L; Giannuzzi, R; Cipolla, M P; Agosta, R; Grisorio, R; Capodilupo, A; Suranna, G P; Gigli, G; Manca, M
2014-11-21
We here report the implementation of poly[(3-N-methylimidazoliumpropyl)methylsiloxane-co-dimethylsiloxane]iodides as suitable polymeric hosts for a novel class of in situ cross-linkable iodine/iodide-based gel-electrolytes for dye-sensitized solar cells. The polymers are first partially quaternized and then subjected to a thermal cross-linking which allows the formation of a 3D polymeric network which is accompanied by a dramatic enhancement of the ionic conductivity.
NASA Astrophysics Data System (ADS)
Benedetti, Cesare; Flouda, Paraskevi; Antonello, Alice; Rosenauer, Christine; Pérez-Pla, Francisco F.; Landfester, Katharina; Gross, Silvia; Muñoz-Espí, Rafael
2017-09-01
The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate)12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free radical miniemulsion copolymerization. The kinetics of the polymerization process in the absence and in the presence of the oxocluster is also investigated.
Salian, Vishal D; Vaughan, Asa D; Byrne, Mark E
2012-06-01
In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture. Copyright © 2012 John Wiley & Sons, Ltd.
Bidault, Laurent; Deneufchatel, Marie; Vancaeyzeele, Cédric; Fichet, Odile; Larreta-Garde, Véronique
2013-11-11
A fibrin hydrogel at physiological concentration (5 mg/mL) was associated with polyvinyl alcohol (PVA) inside an interpenetrating polymer networks (IPN) architecture. Previously, PVA has been modified with methacrylate functions in order to cross-link it by free-radical polymerization. The fibrin network was synthesized by the enzymatic hydrolysis of fibrinogen by thrombin. The resulting self-supported materials simultaneously exhibit the properties of the fibrin hydrogel and those of the synthetic polymer network. Their storage modulus is 50-fold higher than that of the fibrin hydrogel and they are completely rehydratable. These materials are noncytotoxic toward human fibroblast and the fibrin present on the surface of PVAm-based IPNs favors cell development.
Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric
2015-05-13
Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.
Analytical theory of polymer-network-mediated interaction between colloidal particles
Di Michele, Lorenzo; Zaccone, Alessio; Eiser, Erika
2012-01-01
Nanostructured materials based on colloidal particles embedded in a polymer network are used in a variety of applications ranging from nanocomposite rubbers to organic-inorganic hybrid solar cells. Further, polymer-network-mediated colloidal interactions are highly relevant to biological studies whereby polymer hydrogels are commonly employed to probe the mechanical response of living cells, which can determine their biological function in physiological environments. The performance of nanomaterials crucially relies upon the spatial organization of the colloidal particles within the polymer network that depends, in turn, on the effective interactions between the particles in the medium. Existing models based on nonlocal equilibrium thermodynamics fail to clarify the nature of these interactions, precluding the way toward the rational design of polymer-composite materials. In this article, we present a predictive analytical theory of these interactions based on a coarse-grained model for polymer networks. We apply the theory to the case of colloids partially embedded in cross-linked polymer substrates and clarify the origin of attractive interactions recently observed experimentally. Monte Carlo simulation results that quantitatively confirm the theoretical predictions are also presented. PMID:22679289
Yañez, Fernando; Chianella, Iva; Piletsky, Sergey A; Concheiro, Angel; Alvarez-Lorenzo, Carmen
2010-02-05
This work has focused on the rational development of polymers capable of acting as traps of bile salts. Computational modeling was combined with molecular imprinting technology to obtain networks with high affinity for cholate salts in aqueous medium. The screening of a virtual library of 18 monomers, which are commonly used for imprinted networks, identified N-(3-aminopropyl)-methacrylate hydrochloride (APMA.HCl), N,N-diethylamino ethyl methacrylate (DEAEM) and ethyleneglycol methacrylate phosphate (EGMP) as suitable functional monomers with medium-to-high affinity for cholic acid. The polymers were prepared with a fix cholic acid:functional monomer mole ratio of 1:4, but with various cross-linking densities. Compared to polymers prepared without functional monomer, both imprinted and non-imprinted microparticles showed a high capability to remove sodium cholate from aqueous medium. High affinity APMA-based particles even resembled the performance of commercially available cholesterol-lowering granules. The imprinting effect was evident in most of the networks prepared, showing that computational modeling and molecular imprinting can act synergistically to improve the performance of certain polymers. Nevertheless, both the imprinted and non-imprinted networks prepared with the best monomer (APMA.HCl) identified by the modeling demonstrated such high affinity for the template that the imprinting effect was less important. The fitting of adsorption isotherms to the Freundlich model indicated that, in general, imprinting increases the population of high affinity binding sites, except when the affinity of the functional monomer for the target molecule is already very high. The cross-linking density was confirmed as a key parameter that determines the accessibility of the binding points to sodium cholate. Materials prepared with 9% mol APMA and 91% mol cross-linker showed enough affinity to achieve binding levels of up to 0.4 mmol g(-1) (i.e., 170 mg g(-1)) under flow (1 mL min(-1)) of 0.2 mM sodium cholate solution. Copyright 2009 Elsevier B.V. All rights reserved.
Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette
2015-04-01
The effects of polymerization kinetics and chemical miscibility on the crosslinking structure and mechanical properties of polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid photopolymerization are determined. A three-component initiator system is used and the monomer system contains methacrylates and epoxides. The photopolymerization kinetics is monitored in situ by Fourier transform infrared-attenuated total reflectance. The crosslinking structure is studied by modulated differential scanning calorimetry and dynamic mechanical analysis. X-ray microcomputed tomography is used to evaluate microphase separation. The mechanical properties of polymers formed by hybrid formed by free-radical polymerization. These investigations mark the first time that the benefits of the chain transfer reaction between epoxy and hydroxyl groups of methacrylate, on the crosslinking network and microphase separation during hybrid visible-light initiated photopolymerization, have been determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad
The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less
Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad; ...
2017-02-24
The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less
Thermo- and photo-driven soft actuators based on crosslinked liquid crystalline polymers
NASA Astrophysics Data System (ADS)
Gu, Wei; Wei, Jia; Yu, Yanlei
2016-09-01
Crosslinked liquid crystalline polymers (CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks. The anisotropic deformation of the CLCPs takes place when the mesogens experience order to disorder change in response to external stimuli; therefore, they can be utilized to fabricate smart actuators, which have potential applications in artificial muscles, micro-optomechanical systems, optics, and energy-harvesting fields. In this review the recent development of thermo- and photo-driven soft actuators based on the CLCPs are summarized. Project supported by the National Natural Science Foundation of China (Grant Nos. 21134003, 21273048, 51225304, and 51203023) and Shanghai Outstanding Academic Leader Program, China (Grant No. 15XD1500600).
Reconfigurable Polymer Networks for Improved Treatment of Intracranial Aneurysms
NASA Astrophysics Data System (ADS)
Ninh, Chi Suze Q.
Endovascular embolization of intracranial aneurysms is a minimally invasive treatment in which an implanted material forms a clot to isolate the weakened vessel. Current strategy suffers from long-term potential failure modes. These potential failure modes include (1) enzymatic degradation of the fibrin clot that leads to compaction of the embolic agent, (2) incomplete filling of the aneurysm sac by embolic agent, and (3) challenging geometry of wide neck aneurysms. In the case of wide neck aneurysms, usually an assisting metal stent is used to help open the artery. However, metal stents with much higher modulus in comparison to the soft blood vessel can cause biocompatibilities issues in the long term such as infection and scarring. Motivated to solve these challenges associated with endovascular embolization, strategies to synthesize and engineer reconfigurable and biodegradable polymers as alternative therapies are evaluated in this thesis. (1) Reconfiguration of fibrin gel's modulus was achieved through crosslinking with genipin released from a biodegradable polymer matrix. (2) Reconfigurability can also be achieved by transforming triblock co-polymer hydrogel into photoresponsive material through incorporation of melanin nanoparticles as efficient photosensitizers. (3) Finally, reconfigurability can be conferred on biodegradable polyester networks via Diels-Alder coupling of furan pendant groups and dimaleimide crosslinking agent. Taken all together, this thesis describes strategies to transform a broad class of polymer networks into reconfigurable materials for improved treatment of intracranial aneurysms as well as for other biomedical applications.
Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan
2016-01-01
Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched ‘on' and ‘off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication. PMID:27941924
NASA Astrophysics Data System (ADS)
Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan
2016-12-01
Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched `on' and `off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication.
Competing dynamic phases of active polymer networks
NASA Astrophysics Data System (ADS)
Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.
Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Nguyen, Thanh-Son; Selinger, Jonathan V
2017-09-01
In liquid crystal elastomers and polymer networks, the orientational order of liquid crystals is coupled with elastic distortions of crosslinked polymers. Previous theoretical research has described these materials through two different approaches: a neoclassical theory based on the liquid crystal director and the deformation gradient tensor, and a geometric elasticity theory based on the difference between the actual metric tensor and a reference metric. Here, we connect those two approaches using a formalism based on differential geometry. Through this connection, we determine how both the director and the geometry respond to a change of temperature.
Synthesis of polymer networks containing degradable polyacetal segments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goethals, E.J.; Trossaert, G.G.; Hartmann, P.J.
1993-12-31
In recent years, intensive research has been done in order to prepare different types of degradable polyacetal containing networks. In the present presentation four different routes for the production of polyacetal containing networks are described: (1) free radical copolymerization of {alpha},{omega}-(meth)acrylate terminated polyacetals (2) hydrosilylation reactions of {alpha},{omega}-allyl terminated poly-(1,3-dioxolane) with a multifunctional silane (3) modification of {alpha}{omega}-hydroxy terminated poly-(1,3-dioxepane) through reaction with 3-isocyanato propyl triethoxysilane and subsequent cross-linking under influence of H{sub 2}O and (4) synthesis of multifunctional hydroxy-terminated polyacetals, followed by cross-linking with di-isocyanates.
Interpenetrating polymer networks from acetylene terminated materials
NASA Technical Reports Server (NTRS)
Connell, J. W.; Hergenrother, P. M.
1989-01-01
As part of a program to develop high temperature/high performance structural resins for aerospace applications, the chemistry and properties of a novel class of interpenetrating polymer networks (IPNs) were investigated. These IPNs consist of a simple diacetylenic compound (aspartimide) blended with an acetylene terminated arylene ether oligomer. Various compositional blends were prepared and thermally cured to evaluate the effect of crosslink density on resin properties. The cured IPNs exhibited glass transition temperatures ranging from 197 to 254 C depending upon the composition and cure temperature. The solvent resistance, fracture toughness and coefficient of thermal expansion of the cured blends were related to the crosslink density. Isothermal aging of neat resin moldings, adhesive and composite specimens showed a postcure effect which resulted in improved elevated temperature properties. The chemistry, physical and mechanical properties of these materials will be discussed.
NASA Astrophysics Data System (ADS)
Zhang, Quan-Ping; Liu, Jun-Hua; Liu, Hai-Dong; Jia, Fei; Zhou, Yuan-Lin; Zheng, Jian
2017-10-01
Adding ceramic or conductive fillers into polymers for increasing permittivity is a direct and effective approach to enhance the actuation strain of dielectric elastomer actuators (DEAs). Unfortunately, the major dielectric loss caused by weak interfaces potentially harms the electro-mechanical stability and lifetime of DEAs. Here, we construct a desired macromolecular network with a long chain length and low cross-link density to reduce the elastic modulus of silicone elastomers. Selecting a high molecular weight of polymethylvinylsiloxane and a low dose of the cross-linker leads the soft but tough networks with rich entanglements, poor cross-links, and a low amount of defects. Then, a ductile material with low elastic modulus but high elongation at break is obtained. It accounts for much more excellent actuation strain of Hl in comparison to that of the other silicone elastomers. Importantly, without other fillers, the ultralow dielectric loss, conductivity, and firm networks possibly promote the electro-mechanical stability and lifetime for the DEA application.
Shi, Jiafu; Zhang, Wenyan; Wang, Xiaoli; Jiang, Zhongyi; Zhang, Shaohua; Zhang, Xiaoman; Zhang, Chunhong; Song, Xiaokai; Ai, Qinghong
2013-06-12
A facile approach to preparing mesoporous hybrid microcapsules is developed by exploring the segregating and mineralization-inducing capacities of cationic hydrophilic polymer. The preparation process contains four steps: segregation of cationic hydrophilic polymer during template formation, cross-linking of the segregated polymer, biomimetic mineralization within cross-linked polymer network, and removal of template to simultaneously generate capsule lumen and mesopores on the capsule wall. Poly(allylamine hydrochloride) (PAH) is chosen as the model polymer, its hydrophilicity renders the segregating capacity and spontaneous enrichment in the near-surface region of CaCO3 microspheres; its biopolyamine-mimic structure renders the mineralization-inducing capacity to produce titania from the water-soluble titanium(IV) precursor. Meanwhile, CaCO3 microspheres serve the dual templating functions in the formation of hollow lumen and mesoporous wall. The thickness of capsule wall can be controlled by changing the polymer segregating and cross-linking conditions, while the pore size on the capsule wall can be tuned by changing the template synthesizing conditions. The robust hybrid microcapsules exhibit desirable efficiency in enzymatic catalysis, wastewater treatment and drug delivery. This approach may open facile, generic, and efficient pathway to designing and preparing a variety of hybrid microcapsules with high and tunable permeability, good stability and multiple functionalities for a broad range of applications.
Akpalo, E; Bidault, L; Boissière, M; Vancaeyzeele, C; Fichet, O; Larreta-Garde, V
2011-06-01
Interpenetrating polymer network (IPN) architectures were conceived to improve the mechanical properties of a fibrin gel. Conditions allowing an enzymatic reaction to create one of the two networks in IPN architecture were included in the synthesis pathway. Two IPN series were carried out, starting from two polyethylene oxide (PEO) network precursors leading to different cross-linking densities of the PEO phase. The fibrin concentration varied from 5 to 20 wt.% in each series. The behavior of these materials during dehydration/hydration cycles was also studied. The mechanical properties of the resulting IPN were characterized in the wet and dry states. These self-supported biomaterials combine the properties of both a protein gel and a synthetic polymer. Finally, cells were grown on PEO/fibrin IPN, indicating that they are non-cytotoxic. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Melillo, Matthew Joseph
Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine-antifouling coatings to medical devices and absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into and leach out of PDMS networks is of critical importance for the design and use in another application - microfluidic devices. The growing use of PDMS in microfluidic devices raises the concern that some researchers may use this material without fully understanding all of its advantages, drawbacks, and intricacies. The primary goal of this Ph.D. dissertation is to elucidate PDMS network molecular structure to macroscopic property relationships and to demonstrate how molecular architecture can alter dynamic mechanical and wetting characteristics. We prepare PDMS materials by using vinyl/ tetrakis(dimethylsiloxy)silane (TDSS) and silanol/ tetraethylorthosilicate (TEOS) combinations of PDMS end-groups and crosslinkers as two model systems. Under constant curing conditions, we systematically study the effects of polymer molecular weight, loading of crosslinker, and end-group chemical functionality on the extent of gelation and the dynamic mechanical and water wetting properties of end-linked PDMS networks. The extent of the gelation reaction is determined using the Soxhlet extraction to quantify the amount of material that did and did not participate in the crosslinking reactions, termed the gel and sol fractions, respectively. We use the Miller-Macosko model in conjunction with the gel fraction and precise chemical composition (i.e., stoichiometric ratio and molecular weight) to determine the fractions of elastic and pendant material, the molecular weight between chemical crosslinks, and the average effective functionality of the crosslinker molecule. Based on dynamic mechanical testing, we find that the maximum storage moduli are achieved at optimal stoichiometric conditions in the vinyl/TDSS and commercial PDMS-based Sylgard 184 composite, but only keep improving with additional crosslinker in the silanol/TEOS systems due to in situ TEOS aggregation. We relate molecular network topology to mechanical properties using outputs from the Miller-Macosko model in the vinyl/TDSS system. The elastic fraction and storage modulus correlate well, as do the pendant fraction and the loss tangent, demonstrating the importance of each fraction in bulk mechanical properties. By studying the dynamic behavior of water droplets wetting PDMS substrates, we observe non-linear wetting behaviors that are markedly different from linear behaviors seen on glassy polymer substrates. The non-linear behavior is only observed prior to extraction, while after extraction, both systems demonstrate behavior similar to glassy polymers. This reveals the dramatic role small amounts of uncrosslinked materials present in the sol fraction play in the surface wetting dynamics of PDMS materials. We further demonstrate the role of uncrosslinked material by adding silicone oils into otherwise fully crosslinked PDMS networks and study their wetting properties. Through careful formulation and preparation of PDMS materials, compared to simply mixing two formulations present in Sylgard 184, one can apply polymer network models to glean useful information about network topology. The benefits of doing so outweigh the costs. We stress the importance of performing Soxhlet extraction to remove unreacted components from PDMS materials, even when using optimal stoichiometry. These mobile molecules that remain after crosslinking can alter significantly wetting behavior and readily leach into liquid environments. However, it is equally important to stress that Soxhlet extraction will not remove all unreacted material. Some will always remain in PDMS, which is often the practice in preparing microfluidic devices. While Sylgard 184 is very well suited for some applications, the results presented in this dissertation demonstrate to researchers that the material does have its limitations and that other options are available. These findings will aid in the design and implementation of reliable microfluidic devices and other PDMS-based materials that encounter liquid interfaces.
Tibbits, Andrew C; Yan, Yushan S; Kloxin, Christopher J
2017-07-01
Ene-functionalized ionic liquids with a range of different cationic groups and counteranions react stoichiometrically within a tetrathiol-divinyl ether formulation within 20 minutes to form thiol-ene polymers with measurable ionic conductivities via a photoinitiated polymerization and crosslinking reaction. Dynamic mechanical analysis indicates that these networks are more spatially heterogeneous and possess higher glass transition temperatures (T g ) compared with thiol-ene formulations without charge. While tuning the molar content of ionic liquid monomer is one method for adjusting the crosslink and charge densities of the thiol-ene polymeric ionic liquid networks, the presence of cation-anion interactions also plays a critical role in dictating the thermomechanical and conductive properties. Particularly, while cationic structure effects are not significant on the polymer properties, the use of a weakly coordinating hydrophobic anion (bistriflimide) instead of bromide-based networks results in an apparent decrease in hydrated ion conductivity (7.4 to 1.5 mS cm -1 ) and T g (-9.6 to -17.8 °C). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionically Cross-Linked Polymer Networks for the Multiple-Month Release of Small Molecules
2016-01-01
Long-term (multiple-week or -month) release of small, water-soluble molecules from hydrogels remains a significant pharmaceutical challenge, which is typically overcome at the expense of more-complicated drug carrier designs. Such approaches are payload-specific and include covalent conjugation of drugs to base materials or incorporation of micro- and nanoparticles. As a simpler alternative, here we report a mild and simple method for achieving multiple-month release of small molecules from gel-like polymer networks. Densely cross-linked matrices were prepared through ionotropic gelation of poly(allylamine hydrochloride) (PAH) with either pyrophosphate (PPi) or tripolyphosphate (TPP), all of which are commonly available commercial molecules. The loading of model small molecules (Fast Green FCF and Rhodamine B dyes) within these polymer networks increases with the payload/network binding strength and with the PAH and payload concentrations used during encapsulation. Once loaded into the PAH/PPi and PAH/TPP ionic networks, only a few percent of the payload is released over multiple months. This extended release is achieved regardless of the payload/network binding strength and likely reflects the small hydrodynamic mesh size within the gel-like matrices. Furthermore, the PAH/TPP networks show promising in vitro cytocompatibility with model cells (human dermal fibroblasts), though slight cytotoxic effects were exhibited by the PAH/PPi networks. Taken together, the above findings suggest that PAH/PPi and (especially) PAH/TPP networks might be attractive materials for the multiple-month delivery of drugs and other active molecules (e.g., fragrances or disinfectants). PMID:26811936
Thermally crosslinked polymeric compositions and methods of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koros, William John; Kratochvil, Adam Michal
2014-03-04
The various embodiments of the present disclosure relate generally to thermally crosslinked polymeric compositions and methods of making thermally crosslinked polymeric compositions. An embodiment of the present invention comprises a composition comprising: a first polymer comprising a first repeat unit, the first repeat unit comprising a carboxyl group, wherein the first polymer crosslinks to a second polymer formed from a second repeat unit, and wherein the first polymer crosslinks to the second polymer without formation of an ester group.
Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding
Ware, Taylor; Hearon, Keith; Lonnecker, Alexander; Wooley, Karen L.; Maitland, Duncan J.; Voit, Walter
2012-01-01
Triple shape memory polymers (TSMPs) are a growing subset of a class of smart materials known as shape memory polymers, which are capable of changing shape and stiffness in response to a stimulus. A TSMP can change shapes twice and can fix two metastable shapes in addition to its permanent shape. In this work, a novel TSMP system comprised of both permanent covalent cross-links and supramolecular hydrogen bonding cross-links has been synthesized via a one-pot method. Triple shape properties arise from the combination of the glass transition of (meth)acrylate copolymers and the dissociation of self-complementary hydrogen bonding moieties, enabling broad and independent control of both glass transition temperature (Tg) and cross-link density. Specifically, ureidopyrimidone methacrylate and a novel monomer, ureidopyrimidone acrylate, were copolymerized with various alkyl acrylates and bisphenol A ethoxylate diacrylate. Control of Tg from 0 to 60 °C is demonstrated: concentration of hydrogen bonding moieties is varied from 0 to 40 wt %; concentration of the diacrylate is varied from 0 to 30 wt %. Toughness ranges from 0.06 to 0.14 MPa and is found to peak near 20 wt % of the supramolecular cross-linker. A widely tunable class of amorphous triple-shape memory polymers has been developed and characterized through dynamic and quasi-static thermomechanical testing to gain insights into the dynamics of supramolecular networks. PMID:22287811
Vulpe, Raluca; Le Cerf, Didier; Dulong, Virginie; Popa, Marcel; Peptu, Catalina; Verestiuc, Liliana; Picton, Luc
2016-12-01
The elaboration of chemically crosslinked hydrogels based on collagen (C), hyaluronanic acid (HA) and sericin (S) with different polymer ratios was investigated by in-situ rheology. This reaction was performed via amide or ester bond reaction activated by carbodiimide, in pure water. Prior to molecule crosslinking, the rheological behaviour of the biopolymers (alone or in mixture) was characterized in a semi-dilute concentration regime. Both flow and dynamic measurements showed that uncrosslinked collagen alone appears to be rather elastic with yield stress properties, whereas uncrosslinked HA alone appears to be rather shear thinning and viscoelastic in agreement with entangled polymer behaviour. Sericin exhibited Newtonian low viscosity behaviour according to its very low molar mass. Before crosslinking, HA exhibited viscoelastic behaviour at concentrations above the critical entangled concentration (C*) in the mixtures, thus HA shows promise as a matrix for future crosslinked networks, whereas sericin did not significantly modify the rheology. During the reaction, followed by rheology, the kinetics were slower for pure HA systems compared with the mixtures (i.e., with added collagen and/or to a lesser extent sericin). At the same time, the final network of hydrogels (i.e., the elastic modulus) was more structured in the mixture based systems. This result is explained by ester bonds (the only possibility for pure HA systems), which are less favourable and reactive than amide bonds (possible with sericin and collagen). The presence of collagen in the HA matrix reinforced the hydrogel network. SEM studies confirmed the structure of the hydrogels, and in vitro degradability was globally consistent with the effect of the selected enzyme according to the hydrogel composition. All the elaborated hydrogels were non-cytotoxic in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of Photocrosslinkable Urethane-Doped Polyester Elastomers for Soft Tissue Engineering
Zhang, Yi; Tran, Richard T.; Gyawali, Dipendra; Yang, Jian
2012-01-01
Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-crosslinking polymerization. The mechanical properties of the CUPOMCs can be tuned by controlling the molar ratios of pre-POMC monomers, and the ratio between the prepolymer and HDI. CUPOMCs can be crosslinked into a 3D network through polycondensation or free radical polymerization reactions. The tensile strength and elongation at break of CUPOMC synthesized under the known conditions range from 0.73±0.12MPa to 10.91±0.64MPa and from 72.91±9.09% to 300.41±21.99% respectively. Preliminary biocompatibility tests demonstrated that CUPOMCs support cell adhesion and proliferation. Unlike the pre-polymers of other crosslinked elastomers, CUPOMC pre-polymers possess great processability demonstrated by scaffold fabrication via a thermally induced phase separation method. The dual crosslinking methods for CUPOMC pre-polymers should enhance the versatile processability of the CUPOMC used in various conditions. Development of CUPOMC should expand the choices of available biodegradable elastomers for various biomedical applications such as soft tissue engineering. PMID:23565318
Transient Binding and Viscous Dissipation in Semi-flexible Polymer Networks
NASA Astrophysics Data System (ADS)
Lieleg, Oliver; Claessens, Mireille; Bausch, Andreas
2008-03-01
Nature specifically chooses from a myriad of actin binding proteins (ABPs) to tailor the cytoskeletal microstructure. Herein, cells rely on the dynamics of the cytoskeleton as its structural and mechanical adaptability is crucial to allow for dynamic processes. A molecular understanding of such biological complexity calls for an in vitro system with well-defined structural rearrangements and cross-linker dynamics to elucidate the physical origin of the unique viscoelastic properties of cells. As we present here, the frequency-dependent viscoelastic response of cross-linked in vitro actin networks is determined by the binding kinetics of cross-linking molecules. Independent from the particular network structure, the viscous dissipation (loss modulus) exhibits a pronounced minimum in an intermediate frequency which is dominated by elasticity. We show that in this frequency regime the molecular origin of the viscoelastic response is given by the non-static nature of actin/ABP bonds as they are subjugated to chemical on/off kinetics. The time scale of the resulting stress release is set by the lifetime distribution of the cross-linking molecule and therefore can be tuned independently from other relaxation mechanisms. We speculate that unbinding of distinct cross-links might be the molecular mechanism employed by cells for mechanosensing.
NASA Astrophysics Data System (ADS)
Ren, Zhongqi; Zhu, Xinyan; Du, Jian; Kong, Delong; Wang, Nian; Wang, Zhuo; Wang, Qi; Liu, Wei; Li, Qunsheng; Zhou, Zhiyong
2018-03-01
A novel green adsorption polymer was prepared by ion imprinted technology in conjunction with sol-gel process under mild conditions for the selective removal of Cu(II) ions from aqueous solution. Effects of preparation conditions on adsorption performance of prepared polymers were studied. The ion-imprinted polymer was prepared using Cu(II) ion as template, N-[3-(2-aminoethylamino) propyl] trimethoxysilane (AAPTMS) as functional monomer and tetraethyl orthosilicate (TEOS) as cross-linker. Water was used as solvent in the whole preparation process. The imprinted and non-imprinted polymers were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM), Brunauer, Emmett and Teller (BET) and zeta potential. Three-dimensional network structure was formed and functional monomer was successfully cross-linked into the network structure of polymers. Effects of adsorption conditions on adsorption performance of prepared polymers were studied too. The pH value is of great influence on adsorption behavior. Adsorption by ion-imprinted polymer was fast (adsorption equilibrium was reached within 60 min). The adsorption capacity of Cu(II) ion-imprinted polymer was always larger than that of non-imprinted polymer. Pseudo-second-order kinetics model and Freundlich isotherm model fitted well with adsorption data. The maximum adsorption capacity of Cu(II) ion-imprinted polymer was 39.82 mg·g-1. However, the preparation conditions used in this work are much milder than those reported in literatures. The Cu(II) ion-imprinted polymer showed high selectivity and relative selectivity coefficients for Pb(II), Ni(II), Cd(II) and Co(II). In addition, the prepared ion-imprinted polymer could be reused several times without significant loss of adsorption capacity.
Jalani, Ghulam; Jung, Chan Woo; Lee, Jae Sang; Lim, Dong Woo
2014-01-01
Stimuli-responsive, polymer-based nanostructures with anisotropic compartments are of great interest as advanced materials because they are capable of switching their shape via environmentally-triggered conformational changes, while maintaining discrete compartments. In this study, a new class of stimuli-responsive, anisotropic nanofiber scaffolds with physically and chemically distinct compartments was prepared via electrohydrodynamic cojetting with side-by-side needle geometry. These nanofibers have a thermally responsive, physically-crosslinked compartment, and a chemically-crosslinked compartment at the nanoscale. The thermally responsive compartment is composed of physically crosslinkable poly(N-isopropylacrylamide) poly(NIPAM) copolymers, and poly(NIPAM-co-stearyl acrylate) poly(NIPAM-co-SA), while the thermally-unresponsive compartment is composed of polyethylene glycol dimethacrylates. The two distinct compartments were physically crosslinked by the hydrophobic interaction of the stearyl chains of poly(NIPAM-co-SA) or chemically stabilized via ultraviolet irradiation, and were swollen in physiologically relevant buffers due to their hydrophilic polymer networks. Bicompartmental nanofibers with the physically-crosslinked network of the poly(NIPAM-co-SA) compartment showed a thermally-triggered shape change due to thermally-induced aggregation of poly(NIPAM-co-SA). Furthermore, when bovine serum albumin and dexamethasone phosphate were separately loaded into each compartment, the bicompartmental nanofibers with anisotropic actuation exhibited decoupled, controlled release profiles of both drugs in response to a temperature. A new class of multicompartmental nanofibers could be useful for advanced nanofiber scaffolds with two or more drugs released with different kinetics in response to environmental stimuli. PMID:24872702
Nanoporous polymer electrolyte
Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO
2012-04-24
A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.
PROPERTY ANALYSIS OF TRIGLYCERIDE-BASED THERMOSETS. (R829576)
Triglycerides with acrylate functionality were prepared from various oils and
model triglycerides. The triglyceride-acrylates were homopolymerized and copolymerized
with styrene. The cross-link densities of the resulting polymer networks were
predicted utilizing the F...
Differentially photo-crosslinked polymers enable self-assembling microfluidics
Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.
2012-01-01
An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594
Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers
NASA Astrophysics Data System (ADS)
Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia
2016-09-01
A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.
Designer stabilizer for preparation of pristine graphene/polysiloxane films and networks
NASA Astrophysics Data System (ADS)
Parviz, Dorsa; Yu, Ziniu; Hedden, Ronald C.; Green, Micah J.
2014-09-01
A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.3. The resulting copolymer was able to stabilize pristine graphene in chloroform solution via π-π interactions between the pyrene groups and graphene sheets. TEM and SEM images show a homogeneous distribution of the graphene in cast films deposited from chloroform. The conductivity of a graphene/PDMS film prepared from copolymer with a 1.7 vol.% graphene loading was measured as 220 S m-1 after the removal of unbound polymer by a simple separation technique. With a SiH-ethynyl ratio of 1.7 : 1.0, the copolymer self-crosslinked at 110 °C in the presence of adventitious moisture, providing a straightforward route to incorporate graphene into silicone elastomers. The crosslinking process (with and without added graphene) was characterized by FT-IR spectroscopy and by swelling and extraction of the obtained networks. Again, unbound polymer removal increases the conductivity of the composite.A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.3. The resulting copolymer was able to stabilize pristine graphene in chloroform solution via π-π interactions between the pyrene groups and graphene sheets. TEM and SEM images show a homogeneous distribution of the graphene in cast films deposited from chloroform. The conductivity of a graphene/PDMS film prepared from copolymer with a 1.7 vol.% graphene loading was measured as 220 S m-1 after the removal of unbound polymer by a simple separation technique. With a SiH-ethynyl ratio of 1.7 : 1.0, the copolymer self-crosslinked at 110 °C in the presence of adventitious moisture, providing a straightforward route to incorporate graphene into silicone elastomers. The crosslinking process (with and without added graphene) was characterized by FT-IR spectroscopy and by swelling and extraction of the obtained networks. Again, unbound polymer removal increases the conductivity of the composite. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01431f
Process for crosslinking methylene-containing aromatic polymers with ionizing radiation
NASA Technical Reports Server (NTRS)
Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)
1990-01-01
A process for crosslinking aromatic polymers containing radiation-sensitive methylene groups (-CH2-) by exposing the polymers to ionizing radiation thereby causing crosslinking of the polymers through the methylene groups is described. Crosslinked polymers are resistant to most organic solvents such as acetone, alcohols, hydrocarbons, methylene, chloride, chloroform, and other halogenated hydrocarbons, to common fuels and to hydraulic fluids in contrast to readily soluble uncrosslinked polymers. In addition, the degree of crosslinking of the polymers depends upon the percentage of the connecting groups which are methylene which ranges from 5 to 50 pct and preferably from 25 to 50 pct of the connecting groups, and is also controlled by the level of irradiation which ranges from 25 to 1000 Mrads and preferably from 25 to 250 Mrads. The temperature of the reaction conditions ranges from 25 to 200 C and preferably at or slightly above the glass transition temperature of the polymer. The crosslinked polymers are generally more resistant to degradation at elevated temperatures such as greater than 150 C, have a reduced tendency to creep under load, and show no significant embrittlement of parts fabricated from the polymers.
Wang, Cheng; Yang, Li; Chang, Guanjun
2018-03-01
Crosslinked high-performance polymers have many industrial applications, but are difficult to recycle or rework. A novel class of recyclable crosslinking Cu(II)-metallo-supramolecular coordination polymers are successfully prepared, which possess outstanding thermal stability and mechanical property. More importantly, the Cu 2+ coordination interactions can be further removed via external pyrophosphate to recover the linear polymers, which endow the crosslinking polymers with recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cross-linked polyvinyl alcohol and method of making same
NASA Technical Reports Server (NTRS)
Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)
1981-01-01
A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.
O’Brien, Victor; Chang, Andrew; Blanco, Matthew; Zabalegui, Aitor; Lee, Hohyun; Asuri, Prashanth
2015-01-01
Current studies investigating properties of nanoparticle-reinforced polymers have shown that nanocomposites often exhibit improved properties compared to neat polymers. However, over two decades of research, using both experimental studies and modeling analyses, has not fully elucidated the mechanistic underpinnings behind these enhancements. Moreover, few studies have focused on developing an understanding among two or more polymer properties affected by incorporation of nanomaterials. In our study, we investigated the elastic and thermal properties of poly(acrylamide) hydrogels containing silica nanoparticles. Both nanoparticle concentration and size affected hydrogel properties, with similar trends in enhancements observed for elastic modulus and thermal diffusivity. We also observed significantly lower swellability for hydrogel nanocomposites relative to neat hydrogels, consistent with previous work suggesting that nanoparticles can mediate pseudo crosslinking within polymer networks. Collectively, these results indicate the ability to develop next-generation composite materials with enhanced mechanical and thermal properties by increasing the average crosslinking density using nanoparticles. PMID:26301505
NASA Astrophysics Data System (ADS)
Melillo, Matthew; Walker, Edwin; Klein, Zoe; Efimenko, Kirill; Genzer, Jan
Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from medical devices to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - microfluidic devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, end-group chemical functionality, the extent of dilution of the curing mixture, and gelation kinetics on the mechanical and surface properties of end-linked PDMS networks. The gel and sol fractions, storage and loss moduli, liquid swelling ratios, and water contact angles have all been shown to vary greatly based on the aforementioned variables. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have confirmed theories predicting the relationships between modulus and swelling and we've also applied the theory of Macosko-Miller to estimate extent of reaction of crosslinker and polymer groups. Methods for determining the molecular weight between crosslinks from swelling, mechanical, and gelation theories were applied to ascertain their similarities and differences in an effort to identify the most accurate method. These findings will aid in the design and implementation of efficient microfluidics and other PDMS-based materials that involve the transport of liquids.
Covalently crosslinked diels-alder polymer networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Christopher; Adzima, Brian J.; Anderson, Benjamin John
2011-09-01
This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis ofmore » the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.« less
Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.
2015-01-01
β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were contingent on the polymer concentrations, and the host-guest molar ratio. Transient and reversible physical crosslinking between host and guest polymers governed self-assembly, allowing flow under shear stress, and facilitating complete recovery of the material properties within a few seconds of unloading. The mechanical properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at body temperature, and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214
Long-Term Biostability of Self-Assembling Protein Polymers in the Absence of Covalent Crosslinking
Sallach, Rory E.; Cui, Wanxing; Balderrama, Fanor; Martinez, Adam W.; Wen, Jing; Haller, Carolyn A.; Taylor, Jeannette V.; Wright, Elizabeth R.; Long, Robert C.; Chaikof, Elliot L.
2009-01-01
Unless chemically crosslinked, matrix proteins, such as collagen or silk, display a limited lifetime in vivo with significant degradation observed over a period of weeks. Likewise, amphiphilic peptides, lipopeptides, or glycolipids that self-assemble through hydrophobic interactions to form thin films, fiber networks, or vesicles do not demonstrate in vivo biostability beyond a few days. We report herein that a self-assembling, recombinant elastin-mimetic triblock copolymer elicited minimal inflammatory response and displayed robust in vivo stability for periods exceeding 1 year, in the absence of either chemical or ionic crosslinking. Specifically, neither a significant inflammatory response nor calcification was observed upon implantation of test materials into the peritoneal cavity or subcutaneous space of a mouse model. Moreover, serial quantitative magnetic resonance imaging, evaluation of pre- and post-explant ultrastructure by cryo-high resolution scanning electron microscopy, and an examination of implant mechanical responses revealed substantial preservation of form, material architecture, and biomechanical properties, providing convincing evidence of a non-chemically or ionically crosslinked protein polymer system that exhibits long-term stability in vivo. PMID:19854505
Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes
NASA Astrophysics Data System (ADS)
McIntosh, Lucas D.
Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the disordered structure observed in diblock polymer melts near the order-disorder transition. In the resulting solid PEMs, the conductivity and modulus are both high, exceeding the 1 mS/cm and approaching the 1 GPa metrics, respectively, often cited for lithium-metal batteries. In the final chapter, an alternative synthetic route to generate nanostructured PEMs is presented. This strategy relies on the formation of a thermodynamically stable network morphology exhibited by a triblock terpolymer prepared with crosslinking moieties along the backbone. Although the mechanical properties of the resulting PEM are excellent, the conductivity is found to be somewhat limited by network defects that result from the solvent-casting procedure.
Hönes, Roland; Rühe, Jürgen
2018-05-08
Metallic superhydrophobic surfaces (SHSs) combine the attractive properties of metals, such as ductility, hardness, and conductivity, with the favorable wetting properties of nanostructured surfaces. Moreover, they promise additional benefits with respect to corrosion protection. For the modification of the intrinsically polar and hydrophilic surfaces of metals, a new method has been developed to deposit a long-term stable, highly hydrophobic coating, using nanostructured Ni surfaces as an example. Such substrates were chosen because the deposition of a thin Ni layer is a common choice for enhancing corrosion resistance of other metals. As the hydrophobic coating, we propose a thin film of an extremely hydrophobic fluoropolymer network. To form this network, a thin layer of a fluoropolymer precursor is deposited on the Ni substrate which includes a comonomer that is capable of C,H insertion cross-linking (CHic). Upon UV irradiation or heating, the cross-linker units become activated and the thin glassy film of the precursor is transformed into a polymer network that coats the surface conformally and permanently, as shown by extensive extraction experiments. To achieve an even higher stability, the same precursor film can also be transformed into a chemically surface-attached network by depositing a self-assembled monolayer of an alkane phosphonic acid on the Ni before coating with the precursor. During cross-linking, by the same chemical process, the growing polymer network will simultaneously attach to the alkane phosphonic acid layer at the surface of the metal. This strategy has been used to turn fractal Ni "nanoflower" surfaces grown by anisotropic electroplating into SHSs. The wetting characteristics of the obtained nanostructured metallic surfaces are studied. Additionally, the corrosion protection effect and the significant mechanical durability are demonstrated.
Zhao, Guang; Dai, Caili; Zhao, Mingwei; You, Qing; Chen, Ang
2013-01-01
A dispersed particle gel (DPG) was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) results showed that the particles were polygonal particles with nano-size distribution. According to the viscosity changes, the whole preparation process can be divided into two major stages: the bulk gel cross-linking reaction period and the DPG particle preparation period. A polymer gel with a 3-dimensional network was formed in the bulk gel cross-linking reaction period whereas shearing force and frictional force were the main driving forces for the preparation of DPG particles, and thus affected the morphology of DPG particles. High shearing force and frictional force reduced the particle size distribution, and then decreased the zeta potential (absolute value). The whole preparation process could be completed within 3 h at room temperature. It could be an efficient and energy-saving technology for preparation of DPG particles. PMID:24324817
NASA Astrophysics Data System (ADS)
Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Zhushma, Alexandr P.; Li, Qiaoxi; Morgan, Benjamin J.; Matyjaszewski, Krzysztof; Armstrong, Daniel P.; Dobrynin, Andrey V.; Sheyko, Sergei S.; Spontak, Richard J.
2017-04-01
Electroactive polymers (EAPs) refer to a broad range of relatively soft materials that change size and/or shape upon application of an electrical stimulus. Of these, dielectric elastomers (DEs) generated from either chemically- or physically-crosslinked polymer networks afford the highest levels of electroactuation strain, thereby making this class of EAPs the leading technology for artificial-muscle applications. While mechanically prestraining elastic networks remarkably enhances DEs electroactuation, external prestrain protocols severely limit both actuator performance and device implementation due to gradual DE stress relaxation and the presence of a cumbersome load frame. These drawbacks have persisted with surprisingly minimal advances in the actuation of single-component elastomers since the dawn of the "pre-strain era" introduced by Pelrine et al. (Science, 2000). In this work, we present a bottom-up, molecular-based strategy for the design of prestrain-free (freestanding) DEs derived from covalently-crosslinked bottlebrush polymers. This architecture, wherein design factors such as crosslink density, graft density and graft length can all be independently controlled, yields inherently strained polymer networks that can be readily adapted to a variety of chemistries. To validate the use of these molecularly-tunable materials as DEs, we have synthesized a series of bottlebrush silicone elastomers in as-cast shapes. Examination of these materials reveals that they undergo giant electroactuation strains (>300%) at relatively low fields (<10 V/m), thereby outperforming all commercial DEs to date and opening new opportunities in responsive soft-material technologies (e.g., robotics). The molecular design approach to controlling (electro)mechanical developed here is independent of chemistry and permits access to an unprecedented range of actuation properties from elastomeric materials with traditionally modest electroactuation performance (e.g., polydimethylsiloxane, PDMS). Experimental results obtained here compare favorably with theoretical predictions and demonstrate that the unique behavior of these materials is a direct consequence of the molecular architecture.
NASA Astrophysics Data System (ADS)
Li, Qiaochu; Barret, Devin G.; Messersmith, Phillip B.; Holten-Andersen, Niels
2014-03-01
Polymer-nanoparticle (NP) composites have attracted renewed attention due to enhanced mechanical strength combined with various functionalities, but controlling the interfacial chemistry between NPs and polymer matrix, which is crucial for the composite's mechanical behavior, remains a major challenge. Inspired by the adhesion chemistry of mussel fibers, we investigated a novel approach to incorporate Fe3O4 NPs into hydrogel matrix. A polyethylene glycol polymer is designed with both ends conjugated by catechol groups, which have strong coordination affinity to Fe. The polymer network is crosslinked via coordination bonding at the surface of Fe3O4 NPs, yielding a stiff nanocomposite hydrogel. Due to the reversible nature of coordination bonding, the hydrogel presents self-healing behavior. Oscillatory rheology allows comparative kinetic studies of self-healing driven by catechol bonding at Fe3O4 NP interfaces and by catechol-Fe3+ coordination complexes. Furthermore, the superparamagnetic property of Fe3O4 NP is preserved after gelation, allowing for response to external stimuli. This gelation motif can serve as a versatile platform for tuning functional and mechanical properties for future polymer nanocomposite materials.
Synthetically Simple, Highly Resilient Hydrogels
Cui, Jun; Lackey, Melissa A.; Madkour, Ahmad E.; Saffer, Erika M.; Griffin, David M.; Bhatia, Surita R.; Crosby, Alfred J.; Tew, Gregory N.
2014-01-01
Highly resilient synthetic hydrogels were synthesized by using the efficient thiol-norbornene chemistry to cross-link hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) polymer chains. The swelling and mechanical properties of the hydrogels were well-controlled by the relative amounts of PEG and PDMS. In addition, the mechanical energy storage efficiency (resilience) was more than 97% at strains up to 300%. This is comparable with one of the most resilient materials known: natural resilin, an elastic protein found in many insects, such as in the tendons of fleas and the wings of dragonflies. The high resilience of these hydrogels can be attributed to the well-defined network structure provided by the versatile chemistry, low cross-link density, and lack of secondary structure in the polymer chains. PMID:22372639
Correlation between elastic and plastic deformations of partially cured epoxy networks
NASA Astrophysics Data System (ADS)
Müller, Michael; Böhm, Robert; Geller, Sirko; Kupfer, Robert; Jäger, Hubert; Gude, Maik
2018-05-01
The thermo-mechanical behavior of polymer matrix materials is strongly dependent on the curing reaction as well as temperature and time. To date, investigations of epoxy resins and their composites mainly focused on the elastic domain because plastic deformation of cross-linked polymer networks was considered as irrelevant or not feasible. This paper presents a novel approach which combines both elastic and plastic domain. Based on an analytical framework describing the storage modulus, analogous parameter combinations are defined in order to reduce complexity when variations in temperature, strain rate and degree of cure are encountered.
Elasticity in Physically Cross-Linked Amyloid Fibril Networks.
Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele
2018-04-13
We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β-lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G∼c^{2.2} and G∼c^{2.5} for semiflexible and rigid fibrils, respectively) and ionic strength (G∼I^{4.4} and G∼I^{3.8} for β-lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.
Elasticity in Physically Cross-Linked Amyloid Fibril Networks
NASA Astrophysics Data System (ADS)
Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele
2018-04-01
We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β -lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G ˜c2.2 and G ˜c2.5 for semiflexible and rigid fibrils, respectively) and ionic strength (G ˜I4.4 and G ˜I3.8 for β -lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.
Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan
2017-11-29
Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.
A tough performance simultaneous semi-interpenetrating polymer network
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1989-01-01
A semi-interpenetrating polyimide (semi-IPN) network and methods for making and using the same are disclosed. The semi-IPN system comprises a high performance thermosetting polyimide having an acetylene-terminated group acting as a crosslinking site and a high performance linear thermoplastic polyimide. The polymer is made by combining low viscosity precursors and low molecular weight polymers of the thermosetting and thermoplastic polyimides and allowing them to react in the immediate presence of each other to form a simultaneous semi-interpenetrating polyimide network. Provided is a high temperature system having significantly improved processability and damage tolerance while maintaining excellent thermo-oxidative stability, mechanical properties and resistance to humidity, when compared with the commercial high temperature resin, Thermid 600. This material is particularly adapted for use as a molding, adhesive and advanced composite matrix for aerospace structural and electronic applications.
Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility.
Ohmori, Kana; Abu Bin, Imran; Seki, Takahiro; Liu, Chang; Mayumi, Koichi; Ito, Kohzo; Takeoka, Yukikazu
2016-12-11
This work investigates the influence of the molecular weight of polyrotaxane (PR) cross-linkers on the extensibility of polymer gels. The polymer gels, which were prepared using PR cross-linkers of three different molecular weights but the same number of cross-linking points per unit volume of gel, have almost the same Young's modulus. By contrast, the extensibility and rupture strength of the polymer gels are substantially increased with increasing molecular weight of the PR cross-linker.
Gao, Hui; Ding, Lei; Bai, Hua; Li, Lei
2017-02-08
Hyper-crosslinked polymers (HCPs) are promising materials for gas capture and storage, but high cost and complicated preparation limit their practical application. In this paper, a new type of HCPs (CTHPs) was synthesized through a one-step mild Friedel-Crafts reaction with low-cost coal tar as the starting material. Chloroform was utilized as both solvent and crosslinker to generate a three-dimensional crosslinked network with abundant micropores. The maximum BET surface area of the prepared CTHPs could reach up to 929 m 2 g -1 . Owing to the high affinity between the heteroatoms on the coal-tar building blocks and the CO 2 molecules, the adsorption capacity of CTHPs towards CO 2 reached up to 14.2 wt % (1.0 bar, 273 K) with a high selectivity (CO 2 /N 2 =32.3). Furthermore, the obtained CTHPs could adsorb 1.27 wt % H 2 at 1.0 bar and 77.3 K, and also showed capacity for the capture of high organic vapors at room temperature. In comparison with other reported porous organic polymers, CTHPs have the advantages of low-cost, easy preparation, and high gas-adsorption performance, making them suitable for mass production and practical use in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crosslinked crystalline polymer and methods for cooling and heating
Salyer, Ival O.; Botham, Ruth A.; Ball, III, George L.
1980-01-01
The invention relates to crystalline polyethylene pieces having optimum crosslinking for use in storage and recovery of heat, and it further relates to methods for storage and recovery of heat using crystalline polymer pieces having optimum crosslinking for these uses. Crystalline polymer pieces are described which retain at least 70% of the heat of fusion of the uncrosslinked crystalline polymer and yet are sufficiently crosslinked for the pieces not to stick together upon being cycled above and below the melting point of said polymer, preferably at least 80% of the heat of fusion with no substantial sticking together.
Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks
NASA Astrophysics Data System (ADS)
Kachan, Devin Michael
Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I speculate that cells take advantage of this equilibrium effect by tuning near the transition point, where small changes in free cross-linker density will affect large structural rearrangements between free filament networks and networks of bundles. Cells are naturally found far from equilibrium, where the active influx of energy from ATP consumption controls the dynamics. Motor proteins actively generate forces within biopolymer networks, and one may ask how these differ from the random stresses characteristic of equilibrium fluctuations. Besides the trivial observation that the magnitude is independent of temperature, I find that the processive nature of the motors creates a temporally correlated, or colored, noise spectrum. I model the network with a nonlinear scalar elastic theory in the presence of active driving, and study the long distance and large scale properties of the system with renormalization group techniques. I find that there is a new critical point associated with diverging correlation time, and that the colored noise produces novel frequency dependence in the renormalized transport coefficients. Finally, I study marginally elastic solids which have vanishing shear modulus due to the presence of soft modes, modes with zero deformation cost. Although network coordination is a useful metric for determining the mechanical response of random spring networks in mechanical equilibrium, it is insufficient for describing networks under external stress. In particular, under-constrained networks which are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in numerical simulations and experimentally in many biopolymer networks. Drawing upon analogies to the stress induced unjamming of emulsions, I develop a kinetic theory to explain the rigidity transition in spring and filament networks. Describing the dynamic evolution of non-affine deformation via a simple mechanistic picture, I recover the emergent nonlinear strain-stiffening behavior and compare this behavior to the yield stress flow seen in soft glassy fluids. I extend this theory to account for coordination number inhomogeneities and predict a breakdown of universal scaling near the critical point at sufficiently high disorder, and discuss the utility for this type of model in describing biopolymer networks.
Chen, Qijing; Cao, Xueteng; Xu, Yuanyuan; An, Zesheng
2013-10-01
Core cross-linked star (CCS) polymers become increasingly important in polymer science and are evaluated in many value-added applications. However, limitations exist to varied degrees for different synthetic methods. It is clear that improvement in synthetic efficiency is fundamental in driving this field moving even further. Here, the most recent advances are highlighted in synthetic strategies, including cross-linking with cross-linkers of low solubility, polymerization-induced self-assembly in aqueous-based heterogeneous media, and cross-linking via dynamic covalent bonds. The understanding of CCS polymers is also further refined to advocate their role as an intermediate between linear polymers and polymeric nanoparticles, and their use as interfacial stabilizers is rationalized within this context. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cascade synthesis of a gold nanoparticle-network polymer composite
Grubjesic, Simonida; Ringstrand, Bryan Scott; Jungjohann, Katherine L.; ...
2015-11-02
In this paper, the multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl- and acrylate-end-derivatized PEO 117-PPO 47-PEO 117 and [AuCl 4] -. The reaction sequence begins with the auto-reduction of aqueous [AuCl 4] - by PEO 117-PPO 47-PEO 117 which leads to both the production of Au NPs and the free radical initiated polymerization and crosslinking of the acrylate endderivatized PEO 117-PPO 47-PEO 117 to yield a network polymer. Optical spectroscopy andmore » TEM monitored the reduction of [AuCl 4] -, formation of large aggregated Au NPs and oxidative etching into a final state of dispersed, spherical Au NPs. ATR/FT-IR spectroscopy and thermal analysis confirms acrylate crosslinking to yield the polymer network. X-ray scattering (SAXS and WAXS) monitored the evolution of the multilamellar structured mesophase and revealed the presence of semi-crystalline PEO confined within the water layers. The hydrogel could be reversibly swollen without loss of the well-entrained Au NPs with full recovery of composite structure. Finally, optical spectroscopy shows a notable red shift (Δλ~ 45 nm) in the surface plasmon resonance between swollen and contracted states, demonstrating solvent-mediated modulation of the internal NP packing arrangement.« less
Shoravi, Siamak; Olsson, Gustaf D; Karlsson, Björn C G; Nicholls, Ian A
2014-06-12
Aspects of the molecular-level basis for the function of ethylene glycol dimethacrylate and trimethylolproprane trimethacrylate crosslinked methacrylic acid copolymers molecularly imprinted with (S)-propranolol have been studied using a series of all-component and all-atom molecular dynamics studies of the corresponding prepolymerization systems. The crosslinking agents were observed to contribute to template complexation, and the results were contrasted with previously reported template-recognition behavior of the corresponding polymers. Differences in the extent to which the two crosslinkers interacted with the functional monomer were identified, and correlations were made to polymer-ligand recognition behavior and the results of nuclear magnetic resonance spectroscopic studies studies. This study demonstrates the importance of considering the functional monomer-crosslinker interaction when designing molecularly imprinted polymers, and highlights the often neglected general contribution of crosslinker to determining the nature of molecularly imprinted polymer-template selectivity.
A comparison of thiolated and disulfide-crosslinked polyethylenimine for nonviral gene delivery.
Aravindan, Latha; Bicknell, Katrina A; Brooks, Gavin; Khutoryanskiy, Vitaliy V; Williams, Adrian C
2013-09-01
Branched polyethylenimine (25 kDa) is thiolated and compared with redox-sensitive crosslinked derivatives. Both polymers thiol contents are assessed; the thiolated polymers have 390-2300 mmol SH groups/mol, whereas the crosslinked polymers have lower thiol contents. Cytotoxicity assays show that both modified polymers give lower hemolysis than unmodified PEI. Increased thiol content increases gene transfer efficiency but also elevates cytotoxicity. Crosslinking improves plasmid DNA condensation and enhances transfection efficiency, but extensive crosslinking overstabilizes the polyplexes and decreases transfection, emphasizing the need to balance polyplex stabilization and unpacking. Thus, at low levels of crosslinking, 25 kDa PEI can be an efficient redox-sensitive carrier system. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rational design of molecularly imprinted polymer: the choice of cross-linker.
Muhammad, Turghun; Nur, Zohre; Piletska, Elena V; Yimit, Osmanjan; Piletsky, Sergey A
2012-06-07
The paper describes a rational approach for the selection of cross-linkers during the development of molecularly imprinted polymers (MIPs). As a model system for this research MIPs specific for the drug zidovudine (AZT) were designed and tested. Three cross-linkers trimethylolpropane trimethacrylate (TRIM), ethylene glycol dimethacrylate (EGDMA) and divinylbenzene (DVB) were studied. The analogue of zidovudine (AZT) ester (AZT-ES) was used as a dummy template. The imprinting factors for all of the polymers in the static adsorption experiments were calculated. The data on the AZT adsorption by control polymers (CP), which were prepared with different cross-linkers without a functional monomer, was also analyzed. DVB was found to be more inert towards zidovudine than EGDMA and TRIM, which was confirmed by both molecular modelling and adsorption experiments. It was demonstrated that DVB-based polymers had a higher imprinting factor (I = 1.85) compared with other tested cross-linked polymers. It was suggested that the selection of the cross-linker should be based on the strength of the interaction with the template: the cross-linker which displays lower binding of the template should be preferential because it generates MIPs with lower non-specific binding and a higher imprinting factor, and therefore specificity. Which cross-linker to use for the preparation of any particular MIP can be determined by analysis of the interactions between the cross-linker and template. This could be done either virtually using computational modelling or by template adsorption using a small library of polymers prepared using different cross-linkers.
Martinez, Adam W; Caves, Jeffrey M; Ravi, Swathi; Li, Wehnsheng; Chaikof, Elliot L
2014-01-01
Recombinant elastin-like protein polymers are increasingly being investigated as component materials of a variety of implantable medical devices. This is chiefly a result of their favorable biological properties and the ability to tailor their physical and mechanical properties. In this report, we explore the potential of modulating the water content, mechanical properties, and drug release profiles of protein films through the selection of different crosslinking schemes and processing strategies. We find that the selection of crosslinking scheme and processing strategy has a significant influence on all aspects of protein polymer films. Significantly, utilization of a confined, fixed volume, as well as vapor-phase crosslinking strategies, decreased protein polymer equilibrium water content. Specifically, as compared to uncrosslinked protein gels, water content was reduced for genipin (15.5%), glutaraldehyde (GTA, 24.5%), GTA vapor crosslinking (31.6%), disulfide (SS, 18.2%) and SS vapor crosslinking (25.5%) (P<0.05). Distinct crosslinking strategies modulated protein polymer stiffness, strain at failure and ultimate tensile strength (UTS). In all cases, vapor-phase crosslinking produced the stiffest films with the highest UTS. Moreover, both confined, fixed volume and vapor-phase approaches influenced drug delivery rates, resulting in decreased initial drug burst and release rates as compared to solution phase crosslinking. Tailored crosslinking strategies provide an important option for modulating the physical, mechanical and drug delivery properties of protein polymers. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Stansbury, Jeffrey W.
2011-01-01
Objectives This overview is intended to highlight connections between monomer structure and the development of highly crosslinked photopolymer networks including the conversion dependent properties of shrinkage, modulus and stress. Methods A review is provided that combines the polymer science and dental materials literature along with examples of relevant experimental results, which include measurements of reaction kinetics, photorheology as well as polymerization shrinkage and stress. Results While new monomers are continually under development for dental materials applications, mixtures of dimethacrylate monomers persist as the most common form of dental resins used on composite restorative materials. Monomer viscosity and reaction potential is derived from molecular structure and by employing real-time near-infrared spectroscopic techniques, the development of macromolecular networks is linked to the evolution of polymerization shrinkage (measured by linometer), modulus (measured by photorheometer), and stress (measured by tensometer). Relationships between the respective polymer properties are examined. Significance Through a better understanding of the polymer network formation and property development processes using conventional dimethacrylate monomer formulations, the rational design of improved materials is facilitated with the ultimate goal of achieving dental polymers that deliver enhanced clinical outcomes. PMID:22192248
Correlating Free-Volume Hole Distribution to the Glass Transition Temperature of Epoxy Polymers.
Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A
2017-09-07
A new algorithm is developed to quantify the free-volume hole distribution and its evolution in coarse-grained molecular dynamics simulations of polymeric networks. This is achieved by analyzing the geometry of the network rather than a voxelized image of the structure to accurately and efficiently find and quantify free-volume hole distributions within large scale simulations of polymer networks. The free-volume holes are quantified by fitting the largest ellipsoids and spheres in the free-volumes between polymer chains. The free-volume hole distributions calculated from this algorithm are shown to be in excellent agreement with those measured from positron annihilation lifetime spectroscopy (PALS) experiments at different temperature and pressures. Based on the results predicted using this algorithm, an evolution model is proposed for the thermal behavior of an individual free-volume hole. This model is calibrated such that the average radius of free-volumes holes mimics the one predicted from the simulations. The model is then employed to predict the glass-transition temperature of epoxy polymers with different degrees of cross-linking and lengths of prepolymers. Comparison between the predicted glass-transition temperatures and those measured from simulations or experiments implies that this model is capable of successfully predicting the glass-transition temperature of the material using only a PDF of the initial free-volume holes radii of each microstructure. This provides an effective approach for the optimized design of polymeric systems on the basis of the glass-transition temperature, degree of cross-linking, and average length of prepolymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigro, Valentina, E-mail: nigro@fis.uniroma3.it; Bruni, Fabio; Ricci, Maria Antonietta
The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition. At neutral pH and T ≈ 307 K, a sharp change of the local structure from a water rich open inhomogeneousmore » interpenetrated polymer network to a homogeneous porous solid-like structure after expelling water is observed. Differently, at acidic pH, the local structure changes almost continuously. These findings demonstrate that a fine control of the pH of the system allows to tune the sharpness of the volume-phase transition.« less
Chemical cross-linking of polypropylenes towards new shape memory polymers.
Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C
2015-04-01
In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lu, Canhui; Zhang, Xinxing; Zhang, Wei
2015-05-01
The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.
Stepwise Elastic Behavior in a Model Elastomer
NASA Astrophysics Data System (ADS)
Bhawe, Dhananjay M.; Cohen, Claude; Escobedo, Fernando A.
2004-12-01
MonteCarlo simulations of an entanglement-free cross-linked polymer network of semiflexible chains reveal a peculiar stepwise elastic response. For increasing stress, step jumps in strain are observed that do not correlate with changes in the number of aligned chains. We show that this unusual behavior stems from the ability of the system to form multiple ordered chain domains that exclude the cross-linking species. This novel elastomer shows a toughening behavior similar to that observed in biological structural materials, such as muscle proteins and abalone shell adhesive.
Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V
2010-02-05
Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols detection the developed sensor system is characterized by simplicity of operation, compactness, and low cost. Copyright 2009 Elsevier B.V. All rights reserved.
A Single Molecular Diels-Alder Crosslinker for Achieving Recyclable Cross-Linked Polymers.
Chen, Shengli; Wang, Fenfen; Peng, Yongjin; Chen, Tiehong; Wu, Qiang; Sun, Pingchuan
2015-09-01
A triol-functional crosslinker combining the thermoreversible properties of Diels-Alder (DA) adducts in one molecule is designed, synthesized, and used as an ideal substitute of a traditional crosslinker to prepare thermal recyclable cross-linked polyurethanes with excellent mechanical properties and recyclability in a very simple and efficient way. The recycle property of these materials achieved by the DA/retro-DA reaction at a suitable temperature is verified by differential scanning calorimetry and in situ variable temperature solid-state NMR experiments during the cyclic heating and cooling processes. The thermal recyclability and remending ability of the bulk polyurethanes is demonstrated by three polymer processing methods, including hot-press molding, injection molding, and solution casting. It is notable that all the recycled cross-linked polymers display nearly invariable elongation/stress at break compared to the as-synthesized samples. Further end-group functionalization of this single molecular DA crosslinker provides the potential in preparing a wide range of recyclable cross-linked polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Healy, Deirdre; Nash, Maria; Gorleov, Alexander; Thompson, Kerry; Dockery, Peter; Rochev, Yury
2017-11-01
The primary aim of this investigation was to determine the biocompatibility and cell culture potential of a newly designed class of thermoresponsive polymers. The attractiveness of these polymers lies in the fact that they swell rather than dissolve when the temperature is reduced below their respective lower critical solution temperature, due to the incorporation of octadecyl methacrylate (ODMA). The ODMA monomer acts as a physical crosslinker, preventing polymer dissolution upon temperature reduction. Two polymers were studied in this investigation poly(N isorpoylacrylamide (NIPAm)(99.25%)-co-ODMA(0.75%)) and poly(NIPAm(65%)-co-N-tert-butylacrylamide (NtBAm)(34.25%)-co-ODMA(0.75%)). Thin thermoresponsive films of the polymers were prepared via spin coating. 3T3 cells were then seeded on the prepared films and cell viability was assessed quantitatively through cell viability and activity assays and qualitatively by light microscopy. Cells were successfully seeded and grown on the poly(NIPAm-co-ODMA) and poly(NIPAm-co-NtBAm-co-ODMA) copolymer films after film modification with cell adhesion promoters (CAPs). Cell sheets successfully detached from the CAP coated poly(NIPAm-co-ODMA) platforms upon temperature reduction. Copyright © 2017 Elsevier B.V. All rights reserved.
Baranek, Austin; Song, Han Byul; McBride, Mathew; Finnegan, Patricia; Bowman, Christopher N.
2016-01-01
Bulk photopolymerization of a library of synthesized multifunctional azides and alkynes was carried out toward developing structure–property relationships for CuAAC-based polymer networks. Multifunctional azides and alkynes were formulated with a copper catalyst and a photoinitiator, cured, and analyzed for their mechanical properties. Material properties such as the glass transition temperatures (Tg) show a strong dependence on monomer structure with Tg values ranging from 41 to 90 °C for the series of CuAAC monomers synthesized in this study. Compared to the triazoles, analogous thioether-based polymer networks exhibit a 45–49 °C lower Tg whereas analogous monomers composed of ethers in place of carbamates exhibit a 40 °C lower Tg. Here, the formation of the triazole moiety during the polymerization represents a critical component in dictating the material properties of the ultimate polymer network where material properties such as the rubbery modulus, cross-link density, and Tg all exhibit strong dependence on polymerization conversion, monomer composition, and structure postgelation. PMID:27867223
Brey, Darren M; Erickson, Isaac; Burdick, Jason A
2008-06-01
A library of photocrosslinkable poly(beta-amino ester)s (PBAEs) was recently synthesized to expand the number of degradable polymers that can be screened and developed for a variety of biological applications. In this work, the influence of variations in macromer chemistry and macromer molecular weight (MMW) on network reaction behavior, overall bulk properties, and cell interactions were investigated. The MMW was controlled through alterations in the initial diacrylate to amine ratio (> or =1) during synthesis and decreased with an increase in this ratio. Lower MMWs reacted more quickly and to higher double bond conversions than higher MMWs, potentially due to the higher concentration of reactive groups. Additionally, the lower MMWs led to networks with higher compressive and tensile moduli that degraded slower than networks formed from higher MMWs because of an increase in the crosslinking density and decrease in the number of degradable units per crosslink. The adhesion and spreading of osteoblast-like cells on polymer films was found to be dependent on both the macromer chemistry and the MMW. In general, the number of cells was similar on networks formed from a range of MMWs, but the spreading was dramatically influenced by MMW (higher spreading with lower MMWs). These results illustrate further diversity in photocrosslinkable PBAE properties and that the chemistry and macromer structure must be carefully selected for the desired application. Copyright 2007 Wiley Periodicals, Inc.
Crosslinkable coatings from phosphorylcholine-based polymers.
Lewis, A L; Cumming, Z L; Goreish, H H; Kirkwood, L C; Tolhurst, L A; Stratford, P W
2001-01-01
2-Methacryloyloxyethyl phosphorylcholine (MPC) was synthesised and then used in the preparation of crosslinked polymer membranes with lauryl methacrylate, hydroxypropyl methacrylate and trimethoxysilylpropyl methacrylate (crosslinker) comonomers. Some physical aspects of the membrane properties were evaluated in order to establish the basis for the synthesis of a series of post-crosslinkable polymers. These materials were made by copolymerisation of the constituent monomers via a free radical method, and characterised using NMR, FT-IR, viscometry and elemental analysis. The optimum crosslink density and conditions required for curing coatings of these polymers were investigated using atomic force microscopy (AFM) and showed the inclusion of 5 mol% silyl crosslinking agent to be ideal. A nanoindentation technique was employed to determine if the coating developed elasticity upon crosslinking. The biological properties of the coatings were evaluated using a variety of protein adsorption assays and blood contacting experiments, and an enzyme immunoassay was developed to detect E. coli in order to assess the level of bacterial adhesion to these biomaterials. Polymers of this type were shown to be very useful as coating materials for improving the biocompatibility of, or reducing the levels of adherent bacteria to medical devices.
Processing Conjugated-Diene-Containing Polymers
NASA Technical Reports Server (NTRS)
Bell, Vernon L.; Havens, Stephen J.
1987-01-01
Diels-Alder reaction used to cross-linked thermoplastics. Process uses Diels-Alder reaction to cross-link and/or extend conjugated-diene-containing polymers by reacting them with bis-unsaturated dienophiles results in improved polymer properties. Quantities of diene groups required for cross-linking varies from very low to very high concentrations. Process also used to extend, or build up molecular weights of, low-molecular-weight linear polymers with terminal conjugated dienic groups.
High-Temperature Shape Memory Polymers
NASA Technical Reports Server (NTRS)
Yoonessi, Mitra; Weiss, Robert A.
2012-01-01
physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing radiation ( radiation, neutrons), or by chemical crosslinking to form a covalent permanent network. With respect to other shape memory polymers, this invention is novel in that it describes the use of a thermoplastic composition that can be thermally molded or solution-cast into complex "permanent" shapes, and then reheated or redissolved and recast from solution to prepare another shape. It is also unique in that the shape memory behavior is provided by a non-polymer additive.
Polymeric molecular sieve membranes for gas separation
Dai, Sheng; Qiao, Zhenan; Chai, Songhai
2017-08-15
A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.
Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.
2016-01-01
A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Canhui; Zhang, Xinxing; Zhang, Wei
The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. Themore » results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.« less
Highly porous ceramic oxide aerogels having improved flexibility
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)
2012-01-01
Ceramic oxide aerogels incorporating periodically dispersed flexible linkages are provided. The flexible linkages impart greater flexibility than the native aerogels without those linkages, and have been shown to reduce or eliminate the need for supercritical CO.sub.2-mediated drying of the corresponding wet gels. The gels may also be polymer cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions.
Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking
NASA Technical Reports Server (NTRS)
Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda
2008-01-01
Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.
Crosslinked polymer nanoparticles containing single conjugated polymer chains
NASA Astrophysics Data System (ADS)
Ponzio, Rodrigo A.; Marcato, Yésica L.; Gómez, María L.; Waiman, Carolina V.; Chesta, Carlos A.; Palacios, Rodrigo E.
2017-06-01
Conjugated polymer nanoparticles are widely used in fluorescent labeling and sensing, as they have mean radii between 5 and 100 nm, narrow size dispersion, high brightness, and are photochemically stable, allowing single particle detection with high spatial and temporal resolution. Highly crosslinked polymers formed by linking individual chains through covalent bonds yield high-strength rigid materials capable of withstanding dissolution by organic solvents. Hence, the combination of crosslinked polymers and conjugated polymers in a nanoparticulated material presents the possibility of interesting applications that require the combined properties of constituent polymers and nanosized dimension. In the present work, F8BT@pEGDMA nanoparticles composed of poly(ethylene glycol dimethacrylate) (pEGDMA; a crosslinked polymer) and containing the commercial conjugated polymer poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) were synthesized and characterized. Microemulsion polymerization was applied to produce F8BT@pEDGMA particles with nanosized dimensions in a ∼25% yield. Photophysical and size distribution properties of F8BT@pEDGMA nanoparticles were evaluated by various methods, in particular single particle fluorescence microscopy techniques. The results demonstrate that the crosslinking/polymerization process imparts structural rigidity to the F8BT@pEDGMA particles by providing resistance against dissolution/disintegration in organic solvents. The synthesized fluorescent crosslinked nanoparticles contain (for the most part) single F8BT chains and can be detected at the single particle level, using fluorescence microscopy, which bodes well for their potential application as molecularly imprinted polymer fluorescent nanosensors with high spatial and temporal resolution.
Highly crosslinked silicon polymers for gas chromatography columns
NASA Technical Reports Server (NTRS)
Shen, Thomas C. (Inventor)
1994-01-01
A new highly crosslinked silicone polymer particle for gas chromatography application and a process for synthesizing such copolymer are described. The new copolymer comprises vinyltriethoxysilane and octadecyltrichlorosilane. The copolymer has a high degree of crosslinking and a cool balance of polar to nonpolar sites in the porous silicon polymer assuring fast separation of compounds of variable polarity.
Selective Photophysical Modification on Light-Emitting Polymer Films for Micro- and Nano-Patterning
Zhang, Xinping; Liu, Feifei; Li, Hongwei
2016-01-01
Laser-induced cross-linking in polymeric semiconductors was utilized to achieve micro- and nano-structuring in thin films. Single- and two-photon cross-linking processes led to the reduction in both the refractive index and thickness of the polymer films. The resultant photonic structures combine the features of both relief- and phase-gratings. Selective cross-linking in polymer blend films based on different optical response of different molecular phases enabled “solidification” of the phase-separation scheme, providing a stable template for further photonic structuring. Dielectric and metallic structures are demonstrated for the fabrication methods using cross-linking in polymer films. Selective cross-linking enables direct patterning into polymer films without introducing additional fabrication procedures or additional materials. The diffraction processes of the emission of the patterned polymeric semiconductors may provide enhanced output coupling for light-emitting diodes or distributed feedback for lasers. PMID:28773248
NASA Astrophysics Data System (ADS)
Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.
2017-02-01
In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.
Zhang, Yu; Luo, Hao; Carr, Peter W.
2011-01-01
A new family of Hyper-Crosslinked (HC) phases has been recently introduced for use under very aggressive acid conditions including those encountered in ultra-fast, high temperature Two-Dimensional Liquid Chromatography (2DLC). This type of stationary phase showed significantly enhanced acid and thermal stability compared to the most acid stable, commercial RPLC phases. In addition, the use of “orthogonal” chemistry to make surface-confined polymer networks ensures good reproducibility and high efficiency. One of the most interesting features of the HC phases is the ability to derivatize the surface aromatic groups with various functional groups. This led to the development of a family of hyper-crosslinked phases possessing a wide variety of chromatographic selectivities by attaching hydrophobic (e.g. –C8), ionizable (e.g. -COOH, -SO3H), aromatic (e.g. –toluene) or polar (e.g. -OH) species to the aromatic polymer network. HC reversed phases with various degrees of hydrophobicity and mixed-mode HC phases with added strong and weak cation exchange sites have been synthesized, characterized and applied. These silica-based acid-stable HC phases, with their attractive chromatographic properties, should be very useful in the separations of bases or biological analytes in acidic media, especially at elevated temperatures. This work reviews the prior research on HC phases and introduces a novel HC phase made by alternative chemistry. PMID:21906745
Topological structure and mechanics of glassy polymer networks.
Elder, Robert M; Sirk, Timothy W
2017-11-22
The influence of chain-level network architecture (i.e., topology) on mechanics was explored for unentangled polymer networks using a blend of coarse-grained molecular simulations and graph-theoretic concepts. A simple extension of the Watts-Strogatz model is proposed to control the graph properties of the network such that the corresponding physical properties can be studied with simulations. The architecture of polymer networks assembled with a dynamic curing approach were compared with the extended Watts-Strogatz model, and found to agree surprisingly well. The final cured structures of the dynamically-assembled networks were nearly an intermediate between lattice and random connections due to restrictions imposed by the finite length of the chains. Further, the uni-axial stress response, character of the bond breaking, and non-affine displacements of fully-cured glassy networks were analyzed as a function of the degree of disorder in the network architecture. It is shown that the architecture strongly affects the network stability, flow stress, onset of bond breaking, and ultimate stress while leaving the modulus and yield point nearly unchanged. The results show that internal restrictions imposed by the network architecture alter the chain-level response through changes to the crosslink dynamics in the flow regime and through the degree of coordinated chain failure at the ultimate stress. The properties considered here are shown to be sensitive to even incremental changes to the architecture and, therefore, the overall network architecture, beyond simple defects, is predicted to be a meaningful physical parameter in the mechanics of glassy polymer networks.
Polymeric electrolytes based on hydrosilyation reactions
Kerr, John Borland [Oakland, CA; Wang, Shanger [Fairfield, CA; Hou, Jun [Painted Post, NY; Sloop, Steven Edward [Berkeley, CA; Han, Yong Bong [Berkeley, CA; Liu, Gao [Oakland, CA
2006-09-05
New polymer electrolytes were prepared by in situ cross-linking of allyl functional polymers based on hydrosilation reaction using a multifunctional silane cross-linker and an organoplatinum catalyst. The new cross-linked electrolytes are insoluble in organic solvent and show much better mechanical strength. In addition, the processability of the polymer electrolyte is maintained since the casting is finished well before the gel formation.
Christie, R. James; Anderson, Diana J.; Grainger, David W.
2010-01-01
Reversible covalent conjugation chemistries that allow site- and condition-specific coupling and uncoupling reactions are attractive components in nanotechnologies, bioconjugation methods, imaging and drug delivery systems. Here, we compare three heterobifunctional crosslinkers, containing both thiol- and amine- reactive chemistry, to form pH-labile hydrazones with hydrazide derivatives of the known and often published water-soluble polymer, poly[N-(2-hydroxypropyl methacrylamide)] (pHPMA), while subsequently coupling thiol-containing molecules to the crosslinker via maleimide addition. Two novel crosslinkers were prepared from the popular heterobifunctional crosslinking agent, succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC), modified to contain either terminal aldehyde groups (i.e., 1-(N-3-propanal)-4-(N-maleimidomethyl) cyclohexane carboxamide, PMCA) or methylketone groups (i.e., 1-(N-3-butanone)-4-(N-maleimidomethyl) cyclohexane carboxamide, BMCA). A third crosslinking agent was the commercially available N-4-acetylphenyl maleimide (APM). PMCA and BMCA exhibited excellent reactivity towards hydrazide-derivatized pHPMA with essentially complete hydrazone conjugation to polymer reactive sites, while APM coupled only ~ 60% of available reactive sites on the polymer despite a 3-fold molar excess relative to polymer hydrazide groups. All polymer hydrazone conjugates bearing these bifunctional agents were then further reacted with thiol-modified tetramethylrhodamine dye, confirming crosslinker maleimide reactivity after initial hydrazone polymer conjugation. Incubation of dye-labeled polymer conjugates in phosphate buffered saline at 37°C showed that hydrazone coupling resulting from APM exhibited the greatest difference in stability between pH 7.4 and 5.0, with hydrolysis and dye release increased at pH 5.0 over a 24hr incubation period. Polymer conjugates bearing hydrazones formed from crosslinker BMCA exhibited intermediate stability with hydrolysis much greater at pH 5.0 at early time points, but hydrolysis at pH 7.4 was significant after 5 hrs. Hydrazones formed with the PMCA crosslinker showed no difference in release rates at pH 7.4 and 5.0. PMID:20695431
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhunia, Subhajit; Bhanja, Piyali; Das, Sabuj Kanti
Targeted synthesis of microporous adsorbents for CO{sub 2} capture and storage is very challenging in the context of remediation from green house gases. Herein we report two novel N-rich microporous networks SB-TRZ-CRZ and SB-TRZ-TPA by extensive incorporation of triazine containing tripodal moiety in the porous polymer framework. These materials showed excellent CO{sub 2} storage capacities: SB-TRZ-CRZ displayed the CO{sub 2} uptake capacity of 25.5 wt% upto 1 bar at 273 K and SB-TRZ-TPA gave that of 16 wt% under identical conditions. The substantial dipole quadruple interaction between network (polar triazine) and CO{sub 2} boosts the selectivity for CO{sub 2}/N{sub 2}.more » SB-TRZ-CRZ has this CO{sub 2}/N{sub 2} selectivity ratio of 377, whereas for SB-TRZ-TPA it was 97. Compared to other porous polymers, these materials are very cost effective, scalable and very promising material for clean energy application and environmental issues. - Graphical abstract: We report two novel N-rich microporous polymeric materials by doping of triazine containing tripodal dopant in the organic framework. These materials showed excellent CO{sub 2} storage capacities as high as 25.5 wt% under 1 bar pressure with exceptional CO{sub 2}/N{sub 2} selectivity of 377. - Highlights: • Triazine containing trimodal moiety incorporated in polycarbazolic and poly triphenylamine networks. • N-rich crosslinked polymers with high BET surface area and 1.5–1.7 nm size large micropores. • CO{sub 2} uptake capacity of 25.5 wt% upto 1 bar at 273 K. • These crosslinked porous polymers showed exceptional CO{sub 2}/N{sub 2} selectivity.« less
Non-equilibrium fluctuations of a semi-flexible filament driven by active cross-linkers
NASA Astrophysics Data System (ADS)
Weber, I.; Appert-Rolland, C.; Schehr, G.; Santen, L.
2017-11-01
The cytoskeleton is an inhomogeneous network of semi-flexible filaments, which are involved in a wide variety of active biological processes. Although the cytoskeletal filaments can be very stiff and embedded in a dense and cross-linked network, it has been shown that, in cells, they typically exhibit significant bending on all length scales. In this work we propose a model of a semi-flexible filament deformed by different types of cross-linkers for which one can compute and investigate the bending spectrum. Our model allows to couple the evolution of the deformation of the semi-flexible polymer with the stochastic dynamics of linkers which exert transversal forces onto the filament. We observe a q-2 dependence of the bending spectrum for some biologically relevant parameters and in a certain range of wave numbers q, as observed in some experiments. However, generically, the spatially localized forcing and the non-thermal dynamics both introduce deviations from the thermal-like q-2 spectrum.
Alexander, Shirin; Dunnill, Charles W; Barron, Andrew R
2016-03-15
The assembly of temperature/pH sensitive complex microparticle structures through chemisorption and physisorption provides a responsive system that offers application as routes to immobilization of proppants in-situ. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) along with energy dispersive X-ray analysis (EDX) have been used to characterize a series of bi-functionalized monolayers and/or multilayers grown on alumina microparticles and investigate the reactive nature of both temperature sensitive cross-linker (epoxy resin) with the layers and pH-responsive bridging layer (polyetheramine). The bifunctional acids, behaving as molecular anchors, allow for a controlled reaction with a cross-linker (resin or polymer) with the formation of networks, which is either irreversible or reversible based on the nature of the cross-linker. The networks results in formation of porous hierarchical particles that offer a potential route to the creation of immobile proppant pack. Copyright © 2015 Elsevier Inc. All rights reserved.
Creep-induced anisotropy in covalent adaptable network polymers.
Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai
2017-10-11
Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.
Role of special cross-links in structure formation of bacterial DNA polymer
NASA Astrophysics Data System (ADS)
Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim
2018-01-01
Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.
NASA Astrophysics Data System (ADS)
Zhang, Jinghui; Huang, Zhiwei; Liu, Dan
2017-12-01
Polymer thin films are generally employed as coatings on implants to prevent protein adsorption. Polymer chain mobility and surface softness have been found to contribute to the protein resistance, but also bring film instability in a liquid protein medium. We investigated the protein resistance ability of three low-Tg polymers, including hydrophobic polymers polyisoprene (PI), poly(n-butyl methacrylate) (PnBMA) and hydrophilic polyethylene oxide (PEO), by overcoming the instability issue with crosslinking. We found that the Tgs of PI and PEO can be increased to around 0 °C after crosslinking. The remained strong chain mobility of both films can still resist protein adsorption regardless the hydrophobicity, yet greatly increases the film stability under an aqueous circumstance. The PnBMA film increased its Tg to around room temperature after crosslinking, which deteriorated the protein-resistance ability having the surface covered by BSA molecules. Our results support that the chain mobility of a polymer film plays an important role in resisting protein adsorption due to the increased entropy associated with more mobile polymer chains. By tune the degree of crosslinking, the stability of polymer in aqueous environment can be increased while the protein resistant ability can be remained. Our results provide a new strategy to design polymer materials for effective antifouling.
Dissolution of covalent adaptable network polymers in organic solvent
NASA Astrophysics Data System (ADS)
Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.
2017-12-01
It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.
A two-dimensional polymer synthesized at the air/water interface.
Schlüter, A Dieter; Müller, Vivian; Hinaut, Antoine; Moradi, Mina; Baljozovic, Milos; Jung, Thomas; Shahgaldian, Patrick; Möhwald, Helmuth; Hofer, Gregor; Kröger, Martin; King, Benjamin; Meyer, Ernst; Glatzel, Thilo
2018-06-11
A trifunctional, partially fluorinated anthracene-substituted triptycene monomer is spread at the air/water interface into a monolayer, which is transformed into a long-range ordered 2D polymer by irradiation with a standard ultraviolet lamp using 365 nm light. The polymer is analyzed by Brewster angle microscopy directly at this interface and by scanning tunneling microscopy measurements and non-contact atomic force microscopy (nc-AFM), both after transfer from below the interface onto highly oriented pyrolytic graphite and then into ultra-high vacuum. Both methods confirm a network structure, the lattice parameters of which are virtually identical to a structural model network based on X-ray diffractometry of a closely related 2D polymer unequivocally established in a single crystal. The nc-AFM images are obtained with unprecedentedly high resolution and prove long-range order over areas of at least 300 × 300 nm2. As required for a 2D polymer, the pore sizes are monodisperse, except for the regions, where the network is somewhat stretched because it spans over protrusions. Together with a previous report on the nature of the cross-links in this network, the structural information provided here leaves no doubt that a 2D polymer has been synthesized under ambient conditions at an air/water interface. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly cross-linked nanoporous polymers
Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.
1998-01-01
Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.
Highly cross-linked nanoporous polymers
Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.
1997-01-01
Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.
NASA Astrophysics Data System (ADS)
Satti, A. J.; Ressia, J. A.; Cerrada, M. L.; Andreucetti, N. A.; Vallés, E. M.
2018-03-01
The effects on different synthetic polymers of distinct types of radiation, gamma rays and electron beam, under different atmospheres are followed by changes in their viscoelastic behavior. Taking into account the two main radioinduced reactions, crosslinking and scissioning of polymeric chains, liquid polydimethylsiloxane has been used as example of crosslinkable polymer and semi crystalline polypropylene as example of scissionable polymer. Propylene - 1-hexene copolymers have been also evaluated, and the effects of both reactions were clearly noticed. Accordingly, samples of those aforementioned polymers have been irradiated with 60Co gamma irradiation in air and under vacuum, and also with electron beam, at similar doses. Sinusoidal dynamic oscillation experiments showed a significant increase in branching and crosslinking reactions when specimens are irradiated under vacuum, while scissioning reactions were observed for the different polymers when irradiation takes place under air with either gamma irradiation or electron beam.
Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug.
Iza, M; Stoianovici, G; Viora, L; Grossiord, J L; Couarraze, G
1998-03-02
Thermosensitive polymer networks were synthesized from poly(ethylene glycol), hexamethylene diisocyanate and 1,2,6-hexanetriol in stoichiometric proportions. By varying the amount of 1,2,6-hexanetriol and the molar mass of the poly(ethylene glycol), a wide range of networks with different crosslinking densities was prepared. The networks obtained were characterized by the temperature dependence of their degree of equilibrium swelling in water and by their Young's moduli. For each network, the molecular weight between crosslinks was estimated. The structure of the hydrogels was analysed with respect to scaling laws, and it was found that the results obtained with PEG 1500 and PEG 6000 hydrogels are in agreement with theoretical predictions, whereas those obtained with PEG 400 hydrogels are in disagreement. The release properties of PEG hydrogels were studied by the determination of the diffusion coefficient for acebutolol chlorhydrate and by an analysis of the effect of temperature on these coefficients. Finally, these release properties were correlated with the swelling and structural properties of the hydrogels.
Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won
2016-01-01
Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842
Mesoporous Polymer Frameworks from End-Reactive Bottlebrush Copolymers
Altay, Esra; Nykypanchuk, Dmytro; Rzayev, Javid
2017-08-07
Reticulated nanoporous materials generated by versatile molecular framework approaches are limited to pore dimensions on the scale of the utilized rigid molecular building blocks (<5 nm). The inherent flexibility of linear polymers precludes their utilization as long framework connectors for the extension of this strategy to larger length scales. We report a method for the fabrication of mesoporous frameworks by using bottlebrush copolymers with reactive end blocks serving as rigid macromolecular interconnectors with directional reactivity. End-reactive bottlebrush copolymers with pendant alkene functionalities were synthesized by a combination of controlled radical polymerization and polymer modification protocols. Ru-catalyzed cross-metathesis cross-linking of bottlebrushmore » copolymers with two reactive end blocks resulted in the formation of polymer frameworks where isolated cross-linked domains were interconnected with bottlebrush copolymer bridges. The resulting materials were characterized by a continuous network pore structure with average pore sizes of 9–50 nm, conveniently tunable by the length of the utilized bottlebrush copolymer building blocks. As a result, the materials fabrication strategy described in this work expands the length scale of molecular framework materials and provides access to mesoporous polymers with a molecularly tunable reticulated pore structure without the need for templating, sacrificial component etching, or supercritical fluid drying.« less
Large strain deformation behavior of polymeric gels in shear- and cavitation rheology
NASA Astrophysics Data System (ADS)
Hashemnejad, Seyed Meysam; Kundu, Santanu
Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.
Controlled release of therapeutics using interpenetrating polymeric networks.
Aminabhavi, Tejraj M; Nadagouda, Mallikarjuna N; More, Uttam A; Joshi, Shrinivas D; Kulkarni, Venkatrao H; Noolvi, Malleshappa N; Kulkarni, Padmakar V
2015-04-01
The ever-increasing developments in pharmaceutical formulations have led to the widespread use of biodegradable polymers in various forms and configurations. In particular, interpenetrating network (IPN) and semi-IPN polymer structures that are capable of releasing drugs in a controlled manner have gained much wider importance in recent years. Recently, IPNs and semi-IPNs have emerged as innovative materials of choice in controlled release (CR) of drugs as the release from these systems depends on pH of the media and temperature in addition to the nature of the system. These networks can be prepared as smart hydrogels following chemical or physical crosslinking methods to show remarkable drug release patterns compared to single polymer systems. A large number of IPNs and semi-IPNs have been reported in the literature. The present review is focused on the preparation methods and their CR properties with reference to anticancer, anti-asthmatic, antibiotic, anti-inflammatory, anti-tuberculosis and antihypertensive drugs, as majority of these drugs have been reported to be the ideal choices for using IPNs and semi-IPNs.
Gao, Jing; White, Evan M; Liu, Qiaohong; Locklin, Jason
2017-03-01
Poly quaternary "-oniums" derived from polyethylenimine (PEI), poly(vinyl-N-alkylpyridinium), or chitosan belong to a class of cationic polymers that are efficient antimicrobial agents. When dissolved in solution, the positively charged polycations are able to displace the divalent cations of the cellular phospholipid bilayer and disrupt the ionic cross-links and structural integrity of the membrane. However, when immobilized to a surface where confinement limits diffusion, poly -oniums still show excellent antimicrobial activity, which implies a different biocidal mode of action. Recently, a proposed mechanism, named phospholipid sponge effect, suggested that surface-bound polycationic networks are capable of recruiting negatively charged phospholipids out of the bacterial cell membrane and sequestering them within the polymer matrix.1 However, there has been insufficient evidence to support this hypothesis. In this study, a surface-bound N,N-dodecyl methyl-co-N,N-methylbenzophenone methyl quaternary PEI (DMBQPEI) was prepared to verify the phospholipid sponge effect. By tuning the irradiation time, the cross-linking densities of surface-bound DMBQPEI films were mediated. The modulus of films was measured by PeakForce Quantitative Nanomechanical Mapping (QNM) to indicate the cross-linking density variation with increasing irradiation time. A negative correlation between the film cross-linking density and the absorption of a negatively charged phospholipid (DPhPG) was observed, but no such correlations were observed with a neutral phospholipid (DPhPC), which strongly supported the action of anionic phospholipid suction proposed in the lipid sponge effect. Moreover, the killing efficiency toward S. aureus and E. coli was inversely affected by the cross-linking density of the films, providing evidence for the phospholipid sponge effect. The relationship between killing efficiency and film cross-linking density is discussed.
Synthesis of hydrogel via click chemistry for DNA electrophoresis.
Finetti, Chiara; Sola, Laura; Elliott, Jim; Chiari, Marcella
2017-09-01
This work introduces a novel sieving gel for DNA electrophoresis using a classical click chemistry reaction, the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC), to cross-link functional polymer chains. The efficiency of this reaction provides, under mild conditions, hydrogels with near-ideal network connectivity and improved physical properties. Hydrogel formation via click chemistry condensation of functional polymers does not involve the use of toxic monomers and UV initiation. The performance of the new hydrogel in the separation of double stranded DNA fragments was evaluated in the 2200 TapeStation system, an analytical platform, recently introduced by Agilent that combines the advantages of CE in terms of miniaturization and automation with the simplicity of use of slab gel electrophoresis. The click gel enables addition of florescent dyes prior to electrophoresis with considerable improvement of resolution and separation efficiency over conventional cross-linked polyacrylamide gels. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanical properties of biocompatible clay/P(MEO2MA-co-OEGMA) nanocomposite hydrogels.
Xiang, Hengxue; Xia, Mengge; Cunningham, Alexander; Chen, Wei; Sun, Bin; Zhu, Meifang
2017-08-01
The effects of crosslinking density, polymer concentration and monomer ratio on the mechanical properties (tensile and compressive properties) of biocompatible clay/P(MEO 2 MA-co-OEGMA) nanocomposite (NC) hydrogels were investigated. These novel NC hydrogels, composed of inorganic/organic networks, were prepared via in-situ free radical polymerization. The results showed that with increasing inorganic crosslinking agent, i.e. clay concentration, an increase in the tensile strength, elongation at break and compressive strength was observed. Similarly, with increasing polymer concentration, the tensile strength and compressive strength of the NC hydrogels increased while the elongation at break decreased. Increasing the molar concentration of OEGMA in the comonomer led to an increase in the tensile strength of the NC hydrogels but a reduction in the compressive strength. Moreover, clay/P(MEO 2 MA-co-OEGMA) NC hydrogels presented good biocompatibility bolstering their application as tissue engineering scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk
2015-12-01
The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.
Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk
2015-01-01
The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949
Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk
2015-12-18
The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.
Highly cross-linked nanoporous polymers
Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.
1998-01-20
Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.
Green polymer chemistry: Synthesis of poly(disulfide) polymers and networks
NASA Astrophysics Data System (ADS)
Rosenthal-Kim, Emily Quinn
The disulfide group is unique in that it presents a covalent bond that is easily formed and cleaved under certain biological conditions. While the ease of disulfide bond cleavage is often harnessed as a method of biodegradation, the ease of disulfide bond formation as a synthetic strategy is often overlooked. The objective this research was to synthesize poly(disulfide) polymers and disulfide crosslinked networks from a green chemistry approach. The intent of the green chemistry approach was to take advantage of the mild conditions applicable to disulfide bond synthesis from thiols. With anticipated use as biomaterials, it was also desired that the polymer materials could be degraded under biological conditions. Here, a new method of poly(disulfide) polymer synthesis is introduced which was inspired by the reaction conditions and reagents found in Nature. Ambient temperatures and aqueous mixtures were used in the new method. Hydrogen peroxide, one of the Nature's most powerful oxidizing species was used as the oxidant in the new polymerization reaction. The dithiol monomer, 3,6-dioxa-1,8-octanedithiol was first solubilized in triethylamine, which activated the thiol groups and made the monomer water soluble. At room temperature, the organic dithiol/amine solution was then mixed with dilute aqueous hydrogen peroxide (3% by weight) to make the poly(disulfide) polymers. The presence of a two phase system (organic and aqueous phases) was critical to the polymerization reaction. As the reaction progresses, a third, polymer phase appeared. At ambient temperatures and above, this phase separated from the reaction mixture and the polymer product was easily removed from the reaction solution. These polymers reach Mn > 250,000 g/mol in under two hours. Molecular weight distributions were between 1.5 and 2.0. Reactions performed in an ice bath which remain below room temperature contain high molecular weight polymers with Mn ≈ 120,000 g/mol and have a molecular weight distribution of around 1.15. However, the majority of the product consists of low molecular weight cyclic poly(disulfide) oligomers. In reactions maintained below 18°C, the organic components were miscible in the aqueous hydrogen peroxide and a milky emulsion was produced. The polymers were degraded using the disulfide-specific reducing agent, dithiothreitol. Poly(disulfide) polymer networks were also synthesized in a two-phase system. Due to the poor solubility of the crosslinker, trimethylolpropane tris(2-mercaptopropionate, organic solvents were required to obtain consistent networks. The networks were degraded using dithiothreitol in tetrahydrofuran. The networks were stable under aqueous reducing conditions. The disulfide-bearing biochemical, alpha-lipoic acid, was investigated as monomer for the new method of poly(disulfide) polymer synthesis. It was also polymerized thermally and by a new interfacial method that proceeds at the air-water interface. Polymer products were often too large to be characterized by SEC (Mn > 1,000,000 g/mol). A poly(alpha-LA) polymer sample showed mass loss in aqueous solutions of glutathione at pH = 5.2 which was used to model cytosolic conditions. Poly(alpha-LA) was decorated with PEG (2,000 g/mol) in an esterification reaction catalyzed by Candida antarctica lipase B (CALB). The decorated polymers were imaged using AFM which revealed branch-like structures. To make new alpha-lipoic acid based monomers and macromonomers, CALB-catalyzed esterification, was used to conjugate alpha-lipoic acid to a variety of glycols including: diethylene glycol monomethyl ether, tetraethylene glycol, hexaethylene glycol, and poly(ethylene glycol). The products were verified using NMR spectroscopy and mass spectrometry.
Kim, Jinku; Yaszemski, Michael J.; Lu, Lichun
2010-01-01
Novel biodegradable injectable poly(ethylene glycol) (PEG) based macromers were synthesized by reacting low molecular weight PEG (MW: 200) and dicarboxylic acids such as sebacic acid or terephthalic acid. Chemical structures of the resulting polymers were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy characterizations. Differential scanning calorimetry (DSC) showed that these polymers were completely amorphous above room temperature. After photopolymerization, dynamic elastic shear modulus of the crosslinked polymers was up to 1.5 MPa and compressive modulus was up to 2.2 MPa depending on the polymer composition. The in vitro degradation study showed that mass losses of these polymers were gradually decreased over 23 weeks of period in simulated body fluid. By incorporating up to 30 wt% of 2-hydroxyethyl methylmethacrylate (HEMA) into the crosslinking network, the dynamic elastic modulus and compressive modulus was significantly increased up to 7.2 MPa and 3.2 MPa, respectively. HEMA incorporation also accelerated degradation as indicated by significantly higher mass loss of up to 27% after 20 weeks of incubation. Cytocompatability studies using osteoblasts and neural cells revealed that cell metabolic activity on these polymers with or without HEMA was close to the control tissue culture polystyrene. The PEG based macromers developed in this study may be useful as scaffolds or cell carriers for tissue engineering applications. PMID:18655146
NASA Astrophysics Data System (ADS)
Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.
2000-03-01
Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.
A Study of Functional Polymer Colloids Prepared Using Thiol-Ene/Yne Click Chemistry
NASA Astrophysics Data System (ADS)
Durham, Olivia Z.
This project demonstrates the first instance of thiol-ene chemistry as the polymerization method for the production of polymer colloids in two-phase heterogeneous suspensions, miniemulsions, and emulsions. This work was also expanded to thiol-yne chemistry for the production of polymer particles containing increased crosslinking density. The utility of thiol-ene and thiol-yne chemistries for polymerization and polymer modification is well established in bulk systems. These reactions are considered 'click' reactions, which can be defined as processes that are both facile and simple, offering high yields with nearly 100% conversion, no side products, easy product separation, compatibility with a diverse variety of commercially available starting materials, and orthogonality with other chemistries. In addition, thiol-ene and thiol-yne chemistry follow a step-growth mechanism for the development of highly uniform polymer networks, where polymer growth is dependent on the coupling of functional groups. These step-growth polymerization systems are in stark contrast to the chain-growth mechanisms of acrylic and styrenic monomers that have dominated the field of conventional heterogeneous polymerizations. Preliminary studies evaluated the mechanism of particle production in suspension and miniemulsion systems. Monomer droplets were compared to the final polymer particles to confirm that particle growth occurred through the polymerization of monomer droplets. Additional parameters examined include homogenization energy (mechanical mixing), diluent species and concentration, and monomer content. These reactions were conducted using photoinitiation to yield particles in a matter of minutes with diameters in the size range of several microns to hundreds of microns in suspensions or submicron particles in miniemulsions. Improved control over the particle size and size distribution was examined through variation of reaction parameters. In addition, a method of seeded suspension polymerization was attempted. This project was further expanded through an extensive evaluation of stabilizers in thiol-ene suspension polymerizations. The scope of stabilizers used included synthetic surfactants (ionic and nonionic), natural gums, and colloidal silica (Pickering stabilization). Suspension polymerizations were further expanded to include thiol-yne chemistry for the evaluation of polymer composition and thermal properties. In addition, polymer particles with excess ene, yne, or thiol functionality were successfully developed to demonstrate the potential for further functionalization. The self-limiting behavior of thiol-ene/yne reactions allows for successful synthesis of functional polymer colloids using off-stoichiometric amounts of monomers. This capacity to control functionality is illustrated through the creation of fluorescent polymer particles using both an in situ thiol-ene polymerization reaction with a vinyl chromophore as well as through post-polymerization modification of thiol-ene and thiol-yne polymers with excess thiol functionality via thiol-isocyanate chemistry. To produce smaller polymer particles without the need for intense homogenization energy or high stabilizer concentrations, an emulsion polymerization system was implemented using a water soluble-thermal initiator. It was found that unlike thiol-ene suspensions, which are limited to crosslinked systems, thiol-ene emulsion polymerizations allowed for the production of polymer particles comprised of either crosslinked or linear polymer networks. For the crosslinked systems, various anionic SDS surfactant concentrations were examined to observe the influence on particle size. In linear polymer systems, variations in polymer composition were examined. Preliminary studies performed with a monomer with an ethylene glycol-like structure indicated that the synthesis of polymer particles with narrower size distributions compared to any of the other emulsion compositions was possible. Finally, thiol-ene chemistry was also employed toward the synthesis of degradable polyanhydride polymer particles. Unlike the aforementioned studies, the approach to particle synthesis was conducted by using a premade thiol-ene polymer. Various linear thiol-ene polyanhydrides were emulsified in water or buffered solutions via sonication. Polymer latex was obtained upon solvent evaporation of the dichloromethane (DCM) solvent used to solubilize the polymer. In this work, variation of polymer composition as well as degradation was examined. Additional experiments included a study of the release of Rhodamine B dye, functionalization of the linear polymers, and studies involving the delay of degradation through the incorporation of crosslinking in the polymer particles. The projects presented herein provide an innovative approach to the synthesis of polymer colloids using thiol-ene and thiol-yne 'click' chemistry in both heterogeneous polymerizations as well as through solvent evaporation of premade polymer solutions. Polymer colloids prove to be an area of great interest for numerous applications that encompass various areas involving biomedical and industrial technologies including paints and coatings, cosmetics, diagnostics, and drug delivery. Improvements in methods of chemical synthesis as well as advances in the tailoring of material properties are of utmost importance for the ever increasing demands of new technologies and educational enlightenment.
Singh, Baljit; Dhiman, Abhishek
2017-01-01
No doubt, the prevention of infection is an indispensable aspect of the wound management, but, simultaneous wound pain relief is also required. Therefore, herein this article, incorporation of antibiotic agent 'gentamicin' and pain relieving agent 'lidocaine' into hydrogel wound dressings, prepared by using acacia gum, carbopol and poly(2-hydroxyethylmethacrylate) polymers, has been carried out. The hydrogels were evaluated as a drug carrier for model drugs gentamicin and lidocaine. Synthesis of hydrogel wound dressing was carried out by free radical polymerization technique. The drug loading was carried out by swelling equilibrium method and gel strength of hydrogels was measured by a texture analyzer. Porous microstructure of the hydrogel was observed in cryo-SEM images. The hydrogel showed mesh size 37.29 nm, cross-link density 2.19× 10-5 mol/cm3, molecular weight between two cross-links 60.25× 10-3 g/mol and gel strength 0.625±0.112 N in simulated wound fluid. It is concluded that the pH of swelling medium has influenced the network structure of hydrogel i.e., molecular weight of the polymer chain between two neighboring cross links, crosslink density and the corresponding mesh size. A good correlation was established between gel strength and network parameters. Cryo-SEM images showed porous morphology of hydrogels. These hydrogels were found to be biodegradable and antimicrobial in nature. Drug release occurred through Fickian diffusion mechanism and release profile was best fitted in first order model. Overall it is concluded that modification in GA has led to formation of a porous hydrogels for wound dressing applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Prabhu, Prabhakara; Dubey, Akhilesh; Parth, Vinod; Ghate, Vivek
2015-01-01
Background: Hydrogel is a cross-linked network of polymers. Water penetrates these network causing swelling and giving the hydrogel a soft and rubbery consistency and there by maintaining the integrity of the membrane. Due to the drawback of conventional therapy for ocular delivery, hydrogel membranes containing the combination of gentamicin (GT) sulfate and dexamethasone (DX) were formulated for the treatment of conjunctivitis. The objective of this study was to formulate and evaluate the hydrogel membranes containing the combination of GT and DX for the treatment of conjunctivitis. Materials and Methods: In the present investigation, hydrogel membranes were prepared by using polymers such as gelatin, polyvinyl alcohol, and chitosan, which were cross-linked using physical/chemical methods. Results: The cross-linking of the membranes was confirmed by Fourier transform infra-red studies. The pH of the membranes ranged from 7.19 to 7.45 and drug content ranged from 69.82% to 89.19%. The hydrogels showed a considerably good swelling ratio ranging from 22.5% to 365.56%. The in vitro drug release study showed that there was a slow and sustained release of the drug from the membranes which were sufficiently cross-linked and followed zero order release. In vivo studies showed that the severity of conjunctivitis was remarkably lowered at day 3 with hydrogel membrane compared to marketed eye drops. Results of unpaired t-test of significance between two groups indicated that the hydrogel membrane showed a better response in the treatment of conjunctivitis compared to the marketed products. Stability studies proved that the formulations could be stable when stored at room temperature. Conclusion: Results of the study indicated that it is possible to develop a safe and physiologically effective hydrogels which are patient compliant. PMID:26682192
Polyimide Aerogels with Three-Dimensional Cross-Linked Structure
NASA Technical Reports Server (NTRS)
Panek, John
2010-01-01
Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.
Soft matter: rubber and networks
NASA Astrophysics Data System (ADS)
McKenna, Gregory B.
2018-06-01
Rubber networks are important and form the basis for materials with properties ranging from rubber tires to super absorbents and contact lenses. The development of the entropy ideas of rubber deformation thermodynamics provides a powerful framework from which to understand and to use these materials. In addition, swelling of the rubber in the presence of small molecule liquids or solvents leads to materials that are very soft and ‘gel’ like in nature. The review covers the thermodynamics of polymer networks and gels from the perspective of the thermodynamics and mechanics of the strain energy density function. Important relationships are presented and experimental results show that the continuum ideas contained in the phenomenological thermodynamics are valid, but that the molecular bases for some of them remain to be fully elucidated. This is particularly so in the case of the entropic gels or swollen networks. The review is concluded with some perspectives on other networks, ranging from entropic polymer networks such as thermoplastic elastomers to physical gels in which cross-link points are formed by glassy or crystalline domains. A discussion is provided for other physical gels in which the network forms a spinodal-like decomposition, both in thermoplastic polymers that form a glassy network upon phase separation and for colloidal gels that seem to have a similar behavior.
Covalent adaptable networks: smart, reconfigurable and responsive network systems.
Kloxin, Christopher J; Bowman, Christopher N
2013-09-07
Covalently crosslinked materials, classically referred to as thermosets, represent a broad class of elastic materials that readily retain their shape and molecular architecture through covalent bonds that are ubiquitous throughout the network structure. These materials, in particular in their swollen gel state, have been widely used as stimuli responsive materials with their ability to change volume in response to changes in temperature, pH, or other solvent conditions and have also been used in shape memory applications. However, the existence of a permanent, unalterable shape and structure dictated by the covalently crosslinked structure has dramatically limited their abilities in this and many other areas. These materials are not generally reconfigurable, recyclable, reprocessable, and have limited ability to alter permanently their stress state, topography, topology, or structure. Recently, a new paradigm has been explored in crosslinked polymers - that of covalent adaptable networks (CANs) in which covalently crosslinked networks are formed such that triggerable, reversible chemical structures persist throughout the network. These reversible covalent bonds can be triggered through molecular triggers, light or other incident radiation, or temperature changes. Upon application of this stimulus, rather than causing a temporary shape change, the CAN structure responds by permanently adjusting its structure through either reversible addition/condensation or through reversible bond exchange mechanisms, either of which allow the material to essentially reequilibrate to its new state and condition. Here, we provide a tutorial review on these materials and their responsiveness to applied stimuli. In particular, we review the broad classification of these materials, the nature of the chemical bonds that enable the adaptable structure, how the properties of these materials depend on the reversible structure, and how the application of a stimulus causes these materials to alter their shape, topography, and properties.
Network confinement and heterogeneity slows nanoparticle diffusion in polymer gels
NASA Astrophysics Data System (ADS)
Parrish, Emmabeth; Caporizzo, Matthew A.; Composto, Russell J.
2017-05-01
Nanoparticle (NP) diffusion was measured in polyacrylamide gels (PAGs) with a mesh size comparable to the NP size, 21 nm. The confinement ratio (CR), NP diameter/mesh size, increased from 0.4 to 3.8 by increasing crosslinker density and from 0.4 to 2.1 by adding acetone, which collapsed the PAGs. In all gels, NPs either became localized, moving less than 200 nm, diffused microns, or exhibited a combination of these behaviors, as measured by single particle tracking. Mean squared displacements (MSDs) of mobile NPs decreased as CR increased. In collapsed gels, the localized NP population increased and MSD of mobile NPs decreased compared to crosslinked PAGs. For all CRs, van Hove distributions exhibited non-Gaussian displacements, consistent with intermittent localization of NPs. The non-Gaussian parameter increased from a maximum of 1.5 for crosslinked PAG to 5 for collapsed PAG, consistent with greater network heterogeneity in these gels. Diffusion coefficients decreased exponentially as CR increased for crosslinked gels; however, in collapsed gels, the diffusion coefficients decreased more strongly, which was attributed to network heterogeneity. Collapsing the gel resulted in an increasingly tortuous pathway for NPs, slowing diffusion at a given CR. Understanding how gel structure affects NP mobility will allow the design and enhanced performance of gels that separate and release molecules in membranes and drug delivery platforms.
Antithrombogenic Polymer Coating.
Huang, Zhi Heng; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.
2003-01-21
An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.
NASA Astrophysics Data System (ADS)
Suk, Jungdon; Lee, Yu Hwa; Kim, Do Youb; Kim, Dong Wook; Cho, Song Yun; Kim, Ji Man; Kang, Yongku
2016-12-01
We developed highly promising solid polymer electrolytes (SPEs) based on a novel cross-linker containing star-shaped phosphazene with poly(ethylene oxide) (PEO) branches with very high ionic conductivity (7.6 × 10-4 S cm-1), improved mechanical stability, and good electrochemical stability for all-solid-state lithium batteries. In particular, allyl groups were introduced at the ends of the cross-linker in order to overcome the easy self-polymerization of existing cross-linking acrylate end groups. A novel semi-interpenetrating network (semi-IPN) SPE was prepared by in-situ radical polymerization of a precursor solution containing lithium salt, poly(ethylene glycol) dimethyl ether as a plasticizer, and a mixture of pentaerythritol tetrakis(3-mercaptopropionate) and a synthesized hexakis(allyloxy)cyclotriphosphazene (thiol-ene PAL) as the cross-linker. Batteries employing LiFePO4 as the cathode, lithium foil as the anode, and the SPE thin film as the electrolyte were assembled and tested. At ambient temperature, the initial discharge capacity was 147 mAh/g at 0.1 °C and 132 mAh/g at 0.5 °C, and 97% of the capacity was retained at the 100th cycle. All-solid-state pouch-package lithium cells assembled with the SPEs exhibited stable electrochemical performance, even under a severely wrinkled state. These outstanding properties of SPEs based on thiol-ene PAL demonstrate feasibility for practical battery applications with improved reliability and safety.
Ion conducting polymers and polymer blends for alkali metal ion batteries
DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra
2017-08-29
Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.
NASA Astrophysics Data System (ADS)
AL-Baradi, Ateyyah M.; Al-Shehri, Samar F.; Badawi, Ali; Merazga, Amar; Atta, A. A.
2018-06-01
This work is concerned with the study of the effect of titanium dioxide (TiO2) nanofillers on the optical, mechanical and electrical properties of poly(methacrylic acid) (PMAA) networks as a function of TiO2 concentration and crosslink density. The structure of the prepared samples was investigated by X-ray diffractometry (XRD) and Transmittance Electron Microscope (TEM). XRD results showed a single phase for the nanocomposites indicating that no large TiO2 aggregates in the polymer matrix. The optical properties of the prepared samples including the absorption, transmittance, energy band gap and refractive index were explored using Spectrophotometer. These measurements showed that there is a red-shift in the absorption caused by the increase of TiO2 concentration. However, the crosslink density in the polymer plays no role in changing the absorption. The energy band gap (Eg) decreases with increasing the concentration of TiO2 in the polymer matrix; whereas Eg increases with increasing the crosslink density. Moreover, the mechanical properties of PMAA/TiO2 nanocomposites by Dynamic Mechanical Analysis (DMA) showed that the viscoelasticity of PMAA decreases with adding TiO2 nanoparticles and the glass transition temperature (Tg) was also found to drop from 130 °C to 114 °C. Finally, the DC conductivity of the obtained systems was found to increase with increasing TiO2 nanoparticles in the matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esteves, A. C. C., E-mail: a.c.c.esteves@tue.nl, E-mail: g.dewith@tue.nl; Lyakhova, K.; Riel, J. M. van
2014-03-28
Nowadays, many self-healing strategies are available for recovering mechanical damage of bulk polymeric materials. The recovery of surface-dependent functionalities on polymer films is, however, equally important and has been less investigated. In this work we study the ability of low surface energy cross-linked poly(ester urethane) networks containing perfluorinated dangling chains to self-replenish their surface, after being submitted to repeated surface damage. For this purpose we used a combined experimental-simulation approach. Experimentally, the cross-linked films were intentionally damaged by cryo-microtoming to remove top layers and create new surfaces which were characterized by water Contact Angle measurements and X-Ray Photoelectron Spectroscopy. Themore » same systems were simultaneously represented by a Dissipative Particles Dynamics simulation method, where the damage was modeled by removing the top film layers in the simulation box and replacing it by new “air” beads. The influence of different experimental parameters, such as the concentration of the low surface energy component and the molecular mobility span of the dangling chains, on the surface recovery is discussed. The combined approach reveals important details of the self-replenishing ability of damaged polymer films such as the occurrence of multiple-healing events, the self-replenishing efficiency, and the minimum “healing agent” concentration for a maximum recovery.« less
Mechanically Strong Lightweight Materials for Aerospace Applications (x-aerogels)
NASA Technical Reports Server (NTRS)
Leventis, Nicholas
2005-01-01
The X-Aerogel is a new NASA-developed strong lightweight material made by reacting the mesoporous surfaces of 3-D networks of inorganic nanoparticles with polymeric crosslinkers. Since the relative amount of the crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by templated casting of polymeric precursors on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralightweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the thermal conductivity of styrofoam. XAerogels have been demonstrated with several polymers such as polyurethanes/polyureas, epoxies and polyolefins, while crosslinking of approximately 35 different oxide aerogels yields a wide variety of dimensionally stable, porous lightweight materials with interesting structural, magnetic and optical properties. X-Aerogels are evaluated for cryogenic rocket fuel storage tanks and for Advanced EVA suits, where they will play the dual role of the thermal insulator/structural material. Along the same lines, major impact is also expected by the use of X-Aerogels in structural components/thermal protection for small satellites, spacecrafts, planetary vehicles and habitats.
Tetraarylborate polymer networks as single-ion conducting solid electrolytes
Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; ...
2015-06-23
A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10 -4 S cm -1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to t Li+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting designmore » parameters for further development of this new class of solid electrolytes.« less
Cheng, Chih-Chia; Chuang, Wei-Tsung; Lee, Duu-Jong; Xin, Zhong; Chiu, Chih-Wei
2017-03-01
A novel application of supramolecular interactions within semicrystalline polymers, capable of self-assembling into supramolecular polymer networks via self-complementary multiple hydrogen-bonded complexes, is demonstrated for efficient construction of highly controlled self-organizing hierarchical structures to offer a direct, efficient nucleation pathway resulting in superior crystallization performance. Herein, a novel functionalized poly(ε-caprolactone) containing self-complementary sextuple hydrogen-bonded uracil-diamidopyridine (U-DPy) moieties is successfully developed and demonstrated excellent thermal and viscoelastic properties as well as high dynamic structural stability in the bulk state due to physical cross-linking created by reversible sextuple hydrogen bonding between U-DPy units. Due to the ability to vary the extent of the reversible network by tuning the U-DPy content, this newly developed material can be readily adjusted to obtain the desired crystalline products with specific characteristics. Importantly, incorporating only 0.1% U-DPy resulted in a polymer with a high crystallization rate constant, short crystallization half-time, and much more rapid crystallization kinetics than pristine PCL, indicating a low content of U-DPy moieties provides highly efficient nucleation sites that manipulate the nucleation and growth processes of polymer crystals to promote crystallization and chain alignment in bulk. This new system is suggested as a potential new route to substantially improve the performance of polymer crystallization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Caitlyn Christian
An evaporation barrier is required to enhance the lifetime of electrophoretic deposition (EPD) displays. As EPD functions on the basis of reversible deposition and resuspension of colloids suspended in a solvent, evaporation of the solvent ultimately leads to device failure. Incorporation of a thiol-polybutadiene elastomer into EPD displays enabled display lifetime surpassing six months in counting and catalyzed rigid display transition into a flexible package. Final flexible display transition to mass production compels an electronic-ink approach to encapsulate display suspension within an elastomer shell. Final thiol-polybutadiene photosensitive resin network microstructure was idealized to be dense, homogeneous, and expose an elasticmore » response to deformation. Research at hand details an approach to understanding microstructural change within display elastomers. Polybutadiene-based resin properties are modified via polymer chain structure, with and without added aromatic urethane methacrylate difunctionality, and in measuring network response to variation in thiol and initiator concentration. Dynamic mechanical analysis results signify that cross-linked segments within a difunctionalized polybutadiene network were on average eight times more elastically active than that of linked segments within a non-functionalized polybutadiene network. Difunctionalized polybutadiene samples also showed a 2.5 times greater maximum elastic modulus than non-functionalized samples. Hybrid polymer composed of both polybutadiene chains encompassed TE-2000 stiffness and B-1000 elasticity for use in encapsulating display suspension. Later experiments measured kinetic and rheological response due to alteration in dithiol cross-linker chain length via real time Fourier transform infrared spectroscopy and real-time dynamic rheology. Distinct differences were discovered between dithiol resin systems, as maximum thiol conversion achieved in short and long chain length dithiols was 86% and 11%, respectively. Oscillatory real-time rheological experiments confirmed a more uniform network to better dissipate applied shear in short chain length dithiol systems, as long chain length dithiols relayed a steep internal stress build-up due to less cross-links and chain entanglements. Thorough understanding of network formation aids the production of a stronger and impermeable elastomeric barrier for preservation of EPD displays.« less
NASA Technical Reports Server (NTRS)
Leventis, Nicholas
2005-01-01
In analogy to supramolecular assemblies, which are pursued because of properties above and beyond those of the individual molecules, self-standing monolithic three-dimensional assemblies of nanoparticles also have unique properties attributed to their structure. For example, ultra low-density 3-D assemblies of silica nanoparticles, known as silica aerogels, are characterized by large internal void space, high surface area and very low thermal conductivity. Aerogels, however, are also extremely fragile materials, limiting their application to a few specialized environments, e.g., in nuclear reactors as Cerenkov radiation detectors, in space (refer to NASA's Stardust Program) and aboard certain planetary vehicles (thermal insulators on Mars Rovers in 1997 and 2004). The fragility problem is traced to well-defined weak points in the aerogel skeletal framework, the interparticle necks. Using the surface functionality of the nanoparticle building blocks as a focal point, we have directed attachment of a conformal polymer coating over the entire framework, rendering all necks wider. Thus, although the bulk density may increase only by 3x, the mesoporosity (pores in the range 2-50 nm) remains unchanged, while the strength of the material increases by up to 300... Having addressed the fragility problem, aerogels are now robust materials, and a variety of applications, ranging from thermal/acoustic insulators to catalyst supports, to platform for sensors, and dielectrics are all within reach. Our approach employs molecular science to manipulate nanoscopic matter for achieving useful macroscopic properties, and in our view it resides at the core of what defines nanotechnology. In that spirit, this technology is expandable in three directions. Thus, we have already crosslinked successfully amine-modified silica, and we anticipate that more rich chemistry will be realized by been creative with the nanoparticle surface modifiers. On the other hand, although we do not expect orders-of-magnitude increase in strength, nevertheless, by varying the polymer we expect to impart other properties such as hydrophobicity, thermal stability and perhaps electrical conductivity. Besides polymers, crosslinkers will include metals and ceramics (e.g., through POSS precursors). Finally, network morphology directs load dissipation, and of approximately 30 different crosslinked oxide aerogels, vanadia, whose structure is fibrous rather than particulate, yields a much stronger (by 4..) material than silica of the same density. It seems imperative to implement control of network morphology, even through templating.
ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents
NASA Astrophysics Data System (ADS)
Ding, Rui
Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.
Singh, Baljit; Sharma, Vikrant
2014-01-30
The present article deals with design of tragacanth gum-based pH responsive hydrogel drug delivery systems. The characterization of hydrogels has been carried out by SEMs, EDAX, FTIR, (13)C NMR, XRD, TGA/DTA/DTG and swelling studies. The correlation between reaction conditions and structural parameters of polymer networks such as polymer volume fraction in the swollen state (ϕ), Flory-Huggins interaction parameter (χ), molecular weight of the polymer chain between two neighboring cross links (M¯c), crosslink density (ρ) and mesh size (ξ) has been determined. The different kinetic models such as zero order, first order, Higuchi square root law, Korsmeyer-Peppas model and Hixson-Crowell cube root model were applied and it has been observed that release profile of amoxicillin best followed the first order model for the release of drug from the polymer matrix. The swelling of the hydrogels and release of drug from the drug loaded hydrogels occurred through non-Fickian diffusion mechanism in pH 7.4 solution. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molecular model for the diffusion of associating telechelic polymer networks
NASA Astrophysics Data System (ADS)
Ramirez, Jorge; Dursch, Thomas; Olsen, Bradley
Understanding the mechanisms of motion and stress relaxation of associating polymers at the molecular level is critical for advanced technological applications such as enhanced oil-recovery, self-healing materials or drug delivery. In associating polymers, the strength and rates of association/dissociation of the reversible physical crosslinks govern the dynamics of the network and therefore all the macroscopic properties, like self-diffusion and rheology. Recently, by means of forced Rayleigh scattering experiments, we have proved that associating polymers of different architectures show super-diffusive behavior when the free motion of single molecular species is slowed down by association/dissociation kinetics. Here we discuss a new molecular picture for unentangled associating telechelic polymers that considers concentration, molecular weight, number of arms of the molecules and equilibrium and rate constants of association/dissociation. The model predicts super-diffusive behavior under the right combination of values of the parameters. We discuss some of the predictions of the model using scaling arguments, show detailed results from Brownian dynamics simulations of the FRS experiments, and attempt to compare the predictions of the model to experimental data.
Nam, Kwangwoo; Kimura, Tsuyoshi; Funamoto, Seiichi; Kishida, Akio
2010-02-01
The drawback with collagen/2-methacryloyloxyethyl phosphorylcholine (MPC) polymer hybrid gels (collagen/phospholipid polymer hybrid gels) prepared in alkaline morpholinoethane sulfonic acid (MES) aqueous solution is that the cross-linking rate between the polymer and the collagen is low. To solve this problem, ethanol has been adopted as the reaction solvent, to prevent 1-ethyl-3-(3-dimethylaminopropyl)-1-carbodiimide hydrochloride (EDC) hydrolysis. Alterations in the ethanol mole concentration changed the cross-linking rate between the MPC polymer and the collagen gel. Prevention of EDC hydrolysis is clearly observed; protonation of carboxyl groups implies that the ratio of ethanol to water should be controlled. The polymer shows signs of penetration into the collagen gel layer, thus forming a totally homogeneous phase gel. This affects the mechanical strength of the collagen gel, making the gel much stiffer and brittle with an increase in the swelling ratio, as compared with that prepared in MES buffer. However, it is possible to obtain a collagen/phospholipid polymer hybrid gel with a high polymer portion and the cross-linking rate can be successfully controlled.
Cabanetos, Clément; Mahé, Hind; Blart, Errol; Pellegrin, Yann; Montembault, Véronique; Fontaine, Laurent; Adamietz, Frédéric; Rodriguez, Vincent; Bosc, Dominique; Odobel, Fabrice
2011-06-01
High-quality trails of ridge waveguides were successfully fabricated using a new cross-linkable polymer (PCC01) by UV photolithography followed by Reactive-Ion Etching (RIE) process. The cross-linking reaction of PCC01 is based on the copper-free Huisgen cyclo-addition between an azide and an acetylene group. The new cross-linkable polymer (PCC01) consists of a structural modification of the previously described materials (Scarpaci et al. Polym. Chem.2011, 2, 157), because the ethynyl group is functionalized by a methyl group instead of the TMS protecting group. This feature prevents the formation of silica (SiO(2)) generated by trimethylsilyl groups and which was stopping the engraving process before completion. Herein, we describe the synthesis, the NLO characterizations, and the fabrication of a high-quality ridge waveguide with PCC01. The new cross-linkable polymer PCC01 not only solves the problems encountered with our previously described polymers, but also presents an enhancement of the electro-optic stability, because d(33) coefficients up to 30 pm/V stable at 150 °C were recorded. © 2011 American Chemical Society
Non-strinking siloxane polymers
Loy, Douglas A.; Rahimian, Kamyar
2001-01-01
Cross-linked polymers formed by ring-opening polymerization of a precursor monomer of the general formula R[CH.sub.2 CH(Si(CH.sub.3).sub.2).sub.2 O].sub.2, where R is a phenyl group or an alkyl group having at least two carbon atoms. A cross-linked polymer is synthesized by mixing the monomer with a co-monomer of the general formula CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O in the presence of an anionic base to form a cross-linked polymer of recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2 [CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O].sub.n, where R.sup.2 is hydrogen, phenyl, ethyl, propyl or butyl. If the precursor monomer is a liquid, the polymer can be directly synthesized in the presence of an anionic base to a cross-linked polymer containing recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2. The polymers have approximately less than 1% porosity and are thermally stable at temperatures up to approximately 500.degree. C. The conversion to the cross-linked polymer occurs by ring opening polymerization and results in shrinkage of less than approximately 5% by volume.
Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas
2017-04-18
The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.
Aliyar, Hyder; Huber, Robert; Loubert, Gary; Schalau, Gerald
2014-07-01
The use of silicone as a primary polymer in topical semisolid pharmaceutical formulations is infrequent. Recent development of novel silicone materials provides an opportunity to investigate their drug delivery efficiencies. In this study, an anhydrous semisolid formulation was prepared using a novel cross-linked silicone polymer network swollen in isododecane. Similar formulations were prepared using petrolatum, an acrylic, or a cellulose polymer. All formulations contained 5% ibuprofen (IBP). In vitro permeability was evaluated for all formulations and a commercial product using human cadaver epidermis. The silicone formulation delivered IBP more efficiently than all other formulations in terms of flux, cumulative amount, and percent drug release. The silicone formulation showed the maximum flux of 85.9 μg . cm(-2) . h(-1) and a cumulative IBP release of 261.6 μg in 8 h, whereas the benchmark showed 20.1 μg . cm(-2) . h(-1) and 30.9 μg, respectively. An in vivo study conducted on rats showed calculated blood AUCs of 59.2 and 17.6 μg . h/g (p < 0.003) for the silicone formulation and the benchmark, respectively. The IBP in excised rat skin was 264 ± 59 μg/g for the silicone formulation and 102 ± 5 μg/g for the benchmark. The results obtained from the in vitro and in vivo studies demonstrate efficient topical IBP delivery by the silicone formulation. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.
Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from M w = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer M w smooths the hydrogen-bonded filmmore » surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small M w PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all M w but being somewhat more widely distributed in the films templated with higher M w PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less
Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; ...
2015-11-16
Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from M w = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer M w smooths the hydrogen-bonded filmmore » surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small M w PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all M w but being somewhat more widely distributed in the films templated with higher M w PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less
Hunger, Katharina; Schmeling, Nadine; Jeazet, Harold B. Tanh; Janiak, Christoph; Staudt, Claudia; Kleinermanns, Karl
2012-01-01
Pervaporation and gas separation performances of polymer membranes can be improved by crosslinking or addition of metal-organic frameworks (MOFs). Crosslinked copolyimide membranes show higher plasticization resistance and no significant loss in selectivity compared to non-crosslinked membranes when exposed to mixtures of CO2/CH4 or toluene/cyclohexane. Covalently crosslinked membranes reveal better separation performances than ionically crosslinked systems. Covalent interlacing with 3-hydroxypropyldimethylmaleimide as photocrosslinker can be investigated in situ in solution as well as in films, using transient UV/Vis and FTIR spectroscopy. The photocrosslinking yield can be determined from the FTIR-spectra. It is restricted by the stiffness of the copolyimide backbone, which inhibits the photoreaction due to spatial separation of the crosslinker side chains. Mixed-matrix membranes (MMMs) with MOFs as additives (fillers) have increased permeabilities and often also selectivities compared to the pure polymer. Incorporation of MOFs into polysulfone and Matrimid® polymers for MMMs gives defect-free membranes with performances similar to the best polymer membranes for gas mixtures, such as O2/N2 H2/CH4, CO2/CH4, H2/CO2, CH4/N2 and CO2/N2 (preferentially permeating gas is named first). The MOF porosity, its particle size and content in the MMM are factors to influence the permeability and the separation performance of the membranes. PMID:24958427
NASA Astrophysics Data System (ADS)
Kang, Shin-Woong; Kundu, Sudarshan; Park, Heung-Shik; Oh, Keun Chan; Lyu, Jae Jin
2017-02-01
We report the in situ creation of reactive polymer nanoparticles and resulting polymer networks formed at the interfaces of liquid crystals. It is known that polymerization-induced phase separation proceeds in two distinct regimes depending on the concentration of monomer. For a high monomer concentration, phase separation occurs mainly through the spinodal decomposition process, consequently resulting in interpenetrating polymer networks. For a dilute system, however, the phase separation mainly proceeds and completes in the binodal decomposition regime. The system resembles the aggregation process of colloidal particle. In this case, the reaction kinetics is limited by the reaction between in situ created polymer aggregates and hence the network morphologies are greatly influenced by the diffusion of reactive polymer particles. The thin polymer layers localized at the surface of substrate are inevitably observed and can be comprehended by the interfacial adsorption and further cross-linking reaction of reactive polymer aggregates at the interface. This process provides a direct perception on understanding polymer stabilized liquid crystals accomplished by the interfacial polymer layer. The detailed study has been performed for an extremely dilute condition (below 0.5 wt%) by employing systematic experimental approaches. Creation and growth of polymer nanoparticles have been measured by particle size analyzer. The interfacial localization of polymer aggregates and resulting interfacial layer formation with a tens of nanometer scale have been exploited at various interfaces such as liquid-solid, liquid-liquid, and liquid-gas interfaces. The resulting interfacial layers have been characterized by using fuorescent confocal microscope and field emission scanning electron microscope. The detailed processes of the polymer stabilized vertically aligned liquid crystals will be discussed in support of the reported study.
Maity, Jayabrata; Ray, Samit Kumar
2014-04-15
Semi and full interpenetrating polymer network (IPN) type hydrogels were prepared by free radical in situ polymerization of methacrylic acid in presence of chitosan using N,N'-methylene-bis-acrylamide (MBA) and glutaraldehyde (for full IPN) as crosslinker. Several semi and full IPN type hydrogels were prepared by varying initiator and crosslinker concentration and also monomer to chitosan mass ratio. These hydrogels were characterized and used for removal of methyl violet and congo red dye from water. Isotherms and kinetics of dye adsorption were also evaluated. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Marsh, H. E., Jr.; Wallace, C. J.
1973-01-01
The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.
Molecular Structure of Humin and Melanoidin via Solid State NMR
Herzfeld, Judith; Rand, Danielle; Matsuki, Yoh; Daviso, Eugenio; Mak-Jurkauskas, Melody; Mamajanov, Irena
2011-01-01
Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective 13C substitution, 1H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simplified by relying exclusively on hydronium for catalysis. The results for polymers derived from ribose, deoxyribose and fructose indicate diverse pathways to furans, suggest a simple route to pyrroles in the presence of amines, and reveal a heterogenous network-type polymer in which sugar molecules cross-link the heterocycles. PMID:21456563
Optical and Scintillation Properties of Polydimethyl-Diphenylsiloxane Based Organic Scintillators
NASA Astrophysics Data System (ADS)
Quaranta, Alberto; Carturan, Sara Maria; Marchi, Tommaso; Kravchuk, Vladimir L.; Gramegna, Fabiana; Maggioni, Gianluigi; Degerlier, Meltem
2010-04-01
Polysiloxane based scintillators with high light yield have been synthesized. The polymer consists in cross-linked polydimethyl-co-diphenylsiloxane with different molar percentages of phenyl units. 2,5-diphenyl oxazole (PPO) and 2,5-bis(5-ter-butyl-2-benzoxazolyl)thiophene (BBOT) have been dispersed in the polymer as dopants. The energy transfer and scintillation capabilities have been investigated, for two different amounts of phenyl groups in the polymer network and for different concentrations of dye molecules, by means of fluorescence spectroscopy, ion beam induced luminescence (IBIL) and scintillation yield measurements with ¿ particles from an 241Am source. The luminescence features and the scintillation yields have been correlated to the composition of the scintillators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Bo; Li, Haiyang; East China Univ. of Science and Technology, Shanghai
We designed and synthesized the cyclodextrin (CD)-based hyper-crosslinked porous polymers (HCPPs) for selective CO 2 adsorption and storage. We also explored the effect of monomer size on micropore formation, and determined a feasible way to tailor the porosity of the materials during the hyper-crosslinking process.
Meng, Bo; Li, Haiyang; East China Univ. of Science and Technology, Shanghai; ...
2016-11-11
We designed and synthesized the cyclodextrin (CD)-based hyper-crosslinked porous polymers (HCPPs) for selective CO 2 adsorption and storage. We also explored the effect of monomer size on micropore formation, and determined a feasible way to tailor the porosity of the materials during the hyper-crosslinking process.
Cho, Ik Sung; Cho, Myeong Ok; Li, Zhengzheng; Nurunnabi, Md; Park, Sung Young; Kang, Sun-Woong; Huh, Kang Moo
2016-06-25
The major limitations of typical thermogelling polymers for practical applications are low gel stability and weak mechanical properties under physiological conditions. In this study, we have synthesized a new polysaccharide-based thermogelling polymer that can be photo-crosslinked by UV irradiation to form a mechanically resilient and elastic hydrogel. Methacrylated hexanoyl glycol chitosan (M-HGC), was synthesized by a series of chemical modifications, N-hexanoylation and N-methacrylation, of glycol chitosan (GC). Various M-HGC polymers with different methacryl group contents were synthesized and their thermogelling and photo-crosslinkable properties were evaluated. The M-HGCs demonstrated a thermo-reversible sol-gel transition behavior in aqueous solutions. The thermally-induced hydrogels could be chemically crosslinked by UV-triggered photo-crosslinking. From the cytotoxicity studies using MTT and the live/dead assay, the M-HGC hydrogels showed non-cytotoxicity. These photo-crosslinkable thermogelling M-HGC polymers may hold great promises for various biomedical applications, such as an injectable delivery system and 3D cell culture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enzymatically Crosslinked Emulsion Gels Using Star-Polymer Stabilizers.
Ma, Kai; An, Zesheng
2016-10-01
A novel type of emulsion gel based on star-polymer-stabilized emulsions is highlighted, which contains discrete hydrophobic oil and hydrophilic aqueous solution domains. Well-defined phenol-functionalized core-crosslinked star polymers are synthesized via reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization and are used as stabilizers for oil-in-water emulsions. Horseradish-peroxidase-catalyzed polymerization of the phenol moieties in the presence of H 2 O 2 enables rapid formation of crosslinked emulsion gels under mild conditions. The crosslinked emulsion gels exhibit enhanced mechanical strength, as well as widely tunable composition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Encoding Hydrogel Mechanics via Network Cross-Linking Structure.
Schweller, Ryan M; West, Jennifer L
2015-05-11
The effects of mechanical cues on cell behaviors in 3D remain difficult to characterize as the ability to tune hydrogel mechanics often requires changes in the polymer density, potentially altering the material's biochemical and physical characteristics. Additionally, with most PEG diacrylate (PEGDA) hydrogels, forming materials with compressive moduli less than ∼10 kPa has been virtually impossible. Here, we present a new method of controlling the mechanical properties of PEGDA hydrogels independent of polymer chain density through the incorporation of additional vinyl group moieties that interfere with the cross-linking of the network. This modification can tune hydrogel mechanics in a concentration dependent manner from <1 to 17 kPa, a more physiologically relevant range than previously possible with PEG-based hydrogels, without altering the hydrogel's degradation and permeability. Across this range of mechanical properties, endothelial cells (ECs) encapsulated within MMP-2/MMP-9 degradable hydrogels with RGDS adhesive peptides revealed increased cell spreading as hydrogel stiffness decreased in contrast to behavior typically observed for cells on 2D surfaces. EC-pericyte cocultures exhibited vessel-like networks within 3 days in highly compliant hydrogels as compared to a week in stiffer hydrogels. These vessel networks persisted for at least 4 weeks and deposited laminin and collagen IV perivascularly. These results indicate that EC morphogenesis can be regulated using mechanical cues in 3D. Furthermore, controlling hydrogel compliance independent of density allows for the attainment of highly compliant mechanical regimes in materials that can act as customizable cell microenvironments.
Sivakumaran, Daryl; Bakaic, Emilia; Campbell, Scott B; Xu, Fei; Mueller, Eva; Hoare, Todd
2018-04-16
While various smart materials have been explored for a variety of biomedical applications (e.g., drug delivery, tissue engineering, bioimaging, etc.), their ultimate clinical use has been hampered by the lack of biologically-relevant degradation observed for most smart materials. This is particularly true for temperature-responsive hydrogels, which are almost uniformly based on polymers that are functionally non-degradable (e.g., poly(N-isopropylacrylamide) (PNIPAM) or poly(oligoethylene glycol methacrylate) (POEGMA)). As such, to effectively translate the potential of thermoresponsive hydrogels to the challenges of remote-controlled or metabolism-regulated drug delivery, cell scaffolds with tunable cell-material interactions, theranostic materials with the potential for both imaging and drug delivery, and other such applications, a method is required to render the hydrogels (if not fully degradable) at least capable of renal clearance following the required lifetime of the material. To that end, this protocol describes the preparation of hydrolytically-degradable hydrazone-crosslinked hydrogels on multiple length scales based on the reaction between hydrazide and aldehyde-functionalized PNIPAM or POEGMA oligomers with molecular weights below the renal filtration limit. Specifically, methods to fabricate degradable thermoresponsive bulk hydrogels (using a double barrel syringe technique), hydrogel particles (on both the microscale through the use of a microfluidics platform facilitating simultaneous mixing and emulsification of the precursor polymers and the nanoscale through the use of a thermally-driven self-assembly and cross-linking method), and hydrogel nanofibers (using a reactive electrospinning strategy) are described. In each case, hydrogels with temperature-responsive properties similar to those achieved via conventional free radical cross-linking processes can be achieved, but the hydrazone cross-linked network can be degraded over time to re-form the oligomeric precursor polymers and enable clearance. As such, we anticipate these methods (which may be generically applied to any synthetic water-soluble polymer, not just smart materials) will enable easier translation of synthetic smart materials to clinical applications.
Okeyoshi, Kosuke; Kawamura, Ryuzo; Yoshida, Ryo; Osada, Yoshihito
2016-01-19
Many strategies have been explored to achieve artificial photosynthesis utilizing mediums such as liposomes and supramolecules. Because the photochemical reaction is composed of multiple functional molecules, the surrounding microenvironment is expected to be rationally integrated as observed during photosynthesis in chloroplasts. In this study, photoinduced electronic transmission surrounding the microenvironment of Ru(bpy)3(2+) in a polymer network was investigated using poly(N-isopropylacrylamide-co-Ru(bpy)3), poly(acrylamide-co-Ru(bpy)3), and Ru(bpy)3-conjugated microtubules. Photoinduced energy conversion was evaluated by investigating the effects of (i) Ru(bpy)3(2+) immobilization, (ii) polymer type, (iii) thermal energy, and (iv) cross-linking. The microenvironment surrounding copolymerized Ru(bpy)3(2+) in poly(N-isopropylacrylamide) suppressed quenching and had a higher radiative process energy than others. This finding is related to the nonradiative process, i.e., photoinduced H2 generation with significantly higher overall quantum efficiency (13%) than for the bulk solution. We envision that useful molecules will be generated by photoinduced electronic transmission in polymer networks, resulting in the development of a wide range of biomimetic functions with applications for a sustainable society.
Gabrielle, Brice; Lorthioir, Cédric; Lauprêtre, Françoise
2011-11-03
The possible influence of micrometric-size filler particles on the thermo-oxidative degradation behavior of the polymer chains at polymer/filler interfaces is still an open question. In this study, a cross-linked ethylene-propylene-diene (EPDM) terpolymer filled by aluminum trihydrate (ATH) particles is investigated using (1)H solid-state NMR. The time evolution of the EPDM network microstructure under thermal aging at 80 °C is monitored as a function of the exposure time and compared to that of an unfilled EPDM network displaying a similar initial structure. While nearly no variations of the topology are observed on the neat EPDM network over 5 days at 80 °C, a significant amount of chain scission phenomena are evidenced in EPDM/ATH. A specific surface effect induced by ATH on the thermodegradative properties of the polymer chains located in their vicinity is thus pointed out. Close to the filler particles, a higher amount of chain scissions are detected, and the characteristic length scale related to these interfacial regions displaying a significant thermo-oxidation process is determined as a function of the aging time.
Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J
2018-04-01
Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reno, J.; Dalrymple, D.
Before implementing a crosslinked polymer water-control treatment, a Phillips well was producing 33 b/d of oil and 318 b/d of water. After the treatment, oil production reached 40 b/d of oil and water production decreased to 130 b/d. Water disposal costs decreased by 60% and lifting and maintenance costs were also reduced. The technological key to the improvement was a dry polymer developed for use in hostile well environments. The polymer was crosslinked with chrome (III) propionate, a crosslinker with low toxicity that produces strong, rigid gels.
Crosslinking of aromatic polyamides via pendant propargyl groups
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L.; Barrick, J. D.; Campbell, F. J.
1980-01-01
Methods for crosslinking N-methyl substituted aromatic polyamides were investigated in an effort to improve the applicability of these polymers as matrix resins for Kavlar trademark fiber composites. High molecular weight polymers were prepared from isophthaloyl dichloride and 4,4'- bis(methylamino)diphenylmethane with varying proportions of the N,N'bispropargyl diamine incorporated as a crosslinking agent. The propargylcontaining diamines were crosslinked thermally and characterized by infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Attempts were also made to crosslink polyamide films by exposure to ultraviolet light, electron beam, and gamma radiation.
High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis
NASA Astrophysics Data System (ADS)
Röttger, Max; Domenech, Trystan; van der Weegen, Rob; Breuillac, Antoine; Nicolaÿ, Renaud; Leibler, Ludwik
2017-04-01
Windmills, cars, and dental restoration demand polymer materials and composites that are easy to process, assemble, and recycle while exhibiting outstanding mechanical, thermal, and chemical resistance. Vitrimers, which are polymer networks able to shuffle chemical bonds through exchange reactions, could address these demands if they were prepared from existing plastics and processed with fast production rates and current equipment. We report the metathesis of dioxaborolanes, which is rapid and thermally robust, and use it to prepare vitrimers from polymers as different as poly(methyl methacrylate), polystyrene, and high-density polyethylene that, although permanently cross-linked, can be processed multiple times by means of extrusion or injection molding. They show superior chemical resistance and dimensional stability and can be efficiently assembled. The strategy is applicable to polymers with backbones made of carbon-carbon single bonds.
Dynamic properties of hydrogels and fiber-reinforced hydrogels.
Martin, Nicholas; Youssef, George
2018-06-07
Hydrophilic polymers, or hydrogels, are used for a wide variety of biomedical applications, due to their inherent ability to withhold a high-water content. In recent years, a large effort has been focused on tailoring the mechanical properties of these hydrogels to become more appropriate materials for use as anatomical and physiological structural supports. A few of these such methods include using diverse types of polymers, both natural and synthetic, varying the type of molecular cross-linking, as well as combining these efforts to form interpenetrating polymer network hydrogels. While multiple research groups have characterized these various hydrogels under quasi-static conditions, their dynamic properties, representative of native physiological loading scenarios, have been scarcely reported. In this study, an E-glass fiber reinforced family of alginate/PAAm hydrogels cross-linked by both divalent and trivalent cations are fabricated and investigated. The effect of the reinforcement phase on the dynamic and hydration behaviors is then explicated. Additionally, a micromechanics framework for short cylindrical chopped fibers is utilized to discern the contribution of the matrix and fiber constituents on the hydrogel composite. The addition of E-glass fibers resulted in the storage modulus exhibiting a ~50%, 5%, and ~120%, increase with a mere addition of 2 wt% of the reinforcing fibers to Na-, Sr-, and Al-alginate/PAAm, respectively. In studying the cross-linking effect of various divalent (Ba, Ca, Sr) and trivalent (Al, Fe) cations, it was noteworthy that the hydrogels were found to be effective in dissipating energy while resisting mechanical deformation when they are cross-linked with higher molecular weight elements, regardless of valency. This report on the dynamic properties of these hydrogels will help to improve their optimization for future use in biomedical load-bearing applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fan, Long Fei; Rong, Min Zhi; Zhang, Ming Qiu; Chen, Xu Dong
2018-05-11
Development of two-way shape memory polymers that operate free of external force remains a great challenge. Here, the design criteria for this type of material are proposed, deriving a novel fabrication strategy accordingly, which employs conventional crosslinked polyurethane (PU) containing crystalline poly(ε-caprolactone) (PCL) as the proof-of-concept material. Having been simply trained by stretching and thermal treatment without additional ingredients and chemicals, the PU is coupled with a two-way shape memory effect. The core advancement of this study lies in the successful conversion of the inherent hydrogen bond network, which is often the easiest to overlook, into an internal stress provider. The temperature-dependent reversible melting/recrystallization of the crystalline phases elaborately works with the tensed hydrogen bond network, leading to implementation of the two-way shape memory effect. An average reversible strain of as high as ≈20% along the stretch direction is obtained through cooperation adjustment of chemical crosslinking density, crystallinity, and concentration of hydrogen bonds. Meanwhile, the highest internal tension offered by the hydrogen bond network is determined to be 0.10 MPa. Owing to the great convenience characterized by material selection, preparation, programming, and application, the current work may open up an avenue for production and usage of the smart material. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, David Edward; Barber, John L.
From quantum chemistry simulations using density functional theory, we obtain the total electronic energy of an eight-atom sulfur chain as its end-to-end distance is extended until S–S bond rupture occurs. We find that a sulfur chain can be extended by about 40% beyond its nominally straight conformation, where it experiences rupture at an end-to-end tension of about 1.5 nN. Using this rupture force as the chain failure limit in an explicit polymer network simulation model (EPnet), we predict the tensile failure stress for sulfur crosslinked (vulcanized) natural rubber. Furthermore, quantitative agreement with published experimental data for the failure stress ismore » obtained in these simulations if we assume that only about 30% of the sulfur chains produce viable network crosslinks. Surprisingly, we also find that the failure stress of a rubber network does not scale linearly with the chain failure force limit.« less
Hanson, David Edward; Barber, John L.
2017-11-20
From quantum chemistry simulations using density functional theory, we obtain the total electronic energy of an eight-atom sulfur chain as its end-to-end distance is extended until S–S bond rupture occurs. We find that a sulfur chain can be extended by about 40% beyond its nominally straight conformation, where it experiences rupture at an end-to-end tension of about 1.5 nN. Using this rupture force as the chain failure limit in an explicit polymer network simulation model (EPnet), we predict the tensile failure stress for sulfur crosslinked (vulcanized) natural rubber. Furthermore, quantitative agreement with published experimental data for the failure stress ismore » obtained in these simulations if we assume that only about 30% of the sulfur chains produce viable network crosslinks. Surprisingly, we also find that the failure stress of a rubber network does not scale linearly with the chain failure force limit.« less
Preparation of redox polymer cathodes for thin film rechargeable batteries
Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.
1994-11-08
The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.
Method of making a coating of a microtextured surface
Affinito, John D [Tucson, AZ; Graff, Gordon L [West Richland, WA; Martin, Peter M [Kennewick, WA; Gross, Mark E [Pasco, WA; Burrows, Paul E [Kennewick, WA; Sapochak, Linda S [Henderson, NV
2004-11-02
A method for conformally coating a microtextured surface. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, cryocondensing the glow discharge polymer precursor plasma on the microtextured surface and crosslinking the glow discharge polymer precursor plasma thereon, wherein the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.
Network Confinement and Heterogeneity Slows Nanoparticle Diffusion in Polymer Gels
NASA Astrophysics Data System (ADS)
Parrish, Emmabeth; Caporizzo, Matthew; Composto, Russell
Nanoparticle (NP) diffusion was measured in polyacrylamide gels (PAG) with a mesh size comparable to NP size, 20nm. The confinement ratio (CR), NP diameter/mesh, increased from 0.4 to 3.8 by increasing crosslinker density and 0.4 to 2 by adding acetone, which collapsed PAG. In all gels, NPs either became localized (<200nm) or diffused microns, as measured by single particle tracking. Mean squared displacements (MSD) of mobile NPs decreased as CR increased. In collapsed gels, the localized NP population increased and MSD of mobile NPs decreased compared to crosslinked PAG. For all CRs, van Hove distributions exhibited non-Gaussian displacements consistent with intermittent localization of NPs. The non-Gaussian parameter increased from a maximum of 1.5 for crosslinked PAG to 5 for collapsed PAG, consistent with greater network heterogeneity. Diffusion coefficients, D, decreased exponentially as CR increased for crosslinked gels, but in collapsed gels D decreased more strongly, suggesting CR alone was insufficient to capture diffusion. Collapsing the gel resulted in an increasingly tortuous pathway for NPs, slowing diffusion at a given CR. Understanding how gel structure affects NP mobility will allow the design of gels with improved ability to separate and release molecules. ACS/PRF 54028-ND7, NSF/MWN DMR-1210379.
Shear rheological characterization of gel healing response and construction of rheo-PIV system
NASA Astrophysics Data System (ADS)
Bawiskar, Abhishek D.
Thermo-reversible gels are solvent-filled 3D networks of polymer chains interconnected by physical (transient) crosslinks. On applying a high shear stress, the crosslinks are broken and these gels show a typical stress-strain behavior due to cohesive fracture of the gel. When heated above a critical temperature and cooled back to room temperature, all the crosslinks are re-formed. Interestingly, partial to full recovery of broken crosslinks is also observed by simply letting the gel stand at room temperature. In this study, the fracture and healing behavior of a model acrylic triblock copolymer gel has been characterized by shear rheometry. A mathematical model has also been proposed to better understand the mechanics at the molecular level and predict the healing time of a system. A rheo-PIV system was built as part of the project, to observe and confirm the bulk healing process in situ. Spontaneous self-healing behavior has immense potential in controlled drug delivery systems, coatings, food and various other applications.
Duong, Hien T T; Jung, Kenward; Kutty, Samuel K; Agustina, Sri; Adnan, Nik Nik M; Basuki, Johan S; Kumar, Naresh; Davis, Thomas P; Barraud, Nicolas; Boyer, Cyrille
2014-07-14
Biofilms are increasingly recognized as playing a major role in human infectious diseases, as they can form on both living tissues and abiotic surfaces, with serious implications for applications that rely on prolonged exposure to the body such as implantable biomedical devices or catheters. Therefore, there is an urgent need to develop improved therapeutics to effectively eradicate unwanted biofilms. Recently, the biological signaling molecule nitric oxide (NO) was identified as a key regulator of dispersal events in biofilms. In this paper, we report a new class of core cross-linked star polymers designed to store and release nitric oxide, in a controlled way, for the dispersion of biofilms. First, core cross-linked star polymers were prepared by reversible addition-fragmentation chain transfer polymerization (RAFT) via an arm first approach. Poly(oligoethylene methoxy acrylate) chains were synthesized by RAFT polymerization, and then chain extended in the presence of 2-vinyl-4,4-dimethyl-5-oxazolone monomer (VDM) with N,N-methylenebis(acrylamide) employed as a cross-linker to yield functional core cross-linked star polymers. Spermine was successfully attached to the star core by reaction with VDM. Finally, the secondary amine groups were reacted with NO gas to yield NO-core cross-linked star polymers. The core cross-linked star polymers were found to release NO in a controlled, slow delivery in bacterial cultures showing great efficacy in preventing both cell attachment and biofilm formation in Pseudomonas aeruginosa over time via a nontoxic mechanism, confining bacterial growth to the suspended liquid.
Tough high performance composite matrix
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)
1994-01-01
This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.
The Alginate Demonstration: Polymers, Food Science, and Ion Exchange
NASA Astrophysics Data System (ADS)
Waldman, Amy Sue; Schechinger, Linda; Govindarajoo, Geeta; Nowick, James S.; Pignolet, Louis H.
1998-11-01
We have recently devised a polymer demonstration involving the crosslinking and decrosslinking of alginate, a polysaccharide isolated from seaweed. The polymer is composed of D-mannuronic acid and L-guluronic acid subunits and is a component of cell walls. It is commonly used as a thickener in foods such as ice cream and fruit-filled snacks. For the demonstration, a 2% solution of sodium alginate is poured into a 1% solution of calcium chloride. Nontoxic calcium alginate "worms" form due to crosslinking of the polymer. Alternatively, the commercially available antacid Gaviscon can be used as a source of sodium alginate. The crosslinks can then be broken by shaking the worms in brine. The demonstration is a fine addition to any chemical educator's repertoire of polymer experiments.
Unterberger, Michael J; Holzapfel, Gerhard A
2014-11-01
The protein actin is a part of the cytoskeleton and, therefore, responsible for the mechanical properties of the cells. Starting with the single molecule up to the final structure, actin creates a hierarchical structure of several levels exhibiting a remarkable behavior. The hierarchy spans several length scales and limitations in computational power; therefore, there is a call for different mechanical modeling approaches for the different scales. On the molecular level, we may consider each atom in molecular dynamics simulations. Actin forms filaments by combining the molecules into a double helix. In a model, we replace molecular subdomains using coarse-graining methods, allowing the investigation of larger systems of several atoms. These models on the nanoscale inform continuum mechanical models of large filaments, which are based on worm-like chain models for polymers. Assemblies of actin filaments are connected with cross-linker proteins. Models with discrete filaments, so-called Mikado models, allow us to investigate the dependence of the properties of networks on the parameters of the constituents. Microstructurally motivated continuum models of the networks provide insights into larger systems containing cross-linked actin networks. Modeling of such systems helps to gain insight into the processes on such small scales. On the other hand, they call for verification and hence trigger the improvement of established experiments and the development of new methods.
Fabrication and characterization of shape memory polymers at small-scales
NASA Astrophysics Data System (ADS)
Wornyo, Edem
The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory polymers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) Design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) Utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) Utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) Study spin coating conditions on thin film quality with designed experiments. (iv) Apply neural networks and genetic algorithms to optimize these systems.
NASA Astrophysics Data System (ADS)
Xiu, Kemao
Bacterial infection and biofilm formation cause serious medical, industrial, and environmental problems. In biomedical applications, bacterial contamination of medical devices often leads to infectious diseases accompanied with pain, suffer, and even death. Polyurethane (PU) is widely in biomedical applications due to its good mechanical properties and biocompatibility. However, its vulnerability to bacterial biofilm formation seriously limits its wider uses. Prior studies have shown that N-halamines could be incorporated into PU to achieve antimicrobial and biofilm-controlling effects through grafting, blending, and/or coating. To broaden the selection of modification methods in the development antimicrobial PU, this study synthesized polyurethane/polymeric N-halamine semi-interpenetrating polymer networks (semi-IPN). Polymerizable monomeric N-halamines were swollen into PU with initiators and crosslink agents. Post polymerization of the monomers led to the formation of semi-IPN with linear PU and N-halamine polymer networks. The semi-IPNs showed excellent antimicrobial and biofilm controlling ability towards both gram-positive and gram-negative bacteria. The effects of hydrophilicity, surface grafted N-halamine and structural characteristics of N-halamine on the antimicrobial behavior of the resulting semi-IPNs were also investigated.
NASA Astrophysics Data System (ADS)
Yepez Castillo, Frank Isaias
Poly(ethylenimine) (PEI) is an ion conducting polymer with great potential for applications in lithium batteries and proton exchange membrane fuel cells. Branched poly(ethylenimine) was N-methylated via an Eschweiler-Clarke reaction to produce branched poly( N-methylethylenimine), BPMEI. Novel alkylated linear poly( N-ethylethylenimine), LPEEI, and linear poly(N-butylethylenimine), LPBEI, were synthesized from linear poly(ethylenimine), LPEI, via reductive amination of aliphatic aldehydes. Differential scanning calorimetry was used to determine the glass transition temperature, Tg, of neat BPMEI (Tg = -91°C), LPEEI (Tg = -80°C) and LPBEI (T g = -50°C). Tgs of various N-alkylated PEI-lithium triflate complexes with different salt concentrations were determined. BPMEI exhibited a greater Tg change upon lithium triflate addition (from -91°C to 13°C) than that of LPMEI complexes (from -93°C to -14°C). It was found that LPEEI complexes showed higher Tgs at all salt concentrations than the corresponding LPMEI-LiSO3CF3 system. IR and Raman spectroscopy were used to study complexes of these polymers with lithium triflate for battery applications. Vibrational spectra of BPMEI-LiSO 3CF3 complexes revealed that aggregate formation is not observed until salt concentration reaches 5:1 (N:Li molar ratio). Additionally, a decrease in the relative concentration of "free" ions, compared to equivalent linear systems, was observed. LPEEI's spectra presented few changes upon salt addition, suggesting that salt addition causes less disruption of the local polymer microstructure than that observed in LPMEI systems in previous studies. Linear poly(ethylenimine) hydrochloride, LPEIHCl, was successfully crosslinked using malonaldehyde generated in situ, and the degree of crosslinking was determined from the ratio of crosslink to polymer backbone hydrogens obtained using 1H NMR spectroscopy. The ionic conductivity was highest at intermediate degrees of crosslinking ( ca. 0.45), approximately 1.0x10-3 S/cm at room temperature and 75% relative humidity. IR and Raman spectroscopy were used to characterize the crosslinked network. The presence of beta-amino-ethenyliminium crosslink units was identified through a series of bands between 1570 and 1640 cm -1. Ionic conductivity studies were performed on crosslinked LPEIHCl as a function of relative humidity, degree of crosslinking, temperature and phosphoric acid content. Results showed that the dependence of the conductivity on these factors is complex and that it involves a drastic transition in which the conductivity increases by several orders of magnitude. The onset of this transition appeared to be related to the composition of the polymer membranes. Membranes with ionic conductivities as high as 0.16 S/cm at 130ºC and 20% RH were obtained. Crosslinked LPEIHCl/H3PO4-based membranes were used in membrane electrode assemblies, MEAs, for proton exchange membranes fuel cells. MEAs were tested at temperatures ranging from 60 to 130°C and 30% RH. Upon comparison, LPEI-based MEAs exhibited better performance than NafionRTM 117-based MEAs tested under the same conditions. PEI-based MEAs with 2.0 P:N and 0.66 degree of crosslinking produced 0.30 mA/cm 2 at 0.38 V at 90°C and 30% RH. NafionRTM 117-based MEAs produced 0.047 mA/cm2 at 0.34 V under the same conditions.
Transient response of nonlinear polymer networks: A kinetic theory
NASA Astrophysics Data System (ADS)
Vernerey, Franck J.
2018-06-01
Dynamic networks are found in a majority of natural materials, but also in engineering materials, such as entangled polymers and physically cross-linked gels. Owing to their transient bond dynamics, these networks display a rich class of behaviors, from elasticity, rheology, self-healing, or growth. Although classical theories in rheology and mechanics have enabled us to characterize these materials, there is still a gap in our understanding on how individuals (i.e., the mechanics of each building blocks and its connection with others) affect the emerging response of the network. In this work, we introduce an alternative way to think about these networks from a statistical point of view. More specifically, a network is seen as a collection of individual polymer chains connected by weak bonds that can associate and dissociate over time. From the knowledge of these individual chains (elasticity, transient attachment, and detachment events), we construct a statistical description of the population and derive an evolution equation of their distribution based on applied deformation and their local interactions. We specifically concentrate on nonlinear elastic response that follows from the strain stiffening response of individual chains of finite size. Upon appropriate averaging operations and using a mean field approximation, we show that the distribution can be replaced by a so-called chain distribution tensor that is used to determine important macroscopic measures such as stress, energy storage and dissipation in the network. Prediction of the kinetic theory are then explored against known experimental measurement of polymer responses under uniaxial loading. It is found that even under the simplest assumptions of force-independent chain kinetics, the model is able to reproduce complex time-dependent behaviors of rubber and self-healing supramolecular polymers.
Multifunctional structural lithium ion batteries for electrical energy storage applications
NASA Astrophysics Data System (ADS)
Javaid, Atif; Zeshan Ali, Muhammad
2018-05-01
Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.
Matsumoto, Mayuko; Terashima, Takaya; Matsumoto, Kazuma; Takenaka, Mikihito; Sawamoto, Mitsuo
2017-05-31
Orthogonal self-assembly and intramolecular cross-linking of amphiphilic random block copolymers in water afforded an approach to tailor-make well-defined compartments and domains in single polymer chains and nanoaggregates. For a double compartment single-chain polymer, an amphiphilic random block copolymer bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl, benzyl, and olefin pendants was synthesized by living radical polymerization (LRP) and postfunctionalization; the dodecyl and benzyl units were incorporated into the different block segments, whereas PEG pendants were statistically attached along a chain. The copolymer self-folded via the orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in water, followed by intramolecular cross-linking, to form a single-chain polymer carrying double yet distinct hydrophobic nanocompartments. A single-chain cross-linked polymer with a chlorine terminal served as a globular macroinitiator for LRP to provide an amphiphilic tadpole macromolecule comprising a hydrophilic nanoparticle and a hydrophobic polymer tail; the tadpole thus self-assembled into multicompartment aggregates in water.
Highly porous and mechanically strong ceramic oxide aerogels
NASA Technical Reports Server (NTRS)
Johnston, James C. (Inventor); Leventis, Nicholas (Inventor); Ilhan, Ulvi F. (Inventor); Meador, Mary Ann B. (Inventor); Fabrizio, Eve F. (Inventor)
2012-01-01
Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.
Highly porous and mechanically strong ceramic oxide aerogels
NASA Technical Reports Server (NTRS)
Fabrizio, Eve F. (Inventor); Leventis, Nicholas (Inventor); Ilhan, Ulvi F. (Inventor); Meador, Mary Ann B. (Inventor); Johnston, James C. (Inventor)
2010-01-01
Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.
Zhang, Jinfang; Li, Xiaofeng; Li, Ying; Wang, Huiqi; Ma, Cheng; Wang, Yanzhong; Hu, Shengliang; Wei, Weifeng
2018-01-01
A new class of freestanding cross-linked hybrid polymer electrolytes (HPEs) with POSS as the cross-linker was prepared by a one-step free radical polymerization reaction. Octavinyl octasilsesquioxane (OV-POSS) with eight functional corner groups was used to provide cross-linking sites for the connection of polymer segments and the required mechanical strength to separate the cathode and anode. The unique cross-linked structure offers additional free volume for the motion of EO chains and provides fast and continuously interconnected ion-conducting channels along the nanoparticles/polymer matrix interface. The HPE exhibits the highest ionic conductivity of 1.39 × 10 -3 S cm -1 , as well as excellent interfacial compatibility with the Li electrode at 80°C. In particular, LiFePO 4 /Li cells based on the HPE deliver good rate capability and long-term cycling performance with an initial discharge capacity of 152.1 mAh g -1 and a capacity retention ratio of 88% after 150 cycles with a current density of 0.5 C at 80°C, demonstrating great potential application in high-performance LIBs at elevated temperatures.
NASA Astrophysics Data System (ADS)
Zhang, Jinfang; Li, Xiaofeng; Li, Ying; Wang, Huiqi; Ma, Cheng; Wang, Yanzhong; Hu, Shengliang; Wei, Weifeng
2018-05-01
A new class of freestanding cross-linked hybrid polymer electrolytes (HPEs) with POSS as the cross-linker was prepared by a one-step free radical polymerization reaction. Octavinyl octasilsesquioxane (OV-POSS) with eight functional corner groups was used to provide cross-linking sites for the connection of polymer segments and the required mechanical strength to separate the cathode and anode. The unique cross-linked structure offers additional free volume for the motion of EO chains and provides fast and continuously interconnected ion-conducting channels along the nanoparticles/polymer matrix interface. The HPE exhibits the highest ionic conductivity of 1.39×10-3 S cm-1, as well as excellent interfacial compatibility with the Li electrode at 80 oC. In particular, LiFePO4/Li cells based on the HPE deliver good rate capability and long-term cycling performance with an initial discharge capacity of 152.1 mAh g-1 and a capacity retention ratio of 88% after 150 cycles with a current density of 0.5 C at 80 oC, demonstrating great potential application in high-performance LIBs at elevated temperatures.
Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.
2014-01-01
The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID:25411511
Bhattacharya, Shiv Sankar; Mazahir, Farhan; Banerjee, Subham; Verma, Anurag; Ghosh, Amitava
2013-10-15
Interpenetrating polymer network (IPN) hydrogel microspheres of xanthan gum (XG) based superabsorbent polymer (SAP) and poly(vinyl alcohol) (PVA) were prepared by water-in-oil (w/o) emulsion crosslinking method for sustained release of ciprofloxacin hydrochloride (CIPRO). The microspheres were prepared with various ratios of hydrolyzed SAP to PVA and extent of crosslinking density. The prepared microspheres with loose and rigid surfaces were evidenced by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the IPN formation. Differential scanning calorimetry (DSC) study was performed to understand the dispersion nature of drug after encapsulation. The in vitro drug release study was extensively evaluated depending on the process variables in both acidic and alkaline media. All the formulations exhibited satisfactory physicochemical and in vitro release characteristics. Release data indicated a non-Fickian trend of drug release from the formulations. Based on the results, this study suggest that CIPRO loaded IPN microspheres were suitable for sustained release application. Copyright © 2013 Elsevier Ltd. All rights reserved.
Screening and characterization of plant cell walls using carbohydrate microarrays.
Sørensen, Iben; Willats, William G T
2011-01-01
Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.
Preparation and biocompatibility of crosslinked poly(3-hydroxyundecenoate).
Chung, Chungwook; Chung, Kyudon; Kim, Do Young; Lee, Sun Hee; Kim, Jong-Sik; Rhee, Young Ha
2018-02-01
A sticky polymer, poly(3-hydroxyundecenoate) (PHU), was produced by Pseudomonas oleovorans when nonanoate and undecenoate were used as carbon sources. Crosslinked PHU (CL-PHU) was prepared by heating using benzoyl peroxide as a crosslinker. According to the degree of crosslinking in the polymer, three types of CL-PHU were prepared: CL-PHU50, CL-PHU60 and CL-PHU70. Fourier transform-infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry results suggested that crosslinking of PHU was successfully achieved by heat, which increased the crosslinking density and decreased stiffness and flexibility of the polymer. Water contact angle measurements revealed no differences of hydrophilicity as the crosslinking density. Slight morphological changes of CL-PHU film surfaces were observed by atomic force microscopy. Chinese hamster ovary cells were used to investigate the biocompatibility of CL-PHU films using poly(l-lactide) surfaces as control. Surface properties of the film, such as roughness and adhesive force, enhanced the adhesion and proliferation of cells on the films. CL-PHU might be useful for cell compatible biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Pedrón, Sara; Peinado, Carmen; Bosch, Paula; S.Anseth, Kristi
2010-01-01
Hyperbranched poly(ester amide) polymer (Hybrane™ S1200; Mn 1200 g/mol) was functionalized with maleic anhydride (MA) and propylene sulfide, to obtain multifunctional crosslinkers with fumaric and thiol-end groups, S1200MA and S1200SH, respectively. The degree of substitution of maleic acid groups (DS) was controlled by varying the molar ratio of MA to S1200 in the reaction mixture. Hydrogels were obtained by UV crosslinking of functionalized S1200 and poly(ethyleneglycol) diacrylate (PEGDA) in aqueous solutions. Compressive modulus increased with decreasing the S1200/PEG ratio and also depended on the DS of the multifunctional crosslinker (S1200). Also, heparin-based macromonomers together with functionalized hyperbranched polymers were used to construct novel functional hydrogels. The multivalent hyperbranched polymers allowed high crosslinking densities in heparin modified gels while introducing biodegradation sites. Both heparin presence and acrylate/thiol ratio have an impact on degradation profiles and morphologies. Hyperbranched crosslinked hydrogels showed no evidence of cell toxicity. Overall, the multifunctional crosslinkers afford hydrogels with promising properties that suggest that these may be suitable for tissue engineering applications. PMID:20561601
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M.
1999-01-01
A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.
Photochromic cross-link polymer for color changing and sensing surface
NASA Astrophysics Data System (ADS)
Fu, Richard; Shi, Jianmin; Forsythe, Eric; Srour, Merric
2016-12-01
Photochromic cross-link polymers were developed using patented ultraviolet (UV) photoinitiator and commercial photochromic dyes. The photochromic dyes have been characterized by measuring absorbance before and after UV activation using UV-visible (Vis) spectrometry with varying activation intensities and wavelengths. Photochromic cross-link polymers were characterized by a dynamic xenon and UV light activation and fading system. The curing processes on cloth were established and tested to obtain effective photochromic responses. Both PulseForge photonic curing and PulseForge plus heat surface curing processes had much better photochromic responses (18% to 19%, 16% to 25%, respectively) than the xenon lamp treatment (8%). The newly developed photochromic cross-link polymer showed remarkable coloration contrasts and fast and comparable coloration and fading rates. Those intelligent, controlled color changing and sensing capabilities will be used on flexible and "drapeable" surfaces, which will incorporate ultra-low power sensors, sensor indicators, and identifiers.
A theory for fracture of polymeric gels
NASA Astrophysics Data System (ADS)
Mao, Yunwei; Anand, Lallit
2018-06-01
A polymeric gel is a cross-linked polymer network swollen with a solvent. If the concentration of the solvent or the deformation is increased to substantial levels, especially in the presence of flaws, then the gel may rupture. Although various theoretical aspects of coupling of fluid permeation with large deformation of polymeric gels are reasonably well-understood and modeled in the literature, the understanding and modeling of the effects of fluid diffusion on the damage and fracture of polymeric gels is still in its infancy. In this paper we formulate a thermodynamically-consistent theory for fracture of polymeric gels - a theory which accounts for the coupled effects of fluid diffusion, large deformations, damage, and also the gradient effects of damage. The particular constitutive equations for fracture of a gel proposed in our paper, contain two essential new ingredients: (i) Our constitutive equation for the change in free energy of a polymer network accounts for not only changes in the entropy, but also changes in the internal energy due the stretching of the Kuhn segments of the polymer chains in the network. (ii) The damage and failure of the polymer network is taken to occur by chain-scission, a process which is driven by the changes in the internal energy of the stretched polymer chains in the network, and not directly by changes in the configurational entropy of the polymer chains. The theory developed in this paper is numerically implemented in an open-source finite element code MOOSE, by writing our own application. Using this simulation capability we report on our study of the fracture of a polymeric gel, and some interesting phenomena which show the importance of the diffusion of the fluid on fracture response of the gel are highlighted.
High performance shape memory polymer networks based on rigid nanoparticle cores
Song, Jie
2010-01-01
Smart materials that can respond to external stimuli are of widespread interest in biomedical science. Thermal-responsive shape memory polymers, a class of intelligent materials that can be fixed at a temporary shape below their transition temperature (Ttrans) and thermally triggered to resume their original shapes on demand, hold great potential as minimally invasive self-fitting tissue scaffolds or implants. The intrinsic mechanism for shape memory behavior of polymers is the freezing and activation of the long-range motion of polymer chain segments below and above Ttrans, respectively. Both Ttrans and the extent of polymer chain participation in effective elastic deformation and recovery are determined by the network composition and structure, which are also defining factors for their mechanical properties, degradability, and bioactivities. Such complexity has made it extremely challenging to achieve the ideal combination of a Ttrans slightly above physiological temperature, rapid and complete recovery, and suitable mechanical and biological properties for clinical applications. Here we report a shape memory polymer network constructed from a polyhedral oligomeric silsesquioxane nanoparticle core functionalized with eight polyester arms. The cross-linked networks comprising this macromer possessed a gigapascal-storage modulus at body temperature and a Ttrans between 42 and 48 °C. The materials could stably hold their temporary shapes for > 1 year at room temperature and achieve full shape recovery ≤ 51 °C in a matter of seconds. Their versatile structures allowed for tunable biodegradability and biofunctionalizability. These materials have tremendous promise for tissue engineering applications. PMID:20375285
Anion exchange membrane crosslinked in the easiest way stands out for fuel cells
NASA Astrophysics Data System (ADS)
Hossain, Md. Masem; Wu, Liang; Liang, Xian; Yang, Zhengjin; Hou, Jianqiu; Xu, Tongwen
2018-06-01
Covalent crosslinking is an effective method to stabilize anion exchange membranes (AEMs) against water swelling and high alkaline environment, yet complicated process is required. We report herein a straightforward approach to prepare highly crosslinked, transparent and flexible AEM by simply immersing a halo-alkylated polymer (e.g., brominated poly-(2,6-dimethyl-phenylene oxide)) based membrane in aqueous dimethylamine solution at room temperature and the following methylation. During this crosslinking process, a robust self-crosslinking network is formed which shows a gel fraction in N-methyl-2-pyrrolidone of (up to) 94%. Self-crosslinked membranes show low water uptakes (20-42%) and dimensional swelling (9-16%) compared to non-crosslinked membrane but good hydroxide conductivities (up to 26 mS cm-1) at room temperature. Besides, the resulting membranes show some interesting features: the membranes do not immensely change its room temperature water swelling properties at high temperature but exhibits good hydroxide conductivities (up to 60 mS cm-1 at 80 °C). Noting that, the self-crosslinked AEM reported here has no β-hydrogens, exhibiting extremely high alkaline stability (no decline in hydroxide conductivity in 1 M KOH at 60 °C for 360h). Membrane electrode assembly consists of fabricated membrane shows moderate fuel cell performance reaching peak power density 31 mW cm-2 at 60 °C in a H2/O2 alkaline fuel cell.
Biomimetic Gradient Polymers with Enhanced Damping Capacities.
Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian
2016-04-01
Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impact of polymer modification on mechanical and viscoelastic properties.
DOT National Transportation Integrated Search
2015-10-01
This study was initiated with the aim of evaluating the relative impact of different cross-linking agents : on the rheological and morphological properties of polymer modified asphalt binders (PMAs). To : complete this objective, two cross-linking ag...
A tough high performance composite matrix
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)
1992-01-01
This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. An improved high temperature matrix resin is provided which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance and moisture and solvent resistances.
1979-12-01
resin types: 1) acrylic latex, 2) acrylic solution polymer, 3) epoxy emulsions, 4) polyurethane, 5) butadiene elastomeric latex, 6) polyester/ alkyd , 7...emulsions and the class of polyester/ alkyd resins were evaluated only as network, crosslinked films. -53- j z I, ACRYLIC SOLUTIONLATEX URE THANE ACRYLIC ...amount of "plasticizing" monomer such as ethyl acrylate . 2.3.1.3 Aqueous Polyester Alkyd Resins As indicated in section 2.2.7 of this report,
Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics
Grindy, Scott C.; Learsch, Robert; Mozhdehi, Davoud; Cheng, Jing; Barrett, Devin G.; Guan, Zhibin; Messersmith, Phillip B.; Holten-Andersen, Niels
2015-01-01
In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or copolymer-block design1. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material’s mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure may inform the design of soft materials for use in complex mechanical environments. PMID:26322715
MOLSIM: A modular molecular simulation software
Jurij, Reščič
2015-01-01
The modular software MOLSIM for all‐atom molecular and coarse‐grained simulations is presented with focus on the underlying concepts used. The software possesses four unique features: (1) it is an integrated software for molecular dynamic, Monte Carlo, and Brownian dynamics simulations; (2) simulated objects are constructed in a hierarchical fashion representing atoms, rigid molecules and colloids, flexible chains, hierarchical polymers, and cross‐linked networks; (3) long‐range interactions involving charges, dipoles and/or anisotropic dipole polarizabilities are handled either with the standard Ewald sum, the smooth particle mesh Ewald sum, or the reaction‐field technique; (4) statistical uncertainties are provided for all calculated observables. In addition, MOLSIM supports various statistical ensembles, and several types of simulation cells and boundary conditions are available. Intermolecular interactions comprise tabulated pairwise potentials for speed and uniformity and many‐body interactions involve anisotropic polarizabilities. Intramolecular interactions include bond, angle, and crosslink potentials. A very large set of analyses of static and dynamic properties is provided. The capability of MOLSIM can be extended by user‐providing routines controlling, for example, start conditions, intermolecular potentials, and analyses. An extensive set of case studies in the field of soft matter is presented covering colloids, polymers, and crosslinked networks. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25994597
NASA Astrophysics Data System (ADS)
Brogly, Maurice; Noel, Olivier; Awada, Houssein; Castelein, Gilles
2007-03-01
Adhesive properties of a polymer surface results from the complex contribution of surface chemistry and activation of sliding and dissipating mechanisms within the polymer surface layer. The purpose of this study is to dissociate the different contributions (chemical and mechanical) included in an AFM force-distance curve in order to establish relationships between the surface viscoelastic properties of the polymer, the surface chemistry of functionalized polymer surfaces and the adhesive forces, as determined by C-AFM experiments. Indeed we are interested in the measurements of local attractive or adhesive forces in AFM contact mode, of controlled chemical and mechanical model substrates. In order to investigate the interplay between mechanical or viscoelastic mechanisms and surface chemistry during the tip - polymer contact, we achieved force measurements on model PDMS polymer networks, whose surfaces are chemically controlled with the same functional groups as before (silicon substrates). On the basis of AFM nano-indentation experiments, surface Young moduli have been determined. The results show that the viscoelastic contribution is dominating in the adhesion force measurement. We propose an original model, which express the local adhesion force to the energy dissipated within the contact and the surface properties of the material (thermodynamic work of adhesion). Moreover we show that the dissipation function is related to Mc, the mass between crosslinks of the network.
Wang, Yapei; Pitet, Louis M; Finlay, John A; Brewer, Lenora H; Cone, Gemma; Betts, Douglas E; Callow, Maureen E; Callow, James A; Wendt, Dean E; Hillmyer, Marc A; DeSimonea, Joseph M
2011-01-01
The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.
Light-induced cross-linking and post-cross-linking modification of polyglycidol.
Marquardt, F; Bruns, M; Keul, H; Yagci, Y; Möller, M
2018-02-08
The photoinduced radical generation process has received renewed interest due to its economic and ecological appeal. Herein the light-induced cross-linking of functional polyglycidol and its post-cross-linking modification are presented. Linear polyglycidol was first functionalized with a tertiary amine in a two-step reaction. Dimethylaminopropyl functional polyglycidol was cross-linked in a UV-light mediated reaction with camphorquinone as a type II photoinitiator. The cross-linked polyglycidol was further functionalized by quaternization with various organoiodine compounds. Aqueous dispersions of the cross-linked polymers were investigated by means of DLS and zeta potential measurements. Polymer films were evaluated by DSC and XPS.
Lim, Vuanghao; Peh, Kok Khiang; Sahudin, Shariza
2013-01-01
The use of disulphide polymers, a low redox potential responsive delivery, is one strategy for targeting drugs to the colon so that they are specifically released there. The objective of this study was to synthesise a new cross-linked disulphide-containing polymer based on the amino acid cysteine as a colon drug delivery system and to evaluate the efficiency of the polymers for colon targeted drug delivery under the condition of a low redox potential. The disulphide cross-linked polymers were synthesised via air oxidation of 1,2-ethanedithiol and 3-mercapto-N-2-(3-mercaptopropionamide)-3-mercapto propionic anhydride (trithiol monomers) using different ratio combinations. Four types of polymers were synthesised: P10, P11, P151, and P15. All compounds synthesised were characterised by NMR, IR, LC-MS, CHNS analysis, Raman spectrometry, SEM-EDX, and elemental mapping. The synthesised polymers were evaluated in chemical reduction studies that were performed in zinc/acetic acid solution. The suitability of each polymer for use in colon-targeted drug delivery was investigated in vitro using simulated conditions. Chemical reduction studies showed that all polymers were reduced after 0.5–1.0 h, but different polymers had different thiol concentrations. The bacterial degradation studies showed that the polymers were biodegraded in the anaerobic colonic bacterial medium. Degradation was most pronounced for polymer P15. This result complements the general consensus that biodegradability depends on the swellability of polymers in an aqueous environment. Overall, these results suggest that the cross-linked disulphide-containing polymers described herein could be used as coatings for drugs delivered to the colon. PMID:24351841
Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won
2017-12-13
Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.
Ishiwata, Takumi; Michibata, Ayano; Kokado, Kenta; Ferlay, Sylvie; Hosseini, Mir Wais; Sada, Kazuki
2018-02-06
New polymer capsules (PCs) were obtained using a crystal crosslinking (CC) method on core-shell MOF crystals. The latter are based on the epitaxial growth of two isostructural coordination polymers which are then selectively crosslinked. Decomposition of the non-reticulated phase leads to new PCs, possessing a well-defined hollow cubic shape reflecting the heterostructure of the template.
Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects.
Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun
2015-08-07
Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers' desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed.
NASA Astrophysics Data System (ADS)
Kim, Jong-Woong; Lee, Da Hee; Jeon, Hee-Jeong; Jang, Sung Il; Cho, Hyun Min; Kim, Youngmin
2018-01-01
The recyclable silicone-based thermoset was successfully synthesized by making use of a Diels-Alder (DA) adduct as a cross-linker. The incorporation of the furan-tethered diol 1 into the polymer backbones realized the crosslinking of polymers via the DA reaction. The thermosetting polymer was dissolved in DMF after the retro DA reaction which was monitored by 1H NMR spectroscopy. Due to the retro DA reaction, polymer showed the mendable behavior when it was scratched followed by being heated. This polymer was mixed with alumina powders to fabricate the thermal pad. The thermal resistance of this pad was measured to be 0.48 K/W by a thermal transient test. The thermosetting composite was recycled via the retro DA reaction. The thermal resistance of the recycled one was similar to that of the original one.
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.
2005-01-01
A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.
Structure and Properties of Polysaccharide Based BioPolymer Gels
NASA Astrophysics Data System (ADS)
Prud'Homme, Robert K.
2000-03-01
Nature uses the pyranose ring as the basic building unit for a wideclass of biopolymers. Because of their biological origin these biopolymers naturally find application as food additives, rheology modifiers. These polymers range from being rigid skeletal material, such as cellulose that resist dissolution in water, to water soluble polymers, such as guar or carrageenan. The flexibility of the basic pyranose ring structure to provide materials with such a wide range of properties comes from the specific interactions that can be engineered by nature into the structure. We will present several examples of specific interactions for these systems: hydrogen bonding, hydrophobic interactions, and specific ion interactions. The relationship between molecular interations and rheology will be emphasized. Hydrogen bonding mediated by steric interference is used to control of solubility of starch and the rheology of guar gels. A more interesting example is the hydrogen bonding induced by chemical modification in konjac glucomannan that results in a gel that melts upon cooling. Hydrogen bonding interactions in xanthan lead to gel formation at very low polymer concentrations which is a result of the fine tuning of the polymer persistence length and total contour length. Given the function of xanthan in nature its molecular architecture has been optimized. Hydrophobic interactions in methylcellulose show a reverse temperature dependence arising from solution entropy. Carrageenan gelation upon the addition of specific cations will be addressed to show the interplay of polymer secondary structure on chemical reactivity. And finally the cis-hydroxyls on galactomannans permit crosslinking by a variety of metal ions some of which lead to "living gels" and some of which lead to permanently crosslinked networks.
NASA Astrophysics Data System (ADS)
Zhou, Wenjing
The focus of this dissertation is the synthesis and characterization of lactose-based functional polymers. Currently 60% of lactose, a by-product from the cheese industry, is being utilized and the remaining fraction represents a serious disposal problem because of the high biological oxygen demand. Therefore, further development of utilization of lactose is an important issue both for industry and environment. Herein, the syntheses of lactose-based polymers such glycopolymers, hydrophilic/hydrophobic copolymers, and hydrogels are reported. A brief review of lactose formation, physical properties, and production is presented in Chapter 1. Syntheses and applications of lactose derivatives such as lactitol, lactulose, lactaime, lactosylurea, lactosylamine, lactone, and barbituric derivative are documented. Previous work in lactose-based polymers include: (1) hydrogels from cross linking of LPEP, borate complexation of lactose-containing polymer, and copolymerization of lactose monomer with crosslinkers; (2) lactose-based polyurethane rigid foams and adhesives; and (3) lactose-containing glycopolymers are also included. Chapter 2 documents the synthesis of acrylamidolactamine and the free radical copolymerization of this monomer with N-isopropylacrylamide in the presence of BisA to make hydrogels. Swelling behavior of the hydrogels at different temperatures as well as DSC study of these hydrogels are also carried out to characterize the swelling transition and the organization of water in the copolymer hydrogels. In Chapter 3, novel monomer syntheses of N-lactosyl- N'-(4-vinylbenzyl)urea or N '-lactosyl-N,N-methyl(4-vinylbenzyl)urea are described. Polymerization of these new urea monomers using a redox initiator gave water-soluble homopolymers with molecular weights in the range of 1.9 x 103 to 5.3 x 106. Synthesis and polymerization of lactose-O-(p-vinylbenzyl)hydroxime are documented in Chapter 4. The resulting polymers had high molecular weight (106) and narrow polydispersity (Mw/Mn: 1.20--1.35). The Mark-Houwink equation was obtained as [eta] = 2.15 x 10-4Mv0.73. Hydrogels produced in the presence of N,N'-methylenebisacrylamide swelled as much as 21-fold in deionized water. Copolymerization of styrene with lactose-O-(vinylbenzyl)oxime in dimethylsulfoxide-toluene (1:1, v/v) using 2,2'-azobisisobutyronitrile as the initiator are discussed in Chapter 5. The resulting hydrophilic/hydrophobic copolymers were characterized by viscometry, TGA, DSC, GPC, and solubility tests in solvents of varied polarities. Chapter 6 documents the preparation of polystyrene beads with different length of oligo(ethylene glycol) crosslinkers. Swelling in different solvents, solvent accessibility, and reagent diffusion of these beads with different crosslinking density were studied and the results indicated that the PEG-crosslinked polymers showed slightly better solvent accessibility in polar solvents than the analogous DVB-crosslinked networks.
Development and Characterization of Mechanically Robust, 3D-Printable Photopolymers
NASA Astrophysics Data System (ADS)
Sycks, Dalton George
3D printing has seen an explosion of interest and growth in recent years, especially within the biomedical space. Prized for its efficiency, ability to produce complex geometries, and facile material processing, additive manufacturing is rapidly being used to create medical devices ranging from orthopedic implants to tissue scaffolds. However, 3D printing is currently limited to a select few material choices, especially when one considers soft tissue replacement or augmentation. To this end, my research focuses on developing material systems that are simultaneously 1) 3D printable, 2) biocompatible, and 3) mechanically robust with properties appropriate for soft-tissue replacement or augmentation applications. Two systems were developed toward this goal: an interpenetrating network (IPN) hydrogel consisting of covalently crosslinked poly (ethylene glycol) diacrylate (PEGDA) and ionically crosslinked brown sodium alginate, and semi-crystalline thiol-ene photopolymers containing spiroacetal molecules in the polymer main-chain backbone. In addition to successfully being incorporated into existing 3D printing systems (extrusion-deposition for the PEGDA-alginate hydrogel and digital light processing for the thiol-ene polymers) both systems exhibited biocompatibility and superior thermomechanical properties such as tensile modulus, failure strain, and toughness. This work offers two fully-developed, novel polymer platforms with outstanding performance; further, structure-property relationships are highlighted and discussed on a molecular and morphological level to provide material insights that are useful to researchers and engineers in the design of highly tuned and mechanically robust polymers.
Study on Movable gel Profiling/Flooding System Optimization at Boundary Temperature
NASA Astrophysics Data System (ADS)
Gao, Shanshan; Xie, Gang; Zhang, Tiantian; Wang, Zhiqiang; Jiang, Peijun; Wei, Junjie; Gu, Yi; Lei, Xiaoyang; Guo, Suzhen; Lei, Shi
2017-12-01
65-75°C is the boundary temperature of phenol-formaldehyde resin and organic chrome crosslink with HPAM to generate movable gel. Generally speaking, when the reservoir temperature is below 65-75°C, the crosslinking agent is Organic chrome. Phenol-formaldehyde resin is used when the temperature is above 65-75°C. In this paper the gelation properties of phenol-formaldehyde resin and organic chrome were compared at 70°C. The experiment results showed that the crosslinking time of phenol-formaldehyde resin gel was longer and more conducive to field injection. In addition the phenol-formaldehyde resin gel had greater viscosity, adhesion and shearing resistance compared with the organic chrome gel. So the phenol-formaldehyde resin was chosen for further optimization. The crosslinking time was shortened and the gel viscosity increased with the increase of the polymer concentration. As the polymer crosslinker proportion increased The crosslinking time was shortened and the gel viscosity increased first and then decreased. Reinforcer NC and stabilizer WG were added to improve the temperature and salt tolerance of the gel. The gel formula suitable for the boundary temperature was obtained. The optimum polymer concentration is 1200mg/L, the polymer crosslinker proportion is 1:1.1, the best reinforcer concentration is 400mg/L and the concentration of the stabilizer is 150mg/L. The crosslinking time is 31h, the gel viscosity is above 2100mPa·s. The gel did not shrink and no water separation was observed at 70°C for 150 days. The viscosity retention rate was more than 70%.
Miao, Shida; Zhu, Wei; Castro, Nathan J; Leng, Jinsong; Zhang, Lijie Grace
2016-10-01
The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term "4D printing" refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from -8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at -18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials.
Miao, Shida; Zhu, Wei; Castro, Nathan J.; Leng, Jinsong
2016-01-01
The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term “4D printing” refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from −8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at −18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials. PMID:28195832
Halpern, Jeffrey M.; Gormley, Catherine A.; Keech, Melissa; von Recum, Horst A.
2014-01-01
Various local drug delivery devices and coatings are being developed as slow, sustained release mechanism for drugs, yet the polymers are typically not evaluated after commercial sterilization techniques. We examine the effect that commercial sterilization techniques have on the physical, mechanical, and drug delivery properties of polyurethane polymers. Specifically we tested cyclodextrin-hexamethyl diisocyanate crosslinked polymers before and after autoclave, ethylene oxide, and gamma radiation sterilization processes. We found that there is no significant change in the properties of polymers sterilized by ethylene oxide and gamma radiation compared to non-sterilized polymers. Polymers sterilized by autoclave showed increased tensile strength (p<0.0001) compared to non-sterilized polymers . In the release of drugs, which were loaded after the autoclave sterilization process, we observed a prolonged release (p<0.05) and a prolonged therapeutic effect (p<0.05) but less drug loading (p<0.0001) compared to non-sterilized polymers. The change in the release profile and tensile strength in polymers sterilized by autoclave was interpreted as being caused by additional crosslinking from residual, unreacted, or partially-reacted crosslinker contained within the polymer. Autoclaving therefore represents additional thermo-processing to modify rate and dose from polyurethanes and other materials. PMID:24949201
NASA Astrophysics Data System (ADS)
Trefonas, Peter, III; Allen, Mary T.
1992-06-01
Shannon's information theory is adapted to analyze the photolithographic process, defining the mask pattern as the prior state. Definitions and constraints to the general theory are developed so that the information content at various stages of the lithographic process can be described. Its application is illustrated by exploring the information content within projected aerial images and resultant latent images. Next, a 3-dimensional molecular scale model of exposure, acid diffusion, and catalytic crosslinking in acid-hardened resists (AHR) is presented. In this model, initial positions of photogenerated acids are determined by probability functions generated from the aerial images and the local light intensity in the film. In order to simulate post-exposure baking processes, acids are diffused in a random walk manner, for which the catalytic chain length and the average distance between crosslinks can be set. Crosslink locations are defined in terms of the topologically minimized number required to link different chains. The size and location of polymer chains involved in a larger scale crosslinked network is established and related to polymer solubility. In this manner, the nature of the crosslinked latent image can be established. Good correlation with experimental data is found for the calculated percent insolubilization as a function of dose when the rms acid diffusion length is about 500 angstroms. Information analysis is applied in detail to the specific example of AHR chemistry. The information contained within the 3-D crosslinked latent image is explored as a function of exposure dose, catalytic chain length, average distance between crosslinks. Eopt (the exposure dose which optimizes the information contained within the latent image) was found to vary with catalytic chain length in a manner similar to that observed experimentally in a plot of E90 versus post-exposure bake time. Surprisingly, the information content of the crosslinked latent image remains high even when rms diffusion lengths are as long as 1500 angstroms. The information content of a standing wave is shown to decrease with increasing diffusion length, with essentially all standing wave information being lost at diffusion lengths greater than 450 angstroms. A unique mechanism for self-contrast enhancement and high resolution in AHR resist is proposed.
NASA Astrophysics Data System (ADS)
Maiti, A.; Weisgraber, T.; Dinh, L. N.; Gee, R. H.; Wilson, T.; Chinn, S.; Maxwell, R. S.
2011-03-01
Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation, thermal, and electrical barriers. External factors such as mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a materials science point of view it is highly desirable to understand, affect, and manipulate such property changes in a controlled manner. Unfortunately, that has not yet been possible due to the lack of experimental characterization of such networks under controlled environments. In this work we expose a known rubber material to controlled dosages of γ radiation and utilize a newly developed multiquantum nuclear-magnetic-resonance technique to characterize the MWD as a function of radiation. We show that such data along with mechanical stress-strain measurements are amenable to accurate analysis by simple network models and yield important insights into radiation-induced molecular-level processes.
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.; Lyle, G. D.; Jurek, M. J.; Mohanty, D.; Hedrick, J. C.
1986-01-01
Amine functional poly(arylene ether) sulfones were previously reported. Herein, the chemistry was extended to amorphous poly(arylene ether) ketones because of their higher fracture toughness values, relative to the polysulfones. It was demonstrated that the amino functional oligomers undergo a self-crosslinking reaction at temperatures above about 220 C. This produces an insoluble, but ductile network that has excellent resistance. A ketamine structure hypothesis was proposed and verified using solid state magic angle NMR. In most cases, the water generated upon ketamine formation is too low to produce porosity and solid networks are obtained. The stability of the ketamine networks towards hydrolysis is excellent. The chemistry was further demonstrated to be able to crosslink preformed nonfunctional poly(arylene ether) ketones if a difunctional amine was utilized. This concept has the possibility of greatly improving the creep resistance of thermoplastics. Also, a new technique was developed for converting the amine functional oligomers cleanly into maleimide structures. This method involves reacting maleic anhydride with monomeric aminophenols in the presence of solvent mixtures.
NASA Astrophysics Data System (ADS)
Ozmaian, Masoumeh; Jasnow, David; Eskandari Nasrabad, Afshin; Zilman, Anton; Coalson, Rob D.
2018-01-01
The effect of cohesive contacts or, equivalently, dynamical cross-linking on the equilibrium morphology of a polymer brush infiltrated by nanoparticles that are attracted to the polymer strands is studied for plane-grafted brushes using coarse-grained molecular dynamics and approximate statistical mechanical models. In particular, the Alexander-de Gennes (AdG) and Strong Stretching Theory (SST) mean-field theory (MFT) models are considered. It is found that for values of the MFT cross-link strength interaction parameter beyond a certain threshold, both AdG and SST models predict that the polymer brush will be in a compact state of nearly uniform density packed next to the grafting surface over a wide range of solution phase nanoparticle concentrations. Coarse grained molecular dynamics simulations confirm this prediction, for both small nanoparticles (nanoparticle volume = monomer volume) and large nanoparticles (nanoparticle volume = 27 × monomer volume). Simulation results for these cross-linked systems are compared with analogous results for systems with no cross-linking. At the same solution phase nanoparticle concentration, strong cross-linking results in additional compression of the brush relative to the non-crosslinked analog and, at all but the lowest concentrations, to a lesser degree of infiltration by nanoparticles. For large nanoparticles, the monomer density profiles show clear oscillations moving outwards from the grafting surface, corresponding to a degree of layering of the absorbed nanoparticles in the brush as they pack against the grafting surface.
Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei
2017-07-01
The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.
NASA Astrophysics Data System (ADS)
Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong
2014-06-01
Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.
Ghanian, Mohammad Hossein; Mirzadeh, Hamid; Baharvand, Hossein
2018-05-14
A dual cross-linking strategy was developed to answer the urgent need for fatigue-resistant, cytocompatible, and in situ forming tough hydrogels. Clickable, yet calcium-binding derivatives of alginate were synthesized by partial substitution of its carboxyl functionalities with furan, which could come into Diels-Alder click reaction with maleimide end groups of a four arm poly(ethylene glycol) cross-linker. Tuning the cooperative viscoelastic action of transient ionic and permanent click cross-links within the single network of alginate provided a soft tough hydrogel with a set of interesting features: (i) immediate self-recovery under cyclic loading, (ii) highly efficient and autonomous self-healing upon fracture, (iii) in situ forming ability for molding and minimally invasive injection, (iv) capability for viable cell encapsulation, and (v) reactivity for on-demand biomolecule conjugation. The facile strategy is applicable to a wide range of natural and synthetic polymers by introducing the calcium binding and click reacting functional groups and can broaden the use of tough hydrogels in load-bearing, cell-laden applications such as soft tissue engineering and bioactuators.
Microbes encapsulated within crosslinkable polymers
Chidambaram, Devicharan; Liu, Ying; Rafailovich, Miriam H
2013-02-05
The invention relates to porous films comprising crosslinked electrospun hydrogel fibers. Viable microbes are encapsulated within the crosslinked electrospun hydrogel fibers. The crosslinked electrospun hydrogel fibers are water insoluble and permeable. The invention also relates to methods of making and using such porous films.
Tunable deformation modes shape contractility in active biopolymer networks
NASA Astrophysics Data System (ADS)
Stam, Samantha; Banerjee, Shiladitya; Weirich, Kim; Freedman, Simon; Dinner, Aaron; Gardel, Margaret
Biological polymer-based materials remodel under active, molecular motor-driven forces to perform diverse physiological roles, such as force transmission and spatial self-organization. Critical to understanding these biomaterials is elucidating the role of microscopic polymer deformations, such as stretching, bending, buckling, and relative sliding, on material remodeling. Here, we report that the shape of motor-driven deformations can be used to identify microscopic deformation modes and determine how they propagate to longer length scales. In cross-linked actin networks with sufficiently low densities of the motor protein myosin II, microscopic network deformations are predominantly uniaxial, or dominated by sliding. However, longer-wavelength modes are mostly biaxial, or dominated by bending and buckling, indicating that deformations with uniaxial shapes do not propagate across length scales significantly larger than that of individual polymers. As the density of myosin II is increased, biaxial modes dominate on all length scales we examine due to buildup of sufficient stress to produce smaller-wavelength buckling. In contrast, when we construct networks from unipolar, rigid actin bundles, we observe uniaxial, sliding-based contractions on 1 to 100 μm length scales. Our results demonstrate the biopolymer mechanics can be used to tune deformation modes which, in turn, control shape changes in active materials.
Cho, C S; Han, S Y; Ha, J H; Kim, S H; Lim, D Y
1999-04-30
Poly(ethylene glycol)(PEG) macromers terminated with acrylate groups and semi-interpenetrating polymer networks (SIPNs) composed of poly(epsilon-caprolactone)(PCL) and PEG macromer were synthesized to obtain a bioerodible hydrogel. Polymerization of PEG macromer resulted in the formation of cross-linked gels due to the multifunctionality of macromer. Glass transition temperature (Tg) and melting temperature (Tm) of PEG networks and PCL in the SIPNs were inner-shifted, indicating an interpenetration of PCL and PEG chains. Water content in the SIPNs increased with increasing PEG weight fraction due to the hydrophilicity of PEG. The amount of clonazepam (CNZ) released from the SIPNs increased with higher content in the SIPNs, lower drug loading, lower concentration of PEG macromer during the SIPNs preparation, and higher molecular weight of PEG. In particular, a combination with low PEG content and low CNZ solubility in water led to long-term constant release from these matrices in vitro and in vivo. Copyright.
Oyama, Tomoko Gowa; Oshima, Akihiro; Washio, Masakazu; Tagawa, Seiichi
2012-12-14
The development of several kinds of micro/nanofabrication techniques has resulted in many innovations in the micro/nanodevices that support today's science and technology. With feature miniaturization, the fabrication tools have shifted from light to ionizing radiation. Here, we propose a simple micro/nanofabrication technique for organic materials using a scanning beam (SB) of ionizing radiation. By controlling the scission/crosslinking of the material via three-dimensional energy-deposition distribution of the SB, appropriate solvents can easily peel off only the crosslinked region from the bulk material. The technique was demonstrated using a focused ion beam and a chlorinated organic polymer. The polymer underwent main-chain scission upon irradiation, but it crosslinked after high-dose irradiation. Appropriate solvents could easily peel off only the crosslinked region from the bulk material. The technique, 'nanobead from nanocup', enabled the production of desired structures such as nanowires and nanomembranes. It can be also applied to the micro/nanofabrication of functional materials.
Tunable photonic multilayer sensors from photo-crosslinkable polymers
NASA Astrophysics Data System (ADS)
Chiappelli, Maria; Hayward, Ryan
2014-03-01
The fabrication of tunable photonic multilayer sensors from stimuli-responsive, photo-crosslinkable polymers will be described. Benzophenone is covalently incorporated as a pendent photo-crosslinker, allowing for facile preparation of multilayer films by sequential spin-coating and crosslinking processes. Copolymer chemistries and layer thicknesses are selected to provide robust multilayer sensors which can show color changes across nearly the full visible spectrum due to the specific stimulus-responsive nature of the hydrated film stack. We will describe how this approach is extended to alternative sensor designs by tailoring the thickness and chemistry of each layer independently, allowing for the preparation of sensors which depend not only on the shift in wavelength of a reflectance peak, but also on the transition between Bragg mirrors and filters. Device design is optimized by photo-patterning sensor arrays on a single substrate, providing more efficient fabrication time as well as multi-functional sensors. Finally, radiation-sensitive multilayers, designed by choosing polymers which will preferentially degrade or crosslink under ionizing radiation, will also be described.
Method of cross-linking polyvinyl alcohol and other water soluble resins
NASA Technical Reports Server (NTRS)
Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)
1980-01-01
A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.
Glass transitions and viscoelastic properties of carbopol and noveon compacts.
Gómez-Carracedo, A; Alvarez-Lorenzo, C; Gómez-Amoza, J L; Concheiro, A
2004-04-15
Glass transitions of five varieties of Carbopol (acrylic acid polymers cross-linked with allyl sucrose or allyl pentaerythritol) and two varieties of Noveon (calcium salts of acrylic acid polymer cross-linked with divinylglycol) differing in cross-linking density and nature and content in residual solvents, were analysed (as compressed probes) by differential scanning calorimetry (DSC), modulated temperature differential scanning calorimetry (MTDSC), and oscillatory rheometry. All carbopol compacts showed a main glass transition, at a temperature between 130 and 140 degrees C, Tg, independently of their cross-linking degree and molecular weight. Additionally two batches of Carbopol 971P, which had greater contents in residual solvents, also presented a secondary transition at 65-70 degrees C. Sorption of water during storage of carbopol compacts at different relative humidity environments caused the Tg to strongly decrease. Compacts stored at 97.5% relative humidity have Tg below 0 degrees C and behave, at room temperature, as flexible hydrogels. The Gordon-Taylor/Kelley-Bueche equation only fit the dependence of Tg on water content well for carbopol compacts containing less than 15% water. The plasticizing effect of water was clearly evidenced in the considerable decrease in the storage and loss moduli of the compacts. Although the energy associated to the glass transitions of carbopol polymers, 0.40-0.50 Jg(-1) degrees C(-1), is high enough to be clearly detected by DSC, in some cases the evaporation of residual solvents may make it difficult to observe the Tg. This inconvenience is overcome using MTDSC or oscillatory rheometry. The decrease in Tg of carbopol caused by water sorption when compacts were stored at 97.5% R.H. explains why their loss (G") and storage (G') moduli at room temperature decreased four orders of magnitude. In contrast, in noveon varieties, calcium ions act as ionic cross-linkers of the carboxylic groups, providing rigid networks with much higher Tg, and storage and loss moduli. This explains that despite sorbing similar amounts of water to carbopol, the changes on the mechanical properties of noveon compacts were much less important (i.e., G' and G" decreased up to one order of magnitude).
Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.
Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G
2016-03-09
Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents.
Ultrahigh Molecular Weight Aromatic Siloxane Polymers
NASA Technical Reports Server (NTRS)
Ludwick, L. M.
1983-01-01
Silphenylene-siloxane polymers can be prepared by a condensation reaction of a diol 1,4-bis(hydroxydimethylsilyl)benzene and a silane bis(dimethylamino)dimethylsilane. Using a stepwise condensation technique, a polymer (R=CH3) with a molecular weight in excess of 1.0 x 1 million has been produced. The polymer exhibits increased thermal stability, compared to a methyl siloxane polymer without the aromatic phenyl ring in the backbone. The use of bis(dimethylamino)methylvinylsilane should allow for ready crosslinking at the vinyl sites (R=-CH=CH2) introduced into the backbone. However, under the conditions of the reaction system a high molecular weight polymer was not obtained or the polymer underwent a crosslinking process during the synthesis.
Elsabahy, Mahmoud; Wooley, Karen L.
2014-01-01
Polymeric nanoparticles are promising delivery platforms for various biomedical applications. One of the main challenges toward the development of therapeutic nanoparticles is the premature disassembly and release of the encapsulated drug. Among the different strategies to enhance the kinetic stability of polymeric nanoparticles, shell- and core-crosslinking have been shown to provide robust character, while creating a suitable environment for encapsulation of a wide range of therapeutics, including hydrophilic, hydrophobic, metallic, and small and large biomolecules, with gating of their release as well. The versatility of shell- and core-crosslinked nanoparticles is driven from the ease by which the structures of the shell- and core-forming polymers and crosslinkers can be modified. In addition, postmodification with cell-recognition moieties, grafting of antibiofouling polymers, or chemical degradation of the core to yield nanocages allow the use of these robust nanostructures as “smart” nanocarriers. The building principles of these multifunctional nanoparticles borrow analogy from the synthesis, supramolecular assembly, stabilization, and dynamic activity of the naturally driven biological nanoparticles such as proteins, lipoproteins, and viruses. In this review, the chemistry involved during the buildup from small molecules to polymers to covalently stabilized nanoscopic objects is detailed, with contrast of the strategies of the supramolecular assembly of polymer building blocks followed by intramicellar stabilization into shell-, core-, or core–shell-crosslinked knedel-like nanoparticles versus polymerization of polymers into nanoscopic molecular brushes followed by further intramolecular covalent stabilization events. The rational design of shell-crosslinked knedel-like nanoparticles is then elaborated for therapeutic packaging and delivery, with emphasis on the polymer chemistry aspects to accomplish the synthesis of such nanoparticulate systems. PMID:25574072
Reactive Secondary Sequence Oxidative Pathology Polymer Model and Antioxidant Tests
Petersen, Richard C.
2014-01-01
Aims To provide common Organic Chemistry/Polymer Science thermoset free-radical crosslinking Sciences for Medical understanding and also present research findings for several common vitamins/antioxidants with a new class of drugs known as free-radical inhibitors. Study Design Peroxide/Fenton transition-metal redox couples that generate free radicals were combined with unsaturated lipid oils to demonstrate thermoset-polymer chain growth by crosslinking with the α-β-unsaturated aldehyde acrolein into rubbery/adhesive solids. Further, Vitamin A and beta carotene were similarly studied for crosslink pathological potential. Also, free-radical inhibitor hydroquinone was compared for antioxidant capability with Vitamin E. Place and Duration of Study Department of Materials Science and Engineering and Department of Biomaterials, University of Alabama at Birmingham, between June 2005 and August 2012. Methodology Observations were recorded for Fenton free-radical crosslinking of unsaturated lipids and vitamin A/beta carotene by photography further with weight measurements and percent-shrinkage testing directly related to covalent crosslinking of unsaturated lipids recorded over time with different concentrations of acrolein. Also, hydroquinone and vitamin E were compared at concentrations from 0.0–7.3wt% as antioxidants for reductions in percent-shrinkage measurements, n = 5. Results Unsaturated lipid oils responded to Fenton thermoset-polymer reactive secondary sequence reactions only by acrolein with crosslinking into rubbery-type solids and different non-solid gluey products. Further, molecular oxygen crosslinking was demonstrated with lipid peroxidation and acrolein at specially identified margins. By peroxide/Fenton free-radical testing, both vitamin A and beta-carotene demonstrated possible pathology chemistry for chain-growth crosslinking. During lipid/acrolein testing over a 50 hour time period at 7.3wt% antioxidants, hydroquinone significantly reduced percent shrinkage greatly compared to the standard antioxidant vitamin E, %shrinkage at 11.6 ±1.3 for hydroquinone and 27.8 ±2.2 for vitamin E, P = .001. Conclusion Free radicals crosslinked unsaturated lipid fatty acids into thermoset polymers through Fenton reactions when combined with acrolein. Further, hydroquinone was a superior antioxidant to vitamin E. PMID:25909053
Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina
2011-12-01
The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.
Determinants of fluidlike behavior and effective viscosity in cross-linked actin networks.
Kim, Taeyoon; Gardel, Margaret L; Munro, Ed
2014-02-04
The actin cortex has a well-documented ability to rapidly remodel and flow while maintaining long-range connectivity, but how this is achieved remains poorly understood. Here, we use computer simulations to explore how stress relaxation in cross-linked actin networks subjected to extensional stress depends on the interplay between network architecture and turnover. We characterize a regime in which a network response is nonaffine and stress relaxation is governed by the continuous dissipation of elastic energy via cyclic formation, elongation, and turnover of tension-bearing elements. Within this regime, for a wide range of network parameters, we observe a constant deformation (creep) rate that is linearly proportional to the rate of filament turnover, leading to a constant effective viscosity that is inversely proportional to turnover rate. Significantly, we observe a biphasic dependence of the creep rate on applied stress: below a critical stress threshold, the creep rate increases linearly with applied stress; above that threshold, the creep rate becomes independent of applied stress. We show that this biphasic stress dependence can be understood in terms of the nonlinear force-extension behavior of individual force-transmitting network elements. These results have important implications for understanding the origins and control of viscous flows both in the cortex of living cells and in other polymer networks. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Malik, Nadia Shamshad; Ahmad, Mahmood; Minhas, Muhammad Usman
2017-01-01
To explore the potential role of polymers in the development of drug-delivery systems, this study investigated the use of β-cyclodextrin (β-CD), carboxymethyl cellulose (CMC), acrylic acid (AA) and N’ N’-methylenebis-acrylamide (MBA) in the synthesis of hydrogels for controlled drug delivery of acyclovir (ACV). Different proportions of β-CD, CMC, AA and MBA were blended with each other to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy (FTIR) revealed successful grafting of components into the polymeric network. Thermal and morphological characterization confirmed the formation of thermodynamically stable hydrogels having porous structure. The pH-responsive behaviour of hydrogels has been documented by swelling dynamics and drug release behaviour in simulated gastrointestinal fluids. Drug release kinetics revealed controlled release behaviour of the antiviral drug acyclovir in developed polymeric network. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels can be used as promising candidates for the design and development of controlled drug-delivery systems. PMID:28245257
Internal structure and swelling behaviour of in silico microgel particles
NASA Astrophysics Data System (ADS)
Rovigatti, Lorenzo; Gnan, Nicoletta; Zaccarelli, Emanuela
2018-01-01
Microgels are soft colloids that, by virtue of their polymeric nature, can react to external stimuli such as temperature or pH by changing their size. The resulting swelling/deswelling transition can be exploited in fundamental research as well as for many diverse practical applications, ranging from art restoration to medicine. Such an extraordinary versatility stems from the complex internal structure of the individual microgels, each of which is a crosslinked polymer network. Here we employ a recently-introduced computational method to generate realistic microgel configurations and look at their structural properties, both in real and Fourier space, for several temperatures across the volume phase transition as a function of the crosslinker concentration and of the confining radius employed during the ‘in-silico’ synthesis. We find that the chain-length distribution of the resulting networks can be analytically predicted by a simple theoretical argument. In addition, we find that our results are well-fitted to the fuzzy-sphere model, which correctly reproduces the density profile of the microgels under study.
Wang, Yitong; Wang, Ling; Yan, Miaomiao; Dong, Shuli; Hao, Jingcheng
2017-08-30
Functional DNA molecules have been introduced into polymer-based nanocarrier systems to incorporate chemotherapy drugs for cancer therapy. Here is the first report of dual-responsive microgels composed of a core of Au nanorods and a shell of magnetic ionic liquid and DNA moieties in the cross-linking network simultaneously, as effective drug delivery vectors. TEM images indicated a magnetic polymer shell has an analogous "doughnut" shape which loosely surround the AuNRs core. When irradiated with a near-infrared-light (near-IR) laser, Au nanorods are the motors which convert the light to heat, leading to the release of the encapsulated payloads with high controllability. DNA acts not only as a cross-linker agent, but also as a gatekeeper to regulate the release of drugs. The internalization study and MTT assay confirm that these core-shell DNA microgels are excellent candidates which can enhance the cytotoxicity of cancer cells controlled by near-IR laser and shield the high toxicity of chemotherapeutic agents to improve the killing efficacy of chemotherapeutic agents efficiently in due course.
Highly Conductive, Stretchable, and Transparent Solid Polymer Electrolyte Membrane
NASA Astrophysics Data System (ADS)
He, Ruixuan; Echeverri, Mauricio; Kyu, Thein
2014-03-01
With the guidance of ternary phase diagrams, completely amorphous polymer electrolyte membranes (PEM) were successfully prepared by melt processing for lithium-ion battery. The PEM under consideration consisted of poly (ethylene glycol diacrylate) (PEGDA), succinonitrile (SCN) and Lithium bis(trifluoro-methane)sulfonamide (LiTFSI). After UV-crosslinking, the PEM is transparent and light-weight. Addition of SCN plastic crystal affords not only dissociation of the lithium salt, but also plasticization to the crosslinked PEGDA network. Of particular importance is the achievement of room-temperature ionic conductivity of ~10-3 S/cm, which is comparable to that of commercial liquid electrolyte. Higher ionic conductivities were achieved at elevated temperatures or with use of a moderately higher molecular weight of PEGDA. In terms of electrochemical and chemical stability, the PEM exhibited oxidative stability up to 5 V against lithium reference electrode. Stable interface behavior between the PEM and lithium electrode is also seen with ageing time. In the tensile tests, samples containing low molecular weight PEGDA are stiffer, whereas the high molecular weight PEGDA is stretchable up to 80% elongation. Supported by NSF-DMR 1161070.
Arginine-glycine-aspartic acid functional branched semi-interpenetrating hydrogels.
Plenderleith, Richard A; Pateman, Christopher J; Rodenburg, Cornelia; Haycock, John W; Claeyssens, Frederik; Sammon, Chris; Rimmer, Stephen
2015-10-14
For the first time a series of functional hydrogels based on semi-interpenetrating networks with both branched and crosslinked polymer components have been prepared and we show the successful use of these materials as substrates for cell culture. The materials consist of highly branched poly(N-isopropyl acrylamide)s with peptide functionalised end groups in a continuous phase of crosslinked poly(vinyl pyrrolidone). Functionalisation of the end groups of the branched polymer component with the GRGDS peptide produces a hydrogel that supports cell adhesion and proliferation. The materials provide a new synthetic functional biomaterial that has many of the features of extracellular matrix, and as such can be used to support tissue regeneration and cell culture. This class of high water content hydrogel material has important advantages over other functional hydrogels in its synthesis and does not require post-processing modifications nor are functional-monomers, which change the polymerisation process, required. Thus, the systems are amenable to large scale and bespoke manufacturing using conventional moulding or additive manufacturing techniques. Processing using additive manufacturing is exemplified by producing tubes using microstereolithography.
Citric-Acid-Derived Photo-cross-Linked Biodegradable Elastomers
Gyawali, Dipendra; Tran, Richard T.; Guleserian, Kristine J.; Tang, Liping; Yang, Jian
2010-01-01
Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. POMC is a low-molecular-mass pre-polymer with a molecular mass average between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation at break between 38 and 382%. FT-IR–ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague–Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications. PMID:20557687
Percolation mechanism drives actin gels to the critically connected state
NASA Astrophysics Data System (ADS)
Lee, Chiu Fan; Pruessner, Gunnar
2016-05-01
Cell motility and tissue morphogenesis depend crucially on the dynamic remodeling of actomyosin networks. An actomyosin network consists of an actin polymer network connected by cross-linker proteins and motor protein myosins that generate internal stresses on the network. A recent discovery shows that for a range of experimental parameters, actomyosin networks contract to clusters with a power-law size distribution [J. Alvarado, Nat. Phys. 9, 591 (2013), 10.1038/nphys2715]. Here, we argue that actomyosin networks can exhibit a robust critical signature without fine-tuning because the dynamics of the system can be mapped onto a modified version of percolation with trapping (PT), which is known to show critical behavior belonging to the static percolation universality class without the need for fine-tuning of a control parameter. We further employ our PT model to generate experimentally testable predictions.
Photopatternable sorbent and functionalized films
Grate, Jay W [West Richland, WA; Nelson, David A [Richland, WA
2006-01-31
A composition containing a polymer, a crosslinker and a photo-activatable catalyst is placed on a substrate. The composition is exposed to a predetermined pattern of light, leaving an unexposed region. The light causes the polymer to become crosslinked by hydrosilylation. A solvent is used to remove the unexposed composition from the substrate, leaving the exposed pattern to become a sorbent polymer film that will absorb a predetermined chemical species when exposed to such chemical species.
Polymeric matrix materials for infrared metamaterials
Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar
2014-04-22
A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.
2003-01-01
ambient conditions prior to testing. A masterbatch for hydrosilylation-curable model systems was prepared by combining 200 g of hexamethydisilazane treated...fumed silica and 800 g of vinylterminated polydimethylsiloxane (equivalent weight ¼ 4111). The masterbatch was combined with additional vinyl polymer...followed by 10ml of Karstedt’s catalyst (10.9% Pt, 4.8mmol Pt). The amounts of masterbatch , linear vinyl, linear hydride, and crosslinkable hydride
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Johnston, J. Christopher; Cavano, Paul J.
1997-01-01
Solid NMR of C-13 isotope-labeled samples of PMR-15 was used to follow the cross-linking reaction of the nadic end cap. Some samples were labeled on one of the carbon atoms of the nadic end cap, and others on the methylene carbon atom of the methylenedianiline portion of the polymer. NMR spectra were run on these samples both before and after cross-linking. In this way, direct evidence of the major products of cross-linking under normal cure conditions is provided. The majority (approximately 85%) of the cross-linking derives from olefin polymerization through the double bond of the end cap. Approximately 15% of the products could come from a pathway involving a retro-Diels-Alder reaction. However, all of the products could be explained by a biradical intermediate without a retro-Diels-Alder reaction. Evidence is also presented that the methylene moiety in the methylenedianiline part of the polymer chain also participates in the cross-linking, albeit to a small extent, by a radical transfer reaction. Different cure conditions (higher temperatures, longer times) could change the relative distribution of the products.
NASA Astrophysics Data System (ADS)
Wang, Jingjing; Wei, Jun
2016-09-01
Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.
A Biodegradable Thermoset Polymer Made by Esterification of Citric Acid and Glycerol
Halpern, Jeffrey M.; Urbanski, Richard; Weinstock, Allison K.; Iwig, David F.; Mathers, Robert T.; von Recum, Horst
2014-01-01
A new biomaterial, a degradable thermoset polymer, was made from simple, economical, biocompatable monomers without the need for a catalyst. Glycerol and citric acid, non-toxic and renewable reagents, were crosslinked by a melt polymerization reaction at temperatures from 90-150°C. Consistent with a condensation reaction, water was determined to be the primary byproduct. The amount of crosslinking was controlled by the reaction conditions, including temperature, reaction time, and ratio between glycerol and citric acid. Also, the amount of crosslinking was inversely proportional to the rate of degradation. As a proof-of-principle for drug delivery applications, gentamicin, an antibiotic, was incorporated into the polymer with preliminary evaluations of antimicrobial activity. The polymers incorporating gentamicin had significantly better bacteria clearing of Staphylococcus aureus compared to non-gentamicin gels for up to nine days. PMID:23737239
NASA Astrophysics Data System (ADS)
Gao, Wu; Hou, Wenjun; Zhen, Zhen; Liu, Xinhou; Liu, Jialei; Fedorchuk, A. A.; Czaja, P.
2016-07-01
Novel crosslinkable organic linear electro-optical (EO) material based on polyarylene ether as the main chain host polymer was designed and prepared. The host polymer with rigid aromatic has demonstrated a good compatibility with the guest chromophore. Long side chain with anthracene ensured the crosslinkable reaction and appropriate glass transition temperature of the host polymer (55 °C). The EO r33 tensor coefficient for this novel EO material has been magnitude of 66 pm/V at 1310 nm and the excellent long term stability at 85 °C. These parameters permit to consider their application in fabrication of organic electro optical devices. The semi-empirical and DFT quantum chemical simulations were performed for 4 principal chromophores to clarify a role of cross-linker in the enhancement of the ground state dipole moments and effective hyperpolarizabilities.
Compositional design and optimization of dentin adhesive with neutralization capability.
Song, Linyong; Ye, Qiang; Ge, Xueping; Spencer, Paulette
2015-09-01
The objective of this work was to investigate the polymerization behavior, neutralization capability, and mechanical properties of dentin adhesive formulations with the addition of the tertiary amine co-monomer, 2-N-morpholinoethyl methacrylate (MEMA). A co-monomer mixture based on HEMA/BisGMA (45/55, w/w) was used as a control adhesive. Compared with the control formulation, the MEMA-containing adhesive formulations were characterized comprehensively with regard to water miscibility of liquid resin, water sorption and solubility of cured polymer, real-time photopolymerization kinetics, dynamic mechanical analysis (DMA), and modulated differential scanning calorimetry (MDSC). The neutralization capacity was characterized by monitoring the pH shift of 1mM lactic acid (LA) solution, in which the adhesive polymers were soaked. With increasing MEMA concentrations, experimental copolymers showed higher water sorption, lower glass transition temperature and lower crosslinking density compared to the control. The pH values of LA solution gradually increased from 3.5 to about 6.0-6.5 after 90 days. With the increase in crosslinking density of the copolymers, the neutralization rate was depressed. The optimal MEMA concentration was between 20 and 40 wt%. As compared to the control, the results indicated that the MEMA-functionalized copolymer showed neutralization capability. The crosslinking density of the copolymer networks influenced the neutralization rate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yamasaki, Lilyan C; De Vito Moraes, André G; Barros, Mathew; Lewis, Steven; Francci, Carlos; Stansbury, Jeffrey W; Pfeifer, Carmem S
2013-09-01
To evaluate "low-shrink" composites in terms of polymerization kinetics, stress development and mechanical properties. "Low-shrink" materials (Kalore/KAL, N'Durance/NDUR, and Filtek P90/P90) and one control (Esthet X HD/EHD) were tested. Polymerization stress (PS) was measured using the Instron 5565 tensometer. Volumetric shrinkage (VS) was determined by the ACTA linometer. Elastic modulus (E) and flexural strength (FS) were obtained by a three-point bending test. Degree of conversion (DC) and polymerization rate (Rp) were determined by NIR spectroscopy (6165cm(-1) for dimethacrylates; 4156 and 4071cm(-1) for P90). Photopolymerization was performed at 740mW/cm(2)×27s. Glass transition temperature (Tg), degree of heterogeneity and crosslink density were obtained in a DMA for the fully cured specimens. Analysis of extracts was done by (1)H NMR. Data were analyzed with one-way ANOVA/Tukey's test (α=0.05). The control presented the highest shrinkage and Tg. P90 showed the highest modulus, and NDUR demonstrated the highest conversion. The polymerization rates were comparable for all materials. NDUR and KAL had the highest and the lowest network homogeneity, respectively. The multifunctional P90 had the highest crosslink density, with no difference between other composites. The control had the greatest stress development, similar to NDUR. Crosslinking density and polymer network homogeneity were influenced by degree of conversion and monomer structure. Not all "low-shrink" composites reduced polymerization stress. P90 and NDUR had no leachable monomers, which was also a function of high crosslinking (P90) and high conversion (NDUR). Copyright © 2013 Academy of Dental Materials. All rights reserved.
Synthesis and characterization of ionic polymer networks in a room-temperature ionic liquid.
Stanzione, Joseph F; Jensen, Robert E; Costanzo, Philip J; Palmese, Giuseppe R
2012-11-01
Ionic liquid gels (ILGs) for potential use in ion transport and separation applications were generated via a free radical copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and N,N'-methylene(bis)acrylamide (MBA) using 1-ethyl-3-methylimidazolium ethylsulfate (IL) as a room temperature ionic liquid solvent medium. The AMPS and MBA monomer solubility window in the IL in the temperature range of 25 to 65 °C was determined. In situ ATR-FTIR showed near complete conversion of monomers to a cross-linked polymer network. ILGs with glass transition temperatures (T(g)s) near -50 °C were generated with T(g) decreasing with increasing IL content. The elastic moduli in compression (200 to 6600 kPa) decreased with increasing IL content and increasing AMPS content while the conductivities (0.35 to 2.14 mS cm⁻¹) increased with increasing IL content and decreasing MBA content. The polymer-IL interaction parameter (χ) (0.48 to 0.55) was determined via a modified version of the Bray and Merrill equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.
2011-10-01
Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grademore » uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.« less
Pedron, S; Peinado, C; Bosch, P; Benton, J A; Anseth, K S
2011-01-01
High-throughput methods allow rapid examination of parameter space to characterize materials and develop new polymeric formulations for biomaterials applications. One limitation is the difficulty of preparing libraries and performing high-throughput screening with conventional instrumentation and sample preparation. Here, we describe the fabrication of substrate materials with controlled gradients in composition by a rapid method of micromixing followed by a photopolymerization reaction. Specifically, poly(ethylene glycol) dimethacrylate was copolymerized with a hyperbranched multimethacrylate (P1000MA or H30MA) in a gradient manner. The extent of methacrylate conversion and the final network composition were determined by near-infrared spectroscopy, and mechanical properties were measured by nanoindentation. A relationship was observed between the elastic modulus and network crosslinking density. Roughness and hydrophilicity were increased on surfaces with a higher concentration of P1000MA. These results likely relate to a phase segregation process of the hyperbranched macromer that occurs during the photopolymerization reaction. On the other hand, the decrease in the final conversion in H30MA polymerization reactions was attributed to the lower termination rate as a consequence of the softening of the network. Valvular interstitial cell attachment was evaluated on these gradient substrates as a demonstration of studying cell morphology as a function of the local substrate properties. Data revealed that the presence of P1000MA affects cell–material interaction with a higher number of adhered cells and more cell spreading on gradient regions with a higher content of the multifunctional crosslinker. PMID:21105168
Natural and Synthetic Biohydrogels Design, Characterization, Network Structure Imaging and Modeling
NASA Astrophysics Data System (ADS)
Marmorat, Clement
Biocompatible hydrogels can be derived from materials that are naturally obtained, such as proteins or polysaccharides, or synthetic, such as poloxamers. In order to be classified as biocompatible, these water-swollen networks can not trigger a toxic response once introduced into a biological or physiological environment and, therefore, must be immunoneutral. Hyaluronic acid hydrogels can be great candidates for tissue engineering applications as long as the cross-linking chemistry and process does not affect the biocompatibility of the natural protein matrix. Thermoreversible hydrogels have the advantage of undergoing a sol/gel phase transition at specific temperatures. Thus, they are excellent candidates for biomedical applications such as drug delivery systems, wound healing coatings or cellular scaffolds. Although these hydrogels can be used in their natural form without further modification or chemical alteration, the original protein or polymer matrix is often strengthened by the use of a crosslinking agent to achieve a specific set of properties. In the case of gelatin fibril formation at low temperatures or the micellization of triblock copolymers in solution with temperature increase, the natural phase transition is modified when crosslinkers are introduced to alter the biohydrogels properties and, ultimately, disturb the system's equilibrium. By using spectroscopy techniques, rheology and cryo-imaging we investigated several biocompatible polymeric networks in their natural form as well as their engineered structures to better understand the mechanisms of gelation and artificial internal re-organization of the networks. Natural and synthetic biohydrogels were designed and their mechanical properties were characterized before imaging. Models that better describe the relationship between network configuration and resulting mechanical properties showed great agreement with experimental mesh size observations. Finally, a novel set of hybrid gels was developed and exhibited outstanding thermomechanical properties.
Yu, Chen; Tang, Xiaozhi; Liu, Shaowei; Yang, Yuling; Shen, Xinchun; Gao, Chengcheng
2018-05-22
In this study, Laponite RD (LRD) cross-linked hydrogels consisting of starch, polyvinyl alcohol (PVA) were prepared by freezing/thawing process and the influence of LRD content on structure and properties of hydrogels was investigated. FTIR showed a new structure of hydrogen bonding might result from cross-linking reactions between LRD and polymers. X-ray diffraction (XRD) analysis showed that high degree of exfoliation of LRD clay layers had occurred during the preparation of hydrogels. The synergistic effect of physical cross-linking by freeze/thaw cycles and by LRD led to more porous, uniform and stable network, which was shown in SEM images. The melting temperature decreased and thermal stability got improved with the increase of LRD content. Reswelling ratios of hydrogels had the highest value when LRD content was 10%. Additionally, cadmium ion absorption capacity of the hydrogel was studied and the results showed that increasing the concentration of LRD increased absorption ratio and amount of Cd 2+ ion in the solution. In a word, LRD could be used as a physical crosslinker and reinforced agent for starch-PVA based hydrogels and the formed hydrogels could be used as novel type and high capacity absorbent materials in heavy metal removing processes. Copyright © 2018. Published by Elsevier B.V.
Triboelectric energy harvesting with surface-charge-fixed polymer based on ionic liquid
Sano, Chikako; Mitsuya, Hiroyuki; Ono, Shimpei; Miwa, Kazumoto; Toshiyoshi, Hiroshi; Fujita, Hiroyuki
2018-01-01
Abstract A novel triboelectric energy harvester has been developed using an ionic liquid polymer with cations fixed at the surface. In this report, the fabrication of the device and the characterization of its energy harvesting performance are detailed. An electrical double layer was induced in the ionic liquid polymer precursor to attract the cations to the surface where they are immobilized using a UV-based crosslinking reaction. The finalized polymer is capable of generating an electrical current when contacted by a metal electrode. Using this property, energy harvesting experiments were conducted by cyclically contacting a gold-surface electrode with the charge fixed surface of the polymer. Control experiments verified the effect of immobilizing the cations at the surface. By synthesizing a polymer with the optimal composition ratio of ionic liquid to macromonomer, an output of 77 nW/cm2 was obtained with a load resistance of 1 MΩ at 1 Hz. This tuneable power supply with a μA level current output may contribute to Internet of Things networks requiring numerous sensor nodes at remote places in the environment. PMID:29707070
NASA Astrophysics Data System (ADS)
Chen, Jinhua; Asano, Masaharu; Yamaki, Tetsuya; Yoshida, Masaru
To develop a highly chemically stable polymer electrolyte membrane for application in a direct methanol fuel cell (DMFC), doubly crosslinked membranes were prepared by chemical crosslinking using bifunctional monomers, such as divinylbenzene (DVB) and bis(p, p-vinyl phenyl) ethane (BVPE), and by radiation crosslinking. The membranes were prepared by grafting of m, p-methylstyrene (MeSt) and p-tert-butylstyrene (tBuSt) into poly(ethylene- co-tetrafluoroethylene) (ETFE) films and subsequent sulfonation. The effects of the DVB and BVPE crosslinkers on the grafting kinetics and the properties of the prepared membranes, such as water uptake, proton conductivity and chemical stability were investigated. Radiation crosslinking was introduced by irradiation of the ETFE base film, the grafted film or the sulfonated membrane. The membrane crosslinked by DVB and BVPE crosslinkers and post-crosslinked by γ-ray irradiation of the corresponding grafted film possessed the highest chemical stability among the prepared membranes, a significantly lower methanol permeability compared to Nafion ® membranes, and a better DMFC performance for high methanol feed concentration. Therefore, this doubly crosslinked membrane was promising for application in a DMFC where relatively high methanol concentration could be fed.
NASA Astrophysics Data System (ADS)
Lin, Kan-Ju; Maranas, Janna
2010-03-01
We use molecular dynamics simulation to study ion clustering and dynamics in ion containing polymers. This PEO based single-ion conducting ionomer serves as a model system for understanding cation transport in solid state polymer electrolytes (SPEs). Although small-angle x-ray scattering does not show an ionomer peak, we observer various cation-anion complexes in the simulation, suggesting ionomer backbones are crosslinked through ion complexes. These crosslinks reduce the adjacent PEO mobility resulting in a symmetric mobility gradient along the PEO chain. We vary the cation-anion interaction in the simulation to observe the interplay of cation-anion association, polymer mobility and cation motion. Cation-anion association controls the number of free ions, which is important in ionic conductivity when these materials are used as SPEs. Polymer mobility controls how fast the free ions are able to move through the SPE. High conductivity requires both a high free ion content and fast polymer motion. To understand the connection between the two, we ``tune'' the force field in order to manipulate the free ion content and observe the influence on PEO dynamics.
NASA Astrophysics Data System (ADS)
Armentrout, Rodney Scott
The primary research goal is the development of new polymeric materials that demonstrate the environmentally-responsive sequestration of common water foulants, including surfactants and oils. Water-swellable and water-soluble polymers have been synthesized, structurally characterized, and their physical properties have been determined. In addition, the ability of the materials to sequester model water foulants has been evaluated. Anionic crosslinked polymer networks of 2-acrylamido-2-methyl-1-propanesulfonic acid, acrylamide, and methylene bisacrylamide have been synthesized and characterized by determining the equilibrium water contents as a function of ionic content of the polymer network. The molar ratio of bound surfactant to ionic group was determined to be less than one for all hydrogels studied, indicating an ion-exchange binding mechanism with minimal hydrophobic interactions between bound and unbound surfactant molecules is responsible for surfactant binding. Cationic crosslinked cyclopolymer networks of N,N-diallyl- N-methyl amine (DAMA) and N,N,N,N-tetraallyl ammonium chloride (TAAC) have been synthesized and characterized by determining the equilibrium water content as a function of pH. A maximum in the equilibrium water content is observed for pH-6 when the polymer is fully ionized. The solubilization of a model water foulant, p-cresol, by the polymeric surfactant, Pluronic F127, has been studied via equilibrium dialysis, dynamic light scattering and ultrafiltration experiments. It has been shown that at 25°C p-cresol is readily solubilized by F127 since the polymeric surfactant exists in a multimer conformation. Ultrafiltration experiments have demonstrated that the polymer-foulant binding interactions are largely unaffected by shear in a hollow fiber membrane. Copolymers of the zwitterionic monomer, 3-(N,N-diallyl- N-methyl ammonio) propane sulfonate (DAMAPS) and N,N-diallyl- N,N-dimethylammonium chloride (DADMAC) (the DADS series) or the pH-responsive hydrophobic monomer, N,N-diallyl-N-methyl amine (DAMA) (the DAMS series) have been prepared in a 0.5 M NaCl aqueous solution using 2-hydroxy-1-[4-(hydroxy-ethoxy)phenyl]-2-methyl-1-propanone (Irgacure 2959) as the free-radical photoinitiator. 13C NMR data indicate that the resulting polymers maintain the five-membered ring structure in the cis conformation common to diallylammonium salts. Equilibrium dialysis experiments demonstrate that pH-responsive hydrophobic microdomain formation may be utilized to control the solubilization of the organic solute, p-cresol. Ultrafiltration experiments have demonstrated that the polymer-foulant binding interactions are largely unaffected by shear in a hollow fiber membrane. Macromolecular aggregates of the poly( N,N-diallyl-N-methyl amine)/p-cresol complexes lead to fouling of the ultrafiltration membrane. However, incorporation of the sulfobetaine moiety hinders the formation of the macroscopic structures and higher permeate flux rates are achieved. (Abstract shortened by UMI.)
Poly(Capro-Lactone) Networks as Actively Moving Polymers
NASA Astrophysics Data System (ADS)
Meng, Yuan
Shape-memory polymers (SMPs), as a subset of actively moving polymers, form an exciting class of materials that can store and recover elastic deformation energy upon application of an external stimulus. Although engineering of SMPs nowadays has lead to robust materials that can memorize multiple temporary shapes, and can be triggered by various stimuli such as heat, light, moisture, or applied magnetic fields, further commercialization of SMPs is still constrained by the material's incapability to store large elastic energy, as well as its inherent one-way shape-change nature. This thesis develops a series of model semi-crystalline shape-memory networks that exhibit ultra-high energy storage capacity, with accurately tunable triggering temperature; by introducing a second competing network, or reconfiguring the existing network under strained state, configurational chain bias can be effectively locked-in, and give rise to two-way shape-actuators that, in the absence of an external load, elongates upon cooling and reversibly contracts upon heating. We found that well-defined network architecture plays essential role on strain-induced crystallization and on the performance of cold-drawn shape-memory polymers. Model networks with uniform molecular weight between crosslinks, and specified functionality of each net-point, results in tougher, more elastic materials with a high degree of crystallinity and outstanding shape-memory properties. The thermal behavior of the model networks can be finely modified by introducing non-crystalline small molecule linkers that effectively frustrates the crystallization of the network strands. This resulted in shape-memory networks that are ultra-sensitive to heat, as deformed materials can be efficiently triggered to revert to its permanent state upon only exposure to body temperature. We also coupled the same reaction adopted to create the model network with conventional free-radical polymerization to prepare a dual-cure "double network" that behaves as a real thermal "actuator". This approach places sub-chains under different degrees of configurational bias within the network to utilize the material's propensity to undergo stress-induced crystallization. Reconfiguration of model shape-memory networks containing photo-sensitive linkages can also be employed to program two-way actuator. Chain reshuffling of a partially reconfigurable network is initiated upon exposure to light under specific strains. Interesting photo-induced creep and stress relaxation behaviors were demonstrated and understood based on a novel transient network model we derived. In summary, delicate manipulation of shape-memory network architectures addressed critical issues constraining the application of this type of functional polymer material. Strategies developed in this thesis may provide new opportunity to the field of shape-memory polymers.
Yang, Yali; Bai, Mo; Klug, William S.; Levine, Alex J.
2012-01-01
We determine the time- and force-dependent viscoelastic responses of reconstituted networks of microtubules that have been strongly crosslinked by biotin-streptavidin bonds. To measure the microscale viscoelasticity of such networks, we use a magnetic tweezers device to apply localized forces. At short time scales, the networks respond nonlinearly to applied force, with stiffening at small forces, followed by a reduction in the stiffening response at high forces, which we attribute to the force-induced unbinding of crosslinks. At long time scales, force-induced bond unbinding leads to local network rearrangement and significant bead creep. Interestingly, the network retains its elastic modulus even under conditions of significant plastic flow, suggesting that crosslinker breakage is balanced by the formation of new bonds. To better understand this effect, we developed a finite element model of such a stiff filament network with labile crosslinkers obeying force-dependent Bell model unbinding dynamics. The coexistence of dissipation, due to bond breakage, and the elastic recovery of the network is possible because each filament has many crosslinkers. Recovery can occur as long as a sufficient number of the original crosslinkers are preserved under the loading period. When these remaining original crosslinkers are broken, plastic flow results. PMID:23577042
Construction of Injectable Double-Network Hydrogels for Cell Delivery.
Yan, Yan; Li, Mengnan; Yang, Di; Wang, Qian; Liang, Fuxin; Qu, Xiaozhong; Qiu, Dong; Yang, Zhenzhong
2017-07-10
Herein we present a unique method of using dynamic cross-links, which are dynamic covalent bonding and ionic interaction, for the construction of injectable double-network (DN) hydrogels, with the objective of cell delivery for cartilage repair. Glycol chitosan and dibenzaldhyde capped poly(ethylene oxide) formed the first network, while calcium alginate formed the second one, and in the resultant DN hydrogel, either of the networks could be selectively removed. The moduli of the DN hydrogel were significantly improved compared to that of the parent single-network hydrogels and were tunable by changing the chemical components. In situ 3D cell encapsulation could be easily performed by mixing cell suspension to the polymer solutions and transferred through a syringe needle before sol-gel transition. Cell proliferation and mediated differentiation of mouse chondrogenic cells were achieved in the DN hydrogel extracellular matrix.
Linear and Nonlinear Elasticity of Networks Made of Comb-like Polymers and Bottle-Brushes
NASA Astrophysics Data System (ADS)
Liang, H.; Dobrynin, A.; Everhart, M.; Daniel, W.; Vatankhah-Varnoosfaderani, M.; Sheiko, S.
We study mechanical properties of networks made of combs and bottle-brushes by computer simulations, theoretical calculations and experimental techniques. The networks are prepared by cross-linking backbones of combs or bottle-brushes with linear chains. This results in ``hybrid'' networks consisting of linear chains and strands of combs or bottle-brushes. In the framework of the phantom network model, the network modulus at small deformations G0 can be represented as a sum of contributions from linear chains, G0 , l, and strands of comb or bottle-brush, G0 , bb. If the length of extended backbone between crosslinks, Rmax, is much longer than the Kuhn length, bk, the modulus scales with the degree of polymerization of the side chains, nsc, and number of monomers between side chains, ng, as G0 , bb (nsc/ng + 1)-1. In the limit when bk becomes of the order of Rmax, the combs and bottle-brushes can be considered as semiflexible chains, resulting in a network modulus to be G0 , bb (nsc/ng + 1)-1(nsc2/2/ng) . In the nonlinear deformation regime, the strain-hardening behavior is described by the nonlinear network deformation model, which predicts that the true stress is a universal function of the structural modulus, G, first strain invariant, I1, and deformation ratio, β. The results of the computer simulations and predictions of the theoretical model are in a good agreement with experimental results. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.
Polymer Micelles with Cross-Linked Polyanion Core for Delivery of a Cationic Drug Doxorubicin
Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K.
2009-01-01
Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w %) was achieved and it was strongly dependent on the structure of the cross-linked micelles and pH. The drug-loaded micelles were stable in aqueous dispersions exhibiting no aggregation or precipitation for a prolonged period of time. The DOX-loaded polymer micelles exhibited noticeable pH-sensitive behavior with accelerated release of DOX in acidic environment due to the protonation of carboxylic groups in the cores of the micelles. The attempt to protect the DOX-loaded core with the polycationic substances resulted in the decrease of loading efficacy and had a slight effect on the release characteristics of the micelles. The DOX-loaded polymer micelles exhibited a potent cytotoxicity against human A2780 ovarian carcinoma cells. These results point to a potential of novel polymer micelles with cross-linked ionic cores to be attractive carriers for the delivery of DOX. PMID:19386272
Two Dimensional Polymer That Generates Nitric Oxide.
McDonald, William F.; Koren, Amy B.
2005-10-04
A polymeric composition that generates nitric oxide and a process for rendering the surface of a substrate nonthrombogenic by applying a coating of the polymeric composition to the substrate are disclosed. The composition comprises: (1) a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, and (ii) a crosslinking agent containing functional groups capable of reacting with the amino groups; and (2) a plurality of nitric oxide generating functional groups associated with the crosslinked chemical combination. Once exposed to a physiological environment, the coating generates nitric oxide thereby inhibiting platelet aggregation. In one embodiment, the nitric oxide generating functional groups are provided by a nitrated compound (e.g., nitrocellulose) imbedded in the polymeric composition. In another embodiment, the nitric oxide generating functional groups comprise N2O2- groups covalently bonded to amino groups on the polymer.
Slide-Ring Materials Using Cyclodextrin.
Ito, Kohzo
2017-01-01
We have recently synthesized slide-ring materials using cyclodextrin by cross-linking polyrotaxanes, a typical supramolecule. The slide-ring materials have polymer chains with bulky end groups topologically interlocked by figure-of-eight shaped junctions. This indicates that the cross-links can pass through the polymer chains similar to pulleys to relax the tension of the backbone polymer chains. The slide-ring materials also differ from conventional polymers in that the entropy of rings affects the elasticity. As a result, the slide-ring materials show quite small Young's modulus not proportional to the cross-linking density. This concept can be applied to a wide variety of polymeric materials as well as gels. In particular, the slide-ring materials show remarkable scratch-proof properties for coating materials for automobiles, cell phones, mobile computers, and so on. Further current applications include vibration-proof insulation materials for sound speakers, highly abrasive polishing media, dielectric actuators, and so on.
McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.
2005-09-06
A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.
The properties of water in swollen cross-linked polystyrene sulfo acids
NASA Astrophysics Data System (ADS)
Gagarin, A. N.; Tokmachev, M. G.; Kovaleva, S. S.; Ferapontov, N. B.
2008-11-01
The properties of water in polystyrene sulfo acid gels with various cross-linking degrees were studied by optical volumetry and dynamic desorption porosimetry. The isotherms of water desorption obtained by dynamic desorption porosimetry coincided with isopiestic isotherms, which allowed this method to be recommended for the determination of the amount of water in polymer gels. Joint optical volumetry and dynamic desorption porosimetry studies showed that the interphase boundary in the cross-liked hydrophilic polymer-water system did not coincide with the visible gel boundary, because gels were two-phase systems, which contained water of two types, “free” and “bound.” The influence of the degree of polymer cross-linking on the amounts and properties of water of the two types was studied. It was shown that constants of water distribution in the polymer could be calculated from the dynamic desorption porosimetry data.
McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.
2004-09-28
A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.
Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level
ERIC Educational Resources Information Center
Bruce, Mitchell R. M.; Bruce, Alice E.; Avargil, Shirly; Amar, Francois G.; Wemyss, Thomas M.; Flood, Virginia J.
2016-01-01
The Polymers and Cross-Linking experiment is presented via a new three phase learning cycle: CORE (Chemical Observations, Representations, Experimentation), which is designed to model productive chemical inquiry and to promote a deeper understanding about the chemistry operating at the submicroscopic level. The experiment is built on two familiar…
Surface morphology control of cross-linked polymer particles via dispersion polymerization.
Peng, Bo; Imhof, Arnout
2015-05-14
Cross-linked polymer colloids (poly(methyl methacrylate) and polystyrene) with diverse shapes were prepared in polar solvents (ethanol, methanol and water) via dispersion polymerization, in which a linear addition of the cross-linker was used during reaction. Apart from spherical particles we found dented spheres or particles covered with nodules, or a combination of both. A comprehensive investigation was carried out, mainly concentrating on the effect of the experimental conditions (e.g., the addition start time and total addition time, cross-linker density and the solvency of the solvents) on particle morphologies. Consequently, we suggest a number of effective ways for the synthesis of regular (spherical) colloidal particles through maintaining a relatively low concentration of the cross-linker during the entire reaction, or forcing the co-polymerization (of monomer and cross-linker) locus to the continuous medium, or using a high quality or quantity of the stabilizer. Moreover, the size of the particles was also precisely manipulated by varying the polarity of the solvents, the concentration of the cross-linker, and the amount and average molecular weight of the stabilizer. In addition, the formation of the heavily dented particles with a very rough surface prepared under a pure or oxygen-'contaminated' nitrogen environment was monitored over time. The results accumulated in this article are of use for a better understanding of the mechanism of the polymerization and control over the structure and property of polymer particles.
Sibanda, Wilbert; Pillay, Viness; Danckwerts, Michael P; Viljoen, Alvaro M; van Vuuren, Sandy; Khan, Riaz A
2004-03-12
A Plackett-Burman design was employed to develop and optimize a novel crosslinked calcium-aluminum-alginate-pectinate oilisphere complex as a potential system for the in vitro site-specific release of Mentha piperita, an essential oil used for the treatment of irritable bowel syndrome. The physicochemical and textural properties (dependent variables) of this complex were found to be highly sensitive to changes in the concentration of the polymers (0%-1.5% wt/vol), crosslinkers (0%-4% wt/vol), and crosslinking reaction times (0.5-6 hours) (independent variables). Particle size analysis indicated both unimodal and bimodal populations with the highest frequency of 2 mm oilispheres. Oil encapsulation ranged from 6 to 35 mg/100 mg oilispheres. Gravimetric changes of the crosslinked matrix indicated significant ion sequestration and loss in an exponential manner, while matrix erosion followed Higuchi's cube root law. Among the various measured responses, the total fracture energy was the most suitable optimization objective (R2 = 0.88, Durbin-Watson Index = 1.21%, Coefficient of Variation (CV) = 33.21%). The Lagrangian technique produced no significant differences (P > .05) between the experimental and predicted total fracture energy values (0.0150 vs 0.0107 J). Artificial Neural Networks, as an alternative predictive tool of the total fracture energy, was highly accurate (final mean square error of optimal network epoch approximately 0.02). Fused-coated optimized oilispheres produced a 4-hour lag phase followed by zero-order kinetics (n > 0.99), whereby analysis of release data indicated that diffusion (Fickian constant k1 = 0.74 vs relaxation constant k2 = 0.02) was the predominant release mechanism.
2014-10-01
the angles and dihedrals that are truly unique will be indicated by the user by editing NewAngleTypesDump and NewDihedralTypesDump. The program ...Atomistic Molecular Simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Robert M Elder, Timothy W Sirk, and...Antechamber program in Assisted Model Building with Energy Refinement (AMBER) Tools to assign partial charges (using the Austin Model 1 [AM1]-bond charge
Effect of crosslinking UHMWPE on its tensile and compressive creep performance.
Lewis, G; Carroll, M
2001-01-01
The in vitro quasi-static tensile and compressive creep properties of three sets of GUR 1050 ultra-high-molecular-weight polyethylene (UHMWPE) specimens were obtained. These sets were: control (as-received stock); "low-gamma" (specimens were crosslinked using gamma radiation, with a minimum dose of 5 Mrad); and "high-gamma" (specimens were crosslinked using gamma radiation, with a minimum dose of 15 Mrad). The % crystallinity (%C) and crosslink density (rho(x)) of the specimens in the three sets were also obtained. It was found that, in both tension and compression, crosslinking resulted in a significant depreciation in the creep properties, relative to control. The trend in the creep results is explained in terms of the impact of crosslinking on the polymer's %C and rho(x). The present results are in contrast to literature reports that show that crosslinking enhances the wear resistance of the polymer. The implications of the present results, taken together with the aforementioned literature results, are fully discussed vis-a-vis the use of crosslinked UHMWPE for fabricating articular components for arthroplasties.
Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme
NASA Technical Reports Server (NTRS)
Meador, Ann B.; Capadona, Lynn A.
2008-01-01
A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.
NASA Astrophysics Data System (ADS)
Han, Biao; Ma, Tianzhu; Lee, Daeyeon; Shenoy, Vivek; Han, Lin
This study aims to reveal unique nanoscale viscoelastic and viscoplastic properties of ionically linked polyelectrolyte networks. Layer-by-layer PAH/PAA complexes were tested by four continuous loading cycles in aqueous solutions. In each cycle, AFM-nanoindentation via a microspherical tip (R =5 μm) was applied up to 1 μN force, followed by a 30-60 sec hold at either a constant indentation depth to measure relaxation, or a constant force to measure creep. At a highly cross-linked, net neutral state (0.01M, pH 5.5), instantaneous modulus increased by 2.7-fold from first to last cycle, while the degree of relaxation (>95%) remain consistent. These results indicate repeated loading increases local cross-link density, while relaxation is consistently dominated by cross-link breaking and re-formation. In contrast, under creep, modulus increased by a similar 3.5-fold, and degree of creep is significantly attenuated from ~50% to 45% from first to last cycle. Results from creep suggest constant viscous flow of polymer chains in the absence of permanent anchorage. As a result, an irreversible deformation (~370nm) was observed after multiple creep cycles, suggesting the presence of viscoplasticity.
Copper-catalyzed azide alkyne cycloaddition polymer networks
NASA Astrophysics Data System (ADS)
Alzahrani, Abeer Ahmed
The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo-CuAAC reaction and a chain-growth acrylate homopolymerization were demonstrated and used to form branched polymer structures. A bulk, organic soluble initiation system consisting of a Cu(II) salt and a primary amine was also examined in both model reactions and in bulk polymerizations. The system was shown to be highly efficient, leading to nearly complete CuAAC polymerization at ambient temperature. Increasing the ratio of amine to copper from 1 to 4 increases the CuAAC reaction rate significantly from 4 mM/min for 1:1 ratio of Cu(II):hexyalmine to 14mM/min for 1:4 ratio. The concentration dependence of the amine on the reaction rate enables the polymerization rate to be controlled simply by manipulating the hexylamine concentration. Sequential thiol--acrylate and photo-CuAAC click reactions were utilized to form two-stage reactive polymer networks capable of generating wrinkles in a facile manner. The click thiol-Michael addition reaction was utilized to form a cross-linked polymer with residual, reactive alkyne sites that remained tethered throughout the network. The latent, unreacted alkyne sites are subsequently reacted with diazide monomers via a photoinduced Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to increase the cross-link density. Increased cross-linking raised the modulus and glass transition temperature from 1.6 MPa and 2 °C after the thiol-acrylate reaction to 4.4 MPa and 22 °C after the CuAAC reaction, respectively. The double click reaction approach led to micro-wrinkles with well-controlled wavelength and amplitude of 8.50 +/- 1.6 and 1.4 μm, respectively, for a polymer with a 1280 μm total film thickness. Additionally, this approach further enables spatial selectivity of wrinkle formation by photo-patterning. The CuAAC-based polymerization was also used to design smart, responsive porous materials from well-defined CuAAC networks, which possesses a high glass transition temperature (Tg= 115°C) due to the formation of the triazole linkages. The toughness, recovery, fixity, and shape memory attributes of this material were examined. The unique recovery behavior of the porous CuAAC material is characterized by its ability to recover plastic deformation upon heating. The tough and stiff nature of the glassy CuAAC polymer networks translates into desirable high compressive strain shape memory foams. The CuAAC foam exhibited excellent shape-memory behavior and was able to recover through each of five successive cycles of 80% compression at ambient temperature, presenting a significant volume change and resistance to fracture. In addition, the glassy CuAAC foam was able to withstand more than 10 cycles of compression to 50% strain and subsequent recovery at ambient temperature, indicative of ductile behavior in the glassy state.
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Padadopoulos, Demetrios S.; Leventis, Nicholas
2007-01-01
Sol-gel derived silica aerogels are attractive candidates for many unique thermal, optical, catalytic, and chemical applications because of their low density and high mesoporosity. However, their inherent fragility has restricted use of aerogel monoliths to applications where they are not subject to any load. We have previously reported cross-linking the mesoporous silica structure of aerogels with di-isocyanates, styrenes or epoxies reacting with amine decorated silica surfaces. These approaches have been shown to significantly increase the strength of aerogels with only a small effect on density or porosity. Though density is a prime predictor of properties such as strength and thermal conductivity for aerogels, it is becoming clear from previous studies that varying the silica backbone and size of the polymer cross-link independently can give rise to combinations of properties which cannot be predicted from density alone. Herein, we examine the effects of four processing parameters for producing this type of polymer cross-linked aerogel on properties of the resulting monoliths. We focus on the results of C-13 CP-MAS NMR which gives insight to the size and structure of polymer cross-link present in the monoliths, and relates the size of the cross-links to microstructure, mechanical properties and other characteristics of the materials obtained.
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Papadopoulos, Demetrios S.; Leventis, Nicholas
2007-01-01
Sol-gel derived silica aerogels are attractive candidates for many unique thermal, optical, catalytic, and chemical applications because of their low density and high mesoporosity. However, their inherent fragility has restricted use of aerogel monoliths to applications where they are not subject to any load. We have previously reported cross-linking the mesoporous silica structure of aerogels with di-isocyanates, styrenes or epoxies reacting with amine decorated silica surfaces. These approaches have been shown to significantly increase the strength of aerogels with only a small effect on density or porosity. Though density is a prime predictor of properties such as strength and thermal conductivity for aerogels, it is becoming clear from previous studies that varying the silica backbone and size of the polymer cross-link independently can give rise to combinations of properties which cannot be predicted from density alone. Herein, we examine the effects of four processing parameters for producing this type of polymer cross-linked aerogel on properties of the resulting monoliths. We focus on the results of 13C CP-MAS NMR which gives insight to the size and structure of polymer cross-link present in the monoliths, and relates the size of the cross-links to microstructure, mechanical properties and other characteristics of the materials obtained.
Swelling of radiation crosslinked acrylamide-based microgels and their potential applications
NASA Astrophysics Data System (ADS)
Abd El-Rehim, H. A.
2005-10-01
Crosslinked polyacrylamide PAAm and acrylamide-Na-acrylate P(AAm-Na-AAc) microgels were prepared by electron beam irradiation. It was found that the dose required for crosslinking depends on the polymer moisture content, so that the dose to obtain PAAm of maximum gel fraction was over 40 and 20 kGy for dry and moist PAAm, respectively. The structural changes in irradiated PAAm were investigated using FTIR and SEM. The swelling property of such microgels in distilled water and real urine solution was determined and crosslinked polymers reached their equilibrium swelling state in a few minutes. As the gel content and crosslinking density decrease, the swelling of the microgels increases. The ability of the microgels to absorb and retain large amount of solutions suggested their possible uses in horticulture and in hygienic products such as disposable diapers.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2001-01-01
Durability and long-term performance are among the primary concerns for the use of advanced polymer matrix composites (PMCs) in modern aerospace structural applications. For a PMC subJected to long-term exposure at elevated temperatures. the viscoelastic nature of the polymer matrix will contribute to macroscopic changes in composite stiffness, strength and fatigue life. Over time. changes in the polymer due to physical aging will have profound effects on tile viscoelastic compliance of the material, hence affecting its long-term durability. Thus, the ability to predict material performance using intrinsic properties, such as crosslink density and molecular weight, would greatly enhance the efficiency of design and development of PMCs. The objective of this paper is to discuss and present the results of an experimental study that considers the effects of crosslink density, molecular weight and temperature on the viscoelastic behavior including physical aging of an advanced polymer. Five distinct variations in crosslink density were used to evaluate the differences in mechanical performance of an advanced polyimide. The physical aging behavior was isolated by conducting sequenced, short-term isothermal creep compliance tests in tension. These tests were performed over a range of sub-glass transition temperatures. The material constants, material master curves and physical aging-related parameters were evaluated as a function of temperature crosslink density and molecular weight using time-temperature and time-aging time superposition techniques.
Boni, Fernanda Isadora; Prezotti, Fabíola Garavello; Cury, Beatriz Stringhetti Ferreira
2016-08-01
Gellan gum microspheres were obtained by ionotropic gelation technique, using the trivalent ion Al(3+). The percentage of entrapment efficiency ranged from 48.76 to 87.52% and 2(2) randomized full factorial design demonstrated that both the increase of polymer concentration and the decrease of crosslinker concentration presented a positive effect in the amount of encapsulated drug. Microspheres size and circularity ranged from 700.17 to 938.32 μm and from 0.641 to 0.796 μm, respectively. The increase of polymer concentration (1-2%) and crosslinker concentration (3-5%) led to the enlargement of particle size and circularity. However, the association of increased crosslinker concentration and reduced polymer content made the particles more irregular. In vitro and ex vivo tests evidenced the high mucoadhesiveness of microspheres. The high liquid uptake ability of the microspheres was demonstrated and the pH variation did not affect this parameter. Drug release was pH dependent, with low release rates in acid pH (42.40% and 44.93%) and a burst effect in phosphate buffer pH (7.4). The Weibull model had the best correlation with the drug release data, demonstrating that the release process was driven by a complex mechanism involving the erosion and swelling of the matrix or by non-Fickian diffusion.
Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid
2011-08-15
Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
Wilson, John T; Postma, Almar; Keller, Salka; Convertine, Anthony J; Moad, Graeme; Rizzardo, Ezio; Meagher, Laurence; Chiefari, John; Stayton, Patrick S
2015-03-01
Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell responses to protein-based vaccines.
Mano, Sharmy Saimon; Uto, Koichiro; Ebara, Mitsuhiro
2017-01-01
Objective: We propose here material-induced senescence (MIS) as a new therapeutic concept that limits cancer progression by stable cell cycle arrest. This study examined for the first time the effect of material fluidity on cellular senescence in lung carcinoma using poly(ε-caprolactone- co -D, L-lactide) (P(CL- co -DLLA)) with tunable elasticity and fluidity. Methods: The fluidity was varied by chemically crosslinking the polymer networks: the crosslinked P(CL- co -DLLA) shows solid-like properties with a stiffness of 260 kPa, while the non-crosslinked polymer exists in a quasi-liquid state with loss and storage moduli of 33 kPa and 11 kPa, respectively. Results: We found that cancer cells growing on the non-crosslinked, fluidic substrate undergo a non-apoptotic form of cell death and the cell cycle was accumulated in a G0/G1 phase. Next, we investigated the expression of biomarkers that are associated with cancer pathways. The cancer cells on the fluidic substrate expressed several biomarkers associated with senescence such as insulin-like growth factor binding protein 5 (IGFBP5). This result indicates that when cancer cells sense fluidity in their surroundings, the cells express IGFBP5, which in turn triggers the expression of tumor suppressor protein 53 and initiates cell cycle arrest at the G1 phase followed by cellular senescence. Furthermore, the cancer cells on the fluidic substrate maintained their epithelial phenotype, suggesting that the cancer cells do not undergo epithelial to mesenchymal transition. Conclusion: By considering these results as the fundamental information for MIS, our system could be applied to induce senescence in treatment-resistant cancers such as metastatic cancer or cancer stem cells.
NASA Astrophysics Data System (ADS)
Ejiasi, Angel
The effect of physical, chemical, and biological cues on the behavior of smooth muscle cells (SMCs) and attachment of marine organisms was investigated. Both hydrophilic and amphiphilic crosslinked polymer networks with varying chemical and mechanical properties were used to direct biological responses. Poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels were fabricated with tunable mechanical properties by varying the di-functional monomer concentration in the feed composition. Amphiphilic hydrogels composed of 2-hydroxyethyl methacrylate (HEMA), 1,3-bis(3-methacryloxypropyl)tetrakis(trimethylsiloxy)disiloxane (MPTSDS), and tris(trimethylsiloxy)-3-methacryloxypropylsilane (TRIS) were copolymerized using ultraviolet (UV) light and a photo-initiator. Hydrogels prepared with varying concentration of di-functional monomer, MPTSDS, exhibited an order of magnitude difference in elastic moduli. Not only were the bulk material properties influenced by the crosslinking agent concentration in the feed composition, but the surface properties (i.e., contact angle and hysteresis) were influenced as well. Modulus (E) has been reported to be positively correlated with the settlement of marine organisms. However, this was not the case for the amphiphilic gels tested against biomolecules and marine organisms. Stiffer gels inhibited fouling of proteins and marine organism, Ulva linza, to a greater extent than the softer gels. Furthermore, the network structure, in regards to the molecular weight between crosslinks Mc, was found to have a greater influence on fouling. A strong correlation was observed between protein adsorption and Mc of the amphiphilic crosslinked networks compared to just the modulus and surface energy (Upsilon) alone. A higher correlation was also obtained between Mc and Ulva sporeling biomass than between sporeling biomass and elastic modulus E, exhibiting R² value of 0.98 and 0.38, respectively. The percent removal of sporeling biomass growth was shown to be positively correlated with the (E Upsilon) 1/2, which is a contrast to what has previously been reported. Again, there was a higher correlation between Mc and percent removal of sporeling biomass than between (E Upsilon)1/2 and percent removal of sporelings (R² value of 0.83 and 0.57, respectively). The differences in biofouling ability is most likely due to differences in mesh size between hydrogel compositions. Biomolecule accumulation and absorption was made easier by the larger mesh size in hydrogels with lower crosslinking concentration in the feed composition. The influence of chemical and physical properties on mammalian cells was also investigated. Amphiphilic crosslinked networks were fabricated with tunable mechanical properties and their ability to modulate smooth muscle cell (SMC) phenotype was studied by assessing cell proliferation. Bioactive molecules, Arg-Gly-Asp-Ser (RGDS), were incorporated into the crosslinked matrix to promote adhesion and facilitate cell growth. The elastic modulus of the substrate and the concentration of RGDS were shown to positively correlate with the attachment and proliferation of SMCs; indicating that the physic-chemical network properties play a large role in behavior of unicellular organisms.
Optically responsive supramolecular polymer glasses
NASA Astrophysics Data System (ADS)
Balkenende, Diederik W. R.; Monnier, Christophe A.; Fiore, Gina L.; Weder, Christoph
2016-03-01
The reversible and dynamic nature of non-covalent interactions between the constituting building blocks renders many supramolecular polymers stimuli-responsive. This was previously exploited to create thermally and optically healable polymers, but it proved challenging to achieve high stiffness and good healability. Here we present a glass-forming supramolecular material that is based on a trifunctional low-molecular-weight monomer ((UPyU)3TMP). Carrying three ureido-4-pyrimidinone (UPy) groups, (UPyU)3TMP forms a dynamic supramolecular polymer network, whose properties are governed by its cross-linked architecture and the large content of the binding motif. This design promotes the formation of a disordered glass, which, in spite of the low molecular weight of the building block, displays typical polymeric behaviour. The material exhibits a high stiffness and offers excellent coating and adhesive properties. On account of reversible dissociation and the formation of a low-viscosity liquid upon irradiation with ultraviolet light, rapid optical healing as well as (de)bonding on demand is possible.
The potential of organic polymer-based hydrogen storage materials.
Budd, Peter M; Butler, Anna; Selbie, James; Mahmood, Khalid; McKeown, Neil B; Ghanem, Bader; Msayib, Kadhum; Book, David; Walton, Allan
2007-04-21
The challenge of storing hydrogen at high volumetric and gravimetric density for automotive applications has prompted investigations into the potential of cryo-adsorption on the internal surface area of microporous organic polymers. A range of Polymers of Intrinsic Microporosity (PIMs) has been studied, the best PIM to date (a network-PIM incorporating a triptycene subunit) taking up 2.7% H(2) by mass at 10 bar/77 K. HyperCrosslinked Polymers (HCPs) also show promising performance as H(2) storage materials, particularly at pressures >10 bar. The N(2) and H(2) adsorption behaviour at 77 K of six PIMs and a HCP are compared. Surface areas based on Langmuir plots of H(2) adsorption at high pressure are shown to provide a useful guide to hydrogen capacity, but Langmuir plots based on low pressure data underestimate the potential H(2) uptake. The micropore distribution influences the form of the H(2) isotherm, a higher concentration of ultramicropores (pore size <0.7 nm) being associated with enhanced low pressure adsorption.
Non-affine deformations in polymer hydrogels
Wen, Qi; Basu, Anindita; Janmey, Paul A.; Yodh, A. G.
2012-01-01
Most theories of soft matter elasticity assume that the local strain in a sample after deformation is identical everywhere and equal to the macroscopic strain, or equivalently that the deformation is affine. We discuss the elasticity of hydrogels of crosslinked polymers with special attention to affine and non-affine theories of elasticity. Experimental procedures to measure non-affine deformations are also described. Entropic theories, which account for gel elasticity based on stretching out individual polymer chains, predict affine deformations. In contrast, simulations of network deformation that result in bending of the stiff constituent filaments generally predict non-affine behavior. Results from experiments show significant non-affine deformation in hydrogels even when they are formed by flexible polymers for which bending would appear to be negligible compared to stretching. However, this finding is not necessarily an experimental proof of the non-affine model for elasticity. We emphasize the insights gained from experiments using confocal rheoscope and show that, in addition to filament bending, sample micro-inhomogeneity can be a significant alternative source of non-affine deformation. PMID:23002395
Production in Pichia pastoris of protein-based polymers with small heterodimer-forming blocks.
Domeradzka, Natalia E; Werten, Marc W T; de Vries, Renko; de Wolf, Frits A
2016-05-01
Some combinations of leucine zipper peptides are capable of forming α-helical heterodimeric coiled coils with very high affinity. These can be used as physical cross-linkers in the design of protein-based polymers that form supramolecular structures, for example hydrogels, upon mixing solutions containing the complementary blocks. Such two-component physical networks are of interest for many applications in biomedicine, pharmaceutics, and diagnostics. This article describes the efficient secretory production of A and B type leucine zipper peptides fused to protein-based polymers in Pichia pastoris. By adjusting the fermentation conditions, we were able to significantly reduce undesirable proteolytic degradation. The formation of A-B heterodimers in mixtures of the purified products was confirmed by size exclusion chromatography. Our results demonstrate that protein-based polymers incorporating functional heterodimer-forming blocks can be produced with P. pastoris in sufficient quantities for use in future supramolecular self-assembly studies and in various applications. © 2015 Wiley Periodicals, Inc.
Sircar, S; Aisenbrey, E; Bryant, S J; Bortz, D M
2015-01-07
We present an experimentally guided, multi-phase, multi-species polyelectrolyte gel model to make qualitative predictions on the equilibrium electro-chemical properties of articular cartilage. The mixture theory consists of two different types of polymers: poly(ethylene gylcol) (PEG), chondrotin sulfate (ChS), water (acting as solvent) and several different ions: H(+), Na(+), Cl(-). The polymer chains have covalent cross-links whose effect on the swelling kinetics is modeled via Doi rubber elasticity theory. Numerical studies on equilibrium polymer volume fraction and net osmolarity (difference in the solute concentration across the gel) show a complex interplay between ionic bath concentrations, pH, cross-link fraction and the average charge per monomer. Generally speaking, swelling is aided due to a higher average charge per monomer (or a higher particle fraction of ChS, the charged component of the polymer), low solute concentration in the bath, a high pH or a low cross-link fraction. A peculiar case arises at higher values of cross-link fraction, where it is observed that increasing the average charge per monomer leads to gel deswelling. Copyright © 2014 Elsevier Ltd. All rights reserved.
Design properties of hydrogel tissue-engineering scaffolds
Zhu, Junmin; Marchant, Roger E
2011-01-01
This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding. PMID:22026626
Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes.
Yan, Yunsong; Santaniello, Tommaso; Bettini, Luca Giacomo; Minnai, Chloé; Bellacicca, Andrea; Porotti, Riccardo; Denti, Ilaria; Faraone, Gabriele; Merlini, Marco; Lenardi, Cristina; Milani, Paolo
2017-06-01
Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm -2 ), high electrochemical capacitance (≈mF g -1 ), and minimal mechanical stress at the polymer/metal composite interface upon deformation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conjugated Microporous Polymers for Heterogeneous Catalysis.
Zhou, Yun-Bing; Zhan, Zhuang-Ping
2018-01-04
Conjugated microporous polymers (CMPs) are a class of crosslinked polymers that combine permanent micropores with π-conjugated skeletons and possess three-dimensional (3D) networks. Compared with conventional materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), CMPs usually have superior chemical and thermal stability. CMPs have made significant progress in heterogeneous catalysis in the past seven years. With a bottom-up strategy, catalytic moieties can be directly introduced into in the framework to produce heterogeneous CMP catalysts. Higher activity, stability, and selectivity can be obtained with heterogeneous CMP catalysts in comparison with their homogeneous analogs. In addition, CMP catalysts can be easily isolated and recycled. In this review, we focus on CMPs as an intriguing platform for developing various highly efficient and recyclable heterogeneous catalysts in organic reactions. The design, synthesis, and structure of these CMP catalysts are also discussed in this focus review. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
McCall, Patrick; Stam, Samantha; Kovar, David; Gardel, Margaret
The shape and mechanics of animal cells are controlled by a dynamic, thin network of semiflexible actin filaments and myosin-II motor proteins called the actomyosin cortex. Motor-generated stresses in the cortex drive changes in cell shape during cell division and morphogenesis, while dynamic turnover of actin filaments dissipates stress. The relative effects that force generation, force dissipation, and disassembly and reassembly of material have on motion in these networks are unknown. We find that cross-linked actin networks in vitro contract under myosin-generated stresses, resulting in partial filament disassembly, the formation of asters, and clustering of myosin motors. We observe a rapid restoration of uniform polymer density in the presence of the assembly factors which catalyze network turnover through elongation of severed actin filaments. When severing is accelerated further by the addition of a severing protein, network contraction and motor clustering are dramatically suppressed. We test the relative effects of material regeneration and force transmission using image analysis, and conclude that the dominant mechanism for this effect is relatively short-lived stresses that do not propagate over considerable distance or push network deformation into the nonlinear contractile regime we have previously characterized. Our results present a framework to understand cytoskeletal active matter that are influenced by a complex interplay between stress generation, network reorganization, and polymer turnover.
Ge, Junhao; Trujillo, Marianela; Stansbury, Jeffrey
2005-12-01
This study was conducted to determine whether novel photopolymerizable formulations based on dimethacrylate monomers with bulky substituent groups could provide low polymerization shrinkage without sacrifice to degree of conversion, and mechanical properties of the polymers. Relatively high molecular weight dimethacrylate monomers were prepared from rigid bisphenol A core groups. Photopolymerization kinetics and shrinkage as well as flexural strength and glass transition temperatures were evaluated for various comonomer compositions. Copolymerization of the bulky monomers with TEGDMA show higher conversion but similar shrinkage compared with Bis-GMA/TEGDMA controls. The resulting polymers have suitable mechanical strength properties for potential dental restorative materials applications. When copolymerized with PEGDMA, the bulky monomers show lower shrinkage, comparable conversion, and more homogeneous polymeric network structures compared with Bis-EMA/PEGDMA systems. The novel dimethacrylate monomers with reduced reactive group densities can decrease the polymerization shrinkage as anticipated, but there is no significant evidence that the bulky substituent groups have any additional effect on reducing shrinkage based on the physical interactions as polymer side chains. The bulky groups improve the double bond conversion and help maintain the mechanical properties of the resulting polymer, which would otherwise decrease rapidly due to the reduced crosslinking density. Further, it was found that bulky monomers help produce more homogeneous copolymer networks.
Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.
2007-01-01
Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.
NASA Astrophysics Data System (ADS)
Lee, Jeongwoo; Faruk Emon, Md Omar; Vatani, Morteza; Choi, Jae-Won
2017-03-01
Ionic liquid (IL)/polymer composites (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIMBF4)/2-[[(butylamino)carbonyl]oxy]ethyl acrylate (BACOEA)) were fabricated to use as sensing materials for stretchable piezoresistive tactile sensors. The detectability of the IL/polymer composites was enhanced because the ionic transport properties of EMIMBF4 in the composites were improved by the synergic actions between the coordinate sites generated by the local motion of BACOEA chain segments under enough activation energy. The performance of the piezoresistive sensors was investigated with the degree of crosslinking and polymerization of the IL/polymer composites. As the compressive strain was increased, the distance between two electrodes decreased, and the motion of polymer chains and IL occurred, resulting in a decrease in the electrical resistance of the sensors. We have confirmed that the sensitivity of the sensors are affected by the degree of crosslink and polymerization of the IL/polymer composites. In addition, all of the materials (skins, sensing material, and electrode) used in this study are photo-curable, and thus the stretchable piezoresistive tactile sensors can be successfully fabricated by 3D printing.
Paradoxes of thermodynamics of swelling equilibria of polymers in liquids and vapors.
Davankov, Vadim A; Pastukhov, Alexander V
2011-12-29
An automatic registration of the changing size of a single spherical microbead of a cross-linked polymer was applied for studying the swelling process of the bead by the sorption of vapors and/or liquids. Many representatives of all three basic types of polymeric networks, gel-type, hypercrosslinked, and macroporous, were examined. Only the first two display large volume changes and prove suitable for following the kinetics and extent of swelling by the above dilatometric technique. The results unambiguously prove that swelling of all polymeric networks in liquids is always higher than in corresponding saturated vapors (Schroeder's paradox). The general nature of this phenomenon implies that the absolute activity of any sorbate in its liquid form is always larger than in the form of its saturated vapor. Surprisingly, gels with any solvent contents, which fall into the broad range between the vapor-equilibrated and liquid-equilibrated extreme contents, retain their volumes constant in the saturated vapor atmosphere. This paradox of a wide range of gels swollen to a different extent and, nevertheless, standing in equilibrium with saturated vapor is explained by the specificity of the network polymers, namely, that the energy of the solvent-polymer interactions is easily compensated by the energy of remaining between-chain interactions at any solvent content in the above range. Therefore, the strain-free swollen gels do not generate enhanced vapor pressure, but neither display the ability to take up more sorbate from its vapor. © 2011 American Chemical Society
Water-Stable Nanoporous Polymer Films with Excellent Proton Conductivity.
Wang, Zhengbang; Liang, Cong; Tang, Haolin; Grosjean, Sylvain; Shahnas, Artak; Lahann, Joerg; Bräse, Stefan; Wöll, Christof
2018-03-01
Achieving high values for proton conductivity in a material critically depends on providing hopping sites arranged in a regular fashion. Record values reported for regular, molecular crystals cannot yet be reached by technologically relevant systems, and the best values measured for polymer membranes suited for integration into devices are almost two orders of magnitude lower. Here, an alternative polymer membrane synthesis strategy based on the chemical modification of surface-mounted, monolithic, crystalline metal-organic framework thin films is demonstrated. Due to chemical crosslinking and subsequent removal of metal ions, these surface-mounted gels (SURGELs) are found to exhibit high proton conductivity (0.1 S cm -1 at 30 °C and 100% RH (relative humidity). These record values are attributed to the highly ordered polymer network structure containing regularly spaced carboxylic acid side groups. These covalently bound organic frameworks outperform conventional, ion-conductive polymers with regard to ion conductivity and water stability. Pronounced water-induced swelling, which causes severe mechanical instabilities in commercial membranes, is not observed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jang, Suk-Yong; Han, Sien-Ho
2016-12-19
Currently, Si as an active material for LIBs has been attracting much attention due to its high theoretical specific capacity (3572 mAh g -1 ). However, a disadvantage when using a Si negative electrode for LIBs is the abrupt drop of its capabilities during the cycling process. Therefore, there have been a few studies of polymers such as poly(vinylidene fluoride) (PVdF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR) and polyacrylic acid (PAA) given that the robust structure of a polymeric binder to LIBs anodes is a promising means by which to enhance the performance of high-capacity anodes. These studies essentially focused mainly on modifying of the linear-polymer component or on copolymers dissolved in solvents. Cross-linking polymers as a binder may be preferred due to their good scratch resistance, excellent chemical resistance and high levels of adhesion and resilience. However, because these types of polymers (with a rigid structure and cross-linking points) are also insoluble in general organic solvents, applying these types in this capacity is virtually impossible.
McAvoy, Kathryn; Jones, David; Thakur, Raghu Raj Singh
2018-01-16
To investigate the sustained ocular delivery of small and large drug molecules from photocrosslinked poly(ethylene glycol) diacrylate (PEGDA) implants with varying pore forming agents. Triamcinolone acetonide and ovalbumin loaded photocrosslinked PEGDA implants, with or without pore-forming agents, were fabricated and characterised for chemical, mechanical, swelling, network parameters, as well as drug release and biocompatibility. HPLC-based analytical methods were employed for analysis of two molecules; ELISA was used to demonstrate bioactivity of ovalbumin. Regardless of PEGDA molecular weight or pore former composition all implants loaded with triamcinolone acetonide released significantly faster than those loaded with ovalbumin. Higher molecular weight PEGDA systems (700 Da) resulted in faster drug release of triamcinolone acetonide than their 250 Da counterpart. All ovalbumin released over the 56-day time period was found to be bioactive. Increasing PEGDA molecular weight resulted in increased system swelling, decreased crosslink density (Ve), increased polymer-water interaction parameter (χ), increased average molecular weight between crosslinks (Mc) and increased mesh size (ε). SEM studies showed the porosity of implants increased with increasing PEGDA molecular weight. Biocompatibility showed both PEGDA molecular weight implants were non-toxic when exposed to retinal epithelial cells over a 7-day period. Photocrosslinked PEGDA implant based systems are capable of controlled drug release of both small and large drug molecules through adaptations in the polymer system network. We are currently continuing evaluation of these systems as potential sustained drug delivery devices.
Ion exchange polymers and method for making
NASA Technical Reports Server (NTRS)
Philipp, Warren H. (Inventor); Street, Kenneth W., Jr. (Inventor)
1994-01-01
An ion exchange polymer comprised of an alkali metal or alkaline earth metal salt of a poly(carboxylic acid) in a poly(vinyl acetal) matrix is described. The polymer is made by treating a mixture made of poly(vinyl alcohol) and poly(acrylic acid) with a suitable aldehyde and an acid catalyst to cause acetalization with some cross-linking. The material is then subjected to an alkaline aqueous solution of an alkali metal salt or an alkali earth metal salt. All of the film forming and cross-linking steps can be carried out simultaneously, if desired.
Martínez-Martínez, Mayte; Rodríguez-Berna, Guillermo; Gonzalez-Alvarez, Isabel; Hernández, Ma Jesús; Corma, Avelino; Bermejo, Marival; Merino, Virginia; Gonzalez-Alvarez, Marta
2018-04-09
In this work, 6-phosphogluconic trisodium salt (6-PG - Na + ) is introduced as a new aqueous and nontoxic cross-linking agent to obtain ionic hydrogels. Here, it is shown the formation of hydrogels based on chitosan cross-linked with 6-PG - Na + . This formulation is obtained by ionic interaction of cationic groups of polymer with anionic groups of the cross-linker. These hydrogels are nontoxic, do not cause dermal irritation, are easy to extend, and have an adequate adhesion force to be applied as polymeric film over the skin. This formulation exhibits a first order release kinetic and can be applied as drug vehicle for topical administration or as wound dressing for wound healing. The primary goal of this communication is to report the identification and utility of 6-phosphogluconic trisodium salt (6-PG - Na + ) as a nontoxic cross-linker applicable for cationic polymers.
Mechanical reinforcement and segmental dynamics of polymer nanocomposites
NASA Astrophysics Data System (ADS)
Gong, Shushan
The addition of nanofiller into a polymer matrix will dramatically change the physical properties of polymer. The introduction of nanofiller makes the polymer more applicable in many industries, such as automobile tires, coatings, semiconductors, and packaging. The altered properties are not the simple combination of the characters from the two components. The interactions in polymer nanocomposites play an important role in determining the physical properties. This dissertation focuses on the mechanical properties of polymer nanocomposites (silica/poly-2-vinylpyridine) above their glass transition temperature Tg, as a model for automobile tires, which utilize small silica particles in crosslinked rubber far above Tg. We also investigate the impacts of the interaction between particle filler and polymer matrix on the altered mechanical properties. Dielectric relaxation spectroscopy (DRS) is used to study the glassy bound polymer layers formed around the particles. The results show evidence of the existence of immobilized polymer layers at the surface of each nanoparticle. At the same time, the thickness of the immobilized polymer layers is quantified and formed to be around 2 nm. Then we consider particles with glassy bound polymer layers are bridged together (either rubbery bridge or glassy bridge) by polymer chains and form small clusters. Clusters finally percolate to form a particle-polymer network as loading fraction increases. Rheology is used to study the network formation, and to predict the boundary of rubbery bridge and glassy bridge regimes. The distance between particles determines the type of polymer bridging. The particle spacing larger than Kuhn length makes flexible (rubbery) bridge with rheology described by a flexible Rouse model for percolation. When the spacing is shorter than the Kuhn length (~ 1nm), stiffer bridge forms instead, which is called glassy bridge. The mechanical differences between rubbery bridge and glassy bridge, and the effect of Mw on the formation of glassy bridge, are also discussed.
James L. Minor; Roger C. Pettersen
1987-01-01
In many plants, a portion of the polysaccharides appears to have a very low degree of cross-linking with aromatic polymers such as lignin or flavolans. The proportion of cross-linked units may be enriched for study by enzymatically hydrolyzing the nonbonded carbohydrates. A convenient method is described for the simultaneous analysis of sugar content and apparent chain...
Porous Cross-Linked Polyimide Networks
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)
2015-01-01
Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.
Conducting polymer networks synthesized by photopolymerization-induced phase separation
NASA Astrophysics Data System (ADS)
Yamashita, Yuki; Komori, Kana; Murata, Tasuku; Nakanishi, Hideyuki; Norisuye, Tomohisa; Yamao, Takeshi; Tran-Cong-Miyata, Qui
2018-03-01
Polymer mixtures composed of double networks of a polystyrene derivative (PSAF) and poly(methyl methacrylate) (PMMA) were alternatively synthesized by using ultraviolet (UV) and visible (Vis) light. The PSAF networks were generated by UV irradiation to photodimerize the anthracene (A) moieties labeled on the PSAF chains, whereas PMMA networks were produced by photopolymerization of methyl methacrylate (MMA) monomer and the cross-link reaction using ethylene glycol dimethacrylate (EGDMA) under Vis light irradiation. It was found that phase separation process of these networks can be independently induced and promptly controlled by using UV and Vis light. The characteristic length scale distribution of the resulting co-continuous morphology can be well regulated by the UV and Vis light intensity. In order to confirm and utilize the connectivity of the bicontinuous morphology observed by confocal microscopy, a very small amount, 0.1 wt%, of multi-walled carbon nanotubes (MWCNTs) was introduced into the mixture and the current-voltage (I-V) relationship was subsequently examined. Preliminary data show that MWCNTs are preferentially dispersed in the PSAF-rich continuous domains and the whole mixture became electrically conducting, confirming the connectivity of the observed bi-continuous morphology. The experimental data obtained in this study reveal a promising method to design various scaffolds for conducting soft matter taking advantages of photopolymerization-induced phase separation.
Clark, Meredith R; Aliyar, Hyder A; Lee, Chang-won; Jay, Julie I; Gupta, Kavita M; Watson, Karen M; Stewart, Russell J; Buckheit, Robert W; Kiser, Patrick F
2011-07-15
This paper describes the design, construction and characterization of the first anti-HIV drug delivery system that is triggered to release its contents in the presence of human semen. Microgel particles were synthesized with a crosslinker containing a peptide substrate for the seminal serine protease prostate specific antigen (PSA) and were loaded with the HIV-1 entry inhibitor sodium poly(styrene-4-sulfonate) (pSS). The particles were composed of N-2-hydroxyproplymethacrylamide and bis-methacrylamide functionalized peptides based on the PSA substrates GISSFYSSK and GISSQYSSK. Exposure to human seminal plasma (HSP) degraded the microgel network and triggered the release of the entrapped antiviral polymer. Particles with the crosslinker composed of the substrate GISSFYSSK showed 17 times faster degradation in seminal plasma than that of the crosslinker composed of GISSQYSSK. The microgel particles containing 1 mol% GISSFYSSK peptide crosslinker showed complete degradation in 30 h in the presence of HSP at 37°C and pSS released from the microgels within 30 min reached a concentration of 10 μg/mL, equivalent to the published IC(90) for pSS. The released pSS inactivated HIV-1 in the presence of HSP. The solid phase synthesis of the crosslinkers, preparation of the particles by inverse microemulsion polymerization, HSP-triggered release of pSS and inactivation of HIV-1 studies are described. Copyright © 2011 Elsevier B.V. All rights reserved.
Novel (meth)acrylate monomers for ultrarapid polymerization and enhanced polymer properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckel, E. R.; Berchtold, K. A.; Nie, J.
2002-01-01
Ultraviolet light is known to be one of the most efficient methods to initiatc polymeric reactions in the presence of a photonitiator. Photopolymerizations are advantageous because the chemistry of the materials can be tailored to design liquid monomers for ultrarapid polymerization into a solid polymer material. One way to achieve rapid photopolymerizations is to utilize multifunctional (meth)acrylate monomers. which form highly crosslinked polymers; however, these monomers typically do not achieve complete functional group conversion. Recently, Decker et al. developed novel monovinyl acrylate monomers that display polyriicrization kinetics that rival those of multifunctional acrylate monomers. These novel acrylate monomers incorporate secondarymore » functionalities and end groups such as carbonates, carbamates, cyclic carbonates and oxazolidone which promote the increased polymerization kinetics of these monomers. In addition to thc polynierization kinetics, these novel monovinyl monomers form crosslinked polymers, which are characterized by having high strength and high flexibility. Unfortunately, the exact mechanism or mechanisms responsible for the polymerization kinetics and crosslinking are not well understood.« less
Dependence of nanomechanical modification of polymers on plasma-induced cross-linking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, S.; Komvopoulos, K.
2007-01-01
The nanomechanical properties of low-density polyethylene (LDPE) modified by inductively coupled, radio-frequency Ar plasma were investigated by surface force microscopy. The polymer surface was modified under plasma conditions of different ion energy fluences and radiation intensities obtained by varying the sample distance from the plasma power source. Nanoindentation results of the surface stiffness versus maximum penetration depth did not reveal discernible differences between untreated and plasma-treated LDPE, presumably due to the small thickness of the modified surface layer that resulted in a substrate effect. On the contrary, nanoscratching experiments demonstrated a significant increase in the surface shear resistance of plasma-modifiedmore » LDPE due to chain cross-linking. These experiments revealed an enhancement of cross-linking with increasing ion energy fluence and radiation intensity, and a tip size effect on the friction force and dominant friction mechanisms (adhesion, plowing, and microcutting). In addition, LDPE samples with a LiF crystal shield were exposed to identical plasma conditions to determine the role of vacuum ultraviolet (VUV) and ultraviolet (UV) radiation in the cross-linking process. The cross-linked layer of plasma-treated LDPE exhibited much higher shear strength than that of VUV/UV-treated LDPE. Plasma-induced surface modification of the nanomechanical properties of LDPE is interpreted in the context of molecular models of the untreated and cross-linked polymer surfaces derived from experimental findings.« less
Development of photopolymerizable clay nanocomposites utilizing reactive dispersants
NASA Astrophysics Data System (ADS)
Owusu-Adom, Kwame
Nanocomposites hold tremendous promise for expanding the utility of polymeric materials. However, accessing particulate sizes in the nanoscale domain continues to be a scientific challenge, especially in highly cross-linked photopolymerizable systems. In this study, photopolymerizable nanocomposites utilizing clay nanoparticles and reactive dispersants have been developed. The influence of particle size, dispersant-clay interactions, and surfactant concentration on photopolymerization behavior and nanoparticle dispersion has been elucidated. Clay particles serve as templates upon which surfactants aggregate during photopolymerization. This results in higher photopolymerization rates with addition of increasing concentrations of polymerizable surfactants. Furthermore, polymerizable surfactants induce faster photopolymerization rates compared to non-polymerizable analogues in systems that have ionically-bound dispersants on the particle surface. Utilizing reactive organoclays induces significant changes to the photopolymerization behavior depending on the choice of reactive functionality employed. Faster acrylate photopolymerization rates occur in photopolymer systems containing thiol-modified clays, while much slower rates occur for nonpolymerizable organoclay systems. In addition, chemical compatibility between monomer and clay dispersant (based on chemical similarity or polarity) allows enhancement of exfoliation in photopolymerizable formulations. With polymerizable dispersants, exfoliation is readily achieved in various multifunctional acrylate systems. The degree of exfoliation depends on the position of the reactive group relative to the surfactant's cationic site and the type of functionality. Thiolated organoclays exfoliate during polymerization, while methacrylated clays show substantially less dependence on polymerization behavior. Interestingly, changes in the physical properties of the resulting nanocomposite are independent of the degree of exfoliation in polymerizable organoclay systems. The polymer cross-link density dictates the magnitude of change in both modulus and glass transition temperature of the nanocomposite. Substantial increases in modulus and Tg occur in elastomeric and low cross-link density polymers, while decreases occur in the modulus and Tg of highly cross-linked polymer networks. Finally, these parameters have formed a basis for developing nanocomposites with higher moduli and lower volumetric shrinkage. The photopolymerization rates of these systems are controllable and increase substantially with addition of polymerizable organoclays. Such properties occur in traditional multifunctional acrylate photopolymer systems as well as new binary thiol-(meth)acrylate and ternary thiol-ene-(meth)acrylate photopolymers.
Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications
NASA Astrophysics Data System (ADS)
Mehlem, Jeremy John
Since its invention Bis-GMA or one of its analogs has been the main component of the polymer portion of composites for dental restorations. The need for dilution of Bis-GMA and its analogs to optimize its properties has long been recognized. Bis-GMA is a highly viscous monomer. This high viscosity leads to early vitrification, which limits conversion during cure. This viscosity also limits filler loading. Vitrification at low conversions leads to heterogeneous systems composed of low and high cross-link density phases. The low cross-link density phases behave as defects in the system; therefore, if the amount of low cross-link density phases in the system can be reduced and a more uniform network structure can be achieved, then the mechanical properties of the resin can be improved. Since the increase in viscosity during cure causes vitrification, it is logical that a system with a low initial viscosity will delay the onset of vitrification. Reactive diluents such as triethylene glycol dimethacrylate (TEGDMA) are effective at lower levels. However, large amounts negatively affect matrix properties by increasing polymerization shrinkage and water sorption. Shrinkage has been cited as one of the main deficiencies in dental composites. The goal of this project is to improve upon standard viscosity modifying comonomers such as triethylene glycol dimethacrylate. The comonomers that were explored were phenyloxyethyl methacrylate, cyclohexyl methacrylate, and tert-butylcylcohexyl methacrylate. Multicomponent systems based on analogs of ethylene glycol dimethacrylates with different length ethyl glycol chains were also examined. The substitution of monomethacrylates for TEGDMA as a comonomer resulted in enhanced or negligible affects on the mechanical properties of Bis-MEPP based polymer systems while reducing polymerization shrinkage. 129Xenon NMR and TappingMode(TM) AFM were used to characterize the heterogeneity of dimethacrylates systems during their cure cycle as well as in their final state. Using these methods the size of the high and low cross-link density phase was examined and determined to be on the order of 50--150 nanometers. Model compounds based on phenylethyl methacrylate were formulated to determine how of nadic methyl anhydride and maleic anhydride incorporate into dimethacrylate resin systems.
What the ultimate polymeric electro-optic materials will be: guest-host, crosslinked, or side-chain?
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Zhang, Hua; Oh, Min-Cheol; Dalton, Larry R.; Steier, William H.
2003-07-01
Material processing and device fabrication of many different electro-optic (EO) polymers developed at USC are reviewed. Detailed discussion is given to guest-host CLD/APCs, crosslinking perfluorocyclobutane (PFCB) polymer CX1, and thermally stable side-chain polymers CX2 and CX3. Excellent EO performance (1.4V at 1.31 μm, 2.1 V at 1.55 μm) was achieved in CLD/APC Mach-Zehnder modulators (2-cm, push-pull). CLD/APCs also possess low optical losses (1.2 dB/cm in slab waveguides and in thick core channel waveguides). However, the guest-host materials only have limited thermal stability (110-132 °C in short term, <60 °C in long term) and require special techniques in device fabrication. The crosslinking polymer CX1 was able to provide long-term stability at 85 oC when fully cured. It also has a low optical loss (comparable to CLD/APCs) before curing and decent EO coefficient when poled at 180 °C. However, after the films were poled at the crosslinking temperatures (200 °C or above), the transmissions of the waveguides and EO activity became very poor due to poling-induced chromophore degradation. By judicial molecular design of both chromophore and monomer structures to suppress thermal motion of polymer segments, we were able to realize the same or even better thermal stability in side-chain polymers CX2 and CX3. Since no curing is needed, devices can be poled at their optimal poling temperatures, and all good properties can be obtained simultaneously. Despite the excellent solubility in chlorinated solvents, these side-chain polymers are resistant to some other organic solvents or solutions such as acetone, photoresist and various UV-curable liquids.
Zhang, Zixin; Zhang, Wenpeng; Bao, Tao; Chen, Zilin
2015-08-14
Stainless steel wire (SSW) is a good substrate for stir bar sorptive extraction (SBSE). However, it is still a challenge to immobilize commonly used cross-linked polymers onto SSW. In this work, we present a new approach for immobilization of the cross-linked organic polymer onto SSW for jacket-free SBSE. A dopamine derivative was firstly synthesized; by introducing a mussel-inspired polydopamine process, a stable coating layer was finally generated on the surface of SSW. Secondly, the cross-linked polymer was synthesized on the polydopamine-modified SSW by using acetonitrile as the porogen, acrylamide (AA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker and 2,2'-azobis (2-methylpropionitrile) as the initiator. A diluted pre-polymerization solution was carefully prepared to generate a thin layer of the polymer. The prepared poly(EGDMA-AA)-modified stir bar showed high stability and good tolerance toward stirring, ultrasonication, organic solvents, and strong acidic and basic conditions. Morphology and structure characterization of coatings were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The prepared poly(EGDMA-AA)-modified stir bar showed great extraction efficiency toward protoberberines, with enrichment factors of 19-42. An SBSE-HPLC method was also developed for quantitative analysis of protoberberines. The method showed low limits of detection (0.06-0.15 ng mL(-1)), wide linear range (0.5-400 ng mL(-1)), good linearity (R≥0.9980) and good reproducibility (RSD≤3.60% for intra-day, RSD≤4.73% for inter-day). The developed method has been successfully applied to determine protoberberines in herb and rat plasma samples, with recoveries of 88.53-114.61%. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dewantara, Fauzi; Budianto, Emil
2018-04-01
Chitosan-methyl cellulose semi-IPN hydrogel is used as floating drug delivery system, and calcium carbonate also added as pore forming agent. The hydrogel network arranged by not only using biopolymer chitosan and methyl cellulose, but also the crosslink agent that is glutaraldehyde. Amoxicillin trihydrate entrapped into the polymer network with two different method, in situ loading and post loading. Furthermore both method has been tested for drug entrapment efficiency along with drug dissolution test, and the result for drug entrapment efficiency is in situ loading method has highest value of 100%, compared to post loading method which has value only 71%. Moreover, at the final time of drug dissolution test shows in situ loading method has value of 96% for total accumulative of drug dissolution, meanwhile post loading method has 72%. The value of drug dissolution test from both method is used for analyzing drug dissolution mechanism of amoxicillin trihydrate from hydrogel network with four mathematical drug mechanism models as parameter. The polymer network encounter destructive degradation causes by acid solution which used as dissolution medium, and the level of degradation is observed with optical microscope. However the result shows that degradation of the polymer network doesn't affect drug dissolution mechanism directly. Although the pore forming agent causes the pore inside the hydrogel network create interconnection and it was quite influential to drug dissolution mechanism. Interconnected pore is observed with Scanning Electron Microscope (SEM) and shows that the amount and area of interconnected pore inside the hydrogel network is increasing as drug dissolution goes on.
ERIC Educational Resources Information Center
Chemecology, 1997
1997-01-01
Presents an activity that enables students to gain a better understanding of the importance of polymers. Students perform an experiment in which polymer chains of polyvinyl acetate form crosslinks. Includes background information and discussion questions. (DDR)
Development of New Elastomers and Elastic Nanocomposites from Plant Oils
NASA Astrophysics Data System (ADS)
Zhu, Lin; Wool, Richard
2006-03-01
Economic and environmental concerns lead to the development of new polymers from renewable resources. In this research, new elastomers were synthesized from plant oil based resins. Acrylated oleic methyl ester (AOME), synthesized from high oleic triglycerides, can readily undergo free radical polymerization and form a linear polymer. To achieve the elastic properties, different strategies have been developed to generate an elastic network and control the crosslink density. The elastomers are reinforced by nanoclays. The intercalated state has a network structure similar to thermoplastic elastomers in which the hard segments aggregate to give ordered crystalline domains. The selected organically modified clay and AOME matrix have similar solubility parameters, therefore intercalation of the monomer/polymer into the clay layers occurs and the nano-scale multilayered structure is stable. In situ intercalation and solution intercalation were used to prepare the elastic nanocomposites. Dramatic improvement in mechanical properties was observed. Changes of tensile strength, strain, Young's modulus and fracture energy were related to the clay concentration. The fracture surface was studied to further understand clay effects on the mechanical properties. Self-Healing of the intercalated nanobeams, thermal stability, biocompatibility and biodegradability of this new elastomer were also explored.
Ye, Qiang; Park, Jonggu; Parthasarathy, Ranganathan; Pamatmat, Francis; Misra, Anil; Laurence, Jennifer S.; Marangos, Orestes; Spencer, Paulette
2013-01-01
There have been reports of the sensitivity of our current dentin adhesives to excess moisture, for example, water-blisters in adhesives placed on over-wet surfaces, and phase separation with concomitant limited infiltration of the critical dimethacrylate component into the demineralized dentin matrix. To determine quantitatively the hydrophobic/hydrophilic components in the aqueous phase when exposed to over-wet environments, model adhesives were mixed with 16, 33, and 50 wt % water to yield well-separated phases. Based upon high-performance liquid chromatography coupled with photodiode array detection, it was found that the amounts of hydrophobic BisGMA and hydrophobic initiators are less than 0.1 wt % in the aqueous phase. The amount of these compounds decreased with an increase in the initial water content. The major components of the aqueous phase were hydroxyethyl methacrylate (HEMA) and water, and the HEMA content ranged from 18.3 to 14.7 wt %. Different BisGMA homologues and the relative content of these homologues in the aqueous phase have been identified; however, the amount of crosslinkable BisGMA was minimal and, thus, could not help in the formation of a crosslinked polymer network in the aqueous phase. Without the protection afforded by a strong crosslinked network, the poorly photoreactive compounds of this aqueous phase could be leached easily. These results suggest that adhesive formulations should be designed to include hydrophilic multimethacrylate monomers and water compatible initiators. PMID:22331596
Process for crosslinking and extending conjugated diene-containing polymers
NASA Technical Reports Server (NTRS)
Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)
1977-01-01
A process using a Diels-Alder reaction which increases the molecular weight and/or crosslinks polymers by reacting the polymers with bisunsaturated dienophiles is developed. The polymer comprises at least 75% by weight based on the reaction product, has a molecular weight of at least 5000 and a plurality of conjugated 1,3-diene systems incorporated into the molecular structure. A dienophile reaction with the conjugated 1,3-diene of the polymer is at least 1% by weight based on the reaction product. Examples of the polymer include polyesters, polyamides, polyethers, polysulfones and copolymers. The bisunsaturated dienophiles may include bis-maleimides, bis maleic and bis tumaric esters and amides. This method for expanding the molecular weight chains of the polymers, preferable thermoplastics, is advantageous for processing or fabricating thermoplastics. A low molecular weight thermoplastic is converted to a high molecular weight plastic having improved strength and toughness for use in the completed end use article.
Fabrication of cell-benign inverse opal hydrogels for three-dimensional cell culture.
Im, Pilseon; Ji, Dong Hwan; Kim, Min Kyung; Kim, Jaeyun
2017-05-15
Inverse opal hydrogels (IOHs) for cell culture were fabricated and optimized using calcium-crosslinked alginate microbeads as sacrificial template and gelatin as a matrix. In contrast to traditional three-dimensional (3D) scaffolds, the gelatin IOHs allowed the utilization of both the macropore surface and inner matrix for cell co-culture. In order to remove templates efficiently for the construction of 3D interconnected macropores and to maintain high cell viability during the template removal process using EDTA solution, various factors in fabrication, including alginate viscosity, alginate concentration, alginate microbeads size, crosslinking calcium concentration, and gelatin network density were investigated. Low viscosity alginate, lower crosslinking calcium ion concentration, and lower concentration of alginate and gelatin were found to obtain high viability of cells encapsulated in the gelatin matrix after removal of the alginate template by EDTA treatment by allowing rapid dissociation and diffusion of alginate polymers. Based on the optimized fabrication conditions, gelatin IOHs showed good potential as a cell co-culture system, applicable to tissue engineering and cancer research. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Vivod, Stephanie L.; Meador, Mary Ann B.; Nguyen, Baochau N.; Quade, Derek; Randall, Jason; Perry, Renee
2008-01-01
Silica aerogels are desirable materials for many applications that take advantage of their light weight and low thermal conductivity. Addition of a conformal polymer coating which bonds with the amine decorated surface of the silica network improves the strength of the aerogels by as much as 200 times. Even with vast improvement in strength they still tend to undergo brittle failure due to the rigid silica backbone. We hope to increase the flexibility and elastic recovery of the silica based aerogel by altering the silica back-bone by incorporation of more flexible hexane links. To this end, we investigated the use of 1,6-bis(trimethoxysilyl)hexane (BTMSH), a polysilsesquioxane precursor3, as an additional co-reactant to prepare silica gels which were subsequently cross-linked with di-isocyanate. Previously, this approach of adding flexibility by BTMSH incorporation was demonstrated with styrene cross-linked aerogels. In our study, we varied silane concentration, mol % of silicon from BTMSH and di-isocyanate concentration by weight percent to attempt to optimize both the flexibility and the strength of the aerogels.
A zwitterionic macro-crosslinker for durable non-fouling coatings.
Wang, Wei; Lu, Yang; Xie, Jinbing; Zhu, Hui; Cao, Zhiqiang
2016-03-28
A novel zwitterionic macro-crosslinker was developed and applied to fabricate durable non-fouling coatings on a polyurethane substrate. The zwitterionic macro-crosslinker coating exhibited superior durability over the traditional brush polymer coating and was able to retain its non-fouling property even after weeks of shearing in flowing liquid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan
2015-09-25
Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10{sup −4} S cm{sup −1} at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increasemore » with the ionic liquid ratio.« less
Cured composite materials for reactive metal battery electrolytes
Harrup, Mason K.; Stewart, Frederick F.; Peterson, Eric S.
2006-03-07
A solid molecular composite polymer-based electrolyte is made for batteries, wherein silicate compositing produces a electrolytic polymer with a semi-rigid silicate condensate framework, and then mechanical-stabilization by radiation of the outer surface of the composited material is done to form a durable and non-tacky texture on the electrolyte. The preferred ultraviolet radiation produces this desirable outer surface by creating a thin, shallow skin of crosslinked polymer on the composite material. Preferably, a short-duration of low-medium range ultraviolet radiation is used to crosslink the polymers only a short distance into the polymer, so that the properties of the bulk of the polymer and the bulk of the molecular composite material remain unchanged, but the tough and stable skin formed on the outer surface lends durability and processability to the entire composite material product.
Carvalho, Isadora C; Mansur, Herman S
2017-09-01
Wound repair is one of the most complex biological processes in human life. To date, no ideal biomaterial solution has been identified, which that encompasses all functions and properties of real skin tissue. Thus, this study focused on the synthesis of new biocompatible hybrid hydrogel scaffolds based on methacrylate-functionalized high molecular mass chitosan with gelatin-A photocrosslinked with UV radiation to tailor matrix network properties. These hybrid hydrogels were produced via freeze-drying and were extensively characterized by swelling and degradation measurements, Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM-EDS), and micro-computed tomography (micro-CT). The results demonstrated that hydrogels were produced with broadly designed swelling degrees typically ranging from 500% to 2000%, which were significantly dependent on the relative concentration of polymers and irradiation time for crosslinking. Analogously, degradation was reduced with increased photocrosslinking of the network. Moreover, insights into the mechanism of photochemical crosslinking were suggested based on FTIR and UV-Vis analyses of the characteristic functional groups involved in the reactions. SEM analysis associated with micro-CT imaging of the hybrid scaffolds showed uniformly interconnected 3D porous structures, with architectural features affected by the crosslinking of the network. These hydrogels were biocompatible, with live cell viability responses of human embryonic kidney (HEK293T) cells being above 95%. Hence, novel hybrid hydrogels were designed and produced with tunable properties through photocrosslinking and with a biocompatible response suitable for use in wound dressing and skin tissue repair applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Properties of crosslinked ultra-high-molecular-weight polyethylene.
Lewis, G
2001-02-01
Substantially reducing the rate of generation of wear particles at the surfaces of ultra-high-molecular-weight polyethylene (UHMWPE) orthopedic implant bearing components, in vivo, is widely regarded as one of the most formidable challenges in modern arthroplasty. In the light of this, much research attention has been paid to the myriad of endogenous and exogenous factors that have been postulated to affect this wear rate, one such factor being the polymer itself. In recent years, there has been a resurgence of interest in crosslinking the polymer as a way of improving its properties that are considered relevant to its use for fabricating bearing components. Such properties include wear resistance, fatigue life, and fatigue crack propagation rate. Although a large volume of literature exists on the topic on the impact of crosslinking on the properties of UHMWPE, no critical appraisal of this literature has been published. This is one of the goals of the present article, which emphasizes three aspects. The first is the trade-off between improvement in wear resistance and depreciation in other mechanical and physical properties. The second aspect is the presentation of a method of estimating the optimal value of a crosslinking process variable (such as dose in radiation-induced crosslinking) that takes into account this trade-off. The third aspect is the description of a collection of under- and unexplored research areas in the field of crosslinked UHMWPE, such as the role of starting resin on the properties of the crosslinked polymer, and the in vitro evaluation of the wear rate of crosslinked tibial inserts and other bearing components that, in vivo, are subjected to nearly unidirectional motion.
Synthesis of Hydrophobic, Crosslinkable Resins.
1985-12-01
product by methanol precipitation the majority of the first oligomer was L-"- lost. 4.14 DIFFERENTIAL SCANNING CALORIMETRY. The DSC trace of a typical...polymer from the DSC traces obtained to dcte. Preliminary studies using an automated torsional pendulum indicate that the Tg of the crosslinked polymer is...enabling water to be used in the purification steps. The diethyl phosphonates are readily prepared by heating triethyl phosphite with the chloromethyl
JPRS Report, Science & Technology, Japan, Selections from Future Industrial Technology Symposium.
1988-08-01
pyrolyzed graphite ( HOPG ). X-ray diffraction photos of the biaxially stretched PPV films indicate that the films have been plane-oriented. It is...CRYSTALS OF TWO-DIMENSIONALLY CROSS-LINKED POLYMERS PRODUCED 8 ION-CROSSLINKING POLYMER COMPACTS EVALUATED 12 RECENT PROGRESS IN SYNTHETIC METALS...derived from 2,5-thienylene bis(methylene dimethyl sulfonium bromide). Highly conducting graphite films also have been obtained by pyrolysis of PPV and
Method for making a non-extractable stationary phase of polymer within a capillary column
Springston, Stephen R.
1990-01-01
A method for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating.
Rapid Soil Stabilization of Soft Clay Soils for Contingency Airfields
2006-12-01
quicklime or calcium carbide, could possibly crosslink the polymers of sodium or potassium polyacrylic acid together to form a harder material. Very...LiquiBlock 40K and 41K are both potassium salts of crosslinked polyacrylic acids/polyacrylamide copolymers in granular form that also gel in the presence...communication, 2006), soil could possibly be stabilized with calcium and super absorbent polymers, such as sodium or potassium polyacrylic acids. This
Experimental investigation of heat transfer characteristics of guar-based polymer solutions and gels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azouz, I.; Vinod, P.S.; Shah, S.N.
1996-12-31
An experimental investigation of the heat transfer characteristics of hydraulic fracturing fluids was conducted at the Fracturing Fluid Characterization Facility (FFCF) of the University of Oklahoma. The facility is equipped with a high pressure fracture simulator, coiled tubing fluid pre-conditioning system, and a full-scale, counter-current, double pipe heat exchanger. The fluids investigated include non-crosslinked and borate-crosslinked guar gum and hydroxypropyl guar (HPG). Results were also obtained for water and were used as a basis for comparison. The effects of flow rate, operating temperature, pH, and various levels of shear pre-conditioning, on the heat transfer behavior of the test fluids weremore » investigated. Results show a significant difference between the heat transfer coefficient of the pure solvent (water) and those of the polymer solutions tested. While all polymer solutions tested exhibited lower heat transfer coefficients than that of the pure solvent, crosslinking appears to enhance the heat transfer characteristics of the polymer fluids. It was also observed that shear preconditioning does not seem to have a significant effect on the heat transfer coefficient of the crosslinked gels. These findings are of great interest to the industry, especially to the petroleum industry where these fluids are commonly used during hydraulic fracturing of hydrocarbon reservoirs.« less
Rongen, Jan J; van Bochove, Bas; Hannink, Gerjon; Grijpma, Dirk W; Buma, Pieter
2016-11-01
Photo-crosslinked networks prepared from three-armed methacrylate functionalized PTMC oligomers (PTMC-tMA macromers) are attractive materials for developing an anatomically correct meniscus scaffold. In this study, we evaluated cell specific biocompatibility, in vitro and in vivo degradation behavior of, and tissue response to, such PTMC networks. By evaluating PTMC networks prepared from PTMC-tMA macromers of different molecular weights, we were able to assess the effect of macromer molecular weight on the degradation rate of the PTMC network obtained after photo-crosslinking. Three photo-crosslinked networks with different crosslinking densities were prepared using PTMC-tMA macromers with molecular weights 13.3, 17.8, and 26.7 kg/mol. Good cell biocompatibility was demonstrated in a proliferation assay with synovium derived cells. PTMC networks degraded slowly, but statistically significant, both in vitro as well as subcutaneously in rats. Networks prepared from macromers with higher molecular weights demonstrated increased degradation rates compared to networks prepared from initial macromers of lowest molecular weight. The degradation process took place via surface erosion. The PTMC networks showed good tissue tolerance during subcutaneous implantation, to which the tissue response was characterized by the presence of fibrous tissue and encapsulation of the implants. Concluding, we developed cell and tissue biocompatible, photo-crosslinked PTMC networks using PTMC-tMA macromers with relatively high molecular weights. These photo-crosslinked PTMC networks slowly degrade by a surface erosion process. Increasing the crosslinking density of these networks decreases the rate of surface degradation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2823-2832, 2016. © 2016 Wiley Periodicals, Inc.
Tension-induced binding of semiflexible biopolymers
NASA Astrophysics Data System (ADS)
Benetatos, Panayotis; von der Heydt, Alice; Zippelius, Annette
2015-03-01
We investigate theoretically the effect of polymer tension on the collective behaviour of reversible cross-links. We use a model of two parallel-aligned, weakly-bending wormlike chains with a regularly spaced sequence of binding sites subjected to a tensile force. Reversible cross-links attach and detach at the binding sites with an affinity controlled by a chemical potential. In a mean-field approach, we calculate the free energy of the system and we show the emergence of a free energy barrier which controls the reversible (un)binding. The tension affects the conformational entropy of the chains which competes with the binding energy of the cross-links. This competition gives rise to a sudden increase in the fraction of bound sites as the polymer tension increases. The force-induced first-order transition in the number of cross-links implies a sudden force-induced stiffening of the effective stretching modulus of the polymers. This mechanism may be relevant to the formation and stress-induced strengthening of stress fibers in the cytoskeleton. We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) via grant SFB-937/A1.
Initiated chemical vapor deposition polymers for high peak-power laser targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxamusa, Salmaan H.; Lepro, Xavier; Lee, Tom
2016-12-05
Here, we report two examples of initiated chemical vapor deposition (iCVD) polymers being developed for use in laser targets for high peak-power laser systems. First, we show that iCVD poly(divinylbenzene) is more photo-oxidatively stable than the plasma polymers currently used in laser targets. Thick layers (10–12 μm) of this highly crosslinked polymer can be deposited with near-zero intrinsic film stress. Second, we show that iCVD epoxy polymers can be crosslinked after deposition to form thin adhesive layers for assembling precision laser targets. The bondlines can be made as thin as ~ 1 μm, approximately a factor of 2 thinner thanmore » achievable using viscous resin-based adhesives. These bonds can withstand downstream coining and stamping processes.« less
Characterization of photochemical-cured acrylates with calorimetric methods
NASA Astrophysics Data System (ADS)
Strehmel, Bernd; Anwand, Dirk; Wetzel, Henrik
1994-05-01
Radical polymerization kinetics of different kinds of diacrylates was investigated in linear polymers (binders) by using an isoperibolic calorimeter. For all experiments benzoin compounds were added as photoinitiator. The ester between acrylic acid and bisphenol-A-diglycidylether (DDGDA) and hexamethylenediacrylate were used as monomers. Both compounds have a high limiting conversion and a large polymerization rate in the binders investigated. Additionally, three kinds of termination reaction were observed: first order, second order, and primary radical termination. The last reaction was mainly found in the case of using the hexamethylenediacrylate monomer. The materials were investigated by DSC to determine the phase behavior. Both monomers form one phase with the binder (polymethylmethacrylate, PMMA). In contrast, a phase separation was observed between the crosslinked hexamethylenediacrylate and PMMA. Formations of semi- interpenetrating networks were found in the case of crosslinked DDGDA and PMMA. The glass transition temperatures were determined at different polymerization degrees also. The obtained results indicate that most of the network formation occurred in the glassy state. Fluorescence probe technique was applied to study changes in the mobility during network formation. The fluorescence probe crystal violet (CV) was used because this compound shows a strong free volume-dependent fluorescence. It was found that in the glassy state, where most of networks were formed, a large variation of the molecular mobility was observed during irradiation of the photopolymers. This result was in agreement with the observations during DSC experiments.
The effect of ionotropic gelation residence time on alginate cross-linking and properties.
Patel, Mitulkumar A; AbouGhaly, Mohamed H H; Schryer-Praga, Jacqueline V; Chadwick, Keith
2017-01-02
The ability to engineer biocompatible polymers with controllable properties is highly desirable. One such approach is to cross-link carbohydrate polymers using ionotropic gelation (IG). Previous studies have investigated the effect of curing time on alginate cross-linking. Herein, we discuss a novel study detailing the effect of IG residence time (IGRT) on the cross-linking of alginate with calcium ions (Ca 2+ ) along with water migration (syneresis) and their subsequent impact on the pharmaceutical properties of alginate particles. IGRT was shown to have a significant effect on particle size, porosity, density, mechanical strength and swelling of calcium alginate particles as well as drug release mechanism. Furthermore, we describe a novel application of electron dispersive spectroscopy (EDS), in conjunction with Fourier Transform- infra red (FT-IR) spectroscopy, to analyze and monitor the changes in Ca 2+ concentration during cross-linking. A simple procedure to determine the concentration and distribution of the surface and internal Ca 2+ involved in alginate cross-linking was successfully developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
El-Sa'Ad, Leila
1989-12-01
Available from UMI in association with The British Library. Requires signed TDF. Epoxy resins exhibit many desirable properties which make them ideal subjects for use as matrices of composite materials in many commercial, military and space applications. However, due to their high cross-link density they are often brittle. Epoxy resin networks have been modified by incorporating tough, ductile thermoplastics. Such systems are referred to as Semi-Interpenetrating Polymer Networks (Semi-IPN). Systematic modification to the thermoplastics backbone allowed the morphology of the blend to be controlled from a homogeneous one-phase structure to fully separated structures. The moisture absorption by composites in humid environments has been found to lead to a deterioration in the physical and mechanical properties of the matrix. Therefore, in order to utilize composites to their full potential, their response to hot/wet environments must be known. The aims of this investigation were two-fold. Firstly, to study the effect of varying the temperature of exposure at different stages in the absorption process on the water absorption behaviour of a TGDDM/DDS epoxy resin system. Secondly, to study water absorption characteristics, under isothermal conditions, of Semi-Interpenetrating Polymer Networks possessing different morphologies, and develop a theoretical model to evaluate the diffusion coefficients of the two-phase structures. The mathematical treatment used in this analysis was based on Fick's second law of diffusion. Tests were performed on specimens immersed in water at 10 ^circ, 40^circ and 70^circC, their absorption behaviour and swelling behaviour, as a consequence of water absorption, were investigated. The absorption results of the variable temperature absorption tests indicated a saturation dependence on the absorption behaviour. Specimens saturated at a high temperature will undergo further absorption when transferred to a lower temperature. This behaviour was termed the "reverse thermal effect". The swelling results suggested that it is more tightly bound water in the polymer which takes part in the reverse thermal effect. The absorption results for the Semi-Interpenetrating Polymer Networks suggested that the two key parameters which affected the moisture uptake were the morphology of the network and the percentage of epoxy resin in the system.
Khare, Ketan S; Khare, Rajesh
2013-06-20
We have used atomistic molecular simulations to study the effect of nanofiller dispersion on the glass transition behavior of cross-linked epoxy-carbon nanotube (CNT) nanocomposites. Specific chemical interactions at the interface of CNTs and cross-linked epoxy create an interphase region, whose impact on the properties of their nanocomposites increases with an increasing extent of dispersion. To investigate this aspect, we have compared the volumetric, structural, and dynamical properties of three systems: neat cross-linked epoxy, cross-linked epoxy nanocomposite containing dispersed CNTs, and cross-linked epoxy nanocomposite containing aggregated CNTs. We find that the nanocomposite containing dispersed CNTs shows a depression in the glass transition temperature (Tg) by ~66 K as compared to the neat cross-linked epoxy, whereas such a large depression is absent in the nanocomposite containing aggregated CNTs. Our results suggest that the poor interfacial interactions between the CNTs and the cross-linked epoxy matrix lead to a more compressible interphase region between the CNTs and the bulk matrix. An analysis of the resulting dynamic heterogeneity shows that the probability of percolation of immobile domains becomes unity near the Tg calculated from volumetric properties. Our observations also lend support to the conceptual analogy between polymer nanocomposites and the nanoconfinement of polymer thin films.
Method for making a non-extractable stationary phase of polymer within a capillary column
Springston, S.R.
1990-10-30
A method is described for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating. 7 figs.
Gamma-irradiated cross-linked LDPE foams: Characteristics and properties
NASA Astrophysics Data System (ADS)
Cardoso, E. C. L.; Scagliusi, S. R.; Parra, D. F.; Lugão, A. B.
2013-03-01
Foamed polymers are future materials, as they are increasingly considered "green materials" due to their interesting properties at very low consumption of raw materials. They can be used to improve appearance of insulation structures, thermal and acoustic insulation, core materials for sandwich panels, fabrication of furniture and flotation materials or to reduce costs involving materials. Low-density polyethylene is widely used because of its excellent properties, such as softness, elasticity, processibility and insulation. In general, cross-linking is often applied to improve the thermal and mechanical properties of polyethylene products, due to the formation of a three-dimensional network. In particular for the production of PE foams, cross-linking is applied prior the expansion to control bubble formation, cell characteristics and final properties of the foam. However, the usual production process of PE foams is a process in which a gaseous blowing agent is injected into a melted thermoplastic polymer, under pressure, to form a solution between blowing agent and melted polymer. An extrusion system is provided for foaming the polymer, supplied to an extruder and moving through a rotating screw. The pressure must be high enough to keep the gas blowing agent (or foaming agent) in the solution with the melt. The foaming agent is then diffused and dissolved in the molten material to form a single-phase solution. In the present work carbon dioxide was used as the bowing agent, a chemically stable and non-toxic gas, with good diffusion coefficient; gas pressure used varied within a 20-40 bar range. Some requirements for physical foaming are required, as low friction heat generation, homogeneous melt temperature distribution, melt temperature at die exit just above crystallization temperature (die) and high melt strength during expansion. This work studied foams properties gamma-irradiated within 0, 10, 15, 20, 25, and 30 kGy, from a LDPE exhibiting 2.6 g/10 min Melt Index. Accomplished tests: DSC, gel-fraction, swelling ratio in various solvents, rheological measurements, infra-red spectroscopy and melt strength. It was verified that within a given radiation dose range; the material exhibited an optimization in viscoelastic properties, providing the desired melt strength range for obtaining foams.
Approaches to New Endcaps for Improved Oxidation Resistance
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Frimer, Aryeh A.
1999-01-01
Norbornenyl-end capped PMR polyimide resins are widely used as polymer matrix composite materials for aircraft engine applications, since they combine ease of processing with good oxidative stability up to 300 C. PMR resins are prepared by a two-step approach involving the initial formation of oligomeric pre-polymers capped at both ends by a latent reactive end cap. The end cap undergoes cross-linking during higher temperature processing, producing the desired low density, high specific strength materials, for PMR- 15. The end cap facilitates processing by controlling the molecular weight of the oligomer and allowing flow before it cross-links. However, after cross-linking, this very end cap accounts for much of the weight loss in the polymer on aging in air at elevated temperatures. Understanding this degradation provides clues for designing new end caps to slow down degradation, and prolong the lifetime of the material.
Neusser, G; Eppler, S; Bowen, J; Allender, C J; Walther, P; Mizaikoff, B; Kranz, C
2017-10-05
We present combined focused ion beam/scanning electron beam (FIB/SEM) tomography as innovative method for differentiating and visualizing the distribution and connectivity of pores within molecularly imprinted polymers (MIPs) and non-imprinted control polymers (NIPs). FIB/SEM tomography is used in cell biology for elucidating three-dimensional structures such as organelles, but has not yet been extensively applied for visualizing the heterogeneity of nanoscopic pore networks, interconnectivity, and tortuosity in polymers. To our best knowledge, the present study is the first application of this strategy for analyzing the nanoscale porosity of MIPs. MIPs imprinted for propranolol - and the corresponding NIPs - were investigated establishing FIB/SEM tomography as a viable future strategy complementing conventional isotherm studies. For visualizing and understanding the properties of pore networks in detail, polymer particles were stained with osmium tetroxide (OsO 4 ) vapor, and embedded in epoxy resin. Staining with OsO 4 provides excellent contrast during high-resolution SEM imaging. After optimizing the threshold to discriminate between the stained polymer matrix, and pores filled with epoxy resin, a 3D model of the sampled volume may be established for deriving not only the pore volume and pore surface area, but also to visualize the interconnectivity and tortuosity of the pores within the sampled polymer volume. Detailed studies using different types of cross-linkers and the effect of hydrolysis on the resulting polymer properties have been investigated. In comparison of MIP and NIP, it could be unambiguously shown that the interconnectivity of the visualized pores in MIPs is significantly higher vs. the non-imprinted polymer, and that the pore volume and pore area is 34% and approx. 35% higher within the MIP matrix. This confirms that the templating process not only induces selective binding sites, but indeed also affects the physical properties of such polymers down to the nanoscale, and that additional chemical modification, e.g., via hydrolysis clearly affects that nature of the polymer.
Superabsorbing gel for actinide, lanthanide, and fission product decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, Michael D.; Mertz, Carol J.
The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M)more » carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.« less
Low density biodegradable shape memory polyurethane foams for embolic biomedical applications
Singhal, Pooja; Small, Ward; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J; Wilson, Thomas S
2014-01-01
Low density shape memory polymer foams hold significant interest in the biomaterials community for their potential use in minimally invasive embolic biomedical applications. The unique shape memory behavior of these foams allows them to be compressed to a miniaturized form, which can be delivered to an anatomical site via a transcatheter process, and thereafter actuated to embolize the desired area. Previous work in this field has described the use of a highly covalently crosslinked polymer structure for maintaining excellent mechanical and shape memory properties at the application-specific ultra low densities. This work is aimed at further expanding the utility of these biomaterials, as implantable low density shape memory polymer foams, by introducing controlled biodegradability. A highly covalently crosslinked network structure was maintained by use of low molecular weight, symmetrical and polyfunctional hydroxyl monomers such as Polycaprolactone triol (PCL-t, Mn 900 g), N,N,N0,N0-Tetrakis (hydroxypropyl) ethylenediamine (HPED), and Tris (2-hydroxyethyl) amine (TEA). Control over the degradation rate of the materials was achieved by changing the concentration of the degradable PCL-t monomer, and by varying the material hydrophobicity. These porous SMP materials exhibit a uniform cell morphology and excellent shape recovery, along with controllable actuation temperature and degradation rate. We believe that they form a new class of low density biodegradable SMP scaffolds that can potentially be used as “smart” non-permanent implants in multiple minimally invasive biomedical applications. PMID:24090987
Hearon, Keith; Smith, Sarah E; Maher, Cameron A; Wilson, Thomas S; Maitland, Duncan J
2013-02-01
The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities-that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.
NASA Astrophysics Data System (ADS)
Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.
2013-02-01
The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because the thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150 °C for up to 5 h or to 125 °C for up to 24 h if stabilized with 10,000 ppm BQ and could also be heated to 125 °C for up to 5 h if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.
Naeem, Fahad; Khan, Samiullah; Jalil, Aamir; Ranjha, Nazar Muhammad; Riaz, Amina; Haider, Malik Salman; Sarwar, Shoaib; Saher, Fareha; Afzal, Samrin
2017-01-01
Introduction: The current work was aimed to design and synthesize novel crosslinked pH-sensitive gelatin/pectin (Ge/Pec) hydrogels using different polymeric ratios and to explore the effect of polymers and degree of crosslinking on dynamic, equilibrium swelling and in vitro release behavior of the model drug (Mannitol). Methods: The Ge/Pec based hydrogels were prepared using glutaraldehyde as the crosslinker. Various structural parameters that affect their release behavior were determined, including swelling study, porosity, sol-gel analysis, average molecular weight between crosslinks (Mc), volume fraction of polymer (V2,s), solvent interaction parameter (χ) and diffusion coefficient. The synthesized hydrogels were subjected to various characterization tools like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and DSC differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Results: The hydrogels show highest water uptake and release at lower pH values. The FTIR spectra showed an interaction between Ge and Pec, and the drug-loaded samples also showed the drug-related peaks, indicating proper loading of the drug. DSC and TGA studies confirmed the thermal stability of hydrogel samples, while SEM showed the porous nature of hydrogels. The drug release followed non-Fickian diffusion or anomalous mechanism. Conclusion: Aforementioned characterizations reveal the successful formation of copolymer hydrogels. The pH-sensitive swelling ability and drug release behavior suggest that the rate of polymer chain relaxation and drug diffusion from these hydrogels are comparable which also predicts their possible use for site-specific drug delivery.
Naeem, Fahad; Khan, Samiullah; Jalil, Aamir; Ranjha, Nazar Muhammad; Riaz, Amina; Haider, Malik Salman; Sarwar, Shoaib; Saher, Fareha; Afzal, Samrin
2017-01-01
Introduction: The current work was aimed to design and synthesize novel crosslinked pH-sensitive gelatin/pectin (Ge/Pec) hydrogels using different polymeric ratios and to explore the effect of polymers and degree of crosslinking on dynamic, equilibrium swelling and in vitro release behavior of the model drug (Mannitol). Methods: The Ge/Pec based hydrogels were prepared using glutaraldehyde as the crosslinker. Various structural parameters that affect their release behavior were determined, including swelling study, porosity, sol-gel analysis, average molecular weight between crosslinks (Mc), volume fraction of polymer (V2,s), solvent interaction parameter (χ) and diffusion coefficient. The synthesized hydrogels were subjected to various characterization tools like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and DSC differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Results:The hydrogels show highest water uptake and release at lower pH values. The FTIR spectra showed an interaction between Ge and Pec, and the drug-loaded samples also showed the drug-related peaks, indicating proper loading of the drug. DSC and TGA studies confirmed the thermal stability of hydrogel samples, while SEM showed the porous nature of hydrogels. The drug release followed non-Fickian diffusion or anomalous mechanism. Conclusion: Aforementioned characterizations reveal the successful formation of copolymer hydrogels. The pH-sensitive swelling ability and drug release behavior suggest that the rate of polymer chain relaxation and drug diffusion from these hydrogels are comparable which also predicts their possible use for site-specific drug delivery. PMID:29159145
NASA Astrophysics Data System (ADS)
Kallitsis, K. J.; Nannou, R.; Andreopoulou, A. K.; Daletou, M. K.; Papaioannou, D.; Neophytides, S. G.; Kallitsis, J. K.
2018-03-01
An AB type difunctional quinoline based monomer bearing a pentafluorophenyl unit combined with a phenol functionality is being synthesized and homopolymerized to create linear aromatic polyethers as polymer electrolytes for HT-PEM FCs applications. Several conditions are tested for the optimized synthesis of the monomer and homopolymer. Additionally, covalent crosslinking through aromatic polyether bond formation enables the creation of wholly aromatic crosslinked polymeric electrolyte membranes. More specifically, the perfluorophenyl units are crosslinked with other hydroxyl end functionalized moieties, providing membranes with enhanced chemical and mechanical properties that are moreover easily doped with phosphoric acid even at ambient temperatures. All membranes are evaluated for their structural and thermal characteristics and their doping ability with phosphoric acid. Selected crosslinked membranes are further tested in terms of their single cell performance at the temperature range 160 °C-200 °C showing promising performance and high conductivity values even up to 0.2 S cm-1 in some cases.
Recent Developments in Thiolated Polymeric Hydrogels for Tissue Engineering Applications.
Gajendiran, Mani; Rhee, Jae-Sung; Kim, Kyobum
2018-02-01
This review focuses on the recent strategy in the preparation of thiolated polymers and fabrication of their hydrogel matrices. The mechanism involved in the synthesis of thiolated polymers and fabrication of thiolated polymer hydrogels is exemplified with suitable schematic representations reported in the recent literature. The 2-iminothiolane namely "Traut's reagent" has been widely used for effectively thiolating the natural polymers such as collagen and gelatin, which contain free amino group in their backbone. The free carboxylic acid group containing polymers such as hyaluronic acid and heparin have been thiolated by using the bifunctional molecules such as cysteamine and L-cysteine via N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The degree of thiolation in the polymer chain has been widely determined by using Ellman's assay method. The thiolated polymer hydrogels are prepared by disulfide bond formation (or) thiol-ene reaction (or) Michael-type addition reaction. The thiolated polymers such as thiolated gelatin are reacted with polyethylene glycol diacrylate for obtaining interpenetrating polymer network hydrogel scaffolds. Several in vitro cell culture experiments indicate that the developed thiolated polymer hydrogels exhibited biocompatibility and cellular mimicking properties. The developed hydrogel scaffolds efficiently support proliferation and differentiation of various cell types. In the present review article, the thiol-functionalized protein-based biopolymers, carbohydrate-based polymers, and some synthetic polymers have been covered with recently published research articles. In addition, the usage of new thiolated nanomaterials as a crosslinking agent for the preparation of three-dimensional tissue-engineered hydrogels is highlighted.
NASA Astrophysics Data System (ADS)
Caroli, Christiane; Ronsin, Olivier; Lemaître, Anaël
2018-02-01
The stress response of permanently crosslinked gelatin gels was recently observed to display glass-like features, namely, a stretched-exponential behavior terminated by an exponential decay, the characteristic time scales of which increase dramatically with decreasing temperature. This phenomenon is studied here using a model of flexible polymer gel network where relaxation proceeds via elementary monomer exchanges between helix and coil segments. The relaxation dynamics of a full network simulation is found to be nearly identical to that of a model of independent strands, which shows that for flexible polymer gels in the range of elastic moduli of interest, both strand contour length disorder and elastic couplings are irrelevant. We thus focus on the independent strand model and find it not only to explain the observed functional form of the stress relaxation curves but also to yield predictions that match very satisfactorily the experimental measurements of final relaxation time and total stress drop. The system under study thus constitutes a rare case where the origin of glass-like behavior can be unambiguously identified, namely, as the signature of the enhancement of helix content fluctuations when approaching from above the mean-field helix-coil transition of strands.
NASA Astrophysics Data System (ADS)
Heili, Manon; Bielawski, Andrew; Kieffer, John
The cure kinetics of a DGEBA/DETA epoxy is investigated using concurrent Raman and Brillouin light scattering. Raman scattering allows us to monitor the in-situ reaction and quantitatively assess the degree of cure. Brillouin scattering yields the elastic properties of the system, providing a measure of network connectivity. We show that the adiabatic modulus evolves non-uniquely as a function of cure degree, depending on the cure temperature and the molar ratio of the epoxy. Two mechanisms contribute to the increase in the elastic modulus of the material during curing. First, there is the formation of covalent bonds in the network during the curing process. Second, following bond formation, the epoxy undergoes structural relaxation toward an optimally packed network configuration, enhancing non-bonded interactions. We investigate to what extent the non-bonded interaction contribution to structural rigidity in cross-linked polymers is reversible, and to what extent it corresponds to the difference between adiabatic and isothermal moduli obtained from static tensile, i.e. the so-called relaxational modulus. To this end, we simultaneously measure the adiabatic and isothermal elastic moduli as a function of applied strain and deformation rate.
Wang, Fei; Wen, Ying; Bai, Tongchun
2016-12-01
The composite hydrogels of polyvinyl alcohol (PVA) and gellan gum (GG) are of interesting in the biomaterials application. To improve the structure and mechanical property, in this work, Ca(2+) ion was introduced to crosslink the polymer chain, and the PVA-GG-Ca(2+) hydrogel was formed. By analyzing its structure, mechanical properties, swelling and dehydration kinetics, the effect of molecular interaction on hydrogel structure and properties have been observed. Our result indicates that, as GG is added to hydrogel network, the role of Ca(2+) ion is stand out, it reorganizes the network structure, enhances the mechanical properties, and strengthens the electrolytic and hydrogen bonding interactions in PVA-GG-Ca(2+) hydrogels. These observations will benefit the development of hydrogels in biomaterials application. Copyright © 2016. Published by Elsevier B.V.
Method for the preparation of high surface area high permeability carbons
Lagasse, Robert R.; Schroeder, John L.
1999-05-11
A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.
Mechanically tunable actin networks using programmable DNA based cross-linkers
NASA Astrophysics Data System (ADS)
Schnauss, Joerg; Lorenz, Jessica; Schuldt, Carsten; Kaes, Josef; Smith, David
Cells employ multiple cross-linkers with very different properties. Studies of the entire phase space, however, were infeasible since they were restricted to naturally occurring cross-linkers. These components cannot be controllably varied and differ in many parameters. We resolve this limitation by forming artificial actin cross-linkers, which can be controllably varied. The basic building block is DNA enabling a well-defined length variation. DNA can be attached to actin binding peptides with known binding affinities. We used bulk rheology to investigate mechanical properties of these networks. We were able to reproduce mechanical features of actin networks cross-linked by fascin by using a short version of our artificial complex with a high binding affinity. Additionally, we were able to resemble findings for the cross-linker alpha-actinin by employing a long cross-linker with a low binding affinity. Between these natural limits we investigated three different cross-linker lengths each with two different binding affinities. With these controlled variations we are able to precisely screen the phase space of cross-linked actin networks by changing only one specific parameter and not the entire set of properties as in the case of naturally occurring cross-linking complexes.
Sun, Jiao-Tong; Piao, Ji-Gang; Wang, Long-Hai; Javed, Mohsin; Hong, Chun-Yan; Pan, Cai-Yuan
2013-09-01
A versatile one-pot strategy for the preparation of reversibly cross-linked polymer-coated mesoporous silica nanoparticles (MSNs) via surface reversible addition-fragmentation chain transfer (RAFT) polymerization is presented for the first time in this paper. The less reactive monomer oligo(ethylene glycol) acrylate (OEGA) and the more reactive cross-linker N,N'-cystaminebismethacrylamide (CBMA) are chosen to be copolymerized on the external surfaces of RAFT agent-functionalized MSNs to form the cross-linked polymer shells. Owing to the reversible cleavage and restoration of disulfide bonds via reduction/oxidation reactions, the polymer shells can control the on/off switching of the nanopores and regulate the drug loading and release. The redox-responsive release of doxorubicin (DOX) from this drug carrier is realized. The protein adsorption, in vitro cytotoxicity assays, and endocytosis studies demonstrate that this biocompatible vehicle is a potential candidate for delivering drugs. It is expected that this versatile grafting strategy may help fabricate satisfying MSN-based drug delivery systems for clinical application. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymer biomaterial constructs for regenerative medicine and functional biological systems
NASA Astrophysics Data System (ADS)
Meng, Linghui
The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, make collagen a primary material resource in medical applications. Described herein is work towards the development of novel collagen-based matrices, with additional multi-functionality imparted through a novel in-situ crosslinking approach. The process of electrospinning has become a widely used technique for the creation of fibrous scaffolds for tissue engineering applications due to its ability to rapidly create structures composed of nano-scale polymer fibers closely resembling the architecture of the extracellular matrix (ECM). Collagen-PCL sheath-core bicomponent fibrous scaffolds were fabricated using a novel variation on traditional electrospinning, known as co-axial electrospinning. The results showed that the addition of a synthetic polymer core into collagen nanofibers remarkably increased the mechanical strength of collagen matrices spun from the benign solvent system. A novel single-step, in-situ collagen crosslink approach was developed in order to solve the problems dominating traditional collagen crosslinking methods, such as dimensional shrinking and loss of porous morphology, and to simplify the crosslinking procedure for electrospun collagen scaffolds. The excess amount of NHS present in the crosslinking mixture was found to delay the EDC/collagen coupling reaction in a controlled fashion. Fundamental investigations into the development and characterization of in-situ crosslinked collagen matrices such as fibrous scaffolds, gels and sponges, as well as their biomedical applications including cell culture substrates, wound dressings, drug delivery matrices and bone regeneration substitutes, were performed. The preliminary mice studies indicated that the in-situ crosslinked collagen matrices could be good candidates for wound healing and skin regeneration. Polyelectrolyte fibrous tubes of highly-crosslinked poly (acrylic acid) were fabricated by means of electrospinning as polymer models for functional biological systems, with special attention to the axon cortical layer and its cation-exchange properties. The processing parameters of fiber formation and the reversible phase transitions of PAA tubes according to monovalent-divalent ion exchange in solution were systematically investigated. The results showed that the neutralized PAA tubes were responsive to calcium ions, exhibiting significant shrinkage that could be reversed with a chelator such as citrate. Study of such phase transitions may help to better understand the electrophysiological processes known as nerve excitation and conduction in the nervous system, and the resulting PAA tubes might be used as polymer models of artificial axons for potential tissue engineering and nerve repair applications.
Dual crosslinked pectin-alginate network as sustained release hydrophilic matrix for repaglinide.
Awasthi, Rajendra; Kulkarni, Giriraj T; Ramana, Malipeddi Venkata; de Jesus Andreoli Pinto, Terezinha; Kikuchi, Irene Satiko; Molim Ghisleni, Daniela Dal; de Souza Braga, Marina; De Bank, Paul; Dua, Kamal
2017-04-01
Repaglinide, an oral antidiabetic agent, has a rapid onset of action and short half-life of approximately 1h. Developing a controlled and prolonged release delivery system is required to maintain its therapeutic plasma concentration and to eliminate its adverse effects particularly hypoglycemia. The present study aimed to develop controlled release repaglinide loaded beads using sodium alginate and pectin with dual cross-linking for effective control of drug release. The prepared beads were characterized for size, percentage drug entrapment efficiency, in vitro drug release and the morphological examination using scanning electron microscope. For the comparative study, the release profile of a marketed conventional tablet of repaglinide (Prandin ® tablets 2mg, Novo Nordisk) was determined by the same procedure as followed for beads. The particle size of beads was in the range of 698±2.34-769±1.43μm. The drug entrapment efficiency varied between 55.24±4.61 to 82.29±3.42%. The FTIR results suggest that there was no interaction between repaglinide and excipients. The XRD and DSC results suggest partial molecular dispersion and amorphization of the drug throughout the system. These results suggest that repaglinide did not dissolve completely in the polymer composition and seems not to be involved in the cross-linking reaction. The percent drug release was decreased with higher polymer concentrations. In conclusion, the developed beads could enhance drug entrapment efficiency, prolong the drug release and enhance bioavailability for better control of diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.
Fiberglass hand laminating process
NASA Technical Reports Server (NTRS)
1990-01-01
In the study of polymers, it is important to know about thermoset and thermoplastic polymers. For the students to better understand this experiment, they will need to know that epoxy resins, when reacted with a catalyst, form a thermoset polymer. The chemical reaction that takes place as the students mix these compounds together causes a special polymer bond known as crosslinking. It is because of this crosslinking that the tough, rigid properties of the thermoset polymer occur and are useful in this experiment. The student will be able to make a fiberglass composite and to apply and test the concept of combining two different materials to obtain a new material. The new material will exhibit new and better properties than the original materials. The student will understand the reason for combining materials to make a composite. Details of the experimental equipment and procedure are explained.
Lignin-derived thermoplastic co-polymers and methods of preparation
Naskar, Amit K.; Saito, Tomonori; Pickel, Joseph M.; Baker, Frederick S.; Eberle, Claude Clifford; Norris, Robert E.; Mielenz, Jonathan Richard
2014-06-10
The present invention relates to a crosslinked lignin comprising a lignin structure having methylene or ethylene linking groups therein crosslinking between phenyl ring carbon atoms, wherein said crosslinked lignin is crosslinked to an extent that it has a number-average molecular weight of at least 10,000 g/mol, is melt-processible, and has either a glass transition temperature of at least 100.degree. C., or is substantially soluble in a polar organic solvent or aqueous alkaline solution. Thermoplastic copolymers containing the crosslinked lignin are also described. Methods for producing the crosslinked lignin and thermoplastic copolymers are also described.
Superabsorbent Polymers: An Idea Whose Time Has Come
NASA Astrophysics Data System (ADS)
Buchholz, Fredric L.
1996-06-01
Superabsorbent polymers are cross-linked polyelectrolytes. Because of their ionic nature and interconnected structure, they absorb large quantities of water and other aqueous solutions without dissolving. This makes them ideally suited as absorbents of body fluids in many personal care products sold today, including baby diapers, adult incontinence products, and feminine napkins. Several emerging applications are also described. A simple laboratory preparation of partially neutralized, cross-linked poly(acrylic acid) is given along with test methods suitable for measuring the absorption capacity of the product. Experiments are described that demonstrate the ability of a swelling gel to perform work, and the ability of a gel to exclude macromolecular solutes from diffusing into its porous, cross-linked structure.
Effect of Cross-Linking on Free Volume Properties of PEG Based Thiol-Ene Networks
NASA Astrophysics Data System (ADS)
Ramakrishnan, Ramesh; Vasagar, Vivek; Nazarenko, Sergei
According to the Fox and Loshaek theory, in elastomeric networks, free volume decreases linearly with the cross-link density increase. The aim of this study is to show whether the poly(ethylene glycol) (PEG) based multicomponent thiol-ene elastomeric networks demonstrate this model behavior? Networks with a broad cross-link density range were prepared by changing the ratio of the trithiol crosslinker to PEG dithiol and then UV cured with PEG diene while maintaining 1:1 thiol:ene stoichiometry. Pressure-volume-temperature (PVT) data of the networks was generated from the high pressure dilatometry experiments which was fit using the Simha-Somcynsky Equation-of-State analysis to obtain the fractional free volume of the networks. Using Positron Annihilation Lifetime Spectroscopy (PALS) analysis, the average free volume hole size of the networks was also quantified. The fractional free volume and the average free volume hole size showed a linear change with the cross-link density confirming that the Fox and Loshaek theory can be applied to this multicomponent system. Gas diffusivities of the networks showed a good correlation with free volume. A free volume based model was developed to describe the gas diffusivity trends as a function of cross-link density.
Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.
Bhawani, Showkat Ahmad; Sen, Tham Soon; Ibrahim, Mohammad Nasir Mohammad
2018-02-21
The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.
Multifunctional shape-memory polymers.
Behl, Marc; Razzaq, Muhammad Yasar; Lendlein, Andreas
2010-08-17
The thermally-induced shape-memory effect (SME) is the capability of a material to change its shape in a predefined way in response to heat. In shape-memory polymers (SMP) this shape change is the entropy-driven recovery of a mechanical deformation, which was obtained before by application of external stress and was temporarily fixed by formation of physical crosslinks. The high technological significance of SMP becomes apparent in many established products (e.g., packaging materials, assembling devices, textiles, and membranes) and the broad SMP development activities in the field of biomedical as well as aerospace applications (e.g., medical devices or morphing structures for aerospace vehicles). Inspired by the complex and diverse requirements of these applications fundamental research is aiming at multifunctional SMP, in which SME is combined with additional functions and is proceeding rapidly. In this review different concepts for the creation of multifunctionality are derived from the various polymer network architectures of thermally-induced SMP. Multimaterial systems, such as nanocomposites, are described as well as one-component polymer systems, in which independent functions are integrated. Future challenges will be to transfer the concept of multifunctionality to other emerging shape-memory technologies like light-sensitive SMP, reversible shape changing effects or triple-shape polymers.
In Vitro Wear Resistance of Nano-Hybrid Composite Denture Teeth.
Munshi, Nabeel; Rosenblum, Marc; Jiang, Shuying; Flinton, Robert
2017-04-01
To evaluate the wear resistance of nano-hybrid composite denture teeth as compared to two commonly used denture teeth: interpenetrating polymer network (IPN) and double crosslinking polymethylmethacrylate (PMMA) denture teeth. 18 styli and 18 disk specimens were prepared from the three denture tooth materials: nano-hybrid composite, IPN, and double crosslinking PMMA. The specimens were mounted in a two-body wear testing machine to simulate chewing in the complete denture. The amount of wear from the styli specimens were measured before and after using a digital micrometer, and the depth of the wear track from the disk specimens was measured using a noncontact 3D optical profilometer. The total wear from each denture tooth group was compared using one-way ANOVA with a 0.05 significance level. A Tukey post hoc test was used to determine differences between the three groups. The mean total wear in the nano-hybrid composite teeth group was 1.16 mm, SD = 0.5 mm, statistically significantly higher (p ≤ 0.0001) than the IPN (mean = 0.13 mm, SD = 0.05) and double crosslinking PMMA tooth groups (mean = 0.31 mm, SD = 0.19). There was no statistically significant difference between IPN denture teeth and double crosslinking PMMA denture teeth in the amount of wear. Nano-hybrid composite denture teeth exhibited statistically significantly more wear than the IPN and double crosslinking PMMA denture teeth. © 2015 by the American College of Prosthodontists.
Complex patchy colloids shaped from deformable seed particles through capillary interactions.
Meester, V; Kraft, D J
2018-02-14
We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.
Stefani, I; Cooper-White, J J
2016-05-01
Cardiovascular diseases remain the largest cause of death worldwide, and half of these deaths are the result of failure of the vascular system. Tissue engineering promises to provide new, and potentially more effective therapeutic strategies to replace damaged or degenerated vessels with functional vessels. However, these engineered vessels have substantial performance criteria, including vessel-like tubular shape, structure and mechanical property slate. Further, whether implanted without or with prior in vitro culture, such tubular scaffolds must provide a suitable environment for cell adhesion and growth and be of sufficient porosity to permit cell colonization. This study investigates the fabrication of slowly degradable, composite tubular polymer scaffolds made from polycaprolactone (PCL) and acrylated l-lactide-co-trimethylene carbonate (aPLA-co-TMC). The addition of acrylate groups permits the 'in-process' formation of crosslinks between aPLA-co-TMC chains during electrospinning of the composite system, exemplifying a novel process to produce multicomponent, elastomeric electrospun polymer scaffolds. Although PCL and aPLA-co-TMC were miscible in a co-solvent, a criteria for electrospinning, due to thermodynamic incompatibility of the two polymers as melts, solvent evaporation during electrospinning drove phase separation of these two systems, producing 'core-shell' fibres, with the core being composed of PCL, and the shell of crosslinked elastomeric aPLA-co-TMC. The resulting elastic fibrous scaffolds displayed burst pressures and suture retention strengths comparable with human arteries. Cytocompatibility testing with human mesenchymal stem cells confirmed adhesion to, and proliferation on the three-dimensional fibrous network, as well as alignment with highly-organized fibres. This new processing methodology and resulting mechanically-robust composite scaffolds hold significant promise for tubular tissue engineering applications. Autologous small diameter blood vessel grafts are unsuitable solutions for vessel repair. Engineered solutions such as tubular biomaterial scaffolds however have substantial performance criteria to meet, including vessel-like tubular shape, structure and mechanical property slate. We detail herein an innovative methodology to co-electrospin and 'in-process' crosslink composite mixtures of Poly(caprolactone) and a newly synthesised acrylated-Poly(lactide-co-trimethylene-carbonate) to create elastomeric, core-shell nanofibrous porous scaffolds in a one-step process. This novel composite system can be used to make aligned scaffolds that encourage stem cell adhesion, growth and morphological control, and produce robust tubular scaffolds of tunable internal diameter and wall thickness that possess mechanical properties approaching those of native vessels, ideal for future applications in the field of vessel tissue engineering. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Adjustable release of mitomycin C for inhibition of scar tissue formation after filtration surgery.
Merritt, Sonia R; Velasquez, Gia; von Recum, Horst A
2013-11-01
The aim of this study is to demonstrate a drug delivery system with the capacity to adjust the release of mitomycin C (MMC), based on polymer composition, and inhibit fibroblast proliferation to a better effect than is currently used in glaucoma filtration surgery. The polymer used in this work is made from the oligosaccharide cyclodextrin, from which others and we have demonstrated adjustable release of small molecule drugs due to specific molecular interactions or "affinity" between drug and the cyclodextrin polymer. To adjust release rate, cyclodextrin polymers were synthesized in either dimethylformamide (DMF) or dimethyl sulfoxide, (DMSO) at a crosslinking ratio of 1:0.16 or 1:0:32 (molecule of glucose: molecule of crosslinker). The polymers were then loaded with mitomycin C, dried, and release evaluated in a physiological environment. Drug release was determined by visible spectroscopy. Released aliquots of mitomycin C were incubated with 3T3 fibroblast cells to determine cytotoxic or inhibitory effect through a cell proliferation assay. We show that by using affinity between drug and polymer, we can adjust MMC release rates to be slower and more sustained than from conventional, diffusion-only polymers, for both the DMF polymers (p = 0.00526) and the DMSO polymers (p = 0.0113). The incorporated and released MMC maintains inhibition of fibroblast proliferation much longer than is possible with a one-time application. Affinity polymers with 1:0.16 and 1:0.32 crosslink ratio showed significant inhibition of proliferation for up to 100 h (p = 0.018 and p = 0.014 respectively). The use of our controlled drug delivery technology applied after surgery could have a greater therapeutic impact than the current one-time applications of MMC. Copyright © 2013 Elsevier Ltd. All rights reserved.
Adjustable release of mitomycin C for inhibition of scar tissue formation after filtration surgery
Merritt, Sonia R.; Velasquez, Gia; von Recum, Horst A.
2016-01-01
The aim of this study is to demonstrate a drug delivery system with the capacity to adjust the release of mitomycin C (MMC), based on polymer composition, and inhibit fibroblast proliferation to a better effect than is currently used in glaucoma filtration surgery. The polymer used in this work is made from the oligosaccharide cyclodextrin, from which others and we have demonstrated adjustable release of small molecule drugs due to specific molecular interactions or “affinity” between drug and the cyclodextrin polymer. To adjust release rate, cyclodextrin polymers were synthesized in either dimethylformamide (DMF) or dimethyl sulfoxide, (DMSO) at a crosslinking ratio of 1:0.16 or 1:0:32 (molecule of glucose: molecule of crosslinker). The polymers were then loaded with mitomycin C, dried, and release evaluated in a physiological environment. Drug release was determined by visible spectroscopy. Released aliquots of mitomycin C were incubated with 3T3 fibroblast cells to determine cytotoxic or inhibitory effect through a cell proliferation assay. We show that by using affinity between drug and polymer, we can adjust MMC release rates to be slower and more sustained than from conventional, diffusion-only polymers, for both the DMF polymers (p = 0.00526) and the DMSO polymers (p = 0.0113). The incorporated and released MMC maintains inhibition of fibroblast proliferation much longer than is possible with a one-time application. Affinity polymers with 1:0.16 and 1:0.32 crosslink ratio showed significant inhibition of proliferation for up to 100 h (p = 0.018 and p = 0.014 respectively). The use of our controlled drug delivery technology applied after surgery could have a greater therapeutic impact than the current one-time applications of MMC. PMID:23911951
Single chain technology: Toward the controlled synthesis of polymer nanostructures
NASA Astrophysics Data System (ADS)
Lyon, Christopher
A technique for fabricating advanced polymer nanostructures enjoying recent popularity is the collapse or folding of single polymer chains in highly dilute solution mediated by intramolecular cross-linking. We term the resultant structures single-chain nanoparticles (SCNP). This technique has proven particularly valuable in the synthesis of nanomaterials on the order of 5 -- 20 nm. Many different types of covalent and non-covalent chemistries have been used to this end. This dissertation investigates the use of so-called single-chain technology to synthesize nanoparticles using modular techniques that allow for easy incorporation of functionality or special structural or characteristic features. Specifically, the synthesis of linear polymers functionalized with pendant monomer units and the subsequent intramolecular polymerization of these monomer units is discussed. In chapter 2, the synthesis of SCNP using alternating radical polymerization is described. Polymers functionalized with pendant styrene and stilbene groups are synthesized via a modular post-polymerization Wittig reaction. These polymers were exposed to radical initiators in the presence (and absence) of maleic anhydride and other electron deficient monomers in order to form intramolecular cross-links. Chapter 3 discusses templated acyclic diene metathesis (ADMET) polymerization using single-chain technology, starting with the controlled ring-opening polymerization of a glycidyl ether functionalized with an ADMET monomer. This polymer was then exposed to Grubbs' catalyst to polymerize the ADMET monomer units. The ADMET polymer was hydrolytically cleaved from the template and separated. Upon characterization, it was found that the daughter ADMET polymer had a similar degree of polymerization, but did not retain the low dispersity of the template. Chapter 4 details the synthesis of aldehyde- and diol-functionalized polymers toward the synthesis of SCNP containing dynamic, acid-degradable acetal cross-links. SCNP fabrication with these materials is beyond the scope of this dissertation.
Sun, Yujian; Zhang, Cuihong; Zhou, Le; Fang, Hua; Huang, Jianhua; Ma, Haipeng; Zhang, Yi; Yang, Jie; Zhang, Lan-Ying; Song, Ping; Gao, Yanzi; Xiao, Jiumei; Li, Fasheng; Li, Kexuan
2016-12-30
Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.
Liu, Yuyun; Wu, Wei; Wei, Jia; Yu, Yanlei
2017-01-11
Two types of novel reactive linear liquid crystal polymers (LLCPs) with different azotolene concentrations have been synthesized and processed into films and fibers by solution and melting processing methods. Then, the LLCPs in the obtained monodomain fiber and polydomain film were easily cross-linked with difunctional primary amines. The resulted cross-linked liquid crystal polymers (CLCPs) underwent reversible photoinduced bending and unbending behaviors in response to 445 and 530 nm visible light at room temperature, respectively. The post-cross-linking method provides a facile way to prepare the CLCP films and fibers with different shapes from LLCPs, which can be processed by traditional melting and solution methods.
Yang, Yali; Valentine, Megan T
2013-01-01
The microtubule (MT) cytoskeleton is essential in maintaining the shape, strength, and organization of cells. Its spatiotemporal organization is fundamental for numerous dynamic biological processes, and mechanical stress within the MT cytoskeleton provides an important signaling mechanism in mitosis and neural development. This raises important questions about the relationships between structure and mechanics in complex MT structures. In vitro, reconstituted cytoskeletal networks provide a minimal model of cell mechanics while also providing a testing ground for the fundamental polymer physics of stiff polymer gels. Here, we describe our development and implementation of a broad tool kit to study structure-mechanics relationships in reconstituted MT networks, including protocols for the assembly of entangled and cross-linked MT networks, fluorescence imaging, microstructure characterization, construction and calibration of magnetic tweezers devices, and mechanical data collection and analysis. In particular, we present the design and assembly of three neodymium iron boron (NdFeB)-based magnetic tweezers devices optimized for use with MT networks: (1) high-force magnetic tweezers devices that enable the application of nano-Newton forces and possible meso- to macroscale materials characterization; (2) ring-shaped NdFeB-based magnetic tweezers devices that enable oscillatory microrheology measurements; and (3) portable magnetic tweezers devices that enable direct visualization of microscale deformation in soft materials under applied force. Copyright © 2013 Elsevier Inc. All rights reserved.
Classroom Demonstrations of Polymer Principles Part II. Polymer Formation.
ERIC Educational Resources Information Center
Rodriguez, F.; And Others
1987-01-01
This is part two in a series on classroom demonstrations of polymer principles. Described is how large molecules can be assembled from subunits (the process of polymerization). Examples chosen include both linear and branched or cross-linked molecules. (RH)
Material and fabrication strategies for artificial muscles (Conference Presentation)
NASA Astrophysics Data System (ADS)
Spinks, Geoffrey M.
2017-04-01
Soft robotic and wearable robotic devices seek to exploit polymer based artificial muscles and sensor materials to generate biomimetic movements and forces. A challenge is to integrate the active materials into a complex, three-dimensional device with integrated electronics, power supplies and support structures. Both 3D printing and textiles technologies offer attractive fabrication strategies, but require suitable functional materials. 3D printing of actuating hydrogels has been developed to produce simple devices, such as a prototype valve. Tough hydrogels based on interpenetrating networks of ionicially crosslinked alginate and covalently crosslinked polyacrylamide and poly(N-isopropylacrylamide) have been developed in a form suitable for extrusion printing with UV curing. Combined with UV-curable and extrudable rigid acrylated urethanes, the tough hydrogels can be 3D printed into composite materials or complex shapes with multiple different materials. An actuating valve was printed that operated thermally to open or close the flow path using 6 parallel hydrogel actuators. Textile processing methods such as knitting and weaving can be used to generate assemblies of actuating fibres. Low cost and high performance coiled fibres made from oriented polymers have been used for developing actuating textiles. Similarly, braiding methods have been developed to fabricate new forms of McKibben muscles that operate without any external apparatus, such as pumps, compressors or piping.
21 CFR 177.1650 - Polysulfide polymer-polyepoxy resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
...(2-chloroethyl) formal Bis(dichloropropyl) formal Cross-linking agent. Butyl alcohol Solvent. Carbon black (channel process) Chlorinated paraffins Cross-linking agent. Epoxidized linseed oil Epoxidized... monobutyl ether Solvent. Magnesium chloride Methyl isobutyl ketone Solvent. Naphthalene sulfonic acid...
Photo-crosslinkable polymers for fabrication of photonic multilayer sensors
NASA Astrophysics Data System (ADS)
Chiappelli, Maria; Hayward, Ryan C.
2013-03-01
We have used photo-crosslinkable polymers to fabricate photonic multilayer sensors. Benzophenone is utilized as a covalently incorporated pendent photo-crosslinker, providing a convenient means of fabricating multilayer films by sequential spin-coating and crosslinking processes. Colorimetric temperature sensors were designed from thermally-responsive, low-refractive index poly(N-isopropylacrylamide) (PNIPAM) and high-refractive index poly(para-methyl styrene) (P pMS). Copolymer chemistries and layer thicknesses were selected to provide robust multilayer sensors which show color changes across nearly the full visible spectrum due to changes in temperature of the hydrated film stack. We have characterized the uniformity and interfacial broadening within the multilayers, the kinetics of swelling and de-swelling, and the reversibility over multiple hydration/dehydration cycles. We also describe how the approach can be extended to alternative sensor designs through the ability to tailor each layer independently, as well as to additional stimuli by selecting alternative copolymer chemistries.
NASA Astrophysics Data System (ADS)
Sehgal, Akhil
Electronic components such as organic light emitting diodes (OLED) and photo-voltaics have been of more focus with the advancement of technology. These electronics are susceptible to degradable in the presence of gases such as water vapor and oxygen. Being that these gases are constituents of the atmosphere and can be found in nearly every environment, certain protocols must take place to mitigate the issues that occur. New generation electronics are sensitive to oxidation and corrosion in the presence of extremely low concentrations of moisture and oxygen and therefore the development and improvements of gas barriers are vital for advancements in electronics technology. The improvements of appliances such as flexible solar cells and OLEDs require barriers that need to be flexible in order to achieve high longevity. The area of research has been focused on designing flexible polymer films with composite nanoparticles and cross-linking agents that have low permeability to moisture and oxygen gas. The polymers studied are in the family of methacrylates. Due to the properties of methacrylate polymers, it has been proposed that they are capable of having efficient barrier properties due to their ability to cross link and form crystalline structures with low chain mobility. The change in intensities of the FTIR peaks of different functional groups indicates the cross-linking and crystallinity of the polymer films. The UV-Vis data indicates high transparency of the films. SEM images of the films show continuous and well cured surfaces with minimal deviations, pores and defects. The addition of cross-linking agents and nanoparticles increased polymerization and cross-linking of the methacrylate polymer chains, therefore increasing inter-chain density and long range order. The incorporation of these additives increased the crystallinity of the films and by decreasing the distances and number of voids between polymer chains along with having minimal sorption sites for gases to bond to, the ability of gases such as moisture and oxygen to penetrate through the films has decreased.
Influence of therapeutic radiation on polycaprolactone and polyurethane biomaterials.
Cooke, Shelley L; Whittington, Abby R
2016-03-01
Biomedical polymers are exposed in vivo to ionizing radiation as implants, coatings and bystander materials. High levels of ionizing radiation (e.g. X-ray and gamma) have been reported to cause degradation and/or cross-linking in many polymers. This pilot study sought to determine causes of failure, by investigating how therapeutic radiation affects two different porous polymeric scaffolds: polycaprolactone (PCL) and polyurethane (PU). PCL is a bioresorbable material used in biomedical devices (e.g., dentistry, internal fixation devices and targeted drug delivery capsules). PU is commonly used in medical applications (e.g., coatings for pacemakers, tissue expanders, catheter tubing and wound dressings). PU was specifically fabricated to be a non-degradable polymer in this study. Porous scaffolds, fabricated using solvent casting and/or salt leeching techniques, were placed in phosphate buffered saline (PBS, pH=7.4) and exposed to typical cancer radiotherapy. A total dose of 50 Gy was broken into 25 doses over an eleven-week period. Collected PBS was tested for polymer leachants and degradation products using Gas Chromatography Mass Spectroscopy (GC-MS), results revealed no analyzable leachants from either polymer. Scaffolds were characterized using Environmental Scanning Electron Microscopy, Size-exclusion chromatography (SEC), Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR). No gross visual changes were observed in either polymer, however PU exhibited microstructure changes after irradiation. Increased number average molecular weight and weight average molecular weight in PCL and PU were observed after irradiation, indicating crosslinking. PU displayed an increase in intrinsic viscosity that further confirms increased crosslinking. PCL and PU showed decreases in crystallinity after irradiation, and PU crystallinity shifted from long-range-order hard segments to short-range-order hard segments after irradiation. Results from both PCL and PU suggest changes in polymer backbones. This preliminary study suggests that therapeutic radiation doses cause both degradation and crosslinking in PCL and PU. Copyright © 2015 Elsevier B.V. All rights reserved.
Ultralow stress, thermally stable cross-linked polymer films of polydivinylbenzene (PDVB)
Lepro, Xavier; Ehrmann, Paul; Menapace, Joseph; ...
2017-05-10
Although closely related to polystyrene, poly(divinylbenzene) (PDVB) has found limited utility due to the difficulties associated with its synthesis. As a highly cross-linked polymer, PDVB is infusible and insoluble and thus nearly impossible to shape into films by either melt or solvent-based processes. Here, we report the initiated chemical vapor deposition (iCVD) of nearly stress-free, highly transparent, free-standing films of PDVB up to 25 μm thick. Films initially grow under tensile intrinsic stress but become more compressive with thickness and eventually converge to zero-stress values once they reach ≥10 μm in thickness. Upon initial heating, the evaporative loss of unreactedmore » monomer left in the polymer matrix induces between 35 and 45 MPa of tensile stress in the films. Afterward, subsequent heating cycles induce reversible stress and film expansion behaviors. We estimate the degree of cross-linking to be 44%, resulting in high thermal stability (up to 300 °C) and mechanical stiffness (Young’s modulus of 5.2 GPa). As a result, the low stress combined with high cross-linking makes iCVD PDVB an excellent candidate for protective coatings in harsh environments.« less
Ultralow stress, thermally stable cross-linked polymer films of polydivinylbenzene (PDVB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepro, Xavier; Ehrmann, Paul; Menapace, Joseph
Although closely related to polystyrene, poly(divinylbenzene) (PDVB) has found limited utility due to the difficulties associated with its synthesis. As a highly cross-linked polymer, PDVB is infusible and insoluble and thus nearly impossible to shape into films by either melt or solvent-based processes. Here, we report the initiated chemical vapor deposition (iCVD) of nearly stress-free, highly transparent, free-standing films of PDVB up to 25 μm thick. Films initially grow under tensile intrinsic stress but become more compressive with thickness and eventually converge to zero-stress values once they reach ≥10 μm in thickness. Upon initial heating, the evaporative loss of unreactedmore » monomer left in the polymer matrix induces between 35 and 45 MPa of tensile stress in the films. Afterward, subsequent heating cycles induce reversible stress and film expansion behaviors. We estimate the degree of cross-linking to be 44%, resulting in high thermal stability (up to 300 °C) and mechanical stiffness (Young’s modulus of 5.2 GPa). As a result, the low stress combined with high cross-linking makes iCVD PDVB an excellent candidate for protective coatings in harsh environments.« less
Zhang, Xuan; Hu, Zhaoxia; Luo, Linqiang; Chen, Shanshan; Liu, Jianmei; Chen, Shouwen; Wang, Lianjun
2011-07-15
Novel poly(arylene ether ketone) polymers with fluorophenyl pendants and phenoxide-terminated wholly sulfonated poly(arylene ether sulfone) oligomers are prepared via Ni(0)-catalyzed and nucleophilic polymerization, respectively, and subsequently used as starting materials to obtain graft-crosslinked membranes as polymer electrolyte membranes. The phenoxide-terminated sulfonated moieties are introduced as hydrophilic parts as well as crosslinking units. The chemical structure and morphology of the obtained membranes are confirmed by (1) H NMR and tapping-mode AFM. The properties required for fuel cell applications, including water uptake and dimensional change, as well as proton conductivity, are investigated. AFM results show a clear nanoscale phase-separation microstructure of the obtained membranes. The membranes show good dimensional stability and reasonably high proton conductivities under 30-90% relative humidity. The anisotropic proton conductivity ratios (σ(formula see text) ) of the membranes in water are in the range 0.65-0.92, and increase with an increase in hydrophilic block length. The results indicate that the graft-crosslinked membranes are promising candidates for applications as polymer electrolyte membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel active stabilization technology in highly crosslinked UHMWPEs for superior stability
NASA Astrophysics Data System (ADS)
Oral, Ebru; Neils, Andrew L.; Wannomae, Keith K.; Muratoglu, Orhun K.
2014-12-01
Radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is the bearing of choice in joint arthroplasty. The demands on the longevity of this polymer are likely to increase with the recently advancing deterioration of the performance of alternative metal-on-metal implants. Vitamin E-stabilized, cross-linked UHMWPEs are considered the next generation of improved UHMWPE bearing surfaces for improving the oxidation resistance of the polymer. It was recently discovered that in the absence of radiation-induced free radicals, lipids absorbed into UHMWPE from the synovial fluid can initiate oxidation and result in new free radical-mediated oxidation mechanisms. In the presence of radiation-induced free radicals, it is possible for the polymer to oxidize through both existing free radicals at the time of implantation and through newly formed free radicals in vivo. Thus, we showed that reducing the radiation-induced free radicals in vitamin E-stabilized UHMWPE would increase its oxidative stability and presumably lead to improved longevity. We describe mechanical annealing and warm irradiation of irradiated vitamin E blends as novel methods to eliminate 99% of radiation-induced free radicals without sacrificing crystallinity. These are significant improvements in the processing of highly cross-linked UHMWPE for joint implants with improved longevity.
A study on size effect of carboxymethyl starch nanogel crosslinked by electron beam radiation
NASA Astrophysics Data System (ADS)
Binh, Doan; Pham Thi Thu Hong; Nguyen Ngoc Duy; Nguyen Thanh Duoc; Nguyen Nguyet Dieu
2012-07-01
The formation of carboxymethyl starch (CMS) nanogel with 50 nm less particle size was carried out through a radiation crosslinked process on the electron beam (EB) linear accelerator. Changes of intrinsic viscosities and weight averaged molecular weight in the CMS concentration, which ranged from 3 to 10 mg ml-1 in absorbed doses were investigated. There were some new peaks in the 1H NMR spectra of CMS nanogel compared with those of CMS polymer. These results were anticipated that the predominant intramolecular crosslinking of dilute CMS aqueous solution occurred while being exposed to a short intense pulse of ionizing radiation. Hydrodynamic radius (often called particle size, Rh) and distribution of particle size were measured by a dynamic light scattering technique. The radiation yield of intermolecular crosslinking of CMS solution was calculated from the expression of Gx (Charlesby, 1960; Jung-Chul, 2010). The influence of the "size effect" was demonstrated by testing culture of Lactobacillus bacteria on MRS agar culture medium containing CMS nanogel and polymer. Results showed that the number of Lactobacillus bacteria growing on nanogel containing culture medium is about 170 cfu/ml and on polymer containing culture medium is only 6 cfu/ml.
Tunable Elastomers with an Antithrombotic Component for Cardiovascular Applications.
Stahl, Alexander M; Yang, Yunzhi Peter
2018-05-31
This study reports the development of a novel family of biodegradable polyurethanes for use as tissue engineered cardiovascular scaffolds or blood-contacting medical devices. Covalent incorporation of the antiplatelet agent dipyridamole into biodegradable polycaprolactone-based polyurethanes yields biocompatible materials with improved thromboresistance and tunable mechanical strength and elasticity. Altering the ratio of the dipyridamole to the diisocyanate linking unit and the polycaprolactone macromer enables control over both the drug content and the polymer cross-link density. Covalent cross-linking in the materials achieves significant elasticity and a tunable range of elastic moduli similar to that of native cardiovascular tissues. Interestingly, the cross-link density of the polyurethanes is inversely related to the elastic modulus, an effect attributed to decreasing crystallinity in the more cross-linked polymers. In vitro characterization shows that the antiplatelet agent is homogeneously distributed in the materials and is released slowly throughout the polymer degradation process. The drug-containing polyurethanes support endothelial cell and vascular smooth muscle cell proliferation, while demonstrating reduced levels of platelet adhesion and activation, supporting their candidacy as promising substrates for cardiovascular tissue engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, Jiajun; Lv, Ling; Zou, Gang; Zhang, Qijin
2015-01-14
In this paper, we report a facile strategy to fabricate fluorescent porous thin film on the surface of U-bent poly(methyl methacrylate) optical fiber (U-bent POF) in situ via "click" polymerization for vapor phase sensing of explosives. Upon irradiation of evanescent UV light transmitting within the fiber under ambient condition, a porous film (POSS-thiol cross-linking film, PTCF) is synthesized on the side surface of the fiber by a thiol-ene "click" reaction of vinyl-functionalized polyhedral oligomeric silsesquioxanes (POSS-V8) and alkane dithiols. When vinyl-functionalized porphyrin, containing four allyl substituents at the periphery, is added into precursors for the polymerization, fluorescence porphyrin can be covalently bonded into the cross-linked network of PTCF. This "fastened" way reduces the aggregation-induced fluorescence self-quenching of porphyrin and enhances the physicochemical stability of the porous film on the surface of U-bent POF. Fluorescent signals of the PTCF/U-bent POF probe made by this method exhibit high fluorescence quenching toward trace TNT and DNT vapor and the highest fluorescence quenching efficiency is observed for 1, 6-hexanedimercaptan-based film. In addition, because of the presence of POSS-V8 with multi cross-linkable groups, PTCF exhibits well-organized pore network and stable dye dispersion, which not only causes fast and sensitive fluorescence quenching against vapors of nitroaromatic compounds, but also provides a repeatability of the probing performance.
PEG-based degradable networks for drug delivery applications
NASA Astrophysics Data System (ADS)
Ostroha, Jamie L.
The controlled delivery of therapeutic agents by biodegradable hydrogels has become a popular mechanism for drug administration in recent years. Hydrogels are three-dimensional networks of polymer chains held together by crosslinks. Although the changes which the hydrogel undergoes in solution are important to a wide range of experimental studies, they have not been investigated systematically and the factors which influence the degree of swelling have not been adequately described. Hydrogels made of poly(ethylene glycol) (PEG) will generally resist degradation in aqueous conditions, while a hydrogel made from a copolymer of poly(lactic acid) (PLA) and PEG will degrade via hydrolysis of the lactic acid group. This ability to degrade makes these hydrogels promising candidates for controlled release drug delivery systems. The goal of this research was to characterize the swelling and degradation of both degradable and non-degradable gels and to evaluate the release of different drugs from these hydrogels, where the key variable is the molecular weight of the PEG segment. These hydrogels were formed by the addition and subsequent chemically crosslinking of methacrylate end groups. During crosslinking, both PEG and LA-PEG-LA hydrogels of varied PEG molecular weight were loaded with Vitamin B12, Insulin, Haloperidol, and Dextran. It was shown that increasing PEG molecular weight produces a hydrogel with larger pores, thus increasing water uptake and degradation rate. While many environmental factors do not affect the swelling behavior, they do significantly impact the degradation of the hydrogel, and thus the release of incorporated therapeutic agents.
High-Performance Polymers Having Low Melt Viscosities
NASA Technical Reports Server (NTRS)
Jensen, Brian J.
2005-01-01
High-performance polymers that have improved processing characteristics, and a method of making them, have been invented. One of the improved characteristics is low (relative to corresponding prior polymers) melt viscosities at given temperatures. This characteristic makes it possible to utilize such processes as resin-transfer molding and resin-film infusion and to perform autoclave processing at lower temperatures and/or pressures. Another improved characteristic is larger processing windows that is, longer times at low viscosities. Other improved characteristics include increased solubility of uncured polymer precursors that contain reactive groups, greater densities of cross-links in cured polymers, improved mechanical properties of the cured polymers, and greater resistance of the cured polymers to chemical attack. The invention is particularly applicable to poly(arylene ether)s [PAEs] and polyimides [PIs] that are useful as adhesives, matrices of composite materials, moldings, films, and coatings. PAEs and PIs synthesized according to the invention comprise mixtures of branched, linear, and star-shaped molecules. The monomers of these polymers can be capped with either reactive end groups to obtain thermosets or nonreactive end groups to obtain thermoplastics. The synthesis of a polymeric mixture according to the invention involves the use of a small amount of a trifunctional monomer. In the case of a PAE, the trifunctional monomer is a trihydroxy- containing compound for example, 1,3,5-trihydroxybenzene (THB). In the case of a PI, the trifunctional monomer is a triamine for example, triamino pyrimidine or melamine. In addition to the aforementioned trifunctional monomer, one uses the difunctional monomers of the conventional formulation of the polymer in question (see figure). In cases of nonreactive end caps, the polymeric mixtures of the invention have melt viscosities and melting temperatures lower than those of the corresponding linear polymers of equal molecular weights. The lower melting temperatures and melt viscosities provide larger processing windows. In cases of reactive end caps, the polymeric mixtures of the invention have lower melt viscosities before curing and the higher cross-link densities after curing (where branching in the uncured systems would become cross-links in the cured systems), relative to the corresponding linear polymers of equal molecular weights. The greater cross-link densities afford increased resistance to chemical attack and improved mechanical properties.
Injectable shear-thinning nanoengineered hydrogels for stem cell delivery
NASA Astrophysics Data System (ADS)
Thakur, Ashish; Jaiswal, Manish K.; Peak, Charles W.; Carrow, James K.; Gentry, James; Dolatshahi-Pirouz, Alireza; Gaharwar, Akhilesh K.
2016-06-01
Injectable hydrogels are investigated for cell encapsulation and delivery as they can shield cells from high shear forces. One of the approaches to obtain injectable hydrogels is to reinforce polymeric networks with high aspect ratio nanoparticles such as two-dimensional (2D) nanomaterials. 2D nanomaterials are an emerging class of ultrathin materials with a high degree of anisotropy and they strongly interact with polymers resulting in the formation of shear-thinning hydrogels. Here, we present 2D nanosilicate reinforced kappa-carrageenan (κCA) hydrogels for cellular delivery. κCA is a natural polysaccharide that resembles native glycosaminoglycans and can form brittle hydrogels via ionic crosslinking. The chemical modification of κCA with photocrosslinkable methacrylate groups renders the formation of a covalently crosslinked network (MκCA). Reinforcing the MκCA with 2D nanosilicates results in shear-thinning characteristics, and enhanced mechanical stiffness, elastomeric properties, and physiological stability. The shear-thinning characteristics of nanocomposite hydrogels are investigated for human mesenchymal stem cell (hMSC) delivery. The hMSCs showed high cell viability after injection and encapsulated cells showed a circular morphology. The proposed shear-thinning nanoengineered hydrogels can be used for cell delivery for cartilage tissue regeneration and 3D bioprinting.
Biochemical separations by continuous-bed chromatography.
Tisch, T L; Frost, R; Liao, J L; Lam, W K; Remy, A; Scheinpflug, E; Siebert, C; Song, H; Stapleton, A
1998-08-07
Innovations in column-packing media for biomolecule purification have progressed from large spherical, porous polysaccharide beads to advanced polymeric supports. Continuous-bed technology is a radical new technology for chromatography based on the polymerization of advanced monomers and ionomers directly in the chromatographic column. The polymer chains form aggregates which coalesce into a dense, homogeneous network of interconnected nodules consisting of microparticles with an average diameter of 3000 A. The voids or channels between the nodules are large enough to permit a high hydrodynamic flow. Due to the high cross-linking of the polymer matrix, the surface of each nodule is nonporous yet the polymeric microparticles provide a very large surface area for high binding capacity. This paper will demonstrate the properties and advantages of using a continuous bed support for high resolution biomolecule separations at high flow-rates without sacrificing capacity.
NASA Astrophysics Data System (ADS)
Najdahmadi, Avid; Lakey, Jonathan R. T.; Botvinick, Elliot
2018-02-01
Pancreatic islet transplantation is a promising approach of providing insulin in type 1 diabetes. One strategy to protect islets from the host immune system is encapsulation within a porous biocompatible alginate membrane. This encapsulation provides mechanical support to the cells and allows selective diffusion of oxygen, nutrients and insulin while blocking immunoglobulins. These hydrogels form by diffusion of calcium ions into the polymer network and therefore they are highly sensitive to environmental changes and fluctuations in temperature. We investigated the effects of gel concentration, crosslinking time and ambient conditions on material permeability, volume, and rigidity, all of which may change the immunoisolating characteristics of alginate. To measure diffusion coefficient as a method to capture structural changes we studied the diffusion of fluorescently tagged dextrans of different molecular weight into the midplane of alginate microcapsules, the diffusion coefficient is then calculated by fitting observed fluorescence dynamics to the mathematical solution of 1-D diffusion into a sphere. These measurements were performed after incubation in different conditions as well as after an in vivo experiment in six immunocompetent mice for seven days. Additionally, the changes in gel volume after incubation at different temperatures and environmental conditions as well as changes in compression modulus of alginate gels during crosslinking were investigated. Our result show that increase of polymer concentration and crosslinking time leads to a decrease in volume and increase in compression modulus. Furthermore, we found that samples crosslinked and placed in physiological environment, experience an increase in volume. As expected, these volume changes affect diffusion rates of fluorescent dextrans, where volume expansion is correlated with higher calculated diffusion coefficient. This observation is critical to islet protection since higher permeability due to the expansion in vivo may lead to increased permeability to immunoglobulins. Capsules from the in vivo study showed similar volume expansion and increased permeability, indicating our in vitro assay is a good predictor of volume change in vivo.
Radiation damage in polymer films from grazing-incidence X-ray scattering measurements
Vaselabadi, Saeed Ahmadi; Shakarisaz, David; Ruchhoeft, Paul; ...
2016-02-16
Grazing-incidence X-ray scattering (GIXS) is widely used to analyze the crystallinity and nanoscale structure in thin polymer films. However, ionizing radiation will generate free radicals that initiate cross-linking and/or chain scission, and structural damage will impact the ordering kinetics, thermodynamics, and crystallinity in many polymers. We report a simple methodology to screen for beam damage that is based on lithographic principles: films are exposed to patterns of x-ray radiation, and changes in polymer structure are revealed by immersing the film in a solvent that dissolves the shortest chains. The experiments are implemented with high throughput using the standard beam linemore » instrumentation and a typical GIXS configuration. The extent of damage (at a fixed radiation dose) depends on a range of intrinsic material properties and experimental variables, including the polymer chemistry and molecular weight, exposure environment, film thickness, and angle of incidence. The solubility switch for common polymers is detected within 10-60 sec at ambient temperature, and we verified that this first indication of damage corresponds with the onset of network formation in glassy polystyrene and a loss of crystallinity in polyalkylthiophenes. Therefore, grazing-incidence x-ray patterning offers an efficient approach to determine the appropriate data acquisition times for any GIXS experiment.« less
Progress in radiation processing of polymers
NASA Astrophysics Data System (ADS)
Chmielewski, Andrzej G.; Haji-Saeid, Mohammad; Ahmed, Shamshad
2005-07-01
Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from ether radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation of noxious fumes and by products of peroxide degradation. Both the irradiation sources have their merits and limitations. Increased utilization of electron beams for modification and enhancement of polymer materials has been in particular witnessed over the past 40 years. The paper highlights several recent cases of EB utilization to improve key properties of selected plastic products. In paper is provided a survey of radiation processing methods of industrial interest, encompassing technologies which are already commercially well established, through developments in the active R&D stage which show pronounced promise for future commercial use. Radiation cross-linking technologies discussed include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, development of radiation crosslinked SiC fiber, polymer recycling, development of gamma compatible pp, hydrogels etc. Over the years, remarkable advancement has been achieved in radiation processing of natural polymers. Role of radiation in improving the processing of temperature of PCL for use as biodegradable polymer, in accelerated breakdown of cellulose into viscose and enhancement in yields of chitin/chitosan from sea-food waste, is described.
1994-04-26
polymers bearing acrylatel 5. 16 ) or ethyny117 ) groups. Alternately, photoinduced crosslinking via a [2+2]cycloaddition of cinnamates , 18-21) a photo...groups.8 .9 Alternately, some improvement of stability has been achieved through photo-induced crosslinking via either a [2+2]cycloaddition of cinnamates ...2.5 x 2.5 cm) were dipped halfway into hydroiodic acid (55 % in water; 50 °C), for 30s to remove the ITO coating, polished with 0.5 g~m aluminum
Vaidya, Shyam V; Couzis, Alex; Maldarelli, Charles
2015-03-17
We report the development of barcoded polystyrene microbeads, approximately 50 μm in diameter, which are encoded by incorporating multicolored semiconductor fluorescent nanocrystals (quantum dots or QDs) within the microbeads and using the emission spectrum of the embedded QDs as a spectral label. The polymer/nanocrystal bead composites are formed by polymerizing emulsified liquid droplets of styrene monomer and QDs suspended in an immiscible continuous phase (suspension polymerization). We focus specifically on the effect of divinylbenzene (DVB) added to cross-link the linearly growing styrene polymer chains and the effect of this cross-linking on the state of aggregation of the nanocrystals in the composite. Aggregated states of multicolor QDs give rise to nonradiative resonance energy transfer (RET) which distorts the emission label from a spectrum recorded in a reference solvent in which the nanocrystals are well dispersed and unaggregated. A simple barcode is chosen of a mixture of QDs emitting at 560 (yellow) and 620 nm (red). We find that for linear chain growth (no DVB), the QDs aggregate as is evident from the emission spectrum and the QD distribution as seen from confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) images. Increasing the extent of cross-linking by the addition of DVB is shown to significantly decrease the aggregation and provide a clear label. We suggest that in the absence of cross-linking, linearly growing polymer chains, through enthalpic and entropic effects, drive the nanocrystals into inclusions, while cross-linking kinetically entraps the particle and prevents their aggregation.
Fabricating and Characterizing Physical Properties of Electrospun Polypeptide-based Nanofibers
NASA Astrophysics Data System (ADS)
Khadka, Dhan Bahadur
This dissertation has aimed to fabricate polypeptide based biomaterial and characterize physical properties. Electrospinning is used as a tool for the sample fabrication. Project focused on determining the feasibility of electrospinning of certain synthetic polypeptides and certain elastin-like peptides from aqueous feedstocks and to characterize physical properties of polymer aqueous solution, cast film and spun fibers and fiber mats. The research involves peptide design, polymer electrospinning, fibers crosslinking, determining the extent of crosslinking, fibers protease degradation study, fibers stability and self-organization analysis, structure and composition determination by various spectroscopy and microscopy techniques and characterization of mechanical properties of individual suspended fibers. Fiber mats of a synthetic cationic polypeptide poly(L-ornithine) (PLO) and an anionic co-polypeptide of L-glutamic acid and L-tyrosine (PLEY) of defined composition have been produced by electrospinning. Fibers were obtained from polymer aqueous solution at concentrations of 20-45% (w/v) in PLO and at concentrations of 20-60% (w/v) in PLEY. Applied voltage and spinneret-collector distance were also found to influence polymer spinnability and fibers morphology. Oriented fibers were obtained by parallel electrodes geometry. Fiber diameter and morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). PLO fibers exposed on glutaraldehyde (GTA) vapor rendered fiber mats water-insoluble. A common chemical reagent, carbodiimide was used to crosslink PLEY fibers. Fiber solubility in aqueous solution varied as a function of crosslinking time and crosslinker concentration. Crosslink density has been quantified by a visible-wavelength dye-based method. Degradation of crosslinked fibers by different proteases has been demonstrated. Investigation of crosslinked PLEY fibers has provided insight into the mechanisms of stability at different pH values. Variations in fiber morphology, elemental composition and stability have been studied by microscopy and energy-dispersive X-ray spectroscopy (EDX), following the treatment of samples at different pH values in the 2-12 range. Fiber stability has been interpreted with reference to the pH dependence of the UV absorbance and fluorescence of PLEY chains in solution. The data show that fiber stability is crucially dependent on the extent of side chain ionization, even after crosslinking. Self-organization kinetics of electrospun PLO and PLEY fibers during solvent annealing has been studied. After being crosslinked in situ , fibers were annealed in water at 22 °C. Analysis by Fourier transform infrared spectroscopy (FTIR) has revealed that annealing involved fiber restructuring with an overall time constant of 29 min for PLO and 63 min for PLEY, and that changes in the distribution of polymer conformations occurred during the first 13 min of annealing. There was a substantial decrease in the amount of Na+ bound to PLEY fibers during annealing. Kinetic modeling has indicated that two parallel pathways better account for the annealing trajectory than a single pathway with multiple transition states. Taken together, the results will advance the rational design of polypeptides for peptide-based materials, especially materials prepared by electrospinning. It is believed that this research will increase basic knowledge of polymer electrospinning and advance the development of electrospun materials, especially in medicine and biotechnology. The study has yielded two advances on previous work in the area: avoidance of an animal source of peptides and avoidance of inorganic solvent. The present results thus advance the growing field of peptide-based materials. Non-woven electrospun fiber mats made of polypeptides are increasingly considered attractive for basic research and technology development in biotechnology, medicine and other areas. (Abstract shortened by UMI.)
Synthesis and development of low cost, high temperature N-arylene polybenzimidazole foam material
NASA Technical Reports Server (NTRS)
Harrison, E. S.
1975-01-01
Polymer (and foam) studies followed two basic routes: (1) formation of high molecular weight uncyclized polyamide followed by subsequent fusion and cyclodehydration to yield NABI (foam) and (2) polymer and foam formation by reaction of diphenyl esters (or anhydrides) with the tetramine. The latter route was found much more attractive since considerable versatility in both basic polymer structure and crosslinkability is achievable. Preliminary studies on BAB, phthalic anhydride (PA), and 3, 3 (prime), 4, 4(prime) benzo pheno netetracarboxylic acid dianhydride (BTDA) as crosslinked polymer precursors were conducted. Nonmelting rigid char forming foams with densities as low as 2.7 lb/cubic ft. were achieved. The program was successful in the preparation of a potentially low cost, low density, high char yield, high temperature foam material.
Method for the preparation of high surface area high permeability carbons
Lagasse, R.R.; Schroeder, J.L.
1999-05-11
A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.
Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1993-01-01
Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.
Chen, Qijing; Shi, Ting; Han, Fei; Li, Zihan; Lin, Chao; Zhao, Peng
2017-08-17
A hydrophobic CCS polymer of poly(benzyl methacrylate) (PBzMA) was prepared in toluene by reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization. The CCS polymer, with poly(benzyl methacrylate) as the arm and crosslinked N, N'-bis(acryloyl)cystamine (BAC) as the core, was confirmed by characterization with gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Three kinds of oils (toluene, anisole and styrene) were chosen to study the emulsification properties of PBzMA CCS polymer. The oils can be emulsified by CCS polymer to form water-in-oil (w/o) emulsions. Moreover, w/o high internal phase emulsions (HIPEs) can be obtained with the increase of toluene and styrene volume fractions from 75% to 80%. Porous polystyrene monolith and microparticles were prepared from the emulsion templates and characterized by the scanning electronic microscopy (SEM). With the internal phase volume fraction increased, open-pore porous monolith was obtained.