Sample records for crossover genetic algorithm

  1. An improved genetic algorithm and its application in the TSP problem

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Qin, Jinlei

    2011-12-01

    Concept and research actuality of genetic algorithm are introduced in detail in the paper. Under this condition, the simple genetic algorithm and an improved algorithm are described and applied in an example of TSP problem, where the advantage of genetic algorithm is adequately shown in solving the NP-hard problem. In addition, based on partial matching crossover operator, the crossover operator method is improved into extended crossover operator in order to advance the efficiency when solving the TSP. In the extended crossover method, crossover operator can be performed between random positions of two random individuals, which will not be restricted by the position of chromosome. Finally, the nine-city TSP is solved using the improved genetic algorithm with extended crossover method, the efficiency of whose solution process is much higher, besides, the solving speed of the optimal solution is much faster.

  2. Bio-Inspired Genetic Algorithms with Formalized Crossover Operators for Robotic Applications.

    PubMed

    Zhang, Jie; Kang, Man; Li, Xiaojuan; Liu, Geng-Yang

    2017-01-01

    Genetic algorithms are widely adopted to solve optimization problems in robotic applications. In such safety-critical systems, it is vitally important to formally prove the correctness when genetic algorithms are applied. This paper focuses on formal modeling of crossover operations that are one of most important operations in genetic algorithms. Specially, we for the first time formalize crossover operations with higher-order logic based on HOL4 that is easy to be deployed with its user-friendly programing environment. With correctness-guaranteed formalized crossover operations, we can safely apply them in robotic applications. We implement our technique to solve a path planning problem using a genetic algorithm with our formalized crossover operations, and the results show the effectiveness of our technique.

  3. Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator

    PubMed Central

    Mohamd Shoukry, Alaa; Gani, Showkat

    2017-01-01

    Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements. PMID:29209364

  4. Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator.

    PubMed

    Hussain, Abid; Muhammad, Yousaf Shad; Nauman Sajid, M; Hussain, Ijaz; Mohamd Shoukry, Alaa; Gani, Showkat

    2017-01-01

    Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.

  5. How Crossover Speeds up Building Block Assembly in Genetic Algorithms.

    PubMed

    Sudholt, Dirk

    2017-01-01

    We reinvestigate a fundamental question: How effective is crossover in genetic algorithms in combining building blocks of good solutions? Although this has been discussed controversially for decades, we are still lacking a rigorous and intuitive answer. We provide such answers for royal road functions and OneMax, where every bit is a building block. For the latter, we show that using crossover makes every ([Formula: see text]+[Formula: see text]) genetic algorithm at least twice as fast as the fastest evolutionary algorithm using only standard bit mutation, up to small-order terms and for moderate [Formula: see text] and [Formula: see text]. Crossover is beneficial because it can capitalize on mutations that have both beneficial and disruptive effects on building blocks: crossover is able to repair the disruptive effects of mutation in later generations. Compared to mutation-based evolutionary algorithms, this makes multibit mutations more useful. Introducing crossover changes the optimal mutation rate on OneMax from [Formula: see text] to [Formula: see text]. This holds both for uniform crossover and k-point crossover. Experiments and statistical tests confirm that our findings apply to a broad class of building block functions.

  6. A new compound arithmetic crossover-based genetic algorithm for constrained optimisation in enterprise systems

    NASA Astrophysics Data System (ADS)

    Jin, Chenxia; Li, Fachao; Tsang, Eric C. C.; Bulysheva, Larissa; Kataev, Mikhail Yu

    2017-01-01

    In many real industrial applications, the integration of raw data with a methodology can support economically sound decision-making. Furthermore, most of these tasks involve complex optimisation problems. Seeking better solutions is critical. As an intelligent search optimisation algorithm, genetic algorithm (GA) is an important technique for complex system optimisation, but it has internal drawbacks such as low computation efficiency and prematurity. Improving the performance of GA is a vital topic in academic and applications research. In this paper, a new real-coded crossover operator, called compound arithmetic crossover operator (CAC), is proposed. CAC is used in conjunction with a uniform mutation operator to define a new genetic algorithm CAC10-GA. This GA is compared with an existing genetic algorithm (AC10-GA) that comprises an arithmetic crossover operator and a uniform mutation operator. To judge the performance of CAC10-GA, two kinds of analysis are performed. First the analysis of the convergence of CAC10-GA is performed by the Markov chain theory; second, a pair-wise comparison is carried out between CAC10-GA and AC10-GA through two test problems available in the global optimisation literature. The overall comparative study shows that the CAC performs quite well and the CAC10-GA defined outperforms the AC10-GA.

  7. Genetic algorithm with maximum-minimum crossover (GA-MMC) applied in optimization of radiation pattern control of phased-array radars for rocket tracking systems.

    PubMed

    Silva, Leonardo W T; Barros, Vitor F; Silva, Sandro G

    2014-08-18

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.

  8. Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

    PubMed Central

    Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.

    2014-01-01

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013

  9. JavaGenes: Evolving Graphs with Crossover

    NASA Technical Reports Server (NTRS)

    Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd

    2000-01-01

    Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.

  10. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    ERIC Educational Resources Information Center

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  11. Circuit Design Optimization Using Genetic Algorithm with Parameterized Uniform Crossover

    NASA Astrophysics Data System (ADS)

    Bao, Zhiguo; Watanabe, Takahiro

    Evolvable hardware (EHW) is a new research field about the use of Evolutionary Algorithms (EAs) to construct electronic systems. EHW refers in a narrow sense to use evolutionary mechanisms as the algorithmic drivers for system design, while in a general sense to the capability of the hardware system to develop and to improve itself. Genetic Algorithm (GA) is one of typical EAs. We propose optimal circuit design by using GA with parameterized uniform crossover (GApuc) and with fitness function composed of circuit complexity, power, and signal delay. Parameterized uniform crossover is much more likely to distribute its disruptive trials in an unbiased manner over larger portions of the space, then it has more exploratory power than one and two-point crossover, so we have more chances of finding better solutions. Its effectiveness is shown by experiments. From the results, we can see that the best elite fitness, the average value of fitness of the correct circuits and the number of the correct circuits of GApuc are better than that of GA with one-point crossover or two-point crossover. The best case of optimal circuits generated by GApuc is 10.18% and 6.08% better in evaluating value than that by GA with one-point crossover and two-point crossover, respectively.

  12. Mobile transporter path planning

    NASA Technical Reports Server (NTRS)

    Baffes, Paul; Wang, Lui

    1990-01-01

    The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.

  13. Acoustic Impedance Inversion of Seismic Data Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Eladj, Said; Djarfour, Noureddine; Ferahtia, Djalal; Ouadfeul, Sid-Ali

    2013-04-01

    The inversion of seismic data can be used to constrain estimates of the Earth's acoustic impedance structure. This kind of problem is usually known to be non-linear, high-dimensional, with a complex search space which may be riddled with many local minima, and results in irregular objective functions. We investigate here the performance and the application of a genetic algorithm, in the inversion of seismic data. The proposed algorithm has the advantage of being easily implemented without getting stuck in local minima. The effects of population size, Elitism strategy, uniform cross-over and lower mutation are examined. The optimum solution parameters and performance were decided as a function of the testing error convergence with respect to the generation number. To calculate the fitness function, we used L2 norm of the sample-to-sample difference between the reference and the inverted trace. The cross-over probability is of 0.9-0.95 and mutation has been tested at 0.01 probability. The application of such a genetic algorithm to synthetic data shows that the inverted acoustic impedance section was efficient. Keywords: Seismic, Inversion, acoustic impedance, genetic algorithm, fitness functions, cross-over, mutation.

  14. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    USGS Publications Warehouse

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.

  15. Combinatorial optimization problem solution based on improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Peng

    2017-08-01

    Traveling salesman problem (TSP) is a classic combinatorial optimization problem. It is a simplified form of many complex problems. In the process of study and research, it is understood that the parameters that affect the performance of genetic algorithm mainly include the quality of initial population, the population size, and crossover probability and mutation probability values. As a result, an improved genetic algorithm for solving TSP problems is put forward. The population is graded according to individual similarity, and different operations are performed to different levels of individuals. In addition, elitist retention strategy is adopted at each level, and the crossover operator and mutation operator are improved. Several experiments are designed to verify the feasibility of the algorithm. Through the experimental results analysis, it is proved that the improved algorithm can improve the accuracy and efficiency of the solution.

  16. Genetic algorithms using SISAL parallel programming language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tejada, S.

    1994-05-06

    Genetic algorithms are a mathematical optimization technique developed by John Holland at the University of Michigan [1]. The SISAL programming language possesses many of the characteristics desired to implement genetic algorithms. SISAL is a deterministic, functional programming language which is inherently parallel. Because SISAL is functional and based on mathematical concepts, genetic algorithms can be efficiently translated into the language. Several of the steps involved in genetic algorithms, such as mutation, crossover, and fitness evaluation, can be parallelized using SISAL. In this paper I will l discuss the implementation and performance of parallel genetic algorithms in SISAL.

  17. Extended precedence preservative crossover for job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Ong, Chung Sin; Moin, Noor Hasnah; Omar, Mohd

    2013-04-01

    Job shop scheduling problems (JSSP) is one of difficult combinatorial scheduling problems. A wide range of genetic algorithms based on the two parents crossover have been applied to solve the problem but multi parents (more than two parents) crossover in solving the JSSP is still lacking. This paper proposes the extended precedence preservative crossover (EPPX) which uses multi parents for recombination in the genetic algorithms. EPPX is a variation of the precedence preservative crossover (PPX) which is one of the crossovers that perform well to find the solutions for the JSSP. EPPX is based on a vector to determine the gene selected in recombination for the next generation. Legalization of children (offspring) can be eliminated due to the JSSP representation encoded by using permutation with repetition that guarantees the feasibility of chromosomes. The simulations are performed on a set of benchmarks from the literatures and the results are compared to ensure the sustainability of multi parents recombination in solving the JSSP.

  18. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

    PubMed

    Sun, Tao; Xu, Ming-Hai

    2017-01-01

    Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  19. Genetic algorithms applied to the scheduling of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Sponsler, Jeffrey L.

    1989-01-01

    A prototype system employing a genetic algorithm (GA) has been developed to support the scheduling of the Hubble Space Telescope. A non-standard knowledge structure is used and appropriate genetic operators have been created. Several different crossover styles (random point selection, evolving points, and smart point selection) are tested and the best GA is compared with a neural network (NN) based optimizer. The smart crossover operator produces the best results and the GA system is able to evolve complete schedules using it. The GA is not as time-efficient as the NN system and the NN solutions tend to be better.

  20. Research and application of multi-agent genetic algorithm in tower defense game

    NASA Astrophysics Data System (ADS)

    Jin, Shaohua

    2018-04-01

    In this paper, a new multi-agent genetic algorithm based on orthogonal experiment is proposed, which is based on multi-agent system, genetic algorithm and orthogonal experimental design. The design of neighborhood competition operator, orthogonal crossover operator, Son and self-learning operator. The new algorithm is applied to mobile tower defense game, according to the characteristics of the game, the establishment of mathematical models, and finally increases the value of the game's monster.

  1. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems.

    PubMed

    Liu, Chun; Kroll, Andreas

    2016-01-01

    Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.

  2. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Steincamp, James; Taylor, Jaime

    2003-01-01

    A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.

  3. Automatic Combination of Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem.

    PubMed

    Contreras-Bolton, Carlos; Parada, Victor

    2015-01-01

    Genetic algorithms are powerful search methods inspired by Darwinian evolution. To date, they have been applied to the solution of many optimization problems because of the easy use of their properties and their robustness in finding good solutions to difficult problems. The good operation of genetic algorithms is due in part to its two main variation operators, namely, crossover and mutation operators. Typically, in the literature, we find the use of a single crossover and mutation operator. However, there are studies that have shown that using multi-operators produces synergy and that the operators are mutually complementary. Using multi-operators is not a simple task because which operators to use and how to combine them must be determined, which in itself is an optimization problem. In this paper, it is proposed that the task of exploring the different combinations of the crossover and mutation operators can be carried out by evolutionary computing. The crossover and mutation operators used are those typically used for solving the traveling salesman problem. The process of searching for good combinations was effective, yielding appropriate and synergic combinations of the crossover and mutation operators. The numerical results show that the use of the combination of operators obtained by evolutionary computing is better than the use of a single operator and the use of multi-operators combined in the standard way. The results were also better than those of the last operators reported in the literature.

  4. Automatic Combination of Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem

    PubMed Central

    2015-01-01

    Genetic algorithms are powerful search methods inspired by Darwinian evolution. To date, they have been applied to the solution of many optimization problems because of the easy use of their properties and their robustness in finding good solutions to difficult problems. The good operation of genetic algorithms is due in part to its two main variation operators, namely, crossover and mutation operators. Typically, in the literature, we find the use of a single crossover and mutation operator. However, there are studies that have shown that using multi-operators produces synergy and that the operators are mutually complementary. Using multi-operators is not a simple task because which operators to use and how to combine them must be determined, which in itself is an optimization problem. In this paper, it is proposed that the task of exploring the different combinations of the crossover and mutation operators can be carried out by evolutionary computing. The crossover and mutation operators used are those typically used for solving the traveling salesman problem. The process of searching for good combinations was effective, yielding appropriate and synergic combinations of the crossover and mutation operators. The numerical results show that the use of the combination of operators obtained by evolutionary computing is better than the use of a single operator and the use of multi-operators combined in the standard way. The results were also better than those of the last operators reported in the literature. PMID:26367182

  5. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  6. An Improved Heuristic Method for Subgraph Isomorphism Problem

    NASA Astrophysics Data System (ADS)

    Xiang, Yingzhuo; Han, Jiesi; Xu, Haijiang; Guo, Xin

    2017-09-01

    This paper focus on the subgraph isomorphism (SI) problem. We present an improved genetic algorithm, a heuristic method to search the optimal solution. The contribution of this paper is that we design a dedicated crossover algorithm and a new fitness function to measure the evolution process. Experiments show our improved genetic algorithm performs better than other heuristic methods. For a large graph, such as a subgraph of 40 nodes, our algorithm outperforms the traditional tree search algorithms. We find that the performance of our improved genetic algorithm does not decrease as the number of nodes in prototype graphs.

  7. Evolving aerodynamic airfoils for wind turbines through a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI

    2017-01-01

    Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.

  8. Evolutionary algorithms for multi-objective optimization: fuzzy preference aggregation and multisexual EAs

    NASA Astrophysics Data System (ADS)

    Bonissone, Stefano R.

    2001-11-01

    There are many approaches to solving multi-objective optimization problems using evolutionary algorithms. We need to select methods for representing and aggregating preferences, as well as choosing strategies for searching in multi-dimensional objective spaces. First we suggest the use of linguistic variables to represent preferences and the use of fuzzy rule systems to implement tradeoff aggregations. After a review of alternatives EA methods for multi-objective optimizations, we explore the use of multi-sexual genetic algorithms (MSGA). In using a MSGA, we need to modify certain parts of the GAs, namely the selection and crossover operations. The selection operator groups solutions according to their gender tag to prepare them for crossover. The crossover is modified by appending a gender tag at the end of the chromosome. We use single and double point crossovers. We determine the gender of the offspring by the amount of genetic material provided by each parent. The parent that contributed the most to the creation of a specific offspring determines the gender that the offspring will inherit. This is still a work in progress, and in the conclusion we examine many future extensions and experiments.

  9. Genetic algorithms and their use in Geophysical Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Paul B.

    1999-04-01

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show thatmore » certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.« less

  10. Genetic algorithms and their use in geophysical problems

    NASA Astrophysics Data System (ADS)

    Parker, Paul Bradley

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or "fittest" models from a "population" and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Also, optimal efficiency is usually achieved with smaller (<50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (>2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.

  11. Increasing Prediction the Original Final Year Project of Student Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Saragih, Rijois Iboy Erwin; Turnip, Mardi; Sitanggang, Delima; Aritonang, Mendarissan; Harianja, Eva

    2018-04-01

    Final year project is very important forgraduation study of a student. Unfortunately, many students are not seriouslydidtheir final projects. Many of studentsask for someone to do it for them. In this paper, an application of genetic algorithms to predict the original final year project of a studentis proposed. In the simulation, the data of the final project for the last 5 years is collected. The genetic algorithm has several operators namely population, selection, crossover, and mutation. The result suggest that genetic algorithm can do better prediction than other comparable model. Experimental results of predicting showed that 70% was more accurate than the previous researched.

  12. Automated global structure extraction for effective local building block processing in XCS.

    PubMed

    Butz, Martin V; Pelikan, Martin; Llorà, Xavier; Goldberg, David E

    2006-01-01

    Learning Classifier Systems (LCSs), such as the accuracy-based XCS, evolve distributed problem solutions represented by a population of rules. During evolution, features are specialized, propagated, and recombined to provide increasingly accurate subsolutions. Recently, it was shown that, as in conventional genetic algorithms (GAs), some problems require efficient processing of subsets of features to find problem solutions efficiently. In such problems, standard variation operators of genetic and evolutionary algorithms used in LCSs suffer from potential disruption of groups of interacting features, resulting in poor performance. This paper introduces efficient crossover operators to XCS by incorporating techniques derived from competent GAs: the extended compact GA (ECGA) and the Bayesian optimization algorithm (BOA). Instead of simple crossover operators such as uniform crossover or one-point crossover, ECGA or BOA-derived mechanisms are used to build a probabilistic model of the global population and to generate offspring classifiers locally using the model. Several offspring generation variations are introduced and evaluated. The results show that it is possible to achieve performance similar to runs with an informed crossover operator that is specifically designed to yield ideal problem-dependent exploration, exploiting provided problem structure information. Thus, we create the first competent LCSs, XCS/ECGA and XCS/BOA, that detect dependency structures online and propagate corresponding lower-level dependency structures effectively without any information about these structures given in advance.

  13. The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization.

    PubMed

    Błażej, Paweł; Wnȩtrzak, Małgorzata; Mackiewicz, Paweł

    2016-12-01

    One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure minimize the costs about 2.7 times better than the canonical genetic code. Interestingly, the optimal codes are dominated by amino acids characterized by polarity close to its average value for all amino acids. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Pedigree data analysis with crossover interference.

    PubMed Central

    Browning, Sharon

    2003-01-01

    We propose a new method for calculating probabilities for pedigree genetic data that incorporates crossover interference using the chi-square models. Applications include relationship inference, genetic map construction, and linkage analysis. The method is based on importance sampling of unobserved inheritance patterns conditional on the observed genotype data and takes advantage of fast algorithms for no-interference models while using reweighting to allow for interference. We show that the method is effective for arbitrarily many markers with small pedigrees. PMID:12930760

  15. Fuel management optimization using genetic algorithms and expert knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1996-09-01

    The CIGARO fuel management optimization code based on genetic algorithms is described and tested. The test problem optimized the core lifetime for a pressurized water reactor with a penalty function constraint on the peak normalized power. A bit-string genotype encoded the loading patterns, and genotype bias was reduced with additional bits. Expert knowledge about fuel management was incorporated into the genetic algorithm. Regional crossover exchanged physically adjacent fuel assemblies and improved the optimization slightly. Biasing the initial population toward a known priority table significantly improved the optimization.

  16. Threshold-selecting strategy for best possible ground state detection with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Lässig, Jörg; Hoffmann, Karl Heinz

    2009-04-01

    Genetic algorithms are a standard heuristic to find states of low energy in complex state spaces as given by physical systems such as spin glasses but also in combinatorial optimization. The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover. Many schemes have been considered in literature as possible crossover selection strategies. We show for a large class of quality measures that the best possible probability distribution for selecting individuals in each generation of the algorithm execution is a rectangular distribution over the individuals sorted by their energy values. This means uniform probabilities have to be assigned to a group of the individuals with lowest energy in the population but probabilities equal to zero to individuals which are corresponding to energy values higher than a fixed cutoff, which is equal to a certain rank in the vector sorted by the energy of the states in the current population. The considered strategy is dubbed threshold selecting. The proof applies basic arguments of Markov chains and linear optimization and makes only a few assumptions on the underlying principles and hence applies to a large class of algorithms.

  17. An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization.

    PubMed

    García-Pedrajas, Nicolás; Ortiz-Boyer, Domingo; Hervás-Martínez, César

    2006-05-01

    In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary computation. One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem occurs due to the fact that the same network can be represented in a genetic coding by many different codifications. Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network. This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks obtained are much smaller than those obtained with classical crossover operator.

  18. Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping

    NASA Astrophysics Data System (ADS)

    Balakrishnan, D.; Quan, C.; Tay, C. J.

    2013-06-01

    The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.

  19. Optimization of laminated stacking sequence for buckling load maximization by genetic algorithm

    NASA Technical Reports Server (NTRS)

    Le Riche, Rodolphe; Haftka, Raphael T.

    1992-01-01

    The use of a genetic algorithm to optimize the stacking sequence of a composite laminate for buckling load maximization is studied. Various genetic parameters including the population size, the probability of mutation, and the probability of crossover are optimized by numerical experiments. A new genetic operator - permutation - is proposed and shown to be effective in reducing the cost of the genetic search. Results are obtained for a graphite-epoxy plate, first when only the buckling load is considered, and then when constraints on ply contiguity and strain failure are added. The influence on the genetic search of the penalty parameter enforcing the contiguity constraint is studied. The advantage of the genetic algorithm in producing several near-optimal designs is discussed.

  20. An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints

    PubMed Central

    Rao, Yunqing; Qi, Dezhong; Li, Jinling

    2013-01-01

    For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem. PMID:24489491

  1. An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.

    PubMed

    Rao, Yunqing; Qi, Dezhong; Li, Jinling

    2013-01-01

    For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.

  2. Algebraic, geometric, and stochastic aspects of genetic operators

    NASA Technical Reports Server (NTRS)

    Foo, N. Y.; Bosworth, J. L.

    1972-01-01

    Genetic algorithms for function optimization employ genetic operators patterned after those observed in search strategies employed in natural adaptation. Two of these operators, crossover and inversion, are interpreted in terms of their algebraic and geometric properties. Stochastic models of the operators are developed which are employed in Monte Carlo simulations of their behavior.

  3. Fuel management optimization using genetic algorithms and code independence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1994-12-31

    Fuel management optimization is a hard problem for traditional optimization techniques. Loading pattern optimization is a large combinatorial problem without analytical derivative information. Therefore, methods designed for continuous functions, such as linear programming, do not always work well. Genetic algorithms (GAs) address these problems and, therefore, appear ideal for fuel management optimization. They do not require derivative information and work well with combinatorial. functions. The GAs are a stochastic method based on concepts from biological genetics. They take a group of candidate solutions, called the population, and use selection, crossover, and mutation operators to create the next generation of bettermore » solutions. The selection operator is a {open_quotes}survival-of-the-fittest{close_quotes} operation and chooses the solutions for the next generation. The crossover operator is analogous to biological mating, where children inherit a mixture of traits from their parents, and the mutation operator makes small random changes to the solutions.« less

  4. JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Langhirt, Eric; Livny, Miron; Ramamurthy, Ravishankar; Soloman, Marvin; Traugott, Steve

    2000-01-01

    A genetic algorithm code, JavaGenes, was written in Java and used to evolve pharmaceutical drug molecules and digital circuits. JavaGenes was run under the Condor cycle-scavenging batch system managing 100-170 desktop SGI workstations. Genetic algorithms mimic biological evolution by evolving solutions to problems using crossover and mutation. While most genetic algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently) molecules and circuits. Java was chosen as the implementation language because the genetic algorithm requires random splitting and recombining of graphs, a complex data structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-bound indices, and other hard to find bugs. Java garbage-collection memory management, lack of pointer arithmetic, and array-bounds index checking prevents these bugs from occurring, substantially reducing development time. While a run-time performance penalty must be paid, the only unacceptable performance we encountered was using standard Java serialization to checkpoint and restart the code. This was fixed by a two-day implementation of custom checkpointing. JavaGenes is minimally integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/O redirection. A prototype Java-aware version of Condor was developed using standard Java serialization for checkpointing. For the prototype to be useful, standard Java serialization must be significantly optimized. JavaGenes is approximately 8700 lines of code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days. Results include proof that genetic algorithms can evolve directed and undirected graphs, development of a novel crossover operator for graphs, a paper in the journal Nanotechnology, and another paper in preparation.

  5. Phase Reconstruction from FROG Using Genetic Algorithms[Frequency-Resolved Optical Gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omenetto, F.G.; Nicholson, J.W.; Funk, D.J.

    1999-04-12

    The authors describe a new technique for obtaining the phase and electric field from FROG measurements using genetic algorithms. Frequency-Resolved Optical Gating (FROG) has gained prominence as a technique for characterizing ultrashort pulses. FROG consists of a spectrally resolved autocorrelation of the pulse to be measured. Typically a combination of iterative algorithms is used, applying constraints from experimental data, and alternating between the time and frequency domain, in order to retrieve an optical pulse. The authors have developed a new approach to retrieving the intensity and phase from FROG data using a genetic algorithm (GA). A GA is a generalmore » parallel search technique that operates on a population of potential solutions simultaneously. Operators in a genetic algorithm, such as crossover, selection, and mutation are based on ideas taken from evolution.« less

  6. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    PubMed Central

    2010-01-01

    Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and modelling gene-gene interactions that influence a complex human trait. PMID:20875103

  7. Improved classification accuracy by feature extraction using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.

    2003-05-01

    A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.

  8. New knowledge-based genetic algorithm for excavator boom structural optimization

    NASA Astrophysics Data System (ADS)

    Hua, Haiyan; Lin, Shuwen

    2014-03-01

    Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.

  9. Study of genetic direct search algorithms for function optimization

    NASA Technical Reports Server (NTRS)

    Zeigler, B. P.

    1974-01-01

    The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.

  10. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  11. Genetic Algorithms to Optimizatize Lecturer Assessment's Criteria

    NASA Astrophysics Data System (ADS)

    Jollyta, Deny; Johan; Hajjah, Alyauma

    2017-12-01

    The lecturer assessment criteria is used as a measurement of the lecturer's performance in a college environment. To determine the value for a criteriais complicated and often leads to doubt. The absence of a standard valuefor each assessment criteria will affect the final results of the assessment and become less presentational data for the leader of college in taking various policies relate to reward and punishment. The Genetic Algorithm comes as an algorithm capable of solving non-linear problems. Using chromosomes in the random initial population, one of the presentations is binary, evaluates the fitness function and uses crossover genetic operator and mutation to obtain the desired crossbreed. It aims to obtain the most optimum criteria values in terms of the fitness function of each chromosome. The training results show that Genetic Algorithm able to produce the optimal values of lecturer assessment criteria so that can be usedby the college as a standard value for lecturer assessment criteria.

  12. A genetic algorithm solution to the unit commitment problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V.

    1996-02-01

    This paper presents a Genetic Algorithm (GA) solution to the Unit Commitment problem. GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as natural selection, genetic recombination and survival of the fittest. A simple Ga algorithm implementation using the standard crossover and mutation operators could locate near optimal solutions but in most cases failed to converge to the optimal solution. However, using the Varying Quality Function technique and adding problem specific operators, satisfactory solutions to the Unit Commitment problem were obtained. Test results for systems of up to 100 unitsmore » and comparisons with results obtained using Lagrangian Relaxation and Dynamic Programming are also reported.« less

  13. New optimization model for routing and spectrum assignment with nodes insecurity

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-04-01

    By adopting the orthogonal frequency division multiplexing technology, elastic optical networks can provide the flexible and variable bandwidth allocation to each connection request and get higher spectrum utilization. The routing and spectrum assignment problem in elastic optical network is a well-known NP-hard problem. In addition, information security has received worldwide attention. We combine these two problems to investigate the routing and spectrum assignment problem with the guaranteed security in elastic optical network, and establish a new optimization model to minimize the maximum index of the used frequency slots, which is used to determine an optimal routing and spectrum assignment schemes. To solve the model effectively, a hybrid genetic algorithm framework integrating a heuristic algorithm into a genetic algorithm is proposed. The heuristic algorithm is first used to sort the connection requests and then the genetic algorithm is designed to look for an optimal routing and spectrum assignment scheme. In the genetic algorithm, tailor-made crossover, mutation and local search operators are designed. Moreover, simulation experiments are conducted with three heuristic strategies, and the experimental results indicate that the effectiveness of the proposed model and algorithm framework.

  14. Crossover versus mutation: a comparative analysis of the evolutionary strategy of genetic algorithms applied to combinatorial optimization problems.

    PubMed

    Osaba, E; Carballedo, R; Diaz, F; Onieva, E; de la Iglesia, I; Perallos, A

    2014-01-01

    Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test.

  15. Crossover versus Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems

    PubMed Central

    Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.

    2014-01-01

    Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731

  16. Rayleigh wave dispersion curve inversion by using particle swarm optimization and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Buyuk, Ersin; Zor, Ekrem; Karaman, Abdullah

    2017-04-01

    Inversion of surface wave dispersion curves with its highly nonlinear nature has some difficulties using traditional linear inverse methods due to the need and strong dependence to the initial model, possibility of trapping in local minima and evaluation of partial derivatives. There are some modern global optimization methods to overcome of these difficulties in surface wave analysis such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). GA is based on biologic evolution consisting reproduction, crossover and mutation operations, while PSO algorithm developed after GA is inspired from the social behaviour of birds or fish of swarms. Utility of these methods require plausible convergence rate, acceptable relative error and optimum computation cost that are important for modelling studies. Even though PSO and GA processes are similar in appearence, the cross-over operation in GA is not used in PSO and the mutation operation is a stochastic process for changing the genes within chromosomes in GA. Unlike GA, the particles in PSO algorithm changes their position with logical velocities according to particle's own experience and swarm's experience. In this study, we applied PSO algorithm to estimate S wave velocities and thicknesses of the layered earth model by using Rayleigh wave dispersion curve and also compared these results with GA and we emphasize on the advantage of using PSO algorithm for geophysical modelling studies considering its rapid convergence, low misfit error and computation cost.

  17. The genetic algorithm: A robust method for stress inversion

    NASA Astrophysics Data System (ADS)

    Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.

    2017-01-01

    The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.

  18. Branch-pipe-routing approach for ships using improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sui, Haiteng; Niu, Wentie

    2016-09-01

    Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.

  19. Inverting the parameters of an earthquake-ruptured fault with a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Ting-To; Fernàndez, Josè; Rundle, John B.

    1998-03-01

    Natural selection is the spirit of the genetic algorithm (GA): by keeping the good genes in the current generation, thereby producing better offspring during evolution. The crossover function ensures the heritage of good genes from parent to offspring. Meanwhile, the process of mutation creates a special gene, the character of which does not exist in the parent generation. A program based on genetic algorithms using C language is constructed to invert the parameters of an earthquake-ruptured fault. The verification and application of this code is shown to demonstrate its capabilities. It is determined that this code is able to find the global extreme and can be used to solve more practical problems with constraints gathered from other sources. It is shown that GA is superior to other inverting schema in many aspects. This easy handling and yet powerful algorithm should have many suitable applications in the field of geosciences.

  20. Optimisation of groundwater level monitoring networks using geostatistical modelling based on the Spartan family variogram and a genetic algorithm method

    NASA Astrophysics Data System (ADS)

    Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2016-04-01

    Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The water level monitoring network of Mires basin has been optimized 6 times by removing 5, 8, 12, 15, 20 and 25 wells from the original network. In order to achieve the optimum solution in the minimum possible computational time, a stall generations criterion was set for each optimisation scenario. An improvement made to the classic genetic algorithm was the change of the mutation and crossover fraction in respect to the change of the mean fitness value. This results to a randomness in reproduction, if the solution converges, to avoid local minima, or, in a more educated reproduction (higher crossover ratio) when there is higher change in the mean fitness value. The choice of integer genetic algorithm in MATLAB 2015a poses the restriction of adding custom selection and crossover-mutation functions. Therefore, custom population and crossover-mutation-selection functions have been created to set the initial population type to custom and have the ability to change the mutation crossover probability in respect to the convergence of the genetic algorithm, achieving thus higher accuracy. The application of the network optimisation tool to Mires basin indicates that 25 wells can be removed with a relatively small deterioration of the groundwater level map. The results indicate the robustness of the network optimisation tool: Wells were removed from high well-density areas while preserving the spatial pattern of the original groundwater level map. Varouchakis, E. A. and D. T. Hristopulos (2013). "Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables." Advances in Water Resources 52: 34-49.

  1. Artificial intelligence tools for pattern recognition

    NASA Astrophysics Data System (ADS)

    Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro

    2017-06-01

    In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.

  2. An improved self-adaptive ant colony algorithm based on genetic strategy for the traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Wang, Pan; Zhang, Yi; Yan, Dong

    2018-05-01

    Ant Colony Algorithm (ACA) is a powerful and effective algorithm for solving the combination optimization problem. Moreover, it was successfully used in traveling salesman problem (TSP). But it is easy to prematurely converge to the non-global optimal solution and the calculation time is too long. To overcome those shortcomings, a new method is presented-An improved self-adaptive Ant Colony Algorithm based on genetic strategy. The proposed method adopts adaptive strategy to adjust the parameters dynamically. And new crossover operation and inversion operation in genetic strategy was used in this method. We also make an experiment using the well-known data in TSPLIB. The experiment results show that the performance of the proposed method is better than the basic Ant Colony Algorithm and some improved ACA in both the result and the convergence time. The numerical results obtained also show that the proposed optimization method can achieve results close to the theoretical best known solutions at present.

  3. On the Structure of a Best Possible Crossover Selection Strategy in Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Lässig, Jörg; Hoffmann, Karl Heinz

    The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover to find a solution with high fitness for a given optimization problem. Many different schemes have been described in the literature as possible strategies for this task but so far comparisons have been predominantly empirical. It is shown that if one wishes to maximize any linear function of the final state probabilities, e.g. the fitness of the best individual in the final population of the algorithm, then a best probability distribution for selecting an individual in each generation is a rectangular distribution over the individuals sorted in descending sequence by their fitness values. This means uniform probabilities have to be assigned to a group of the best individuals of the population but probabilities equal to zero to individuals with lower fitness, assuming that the probability distribution to choose individuals from the current population can be chosen independently for each iteration and each individual. This result is then generalized also to typical practically applied performance measures, such as maximizing the expected fitness value of the best individual seen in any generation.

  4. The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm

    PubMed Central

    Ahmed, Zakir Hussain

    2014-01-01

    The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148

  5. Genetic Algorithm for Optimization: Preprocessing with n Dimensional Bisection and Error Estimation

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam Ali

    2006-01-01

    A knowledge of the appropriate values of the parameters of a genetic algorithm (GA) such as the population size, the shrunk search space containing the solution, crossover and mutation probabilities is not available a priori for a general optimization problem. Recommended here is a polynomial-time preprocessing scheme that includes an n-dimensional bisection and that determines the foregoing parameters before deciding upon an appropriate GA for all problems of similar nature and type. Such a preprocessing is not only fast but also enables us to get the global optimal solution and its reasonably narrow error bounds with a high degree of confidence.

  6. Distributed query plan generation using multiobjective genetic algorithm.

    PubMed

    Panicker, Shina; Kumar, T V Vijay

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability.

  7. Distributed Query Plan Generation Using Multiobjective Genetic Algorithm

    PubMed Central

    Panicker, Shina; Vijay Kumar, T. V.

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513

  8. A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu

    Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.

  9. Improved adaptive genetic algorithm with sparsity constraint applied to thermal neutron CT reconstruction of two-phase flow

    NASA Astrophysics Data System (ADS)

    Yan, Mingfei; Hu, Huasi; Otake, Yoshie; Taketani, Atsushi; Wakabayashi, Yasuo; Yanagimachi, Shinzo; Wang, Sheng; Pan, Ziheng; Hu, Guang

    2018-05-01

    Thermal neutron computer tomography (CT) is a useful tool for visualizing two-phase flow due to its high imaging contrast and strong penetrability of neutrons for tube walls constructed with metallic material. A novel approach for two-phase flow CT reconstruction based on an improved adaptive genetic algorithm with sparsity constraint (IAGA-SC) is proposed in this paper. In the algorithm, the neighborhood mutation operator is used to ensure the continuity of the reconstructed object. The adaptive crossover probability P c and mutation probability P m are improved to help the adaptive genetic algorithm (AGA) achieve the global optimum. The reconstructed results for projection data, obtained from Monte Carlo simulation, indicate that the comprehensive performance of the IAGA-SC algorithm exceeds the adaptive steepest descent-projection onto convex sets (ASD-POCS) algorithm in restoring typical and complex flow regimes. It especially shows great advantages in restoring the simply connected flow regimes and the shape of object. In addition, the CT experiment for two-phase flow phantoms was conducted on the accelerator-driven neutron source to verify the performance of the developed IAGA-SC algorithm.

  10. An Island Grouping Genetic Algorithm for Fuzzy Partitioning Problems

    PubMed Central

    Salcedo-Sanz, S.; Del Ser, J.; Geem, Z. W.

    2014-01-01

    This paper presents a novel fuzzy clustering technique based on grouping genetic algorithms (GGAs), which are a class of evolutionary algorithms especially modified to tackle grouping problems. Our approach hinges on a GGA devised for fuzzy clustering by means of a novel encoding of individuals (containing elements and clusters sections), a new fitness function (a superior modification of the Davies Bouldin index), specially tailored crossover and mutation operators, and the use of a scheme based on a local search and a parallelization process, inspired from an island-based model of evolution. The overall performance of our approach has been assessed over a number of synthetic and real fuzzy clustering problems with different objective functions and distance measures, from which it is concluded that the proposed approach shows excellent performance in all cases. PMID:24977235

  11. The Decision Support System (DSS) Application to Determination of Diabetes Mellitus Patient Menu Using a Genetic Algorithm Method

    NASA Astrophysics Data System (ADS)

    Zuliyana, Nia; Suseno, Jatmiko Endro; Adi, Kusworo

    2018-02-01

    Composition of foods containing sugar in people with Diabetes Mellitus should be balanced, so an app is required for facilitate the public and nutritionists in determining the appropriate food menu with calorie requirement of diabetes patient. This research will be recommended to determination of food variation for using Genetic Algorithm. The data used is nutrient content of food obtained from Tabel Komposisi Pangan Indonesia (TKPI). The requirement of caloric value the patient can be used the PERKENI 2015 method. Then the data is processed to determine the best food menu consisting of energy (E), carbohydrate (K), fat (L) and protein (P) requirements. The system is comparised with variation of Genetic Algorithm parameters is the total of chromosomes, Probability of Crossover (Pc) and Probability of Mutation (Pm). Maximum value of the probability generation of crossover and probability of mutation will be the more variations of food that will come out. For example, patient with gender is women aged 61 years old, height 160 cm, weight 55 kg, will be resulted number of calories: (E=1621.4, K=243.21, P=60.80, L=45.04), with the gene=4, chromosomes=3, generation=3, Pc=0.2, and Pm=0.2. The result obtained is the three varians: E=1607.25, K=198.877, P=95.385, L=47.508), (E=1633.25, K=196.677, P=85.885, L=55.758), (E=1630.90, K=177.455, P=85.245, L=64.335).

  12. A novel clinical decision support system using improved adaptive genetic algorithm for the assessment of fetal well-being.

    PubMed

    Ravindran, Sindhu; Jambek, Asral Bahari; Muthusamy, Hariharan; Neoh, Siew-Chin

    2015-01-01

    A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm.

  13. Genetic-evolution-based optimization methods for engineering design

    NASA Technical Reports Server (NTRS)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  14. Locating Critical Circular and Unconstrained Failure Surface in Slope Stability Analysis with Tailored Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Pasik, Tomasz; van der Meij, Raymond

    2017-12-01

    This article presents an efficient search method for representative circular and unconstrained slip surfaces with the use of the tailored genetic algorithm. Searches for unconstrained slip planes with rigid equilibrium methods are yet uncommon in engineering practice, and little publications regarding truly free slip planes exist. The proposed method presents an effective procedure being the result of the right combination of initial population type, selection, crossover and mutation method. The procedure needs little computational effort to find the optimum, unconstrained slip plane. The methodology described in this paper is implemented using Mathematica. The implementation, along with further explanations, is fully presented so the results can be reproduced. Sample slope stability calculations are performed for four cases, along with a detailed result interpretation. Two cases are compared with analyses described in earlier publications. The remaining two are practical cases of slope stability analyses of dikes in Netherlands. These four cases show the benefits of analyzing slope stability with a rigid equilibrium method combined with a genetic algorithm. The paper concludes by describing possibilities and limitations of using the genetic algorithm in the context of the slope stability problem.

  15. Flexible Job-Shop Scheduling with Dual-Resource Constraints to Minimize Tardiness Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Paksi, A. B. N.; Ma'ruf, A.

    2016-02-01

    In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.

  16. Efficiency Improvement of Action Acquisition in Two-Link Robot Arm Using Fuzzy ART with Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kotani, Naoki; Taniguchi, Kenji

    An efficient learning method using Fuzzy ART with Genetic Algorithm is proposed. The proposed method reduces the number of trials by using a policy acquired in other tasks because a reinforcement learning needs a lot of the number of trials until an agent acquires appropriate actions. Fuzzy ART is an incremental unsupervised learning algorithm in responce to arbitrary sequences of analog or binary input vectors. Our proposed method gives a policy by crossover or mutation when an agent observes unknown states. Selection controls the category proliferation problem of Fuzzy ART. The effectiveness of the proposed method was verified with the simulation of the reaching problem for the two-link robot arm. The proposed method achieves a reduction of both the number of trials and the number of states.

  17. Comparison of Genetic Algorithm and Hill Climbing for Shortest Path Optimization Mapping

    NASA Astrophysics Data System (ADS)

    Fronita, Mona; Gernowo, Rahmat; Gunawan, Vincencius

    2018-02-01

    Traveling Salesman Problem (TSP) is an optimization to find the shortest path to reach several destinations in one trip without passing through the same city and back again to the early departure city, the process is applied to the delivery systems. This comparison is done using two methods, namely optimization genetic algorithm and hill climbing. Hill Climbing works by directly selecting a new path that is exchanged with the neighbour's to get the track distance smaller than the previous track, without testing. Genetic algorithms depend on the input parameters, they are the number of population, the probability of crossover, mutation probability and the number of generations. To simplify the process of determining the shortest path supported by the development of software that uses the google map API. Tests carried out as much as 20 times with the number of city 8, 16, 24 and 32 to see which method is optimal in terms of distance and time computation. Based on experiments conducted with a number of cities 3, 4, 5 and 6 producing the same value and optimal distance for the genetic algorithm and hill climbing, the value of this distance begins to differ with the number of city 7. The overall results shows that these tests, hill climbing are more optimal to number of small cities and the number of cities over 30 optimized using genetic algorithms.

  18. High performance genetic algorithm for VLSI circuit partitioning

    NASA Astrophysics Data System (ADS)

    Dinu, Simona

    2016-12-01

    Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.

  19. Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

    PubMed Central

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  20. In silico modelling of directed evolution: Implications for experimental design and stepwise evolution.

    PubMed

    Wedge, David C; Rowe, William; Kell, Douglas B; Knowles, Joshua

    2009-03-07

    We model the process of directed evolution (DE) in silico using genetic algorithms. Making use of the NK fitness landscape model, we analyse the effects of mutation rate, crossover and selection pressure on the performance of DE. A range of values of K, the epistatic interaction of the landscape, are considered, and high- and low-throughput modes of evolution are compared. Our findings suggest that for runs of or around ten generations' duration-as is typical in DE-there is little difference between the way in which DE needs to be configured in the high- and low-throughput regimes, nor across different degrees of landscape epistasis. In all cases, a high selection pressure (but not an extreme one) combined with a moderately high mutation rate works best, while crossover provides some benefit but only on the less rugged landscapes. These genetic algorithms were also compared with a "model-based approach" from the literature, which uses sequential fixing of the problem parameters based on fitting a linear model. Overall, we find that purely evolutionary techniques fare better than do model-based approaches across all but the smoothest landscapes.

  1. Multi-objective optimization in spatial planning: Improving the effectiveness of multi-objective evolutionary algorithms (non-dominated sorting genetic algorithm II)

    NASA Astrophysics Data System (ADS)

    Karakostas, Spiros

    2015-05-01

    The multi-objective nature of most spatial planning initiatives and the numerous constraints that are introduced in the planning process by decision makers, stakeholders, etc., synthesize a complex spatial planning context in which the concept of solid and meaningful optimization is a unique challenge. This article investigates new approaches to enhance the effectiveness of multi-objective evolutionary algorithms (MOEAs) via the adoption of a well-known metaheuristic: the non-dominated sorting genetic algorithm II (NSGA-II). In particular, the contribution of a sophisticated crossover operator coupled with an enhanced initialization heuristic is evaluated against a series of metrics measuring the effectiveness of MOEAs. Encouraging results emerge for both the convergence rate of the evolutionary optimization process and the occupation of valuable regions of the objective space by non-dominated solutions, facilitating the work of spatial planners and decision makers. Based on the promising behaviour of both heuristics, topics for further research are proposed to improve their effectiveness.

  2. Operating rules for multireservoir systems

    NASA Astrophysics Data System (ADS)

    Oliveira, Rodrigo; Loucks, Daniel P.

    1997-04-01

    Multireservoir operating policies are usually defined by rules that specify either individual reservoir desired (target) storage volumes or desired (target) releases based on the time of year and the existing total storage volume in all reservoirs. This paper focuses on the use of genetic search algorithms to derive these multireservoir operating policies. The genetic algorithms use real-valued vectors containing information needed to define both system release and individual reservoir storage volume targets as functions of total storage in each of multiple within-year periods. Elitism, arithmetic crossover, mutation, and "en bloc" replacement are used in the algorithms to generate successive sets of possible operating policies. Each policy is then evaluated using simulation to compute a performance index for a given flow series. The better performing policies are then used as a basis for generating new sets of possible policies. The process of improved policy generation and evaluation is repeated until no further improvement in performance is obtained. The proposed algorithm is applied to example reservoir systems used for water supply and hydropower.

  3. 3D Protein structure prediction with genetic tabu search algorithm

    PubMed Central

    2010-01-01

    Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256

  4. A novel pipeline based FPGA implementation of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Thirer, Nonel

    2014-05-01

    To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.

  5. Research reactor loading pattern optimization using estimation of distribution algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S.; Ziver, K.; AMCG Group, RM Consultants, Abingdon

    2006-07-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristicmore » Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)« less

  6. Road screening and distribution route multi-objective robust optimization for hazardous materials based on neural network and genetic algorithm.

    PubMed

    Ma, Changxi; Hao, Wei; Pan, Fuquan; Xiang, Wang

    2018-01-01

    Route optimization of hazardous materials transportation is one of the basic steps in ensuring the safety of hazardous materials transportation. The optimization scheme may be a security risk if road screening is not completed before the distribution route is optimized. For road screening issues of hazardous materials transportation, a road screening algorithm of hazardous materials transportation is built based on genetic algorithm and Levenberg-Marquardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network section. A multi-objective robust optimization model with adjustable robustness is constructed for the hazardous materials transportation problem of single distribution center to minimize transportation risk and time. A multi-objective genetic algorithm is designed to solve the problem according to the characteristics of the model. The algorithm uses an improved strategy to complete the selection operation, applies partial matching cross shift and single ortho swap methods to complete the crossover and mutation operation, and employs an exclusive method to construct Pareto optimal solutions. Studies show that the sets of hazardous materials transportation road can be found quickly through the proposed road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solutions with different levels of robustness can be found rapidly through the proposed multi-objective robust optimization model and algorithm.

  7. An incremental approach to genetic-algorithms-based classification.

    PubMed

    Guan, Sheng-Uei; Zhu, Fangming

    2005-04-01

    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multiagent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an "integration" operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed.

  8. Sensitivity Analysis of Genetic Algorithm Parameters for Optimal Groundwater Monitoring Network Design

    NASA Astrophysics Data System (ADS)

    Abdeh-Kolahchi, A.; Satish, M.; Datta, B.

    2004-05-01

    A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.

  9. Optimal sensor placement for spatial lattice structure based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Gao, Wei-cheng; Sun, Yi; Xu, Min-jian

    2008-10-01

    Optimal sensor placement technique plays a key role in structural health monitoring of spatial lattice structures. This paper considers the problem of locating sensors on a spatial lattice structure with the aim of maximizing the data information so that structural dynamic behavior can be fully characterized. Based on the criterion of optimal sensor placement for modal test, an improved genetic algorithm is introduced to find the optimal placement of sensors. The modal strain energy (MSE) and the modal assurance criterion (MAC) have been taken as the fitness function, respectively, so that three placement designs were produced. The decimal two-dimension array coding method instead of binary coding method is proposed to code the solution. Forced mutation operator is introduced when the identical genes appear via the crossover procedure. A computational simulation of a 12-bay plain truss model has been implemented to demonstrate the feasibility of the three optimal algorithms above. The obtained optimal sensor placements using the improved genetic algorithm are compared with those gained by exiting genetic algorithm using the binary coding method. Further the comparison criterion based on the mean square error between the finite element method (FEM) mode shapes and the Guyan expansion mode shapes identified by data-driven stochastic subspace identification (SSI-DATA) method are employed to demonstrate the advantage of the different fitness function. The results showed that some innovations in genetic algorithm proposed in this paper can enlarge the genes storage and improve the convergence of the algorithm. More importantly, the three optimal sensor placement methods can all provide the reliable results and identify the vibration characteristics of the 12-bay plain truss model accurately.

  10. Optimization lighting layout based on gene density improved genetic algorithm for indoor visible light communications

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Wang, Xin; Chen, Yong; Kong, Deqian; Xia, Peijie

    2017-05-01

    For indoor visible light communication system, the layout of LED lamps affects the uniformity of the received power on communication plane. In order to find an optimized lighting layout that meets both the lighting needs and communication needs, a gene density genetic algorithm (GDGA) is proposed. In GDGA, a gene indicates a pair of abscissa and ordinate of a LED, and an individual represents a LED layout in the room. The segmented crossover operation and gene mutation strategy based on gene density are put forward to make the received power on communication plane more uniform and increase the population's diversity. A weighted differences function between individuals is designed as the fitness function of GDGA for reserving the population having the useful LED layout genetic information and ensuring the global convergence of GDGA. Comparing square layout and circular layout, with the optimized layout achieved by the GDGA, the power uniformity increases by 83.3%, 83.1% and 55.4%, respectively. Furthermore, the convergence of GDGA is verified compared with evolutionary algorithm (EA). Experimental results show that GDGA can quickly find an approximation of optimal layout.

  11. Modeling multilayer x-ray reflectivity using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sánchez del Río, M.; Pareschi, G.; Michetschläger, C.

    2000-06-01

    The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thickness, density, roughness). Non-linear fitting of experimental data with simulations requires the use of initial values sufficiently close to the optimum value. This is a difficult task when the topology of the space of the variables is highly structured. We apply global optimization methods to fit multilayer reflectivity. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (selection, crossover, mutation, etc.) on the members of the parent generation. The pressure of selection drives the population to include "good" individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C and W/Si multilayers using genetic algorithms are presented. This method can also be applied to design multilayers optimized for a target application.

  12. A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang

    2016-09-01

    A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.

  13. Single-crossover recombination in discrete time.

    PubMed

    von Wangenheim, Ute; Baake, Ellen; Baake, Michael

    2010-05-01

    Modelling the process of recombination leads to a large coupled nonlinear dynamical system. Here, we consider a particular case of recombination in discrete time, allowing only for single crossovers. While the analogous dynamics in continuous time admits a closed solution (Baake and Baake in Can J Math 55:3-41, 2003), this no longer works for discrete time. A more general model (i.e. without the restriction to single crossovers) has been studied before (Bennett in Ann Hum Genet 18:311-317, 1954; Dawson in Theor Popul Biol 58:1-20, 2000; Linear Algebra Appl 348:115-137, 2002) and was solved algorithmically by means of Haldane linearisation. Using the special formalism introduced by Baake and Baake (Can J Math 55:3-41, 2003), we obtain further insight into the single-crossover dynamics and the particular difficulties that arise in discrete time. We then transform the equations to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the coefficients of the second step must be determined in a recursive manner, but once this is done for a given system, they allow for an explicit solution valid for all times.

  14. Optimization of a Boiling Water Reactor Loading Pattern Using an Improved Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2003-08-15

    A search method based on genetic algorithms (GA) using deterministic operators has been developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). The search method uses an Improved GA operator, that is, crossover, mutation, and selection. The handling of the encoding technique and constraint conditions is designed so that the GA reflects the peculiar characteristics of the BWR. In addition, some strategies such as elitism and self-reproduction are effectively used to improve the search speed. LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and three-dimensional-dependent constraints have alwaysmore » necessitated the use of three-dimensional core simulators for BWRs, so that an optimization method is required for computational efficiency. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant applying the Haling technique. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  15. Enhancing speech recognition using improved particle swarm optimization based hidden Markov model.

    PubMed

    Selvaraj, Lokesh; Ganesan, Balakrishnan

    2014-01-01

    Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO) is suggested. The suggested methodology contains four stages, namely, (i) denoising, (ii) feature mining (iii), vector quantization, and (iv) IPSO based hidden Markov model (HMM) technique (IP-HMM). At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC), mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy.

  16. Improved hybrid optimization algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  17. An improved genetic algorithm for increasing the addressing accuracy of encoding fiber Bragg grating sensor network

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Wang, Chujun; Chen, Yong

    2018-01-01

    Large-capacity encoding fiber Bragg grating (FBG) sensor network is widely used in modern long-term health monitoring system. Encoding FBG sensors have greatly improved the capacity of distributed FBG sensor network. However, the error of addressing increases correspondingly with the enlarging of capacity. To address the issue, an improved algorithm called genetic tracking algorithm (GTA) is proposed in the paper. In the GTA, for improving the success rate of matching and reducing the large number of redundant matching operations generated by sequential matching, the individuals are designed based on the feasible matching. Then, two kinds of self-crossover ways and a dynamic variation during mutation process are designed to increase the diversity of individuals and to avoid falling into local optimum. Meanwhile, an assistant decision is proposed to handle the issue that the GTA cannot solve when the variation of sensor information is highly overlapped. The simulation results indicate that the proposed GTA has higher accuracy compared with the traditional tracking algorithm and the enhanced tracking algorithm. In order to address the problems of spectrum fragmentation and low sharing degree of spectrum resources in survivable.

  18. Comparison of application of various crossovers in solving inhomogeneous minimax problem modified by Goldberg model

    NASA Astrophysics Data System (ADS)

    Kobak, B. V.; Zhukovskiy, A. G.; Kuzin, A. P.

    2018-05-01

    This paper considers one of the classical NP complete problems - an inhomogeneous minimax problem. When solving such large-scale problem, there appear difficulties in obtaining an exact solution. Therefore, let us propose getting an optimum solution in an acceptable time. Among a wide range of genetic algorithm models, let us choose the modified Goldberg model, which earlier was successfully used by authors in solving NP complete problems. The classical Goldberg model uses a single-point crossover and a singlepoint mutation, which somewhat decreases the accuracy of the obtained results. In the article, let us propose using a full two-point crossover with various mutations previously researched. In addition, the work studied the necessary probability to apply it to the crossover in order to obtain results that are more accurate. Results of the computation experiment showed that the higher the probability of a crossover, the higher the quality of both the average results and the best solutions. In addition, it was found out that the higher the values of the number of individuals and the number of repetitions, the closer both the average results and the best solutions to the optimum. The paper shows how the use of a full two-point crossover increases the accuracy of solving an inhomogeneous minimax problem, while the time for getting the solution increases, but remains polynomial.

  19. An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization.

    PubMed

    Dai, Cai; Wang, Yuping; Ye, Miao; Xue, Xingsi; Liu, Hailin

    2016-12-01

    Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed. The experimental results show that in continuous states, the proposed algorithm is able to achieve accurate Pareto-optimal sets and wide Pareto-optimal fronts efficiently. Moreover, the comparison with the several existing well-known algorithms: nondominated sorting genetic algorithm II, decomposition-based multiobjective evolutionary algorithm, decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, multiobjective optimization by LA, and multiobjective immune algorithm with nondominated neighbor-based selection, on 15 multiobjective benchmark problems, shows that the proposed algorithm is able to find more accurate and evenly distributed Pareto-optimal fronts than the compared ones.

  20. Designing a Unique Single Point Cross Over Method

    NASA Technical Reports Server (NTRS)

    Wilson, Richard Phillip

    2002-01-01

    The idea behind genetic algorithms is to extract optimization strategies nature uses successfully - known as Darwinian Evolution - and transform them for application in mathematical optimization theory to find the global optimum in a defined phase space. One could imagine a population of individual 'explorers' sent into the optimization phase-space. Each explorer is defined by its genes, what means, its position inside the phase-space is coded in his genes. Every explorer has the duty to find a value of the quality of his position in the phase space. (Consider the phase-space being a number of variables in some technological process, the value of quality of any position in the phase space - in other words: any set of the variables - can be expressed by the yield of the desired chemical product.) Then the struggle of 'life' begins. The three fundamental principles are selection, mating/crossover, and mutation. Only explorers (= genes) sitting on the best places will reproduce and create a new population. This is performed in the second step (mating/crossover). The 'hope' behind this part of the algorithm is, that 'good' sections of two parents will be recombined to yet better fitting children. In fact, many of the created children will not be successful (as in biological evolution), but a few children will indeed fulfill this hope. These good sections are named in some publications as building blocks. Now there appears a problem. Repeating these steps, no new area would be explored. The two former steps would only exploit the already known regions in the phase space, which could lead to premature convergence of the algorithm with the consequence of missing the global optimum by exploiting some local optimum. The third step, mutation, ensures the necessary accidental effects. One can imagine the new population being mixed up a little bit to bring some new information into this set of genes. Whereas in biology a gene is described as a macro-molecule with four different bases to code the genetic information, a gene in genetic algorithms is usually defined as a bitstring (a sequence of b 1's and 0's).

  1. NON-HOMOGENEOUS POISSON PROCESS MODEL FOR GENETIC CROSSOVER INTERFERENCE.

    PubMed

    Leu, Szu-Yun; Sen, Pranab K

    2014-01-01

    The genetic crossover interference is usually modeled with a stationary renewal process to construct the genetic map. We propose two non-homogeneous, also dependent, Poisson process models applied to the known physical map. The crossover process is assumed to start from an origin and to occur sequentially along the chromosome. The increment rate depends on the position of the markers and the number of crossover events occurring between the origin and the markers. We show how to obtain parameter estimates for the process and use simulation studies and real Drosophila data to examine the performance of the proposed models.

  2. An improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling

    NASA Astrophysics Data System (ADS)

    Dao, Son Duy; Abhary, Kazem; Marian, Romeo

    2017-06-01

    Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial, NP-hard problem, for which no polynomial time algorithm is known to produce an optimal result on a random graph. In this paper, the further development of Genetic Algorithm (GA) for this integrated optimization is presented. Because of the dynamic nature of the problem, the size of its solution is variable. To deal with this variability and find an optimal solution to the problem, GA with new features in chromosome encoding, crossover, mutation, selection as well as algorithm structure is developed herein. With the proposed structure, the proposed GA is able to "learn" from its experience. Robustness of the proposed GA is demonstrated by a complex numerical example in which performance of the proposed GA is compared with those of three commercial optimization solvers.

  3. 1/f Noise in the Simple Genetic Algorithm Applied to a Traveling Salesman Problem

    NASA Astrophysics Data System (ADS)

    Yamada, Mitsuhiro

    Complex dynamical systems are observed in physics, biology, and even economics. Such systems in balance are considered to be in a critical state, and 1/f noise is considered to be a footprint. Complex dynamical systems have also been investigated in the field of evolutionary algorithms inspired by biological evolution. The genetic algorithm (GA) is a well-known evolutionary algorithm in which many individuals interact, and the simplest GA is referred to as the simple GA (SGA). However, the GA has not been examined from the viewpoint of the emergence of 1/f noise. In the present paper, the SGA is applied to a traveling salesman problem in order to investigate the SGA from such a viewpoint. The timecourses of the fitness of the candidate solution were examined. As a result, when the mutation and crossover probabilities were optimal, the system evolved toward a critical state in which the average maximum fitness over all trial runs was maximum. In this situation, the fluctuation of the fitness of the candidate solution resulted in the 1/f power spectrum, and the dynamics of the system had no intrinsic time or length scale.

  4. A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observations

    NASA Astrophysics Data System (ADS)

    Srivastava, D. C.

    2016-12-01

    A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observationsDeepak C. Srivastava, Prithvi Thakur and Pravin K. GuptaDepartment of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247667, India. Abstract Paleostress estimation from a group of heterogeneous fault-slip observations entails first the classification of the observations into homogeneous fault sets and then a separate inversion of each homogeneous set. This study combines these two issues into a nonlinear inverse problem and proposes a heuristic search method that inverts the heterogeneous fault-slip observations. The method estimates different paleostress states in a group of heterogeneous fault-slip observations and classifies it into homogeneous sets as a byproduct. It uses the genetic algorithm operators, elitism, selection, encoding, crossover and mutation. These processes translate into a guided search that finds successively fitter solutions and operate iteratively until the termination criteria is met and the globally fittest stress tensors are obtained. We explain the basic steps of the algorithm on a working example and demonstrate validity of the method on several synthetic and a natural group of heterogeneous fault-slip observations. The method is independent of any user-defined bias or any entrapment of solution in a local optimum. It succeeds even in the difficult situations where other classification methods are found to fail.

  5. Biased random key genetic algorithm with insertion and gender selection for capacitated vehicle routing problem with time windows

    NASA Astrophysics Data System (ADS)

    Rochman, Auliya Noor; Prasetyo, Hari; Nugroho, Munajat Tri

    2017-06-01

    Vehicle Routing Problem (VRP) often occurs when the manufacturers need to distribute their product to some customers/outlets. The distribution process is typically restricted by the capacity of the vehicle and the working hours at the distributor. This type of VRP is also known as Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). A Biased Random Key Genetic Algorithm (BRKGA) was designed and coded in MATLAB to solve the CVRPTW case of soft drink distribution. The standard BRKGA was then modified by applying chromosome insertion into the initial population and defining chromosome gender for parent undergoing crossover operation. The performance of the established algorithms was then compared to a heuristic procedure for solving a soft drink distribution. Some findings are revealed (1) the total distribution cost of BRKGA with insertion (BRKGA-I) results in a cost saving of 39% compared to the total cost of heuristic method, (2) BRKGA with the gender selection (BRKGA-GS) could further improve the performance of the heuristic method. However, the BRKGA-GS tends to yield worse results compared to that obtained from the standard BRKGA.

  6. X-Chromosome Control of Genome-Scale Recombination Rates in House Mice.

    PubMed

    Dumont, Beth L

    2017-04-01

    Sex differences in recombination are widespread in mammals, but the causes of this pattern are poorly understood. Previously, males from two interfertile subspecies of house mice, Mus musculus musculus and M. m. castaneus , were shown to exhibit a ∼30% difference in their global crossover frequencies. Much of this crossover rate divergence is explained by six autosomal loci and a large-effect locus on the X chromosome. Intriguingly, the allelic effects at this X-linked locus are transgressive, with the allele conferring increased crossover rate being transmitted by the low crossover rate M. m. castaneus parent. Despite the pronounced divergence between males, females from these subspecies exhibit similar crossover rates, raising the question of how recombination is genetically controlled in this sex. Here, I analyze publicly available genotype data from early generations of the Collaborative Cross, an eight-way panel of recombinant inbred strains, to estimate crossover frequencies in female mice with sex-chromosome genotypes of diverse subspecific origins. Consistent with the transgressive influence of the X chromosome in males, I show that females inheriting an M. m. castaneus X possess higher average crossover rates than females lacking the M. m. castaneus X chromosome. The differential inheritance of the X chromosome in males and females provides a simple genetic explanation for sex-limited evolution of this trait. Further, the presence of X-linked and autosomal crossover rate modifiers with antagonistic effects hints at an underlying genetic conflict fueled by selection for distinct crossover rate optima in males and females. Copyright © 2017 by the Genetics Society of America.

  7. Improved Evolutionary Programming with Various Crossover Techniques for Optimal Power Flow Problem

    NASA Astrophysics Data System (ADS)

    Tangpatiphan, Kritsana; Yokoyama, Akihiko

    This paper presents an Improved Evolutionary Programming (IEP) for solving the Optimal Power Flow (OPF) problem, which is considered as a non-linear, non-smooth, and multimodal optimization problem in power system operation. The total generator fuel cost is regarded as an objective function to be minimized. The proposed method is an Evolutionary Programming (EP)-based algorithm with making use of various crossover techniques, normally applied in Real Coded Genetic Algorithm (RCGA). The effectiveness of the proposed approach is investigated on the IEEE 30-bus system with three different types of fuel cost functions; namely the quadratic cost curve, the piecewise quadratic cost curve, and the quadratic cost curve superimposed by sine component. These three cost curves represent the generator fuel cost functions with a simplified model and more accurate models of a combined-cycle generating unit and a thermal unit with value-point loading effect respectively. The OPF solutions by the proposed method and Pure Evolutionary Programming (PEP) are observed and compared. The simulation results indicate that IEP requires less computing time than PEP with better solutions in some cases. Moreover, the influences of important IEP parameters on the OPF solution are described in details.

  8. An enhanced artificial bee colony algorithm (EABC) for solving dispatching of hydro-thermal system (DHTS) problem.

    PubMed

    Yu, Yi; Wu, Yonggang; Hu, Binqi; Liu, Xinglong

    2018-01-01

    The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.

  9. The First National Student Conference: NASA University Research Centers at Minority Institutions

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O. (Editor); Mebane, Stacie (Editor)

    1997-01-01

    The conference includes contributions from 13 minority universities with NASA University Research Centers. Topics discussed include: leadership, survival strategies, life support systems, food systems, simulated hypergravity, chromium diffusion doping, radiation effects on dc-dc converters, metal oxide glasses, crystal growth of Bil3, science and communication on wheels, semiconductor thin films, numerical solution of random algebraic equations, fuzzy logic control, spatial resolution of satellite images, programming language development, nitric oxide in the thermosphere and mesosphere, high performance polyimides, crossover control in genetic algorithms, hyperthermal ion scattering, etc.

  10. Time series segmentation: a new approach based on Genetic Algorithm and Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Toreti, A.; Kuglitsch, F. G.; Xoplaki, E.; Luterbacher, J.

    2009-04-01

    The subdivision of a time series into homogeneous segments has been performed using various methods applied to different disciplines. In climatology, for example, it is accompanied by the well-known homogenization problem and the detection of artificial change points. In this context, we present a new method (GAMM) based on Hidden Markov Model (HMM) and Genetic Algorithm (GA), applicable to series of independent observations (and easily adaptable to autoregressive processes). A left-to-right hidden Markov model, estimating the parameters and the best-state sequence, respectively, with the Baum-Welch and Viterbi algorithms, was applied. In order to avoid the well-known dependence of the Baum-Welch algorithm on the initial condition, a Genetic Algorithm was developed. This algorithm is characterized by mutation, elitism and a crossover procedure implemented with some restrictive rules. Moreover the function to be minimized was derived following the approach of Kehagias (2004), i.e. it is the so-called complete log-likelihood. The number of states was determined applying a two-fold cross-validation procedure (Celeux and Durand, 2008). Being aware that the last issue is complex, and it influences all the analysis, a Multi Response Permutation Procedure (MRPP; Mielke et al., 1981) was inserted. It tests the model with K+1 states (where K is the state number of the best model) if its likelihood is close to K-state model. Finally, an evaluation of the GAMM performances, applied as a break detection method in the field of climate time series homogenization, is shown. 1. G. Celeux and J.B. Durand, Comput Stat 2008. 2. A. Kehagias, Stoch Envir Res 2004. 3. P.W. Mielke, K.J. Berry, G.W. Brier, Monthly Wea Rev 1981.

  11. A new three-dimensional manufacturing service composition method under various structures using improved Flower Pollination Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyu; Yang, Yushu; Zhang, Shuai; Yu, Dejian; Chen, Yong

    2018-05-01

    With the growing complexity of customer requirements and the increasing scale of manufacturing services, how to select and combine the single services to meet the complex demand of the customer has become a growing concern. This paper presents a new manufacturing service composition method to solve the multi-objective optimization problem based on quality of service (QoS). The proposed model not only presents different methods for calculating the transportation time and transportation cost under various structures but also solves the three-dimensional composition optimization problem, including service aggregation, service selection, and service scheduling simultaneously. Further, an improved Flower Pollination Algorithm (IFPA) is proposed to solve the three-dimensional composition optimization problem using a matrix-based representation scheme. The mutation operator and crossover operator of the Differential Evolution (DE) algorithm are also used to extend the basic Flower Pollination Algorithm (FPA) to improve its performance. Compared to Genetic Algorithm, DE, and basic FPA, the experimental results confirm that the proposed method demonstrates superior performance than other meta heuristic algorithms and can obtain better manufacturing service composition solutions.

  12. An Improved Genetic Fuzzy Logic Control Method to Reduce the Enlargement of Coal Floor Deformation in Shearer Memory Cutting Process

    PubMed Central

    Tan, Chao; Xu, Rongxin; Wang, Zhongbin; Si, Lei; Liu, Xinhua

    2016-01-01

    In order to reduce the enlargement of coal floor deformation and the manual adjustment frequency of rocker arms, an improved approach through integration of improved genetic algorithm and fuzzy logic control (GFLC) method is proposed. The enlargement of coal floor deformation is analyzed and a model is built. Then, the framework of proposed approach is built. Moreover, the constituents of GA such as tangent function roulette wheel selection (Tan-RWS) selection, uniform crossover, and nonuniform mutation are employed to enhance the performance of GFLC. Finally, two simulation examples and an industrial application example are carried out and the results indicate that the proposed method is feasible and efficient. PMID:27217824

  13. An enhanced artificial bee colony algorithm (EABC) for solving dispatching of hydro-thermal system (DHTS) problem

    PubMed Central

    Yu, Yi; Hu, Binqi; Liu, Xinglong

    2018-01-01

    The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm’s performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms. PMID:29324743

  14. Locating hazardous gas leaks in the atmosphere via modified genetic, MCMC and particle swarm optimization algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Zhang, Ru; Yan, Yuting; Dong, Xiaoqiang; Li, Jun Ming

    2017-05-01

    Hazardous gas leaks in the atmosphere can cause significant economic losses in addition to environmental hazards, such as fires and explosions. A three-stage hazardous gas leak source localization method was developed that uses movable and stationary gas concentration sensors. The method calculates a preliminary source inversion with a modified genetic algorithm (MGA) and has the potential to crossover with eliminated individuals from the population, following the selection of the best candidate. The method then determines a search zone using Markov Chain Monte Carlo (MCMC) sampling, utilizing a partial evaluation strategy. The leak source is then accurately localized using a modified guaranteed convergence particle swarm optimization algorithm with several bad-performing individuals, following selection of the most successful individual with dynamic updates. The first two stages are based on data collected by motionless sensors, and the last stage is based on data from movable robots with sensors. The measurement error adaptability and the effect of the leak source location were analyzed. The test results showed that this three-stage localization process can localize a leak source within 1.0 m of the source for different leak source locations, with measurement error standard deviation smaller than 2.0.

  15. Buckling and weight optimization for non-coupled antisymmetric laminates

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Aditi

    This research work describes the application of genetic algorithms to weight minimization and buckling load maximization of the non-coupled antisymmetric composite laminated plates. Previous studies of composite tailoring were limited to symmetric and balanced laminates. With the availability of many methodologies for composite tailoring, genetic algorithm is preferably used because of its ability to handle discrete design variable and attain multiple near optimum design solutions. A comparative study is made between optimum symmetric-balanced laminate designs and optimum non-coupled antisymmetric laminate designs, both of which are subjected to biaxial in-plane compressive loads. With the implementation of various genetic algorithm operators such as selection, crossover and mutation, critical buckling load factors are obtained for the optimum stacking sequence for both types of laminates. The mechanical properties for non-coupled antisymmetric laminates is independent of all types of coupling effects such as bending-twisting coupling, bending-extension coupling, and shear-extension coupling, thus giving the laminate a non-coupling behavior. This is in contrast to that of symmetric-balanced laminates where finite bending-twisting coupling terms are present. Optimized laminate layups satisfying the constraints of balance, buckling and adjoining were obtained for two types of graphite epoxy rectangular composite laminated plates. The current research augments the laminate thickness minimization designs with both odd and even number of layers, and the optimum buckling load maximization designs by the introduction of non-coupled antisymmetric laminates.

  16. The spatial regulation of meiotic recombination hotspots: are all DSB hotspots crossover hotspots?

    PubMed

    Serrentino, Maria-Elisabetta; Borde, Valérie

    2012-07-15

    A key step for the success of meiosis is programmed homologous recombination, during which crossovers, or exchange of chromosome arms, take place. Crossovers increase genetic diversity but their main function is to ensure accurate chromosome segregation. Defects in crossover number and position produce aneuploidies that represent the main cause of miscarriages and chromosomal abnormalities such as Down's syndrome. Recombination is initiated by the formation of programmed double strand breaks (DSBs), which occur preferentially at places called DSB hotspots. Among all DSBs generated, only a small fraction is repaired by crossover, the other being repaired by other homologous recombination pathways. Crossover maps have been generated in a number of organisms, defining crossover hotspots. With the availability of genome-wide maps of DSBs as well as the ability to measure genetically the repair outcome at several hotspots, it is becoming more and more clear that not all DSB hotspots behave the same for crossover formation, suggesting that chromosomal features distinguish different types of hotspots. Copyright © 2012. Published by Elsevier Inc.

  17. An implementation of differential evolution algorithm for inversion of geoelectrical data

    NASA Astrophysics Data System (ADS)

    Balkaya, Çağlayan

    2013-11-01

    Differential evolution (DE), a population-based evolutionary algorithm (EA) has been implemented to invert self-potential (SP) and vertical electrical sounding (VES) data sets. The algorithm uses three operators including mutation, crossover and selection similar to genetic algorithm (GA). Mutation is the most important operator for the success of DE. Three commonly used mutation strategies including DE/best/1 (strategy 1), DE/rand/1 (strategy 2) and DE/rand-to-best/1 (strategy 3) were applied together with a binomial type crossover. Evolution cycle of DE was realized without boundary constraints. For the test studies performed with SP data, in addition to both noise-free and noisy synthetic data sets two field data sets observed over the sulfide ore body in the Malachite mine (Colorado) and over the ore bodies in the Neem-Ka Thana cooper belt (India) were considered. VES test studies were carried out using synthetically produced resistivity data representing a three-layered earth model and a field data set example from Gökçeada (Turkey), which displays a seawater infiltration problem. Mutation strategies mentioned above were also extensively tested on both synthetic and field data sets in consideration. Of these, strategy 1 was found to be the most effective strategy for the parameter estimation by providing less computational cost together with a good accuracy. The solutions obtained by DE for the synthetic cases of SP were quite consistent with particle swarm optimization (PSO) which is a more widely used population-based optimization algorithm than DE in geophysics. Estimated parameters of SP and VES data were also compared with those obtained from Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing (SA) without cooling to clarify uncertainties in the solutions. Comparison to the M-H algorithm shows that DE performs a fast approximate posterior sampling for the case of low-dimensional inverse geophysical problems.

  18. Combined Simulated Annealing and Genetic Algorithm Approach to Bus Network Design

    NASA Astrophysics Data System (ADS)

    Liu, Li; Olszewski, Piotr; Goh, Pong-Chai

    A new method - combined simulated annealing (SA) and genetic algorithm (GA) approach is proposed to solve the problem of bus route design and frequency setting for a given road network with fixed bus stop locations and fixed travel demand. The method involves two steps: a set of candidate routes is generated first and then the best subset of these routes is selected by the combined SA and GA procedure. SA is the main process to search for a better solution to minimize the total system cost, comprising user and operator costs. GA is used as a sub-process to generate new solutions. Bus demand assignment on two alternative paths is performed at the solution evaluation stage. The method was implemented on four theoretical grid networks of different size and a benchmark network. Several GA operators (crossover and mutation) were utilized and tested for their effectiveness. The results show that the proposed method can efficiently converge to the optimal solution on a small network but computation time increases significantly with network size. The method can also be used for other transport operation management problems.

  19. Collaboration space division in collaborative product development based on a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Qian, Xueming; Ma, Yanqiao; Feng, Huan

    2018-02-01

    The advance in the global environment, rapidly changing markets, and information technology has created a new stage for design. In such an environment, one strategy for success is the Collaborative Product Development (CPD). Organizing people effectively is the goal of Collaborative Product Development, and it solves the problem with certain foreseeability. The development group activities are influenced not only by the methods and decisions available, but also by correlation among personnel. Grouping the personnel according to their correlation intensity is defined as collaboration space division (CSD). Upon establishment of a correlation matrix (CM) of personnel and an analysis of the collaboration space, the genetic algorithm (GA) and minimum description length (MDL) principle may be used as tools in optimizing collaboration space. The MDL principle is used in setting up an object function, and the GA is used as a methodology. The algorithm encodes spatial information as a chromosome in binary. After repetitious crossover, mutation, selection and multiplication, a robust chromosome is found, which can be decoded into an optimal collaboration space. This new method can calculate the members in sub-spaces and individual groupings within the staff. Furthermore, the intersection of sub-spaces and public persons belonging to all sub-spaces can be determined simultaneously.

  20. Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts.

    PubMed

    Dashtban, M; Balafar, Mohammadali

    2017-03-01

    Gene selection is a demanding task for microarray data analysis. The diverse complexity of different cancers makes this issue still challenging. In this study, a novel evolutionary method based on genetic algorithms and artificial intelligence is proposed to identify predictive genes for cancer classification. A filter method was first applied to reduce the dimensionality of feature space followed by employing an integer-coded genetic algorithm with dynamic-length genotype, intelligent parameter settings, and modified operators. The algorithmic behaviors including convergence trends, mutation and crossover rate changes, and running time were studied, conceptually discussed, and shown to be coherent with literature findings. Two well-known filter methods, Laplacian and Fisher score, were examined considering similarities, the quality of selected genes, and their influences on the evolutionary approach. Several statistical tests concerning choice of classifier, choice of dataset, and choice of filter method were performed, and they revealed some significant differences between the performance of different classifiers and filter methods over datasets. The proposed method was benchmarked upon five popular high-dimensional cancer datasets; for each, top explored genes were reported. Comparing the experimental results with several state-of-the-art methods revealed that the proposed method outperforms previous methods in DLBCL dataset. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Primary chromatic aberration elimination via optimization work with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao

    2008-09-01

    Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.

  2. Algorithms for optimizing cross-overs in DNA shuffling.

    PubMed

    He, Lu; Friedman, Alan M; Bailey-Kellogg, Chris

    2012-03-21

    DNA shuffling generates combinatorial libraries of chimeric genes by stochastically recombining parent genes. The resulting libraries are subjected to large-scale genetic selection or screening to identify those chimeras with favorable properties (e.g., enhanced stability or enzymatic activity). While DNA shuffling has been applied quite successfully, it is limited by its homology-dependent, stochastic nature. Consequently, it is used only with parents of sufficient overall sequence identity, and provides no control over the resulting chimeric library. This paper presents efficient methods to extend the scope of DNA shuffling to handle significantly more diverse parents and to generate more predictable, optimized libraries. Our CODNS (cross-over optimization for DNA shuffling) approach employs polynomial-time dynamic programming algorithms to select codons for the parental amino acids, allowing for zero or a fixed number of conservative substitutions. We first present efficient algorithms to optimize the local sequence identity or the nearest-neighbor approximation of the change in free energy upon annealing, objectives that were previously optimized by computationally-expensive integer programming methods. We then present efficient algorithms for more powerful objectives that seek to localize and enhance the frequency of recombination by producing "runs" of common nucleotides either overall or according to the sequence diversity of the resulting chimeras. We demonstrate the effectiveness of CODNS in choosing codons and allocating substitutions to promote recombination between parents targeted in earlier studies: two GAR transformylases (41% amino acid sequence identity), two very distantly related DNA polymerases, Pol X and β (15%), and beta-lactamases of varying identity (26-47%). Our methods provide the protein engineer with a new approach to DNA shuffling that supports substantially more diverse parents, is more deterministic, and generates more predictable and more diverse chimeric libraries.

  3. Advertisement scheduling on commercial radio station using genetics algorithm

    NASA Astrophysics Data System (ADS)

    Purnamawati, S.; Nababan, E. B.; Tsani, B.; Taqyuddin, R.; Rahmat, R. F.

    2018-03-01

    On the commercial radio station, the advertising schedule is done manually, which resulted in ineffectiveness of ads schedule. Playback time consists of two types such as prime time and regular time. Radio Ads scheduling will be discussed in this research is based on ad playback schedule between 5am until 12am which rules every 15 minutes. It provides 3 slots ads with playback duration per ads maximum is 1 minute. If the radio broadcast time per day is 12 hours, then the maximum number of ads per day which can be aired is 76 ads. The other is the enactment of rules of prime time, namely the hours where the common people (listeners) have the greatest opportunity to listen to the radio, namely between the hours and hours of 4 am - 8 am, 6 pm - 10 pm. The number of screenings of the same ads on one day are limited to prime time ie 5 times, while for regular time is 8 times. Radio scheduling process is done using genetic algorithms which are composed of processes initialization chromosomes, selection, crossover and mutation. Study on chromosome 3 genes, each chromosome will be evaluated based on the value of fitness calculated based on the number of infractions that occurred on each individual chromosome. Where rule 1 is the number of screenings per ads must not be more than 5 times per day and rule 2 is there should never be two or more scheduling ads delivered on the same day and time. After fitness value of each chromosome is acquired, then the do the selection, crossover and mutation. From this research result, the optimal advertising schedule with schedule a whole day and ads data playback time ads with this level of accuracy: the average percentage was 83.79%.

  4. Meiotic recombination hotspots - a comparative view.

    PubMed

    Choi, Kyuha; Henderson, Ian R

    2015-07-01

    During meiosis homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover. Meiotic recombination has a profound effect on patterns of genetic variation and is an important tool during crop breeding. Crossovers initiate from programmed DNA double-stranded breaks that are processed to form single-stranded DNA, which can invade a homologous chromosome. Strand invasion events mature into double Holliday junctions that can be resolved as crossovers. Extensive variation in the frequency of meiotic recombination occurs along chromosomes and is typically focused in narrow hotspots, observed both at the level of DNA breaks and final crossovers. We review methodologies to profile hotspots at different steps of the meiotic recombination pathway that have been used in different eukaryote species. We then discuss what these studies have revealed concerning specification of hotspot locations and activity and the contributions of both genetic and epigenetic factors. Understanding hotspots is important for interpreting patterns of genetic variation in populations and how eukaryotic genomes evolve. In addition, manipulation of hotspots will allow us to accelerate crop breeding, where meiotic recombination distributions can be limiting. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. An Expanded Lateral Interactive Clonal Selection Algorithm and Its Application

    NASA Astrophysics Data System (ADS)

    Gao, Shangce; Dai, Hongwei; Zhang, Jianchen; Tang, Zheng

    Based on the clonal selection principle proposed by Burnet, in the immune response process there is no crossover of genetic material between members of the repertoire, i. e., there is no knowledge communication during different elite pools in the previous clonal selection models. As a result, the search performance of these models is ineffective. To solve this problem, inspired by the concept of the idiotypic network theory, an expanded lateral interactive clonal selection algorithm (LICS) is put forward. In LICS, an antibody is matured not only through the somatic hypermutation and the receptor editing from the B cell, but also through the stimuli from other antibodies. The stimuli is realized by memorizing some common gene segment on the idiotypes, based on which a lateral interactive receptor editing operator is also introduced. Then, LICS is applied to several benchmark instances of the traveling salesman problem. Simulation results show the efficiency and robustness of LICS when compared to other traditional algorithms.

  6. Algorithme intelligent d'optimisation d'un design structurel de grande envergure

    NASA Astrophysics Data System (ADS)

    Dominique, Stephane

    The implementation of an automated decision support system in the field of design and structural optimisation can give a significant advantage to any industry working on mechanical designs. Indeed, by providing solution ideas to a designer or by upgrading existing design solutions while the designer is not at work, the system may reduce the project cycle time, or allow more time to produce a better design. This thesis presents a new approach to automate a design process based on Case-Based Reasoning (CBR), in combination with a new genetic algorithm named Genetic Algorithm with Territorial core Evolution (GATE). This approach was developed in order to reduce the operating cost of the process. However, as the system implementation cost is quite expensive, the approach is better suited for large scale design problem, and particularly for design problems that the designer plans to solve for many different specification sets. First, the CBR process uses a databank filled with every known solution to similar design problems. Then, the closest solutions to the current problem in term of specifications are selected. After this, during the adaptation phase, an artificial neural network (ANN) interpolates amongst known solutions to produce an additional solution to the current problem using the current specifications as inputs. Each solution produced and selected by the CBR is then used to initialize the population of an island of the genetic algorithm. The algorithm will optimise the solution further during the refinement phase. Using progressive refinement, the algorithm starts using only the most important variables for the problem. Then, as the optimisation progress, the remaining variables are gradually introduced, layer by layer. The genetic algorithm that is used is a new algorithm specifically created during this thesis to solve optimisation problems from the field of mechanical device structural design. The algorithm is named GATE, and is essentially a real number genetic algorithm that prevents new individuals to be born too close to previously evaluated solutions. The restricted area becomes smaller or larger during the optimisation to allow global or local search when necessary. Also, a new search operator named Substitution Operator is incorporated in GATE. This operator allows an ANN surrogate model to guide the algorithm toward the most promising areas of the design space. The suggested CBR approach and GATE were tested on several simple test problems, as well as on the industrial problem of designing a gas turbine engine rotor's disc. These results are compared to other results obtained for the same problems by many other popular optimisation algorithms, such as (depending of the problem) gradient algorithms, binary genetic algorithm, real number genetic algorithm, genetic algorithm using multiple parents crossovers, differential evolution genetic algorithm, Hookes & Jeeves generalized pattern search method and POINTER from the software I-SIGHT 3.5. Results show that GATE is quite competitive, giving the best results for 5 of the 6 constrained optimisation problem. GATE also provided the best results of all on problem produced by a Maximum Set Gaussian landscape generator. Finally, GATE provided a disc 4.3% lighter than the best other tested algorithm (POINTER) for the gas turbine engine rotor's disc problem. One drawback of GATE is a lesser efficiency for highly multimodal unconstrained problems, for which he gave quite poor results with respect to its implementation cost. To conclude, according to the preliminary results obtained during this thesis, the suggested CBR process, combined with GATE, seems to be a very good candidate to automate and accelerate the structural design of mechanical devices, potentially reducing significantly the cost of industrial preliminary design processes.

  7. Modeling and Optimization of Multiple Unmanned Aerial Vehicles System Architecture Alternatives

    PubMed Central

    Wang, Weiping; He, Lei

    2014-01-01

    Unmanned aerial vehicle (UAV) systems have already been used in civilian activities, although very limitedly. Confronted different types of tasks, multi UAVs usually need to be coordinated. This can be extracted as a multi UAVs system architecture problem. Based on the general system architecture problem, a specific description of the multi UAVs system architecture problem is presented. Then the corresponding optimization problem and an efficient genetic algorithm with a refined crossover operator (GA-RX) is proposed to accomplish the architecting process iteratively in the rest of this paper. The availability and effectiveness of overall method is validated using 2 simulations based on 2 different scenarios. PMID:25140328

  8. An Ad-Hoc Adaptive Pilot Model for Pitch Axis Gross Acquisition Tasks

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2012-01-01

    An ad-hoc algorithm is presented for real-time adaptation of the well-known crossover pilot model and applied to pitch axis gross acquisition tasks in a generic fighter aircraft. Off-line tuning of the crossover model to human pilot data gathered in a fixed-based high fidelity simulation is first accomplished for a series of changes in aircraft dynamics to provide expected values for model parameters. It is shown that in most cases, for this application, the traditional crossover model can be reduced to a gain and a time delay. The ad-hoc adaptive pilot gain algorithm is shown to have desirable convergence properties for most types of changes in aircraft dynamics.

  9. Genetic Network Programming with Reconstructed Individuals

    NASA Astrophysics Data System (ADS)

    Ye, Fengming; Mabu, Shingo; Wang, Lutao; Eto, Shinji; Hirasawa, Kotaro

    A lot of research on evolutionary computation has been done and some significant classical methods such as Genetic Algorithm (GA), Genetic Programming (GP), Evolutionary Programming (EP), and Evolution Strategies (ES) have been studied. Recently, a new approach named Genetic Network Programming (GNP) has been proposed. GNP can evolve itself and find the optimal solution. It is based on the idea of Genetic Algorithm and uses the data structure of directed graphs. Many papers have demonstrated that GNP can deal with complex problems in the dynamic environments very efficiently and effectively. As a result, recently, GNP is getting more and more attentions and is used in many different areas such as data mining, extracting trading rules of stock markets, elevator supervised control systems, etc., and GNP has obtained some outstanding results. Focusing on the GNP's distinguished expression ability of the graph structure, this paper proposes a method named Genetic Network Programming with Reconstructed Individuals (GNP-RI). The aim of GNP-RI is to balance the exploitation and exploration of GNP, that is, to strengthen the exploitation ability by using the exploited information extensively during the evolution process of GNP and finally obtain better performances than that of GNP. In the proposed method, the worse individuals are reconstructed and enhanced by the elite information before undergoing genetic operations (mutation and crossover). The enhancement of worse individuals mimics the maturing phenomenon in nature, where bad individuals can become smarter after receiving a good education. In this paper, GNP-RI is applied to the tile-world problem which is an excellent bench mark for evaluating the proposed architecture. The performance of GNP-RI is compared with that of the conventional GNP. The simulation results show some advantages of GNP-RI demonstrating its superiority over the conventional GNPs.

  10. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing. The strengths and limitations of GA for launch vehicle design optimization is studied.

  11. Virtual optical network mapping and core allocation in elastic optical networks using multi-core fibers

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-11-01

    Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.

  12. The Hawk-Dove game in phenotypically homogeneous and heterogeneous populations of finite dimension

    NASA Astrophysics Data System (ADS)

    Laruelle, Annick; da Silva Rocha, André Barreira; Escobedo, Ramón

    2018-02-01

    The Hawk-Dove game played between individuals in populations of finite dimension is analyzed by means of a stochastic model. We take into account both cases when all individuals in the population are either phenotypically homogeneous or heterogeneous. A strategy in the model is a gene representing the probability of playing the Hawk strategy. Individual interactions at the microscopic level are described by a genetic algorithm where evolution results from the interplay among selection, mutation, drift and cross-over of genes. We show that the behavioral patterns observed at the macroscopic level can be reproduced as the emergent result of individual interactions governed by the rules of the Hawk-Dove game at the microscopic level. We study how the results of the genetic algorithm compare with those obtained in evolutionary game theory, finding that, although genes continuously change both their presence and frequency in the population over time, the population average behavior always achieves stationarity and, when this happens, the final average strategy played in the population oscillates around the evolutionarily stable strategy in the homogeneous population case or the neutrally stable set in the heterogeneous population case.

  13. Optimization of Boiling Water Reactor Loading Pattern Using Two-Stage Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2002-10-15

    A new two-stage optimization method based on genetic algorithms (GAs) using an if-then heuristic rule was developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). In the first stage, the LP is optimized using an improved GA operator. In the second stage, an exposure-dependent control rod pattern (CRP) is sought using GA with an if-then heuristic rule. The procedure of the improved GA is based on deterministic operators that consist of crossover, mutation, and selection. The handling of the encoding technique and constraint conditions by that GA reflects the peculiar characteristics of the BWR. In addition, strategies suchmore » as elitism and self-reproduction are effectively used in order to improve the search speed. The LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and constraints dependent on three dimensions have always necessitated the use of three-dimensional core simulators for BWRs, so that optimization of computational efficiency is required. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant in two phases. One phase is only LP optimization applying the Haling technique. The other phase is an LP optimization that considers the CRP during reactor operation. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  14. Interpretation of magnetic anomalies using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Kaftan, İlknur

    2017-08-01

    A genetic algorithm (GA) is an artificial intelligence method used for optimization. We applied a GA to the inversion of magnetic anomalies over a thick dike. Inversion of nonlinear geophysical problems using a GA has advantages because it does not require model gradients or well-defined initial model parameters. The evolution process consists of selection, crossover, and mutation genetic operators that look for the best fit to the observed data and a solution consisting of plausible compact sources. The efficiency of a GA on both synthetic and real magnetic anomalies of dikes by estimating model parameters, such as depth to the top of the dike ( H), the half-width of the dike ( B), the distance from the origin to the reference point ( D), the dip of the thick dike ( δ), and the susceptibility contrast ( k), has been shown. For the synthetic anomaly case, it has been considered for both noise-free and noisy magnetic data. In the real case, the vertical magnetic anomaly from the Pima copper mine in Arizona, USA, and the vertical magnetic anomaly in the Bayburt-Sarıhan skarn zone in northeastern Turkey have been inverted and interpreted. We compared the estimated parameters with the results of conventional inversion methods used in previous studies. We can conclude that the GA method used in this study is a useful tool for evaluating magnetic anomalies for dike models.

  15. Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network.

    PubMed

    Janet, Jon Paul; Chan, Lydia; Kulik, Heather J

    2018-03-01

    Machine learning (ML) has emerged as a powerful complement to simulation for materials discovery by reducing time for evaluation of energies and properties at accuracy competitive with first-principles methods. We use genetic algorithm (GA) optimization to discover unconventional spin-crossover complexes in combination with efficient scoring from an artificial neural network (ANN) that predicts spin-state splitting of inorganic complexes. We explore a compound space of over 5600 candidate materials derived from eight metal/oxidation state combinations and a 32-ligand pool. We introduce a strategy for error-aware ML-driven discovery by limiting how far the GA travels away from the nearest ANN training points while maximizing property (i.e., spin-splitting) fitness, leading to discovery of 80% of the leads from full chemical space enumeration. Over a 51-complex subset, average unsigned errors (4.5 kcal/mol) are close to the ANN's baseline 3 kcal/mol error. By obtaining leads from the trained ANN within seconds rather than days from a DFT-driven GA, this strategy demonstrates the power of ML for accelerating inorganic material discovery.

  16. An optimization method of VON mapping for energy efficiency and routing in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun

    2018-03-01

    To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.

  17. Grid Transmission Expansion Planning Model Based on Grid Vulnerability

    NASA Astrophysics Data System (ADS)

    Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang

    2018-03-01

    Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.

  18. Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm.

    PubMed

    Beloufa, Fayssal; Chikh, M A

    2013-10-01

    In this study, diagnosis of diabetes disease, which is one of the most important diseases, is conducted with artificial intelligence techniques. We have proposed a novel Artificial Bee Colony (ABC) algorithm in which a mutation operator is added to an Artificial Bee Colony for improving its performance. When the current best solution cannot be updated, a blended crossover operator (BLX-α) of genetic algorithm is applied, in order to enhance the diversity of ABC, without compromising with the solution quality. This modified version of ABC is used as a new tool to create and optimize automatically the membership functions and rules base directly from data. We take the diabetes dataset used in our work from the UCI machine learning repository. The performances of the proposed method are evaluated through classification rate, sensitivity and specificity values using 10-fold cross-validation method. The obtained classification rate of our method is 84.21% and it is very promising when compared with the previous research in the literature for the same problem. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Genetic algorithm in the structural design of Cooke triplet lenses

    NASA Astrophysics Data System (ADS)

    Hazra, Lakshminarayan; Banerjee, Saswatee

    1999-08-01

    This paper is in tune with our efforts to develop a systematic method for multicomponent lens design. Our aim is to find a suitable starting point in the final configuration space, so that popular local search methods like damped least squares (DLS) may directly lead to a useful solution. For 'ab initio' design problems, a thin lens layout specifying the powers of the individual components and the intercomponent separations are worked out analytically. Requirements of central aberration targets for the individual components in order to satisfy the prespecified primary aberration targets for the overall system are then determined by nonlinear optimization. The next step involves structural design of the individual components by optimization techniques. This general method may be adapted for the design of triplets and their derivatives. However, for the thin lens design of a Cooke triplet composed of three airspaced singlets, the two steps of optimization mentioned above may be combined into a single optimization procedure. The optimum configuration for each of the single set, catering to the required Gaussian specification and primary aberration targets for the Cooke triplet, are determined by an application of genetic algorithm (GA). Our implementation of this algorithm is based on simulations of some complex tools of natural evolution, like selection, crossover and mutation. Our version of GA may or may not converge to a unique optimum, depending on some of the algorithm specific parameter values. With our algorithm, practically useful solutions are always available, although convergence to a global optimum can not be guaranteed. This is perfectly in keeping with our need to allow 'floating' of aberration targets in the subproblem level. Some numerical results dealing with our preliminary investigations on this problem are presented.

  20. A universal deep learning approach for modeling the flow of patients under different severities.

    PubMed

    Jiang, Shancheng; Chin, Kwai-Sang; Tsui, Kwok L

    2018-02-01

    The Accident and Emergency Department (A&ED) is the frontline for providing emergency care in hospitals. Unfortunately, relative A&ED resources have failed to keep up with continuously increasing demand in recent years, which leads to overcrowding in A&ED. Knowing the fluctuation of patient arrival volume in advance is a significant premise to relieve this pressure. Based on this motivation, the objective of this study is to explore an integrated framework with high accuracy for predicting A&ED patient flow under different triage levels, by combining a novel feature selection process with deep neural networks. Administrative data is collected from an actual A&ED and categorized into five groups based on different triage levels. A genetic algorithm (GA)-based feature selection algorithm is improved and implemented as a pre-processing step for this time-series prediction problem, in order to explore key features affecting patient flow. In our improved GA, a fitness-based crossover is proposed to maintain the joint information of multiple features during iterative process, instead of traditional point-based crossover. Deep neural networks (DNN) is employed as the prediction model to utilize their universal adaptability and high flexibility. In the model-training process, the learning algorithm is well-configured based on a parallel stochastic gradient descent algorithm. Two effective regularization strategies are integrated in one DNN framework to avoid overfitting. All introduced hyper-parameters are optimized efficiently by grid-search in one pass. As for feature selection, our improved GA-based feature selection algorithm has outperformed a typical GA and four state-of-the-art feature selection algorithms (mRMR, SAFS, VIFR, and CFR). As for the prediction accuracy of proposed integrated framework, compared with other frequently used statistical models (GLM, seasonal-ARIMA, ARIMAX, and ANN) and modern machine models (SVM-RBF, SVM-linear, RF, and R-LASSO), the proposed integrated "DNN-I-GA" framework achieves higher prediction accuracy on both MAPE and RMSE metrics in pairwise comparisons. The contribution of our study is two-fold. Theoretically, the traditional GA-based feature selection process is improved to have less hyper-parameters and higher efficiency, and the joint information of multiple features is maintained by fitness-based crossover operator. The universal property of DNN is further enhanced by merging different regularization strategies. Practically, features selected by our improved GA can be used to acquire an underlying relationship between patient flows and input features. Predictive values are significant indicators of patients' demand and can be used by A&ED managers to make resource planning and allocation. High accuracy achieved by the present framework in different cases enhances the reliability of downstream decision makings. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Automatic genetic optimization approach to two-dimensional blade profile design for steam turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trigg, M.A.; Tubby, G.R.; Sheard, A.G.

    1999-01-01

    In this paper a systematic approach to the optimization of two-dimensional blade profiles is presented. A genetic optimizer has been developed that modifies the blade profile and calculates its profile loss. This process is automatic, producing profile designs significantly faster and with significantly lower loss than has previously been possible. The optimizer developed uses a genetic algorithm to optimize a two-dimensional profile, defined using 17 parameters, for minimum loss with a given flow condition. The optimizer works with a population of two-dimensional profiles with varied parameters. A CFD mesh is generated for each profile, and the result is analyzed usingmore » a two-dimensional blade-to-blade solver, written for steady viscous compressible flow, to determine profile loss. The loss is used as the measure of a profile`s fitness. The optimizer uses this information to select the members of the next population, applying crossovers, mutations, and elitism in the process. Using this method, the optimizer tends toward the best values for the parameters defining the profile with minimum loss.« less

  2. Quantitative high resolution mapping of HvMLH3 foci in barley pachytene nuclei reveals a strong distal bias and weak interference

    PubMed Central

    Phillips, Dylan; Wnetrzak, Joanna; Nibau, Candida; Barakate, Abdellah; Ramsay, Luke; Wright, Frank; Higgins, James D.; Perry, Ruth M.; Jenkins, Glyn

    2013-01-01

    In barley (Hordeum vulgare L.), chiasmata (the physical sites of genetic crossovers) are skewed towards the distal ends of chromosomes, effectively consigning a large proportion of genes to recombination coldspots. This has the effect of limiting potential genetic variability, and of reducing the efficiency of map-based cloning and breeding approaches for this crop. Shifting the sites of recombination to more proximal chromosome regions by forward and reverse genetic means may be profitable in terms of realizing the genetic potential of the species, but is predicated upon a better understanding of the mechanisms governing the sites of these events, and upon the ability to recognize real changes in recombination patterns. The barley MutL Homologue (HvMLH3), a marker for class I interfering crossovers, has been isolated and a specific antibody has been raised. Immunolocalization of HvMLH3 along with the synaptonemal complex transverse filament protein ZYP1, used in conjunction with fluorescence in situ hybridization (FISH) tagging of specific barley chromosomes, has enabled access to the physical recombination landscape of the barley cultivars Morex and Bowman. Consistent distal localization of HvMLH3 foci throughout the genome, and similar patterns of HvMLH3 foci within bivalents 2H and 3H have been observed. A difference in total numbers of HvMLH3 foci between these two cultivars has been quantified, which is interpreted as representing genotypic variation in class I crossover frequency. Discrepancies between the frequencies of HvMLH3 foci and crossover frequencies derived from linkage analysis point to the existence of at least two crossover pathways in barley. It is also shown that interference of HvMLH3 foci is relatively weak compared with other plant species. PMID:23554258

  3. Integrating GIS, cellular automata, and genetic algorithm in urban spatial optimization: a case study of Lanzhou

    NASA Astrophysics Data System (ADS)

    Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian

    2006-10-01

    This paper presents a model integrating GIS, cellular automata (CA) and genetic algorithm (GA) in urban spatial optimization. The model involves three objectives of the maximization of land-use efficiency, the maximization of urban spatial harmony and appropriate proportion of each land-use type. CA submodel is designed with standard Moore neighbor and three transition rules to maximize the land-use efficiency and urban spatial harmony, according to the land-use suitability and spatial harmony index. GA submodel is designed with four constraints and seven steps for the maximization of urban spatial harmony and appropriate proportion of each land-use type, including encoding, initializing, calculating fitness, selection, crossover, mutation and elitism. GIS is used to prepare for the input data sets for the model and perform spatial analysis on the results, while CA and GA are integrated to optimize urban spatial structure, programmed with Matlab 7 and coupled with GIS loosely. Lanzhou, a typical valley-basin city with fast urban development, is chosen as the case study. At the end, a detail analysis and evaluation of the spatial optimization with the model are made, and it proves to be a powerful tool in optimizing urban spatial structure and make supplement for urban planning and policy-makers.

  4. Global optimization and reflectivity data fitting for x-ray multilayer mirrors by means of genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sanchez del Rio, Manuel; Pareschi, Giovanni

    2001-01-01

    The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thicknesses, densities, roughness). Non-linear fitting of experimental data with simulations requires to use initial values sufficiently close to the optimum value. This is a difficult task when the space topology of the variables is highly structured, as in our case. The application of global optimization methods to fit multilayer reflectivity data is presented. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (e.g. selection, crossover, mutation) on the members of the parent generation. The pressure of selection drives the population to include 'good' individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C multilayers recorded at the ESRF BM5 are presented. This method could be also applied to the help in the design of multilayers optimized for a target application, like for an astronomical grazing-incidence hard X-ray telescopes.

  5. GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction.

    PubMed

    Curtis, Farren; Li, Xiayue; Rose, Timothy; Vázquez-Mayagoitia, Álvaro; Bhattacharya, Saswata; Ghiringhelli, Luca M; Marom, Noa

    2018-04-10

    We present the implementation of GAtor, a massively parallel, first-principles genetic algorithm (GA) for molecular crystal structure prediction. GAtor is written in Python and currently interfaces with the FHI-aims code to perform local optimizations and energy evaluations using dispersion-inclusive density functional theory (DFT). GAtor offers a variety of fitness evaluation, selection, crossover, and mutation schemes. Breeding operators designed specifically for molecular crystals provide a balance between exploration and exploitation. Evolutionary niching is implemented in GAtor by using machine learning to cluster the dynamically updated population by structural similarity and then employing a cluster-based fitness function. Evolutionary niching promotes uniform sampling of the potential energy surface by evolving several subpopulations, which helps overcome initial pool biases and selection biases (genetic drift). The various settings offered by GAtor increase the likelihood of locating numerous low-energy minima, including those located in disconnected, hard to reach regions of the potential energy landscape. The best structures generated are re-relaxed and re-ranked using a hierarchy of increasingly accurate DFT functionals and dispersion methods. GAtor is applied to a chemically diverse set of four past blind test targets, characterized by different types of intermolecular interactions. The experimentally observed structures and other low-energy structures are found for all four targets. In particular, for Target II, 5-cyano-3-hydroxythiophene, the top ranked putative crystal structure is a Z' = 2 structure with P1̅ symmetry and a scaffold packing motif, which has not been reported previously.

  6. Unleashing meiotic crossovers in hybrid plants.

    PubMed

    Fernandes, Joiselle Blanche; Séguéla-Arnaud, Mathilde; Larchevêque, Cécile; Lloyd, Andrew H; Mercier, Raphael

    2018-03-06

    Meiotic crossovers shuffle parental genetic information, providing novel combinations of alleles on which natural or artificial selection can act. However, crossover events are relatively rare, typically one to three exchange points per chromosome pair. Recent work has identified three pathways limiting meiotic crossovers in Arabidopsis thaliana that rely on the activity of FANCM [Crismani W, et al. (2012) Science 336:1588-1590], RECQ4 [Séguéla-Arnaud M, et al. (2015) Proc Natl Acad Sci USA 112:4713-4718], and FIGL1 [Girard C, et al. (2015) PLoS Genet 11:e1005369]. Here we analyzed recombination in plants in which one, two, or all three of these pathways were disrupted in both pure line and hybrid contexts. The greatest effect was observed when combining recq4 and figl1 mutations, which increased the hybrid genetic map length from 389 to 3,037 cM. This corresponds to an unprecedented 7.8-fold increase in crossover frequency. Disrupting the three pathways did not further increase recombination, suggesting that some upper limit had been reached. The increase in crossovers is not uniform along chromosomes and rises from centromere to telomere. Finally, although in wild type recombination is much higher in male meiosis than in female meiosis (490 cM vs. 290 cM), female recombination is higher than male recombination in recq4 figl1 (3,200 cM vs. 2,720 cM), suggesting that the factors that make wild-type female meiosis less recombinogenic than male wild-type meiosis do not apply in the mutant context. The massive increase in recombination observed in recq4 figl1 hybrids opens the possibility of manipulating recombination to enhance plant breeding efficiency.

  7. Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning

    PubMed Central

    Kok, Kai Yit; Rajendran, Parvathy

    2016-01-01

    The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630

  8. A New Model for Solving Time-Cost-Quality Trade-Off Problems in Construction

    PubMed Central

    Fu, Fang; Zhang, Tao

    2016-01-01

    A poor quality affects project makespan and its total costs negatively, but it can be recovered by repair works during construction. We construct a new non-linear programming model based on the classic multi-mode resource constrained project scheduling problem considering repair works. In order to obtain satisfactory quality without a high increase of project cost, the objective is to minimize total quality cost which consists of the prevention cost and failure cost according to Quality-Cost Analysis. A binary dependent normal distribution function is adopted to describe the activity quality; Cumulative quality is defined to determine whether to initiate repair works, according to the different relationships among activity qualities, namely, the coordinative and precedence relationship. Furthermore, a shuffled frog-leaping algorithm is developed to solve this discrete trade-off problem based on an adaptive serial schedule generation scheme and adjusted activity list. In the program of the algorithm, the frog-leaping progress combines the crossover operator of genetic algorithm and a permutation-based local search. Finally, an example of a construction project for a framed railway overpass is provided to examine the algorithm performance, and it assist in decision making to search for the appropriate makespan and quality threshold with minimal cost. PMID:27911939

  9. An evolutionary algorithm for large traveling salesman problems.

    PubMed

    Tsai, Huai-Kuang; Yang, Jinn-Moon; Tsai, Yuan-Fang; Kao, Cheng-Yan

    2004-08-01

    This work proposes an evolutionary algorithm, called the heterogeneous selection evolutionary algorithm (HeSEA), for solving large traveling salesman problems (TSP). The strengths and limitations of numerous well-known genetic operators are first analyzed, along with local search methods for TSPs from their solution qualities and mechanisms for preserving and adding edges. Based on this analysis, a new approach, HeSEA is proposed which integrates edge assembly crossover (EAX) and Lin-Kernighan (LK) local search, through family competition and heterogeneous pairing selection. This study demonstrates experimentally that EAX and LK can compensate for each other's disadvantages. Family competition and heterogeneous pairing selections are used to maintain the diversity of the population, which is especially useful for evolutionary algorithms in solving large TSPs. The proposed method was evaluated on 16 well-known TSPs in which the numbers of cities range from 318 to 13509. Experimental results indicate that HeSEA performs well and is very competitive with other approaches. The proposed method can determine the optimum path when the number of cities is under 10,000 and the mean solution quality is within 0.0074% above the optimum for each test problem. These findings imply that the proposed method can find tours robustly with a fixed small population and a limited family competition length in reasonable time, when used to solve large TSPs.

  10. A soft computing based approach using modified selection strategy for feature reduction of medical systems.

    PubMed

    Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat

    2013-01-01

    The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data.

  11. A Soft Computing Based Approach Using Modified Selection Strategy for Feature Reduction of Medical Systems

    PubMed Central

    Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat

    2013-01-01

    The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data. PMID:23573172

  12. Adaptive cockroach swarm algorithm

    NASA Astrophysics Data System (ADS)

    Obagbuwa, Ibidun C.; Abidoye, Ademola P.

    2017-07-01

    An adaptive cockroach swarm optimization (ACSO) algorithm is proposed in this paper to strengthen the existing cockroach swarm optimization (CSO) algorithm. The ruthless component of CSO algorithm is modified by the employment of blend crossover predator-prey evolution method which helps algorithm prevent any possible population collapse, maintain population diversity and create adaptive search in each iteration. The performance of the proposed algorithm on 16 global optimization benchmark function problems was evaluated and compared with the existing CSO, cuckoo search, differential evolution, particle swarm optimization and artificial bee colony algorithms.

  13. SPLICER - A GENETIC ALGORITHM TOOL FOR SEARCH AND OPTIMIZATION, VERSION 1.0 (MACINTOSH VERSION)

    NASA Technical Reports Server (NTRS)

    Wang, L.

    1994-01-01

    SPLICER is a genetic algorithm tool which can be used to solve search and optimization problems. Genetic algorithms are adaptive search procedures (i.e. problem solving methods) based loosely on the processes of natural selection and Darwinian "survival of the fittest." SPLICER provides the underlying framework and structure for building a genetic algorithm application. These algorithms apply genetically-inspired operators to populations of potential solutions in an iterative fashion, creating new populations while searching for an optimal or near-optimal solution to the problem at hand. SPLICER 1.0 was created using a modular architecture that includes a Genetic Algorithm Kernel, interchangeable Representation Libraries, Fitness Modules and User Interface Libraries, and well-defined interfaces between these components. The architecture supports portability, flexibility, and extensibility. SPLICER comes with all source code and several examples. For instance, a "traveling salesperson" example searches for the minimum distance through a number of cities visiting each city only once. Stand-alone SPLICER applications can be used without any programming knowledge. However, to fully utilize SPLICER within new problem domains, familiarity with C language programming is essential. SPLICER's genetic algorithm (GA) kernel was developed independent of representation (i.e. problem encoding), fitness function or user interface type. The GA kernel comprises all functions necessary for the manipulation of populations. These functions include the creation of populations and population members, the iterative population model, fitness scaling, parent selection and sampling, and the generation of population statistics. In addition, miscellaneous functions are included in the kernel (e.g., random number generators). Different problem-encoding schemes and functions are defined and stored in interchangeable representation libraries. This allows the GA kernel to be used with any representation scheme. The SPLICER tool provides representation libraries for binary strings and for permutations. These libraries contain functions for the definition, creation, and decoding of genetic strings, as well as multiple crossover and mutation operators. Furthermore, the SPLICER tool defines the appropriate interfaces to allow users to create new representation libraries. Fitness modules are the only component of the SPLICER system a user will normally need to create or alter to solve a particular problem. Fitness functions are defined and stored in interchangeable fitness modules which must be created using C language. Within a fitness module, a user can create a fitness (or scoring) function, set the initial values for various SPLICER control parameters (e.g., population size), create a function which graphically displays the best solutions as they are found, and provide descriptive information about the problem. The tool comes with several example fitness modules, while the process of developing a fitness module is fully discussed in the accompanying documentation. The user interface is event-driven and provides graphic output in windows. SPLICER is written in Think C for Apple Macintosh computers running System 6.0.3 or later and Sun series workstations running SunOS. The UNIX version is easily ported to other UNIX platforms and requires MIT's X Window System, Version 11 Revision 4 or 5, MIT's Athena Widget Set, and the Xw Widget Set. Example executables and source code are included for each machine version. The standard distribution media for the Macintosh version is a set of three 3.5 inch Macintosh format diskettes. The standard distribution medium for the UNIX version is a .25 inch streaming magnetic tape cartridge in UNIX tar format. For the UNIX version, alternate distribution media and formats are available upon request. SPLICER was developed in 1991.

  14. Effect of sex, age and genetics on crossover interference in cattle

    PubMed Central

    Wang, Zhiying; Shen, Botong; Jiang, Jicai; Li, Jinquan; Ma, Li

    2016-01-01

    Crossovers generated by homologous recombination ensure proper chromosome segregation during meiosis. Crossover interference results in chiasmata being more evenly distributed along chromosomes, but the mechanism underlying crossover interference remains elusive. Based on large pedigrees of Holstein and Jersey cattle with genotype data, we extracted three-generation families, including 147,327 male and 71,687 female meioses in Holstein, and 108,163 male and 37,008 female meioses in Jersey, respectively. We identified crossovers in these meioses and fitted the Housworth-Stahl “interference-escape” model to study crossover interference patterns in the cattle genome. Our result reveals that the degree of crossover interference is stronger in females than in males. We found evidence for inter-chromosomal variation in the level of crossover interference, with smaller chromosomes exhibiting stronger interference. In addition, crossover interference levels decreased with maternal age. Finally, sex-specific GWAS analyses identified one locus near the NEK9 gene on chromosome 10 to have a significant effect on crossover interference levels. This locus has been previously associated with recombination rate in cattle. Collectively, this large-scale analysis provided a comprehensive description of crossover interference across chromosome, sex and age groups, identified associated candidate genes, and produced useful insights into the mechanism of crossover interference. PMID:27892966

  15. Genetic Algorithm for Optimization: Preprocessor and Algorithm

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam A.

    2006-01-01

    Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.

  16. A Model for the Stop Planning and Timetables of Customized Buses

    PubMed Central

    Yang, Yang

    2017-01-01

    Customized buses (CBs) are a new mode of public transportation and an important part of diversified public transportation, providing advanced, attractive and user-led service. The operational activity of a CB is planned by aggregating space–time demand and similar passenger travel demands. Based on an analysis of domestic and international research and the current development of CBs in China and considering passenger travel data, this paper studies the problems associated with the operation of CBs, such as stop selection, line planning and timetables, and establishes a model for the stop planning and timetables of CBs. The improved immune genetic algorithm (IIGA) is used to solve the model with regard to the following: 1) multiple population design and transport operator design, 2) memory library design, 3) mutation probability design and crossover probability design, and 4) the fitness calculation of the gene segment. Finally, a real-world example in Beijing is calculated, and the model and solution results are verified and analyzed. The results illustrate that the IIGA solves the model and is superior to the basic genetic algorithm in terms of the number of passengers, travel time, average passenger travel time, average passenger arrival time ahead of schedule and total line revenue. This study covers the key issues involving operational systems of CBs, combines theoretical research and empirical analysis, and provides a theoretical foundation for the planning and operation of CBs. PMID:28056041

  17. A Model for the Stop Planning and Timetables of Customized Buses.

    PubMed

    Ma, Jihui; Zhao, Yanqing; Yang, Yang; Liu, Tao; Guan, Wei; Wang, Jiao; Song, Cuiying

    2017-01-01

    Customized buses (CBs) are a new mode of public transportation and an important part of diversified public transportation, providing advanced, attractive and user-led service. The operational activity of a CB is planned by aggregating space-time demand and similar passenger travel demands. Based on an analysis of domestic and international research and the current development of CBs in China and considering passenger travel data, this paper studies the problems associated with the operation of CBs, such as stop selection, line planning and timetables, and establishes a model for the stop planning and timetables of CBs. The improved immune genetic algorithm (IIGA) is used to solve the model with regard to the following: 1) multiple population design and transport operator design, 2) memory library design, 3) mutation probability design and crossover probability design, and 4) the fitness calculation of the gene segment. Finally, a real-world example in Beijing is calculated, and the model and solution results are verified and analyzed. The results illustrate that the IIGA solves the model and is superior to the basic genetic algorithm in terms of the number of passengers, travel time, average passenger travel time, average passenger arrival time ahead of schedule and total line revenue. This study covers the key issues involving operational systems of CBs, combines theoretical research and empirical analysis, and provides a theoretical foundation for the planning and operation of CBs.

  18. Offspring Generation Method for interactive Genetic Algorithm considering Multimodal Preference

    NASA Astrophysics Data System (ADS)

    Ito, Fuyuko; Hiroyasu, Tomoyuki; Miki, Mitsunori; Yokouchi, Hisatake

    In interactive genetic algorithms (iGAs), computer simulations prepare design candidates that are then evaluated by the user. Therefore, iGA can predict a user's preferences. Conventional iGA problems involve a search for a single optimum solution, and iGA were developed to find this single optimum. On the other hand, our target problems have several peaks in a function and there are small differences among these peaks. For such problems, it is better to show all the peaks to the user. Product recommendation in shopping sites on the web is one example of such problems. Several types of preference trend should be prepared for users in shopping sites. Exploitation and exploration are important mechanisms in GA search. To perform effective exploitation, the offspring generation method (crossover) is very important. Here, we introduced a new offspring generation method for iGA in multimodal problems. In the proposed method, individuals are clustered into subgroups and offspring are generated in each group. The proposed method was applied to an experimental iGA system to examine its effectiveness. In the experimental iGA system, users can decide on preferable t-shirts to buy. The results of the subjective experiment confirmed that the proposed method enables offspring generation with consideration of multimodal preferences, and the proposed mechanism was also shown not to adversely affect the performance of preference prediction.

  19. Does Cannabis Onset Trigger Cocaine Onset? A Case-Crossover Approach

    PubMed Central

    O’Brien, Megan S.; Comment, Leah Andrews; Liang, Kung Yee; Anthony, James C.

    2016-01-01

    Psychiatric researchers tend to select the discordant co-twin design when they seek to hold constant genetic influence while estimating exposure-associated disease risk. The epidemiologic case-crossover research design developed for the past two decades represents a viable alternative, not often seen in psychiatric studies. Here, we turn to the epidemiologic case-crossover approach to examine the idea that cannabis onset is a proximal trigger for cocaine use, with the power of ‘subject-as-own-control’ research used to hold constant antecedent characteristics of the individual drug user, including genetic influence and other traits experienced up to the time of the observed hazard and control intervals. Data are from newly incident cocaine users identified in the 2002–2006 U.S. National Surveys on Drug Use and Health. Among these cocaine users, 48 had both cannabis onset and cocaine onset in the same month-long hazard interval; the expected value is 30 users, based on the control interval we had pre-specified for case-crossover estimation (estimated relative risk, RR = 1.6; exact mid-p = 0.042). Within the framework of a subject-as-own-control design, the evidence is consistent with the hypothesis that cannabis onset is a proximal trigger for cocaine use, with genetic influences (and many environmental conditions and processes) held constant. Limitations are noted and implications discussed. PMID:22228642

  20. Evolutionary algorithm for vehicle driving cycle generation.

    PubMed

    Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott

    2011-09-01

    Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.

  1. Logical NAND and NOR Operations Using Algorithmic Self-assembly of DNA Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Yanfeng; Cui, Guangzhao; Zhang, Xuncai; Zheng, Yan

    DNA self-assembly is the most advanced and versatile system that has been experimentally demonstrated for programmable construction of patterned systems on the molecular scale. It has been demonstrated that the simple binary arithmetic and logical operations can be computed by the process of self assembly of DNA tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute five steps of a logical NAND and NOR operations on a string of binary bits. To achieve this, abstract tiles were translated into DNA tiles based on triple-crossover motifs. Serving as input for the computation, long single stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. Our method shows that engineered DNA self-assembly can be treated as a bottom-up design techniques, and can be capable of designing DNA computer organization and architecture.

  2. Improving Search Properties in Genetic Programming

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.; DeWeese, Scott

    1997-01-01

    With the advancing computer processing capabilities, practical computer applications are mostly limited by the amount of human programming required to accomplish a specific task. This necessary human participation creates many problems, such as dramatically increased cost. To alleviate the problem, computers must become more autonomous. In other words, computers must be capable to program/reprogram themselves to adapt to changing environments/tasks/demands/domains. Evolutionary computation offers potential means, but it must be advanced beyond its current practical limitations. Evolutionary algorithms model nature. They maintain a population of structures representing potential solutions to the problem at hand. These structures undergo a simulated evolution by means of mutation, crossover, and a Darwinian selective pressure. Genetic programming (GP) is the most promising example of an evolutionary algorithm. In GP, the structures that evolve are trees, which is a dramatic departure from previously used representations such as strings in genetic algorithms. The space of potential trees is defined by means of their elements: functions, which label internal nodes, and terminals, which label leaves. By attaching semantic interpretation to those elements, trees can be interpreted as computer programs (given an interpreter), evolved architectures, etc. JSC has begun exploring GP as a potential tool for its long-term project on evolving dextrous robotic capabilities. Last year we identified representation redundancies as the primary source of inefficiency in GP. Subsequently, we proposed a method to use problem constraints to reduce those redundancies, effectively reducing GP complexity. This method was implemented afterwards at the University of Missouri. This summer, we have evaluated the payoff from using problem constraints to reduce search complexity on two classes of problems: learning boolean functions and solving the forward kinematics problem. We have also developed and implemented methods to use additional problem heuristics to fine-tune the searchable space, and to use typing information to further reduce the search space. Additional improvements have been proposed, but they are yet to be explored and implemented.

  3. Siting and sizing of distributed generators based on improved simulated annealing particle swarm optimization.

    PubMed

    Su, Hongsheng

    2017-12-18

    Distributed power grids generally contain multiple diverse types of distributed generators (DGs). Traditional particle swarm optimization (PSO) and simulated annealing PSO (SA-PSO) algorithms have some deficiencies in site selection and capacity determination of DGs, such as slow convergence speed and easily falling into local trap. In this paper, an improved SA-PSO (ISA-PSO) algorithm is proposed by introducing crossover and mutation operators of genetic algorithm (GA) into SA-PSO, so that the capabilities of the algorithm are well embodied in global searching and local exploration. In addition, diverse types of DGs are made equivalent to four types of nodes in flow calculation by the backward or forward sweep method, and reactive power sharing principles and allocation theory are applied to determine initial reactive power value and execute subsequent correction, thus providing the algorithm a better start to speed up the convergence. Finally, a mathematical model of the minimum economic cost is established for the siting and sizing of DGs under the location and capacity uncertainties of each single DG. Its objective function considers investment and operation cost of DGs, grid loss cost, annual purchase electricity cost, and environmental pollution cost, and the constraints include power flow, bus voltage, conductor current, and DG capacity. Through applications in an IEEE33-node distributed system, it is found that the proposed method can achieve desirable economic efficiency and safer voltage level relative to traditional PSO and SA-PSO algorithms, and is a more effective planning method for the siting and sizing of DGs in distributed power grids.

  4. Network intrusion detection based on a general regression neural network optimized by an improved artificial immune algorithm.

    PubMed

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.

  5. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    PubMed

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  6. Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Li, J. W.; Zhou, B.; Yuan, Z. Q.; Chen, Y. P.

    2013-03-01

    In the last few decades, the development of Geographical Information Systems (GIS) technology has provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be appropriate for the fundamental morphological elements in landslide susceptibility evaluation. Following the DEM construction in a loess area susceptible to landslides, the direct-reverse DEM technology was employed to generate 216 slope units in the studied area. After a detailed investigation, the landslide inventory was mapped in which 39 landslides, including paleo-landslides, old landslides and recent landslides, were present. Of the 216 slope units, 123 involved landslides. To analyze the mechanism of these landslides, six environmental factors were selected to evaluate landslide occurrence: slope angle, aspect, the height and shape of the slope, distance to river and human activities. These factors were extracted in terms of the slope unit within the ArcGIS software. The spatial analysis demonstrates that most of the landslides are located on convex slopes at an elevation of 100-150 m with slope angles from 135°-225° and 40°-60°. Landslide occurrence was then checked according to these environmental factors using an artificial neural network with back propagation, optimized by genetic algorithms. A dataset of 120 slope units was chosen for training the neural network model, i.e., 80 units with landslide presence and 40 units without landslide presence. The parameters of genetic algorithms and neural networks were then set: population size of 100, crossover probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning rate of 0.7, max learning number of 10 000, and target error of 0.000001. After training on the datasets, the susceptibility of landslides was mapped for the land-use plan and hazard mitigation. Comparing the susceptibility map with landslide inventory, it was noted that the prediction accuracy of landslide occurrence is 93.02%, whereas units without landslide occurrence are predicted with an accuracy of 81.13%. To sum up, the verification shows satisfactory agreement with an accuracy of 86.46% between the susceptibility map and the landslide locations. In the landslide susceptibility assessment, ten new slopes were predicted to show potential for failure, which can be confirmed by the engineering geological conditions of these slopes. It was also observed that some disadvantages could be overcome in the application of the neural networks with back propagation, for example, the low convergence rate and local minimum, after the network was optimized using genetic algorithms. To conclude, neural networks with back propagation that are optimized by genetic algorithms are an effective method to predict landslide susceptibility with high accuracy.

  7. Combining neural networks and genetic algorithms for hydrological flow forecasting

    NASA Astrophysics Data System (ADS)

    Neruda, Roman; Srejber, Jan; Neruda, Martin; Pascenko, Petr

    2010-05-01

    We present a neural network approach to rainfall-runoff modeling for small size river basins based on several time series of hourly measured data. Different neural networks are considered for short time runoff predictions (from one to six hours lead time) based on runoff and rainfall data observed in previous time steps. Correlation analysis shows that runoff data, short time rainfall history, and aggregated API values are the most significant data for the prediction. Neural models of multilayer perceptron and radial basis function networks with different numbers of units are used and compared with more traditional linear time series predictors. Out of possible 48 hours of relevant history of all the input variables, the most important ones are selected by means of input filters created by a genetic algorithm. The genetic algorithm works with population of binary encoded vectors defining input selection patterns. Standard genetic operators of two-point crossover, random bit-flipping mutation, and tournament selection were used. The evaluation of objective function of each individual consists of several rounds of building and testing a particular neural network model. The whole procedure is rather computational exacting (taking hours to days on a desktop PC), thus a high-performance mainframe computer has been used for our experiments. Results based on two years worth data from the Ploucnice river in Northern Bohemia suggest that main problems connected with this approach to modeling are ovetraining that can lead to poor generalization, and relatively small number of extreme events which makes it difficult for a model to predict the amplitude of the event. Thus, experiments with both absolute and relative runoff predictions were carried out. In general it can be concluded that the neural models show about 5 per cent improvement in terms of efficiency coefficient over liner models. Multilayer perceptrons with one hidden layer trained by back propagation algorithm and predicting relative runoff show the best behavior so far. Utilizing the genetically evolved input filter improves the performance of yet another 5 per cent. In the future we would like to continue with experiments in on-line prediction using real-time data from Smeda River with 6 hours lead time forecast. Following the operational reality we will focus on classification of the runoffs into flood alert levels, and reformulation of the time series prediction task as a classification problem. The main goal of all this work is to improve flood warning system operated by the Czech Hydrometeorological Institute.

  8. Exploring the Pareto frontier using multisexual evolutionary algorithms: an application to a flexible manufacturing problem

    NASA Astrophysics Data System (ADS)

    Bonissone, Stefano R.; Subbu, Raj

    2002-12-01

    In multi-objective optimization (MOO) problems we need to optimize many possibly conflicting objectives. For instance, in manufacturing planning we might want to minimize the cost and production time while maximizing the product's quality. We propose the use of evolutionary algorithms (EAs) to solve these problems. Solutions are represented as individuals in a population and are assigned scores according to a fitness function that determines their relative quality. Strong solutions are selected for reproduction, and pass their genetic material to the next generation. Weak solutions are removed from the population. The fitness function evaluates each solution and returns a related score. In MOO problems, this fitness function is vector-valued, i.e. it returns a value for each objective. Therefore, instead of a global optimum, we try to find the Pareto-optimal or non-dominated frontier. We use multi-sexual EAs with as many genders as optimization criteria. We have created new crossover and gender assignment functions, and experimented with various parameters to determine the best setting (yielding the highest number of non-dominated solutions.) These experiments are conducted using a variety of fitness functions, and the algorithms are later evaluated on a flexible manufacturing problem with total cost and time minimization objectives.

  9. Online Learning of Genetic Network Programming and its Application to Prisoner’s Dilemma Game

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi

    A new evolutionary model with the network structure named Genetic Network Programming (GNP) has been proposed recently. GNP, that is, an expansion of GA and GP, represents solutions as a network structure and evolves it by using “offline learning (selection, mutation, crossover)”. GNP can memorize the past action sequences in the network flow, so it can deal with Partially Observable Markov Decision Process (POMDP) well. In this paper, in order to improve the ability of GNP, Q learning (an off-policy TD control algorithm) that is one of the famous online methods is introduced for online learning of GNP. Q learning is suitable for GNP because (1) in reinforcement learning, the rewards an agent will get in the future can be estimated, (2) TD control doesn’t need much memory and can learn quickly, and (3) off-policy is suitable in order to search for an optimal solution independently of the policy. Finally, in the simulations, online learning of GNP is applied to a player for “Prisoner’s dilemma game” and its ability for online adaptation is confirmed.

  10. A genetically optimized kinetic model for ethanol electro-oxidation on Pt-based binary catalysts used in direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Sánchez-Monreal, Juan; García-Salaberri, Pablo A.; Vera, Marcos

    2017-09-01

    A one-dimensional model is proposed for the anode of a liquid-feed direct ethanol fuel cell. The complex kinetics of the ethanol electro-oxidation reaction is described using a multi-step reaction mechanism that considers free and adsorbed intermediate species on Pt-based binary catalysts. The adsorbed species are modeled using coverage factors to account for the blockage of the active reaction sites on the catalyst surface. The reaction rates are described by Butler-Volmer equations that are coupled to a one-dimensional mass transport model, which incorporates the effect of ethanol and acetaldehyde crossover. The proposed kinetic model circumvents the acetaldehyde bottleneck effect observed in previous studies by incorporating CH3CHOHads among the adsorbed intermediates. A multi-objetive genetic algorithm is used to determine the reaction constants using anode polarization and product selectivity data obtained from the literature. By adjusting the reaction constants using the methodology developed here, different catalyst layers could be modeled and their selectivities could be successfully reproduced.

  11. Variation and Evolution of the Meiotic Requirement for Crossing Over in Mammals.

    PubMed

    Dumont, Beth L

    2017-01-01

    The segregation of homologous chromosomes at the first meiotic division is dependent on the presence of at least one well-positioned crossover per chromosome. In some mammalian species, however, the genomic distribution of crossovers is consistent with a more stringent baseline requirement of one crossover per chromosome arm. Given that the meiotic requirement for crossing over defines the minimum frequency of recombination necessary for the production of viable gametes, determining the chromosomal scale of this constraint is essential for defining crossover profiles predisposed to aneuploidy and understanding the parameters that shape patterns of recombination rate evolution across species. Here, I use cytogenetic methods for in situ imaging of crossovers in karyotypically diverse house mice (Mus musculus domesticus) and voles (genus Microtus) to test how chromosome number and configuration constrain the distribution of crossovers in a genome. I show that the global distribution of crossovers in house mice is thresholded by a minimum of one crossover per chromosome arm, whereas the crossover landscape in voles is defined by a more relaxed requirement of one crossover per chromosome. I extend these findings in an evolutionary metaanalysis of published recombination and karyotype data for 112 mammalian species and demonstrate that the physical scale of the genomic crossover distribution has undergone multiple independent shifts from one crossover per chromosome arm to one per chromosome during mammalian evolution. Together, these results indicate that the chromosomal scale constraint on crossover rates is itself a trait that evolves among species, a finding that casts light on an important source of crossover rate variation in mammals. Copyright © 2017 by the Genetics Society of America.

  12. Genetic Recombination at the Buff Spore Color Locus in SORDARIA BREVICOLLIS. II. Analysis of Flanking Marker Behavior in Crosses between Buff Mutants.

    PubMed

    Sang, H; Whitehouse, H L

    1983-02-01

    Aberrant asci containing one or more wild-type spores were selected from crosses between pairs of alleles of the buff locus in the presence of closely linked flanking markers. Data were obtained relating to the site of aberrant segregation and the position of any associated crossover giving recombination of flanking markers. Aberrant segregation at a proximal site within the buff gene may be associated with a crossover proximal to the site of aberrant segregation or, with equal frequency, with a crossover distal to the site of the second mutant present in the cross. Similarly, segregation at a distal site may be associated with a crossover distal to the site or, with lower frequency, with a crossover proximal to the site of the proximal mutant present in the cross. Crossovers between the alleles were rare. This evidence for the relationship between hybrid DNA and crossing over is discussed in terms of current models for the mechanism of recombination.

  13. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis.

    PubMed

    Yelina, Nataliya E; Lambing, Christophe; Hardcastle, Thomas J; Zhao, Xiaohui; Santos, Bruno; Henderson, Ian R

    2015-10-15

    During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. However, loss of CG DNA methylation maintenance in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering crossover repair pathways (fancm and zip4) to demonstrate that remodeling primarily involves redistribution of interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by loss of CG methylation within the centromeric regions. Using cytogenetics, we profiled meiotic DNA double-strand break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome structure is altered, causing centromere-proximal DSBs to be inhibited from maturation into interfering crossovers. These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in establishing domains of meiotic recombination along chromosomes. © 2015 Yelina et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Effect of sex, age, and breed on genetic recombination features in cattle

    USDA-ARS?s Scientific Manuscript database

    Meiotic recombination is a fundamental biological process which generates genetic diversity, affects fertility, and influences evolvability. Here we investigate the roles of sex, age, and breed in cattle recombination features, including recombination rate, location and crossover interference. Usin...

  15. A Randomized, Double-Blind, Crossover Comparison of MK-0929 and Placebo in the Treatment of Adults with ADHD

    ERIC Educational Resources Information Center

    Rivkin, Anna; Alexander, Robert C.; Knighton, Jennifer; Hutson, Pete H.; Wang, Xiaojing J.; Snavely, Duane B.; Rosah, Thomas; Watt, Alan P.; Reimherr, Fred W.; Adler, Lenard A.

    2012-01-01

    Objective: Preclinical models, receptor localization, and genetic linkage data support the role of D4 receptors in the etiology of ADHD. This proof-of-concept study was designed to evaluate MK-0929, a selective D4 receptor antagonist as treatment for adult ADHD. Method: A randomized, double-blind, placebo-controlled, crossover study was conducted…

  16. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  17. Study on Multi-stage Logistics System Design Problem with Inventory Considering Demand Change by Hybrid Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Inoue, Hisaki; Gen, Mitsuo

    The logistics model used in this study is 3-stage model employed by an automobile company, which aims to solve traffic problems at a total minimum cost. Recently, research on the metaheuristics method has advanced as an approximate means for solving optimization problems like this model. These problems can be solved using various methods such as the genetic algorithm (GA), simulated annealing, and tabu search. GA is superior in robustness and adjustability toward a change in the structure of these problems. However, GA has a disadvantage in that it has a slightly inefficient search performance because it carries out a multi-point search. A hybrid GA that combines another method is attracting considerable attention since it can compensate for a fault to a partial solution that early convergence gives a bad influence on a result. In this study, we propose a novel hybrid random key-based GA(h-rkGA) that combines local search and parameter tuning of crossover rate and mutation rate; h-rkGA is an improved version of the random key-based GA (rk-GA). We attempted comparative experiments with spanning tree-based GA, priority based GA and random key-based GA. Further, we attempted comparative experiments with “h-GA by only local search” and “h-GA by only parameter tuning”. We reported the effectiveness of the proposed method on the basis of the results of these experiments.

  18. Genetic Algorithms and Local Search

    NASA Technical Reports Server (NTRS)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  19. Network Intrusion Detection Based on a General Regression Neural Network Optimized by an Improved Artificial Immune Algorithm

    PubMed Central

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data. PMID:25807466

  20. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures.

    PubMed

    Pascual-García, Alberto; Abia, David; Ortiz, Angel R; Bastolla, Ugo

    2009-03-01

    Structural classifications of proteins assume the existence of the fold, which is an intrinsic equivalence class of protein domains. Here, we test in which conditions such an equivalence class is compatible with objective similarity measures. We base our analysis on the transitive property of the equivalence relationship, requiring that similarity of A with B and B with C implies that A and C are also similar. Divergent gene evolution leads us to expect that the transitive property should approximately hold. However, if protein domains are a combination of recurrent short polypeptide fragments, as proposed by several authors, then similarity of partial fragments may violate the transitive property, favouring the continuous view of the protein structure space. We propose a measure to quantify the violations of the transitive property when a clustering algorithm joins elements into clusters, and we find out that such violations present a well defined and detectable cross-over point, from an approximately transitive regime at high structure similarity to a regime with large transitivity violations and large differences in length at low similarity. We argue that protein structure space is discrete and hierarchic classification is justified up to this cross-over point, whereas at lower similarities the structure space is continuous and it should be represented as a network. We have tested the qualitative behaviour of this measure, varying all the choices involved in the automatic classification procedure, i.e., domain decomposition, alignment algorithm, similarity score, and clustering algorithm, and we have found out that this behaviour is quite robust. The final classification depends on the chosen algorithms. We used the values of the clustering coefficient and the transitivity violations to select the optimal choices among those that we tested. Interestingly, this criterion also favours the agreement between automatic and expert classifications. As a domain set, we have selected a consensus set of 2,890 domains decomposed very similarly in SCOP and CATH. As an alignment algorithm, we used a global version of MAMMOTH developed in our group, which is both rapid and accurate. As a similarity measure, we used the size-normalized contact overlap, and as a clustering algorithm, we used average linkage. The resulting automatic classification at the cross-over point was more consistent than expert ones with respect to the structure similarity measure, with 86% of the clusters corresponding to subsets of either SCOP or CATH superfamilies and fewer than 5% containing domains in distinct folds according to both SCOP and CATH. Almost 15% of SCOP superfamilies and 10% of CATH superfamilies were split, consistent with the notion of fold change in protein evolution. These results were qualitatively robust for all choices that we tested, although we did not try to use alignment algorithms developed by other groups. Folds defined in SCOP and CATH would be completely joined in the regime of large transitivity violations where clustering is more arbitrary. Consistently, the agreement between SCOP and CATH at fold level was lower than their agreement with the automatic classification obtained using as a clustering algorithm, respectively, average linkage (for SCOP) or single linkage (for CATH). The networks representing significant evolutionary and structural relationships between clusters beyond the cross-over point may allow us to perform evolutionary, structural, or functional analyses beyond the limits of classification schemes. These networks and the underlying clusters are available at http://ub.cbm.uam.es/research/ProtNet.php.

  1. Multi Groups Cooperation based Symbiotic Evolution for TSK-type Neuro-Fuzzy Systems Design

    PubMed Central

    Cheng, Yi-Chang; Hsu, Yung-Chi

    2010-01-01

    In this paper, a TSK-type neuro-fuzzy system with multi groups cooperation based symbiotic evolution method (TNFS-MGCSE) is proposed. The TNFS-MGCSE is developed from symbiotic evolution. The symbiotic evolution is different from traditional GAs (genetic algorithms) that each chromosome in symbiotic evolution represents a rule of fuzzy model. The MGCSE is different from the traditional symbiotic evolution; with a population in MGCSE is divided to several groups. Each group formed by a set of chromosomes represents a fuzzy rule and cooperate with other groups to generate the better chromosomes by using the proposed cooperation based crossover strategy (CCS). In this paper, the proposed TNFS-MGCSE is used to evaluate by numerical examples (Mackey-Glass chaotic time series and sunspot number forecasting). The performance of the TNFS-MGCSE achieves excellently with other existing models in the simulations. PMID:21709856

  2. Design optimisation of powers-of-two FIR filter using self-organising random immigrants GA

    NASA Astrophysics Data System (ADS)

    Chandra, Abhijit; Chattopadhyay, Sudipta

    2015-01-01

    In this communication, we propose a novel design strategy of multiplier-less low-pass finite impulse response (FIR) filter with the aid of a recent evolutionary optimisation technique, known as the self-organising random immigrants genetic algorithm. Individual impulse response coefficients of the proposed filter have been encoded as sum of signed powers-of-two. During the formulation of the cost function for the optimisation algorithm, both the frequency response characteristic and the hardware cost of the discrete coefficient FIR filter have been considered. The role of crossover probability of the optimisation technique has been evaluated on the overall performance of the proposed strategy. For this purpose, the convergence characteristic of the optimisation technique has been included in the simulation results. In our analysis, two design examples of different specifications have been taken into account. In order to substantiate the efficiency of our proposed structure, a number of state-of-the-art design strategies of multiplier-less FIR filter have also been included in this article for the purpose of comparison. Critical analysis of the result unambiguously establishes the usefulness of our proposed approach for the hardware efficient design of digital filter.

  3. Meiotic crossovers are associated with open chromatin and enriched with Stowaway transposons in potato

    USDA-ARS?s Scientific Manuscript database

    Meiotic recombination is the foundation for genetic variation in natural and artificial populations of eukaryotes. Although genetic recombination maps have been developed in numerous plant species since late the 1980s, very few of these maps have provided the necessary resolution needed to investiga...

  4. Improved bioavailability of calcium in genetically-modified carrots

    USDA-ARS?s Scientific Manuscript database

    Osteoporosis is one of the world's most prevalent nutritional disorders, and inadequate absorbed calcium is a known contributor to the pathophysiology of this condition. In a cross-over study of 15 male and 15 female young adults, we used a dual stable isotope method with 42Ca-labeled genetically-mo...

  5. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans

    PubMed Central

    Chung, George; Rose, Ann M.; Petalcorin, Mark I.R.; Martin, Julie S.; Kessler, Zebulin; Sanchez-Pulido, Luis; Ponting, Chris P.; Yanowitz, Judith L.; Boulton, Simon J.

    2015-01-01

    The Caenorhabditis elegans gene rec-1 was the first genetic locus identified in metazoa to affect the distribution of meiotic crossovers along the chromosome. We report that rec-1 encodes a distant paralog of HIM-5, which was discovered by whole-genome sequencing and confirmed by multiple genome-edited alleles. REC-1 is phosphorylated by cyclin-dependent kinase (CDK) in vitro, and mutation of the CDK consensus sites in REC-1 compromises meiotic crossover distribution in vivo. Unexpectedly, rec-1; him-5 double mutants are synthetic-lethal due to a defect in meiotic double-strand break formation. Thus, we uncovered an unexpected robustness to meiotic DSB formation and crossover positioning that is executed by HIM-5 and REC-1 and regulated by phosphorylation. PMID:26385965

  6. Problem solving with genetic algorithms and Splicer

    NASA Technical Reports Server (NTRS)

    Bayer, Steven E.; Wang, Lui

    1991-01-01

    Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.

  7. Improved artificial bee colony algorithm for vehicle routing problem with time windows

    PubMed Central

    Yan, Qianqian; Zhang, Mengjie; Yang, Yunong

    2017-01-01

    This paper investigates a well-known complex combinatorial problem known as the vehicle routing problem with time windows (VRPTW). Unlike the standard vehicle routing problem, each customer in the VRPTW is served within a given time constraint. This paper solves the VRPTW using an improved artificial bee colony (IABC) algorithm. The performance of this algorithm is improved by a local optimization based on a crossover operation and a scanning strategy. Finally, the effectiveness of the IABC is evaluated on some well-known benchmarks. The results demonstrate the power of IABC algorithm in solving the VRPTW. PMID:28961252

  8. Global search in photoelectron diffraction structure determination using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Viana, M. L.; Díez Muiño, R.; Soares, E. A.; Van Hove, M. A.; de Carvalho, V. E.

    2007-11-01

    Photoelectron diffraction (PED) is an experimental technique widely used to perform structural determinations of solid surfaces. Similarly to low-energy electron diffraction (LEED), structural determination by PED requires a fitting procedure between the experimental intensities and theoretical results obtained through simulations. Multiple scattering has been shown to be an effective approach for making such simulations. The quality of the fit can be quantified through the so-called R-factor. Therefore, the fitting procedure is, indeed, an R-factor minimization problem. However, the topography of the R-factor as a function of the structural and non-structural surface parameters to be determined is complex, and the task of finding the global minimum becomes tough, particularly for complex structures in which many parameters have to be adjusted. In this work we investigate the applicability of the genetic algorithm (GA) global optimization method to this problem. The GA is based on the evolution of species, and makes use of concepts such as crossover, elitism and mutation to perform the search. We show results of its application in the structural determination of three different systems: the Cu(111) surface through the use of energy-scanned experimental curves; the Ag(110)-c(2 × 2)-Sb system, in which a theory-theory fit was performed; and the Ag(111) surface for which angle-scanned experimental curves were used. We conclude that the GA is a highly efficient method to search for global minima in the optimization of the parameters that best fit the experimental photoelectron diffraction intensities to the theoretical ones.

  9. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  10. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans.

    PubMed

    Chung, George; Rose, Ann M; Petalcorin, Mark I R; Martin, Julie S; Kessler, Zebulin; Sanchez-Pulido, Luis; Ponting, Chris P; Yanowitz, Judith L; Boulton, Simon J

    2015-09-15

    The Caenorhabditis elegans gene rec-1 was the first genetic locus identified in metazoa to affect the distribution of meiotic crossovers along the chromosome. We report that rec-1 encodes a distant paralog of HIM-5, which was discovered by whole-genome sequencing and confirmed by multiple genome-edited alleles. REC-1 is phosphorylated by cyclin-dependent kinase (CDK) in vitro, and mutation of the CDK consensus sites in REC-1 compromises meiotic crossover distribution in vivo. Unexpectedly, rec-1; him-5 double mutants are synthetic-lethal due to a defect in meiotic double-strand break formation. Thus, we uncovered an unexpected robustness to meiotic DSB formation and crossover positioning that is executed by HIM-5 and REC-1 and regulated by phosphorylation. © 2015 Chung et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Computational intelligence-based optimization of maximally stable extremal region segmentation for object detection

    NASA Astrophysics Data System (ADS)

    Davis, Jeremy E.; Bednar, Amy E.; Goodin, Christopher T.; Durst, Phillip J.; Anderson, Derek T.; Bethel, Cindy L.

    2017-05-01

    Particle swarm optimization (PSO) and genetic algorithms (GAs) are two optimization techniques from the field of computational intelligence (CI) for search problems where a direct solution can not easily be obtained. One such problem is finding an optimal set of parameters for the maximally stable extremal region (MSER) algorithm to detect areas of interest in imagery. Specifically, this paper describes the design of a GA and PSO for optimizing MSER parameters to detect stop signs in imagery produced via simulation for use in an autonomous vehicle navigation system. Several additions to the GA and PSO are required to successfully detect stop signs in simulated images. These additions are a primary focus of this paper and include: the identification of an appropriate fitness function, the creation of a variable mutation operator for the GA, an anytime algorithm modification to allow the GA to compute a solution quickly, the addition of an exponential velocity decay function to the PSO, the addition of an "execution best" omnipresent particle to the PSO, and the addition of an attractive force component to the PSO velocity update equation. Experimentation was performed with the GA using various combinations of selection, crossover, and mutation operators and experimentation was also performed with the PSO using various combinations of neighborhood topologies, swarm sizes, cognitive influence scalars, and social influence scalars. The results of both the GA and PSO optimized parameter sets are presented. This paper details the benefits and drawbacks of each algorithm in terms of detection accuracy, execution speed, and additions required to generate successful problem specific parameter sets.

  12. Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities

    PubMed Central

    Li, Jun-qing; Pan, Quan-ke; Mao, Kun

    2014-01-01

    A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414

  13. Robotic excavator trajectory control using an improved GA based PID controller

    NASA Astrophysics Data System (ADS)

    Feng, Hao; Yin, Chen-Bo; Weng, Wen-wen; Ma, Wei; Zhou, Jun-jing; Jia, Wen-hua; Zhang, Zi-li

    2018-05-01

    In order to achieve excellent trajectory tracking performances, an improved genetic algorithm (IGA) is presented to search for the optimal proportional-integral-derivative (PID) controller parameters for the robotic excavator. Firstly, the mathematical model of kinematic and electro-hydraulic proportional control system of the excavator are analyzed based on the mechanism modeling method. On this basis, the actual model of the electro-hydraulic proportional system are established by the identification experiment. Furthermore, the population, the fitness function, the crossover probability and mutation probability of the SGA are improved: the initial PID parameters are calculated by the Ziegler-Nichols (Z-N) tuning method and the initial population is generated near it; the fitness function is transformed to maintain the diversity of the population; the probability of crossover and mutation are adjusted automatically to avoid premature convergence. Moreover, a simulation study is carried out to evaluate the time response performance of the proposed controller, i.e., IGA based PID against the SGA and Z-N based PID controllers with a step signal. It was shown from the simulation study that the proposed controller provides the least rise time and settling time of 1.23 s and 1.81 s, respectively against the other tested controllers. Finally, two types of trajectories are designed to validate the performances of the control algorithms, and experiments are performed on the excavator trajectory control experimental platform. It was demonstrated from the experimental work that the proposed IGA based PID controller improves the trajectory accuracy of the horizontal line and slope line trajectories by 23.98% and 23.64%, respectively in comparison to the SGA tuned PID controller. The results further indicate that the proposed IGA tuning based PID controller is effective for improving the tracking accuracy, which may be employed in the trajectory control of an actual excavator.

  14. Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui

    2017-05-01

    The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.

  15. Regulation of Meiotic Recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory p. Copenhaver

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diversemore » as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system for assaying recombination using tetrad analysis in a higher eukaryotic system (6). This system enabled the measurement of the frequency and distribution of recombination events at a genome wide level in wild type Arabidopsis (7), construction of genetic linkage maps which include positions for each centromere (8), and modeling of the strength and pattern of interference (9). This proposal extends the use of tetrad analysis in Arabidopsis by using it as the basis for assessing the phenotypes of mutants in genes important for recombination and the regulation of crossover interference and performing a novel genetic screen. In addition to broadening our knowledge of a classic genetic problem - the regulation of recombination by crossover interference - this proposal also provides broader impact by: generating pedagogical tools for use in hands-on classroom experience with genetics, building interdisciplinary collegial partnerships, and creating a platform for participation by junior scientists from underrepresented groups. There are three specific aims: (1) Isolate mutants in Arabidopsis MUS81 homologs using T-DNA and TILLING (2) Characterize recombination levels and interference in mus81 mutants (3) Execute a novel genetic screen, based on tetrad analysis, for genes that regulate meiotic recombination« less

  16. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  17. Genetic mapping of centromeres in the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes.

    PubMed

    Aleza, Pablo; Cuenca, José; Hernández, María; Juárez, José; Navarro, Luis; Ollitrault, Patrick

    2015-03-08

    Mapping centromere locations in plant species provides essential information for the analysis of genetic structures and population dynamics. The centromere's position affects the distribution of crossovers along a chromosome and the parental heterozygosity restitution by 2n gametes is a direct function of the genetic distance to the centromere. Sexual polyploidisation is relatively frequent in Citrus species and is widely used to develop new seedless triploid cultivars. The study's objectives were to (i) map the positions of the centromeres of the nine Citrus clementina chromosomes; (ii) analyse the crossover interference in unreduced gametes; and (iii) establish the pattern of genetic recombination in haploid clementine gametes along each chromosome and its relationship with the centromere location and distribution of genic sequences. Triploid progenies were derived from unreduced megagametophytes produced by second-division restitution. Centromere positions were mapped genetically for all linkage groups using half-tetrad analysis. Inference of the physical locations of centromeres revealed one acrocentric, four metacentric and four submetacentric chromosomes. Crossover interference was observed in unreduced gametes, with variation seen between chromosome arms. For haploid gametes, a strong decrease in the recombination rate occurred in centromeric and pericentromeric regions, which contained a low density of genic sequences. In chromosomes VIII and IX, these low recombination rates extended beyond the pericentromeric regions. The genomic region corresponding to a genetic distance < 5cM from a centromere represented 47% of the genome and 23% of the genic sequences. The centromere positions of the nine citrus chromosomes were genetically mapped. Their physical locations, inferred from the genetic ones, were consistent with the sequence constitution and recombination pattern along each chromosome. However, regions with low recombination rates extended beyond the pericentromeric regions of some chromosomes into areas richer in genic sequences. The persistence of strong linkage disequilibrium between large numbers of genes promotes the stability of epistatic interactions and multilocus-controlled traits over successive generations but also maintains multi-trait associations. Identification of the centromere positions will allow the development of simple methods to analyse unreduced gamete formation mechanisms in a large range of genotypes and further modelling of genetic inheritance in sexual polyploidisation breeding schemes.

  18. Comparison of genetic algorithms with conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  19. Software For Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steve E.

    1992-01-01

    SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.

  20. Mobile robot dynamic path planning based on improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Zhou, Heng; Wang, Ying

    2017-08-01

    In dynamic unknown environment, the dynamic path planning of mobile robots is a difficult problem. In this paper, a dynamic path planning method based on genetic algorithm is proposed, and a reward value model is designed to estimate the probability of dynamic obstacles on the path, and the reward value function is applied to the genetic algorithm. Unique coding techniques reduce the computational complexity of the algorithm. The fitness function of the genetic algorithm fully considers three factors: the security of the path, the shortest distance of the path and the reward value of the path. The simulation results show that the proposed genetic algorithm is efficient in all kinds of complex dynamic environments.

  1. Implementation of an effective hybrid GA for large-scale traveling salesman problems.

    PubMed

    Nguyen, Hung Dinh; Yoshihara, Ikuo; Yamamori, Kunihito; Yasunaga, Moritoshi

    2007-02-01

    This correspondence describes a hybrid genetic algorithm (GA) to find high-quality solutions for the traveling salesman problem (TSP). The proposed method is based on a parallel implementation of a multipopulation steady-state GA involving local search heuristics. It uses a variant of the maximal preservative crossover and the double-bridge move mutation. An effective implementation of the Lin-Kernighan heuristic (LK) is incorporated into the method to compensate for the GA's lack of local search ability. The method is validated by comparing it with the LK-Helsgaun method (LKH), which is one of the most effective methods for the TSP. Experimental results with benchmarks having up to 316228 cities show that the proposed method works more effectively and efficiently than LKH when solving large-scale problems. Finally, the method is used together with the implementation of the iterated LK to find a new best tour (as of June 2, 2003) for a 1904711-city TSP challenge.

  2. A hybrid neurogenetic approach for stock forecasting.

    PubMed

    Kwon, Yung-Keun; Moon, Byung-Ro

    2007-05-01

    In this paper, we propose a hybrid neurogenetic system for stock trading. A recurrent neural network (NN) having one hidden layer is used for the prediction model. The input features are generated from a number of technical indicators being used by financial experts. The genetic algorithm (GA) optimizes the NN's weights under a 2-D encoding and crossover. We devised a context-based ensemble method of NNs which dynamically changes on the basis of the test day's context. To reduce the time in processing mass data, we parallelized the GA on a Linux cluster system using message passing interface. We tested the proposed method with 36 companies in NYSE and NASDAQ for 13 years from 1992 to 2004. The neurogenetic hybrid showed notable improvement on the average over the buy-and-hold strategy and the context-based ensemble further improved the results. We also observed that some companies were more predictable than others, which implies that the proposed neurogenetic hybrid can be used for financial portfolio construction.

  3. An Efficient Rank Based Approach for Closest String and Closest Substring

    PubMed Central

    2012-01-01

    This paper aims to present a new genetic approach that uses rank distance for solving two known NP-hard problems, and to compare rank distance with other distance measures for strings. The two NP-hard problems we are trying to solve are closest string and closest substring. For each problem we build a genetic algorithm and we describe the genetic operations involved. Both genetic algorithms use a fitness function based on rank distance. We compare our algorithms with other genetic algorithms that use different distance measures, such as Hamming distance or Levenshtein distance, on real DNA sequences. Our experiments show that the genetic algorithms based on rank distance have the best results. PMID:22675483

  4. Site-directed protein recombination as a shortest-path problem.

    PubMed

    Endelman, Jeffrey B; Silberg, Jonathan J; Wang, Zhen-Gang; Arnold, Frances H

    2004-07-01

    Protein function can be tuned using laboratory evolution, in which one rapidly searches through a library of proteins for the properties of interest. In site-directed recombination, n crossovers are chosen in an alignment of p parents to define a set of p(n + 1) peptide fragments. These fragments are then assembled combinatorially to create a library of p(n+1) proteins. We have developed a computational algorithm to enrich these libraries in folded proteins while maintaining an appropriate level of diversity for evolution. For a given set of parents, our algorithm selects crossovers that minimize the average energy of the library, subject to constraints on the length of each fragment. This problem is equivalent to finding the shortest path between nodes in a network, for which the global minimum can be found efficiently. Our algorithm has a running time of O(N(3)p(2) + N(2)n) for a protein of length N. Adjusting the constraints on fragment length generates a set of optimized libraries with varying degrees of diversity. By comparing these optima for different sets of parents, we rapidly determine which parents yield the lowest energy libraries.

  5. A hybrid genetic algorithm for resolving closely spaced objects

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Lillo, W. E.; Schulenburg, N.

    1995-01-01

    A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.

  6. Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories

    NASA Technical Reports Server (NTRS)

    Burchett, Bradley T.

    2003-01-01

    The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.

  7. On the Critical Behaviour, Crossover Point and Complexity of the Exact Cover Problem

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Shumow, Daniel; Koga, Dennis (Technical Monitor)

    2003-01-01

    Research into quantum algorithms for NP-complete problems has rekindled interest in the detailed study a broad class of combinatorial problems. A recent paper applied the quantum adiabatic evolution algorithm to the Exact Cover problem for 3-sets (EC3), and provided an empirical evidence that the algorithm was polynomial. In this paper we provide a detailed study of the characteristics of the exact cover problem. We present the annealing approximation applied to EC3, which gives an over-estimate of the phase transition point. We also identify empirically the phase transition point. We also study the complexity of two classical algorithms on this problem: Davis-Putnam and Simulated Annealing. For these algorithms, EC3 is significantly easier than 3-SAT.

  8. Crossing over...Markov meets Mendel.

    PubMed

    Mneimneh, Saad

    2012-01-01

    Chromosomal crossover is a biological mechanism to combine parental traits. It is perhaps the first mechanism ever taught in any introductory biology class. The formulation of crossover, and resulting recombination, came about 100 years after Mendel's famous experiments. To a great extent, this formulation is consistent with the basic genetic findings of Mendel. More importantly, it provides a mathematical insight for his two laws (and corrects them). From a mathematical perspective, and while it retains similarities, genetic recombination guarantees diversity so that we do not rapidly converge to the same being. It is this diversity that made the study of biology possible. In particular, the problem of genetic mapping and linkage-one of the first efforts towards a computational approach to biology-relies heavily on the mathematical foundation of crossover and recombination. Nevertheless, as students we often overlook the mathematics of these phenomena. Emphasizing the mathematical aspect of Mendel's laws through crossover and recombination will prepare the students to make an early realization that biology, in addition to being experimental, IS a computational science. This can serve as a first step towards a broader curricular transformation in teaching biological sciences. I will show that a simple and modern treatment of Mendel's laws using a Markov chain will make this step possible, and it will only require basic college-level probability and calculus. My personal teaching experience confirms that students WANT to know Markov chains because they hear about them from bioinformaticists all the time. This entire exposition is based on three homework problems that I designed for a course in computational biology. A typical reader is, therefore, an instructional staff member or a student in a computational field (e.g., computer science, mathematics, statistics, computational biology, bioinformatics). However, other students may easily follow by omitting the mathematically more elaborate parts. I kept those as separate sections in the exposition.

  9. Crossing Over…Markov Meets Mendel

    PubMed Central

    Mneimneh, Saad

    2012-01-01

    Chromosomal crossover is a biological mechanism to combine parental traits. It is perhaps the first mechanism ever taught in any introductory biology class. The formulation of crossover, and resulting recombination, came about 100 years after Mendel's famous experiments. To a great extent, this formulation is consistent with the basic genetic findings of Mendel. More importantly, it provides a mathematical insight for his two laws (and corrects them). From a mathematical perspective, and while it retains similarities, genetic recombination guarantees diversity so that we do not rapidly converge to the same being. It is this diversity that made the study of biology possible. In particular, the problem of genetic mapping and linkage—one of the first efforts towards a computational approach to biology—relies heavily on the mathematical foundation of crossover and recombination. Nevertheless, as students we often overlook the mathematics of these phenomena. Emphasizing the mathematical aspect of Mendel's laws through crossover and recombination will prepare the students to make an early realization that biology, in addition to being experimental, IS a computational science. This can serve as a first step towards a broader curricular transformation in teaching biological sciences. I will show that a simple and modern treatment of Mendel's laws using a Markov chain will make this step possible, and it will only require basic college-level probability and calculus. My personal teaching experience confirms that students WANT to know Markov chains because they hear about them from bioinformaticists all the time. This entire exposition is based on three homework problems that I designed for a course in computational biology. A typical reader is, therefore, an instructional staff member or a student in a computational field (e.g., computer science, mathematics, statistics, computational biology, bioinformatics). However, other students may easily follow by omitting the mathematically more elaborate parts. I kept those as separate sections in the exposition. PMID:22629235

  10. Adaptable Constrained Genetic Programming: Extensions and Applications

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.

    2005-01-01

    An evolutionary algorithm applies evolution-based principles to problem solving. To solve a problem, the user defines the space of potential solutions, the representation space. Sample solutions are encoded in a chromosome-like structure. The algorithm maintains a population of such samples, which undergo simulated evolution by means of mutation, crossover, and survival of the fittest principles. Genetic Programming (GP) uses tree-like chromosomes, providing very rich representation suitable for many problems of interest. GP has been successfully applied to a number of practical problems such as learning Boolean functions and designing hardware circuits. To apply GP to a problem, the user needs to define the actual representation space, by defining the atomic functions and terminals labeling the actual trees. The sufficiency principle requires that the label set be sufficient to build the desired solution trees. The closure principle allows the labels to mix in any arity-consistent manner. To satisfy both principles, the user is often forced to provide a large label set, with ad hoc interpretations or penalties to deal with undesired local contexts. This unfortunately enlarges the actual representation space, and thus usually slows down the search. In the past few years, three different methodologies have been proposed to allow the user to alleviate the closure principle by providing means to define, and to process, constraints on mixing the labels in the trees. Last summer we proposed a new methodology to further alleviate the problem by discovering local heuristics for building quality solution trees. A pilot system was implemented last summer and tested throughout the year. This summer we have implemented a new revision, and produced a User's Manual so that the pilot system can be made available to other practitioners and researchers. We have also designed, and partly implemented, a larger system capable of dealing with much more powerful heuristics.

  11. Absolute GPS Positioning Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  12. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.

    PubMed

    Yang, Shengxiang

    2008-01-01

    In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

  13. Genetic Evolution of Shape-Altering Programs for Supersonic Aerodynamics

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Bencze, Daniel P. (Technical Monitor)

    2002-01-01

    Two constrained shape optimization problems relevant to aerodynamics are solved by genetic programming, in which a population of computer programs evolves automatically under pressure of fitness-driven reproduction and genetic crossover. Known optimal solutions are recovered using a small, naive set of elementary operations. Effectiveness is improved through use of automatically defined functions, especially when one of them is capable of a variable number of iterations, even though the test problems lack obvious exploitable regularities. An attempt at evolving new elementary operations was only partially successful.

  14. Boiler-turbine control system design using a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.; Lee, K.Y.

    1995-12-01

    This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.

  15. Method for hyperspectral imagery exploitation and pixel spectral unmixing

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2003-01-01

    An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.

  16. An Effective Hybrid Evolutionary Algorithm for Solving the Numerical Optimization Problems

    NASA Astrophysics Data System (ADS)

    Qian, Xiaohong; Wang, Xumei; Su, Yonghong; He, Liu

    2018-04-01

    There are many different algorithms for solving complex optimization problems. Each algorithm has been applied successfully in solving some optimization problems, but not efficiently in other problems. In this paper the Cauchy mutation and the multi-parent hybrid operator are combined to propose a hybrid evolutionary algorithm based on the communication (Mixed Evolutionary Algorithm based on Communication), hereinafter referred to as CMEA. The basic idea of the CMEA algorithm is that the initial population is divided into two subpopulations. Cauchy mutation operators and multiple paternal crossover operators are used to perform two subpopulations parallelly to evolve recursively until the downtime conditions are met. While subpopulation is reorganized, the individual is exchanged together with information. The algorithm flow is given and the performance of the algorithm is compared using a number of standard test functions. Simulation results have shown that this algorithm converges significantly faster than FEP (Fast Evolutionary Programming) algorithm, has good performance in global convergence and stability and is superior to other compared algorithms.

  17. Genetics-based control of a mimo boiler-turbine plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.M.; Lee, K.Y.

    1994-12-31

    A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.

  18. A Link between Meiotic Prophase Progression and CrossoverControl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlton, Peter M.; Farruggio, Alfonso P.; Dernburg, Abby F.

    2005-07-06

    During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealedmore » that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.« less

  19. Study of parameter identification using hybrid neural-genetic algorithm in electro-hydraulic servo system

    NASA Astrophysics Data System (ADS)

    Moon, Byung-Young

    2005-12-01

    The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.

  20. Comparison of genetic algorithm methods for fuel management optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1995-12-31

    The CIGARO system was developed for genetic algorithm fuel management optimization. Tests are performed to find the best fuel location swap mutation operator probability and to compare genetic algorithm to a truly random search method. Tests showed the fuel swap probability should be between 0% and 10%, and a 50% definitely hampered the optimization. The genetic algorithm performed significantly better than the random search method, which did not even satisfy the peak normalized power constraint.

  1. Training product unit neural networks with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  2. New Results in Astrodynamics Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.

    1998-01-01

    Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.

  3. Paternal alcoholism and offspring conduct disorder: evidence for the 'common genes' hypothesis.

    PubMed

    Haber, Jon R; Jacob, Theodore; Heath, Andrew C

    2005-04-01

    Not only are alcoholism and externalizing disorders frequently comorbid, they often co-occur in families across generations; for example, paternal alcoholism predicts offspring conduct disorder just as it does offspring alcoholism. To clarify this relationship, the current study examined the 'common genes' hypothesis utilizing a children-of-twins research design. Participants were male monozygotic (MZ) and dizygotic (DZ) twins from the Vietnam Era Twin Registry who were concordant or discordant for alcohol dependence together with their offspring and the mothers of those offspring. All participants were conducted through a structured psychiatric interview. Offspring risk of conduct disorder was examined as a function of alcoholism genetic risk (due to paternal and co-twin alcohol dependence) and alcoholism environmental risk (due to being reared by a father with an alcohol dependence diagnosis). After controlling for potentially confounding variables, the offspring of alcohol-dependent fathers were significantly more likely to exhibit conduct disorder diagnoses than were offspring of nonalcohol-dependent fathers, thus indicating diagnostic crossover in generational family transmission. Comparing offspring at high genetic and high environmental risk with offspring at high genetic and low environmental risk indicated that genetic factors were most likely responsible for the alcoholism-conduct disorder association. The observed diagnostic crossover (from paternal alcoholism to offspring conduct disorder) across generations in the context of both high and low environmental risk (while genetic risk remained high) supported the common genes hypothesis.

  4. Estimation of fine-scale recombination intensity variation in the white-echinus interval of D. melanogaster

    PubMed Central

    Singh, Nadia D.; Aquadro, Charles F.; Clark, Andrew G.

    2009-01-01

    Accurate assessment of local recombination rate variation is crucial for understanding the recombination process and for determining the impact of natural selection on linked sites. In Drosophila, local recombination intensity has been estimated primarily by statistical approaches, estimating the local slope of the relationship between the physical and genetic maps. However, these estimates are limited in resolution, and as a result, the physical scale at which recombination intensity varies in Drosophila is largely unknown. While there is some evidence suggesting as much as a 40-fold variation in crossover rate at a local scale in D. pseudoobscura, little is known about the fine-scale structure of recombination rate variation in D. melanogaster. Here, we experimentally examine the fine-scale distribution of crossover events in a 1.2 Mb region on the D. melanogaster X chromosome using a classic genetic mapping approach. Our results show that crossover frequency is significantly heterogeneous within this region, varying ~ 3.5 fold. Simulations suggest that this degree of heterogeneity is sufficient to affect levels of standing nucleotide diversity, although the magnitude of this effect is small. We recover no statistical association between empirical estimates of nucleotide diversity and recombination intensity, which is likely due to the limited number of loci sampled in our population genetic dataset. However, codon bias is significantly negatively correlated with fine-scale recombination intensity estimates, as expected. Our results shed light on the relevant physical scale to consider in evolutionary analyses relating to recombination rate, and highlight the motivations to increase the resolution of the recombination map in Drosophila. PMID:19504037

  5. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm

    DTIC Science & Technology

    2016-12-01

    Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street Concord, NH 03301 under contract W911SR...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street... Genetic Algorithm 5a. CONTRACT NUMBER W199SR-15-2-001 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Justin L Paul 5d. PROJECT

  6. Experimental evolution of recombination and crossover interference in Drosophila caused by directional selection for stress-related traits.

    PubMed

    Aggarwal, Dau Dayal; Rashkovetsky, Eugenia; Michalak, Pawel; Cohen, Irit; Ronin, Yefim; Zhou, Dan; Haddad, Gabriel G; Korol, Abraham B

    2015-11-27

    Population genetics predicts that tight linkage between new and/or pre-existing beneficial and deleterious alleles should decrease the efficiency of natural selection in finite populations. By decoupling beneficial and deleterious alleles and facilitating the combination of beneficial alleles, recombination accelerates the formation of high-fitness genotypes. This may impose indirect selection for increased recombination. Despite the progress in theoretical understanding, interplay between recombination and selection remains a controversial issue in evolutionary biology. Even less satisfactory is the situation with crossover interference, which is a deviation of double-crossover frequency in a pair of adjacent intervals from the product of recombination rates in the two intervals expected on the assumption of crossover independence. Here, we report substantial changes in recombination and interference in three long-term directional selection experiments with Drosophila melanogaster: for desiccation (~50 generations), hypoxia, and hyperoxia tolerance (>200 generations each). For all three experiments, we found a high interval-specific increase of recombination frequencies in selection lines (up to 40-50% per interval) compared to the control lines. We also discovered a profound effect of selection on interference as expressed by an increased frequency of double crossovers in selection lines. Our results show that changes in interference are not necessarily coupled with increased recombination. Our results support the theoretical predictions that adaptation to a new environment can promote evolution toward higher recombination. Moreover, this is the first evidence of selection for different recombination-unrelated traits potentially leading, not only to evolution toward increased crossover rates, but also to changes in crossover interference, one of the fundamental features of recombination.

  7. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; Safranek, James

    2014-09-01

    Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.

  8. Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)

    NASA Astrophysics Data System (ADS)

    Li, X. R.; Wang, X.

    2016-03-01

    When using the genetic algorithm to solve the problem of too-short-arc (TSA) determination, due to the difference of computing processes between the genetic algorithm and classical method, the methods for outliers editing are no longer applicable. In the genetic algorithm, the robust estimation is acquired by means of using different loss functions in the fitness function, then the outlier problem of TSAs is solved. Compared with the classical method, the application of loss functions in the genetic algorithm is greatly simplified. Through the comparison of results of different loss functions, it is clear that the methods of least median square and least trimmed square can greatly improve the robustness of TSAs, and have a high breakdown point.

  9. The exposure-crossover design is a new method for studying sustained changes in recurrent events.

    PubMed

    Redelmeier, Donald A

    2013-09-01

    To introduce a new design that explores how an acute exposure might lead to a sustained change in the risk of a recurrent outcome. The exposure-crossover design uses self-matching to control within-person confounding due to genetics, personality, and all other stable patient characteristics. The design is demonstrated using population-based individual-level health data from Ontario, Canada, for three separate medical conditions (n > 100,000 for each) related to the risk of a motor vehicle crash (total outcomes, >2,000 for each). The exposure-crossover design yields numerical risk estimates during the baseline interval before an intervention, the induction interval immediately ahead of the intervention, and the subsequent interval after the intervention. Accompanying graphs summarize results, provide an intuitive display to readers, and show risk comparisons (absolute and relative). Self-matching increases statistical efficiency, reduces selection bias, and yields quantitative analyses. The design has potential limitations related to confounding, artifacts, pragmatics, survivor bias, statistical models, potential misunderstandings, and serendipity. The exposure-crossover design may help in exploring selected questions in epidemiology science. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm

    NASA Astrophysics Data System (ADS)

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.

  11. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm.

    PubMed

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Test of Genetic Algorithms in Relevance Feedback.

    ERIC Educational Resources Information Center

    Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de

    2002-01-01

    Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…

  13. Transonic Wing Shape Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  14. Portfolio optimization by using linear programing models based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  15. Solving TSP problem with improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Chunhua; Zhang, Lijun; Wang, Xiaojing; Qiao, Liying

    2018-05-01

    The TSP is a typical NP problem. The optimization of vehicle routing problem (VRP) and city pipeline optimization can use TSP to solve; therefore it is very important to the optimization for solving TSP problem. The genetic algorithm (GA) is one of ideal methods in solving it. The standard genetic algorithm has some limitations. Improving the selection operator of genetic algorithm, and importing elite retention strategy can ensure the select operation of quality, In mutation operation, using the adaptive algorithm selection can improve the quality of search results and variation, after the chromosome evolved one-way evolution reverse operation is added which can make the offspring inherit gene of parental quality improvement opportunities, and improve the ability of searching the optimal solution algorithm.

  16. Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Freeman, L. M.; Meredith, D. L.

    1990-01-01

    The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.

  17. A "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates

    ERIC Educational Resources Information Center

    Venables, Anne; Tan, Grace

    2007-01-01

    Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionary…

  18. The potential of genetic algorithms for conceptual design of rotor systems

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Wells, Valana L.; Laananen, David H.

    1993-01-01

    The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.

  19. Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)

    NASA Astrophysics Data System (ADS)

    Li, Xin-ran; Wang, Xin

    2017-04-01

    When the genetic algorithm is used to solve the problem of too short-arc (TSA) orbit determination, due to the difference of computing process between the genetic algorithm and the classical method, the original method for outlier deletion is no longer applicable. In the genetic algorithm, the robust estimation is realized by introducing different loss functions for the fitness function, then the outlier problem of the TSA orbit determination is solved. Compared with the classical method, the genetic algorithm is greatly simplified by introducing in different loss functions. Through the comparison on the calculations of multiple loss functions, it is found that the least median square (LMS) estimation and least trimmed square (LTS) estimation can greatly improve the robustness of the TSA orbit determination, and have a high breakdown point.

  20. A Genetic Algorithm Tool (splicer) for Complex Scheduling Problems and the Space Station Freedom Resupply Problem

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Valenzuela-Rendon, Manuel

    1993-01-01

    The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.

  1. Differential evolution-simulated annealing for multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.

    2017-10-01

    Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.

  2. Order reduction of z-transfer functions via multipoint Jordan continued-fraction expansion

    NASA Technical Reports Server (NTRS)

    Lee, Ying-Chin; Hwang, Chyi; Shieh, Leang S.

    1992-01-01

    The order reduction problem of z-transfer functions is solved by using the multipoint Jordan continued-fraction expansion (MJCFE) technique. An efficient algorithm that does not require the use of complex algebra is presented for obtaining an MJCFE from a stable z-transfer function with expansion points selected from the unit circle and/or the positive real axis of the z-plane. The reduced-order models are exactly the multipoint Pade approximants of the original system and, therefore, they match the (weighted) time-moments of the impulse response and preserve the frequency responses of the system at some characteristic frequencies, such as gain crossover frequency, phase crossover frequency, bandwidth, etc.

  3. Characterization of recombination features and the genetic basis in multiple cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Background: Crossover generated by meiotic recombination is a fundamental event which facilitates meiosis and sexual reproduction. Comparative studies have shown wide variation in recombination between species, but the characterization of recombination between bovine breeds remains elusive. Cattle p...

  4. Genetic algorithms for adaptive real-time control in space systems

    NASA Technical Reports Server (NTRS)

    Vanderzijp, J.; Choudry, A.

    1988-01-01

    Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.

  5. Automatic Molecular Design using Evolutionary Techniques

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    Molecular nanotechnology is the precise, three-dimensional control of materials and devices at the atomic scale. An important part of nanotechnology is the design of molecules for specific purposes. This paper describes early results using genetic software techniques to automatically design molecules under the control of a fitness function. The fitness function must be capable of determining which of two arbitrary molecules is better for a specific task. The software begins by generating a population of random molecules. The population is then evolved towards greater fitness by randomly combining parts of the better individuals to create new molecules. These new molecules then replace some of the worst molecules in the population. The unique aspect of our approach is that we apply genetic crossover to molecules represented by graphs, i.e., sets of atoms and the bonds that connect them. We present evidence suggesting that crossover alone, operating on graphs, can evolve any possible molecule given an appropriate fitness function and a population containing both rings and chains. Prior work evolved strings or trees that were subsequently processed to generate molecular graphs. In principle, genetic graph software should be able to evolve other graph representable systems such as circuits, transportation networks, metabolic pathways, computer networks, etc.

  6. Cognitive Nonlinear Radar

    DTIC Science & Technology

    2013-01-01

    intelligently selecting waveform parameters using adaptive algorithms. The adaptive algorithms optimize the waveform parameters based on (1) the EM...the environment. 15. SUBJECT TERMS cognitive radar, adaptive sensing, spectrum sensing, multi-objective optimization, genetic algorithms, machine...detection and classification block diagram. .........................................................6 Figure 5. Genetic algorithm block diagram

  7. Warehouse stocking optimization based on dynamic ant colony genetic algorithm

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaoxu

    2018-04-01

    In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.

  8. A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.

    PubMed

    Hajri, S; Liouane, N; Hammadi, S; Borne, P

    2000-01-01

    Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.

  9. Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria

    2009-01-01

    The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship s flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm s design, along with mathematical models of the algorithm s performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.

  10. Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria

    2009-01-01

    The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship's flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm's design, along with mathematical models of the algorithm's performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.

  11. Forecasting Nonlinear Chaotic Time Series with Function Expression Method Based on an Improved Genetic-Simulated Annealing Algorithm

    PubMed Central

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011

  12. Scalability problems of simple genetic algorithms.

    PubMed

    Thierens, D

    1999-01-01

    Scalable evolutionary computation has become an intensively studied research topic in recent years. The issue of scalability is predominant in any field of algorithmic design, but it became particularly relevant for the design of competent genetic algorithms once the scalability problems of simple genetic algorithms were understood. Here we present some of the work that has aided in getting a clear insight in the scalability problems of simple genetic algorithms. Particularly, we discuss the important issue of building block mixing. We show how the need for mixing places a boundary in the GA parameter space that, together with the boundary from the schema theorem, delimits the region where the GA converges reliably to the optimum in problems of bounded difficulty. This region shrinks rapidly with increasing problem size unless the building blocks are tightly linked in the problem coding structure. In addition, we look at how straightforward extensions of the simple genetic algorithm-namely elitism, niching, and restricted mating are not significantly improving the scalability problems.

  13. Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

    PubMed

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  14. Digital case-based learning system in school.

    PubMed

    Gu, Peipei; Guo, Jiayang

    2017-01-01

    With the continuing growth of multi-media learning resources, it is important to offer methods helping learners to explore and acquire relevant learning information effectively. As services that organize multi-media learning materials together to support programming learning, the digital case-based learning system is needed. In order to create a case-oriented e-learning system, this paper concentrates on the digital case study of multi-media resources and learning processes with an integrated framework. An integration of multi-media resources, testing and learning strategies recommendation as the learning unit is proposed in the digital case-based learning framework. The learning mechanism of learning guidance, multi-media materials learning and testing feedback is supported in our project. An improved personalized genetic algorithm which incorporates preference information and usage degree into the crossover and mutation process is proposed to assemble the personalized test sheet for each learner. A learning strategies recommendation solution is proposed to recommend learning strategies for learners to help them to learn. The experiments are conducted to prove that the proposed approaches are capable of constructing personalized sheets and the effectiveness of the framework.

  15. Digital case-based learning system in school

    PubMed Central

    Gu, Peipei

    2017-01-01

    With the continuing growth of multi-media learning resources, it is important to offer methods helping learners to explore and acquire relevant learning information effectively. As services that organize multi-media learning materials together to support programming learning, the digital case-based learning system is needed. In order to create a case-oriented e-learning system, this paper concentrates on the digital case study of multi-media resources and learning processes with an integrated framework. An integration of multi-media resources, testing and learning strategies recommendation as the learning unit is proposed in the digital case-based learning framework. The learning mechanism of learning guidance, multi-media materials learning and testing feedback is supported in our project. An improved personalized genetic algorithm which incorporates preference information and usage degree into the crossover and mutation process is proposed to assemble the personalized test sheet for each learner. A learning strategies recommendation solution is proposed to recommend learning strategies for learners to help them to learn. The experiments are conducted to prove that the proposed approaches are capable of constructing personalized sheets and the effectiveness of the framework. PMID:29107965

  16. An investigation of messy genetic algorithms

    NASA Technical Reports Server (NTRS)

    Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley

    1990-01-01

    Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.

  17. Global Optimization of a Periodic System using a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Stucke, David; Crespi, Vincent

    2001-03-01

    We use a novel application of a genetic algorithm global optimizatin technique to find the lowest energy structures for periodic systems. We apply this technique to colloidal crystals for several different stoichiometries of binary and trinary colloidal crystals. This application of a genetic algorithm is decribed and results of likely candidate structures are presented.

  18. Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2001-01-01

    A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.

  19. Pharmacogenetics of Methylphenidate Response in Preschoolers with ADHD

    ERIC Educational Resources Information Center

    McGough, James; McCracken, James; Swanson, James; Riddle, Mark; Kollins, Scott; Greenhill, Laurence; Abikoff, Howard; Davies, Mark; Chuang, Shirley; Wigal, Tim; Wigal, Sharon; Posner, Kelly; Skrobala, Anne; Kastelic, Elizabeth; Ghuman, Jaswinder; Cunningham, Charles; Shigawa, Sharon; Moyzis, Robert; Vitiello, Benedetto

    2006-01-01

    Objective: The authors explored genetic moderators of symptom reduction and side effects in methylphenidate-treated preschool-age children diagnosed with attention-deficit/hyperactivity disorder (ADHD). Method: DNA was isolated from 81 subjects in a double-blind, placebo-controlled, crossover methylphenidate titration. Parents and teachers…

  20. Genetic analysis of eight loci tightly linked to neurofibromatosis 1

    PubMed Central

    Stephens, Karen; Green, Philip; Riccardi, Vincent M.; Ng, Siu; Rising, Marcia; Barker, David; Darby, John K.; Falls, Kathleen M.; Collins, Francis S.; Willard, Huntington F.; Donis-Keller, Helen

    1989-01-01

    The genetic locus for neurofibromatosis 1 (NF1) has recently been mapped to the pericentromeric region of chromosome 17. We have genotyped eight previously identified RFLP probes on 50 NF1 families to determine the placement of the NF1 locus relative to the RFLP loci. Thirty-eight recombination events in the pericentromeric region were identified, eight involving crossovers between NF1 and loci on either chromosomal arm. Multipoint linkage analysis resulted in the unique placement of six loci at odds >100:1 in the order of pter–A10-41–EW301–NF1–EW207–CRI-L581–CRI-L946–qter. Owing to insufficient crossovers, three loci–D17Z1, EW206, and EW203–could not be uniquely localized. In this region female recombination rates were significantly higher than those of males. These data were part of a joint study aimed at the localization of both NF1 and tightly linked pericentromeric markers for chromosome 17. PMID:2491775

  1. Genetic algorithms as global random search methods

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  2. Genetic algorithms as global random search methods

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  3. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    USGS Publications Warehouse

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  4. Hybrid genetic algorithm in the Hopfield network for maximum 2-satisfiability problem

    NASA Astrophysics Data System (ADS)

    Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf

    2017-08-01

    Heuristic method was designed for finding optimal solution more quickly compared to classical methods which are too complex to comprehend. In this study, a hybrid approach that utilizes Hopfield network and genetic algorithm in doing maximum 2-Satisfiability problem (MAX-2SAT) was proposed. Hopfield neural network was used to minimize logical inconsistency in interpretations of logic clauses or program. Genetic algorithm (GA) has pioneered the implementation of methods that exploit the idea of combination and reproduce a better solution. The simulation incorporated with and without genetic algorithm will be examined by using Microsoft Visual 2013 C++ Express software. The performance of both searching techniques in doing MAX-2SAT was evaluate based on global minima ratio, ratio of satisfied clause and computation time. The result obtained form the computer simulation demonstrates the effectiveness and acceleration features of genetic algorithm in doing MAX-2SAT in Hopfield network.

  5. A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Thammano, Arit; Teekeng, Wannaporn

    2015-05-01

    The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.

  6. A New Challenge for Compression Algorithms: Genetic Sequences.

    ERIC Educational Resources Information Center

    Grumbach, Stephane; Tahi, Fariza

    1994-01-01

    Analyzes the properties of genetic sequences that cause the failure of classical algorithms used for data compression. A lossless algorithm, which compresses the information contained in DNA and RNA sequences by detecting regularities such as palindromes, is presented. This algorithm combines substitutional and statistical methods and appears to…

  7. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2017-01-01

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.

  8. Refined genetic algorithm -- Economic dispatch example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheble, G.B.; Brittig, K.

    1995-02-01

    A genetic-based algorithm is used to solve an economic dispatch (ED) problem. The algorithm utilizes payoff information of perspective solutions to evaluate optimality. Thus, the constraints of classical LaGrangian techniques on unit curves are eliminated. Using an economic dispatch problem as a basis for comparison, several different techniques which enhance program efficiency and accuracy, such as mutation prediction, elitism, interval approximation and penalty factors, are explored. Two unique genetic algorithms are also compared. The results are verified for a sample problem using a classical technique.

  9. Immune allied genetic algorithm for Bayesian network structure learning

    NASA Astrophysics Data System (ADS)

    Song, Qin; Lin, Feng; Sun, Wei; Chang, KC

    2012-06-01

    Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.

  10. Flexible Space-Filling Designs for Complex System Simulations

    DTIC Science & Technology

    2013-06-01

    interior of the experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with...Computer Experiments, Design of Experiments, Genetic Algorithm , Latin Hypercube, Response Surface Methodology, Nearly Orthogonal 15. NUMBER OF PAGES 147...experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with minimal correlations

  11. Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Valana L.

    1996-01-01

    This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.

  12. Self-calibration of a noisy multiple-sensor system with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Brooks, Richard R.; Iyengar, S. Sitharama; Chen, Jianhua

    1996-01-01

    This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray-scale images corrupted with noise. Both taboo search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results. The presentation includes a graphic presentation of the paths taken by tabu search and genetic algorithms when trying to find the best possible match between two corrupted images.

  13. A mission-oriented orbit design method of remote sensing satellite for region monitoring mission based on evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Zhang, Jing; Yao, Huang

    2015-12-01

    Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.

  14. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2004-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  15. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  16. Genetic algorithm dynamics on a rugged landscape

    NASA Astrophysics Data System (ADS)

    Bornholdt, Stefan

    1998-04-01

    The genetic algorithm is an optimization procedure motivated by biological evolution and is successfully applied to optimization problems in different areas. A statistical mechanics model for its dynamics is proposed based on the parent-child fitness correlation of the genetic operators, making it applicable to general fitness landscapes. It is compared to a recent model based on a maximum entropy ansatz. Finally it is applied to modeling the dynamics of a genetic algorithm on the rugged fitness landscape of the NK model.

  17. Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

    PubMed Central

    MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali

    2017-01-01

    Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms. PMID:28979308

  18. Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR.

    PubMed

    MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali

    2017-01-01

    Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms.

  19. Application of Differential Evolutionary Optimization Methodology for Parameter Structure Identification in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Nishikawa, T.

    2013-12-01

    With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.

  20. Pose estimation for augmented reality applications using genetic algorithm.

    PubMed

    Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen

    2005-12-01

    This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.

  1. Development of a Tool for an Efficient Calibration of CORSIM Models

    DOT National Transportation Integrated Search

    2014-08-01

    This project proposes a Memetic Algorithm (MA) for the calibration of microscopic traffic flow simulation models. The proposed MA includes a combination of genetic and simulated annealing algorithms. The genetic algorithm performs the exploration of ...

  2. Engineered Intrinsic Bioremediation of Ammonium Perchlorate in Groundwater

    DTIC Science & Technology

    2010-12-01

    German Collection of Microorganisms and Cell Cultures) GA Genetic Algorithms GA-ANN Genetic Algorithm Artificial Neural Network GMO genetically...for in situ treatment of perchlorate in groundwater. This is accomplished without the addition of genetically engineered microorganisms ( GMOs ) to the...perchlorate, even in the presence of oxygen and without the addition of genetically engineered microorganisms ( GMOs ) to the environment. This approach

  3. [Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].

    PubMed

    Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V

    2014-01-01

    Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.

  4. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2017-01-05

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Differential Evolution algorithm applied to FSW model calibration

    NASA Astrophysics Data System (ADS)

    Idagawa, H. S.; Santos, T. F. A.; Ramirez, A. J.

    2014-03-01

    Friction Stir Welding (FSW) is a solid state welding process that can be modelled using a Computational Fluid Dynamics (CFD) approach. These models use adjustable parameters to control the heat transfer and the heat input to the weld. These parameters are used to calibrate the model and they are generally determined using the conventional trial and error approach. Since this method is not very efficient, we used the Differential Evolution (DE) algorithm to successfully determine these parameters. In order to improve the success rate and to reduce the computational cost of the method, this work studied different characteristics of the DE algorithm, such as the evolution strategy, the objective function, the mutation scaling factor and the crossover rate. The DE algorithm was tested using a friction stir weld performed on a UNS S32205 Duplex Stainless Steel.

  6. Distributed genetic algorithms for the floorplan design problem

    NASA Technical Reports Server (NTRS)

    Cohoon, James P.; Hegde, Shailesh U.; Martin, Worthy N.; Richards, Dana S.

    1991-01-01

    Designing a VLSI floorplan calls for arranging a given set of modules in the plane to minimize the weighted sum of area and wire-length measures. A method of solving the floorplan design problem using distributed genetic algorithms is presented. Distributed genetic algorithms, based on the paleontological theory of punctuated equilibria, offer a conceptual modification to the traditional genetic algorithms. Experimental results on several problem instances demonstrate the efficacy of this method and indicate the advantages of this method over other methods, such as simulated annealing. The method has performed better than the simulated annealing approach, both in terms of the average cost of the solutions found and the best-found solution, in almost all the problem instances tried.

  7. An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Weir, John M.; Wells, B. Earl

    2003-01-01

    Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.

  8. Performance Analysis of Combined Methods of Genetic Algorithm and K-Means Clustering in Determining the Value of Centroid

    NASA Astrophysics Data System (ADS)

    Adya Zizwan, Putra; Zarlis, Muhammad; Budhiarti Nababan, Erna

    2017-12-01

    The determination of Centroid on K-Means Algorithm directly affects the quality of the clustering results. Determination of centroid by using random numbers has many weaknesses. The GenClust algorithm that combines the use of Genetic Algorithms and K-Means uses a genetic algorithm to determine the centroid of each cluster. The use of the GenClust algorithm uses 50% chromosomes obtained through deterministic calculations and 50% is obtained from the generation of random numbers. This study will modify the use of the GenClust algorithm in which the chromosomes used are 100% obtained through deterministic calculations. The results of this study resulted in performance comparisons expressed in Mean Square Error influenced by centroid determination on K-Means method by using GenClust method, modified GenClust method and also classic K-Means.

  9. Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.

    PubMed

    Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R

    2012-08-01

    A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.

  10. Cloud computing-based TagSNP selection algorithm for human genome data.

    PubMed

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-05

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used.

  11. The Applications of Genetic Algorithms in Medicine.

    PubMed

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-11-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.].

  12. The Applications of Genetic Algorithms in Medicine

    PubMed Central

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-01-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060

  13. Cloud Computing-Based TagSNP Selection Algorithm for Human Genome Data

    PubMed Central

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-01

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used. PMID:25569088

  14. Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.

  15. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2012-01-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  16. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2011-12-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  17. Plasticity of Meiotic Recombination Rates in Response to Temperature in Arabidopsis

    PubMed Central

    Lloyd, Andrew; Morgan, Chris; H. Franklin, F. Chris

    2018-01-01

    Meiotic recombination shuffles genetic information from sexual species into gametes to create novel combinations in offspring. Thus, recombination is an important factor in inheritance, adaptation, and responses to selection. However, recombination is not a static parameter; meiotic recombination rate is sensitive to variation in the environment, especially temperature. That recombination rates change in response to both increases and decreases in temperature was reported in Drosophila a century ago, and since then in several other species. But it is still unclear what the underlying mechanism is, and whether low- and high-temperature effects are mechanistically equivalent. Here, we show that, as in Drosophila, both high and low temperatures increase meiotic crossovers in Arabidopsis thaliana. We show that, from a nadir at 18°, both lower and higher temperatures increase recombination through additional class I (interfering) crossovers. However, the increase in crossovers at high and low temperatures appears to be mechanistically at least somewhat distinct, as they differ in their association with the DNA repair protein MLH1. We also find that, in contrast to what has been reported in barley, synaptonemal complex length is negatively correlated with temperature; thus, an increase in chromosome axis length may account for increased crossovers at low temperature in A. thaliana, but cannot explain the increased crossovers observed at high temperature. The plasticity of recombination has important implications for evolution and breeding, and also for the interpretation of observations of recombination rate variation among natural populations. PMID:29496746

  18. MIP models and hybrid algorithms for simultaneous job splitting and scheduling on unrelated parallel machines.

    PubMed

    Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.

  19. Altimeter measurements for the determination of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Schutz, B. E.; Shum, C. K.

    1986-01-01

    Progress in the following areas is described: refining altimeter and altimeter crossover measurement models for precise orbit determination and for the solution of the earth's gravity field; performing experiments using altimeter data for the improvement of precise satellite ephemerides; and analyzing an optimal relative data weighting algorithm to combine various data types in the solution of the gravity field.

  20. Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Benford, Andrew; Tinker, Michael L.

    2004-01-01

    The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.

  1. Superscattering of light optimized by a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2014-07-01

    We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.

  2. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    PubMed Central

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  3. Neural-network-assisted genetic algorithm applied to silicon clusters

    NASA Astrophysics Data System (ADS)

    Marim, L. R.; Lemes, M. R.; dal Pino, A.

    2003-03-01

    Recently, a new optimization procedure that combines the power of artificial neural-networks with the versatility of the genetic algorithm (GA) was introduced. This method, called neural-network-assisted genetic algorithm (NAGA), uses a neural network to restrict the search space and it is expected to speed up the solution of global optimization problems if some previous information is available. In this paper, we have tested NAGA to determine the ground-state geometry of Sin (10⩽n⩽15) according to a tight-binding total-energy method. Our results indicate that NAGA was able to find the desired global minimum of the potential energy for all the test cases and it was at least ten times faster than pure genetic algorithm.

  4. A discrete artificial bee colony algorithm incorporating differential evolution for the flow-shop scheduling problem with blocking

    NASA Astrophysics Data System (ADS)

    Han, Yu-Yan; Gong, Dunwei; Sun, Xiaoyan

    2015-07-01

    A flow-shop scheduling problem with blocking has important applications in a variety of industrial systems but is underrepresented in the research literature. In this study, a novel discrete artificial bee colony (ABC) algorithm is presented to solve the above scheduling problem with a makespan criterion by incorporating the ABC with differential evolution (DE). The proposed algorithm (DE-ABC) contains three key operators. One is related to the employed bee operator (i.e. adopting mutation and crossover operators of discrete DE to generate solutions with good quality); the second is concerned with the onlooker bee operator, which modifies the selected solutions using insert or swap operators based on the self-adaptive strategy; and the last is for the local search, that is, the insert-neighbourhood-based local search with a small probability is adopted to improve the algorithm's capability in exploitation. The performance of the proposed DE-ABC algorithm is empirically evaluated by applying it to well-known benchmark problems. The experimental results show that the proposed algorithm is superior to the compared algorithms in minimizing the makespan criterion.

  5. A Novel Optimization Technique to Improve Gas Recognition by Electronic Noses Based on the Enhanced Krill Herd Algorithm

    PubMed Central

    Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan

    2016-01-01

    An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C6H6), toluene (C7H8), formaldehyde (CH2O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms’ applications in all E-nose application areas. PMID:27529247

  6. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    ERIC Educational Resources Information Center

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  7. MOESHA: A genetic algorithm for automatic calibration and estimation of parameter uncertainty and sensitivity of hydrologic models

    EPA Science Inventory

    Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...

  8. QPSO-Based Adaptive DNA Computing Algorithm

    PubMed Central

    Karakose, Mehmet; Cigdem, Ugur

    2013-01-01

    DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409

  9. Dual Fractal Dimension and Long-Range Correlation of Chinese Stock Prices

    NASA Astrophysics Data System (ADS)

    Chen, Chaoshi; Wang, Lei

    2012-03-01

    The recently developed modified inverse random midpoint displacement (mIRMD) and conventional detrended fluctuation analysis (DFA) algorithms are used to analyze the tick-by-tick high-frequency time series of Chinese A-share stock prices and indexes. A dual-fractal structure with a crossover at about 10 min is observed. The majority of the selected time series show visible persistence within this time threshold, but approach a random walk on a longer time scale. The phenomenon is found to be industry-dependent, i.e., the crossover is much more prominent for stocks belonging to cyclical industries than for those belonging to noncyclical (defensive) industries. We have also shown that the sign series show a similar dual-fractal structure, while like generally found, the magnitude series show a much longer time persistence.

  10. Methodology for reducing energy and resource costs in construction of trenchless crossover of pipelines

    NASA Astrophysics Data System (ADS)

    Toropov, V. S.

    2018-05-01

    The paper suggests a set of measures to select the equipment and its components in order to reduce energy costs in the process of pulling the pipeline into the well in the constructing the trenchless pipeline crossings of various materials using horizontal directional drilling technology. A methodology for reducing energy costs has been developed by regulating the operation modes of equipment during the process of pulling the working pipeline into a drilled and pre-expanded well. Since the power of the drilling rig is the most important criterion in the selection of equipment for the construction of a trenchless crossover, an algorithm is proposed for calculating the required capacity of the rig when operating in different modes in the process of pulling the pipeline into the well.

  11. Brief Report: Initial Trial of Alpha7-Nicotinic Receptor Stimulation in Two Adult Patients with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Olincy, Ann; Blakeley-Smith, Audrey; Johnson, Lynn; Kem, William R.; Freedman, Robert

    2016-01-01

    Abnormalities in CHRNA7, the alpha7-nicotinic receptor gene, have been reported in autism spectrum disorder. These genetic abnormalities potentially decrease the receptor's expression and diminish its functional role. This double-blind, placebo-controlled crossover study in two adult patients investigated whether an investigational…

  12. Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops

    PubMed Central

    Liu, Jie; Ede, Christopher; Wright, William D; Gore, Steven K; Jenkins, Shirin S; Freudenthal, Bret D; Todd Washington, M; Veaute, Xavier; Heyer, Wolf-Dietrich

    2017-01-01

    Synthesis-dependent strand annealing (SDSA) is the preferred mode of homologous recombination in somatic cells leading to an obligatory non-crossover outcome, thus avoiding the potential for chromosomal rearrangements and loss of heterozygosity. Genetic analysis identified the Srs2 helicase as a prime candidate to promote SDSA. Here, we demonstrate that Srs2 disrupts D-loops in an ATP-dependent fashion and with a distinct polarity. Specifically, we partly reconstitute the SDSA pathway using Rad51, Rad54, RPA, RFC, DNA Polymerase δ with different forms of PCNA. Consistent with genetic data showing the requirement for SUMO and PCNA binding for the SDSA role of Srs2, Srs2 displays a slight but significant preference to disrupt extending D-loops over unextended D-loops when SUMOylated PCNA is present, compared to unmodified PCNA or monoubiquitinated PCNA. Our data establish a biochemical mechanism for the role of Srs2 in crossover suppression by promoting SDSA through disruption of extended D-loops. DOI: http://dx.doi.org/10.7554/eLife.22195.001 PMID:28535142

  13. A genetic algorithm for solving supply chain network design model

    NASA Astrophysics Data System (ADS)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  14. Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus

    PubMed Central

    Smith, Jack W.; Everhart, J.E.; Dickson, W.C.; Knowler, W.C.; Johannes, R.S.

    1988-01-01

    Neural networks or connectionist models for parallel processing are not new. However, a resurgence of interest in the past half decade has occurred. In part, this is related to a better understanding of what are now referred to as hidden nodes. These algorithms are considered to be of marked value in pattern recognition problems. Because of that, we tested the ability of an early neural network model, ADAP, to forecast the onset of diabetes mellitus in a high risk population of Pima Indians. The algorithm's performance was analyzed using standard measures for clinical tests: sensitivity, specificity, and a receiver operating characteristic curve. The crossover point for sensitivity and specificity is 0.76. We are currently further examining these methods by comparing the ADAP results with those obtained from logistic regression and linear perceptron models using precisely the same training and forecasting sets. A description of the algorithm is included.

  15. Analysis of modal behavior at frequency cross-over

    NASA Astrophysics Data System (ADS)

    Costa, Robert N., Jr.

    1994-11-01

    The existence of the mode crossing condition is detected and analyzed in the Active Control of Space Structures Model 4 (ACOSS4). The condition is studied for its contribution to the inability of previous algorithms to successfully optimize the structure and converge to a feasible solution. A new algorithm is developed to detect and correct for mode crossings. The existence of the mode crossing condition is verified in ACOSS4 and found not to have appreciably affected the solution. The structure is then successfully optimized using new analytic methods based on modal expansion. An unrelated error in the optimization algorithm previously used is verified and corrected, thereby equipping the optimization algorithm with a second analytic method for eigenvector differentiation based on Nelson's Method. The second structure is the Control of Flexible Structures (COFS). The COFS structure is successfully reproduced and an initial eigenanalysis completed.

  16. The simulation method of chemical composition of vermicular graphite iron on the basis of genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yusupov, L. R.; Klochkova, K. V.; Simonova, L. A.

    2017-09-01

    The paper presents a methodology of modeling the chemical composition of the composite material via genetic algorithm for optimization of the manufacturing process of products. The paper presents algorithms of methods based on intelligent system of vermicular graphite iron design

  17. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  18. Multi-Objective Constraint Satisfaction for Mobile Robot Area Defense

    DTIC Science & Technology

    2010-03-01

    17 NSGA-II non-dominated sorting genetic algorithm II . . . . . . . . . . . . . . . . . . . 17 jMetal Metaheuristic Algorithms in...to alert the other agents and ensure trust in the system. This research presents an algorithm that tasks robots to meet the two specific goals of...problem is defined as a constraint satisfaction problem solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Both goals of

  19. Application of genetic algorithm in modeling on-wafer inductors for up to 110 Ghz

    NASA Astrophysics Data System (ADS)

    Liu, Nianhong; Fu, Jun; Liu, Hui; Cui, Wenpu; Liu, Zhihong; Liu, Linlin; Zhou, Wei; Wang, Quan; Guo, Ao

    2018-05-01

    In this work, the genetic algorithm has been introducted into parameter extraction for on-wafer inductors for up to 110 GHz millimeter-wave operations, and nine independent parameters of the equivalent circuit model are optimized together. With the genetic algorithm, the model with the optimized parameters gives a better fitting accuracy than the preliminary parameters without optimization. Especially, the fitting accuracy of the Q value achieves a significant improvement after the optimization.

  20. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  1. Hybrid artificial bee colony algorithm for parameter optimization of five-parameter bidirectional reflectance distribution function model.

    PubMed

    Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong

    2017-11-20

    A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.

  2. [Application of genetic algorithm in blending technology for extractions of Cortex Fraxini].

    PubMed

    Yang, Ming; Zhou, Yinmin; Chen, Jialei; Yu, Minying; Shi, Xiufeng; Gu, Xijun

    2009-10-01

    To explore the feasibility of genetic algorithm (GA) on multiple objective blending technology for extractions of Cortex Fraxini. According to that the optimization objective was the combination of fingerprint similarity and the root-mean-square error of multiple key constituents, a new multiple objective optimization model of 10 batches extractions of Cortex Fraxini was built. The blending coefficient was obtained by genetic algorithm. The quality of 10 batches extractions of Cortex Fraxini that after blending was evaluated with the finger print similarity and root-mean-square error as indexes. The quality of 10 batches extractions of Cortex Fraxini that after blending was well improved. Comparing with the fingerprint of the control sample, the similarity was up, but the degree of variation is down. The relative deviation of the key constituents was less than 10%. It is proved that genetic algorithm works well on multiple objective blending technology for extractions of Cortex Fraxini. This method can be a reference to control the quality of extractions of Cortex Fraxini. Genetic algorithm in blending technology for extractions of Chinese medicines is advisable.

  3. Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    PubMed Central

    A., Javadpour; A., Mohammadi

    2016-01-01

    Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629

  4. Optimizing multiple sequence alignments using a genetic algorithm based on three objectives: structural information, non-gaps percentage and totally conserved columns.

    PubMed

    Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio

    2013-09-01

    Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P < 0.01). This algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P < 0.05), whereas it shows results not significantly different to 3D-COFFEE (P > 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.

  5. A multiobjective hybrid genetic algorithm for the capacitated multipoint network design problem.

    PubMed

    Lo, C C; Chang, W H

    2000-01-01

    The capacitated multipoint network design problem (CMNDP) is NP-complete. In this paper, a hybrid genetic algorithm for CMNDP is proposed. The multiobjective hybrid genetic algorithm (MOHGA) differs from other genetic algorithms (GAs) mainly in its selection procedure. The concept of subpopulation is used in MOHGA. Four subpopulations are generated according to the elitism reservation strategy, the shifting Prufer vector, the stochastic universal sampling, and the complete random method, respectively. Mixing these four subpopulations produces the next generation population. The MOHGA can effectively search the feasible solution space due to population diversity. The MOHGA has been applied to CMNDP. By examining computational and analytical results, we notice that the MOHGA can find most nondominated solutions and is much more effective and efficient than other multiobjective GAs.

  6. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  7. Genetic Algorithm Approaches for Actuator Placement

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  8. A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Thirer, Nonel

    2013-05-01

    With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.

  9. Homologous genetic recombination in the yellow head complex of nidoviruses infecting Penaeus monodon shrimp.

    PubMed

    Wijegoonawardane, Priyanjalie K M; Sittidilokratna, Nusra; Petchampai, Natthida; Cowley, Jeff A; Gudkovs, Nicholas; Walker, Peter J

    2009-07-20

    Yellow head virus (YHV) is a highly virulent pathogen of Penaeus monodon shrimp. It is one of six known genotypes in the yellow head complex of nidoviruses which also includes mildly pathogenic gill-associated virus (GAV, genotype 2) and four other genotypes (genotypes 3-6) that have been detected only in healthy shrimp. In this study, comparative phylogenetic analyses conducted on replicase- (ORF1b) and glycoprotein- (ORF3) gene amplicons identified 10 putative natural recombinants amongst 28 viruses representing all six genotypes from across the Indo-Pacific region. The approximately 4.6 kb genomic region spanning the two amplicons was sequenced for three putative recombinant viruses from Vietnam (genotype 3/5), the Philippines (genotype 5/2) and Indonesia (genotype 3/2). SimPlot analysis using these and representative parental virus sequences confirmed that each was a recombinant genotype and identified a recombination hotspot in a region just upstream of the ORF1b C-terminus. Maximum-likelihood breakpoint analysis predicted identical crossover positions in the Vietnamese and Indonesian recombinants, and a crossover position 12 nt upstream in the Philippine recombinant. Homologous genetic recombination in the same genome region was also demonstrated in recombinants generated experimentally in shrimp co-infected with YHV and GAV. The high frequency with which natural recombinants were identified indicates that genetic exchange amongst genotypes is occurring commonly in Asia and playing a significant role in expanding the genetic diversity in the yellow head complex. This is the first evidence of genetic recombination in viruses infecting crustaceans and has significant implications for the pathogenesis of infection and diagnosis of these newly emerging invertebrate pathogens.

  10. Image reconstruction through thin scattering media by simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Longjie; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Zhang, Xicheng; Zhu, Jianhua

    2018-07-01

    An idea for reconstructing the image of an object behind thin scattering media is proposed by phase modulation. The optimized phase mask is achieved by modulating the scattered light using simulated annealing algorithm. The correlation coefficient is exploited as a fitness function to evaluate the quality of reconstructed image. The reconstructed images optimized from simulated annealing algorithm and genetic algorithm are compared in detail. The experimental results show that our proposed method has better definition and higher speed than genetic algorithm.

  11. Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul

    2005-01-01

    An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.

  12. Genetic algorithm for neural networks optimization

    NASA Astrophysics Data System (ADS)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  13. Hybrid Architectures for Evolutionary Computing Algorithms

    DTIC Science & Technology

    2008-01-01

    other EC algorithms to FPGA Core Burns P1026/MAPLD 200532 Genetic Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based...on Parallel and Distributed Processing (IPPS/SPDP 󈨦), pp. 316-320, Proceedings. IEEE Computer Society 1998. [12] Scott, S. D. , Samal , A., and...Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based Genetic Algorithm”, Proceedings of the 1995 ACM Third

  14. MIP Models and Hybrid Algorithms for Simultaneous Job Splitting and Scheduling on Unrelated Parallel Machines

    PubMed Central

    Ozmutlu, H. Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204

  15. Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang

    2017-09-01

    Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.

  16. Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.

    PubMed

    Rani, R Ranjani; Ramyachitra, D

    2016-12-01

    Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Automatic page layout using genetic algorithms for electronic albuming

    NASA Astrophysics Data System (ADS)

    Geigel, Joe; Loui, Alexander C. P.

    2000-12-01

    In this paper, we describe a flexible system for automatic page layout that makes use of genetic algorithms for albuming applications. The system is divided into two modules, a page creator module which is responsible for distributing images amongst various album pages, and an image placement module which positions images on individual pages. Final page layouts are specified in a textual form using XML for printing or viewing over the Internet. The system makes use of genetic algorithms, a class of search and optimization algorithms that are based on the concepts of biological evolution, for generating solutions with fitness based on graphic design preferences supplied by the user. The genetic page layout algorithm has been incorporated into a web-based prototype system for interactive page layout over the Internet. The prototype system is built using client-server architecture and is implemented in java. The system described in this paper has demonstrated the feasibility of using genetic algorithms for automated page layout in albuming and web-based imaging applications. We believe that the system adequately proves the validity of the concept, providing creative layouts in a reasonable number of iterations. By optimizing the layout parameters of the fitness function, we hope to further improve the quality of the final layout in terms of user preference and computation speed.

  18. An application of traveling salesman problem using the improved genetic algorithm on android google maps

    NASA Astrophysics Data System (ADS)

    Narwadi, Teguh; Subiyanto

    2017-03-01

    The Travelling Salesman Problem (TSP) is one of the best known NP-hard problems, which means that no exact algorithm to solve it in polynomial time. This paper present a new variant application genetic algorithm approach with a local search technique has been developed to solve the TSP. For the local search technique, an iterative hill climbing method has been used. The system is implemented on the Android OS because android is now widely used around the world and it is mobile system. It is also integrated with Google API that can to get the geographical location and the distance of the cities, and displays the route. Therefore, we do some experimentation to test the behavior of the application. To test the effectiveness of the application of hybrid genetic algorithm (HGA) is compare with the application of simple GA in 5 sample from the cities in Central Java, Indonesia with different numbers of cities. According to the experiment results obtained that in the average solution HGA shows in 5 tests out of 5 (100%) is better than simple GA. The results have shown that the hybrid genetic algorithm outperforms the genetic algorithm especially in the case with the problem higher complexity.

  19. Peak-to-average power ratio reduction in orthogonal frequency division multiplexing-based visible light communication systems using a modified partial transmit sequence technique

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Deng, Honggui; Ren, Shuang; Tang, Chengying; Qian, Xuewen

    2018-01-01

    We propose an efficient partial transmit sequence technique based on genetic algorithm and peak-value optimization algorithm (GAPOA) to reduce high peak-to-average power ratio (PAPR) in visible light communication systems based on orthogonal frequency division multiplexing (VLC-OFDM). By analysis of hill-climbing algorithm's pros and cons, we propose the POA with excellent local search ability to further process the signals whose PAPR is still over the threshold after processed by genetic algorithm (GA). To verify the effectiveness of the proposed technique and algorithm, we evaluate the PAPR performance and the bit error rate (BER) performance and compare them with partial transmit sequence (PTS) technique based on GA (GA-PTS), PTS technique based on genetic and hill-climbing algorithm (GH-PTS), and PTS based on shuffled frog leaping algorithm and hill-climbing algorithm (SFLAHC-PTS). The results show that our technique and algorithm have not only better PAPR performance but also lower computational complexity and BER than GA-PTS, GH-PTS, and SFLAHC-PTS technique.

  20. The McGill Interactive Pediatric OncoGenetic Guidelines: An approach to identifying pediatric oncology patients most likely to benefit from a genetic evaluation.

    PubMed

    Goudie, Catherine; Coltin, Hallie; Witkowski, Leora; Mourad, Stephanie; Malkin, David; Foulkes, William D

    2017-08-01

    Identifying cancer predisposition syndromes in children with tumors is crucial, yet few clinical guidelines exist to identify children at high risk of having germline mutations. The McGill Interactive Pediatric OncoGenetic Guidelines project aims to create a validated pediatric guideline in the form of a smartphone/tablet application using algorithms to process clinical data and help determine whether to refer a child for genetic assessment. This paper discusses the initial stages of the project, focusing on its overall structure, the methodology underpinning the algorithms, and the upcoming algorithm validation process. © 2017 Wiley Periodicals, Inc.

  1. Migratory connectivity of american woodcock using band return data

    USGS Publications Warehouse

    Moore, Joseph D.; Krementz, David G.

    2017-01-01

    American woodcock (Scolopax minor) are managed as a Central and an Eastern population in the United States and Canada based on band return data showing little crossover between populations or management regions. The observed proportion of crossover between management regions, however, depends on the criteria used to subset the band return data. We analyzed the amount of crossover between management regions using only band return records that represent complete migrations between the breeding and wintering grounds by using only band return records in which the capture took place during the breeding season and the band recovery took place during the wintering season or vice versa (n = 224). Additionally, we applied spatial statistics and a clustering algorithm to investigate woodcock migratory connectivity using this subset of migratory woodcock band return records. Using raw counts, 17.9% of records showed crossover between management regions, a higher proportion than the <5% crossover reported in studies that did not use only migratory band returns. Our results showed woodcock from the breeding grounds in the Central Region largely migrate to destinations within the Central Region, whereas woodcock from the breeding grounds in the Eastern Region migrate to destinations across the entire wintering range and mix with individuals from the Central Region. Using the division coefficient, we estimated that 54% of woodcock from the breeding grounds of the Eastern Region migrate to the Central Region wintering grounds. Our result that many woodcock from separate regions of the breeding grounds mix on the wintering grounds has implications for the 2-region basis for woodcock management. Elucidating finer scale movement patterns among regions provides a basis for reassessing the need for separate management regions to ensure optimal conservation and management of the species.

  2. Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria

    NASA Astrophysics Data System (ADS)

    Kowalczuk, Zdzisław; Białaszewski, Tomasz

    2018-01-01

    A novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals and applied during parental crossover in the processes of evolutionary multi-objective optimization (EMOO). The article introduces the principles of the genetic-gender approach (GGA) and virtual gender approach (VGA), which are not just evolutionary techniques, but constitute a completely new rule (philosophy) for use in solving MOO tasks. The proposed approaches are validated against principal representatives of the EMOO algorithms of the state of the art in solving benchmark problems in the light of recognized EC performance criteria. The research shows the superiority of the gender approach in terms of effectiveness, reliability, transparency, intelligibility and MOO problem simplification, resulting in the great usefulness and practicability of GGA and VGA. Moreover, an important feature of GGA and VGA is that they alleviate the 'curse' of dimensionality typical of many engineering designs.

  3. Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.

    PubMed

    Ko, Chien-Ho

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  4. Application of a parallel genetic algorithm to the global optimization of medium-sized Au-Pd sub-nanometre clusters

    NASA Astrophysics Data System (ADS)

    Hussein, Heider A.; Demiroglu, Ilker; Johnston, Roy L.

    2018-02-01

    To contribute to the discussion of the high activity and reactivity of Au-Pd system, we have adopted the BPGA-DFT approach to study the structural and energetic properties of medium-sized Au-Pd sub-nanometre clusters with 11-18 atoms. We have examined the structural behaviour and stability as a function of cluster size and composition. The study suggests 2D-3D crossover points for pure Au clusters at 14 and 16 atoms, whereas pure Pd clusters are all found to be 3D. For Au-Pd nanoalloys, the role of cluster size and the influence of doping were found to be extensive and non-monotonic in altering cluster structures. Various stability criteria (e.g. binding energies, second differences in energy, and mixing energies) are used to evaluate the energetics, structures, and tendency of segregation in sub-nanometre Au-Pd clusters. HOMO-LUMO gaps were calculated to give additional information on cluster stability and a systematic homotop search was used to evaluate the energies of the generated global minima of mono-substituted clusters and the preferred doping sites, as well as confirming the validity of the BPGA-DFT approach.

  5. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.

    PubMed

    Luo, He; Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang

    2018-01-01

    Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided.

  6. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind

    PubMed Central

    Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang

    2018-01-01

    Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided. PMID:29561888

  7. Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks

    PubMed Central

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism. PMID:23864830

  8. Optimization of genomic selection training populations with a genetic algorithm

    USDA-ARS?s Scientific Manuscript database

    In this article, we derive a computationally efficient statistic to measure the reliability of estimates of genetic breeding values for a fixed set of genotypes based on a given training set of genotypes and phenotypes. We adopt a genetic algorithm scheme to find a training set of certain size from ...

  9. Differential effects of the mismatch repair genes MSH2 and MSH3 on homeologous recombination in Saccharomyces cerevisiae.

    PubMed

    Selva, E M; Maderazo, A B; Lahue, R S

    1997-12-01

    The products of the yeast mismatch repair genes MSH2 and MSH3 participate in the inhibition of genetic recombination between homeologous (divergent) DNA sequences. In strains deficient for these genes, homeologous recombination rates between repeated elements are elevated due to the loss of this inhibition. In this study, the effects of these mutations were further analyzed by quantitation of mitotic homeologous recombinants as crossovers, gene conversions or exceptional events in wild-type, msh2, msh3 and msh2 msh3 mutant strains. When homeologous sequences were present as a direct repeat in one orientation, crossovers and gene conversions were elevated in msh2, msh3 and msh2 msh3 strains. The increases were greater in the msh2 msh3 double mutant than in either single mutant. When the order of the homeologous sequences was reversed, the msh2 mutation again yielded increased rates of crossovers and gene conversions. However, in an msh3 strain, gene conversions occurred at higher levels but interchromosomal crossovers were not increased and intrachromosomal crossovers were reduced relative to wild type. The msh2 msh3 double mutant behaved like the msh2 single mutant in this orientation. Control strains harboring homologous duplications were largely but not entirely unaffected in mutant strains, suggesting specificity for the mismatched intermediates of homeologous recombination. In all strains, very few (< 10%) recombinants could be attributed to exceptional events. These results suggest that MSH2 and MSH3 can function differentially to control homeologous exchanges.

  10. A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification

    NASA Astrophysics Data System (ADS)

    Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.

    MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.

  11. Fireworks algorithm for mean-VaR/CVaR models

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Liu, Zhifeng

    2017-10-01

    Intelligent algorithms have been widely applied to portfolio optimization problems. In this paper, we introduce a novel intelligent algorithm, named fireworks algorithm, to solve the mean-VaR/CVaR model for the first time. The results show that, compared with the classical genetic algorithm, fireworks algorithm not only improves the optimization accuracy and the optimization speed, but also makes the optimal solution more stable. We repeat our experiments at different confidence levels and different degrees of risk aversion, and the results are robust. It suggests that fireworks algorithm has more advantages than genetic algorithm in solving the portfolio optimization problem, and it is feasible and promising to apply it into this field.

  12. Dynamic traffic assignment : genetic algorithms approach

    DOT National Transportation Integrated Search

    1997-01-01

    Real-time route guidance is a promising approach to alleviating congestion on the nations highways. A dynamic traffic assignment model is central to the development of guidance strategies. The artificial intelligence technique of genetic algorithm...

  13. Genetic algorithm based input selection for a neural network function approximator with applications to SSME health monitoring

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.

    1991-01-01

    A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.

  14. Accelerating global optimization of aerodynamic shapes using a new surrogate-assisted parallel genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mehdi; Jahangirian, Alireza

    2017-12-01

    An efficient strategy is presented for global shape optimization of wing sections with a parallel genetic algorithm. Several computational techniques are applied to increase the convergence rate and the efficiency of the method. A variable fidelity computational evaluation method is applied in which the expensive Navier-Stokes flow solver is complemented by an inexpensive multi-layer perceptron neural network for the objective function evaluations. A population dispersion method that consists of two phases, of exploration and refinement, is developed to improve the convergence rate and the robustness of the genetic algorithm. Owing to the nature of the optimization problem, a parallel framework based on the master/slave approach is used. The outcomes indicate that the method is able to find the global optimum with significantly lower computational time in comparison to the conventional genetic algorithm.

  15. [Reconstruction of Vehicle-human Crash Accident and Injury Analysis Based on 3D Laser Scanning, Multi-rigid-body Reconstruction and Optimized Genetic Algorithm].

    PubMed

    Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J

    2017-12-01

    To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine

  16. Performance comparison of genetic algorithms and particle swarm optimization for model integer programming bus timetabling problem

    NASA Astrophysics Data System (ADS)

    Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.

    2018-03-01

    Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.

  17. Research on laser marking speed optimization by using genetic algorithm.

    PubMed

    Wang, Dongyun; Yu, Qiwei; Zhang, Yu

    2015-01-01

    Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%.

  18. Tag SNP selection via a genetic algorithm.

    PubMed

    Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh

    2010-10-01

    Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.

  19. Serum a- and b-carotene concentrations qualitatively respond to sustained carrot feeding

    USDA-ARS?s Scientific Manuscript database

    b-Carotene is a predominant source of vitamin A in developing countries. Genetically selected ‘‘high carotene’’ carrots could have an impact on the vitamin A and antioxidant status of people if widely adopted. A 3 3 3 crossover study in humans (n = 10) evaluated the difference in uptake and clearanc...

  20. Research on rolling element bearing fault diagnosis based on genetic algorithm matching pursuit

    NASA Astrophysics Data System (ADS)

    Rong, R. W.; Ming, T. F.

    2017-12-01

    In order to solve the problem of slow computation speed, matching pursuit algorithm is applied to rolling bearing fault diagnosis, and the improvement are conducted from two aspects that are the construction of dictionary and the way to search for atoms. To be specific, Gabor function which can reflect time-frequency localization characteristic well is used to construct the dictionary, and the genetic algorithm to improve the searching speed. A time-frequency analysis method based on genetic algorithm matching pursuit (GAMP) algorithm is proposed. The way to set property parameters for the improvement of the decomposition results is studied. Simulation and experimental results illustrate that the weak fault feature of rolling bearing can be extracted effectively by this proposed method, at the same time, the computation speed increases obviously.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; McCulloch, Richard Chet James

    In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the mostmore » improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.« less

  2. Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm

    ERIC Educational Resources Information Center

    Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.

    2009-01-01

    Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…

  3. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    ERIC Educational Resources Information Center

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  4. A Parallel Genetic Algorithm to Discover Patterns in Genetic Markers that Indicate Predisposition to Multifactorial Disease

    PubMed Central

    Rausch, Tobias; Thomas, Alun; Camp, Nicola J.; Cannon-Albright, Lisa A.; Facelli, Julio C.

    2008-01-01

    This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms (GA) to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene-gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene-gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise. PMID:18547558

  5. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform

    PubMed Central

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872

  6. A distributed parallel genetic algorithm of placement strategy for virtual machines deployment on cloud platform.

    PubMed

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  7. Genetic algorithm for nuclear data evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Jennifer Ann

    These are slides on genetic algorithm for nuclear data evaluation. The following is covered: initial population, fitness (outer loop), calculate fitness, selection (first part of inner loop), reproduction (second part of inner loop), solution, and examples.

  8. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    PubMed Central

    Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933

  9. Optimal placement of tuning masses on truss structures by genetic algorithms

    NASA Technical Reports Server (NTRS)

    Ponslet, Eric; Haftka, Raphael T.; Cudney, Harley H.

    1993-01-01

    Optimal placement of tuning masses, actuators and other peripherals on large space structures is a combinatorial optimization problem. This paper surveys several techniques for solving this problem. The genetic algorithm approach to the solution of the placement problem is described in detail. An example of minimizing the difference between the two lowest frequencies of a laboratory truss by adding tuning masses is used for demonstrating some of the advantages of genetic algorithms. The relative efficiencies of different codings are compared using the results of a large number of optimization runs.

  10. Application of a Genetic Algorithm and Multi Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the Workplace

    DTIC Science & Technology

    2008-06-01

    postponed the fulfillment of her own Masters Degree by at least 18 months so that I would have the opportunity to earn mine. She is smart , lovely...GENETIC ALGORITHM AND MULTI AGENT SYSTEM TO EXPLORE EMERGENT PATTERNS OF SOCIAL RATIONALITY AND A DISTRESS-BASED MODEL FOR DECEIT IN THE WORKPLACE...of a Genetic Algorithm and Mutli Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the

  11. Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming

    2008-11-01

    An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.

  12. Investigation on application of genetic algorithms to optimal reactive power dispatch of power systems

    NASA Astrophysics Data System (ADS)

    Wu, Q. H.; Ma, J. T.

    1993-09-01

    A primary investigation into application of genetic algorithms in optimal reactive power dispatch and voltage control is presented. The application was achieved, based on (the United Kingdom) National Grid 48 bus network model, using a novel genetic search approach. Simulation results, compared with that obtained using nonlinear programming methods, are included to show the potential of applications of the genetic search methodology in power system economical and secure operations.

  13. Routing design and fleet allocation optimization of freeway service patrol: Improved results using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Xiuqiao; Wang, Jian

    2018-07-01

    Freeway service patrol (FSP), is considered to be an effective method for incident management and can help transportation agency decision-makers alter existing route coverage and fleet allocation. This paper investigates the FSP problem of patrol routing design and fleet allocation, with the objective of minimizing the overall average incident response time. While the simulated annealing (SA) algorithm and its improvements have been applied to solve this problem, they often become trapped in local optimal solution. Moreover, the issue of searching efficiency remains to be further addressed. In this paper, we employ the genetic algorithm (GA) and SA to solve the FSP problem. To maintain population diversity and avoid premature convergence, niche strategy is incorporated into the traditional genetic algorithm. We also employ elitist strategy to speed up the convergence. Numerical experiments have been conducted with the help of the Sioux Falls network. Results show that the GA slightly outperforms the dual-based greedy (DBG) algorithm, the very large-scale neighborhood searching (VLNS) algorithm, the SA algorithm and the scenario algorithm.

  14. Research on Laser Marking Speed Optimization by Using Genetic Algorithm

    PubMed Central

    Wang, Dongyun; Yu, Qiwei; Zhang, Yu

    2015-01-01

    Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%. PMID:25955831

  15. Parana Basin Structure from Multi-Objective Inversion of Surface Wave and Receiver Function by Competent Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    An, M.; Assumpcao, M.

    2003-12-01

    The joint inversion of receiver function and surface wave is an effective way to diminish the influences of the strong tradeoff among parameters and the different sensitivity to the model parameters in their respective inversions, but the inversion problem becomes more complex. Multi-objective problems can be much more complicated than single-objective inversion in the model selection and optimization. If objectives are involved and conflicting, models can be ordered only partially. In this case, Pareto-optimal preference should be used to select solutions. On the other hand, the inversion to get only a few optimal solutions can not deal properly with the strong tradeoff between parameters, the uncertainties in the observation, the geophysical complexities and even the incompetency of the inversion technique. The effective way is to retrieve the geophysical information statistically from many acceptable solutions, which requires more competent global algorithms. Competent genetic algorithms recently proposed are far superior to the conventional genetic algorithm and can solve hard problems quickly, reliably and accurately. In this work we used one of competent genetic algorithms, Bayesian Optimization Algorithm as the main inverse procedure. This algorithm uses Bayesian networks to draw out inherited information and can use Pareto-optimal preference in the inversion. With this algorithm, the lithospheric structure of Paran"› basin is inverted to fit both the observations of inter-station surface wave dispersion and receiver function.

  16. Nature-Inspired Cognitive Evolution to Play MS. Pac-Man

    NASA Astrophysics Data System (ADS)

    Tan, Tse Guan; Teo, Jason; Anthony, Patricia

    Recent developments in nature-inspired computation have heightened the need for research into the three main areas of scientific, engineering and industrial applications. Some approaches have reported that it is able to solve dynamic problems and very useful for improving the performance of various complex systems. So far however, there has been little discussion about the effectiveness of the application of these models to computer and video games in particular. The focus of this research is to explore the hybridization of nature-inspired computation methods for optimization of neural network-based cognition in video games, in this case the combination of a neural network with an evolutionary algorithm. In essence, a neural network is an attempt to mimic the extremely complex human brain system, which is building an artificial brain that is able to self-learn intelligently. On the other hand, an evolutionary algorithm is to simulate the biological evolutionary processes that evolve potential solutions in order to solve the problems or tasks by applying the genetic operators such as crossover, mutation and selection into the solutions. This paper investigates the abilities of Evolution Strategies (ES) to evolve feed-forward artificial neural network's internal parameters (i.e. weight and bias values) for automatically generating Ms. Pac-man controllers. The main objective of this game is to clear a maze of dots while avoiding the ghosts and to achieve the highest possible score. The experimental results show that an ES-based system can be successfully applied to automatically generate artificial intelligence for a complex, dynamic and highly stochastic video game environment.

  17. High-Resolution Mapping of Two Types of Spontaneous Mitotic Gene Conversion Events in Saccharomyces cerevisiae

    PubMed Central

    Yim, Eunice; O’Connell, Karen E.; St. Charles, Jordan; Petes, Thomas D.

    2014-01-01

    Gene conversions and crossovers are related products of the repair of double-stranded DNA breaks by homologous recombination. Most previous studies of mitotic gene conversion events have been restricted to measuring conversion tracts that are <5 kb. Using a genetic assay in which the lengths of very long gene conversion tracts can be measured, we detected two types of conversions: those with a median size of ∼6 kb and those with a median size of >50 kb. The unusually long tracts are initiated at a naturally occurring recombination hotspot formed by two inverted Ty elements. We suggest that these long gene conversion events may be generated by a mechanism (break-induced replication or repair of a double-stranded DNA gap) different from the short conversion tracts that likely reflect heteroduplex formation followed by DNA mismatch repair. Both the short and long mitotic conversion tracts are considerably longer than those observed in meiosis. Since mitotic crossovers in a diploid can result in a heterozygous recessive deleterious mutation becoming homozygous, it has been suggested that the repair of DNA breaks by mitotic recombination involves gene conversion events that are unassociated with crossing over. In contrast to this prediction, we found that ∼40% of the conversion tracts are associated with crossovers. Spontaneous mitotic crossover events in yeast are frequent enough to be an important factor in genome evolution. PMID:24990991

  18. A Genetic-Based Scheduling Algorithm to Minimize the Makespan of the Grid Applications

    NASA Astrophysics Data System (ADS)

    Entezari-Maleki, Reza; Movaghar, Ali

    Task scheduling algorithms in grid environments strive to maximize the overall throughput of the grid. In order to maximize the throughput of the grid environments, the makespan of the grid tasks should be minimized. In this paper, a new task scheduling algorithm is proposed to assign tasks to the grid resources with goal of minimizing the total makespan of the tasks. The algorithm uses the genetic approach to find the suitable assignment within grid resources. The experimental results obtained from applying the proposed algorithm to schedule independent tasks within grid environments demonstrate the applicability of the algorithm in achieving schedules with comparatively lower makespan in comparison with other well-known scheduling algorithms such as, Min-min, Max-min, RASA and Sufferage algorithms.

  19. A theoretical comparison of evolutionary algorithms and simulated annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-08-28

    This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications formore » the performance of a variety of other optimization algorithm.« less

  20. Design of Genetic Algorithms for Topology Control of Unmanned Vehicles

    DTIC Science & Technology

    2010-01-01

    decentralised topology control mechanism distributed among active running software agents to achieve a uniform spread of terrestrial unmanned vehicles...14. ABSTRACT We present genetic algorithms (GAs) as a decentralised topology control mechanism distributed among active running software agents to...inspired topology control algorithm. The topology control of UVs using a decentralised solution over an unknown geographical terrain is a challenging

  1. Randomized Crossover Comparison of Personalized MPC and PID Control Algorithms for the Artificial Pancreas

    PubMed Central

    Pinsker, Jordan E.; Lee, Joon Bok; Dassau, Eyal; Seborg, Dale E.; Bradley, Paige K.; Gondhalekar, Ravi; Bevier, Wendy C.; Huyett, Lauren; Zisser, Howard C.; Doyle, Francis J.

    2016-01-01

    OBJECTIVE To evaluate two widely used control algorithms for an artificial pancreas (AP) under nonideal but comparable clinical conditions. RESEARCH DESIGN AND METHODS After a pilot safety and feasibility study (n = 10), closed-loop control (CLC) was evaluated in a randomized, crossover trial of 20 additional adults with type 1 diabetes. Personalized model predictive control (MPC) and proportional integral derivative (PID) algorithms were compared in supervised 27.5-h CLC sessions. Challenges included overnight control after a 65-g dinner, response to a 50-g breakfast, and response to an unannounced 65-g lunch. Boluses of announced dinner and breakfast meals were given at mealtime. The primary outcome was time in glucose range 70–180 mg/dL. RESULTS Mean time in range 70–180 mg/dL was greater for MPC than for PID (74.4 vs. 63.7%, P = 0.020). Mean glucose was also lower for MPC than PID during the entire trial duration (138 vs. 160 mg/dL, P = 0.012) and 5 h after the unannounced 65-g meal (181 vs. 220 mg/dL, P = 0.019). There was no significant difference in time with glucose <70 mg/dL throughout the trial period. CONCLUSIONS This first comprehensive study to compare MPC and PID control for the AP indicates that MPC performed particularly well, achieving nearly 75% time in the target range, including the unannounced meal. Although both forms of CLC provided safe and effective glucose management, MPC performed as well or better than PID in all metrics. PMID:27289127

  2. Multi-heuristic dynamic task allocation using genetic algorithms in a heterogeneous distributed system

    PubMed Central

    Page, Andrew J.; Keane, Thomas M.; Naughton, Thomas J.

    2010-01-01

    We present a multi-heuristic evolutionary task allocation algorithm to dynamically map tasks to processors in a heterogeneous distributed system. It utilizes a genetic algorithm, combined with eight common heuristics, in an effort to minimize the total execution time. It operates on batches of unmapped tasks and can preemptively remap tasks to processors. The algorithm has been implemented on a Java distributed system and evaluated with a set of six problems from the areas of bioinformatics, biomedical engineering, computer science and cryptography. Experiments using up to 150 heterogeneous processors show that the algorithm achieves better efficiency than other state-of-the-art heuristic algorithms. PMID:20862190

  3. Using an improved association rules mining optimization algorithm in web-based mobile-learning system

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Chen, Jianhua; Xiong, Shaojun

    2009-07-01

    Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.

  4. Light-extraction enhancement for light-emitting diodes: a firefly-inspired structure refined by the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bay, Annick; Mayer, Alexandre

    2014-09-01

    The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.

  5. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    PubMed

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  6. MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION

    EPA Science Inventory

    In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...

  7. Sequencing of Single Pollen Nuclei Reveals Meiotic Recombination Events at Megabase Resolution and Circumvents Segregation Distortion Caused by Postmeiotic Processes

    PubMed Central

    Dreissig, Steven; Fuchs, Jörg; Himmelbach, Axel; Mascher, Martin; Houben, Andreas

    2017-01-01

    Meiotic recombination is a fundamental mechanism to generate novel allelic combinations which can be harnessed by breeders to achieve crop improvement. The recombination landscape of many crop species, including the major crop barley, is characterized by a dearth of recombination in 65% of the genome. In addition, segregation distortion caused by selection on genetically linked loci is a frequent and undesirable phenomenon in double haploid populations which hampers genetic mapping and breeding. Here, we present an approach to directly investigate recombination at the DNA sequence level by combining flow-sorting of haploid pollen nuclei of barley with single-cell genome sequencing. We confirm the skewed distribution of recombination events toward distal chromosomal regions at megabase resolution and show that segregation distortion is almost absent if directly measured in pollen. Furthermore, we show a bimodal distribution of inter-crossover distances, which supports the existence of two classes of crossovers which are sensitive or less sensitive to physical interference. We conclude that single pollen nuclei sequencing is an approach capable of revealing recombination patterns in the absence of segregation distortion. PMID:29018459

  8. Strain gage selection in loads equations using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Traditionally, structural loads are measured using strain gages. A loads calibration test must be done before loads can be accurately measured. In one measurement method, a series of point loads is applied to the structure, and loads equations are derived via the least squares curve fitting algorithm using the strain gage responses to the applied point loads. However, many research structures are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. This paper presents an improved technique using a genetic algorithm to choose the strain gages used in the loads equations. Also presented are a comparison of the genetic algorithm performance with the current T-value technique and a variant known as the Best Step-down technique. Examples are shown using aerospace vehicle wings of high and low aspect ratio. In addition, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when the current methods could not.

  9. A hybrid genetic algorithm for solving bi-objective traveling salesman problems

    NASA Astrophysics Data System (ADS)

    Ma, Mei; Li, Hecheng

    2017-08-01

    The traveling salesman problem (TSP) is a typical combinatorial optimization problem, in a traditional TSP only tour distance is taken as a unique objective to be minimized. When more than one optimization objective arises, the problem is known as a multi-objective TSP. In the present paper, a bi-objective traveling salesman problem (BOTSP) is taken into account, where both the distance and the cost are taken as optimization objectives. In order to efficiently solve the problem, a hybrid genetic algorithm is proposed. Firstly, two satisfaction degree indices are provided for each edge by considering the influences of the distance and the cost weight. The first satisfaction degree is used to select edges in a “rough” way, while the second satisfaction degree is executed for a more “refined” choice. Secondly, two satisfaction degrees are also applied to generate new individuals in the iteration process. Finally, based on genetic algorithm framework as well as 2-opt selection strategy, a hybrid genetic algorithm is proposed. The simulation illustrates the efficiency of the proposed algorithm.

  10. Using a genetic algorithm as an optimal band selector in the mid and thermal infrared (2.5-14 μm) to discriminate vegetation species.

    PubMed

    Ullah, Saleem; Groen, Thomas A; Schlerf, Martin; Skidmore, Andrew K; Nieuwenhuis, Willem; Vaiphasa, Chaichoke

    2012-01-01

    Genetic variation between various plant species determines differences in their physio-chemical makeup and ultimately in their hyperspectral emissivity signatures. The hyperspectral emissivity signatures, on the one hand, account for the subtle physio-chemical changes in the vegetation, but on the other hand, highlight the problem of high dimensionality. The aim of this paper is to investigate the performance of genetic algorithms coupled with the spectral angle mapper (SAM) to identify a meaningful subset of wavebands sensitive enough to discriminate thirteen broadleaved vegetation species from the laboratory measured hyperspectral emissivities. The performance was evaluated using an overall classification accuracy and Jeffries Matusita distance. For the multiple plant species, the targeted bands based on genetic algorithms resulted in a high overall classification accuracy (90%). Concentrating on the pairwise comparison results, the selected wavebands based on genetic algorithms resulted in higher Jeffries Matusita (J-M) distances than randomly selected wavebands did. This study concludes that targeted wavebands from leaf emissivity spectra are able to discriminate vegetation species.

  11. Improved genetic algorithm for the protein folding problem by use of a Cartesian combination operator.

    PubMed Central

    Rabow, A. A.; Scheraga, H. A.

    1996-01-01

    We have devised a Cartesian combination operator and coding scheme for improving the performance of genetic algorithms applied to the protein folding problem. The genetic coding consists of the C alpha Cartesian coordinates of the protein chain. The recombination of the genes of the parents is accomplished by: (1) a rigid superposition of one parent chain on the other, to make the relation of Cartesian coordinates meaningful, then, (2) the chains of the children are formed through a linear combination of the coordinates of their parents. The children produced with this Cartesian combination operator scheme have similar topology and retain the long-range contacts of their parents. The new scheme is significantly more efficient than the standard genetic algorithm methods for locating low-energy conformations of proteins. The considerable superiority of genetic algorithms over Monte Carlo optimization methods is also demonstrated. We have also devised a new dynamic programming lattice fitting procedure for use with the Cartesian combination operator method. The procedure finds excellent fits of real-space chains to the lattice while satisfying bond-length, bond-angle, and overlap constraints. PMID:8880904

  12. USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES

    EPA Science Inventory

    Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...

  13. Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization

    PubMed Central

    Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

    2014-01-01

    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness. PMID:24592200

  14. Hierarchical artificial bee colony algorithm for RFID network planning optimization.

    PubMed

    Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

    2014-01-01

    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

  15. Memetic Algorithm-Based Multi-Objective Coverage Optimization for Wireless Sensor Networks

    PubMed Central

    Chen, Zhi; Li, Shuai; Yue, Wenjing

    2014-01-01

    Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579

  16. Memetic algorithm-based multi-objective coverage optimization for wireless sensor networks.

    PubMed

    Chen, Zhi; Li, Shuai; Yue, Wenjing

    2014-10-30

    Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms.

  17. The application of immune genetic algorithm in main steam temperature of PID control of BP network

    NASA Astrophysics Data System (ADS)

    Li, Han; Zhen-yu, Zhang

    In order to overcome the uncertainties, large delay, large inertia and nonlinear property of the main steam temperature controlled object in the power plant, a neural network intelligent PID control system based on immune genetic algorithm and BP neural network is designed. Using the immune genetic algorithm global search optimization ability and good convergence, optimize the weights of the neural network, meanwhile adjusting PID parameters using BP network. The simulation result shows that the system is superior to conventional PID control system in the control of quality and robustness.

  18. Optimization of multicast optical networks with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  19. Real coded genetic algorithm for fuzzy time series prediction

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.

    2017-10-01

    Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.

  20. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  1. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    DOE PAGES

    Terzić, Balša; Hofler, Alicia S.; Reeves, Cody J.; ...

    2014-10-15

    In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab's Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  2. A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Aimeng; Guo, Jiayu

    2017-12-01

    A novel hybrid genetic algorithm (HGA) is proposed to optimize the rotor structure of an IPM machine which is used in EV application. The finite element (FE) simulation results of the HGA design is compared with the genetic algorithm (GA) design and those before optimized. It is shown that the performance of the IPMSM is effectively improved by employing the GA and HGA, especially by HGA. Moreover, higher flux-weakening capability and less magnet usage are also obtained. Therefore, the validity of HGA method in IPMSM optimization design is verified.

  3. A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection

    PubMed Central

    Thounaojam, Dalton Meitei; Khelchandra, Thongam; Singh, Kh. Manglem; Roy, Sudipta

    2016-01-01

    This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter. PMID:27127500

  4. Abdomen disease diagnosis in CT images using flexiscale curvelet transform and improved genetic algorithm.

    PubMed

    Sethi, Gaurav; Saini, B S

    2015-12-01

    This paper presents an abdomen disease diagnostic system based on the flexi-scale curvelet transform, which uses different optimal scales for extracting features from computed tomography (CT) images. To optimize the scale of the flexi-scale curvelet transform, we propose an improved genetic algorithm. The conventional genetic algorithm assumes that fit parents will likely produce the healthiest offspring that leads to the least fit parents accumulating at the bottom of the population, reducing the fitness of subsequent populations and delaying the optimal solution search. In our improved genetic algorithm, combining the chromosomes of a low-fitness and a high-fitness individual increases the probability of producing high-fitness offspring. Thereby, all of the least fit parent chromosomes are combined with high fit parent to produce offspring for the next population. In this way, the leftover weak chromosomes cannot damage the fitness of subsequent populations. To further facilitate the search for the optimal solution, our improved genetic algorithm adopts modified elitism. The proposed method was applied to 120 CT abdominal images; 30 images each of normal subjects, cysts, tumors and stones. The features extracted by the flexi-scale curvelet transform were more discriminative than conventional methods, demonstrating the potential of our method as a diagnostic tool for abdomen diseases.

  5. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    PubMed

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Image processing meta-algorithm development via genetic manipulation of existing algorithm graphs

    NASA Astrophysics Data System (ADS)

    Schalkoff, Robert J.; Shaaban, Khaled M.

    1999-07-01

    Automatic algorithm generation for image processing applications is not a new idea, however previous work is either restricted to morphological operates or impractical. In this paper, we show recent research result in the development and use of meta-algorithms, i.e. algorithms which lead to new algorithms. Although the concept is generally applicable, the application domain in this work is restricted to image processing. The meta-algorithm concept described in this paper is based upon out work in dynamic algorithm. The paper first present the concept of dynamic algorithms which, on the basis of training and archived algorithmic experience embedded in an algorithm graph (AG), dynamically adjust the sequence of operations applied to the input image data. Each node in the tree-based representation of a dynamic algorithm with out degree greater than 2 is a decision node. At these nodes, the algorithm examines the input data and determines which path will most likely achieve the desired results. This is currently done using nearest-neighbor classification. The details of this implementation are shown. The constrained perturbation of existing algorithm graphs, coupled with a suitable search strategy, is one mechanism to achieve meta-algorithm an doffers rich potential for the discovery of new algorithms. In our work, a meta-algorithm autonomously generates new dynamic algorithm graphs via genetic recombination of existing algorithm graphs. The AG representation is well suited to this genetic-like perturbation, using a commonly- employed technique in artificial neural network synthesis, namely the blueprint representation of graphs. A number of exam. One of the principal limitations of our current approach is the need for significant human input in the learning phase. Efforts to overcome this limitation are discussed. Future research directions are indicated.

  7. NON-Shor Factorization Via BEQS BEC: Watkins Number-Theory ``Pure''-Mathematics U With Statistical-Physics; Benford Log-Law Inversion to ONLY BEQS digit d=0 BEC!!!

    NASA Astrophysics Data System (ADS)

    Lyons, M.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Weiss-Page-Holthaus[Physica A,341,586(04); http://arxiv.org/abs/cond-mat/0403295] number-FACTORIZATION VIA BEQS BEC VS.(?) Shor-algorithm, strongly-supporting Watkins' [www.secamlocal.ex.ac.uk/people/staff/mrwatkin/] Intersection of number-theory "pure"-maths WITH (Statistical)-Physics, as Siegel[AMS Joint.Mtg.(02)-Abs.973-60-124] Benford logarithmic-law algebraic-INVERSION to ONLY BEQS with d=0 digit P (d = 0) > = oogapFULBEC ! ! ! SiegelRiemann - hypothesisproofviaRayleigh [ Phil . Trans . CLXI (1870) ] - Polya [ Math . Ann . (21) ] - [ Random - WalksElectric - Nets . , MAA (81) ] - nderson [ PRL (58) ] - localization - Siegel [ Symp . Fractals , MRSFallMtg . (89) - 5 - papers ! ! ! ] FUZZYICS = CATEGORYICS : [ LOCALITY ]- MORPHISM / CROSSOVER / AUTMATHCAT / DIM - CAT / ANTONYM- > (GLOBALITY) FUNCTOR / SYNONYM / concomitancetonoise = / Fluct . - Dissip . theorem / FUNCTOR / SYNONYM / equivalence / proportionalityto = > generalized - susceptibilitypower - spectrum [ FLAT / FUNCTIONLESS / WHITE ]- MORPHISM / CROSSOVER / AUTMATHCAT / DIM - CAT / ANTONYM- > HYPERBOLICITY/ZIPF-law INEVITABILITY) intersection with ONLY BEQS BEC).

  8. Finite element analysis and genetic algorithm optimization design for the actuator placement on a large adaptive structure

    NASA Astrophysics Data System (ADS)

    Sheng, Lizeng

    The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.

  9. Selecting materialized views using random algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Hao, Zhongxiao; Liu, Chi

    2007-04-01

    The data warehouse is a repository of information collected from multiple possibly heterogeneous autonomous distributed databases. The information stored at the data warehouse is in form of views referred to as materialized views. The selection of the materialized views is one of the most important decisions in designing a data warehouse. Materialized views are stored in the data warehouse for the purpose of efficiently implementing on-line analytical processing queries. The first issue for the user to consider is query response time. So in this paper, we develop algorithms to select a set of views to materialize in data warehouse in order to minimize the total view maintenance cost under the constraint of a given query response time. We call it query_cost view_ selection problem. First, cost graph and cost model of query_cost view_ selection problem are presented. Second, the methods for selecting materialized views by using random algorithms are presented. The genetic algorithm is applied to the materialized views selection problem. But with the development of genetic process, the legal solution produced become more and more difficult, so a lot of solutions are eliminated and producing time of the solutions is lengthened in genetic algorithm. Therefore, improved algorithm has been presented in this paper, which is the combination of simulated annealing algorithm and genetic algorithm for the purpose of solving the query cost view selection problem. Finally, in order to test the function and efficiency of our algorithms experiment simulation is adopted. The experiments show that the given methods can provide near-optimal solutions in limited time and works better in practical cases. Randomized algorithms will become invaluable tools for data warehouse evolution.

  10. Ortho Image and DTM Generation with Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Sadeghian, S.

    2013-10-01

    Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights.

  11. Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain.

    PubMed

    Moreno, I M; Malpica, J M; Díaz-Pendón, J A; Moriones, E; Fraile, A; García-Arenal, F

    2004-01-05

    The genetic structure of the population of Watermelon mosaic virus (WMV) in Spain was analysed by the biological and molecular characterisation of isolates sampled from its main host plant, melon. The population was a highly homogeneous one, built of a single pathotype, and comprising isolates closely related genetically. There was indication of temporal replacement of genotypes, but not of spatial structure of the population. Analyses of nucleotide sequences in three genomic regions, that is, in the cistrons for the P1, cylindrical inclusion (CI) and capsid (CP) proteins, showed lower similar values of nucleotide diversity for the P1 than for the CI or CP cistrons. The CI protein and the CP were under tighter evolutionary constraints than the P1 protein. Also, for the CI and CP cistrons, but not for the P1 cistron, two groups of sequences, defining two genetic strains, were apparent. Thus, different genomic regions of WMV show different evolutionary dynamics. Interestingly, for the CI and CP cistrons, sequences were clustered into two regions of the sequence space, defining the two strains above, and no intermediary sequences were identified. Recombinant isolates were found, accounting for at least 7% of the population. These recombinants presented two interesting features: (i) crossover points were detected between the analysed regions in the CI and CP cistrons, but not between those in the P1 and CI cistrons, (ii) crossover points were not observed within the analysed coding regions for the P1, CI or CP proteins. This indicates strong selection against isolates with recombinant proteins, even when originated from closely related strains. Hence, data indicate that genotypes of WMV, generated by mutation or recombination, outside of acceptable, discrete, regions in the evolutionary space, are eliminated from the virus population by negative selection.

  12. Incremental cost-effectiveness of algorithm-driven genetic testing versus no testing for Maturity Onset Diabetes of the Young (MODY) in Singapore.

    PubMed

    Nguyen, Hai Van; Finkelstein, Eric Andrew; Mital, Shweta; Gardner, Daphne Su-Lyn

    2017-11-01

    Offering genetic testing for Maturity Onset Diabetes of the Young (MODY) to all young patients with type 2 diabetes has been shown to be not cost-effective. This study tests whether a novel algorithm-driven genetic testing strategy for MODY is incrementally cost-effective relative to the setting of no testing. A decision tree was constructed to estimate the costs and effectiveness of the algorithm-driven MODY testing strategy and a strategy of no genetic testing over a 30-year time horizon from a payer's perspective. The algorithm uses glutamic acid decarboxylase (GAD) antibody testing (negative antibodies), age of onset of diabetes (<45 years) and body mass index (<25 kg/m 2 if diagnosed >30 years) to stratify the population of patients with diabetes into three subgroups, and testing for MODY only among the subgroup most likely to have the mutation. Singapore-specific costs and prevalence of MODY obtained from local studies and utility values sourced from the literature are used to populate the model. The algorithm-driven MODY testing strategy has an incremental cost-effectiveness ratio of US$93 663 per quality-adjusted life year relative to the no testing strategy. If the price of genetic testing falls from US$1050 to US$530 (a 50% decrease), it will become cost-effective. Our proposed algorithm-driven testing strategy for MODY is not yet cost-effective based on established benchmarks. However, as genetic testing prices continue to fall, this strategy is likely to become cost-effective in the near future. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Genetic Algorithms for Multiple-Choice Problems

    NASA Astrophysics Data System (ADS)

    Aickelin, Uwe

    2010-04-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.

  14. A synthetic genetic edge detection program.

    PubMed

    Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D

    2009-06-26

    Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.

  15. A Synthetic Genetic Edge Detection Program

    PubMed Central

    Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.

    2009-01-01

    Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759

  16. Constrained minimization of smooth functions using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Moerder, Daniel D.; Pamadi, Bandu N.

    1994-01-01

    The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.

  17. Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Baskaran, Subbiah; Noever, D.

    1999-01-01

    Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.

  18. An ILP based memetic algorithm for finding minimum positive influence dominating sets in social networks

    NASA Astrophysics Data System (ADS)

    Lin, Geng; Guan, Jian; Feng, Huibin

    2018-06-01

    The positive influence dominating set problem is a variant of the minimum dominating set problem, and has lots of applications in social networks. It is NP-hard, and receives more and more attention. Various methods have been proposed to solve the positive influence dominating set problem. However, most of the existing work focused on greedy algorithms, and the solution quality needs to be improved. In this paper, we formulate the minimum positive influence dominating set problem as an integer linear programming (ILP), and propose an ILP based memetic algorithm (ILPMA) for solving the problem. The ILPMA integrates a greedy randomized adaptive construction procedure, a crossover operator, a repair operator, and a tabu search procedure. The performance of ILPMA is validated on nine real-world social networks with nodes up to 36,692. The results show that ILPMA significantly improves the solution quality, and is robust.

  19. Convergence properties of simple genetic algorithms

    NASA Technical Reports Server (NTRS)

    Bethke, A. D.; Zeigler, B. P.; Strauss, D. M.

    1974-01-01

    The essential parameters determining the behaviour of genetic algorithms were investigated. Computer runs were made while systematically varying the parameter values. Results based on the progress curves obtained from these runs are presented along with results based on the variability of the population as the run progresses.

  20. A genetic algorithm approach in interface and surface structure optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the materialmore » structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.« less

  1. Estimation of radiative and conductive properties of a semitransparent medium using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Braiek, A.; Adili, A.; Albouchi, F.; Karkri, M.; Ben Nasrallah, S.

    2016-06-01

    The aim of this work is to simultaneously identify the conductive and radiative parameters of a semitransparent sample using a photothermal method associated with an inverse problem. The identification of the conductive and radiative proprieties is performed by the minimization of an objective function that represents the errors between calculated temperature and measured signal. The calculated temperature is obtained from a theoretical model built with the thermal quadrupole formalism. Measurement is obtained in the rear face of the sample whose front face is excited by a crenel of heat flux. For identification procedure, a genetic algorithm is developed and used. The genetic algorithm is a useful tool in the simultaneous estimation of correlated or nearly correlated parameters, which can be a limiting factor for the gradient-based methods. The results of the identification procedure show the efficiency and the stability of the genetic algorithm to simultaneously estimate the conductive and radiative properties of clear glass.

  2. An application of CART algorithm in genetics: IGFs and cGH polymorphisms in Japanese quail

    NASA Astrophysics Data System (ADS)

    Kaplan, Selçuk

    2017-04-01

    The avian insulin-like growth factor-1 (IGFs) and avian growth hormone (cGH) genes are the most important genes that can affect bird performance traits because of its important function in growth and metabolism. Understanding the molecular genetic basis of variation in growth-related traits is of importance for continued improvement and increased rates of genetic gain. The objective of the present study was to identify polymorphisms of cGH and IGFs genes in Japanese quail using conventional least square method (LSM) and CART algorithm. Therefore, this study was aimed to demonstrate at determining the polymorphisms of two genes related growth characteristics via CART algorithm. A simulated data set was generated to analyze by adhering the results of some poultry genetic studies which it includes live weights at 5 weeks of age, 3 alleles and 6 genotypes of cGH and 2 alleles and 3 genotypes of IGFs. As a result, it has been determined that the CART algorithm has some advantages as for that LSM.

  3. Application of artificial intelligence to search ground-state geometry of clusters

    NASA Astrophysics Data System (ADS)

    Lemes, Maurício Ruv; Marim, L. R.; dal Pino, A.

    2002-08-01

    We introduce a global optimization procedure, the neural-assisted genetic algorithm (NAGA). It combines the power of an artificial neural network (ANN) with the versatility of the genetic algorithm. This method is suitable to solve optimization problems that depend on some kind of heuristics to limit the search space. If a reasonable amount of data is available, the ANN can ``understand'' the problem and provide the genetic algorithm with a selected population of elements that will speed up the search for the optimum solution. We tested the method in a search for the ground-state geometry of silicon clusters. We trained the ANN with information about the geometry and energetics of small silicon clusters. Next, the ANN learned how to restrict the configurational space for larger silicon clusters. For Si10 and Si20, we noticed that the NAGA is at least three times faster than the ``pure'' genetic algorithm. As the size of the cluster increases, it is expected that the gain in terms of time will increase as well.

  4. Application of genetic algorithms to focal mechanism determination

    NASA Astrophysics Data System (ADS)

    Kobayashi, Reiji; Nakanishi, Ichiro

    1994-04-01

    Genetic algorithms are a new class of methods for global optimization. They resemble Monte Carlo techniques, but search for solutions more efficiently than uniform Monte Carlo sampling. In the field of geophysics, genetic algorithms have recently been used to solve some non-linear inverse problems (e.g., earthquake location, waveform inversion, migration velocity estimation). We present an application of genetic algorithms to focal mechanism determination from first-motion polarities of P-waves and apply our method to two recent large events, the Kushiro-oki earthquake of January 15, 1993 and the SW Hokkaido (Japan Sea) earthquake of July 12, 1993. Initial solution and curvature information of the objective function that gradient methods need are not required in our approach. Moreover globally optimal solutions can be efficiently obtained. Calculation of polarities based on double-couple models is the most time-consuming part of the source mechanism determination. The amount of calculations required by the method designed in this study is much less than that of previous grid search methods.

  5. Optimized design on condensing tubes high-speed TIG welding technology magnetic control based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; Lu, Ming

    2013-05-01

    An orthogonal experiment was conducted by the means of multivariate nonlinear regression equation to adjust the influence of external transverse magnetic field and Ar flow rate on welding quality in the process of welding condenser pipe by high-speed argon tungsten-arc welding (TIG for short). The magnetic induction and flow rate of Ar gas were used as optimum variables, and tensile strength of weld was set to objective function on the base of genetic algorithm theory, and then an optimal design was conducted. According to the request of physical production, the optimum variables were restrained. The genetic algorithm in the MATLAB was used for computing. A comparison between optimum results and experiment parameters was made. The results showed that the optimum technologic parameters could be chosen by the means of genetic algorithm with the conditions of excessive optimum variables in the process of high-speed welding. And optimum technologic parameters of welding coincided with experiment results.

  6. Neural system for heartbeats recognition using genetically integrated ensemble of classifiers.

    PubMed

    Osowski, Stanislaw; Siwek, Krzysztof; Siroic, Robert

    2011-03-01

    This paper presents the application of genetic algorithm for the integration of neural classifiers combined in the ensemble for the accurate recognition of heartbeat types on the basis of ECG registration. The idea presented in this paper is that using many classifiers arranged in the form of ensemble leads to the increased accuracy of the recognition. In such ensemble the important problem is the integration of all classifiers into one effective classification system. This paper proposes the use of genetic algorithm. It was shown that application of the genetic algorithm is very efficient and allows to reduce significantly the total error of heartbeat recognition. This was confirmed by the numerical experiments performed on the MIT BIH Arrhythmia Database. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Astrophysical data mining with GPU. A case study: Genetic classification of globular clusters

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Garofalo, M.; Brescia, M.; Paolillo, M.; Pescape', A.; Longo, G.; Ventre, G.

    2014-01-01

    We present a multi-purpose genetic algorithm, designed and implemented with GPGPU/CUDA parallel computing technology. The model was derived from our CPU serial implementation, named GAME (Genetic Algorithm Model Experiment). It was successfully tested and validated on the detection of candidate Globular Clusters in deep, wide-field, single band HST images. The GPU version of GAME will be made available to the community by integrating it into the web application DAMEWARE (DAta Mining Web Application REsource, http://dame.dsf.unina.it/beta_info.html), a public data mining service specialized on massive astrophysical data. Since genetic algorithms are inherently parallel, the GPGPU computing paradigm leads to a speedup of a factor of 200× in the training phase with respect to the CPU based version.

  8. Evaluating Effectiveness of Modeling Motion System Feedback in the Enhanced Hess Structural Model of the Human Operator

    NASA Technical Reports Server (NTRS)

    Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.

    2009-01-01

    In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.

  9. Prioritizing the Components of Vulnerability: A Genetic Algorithm Minimization of Flood Risk

    NASA Astrophysics Data System (ADS)

    Bongolan, Vena Pearl; Ballesteros, Florencio; Baritua, Karessa Alexandra; Junne Santos, Marie

    2013-04-01

    We define a flood resistant city as an optimal arrangement of communities according to their traits, with the goal of minimizing the flooding vulnerability via a genetic algorithm. We prioritize the different components of flooding vulnerability, giving each component a weight, thus expressing vulnerability as a weighted sum. This serves as the fitness function for the genetic algorithm. We also allowed non-linear interactions among related but independent components, viz, poverty and mortality rate, and literacy and radio/ tv penetration. The designs produced reflect the relative importance of the components, and we observed a synchronicity between the interacting components, giving us a more consistent design.

  10. Algorithmic Trading with Developmental and Linear Genetic Programming

    NASA Astrophysics Data System (ADS)

    Wilson, Garnett; Banzhaf, Wolfgang

    A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.

  11. Supervised chaos genetic algorithm based state of charge determination for LiFePO4 batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Yanqing

    2018-04-01

    LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.

  12. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    PubMed

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  13. An Efficient Functional Test Generation Method For Processors Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Gramatová, Elena

    2015-07-01

    The paper presents a new functional test generation method for processors testing based on genetic algorithms and evolutionary strategies. The tests are generated over an instruction set architecture and a processor description. Such functional tests belong to the software-oriented testing. Quality of the tests is evaluated by code coverage of the processor description using simulation. The presented test generation method uses VHDL models of processors and the professional simulator ModelSim. The rules, parameters and fitness functions were defined for various genetic algorithms used in automatic test generation. Functionality and effectiveness were evaluated using the RISC type processor DP32.

  14. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    NASA Astrophysics Data System (ADS)

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  15. Fast optimization of glide vehicle reentry trajectory based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jia, Jun; Dong, Ruixing; Yuan, Xuejun; Wang, Chuangwei

    2018-02-01

    An optimization method of reentry trajectory based on genetic algorithm is presented to meet the need of reentry trajectory optimization for glide vehicle. The dynamic model for the glide vehicle during reentry period is established. Considering the constraints of heat flux, dynamic pressure, overload etc., the optimization of reentry trajectory is investigated by utilizing genetic algorithm. The simulation shows that the method presented by this paper is effective for the optimization of reentry trajectory of glide vehicle. The efficiency and speed of this method is comparative with the references. Optimization results meet all constraints, and the on-line fast optimization is potential by pre-processing the offline samples.

  16. On Directly Solving SCHRÖDINGER Equation for H+2 Ion by Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Saha, Rajendra; Bhattacharyya, S. P.

    Schrödinger equation (SE) is sought to be solved directly for the ground state of H+2 ion by invoking genetic algorithm (GA). In one approach the internuclear distance (R) is kept fixed, the corresponding electronic SE for H+2 is solved by GA at each R and the full potential energy curve (PEC) is constructed. The minimum of the PEC is then located giving Ve and Re. Alternatively, Ve and Re are located in a single run by allowing R to vary simultaneously while solving the electronic SE by genetic algorithm. The performance patterns of the two strategies are compared.

  17. Applying a Genetic Algorithm to Reconfigurable Hardware

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim

    2004-01-01

    This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.

  18. Thermosensory processing in the Drosophila brain

    PubMed Central

    Liu, Wendy W.; Mazor, Ofer; Wilson, Rachel I.

    2014-01-01

    In Drosophila, just as in vertebrates, changes in external temperature are encoded by bidirectional opponent thermoreceptor cells: some cells are excited by warming and inhibited by cooling, whereas others are excited by cooling and inhibited by warming1,2. The central circuits that process these signals are not understood. In Drosophila, a specific brain region receives input from thermoreceptor cells2,3. Here we show that distinct genetically-identified projection neurons (PNs) in this brain region are excited by cooling, warming, or both. The PNs excited by cooling receive mainly feedforward excitation from cool thermoreceptors. In contrast, the PNs excited by warming (“warm-PNs”) receive both excitation from warm thermoreceptors and crossover inhibition from cool thermoreceptors via inhibitory interneurons. Notably, this crossover inhibition elicits warming-evoked excitation, because warming suppresses tonic activity in cool thermoreceptors. This in turn disinhibits warm-PNs and sums with feedforward excitation evoked by warming. Crossover inhibition could cancel non-thermal activity (noise) that is positively-correlated among warm and cool thermoreceptor cells, while reinforcing thermal activity which is anti-correlated. Our results show how central circuits can combine signals from bidirectional opponent neurons to construct sensitive and robust neural codes. PMID:25739502

  19. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida

    EPA Science Inventory

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  20. Using microsatellites to understand the physical distribution of recombination on soybean chromosomes.

    PubMed

    Ott, Alina; Trautschold, Brian; Sandhu, Devinder

    2011-01-01

    Soybean is a major crop that is an important source of oil and proteins. A number of genetic linkage maps have been developed in soybean. Specifically, hundreds of simple sequence repeat (SSR) markers have been developed and mapped. Recent sequencing of the soybean genome resulted in the generation of vast amounts of genetic information. The objectives of this investigation were to use SSR markers in developing a connection between genetic and physical maps and to determine the physical distribution of recombination on soybean chromosomes. A total of 2,188 SSRs were used for sequence-based physical localization on soybean chromosomes. Linkage information was used from different maps to create an integrated genetic map. Comparison of the integrated genetic linkage maps and sequence based physical maps revealed that the distal 25% of each chromosome was the most marker-dense, containing an average of 47.4% of the SSR markers and 50.2% of the genes. The proximal 25% of each chromosome contained only 7.4% of the markers and 6.7% of the genes. At the whole genome level, the marker density and gene density showed a high correlation (R(2)) of 0.64 and 0.83, respectively with the physical distance from the centromere. Recombination followed a similar pattern with comparisons indicating that recombination is high in telomeric regions, though the correlation between crossover frequency and distance from the centromeres is low (R(2) = 0.21). Most of the centromeric regions were low in recombination. The crossover frequency for the entire soybean genome was 7.2%, with extremes much higher and lower than average. The number of recombination hotspots varied from 1 to 12 per chromosome. A high correlation of 0.83 between the distribution of SSR markers and genes suggested close association of SSRs with genes. The knowledge of distribution of recombination on chromosomes may be applied in characterizing and targeting genes.

  1. Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman

    2012-01-01

    In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.

  2. Efficient computation of the joint probability of multiple inherited risk alleles from pedigree data.

    PubMed

    Madsen, Thomas; Braun, Danielle; Peng, Gang; Parmigiani, Giovanni; Trippa, Lorenzo

    2018-06-25

    The Elston-Stewart peeling algorithm enables estimation of an individual's probability of harboring germline risk alleles based on pedigree data, and serves as the computational backbone of important genetic counseling tools. However, it remains limited to the analysis of risk alleles at a small number of genetic loci because its computing time grows exponentially with the number of loci considered. We propose a novel, approximate version of this algorithm, dubbed the peeling and paring algorithm, which scales polynomially in the number of loci. This allows extending peeling-based models to include many genetic loci. The algorithm creates a trade-off between accuracy and speed, and allows the user to control this trade-off. We provide exact bounds on the approximation error and evaluate it in realistic simulations. Results show that the loss of accuracy due to the approximation is negligible in important applications. This algorithm will improve genetic counseling tools by increasing the number of pathogenic risk alleles that can be addressed. To illustrate we create an extended five genes version of BRCAPRO, a widely used model for estimating the carrier probabilities of BRCA1 and BRCA2 risk alleles and assess its computational properties. © 2018 WILEY PERIODICALS, INC.

  3. Optimization of beam orientation in radiotherapy using planar geometry

    NASA Astrophysics Data System (ADS)

    Haas, O. C. L.; Burnham, K. J.; Mills, J. A.

    1998-08-01

    This paper proposes a new geometrical formulation of the coplanar beam orientation problem combined with a hybrid multiobjective genetic algorithm. The approach is demonstrated by optimizing the beam orientation in two dimensions, with the objectives being formulated using planar geometry. The traditional formulation of the objectives associated with the organs at risk has been modified to account for the use of complex dose delivery techniques such as beam intensity modulation. The new algorithm attempts to replicate the approach of a treatment planner whilst reducing the amount of computation required. Hybrid genetic search operators have been developed to improve the performance of the genetic algorithm by exploiting problem-specific features. The multiobjective genetic algorithm is formulated around the concept of Pareto optimality which enables the algorithm to search in parallel for different objectives. When the approach is applied without constraining the number of beams, the solution produces an indication of the minimum number of beams required. It is also possible to obtain non-dominated solutions for various numbers of beams, thereby giving the clinicians a choice in terms of the number of beams as well as in the orientation of these beams.

  4. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less

  5. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    NASA Astrophysics Data System (ADS)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert

    2018-05-01

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.

  6. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    DOE PAGES

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; ...

    2018-05-29

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less

  7. Numerical Investigations of the Thermal, Pressure and Size Effects on 2D Spin Crossover Nanoparticles

    NASA Astrophysics Data System (ADS)

    Harlé, C.; Allal, S. E.; Sohier, D.; Dufaud, T.; Caballero, R.; de Zela, F.; Dahoo, P. R.; Boukheddaden, K.; Linares, J.

    2017-12-01

    In the framework of the Ising-like model, the thermal and pressure effects on the spin crossover systems are evaluated through two-states fictitious spin operators σ with eigenvalues 𝜎 = -1 and 𝜎 = +1 respectively associated with the low-spin (LS) and highspin (HS) states of each spin-crossover (SCO) molecule. Based on each configurational state, the macroscopic SCO system, is described by the following variables: m=Σ σi, s=Σ σi σj and c=Σ σk standing respectively for the total magnetization, the short-range correlations and surface magnetization. To solve this problem, we first determine the density of macrostates d[m][s][c], giving the number of microscopic configurations with the same m, s and c values. In this contribution, two different ways have been performed to calculate this important quantity: (i) the entropic sampling method, based on Monte Carlo simulations and (ii) a new algorithm based on specific dynamic programming. These two methods were tested on the 2D SCO nanoparticles for which, we calculated the average magnetization < σ> taking into account for short-, long-range interactions as well as for the interaction between surface molecules with their surrounding matrix. We monitored the effect of the pressure, temperature and size on the properties of the SCO nanoparticles.

  8. Hybrid algorithms for fuzzy reverse supply chain network design.

    PubMed

    Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.

  9. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  10. An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks.

    PubMed

    Yoon, Yourim; Kim, Yong-Hyuk

    2013-10-01

    Sensor networks have a lot of applications such as battlefield surveillance, environmental monitoring, and industrial diagnostics. Coverage is one of the most important performance metrics for sensor networks since it reflects how well a sensor field is monitored. In this paper, we introduce the maximum coverage deployment problem in wireless sensor networks and analyze the properties of the problem and its solution space. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. We found that the phenotype space of the problem is a quotient space of the genotype space in a mathematical view. Based on this property, we propose an efficient genetic algorithm using a novel normalization method. A Monte Carlo method is adopted to design an efficient evaluation function, and its computation time is decreased without loss of solution quality using a method that starts from a small number of random samples and gradually increases the number for subsequent generations. The proposed genetic algorithms could be further improved by combining with a well-designed local search. The performance of the proposed genetic algorithm is shown by a comparative experimental study. When compared with random deployment and existing methods, our genetic algorithm was not only about twice faster, but also showed significant performance improvement in quality.

  11. Weather prediction using a genetic memory

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1990-01-01

    Kanaerva's sparse distributed memory (SDM) is an associative memory model based on the mathematical properties of high dimensional binary address spaces. Holland's genetic algorithms are a search technique for high dimensional spaces inspired by evolutional processes of DNA. Genetic Memory is a hybrid of the above two systems, in which the memory uses a genetic algorithm to dynamically reconfigure its physical storage locations to reflect correlations between the stored addresses and data. This architecture is designed to maximize the ability of the system to scale-up to handle real world problems.

  12. iNJclust: Iterative Neighbor-Joining Tree Clustering Framework for Inferring Population Structure.

    PubMed

    Limpiti, Tulaya; Amornbunchornvej, Chainarong; Intarapanich, Apichart; Assawamakin, Anunchai; Tongsima, Sissades

    2014-01-01

    Understanding genetic differences among populations is one of the most important issues in population genetics. Genetic variations, e.g., single nucleotide polymorphisms, are used to characterize commonality and difference of individuals from various populations. This paper presents an efficient graph-based clustering framework which operates iteratively on the Neighbor-Joining (NJ) tree called the iNJclust algorithm. The framework uses well-known genetic measurements, namely the allele-sharing distance, the neighbor-joining tree, and the fixation index. The behavior of the fixation index is utilized in the algorithm's stopping criterion. The algorithm provides an estimated number of populations, individual assignments, and relationships between populations as outputs. The clustering result is reported in the form of a binary tree, whose terminal nodes represent the final inferred populations and the tree structure preserves the genetic relationships among them. The clustering performance and the robustness of the proposed algorithm are tested extensively using simulated and real data sets from bovine, sheep, and human populations. The result indicates that the number of populations within each data set is reasonably estimated, the individual assignment is robust, and the structure of the inferred population tree corresponds to the intrinsic relationships among populations within the data.

  13. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming

    NASA Astrophysics Data System (ADS)

    Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita

    2018-03-01

    We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.

  14. On the suitability of different representations of solid catalysts for combinatorial library design by genetic algorithms.

    PubMed

    Gobin, Oliver C; Schüth, Ferdi

    2008-01-01

    Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.

  15. Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method

    ERIC Educational Resources Information Center

    Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen

    2008-01-01

    In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…

  16. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida (Published Proceedings)

    EPA Science Inventory

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  17. Adaptive Architectures for Effects Based Operations

    DTIC Science & Technology

    2006-08-12

    laLb c d elfl I A IB Ic d e f Parent 2 Figure 3: One-Point Crossover System Architectures Lab 85 Aug-06 6.4. ECAD -EA Methodology The previous two...that accomplishes this task is termed as ECAD -EA (Effective Courses of Action Determination Using Evolutionary Algorithms). Besides a completely...items are given below followed by their explanations, while Figure 4 shows the inputs and outputs of the ECAD -EA methodology in the form of a block

  18. Genetic algorithm to solve the problems of lectures and practicums scheduling

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.

    2018-02-01

    Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.

  19. Multiple feature fusion via covariance matrix for visual tracking

    NASA Astrophysics Data System (ADS)

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui

    2018-04-01

    Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.

  20. Enhancing hydrologic data assimilation by evolutionary Particle Filter and Markov Chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Peyman; Moradkhani, Hamid; Yan, Hongxiang

    2018-01-01

    Particle Filters (PFs) have received increasing attention by researchers from different disciplines including the hydro-geosciences, as an effective tool to improve model predictions in nonlinear and non-Gaussian dynamical systems. The implication of dual state and parameter estimation using the PFs in hydrology has evolved since 2005 from the PF-SIR (sampling importance resampling) to PF-MCMC (Markov Chain Monte Carlo), and now to the most effective and robust framework through evolutionary PF approach based on Genetic Algorithm (GA) and MCMC, the so-called EPFM. In this framework, the prior distribution undergoes an evolutionary process based on the designed mutation and crossover operators of GA. The merit of this approach is that the particles move to an appropriate position by using the GA optimization and then the number of effective particles is increased by means of MCMC, whereby the particle degeneracy is avoided and the particle diversity is improved. In this study, the usefulness and effectiveness of the proposed EPFM is investigated by applying the technique on a conceptual and highly nonlinear hydrologic model over four river basins located in different climate and geographical regions of the United States. Both synthetic and real case studies demonstrate that the EPFM improves both the state and parameter estimation more effectively and reliably as compared with the PF-MCMC.

  1. Cooperative optimization of reconfigurable machine tool configurations and production process plan

    NASA Astrophysics Data System (ADS)

    Xie, Nan; Li, Aiping; Xue, Wei

    2012-09-01

    The production process plan design and configurations of reconfigurable machine tool (RMT) interact with each other. Reasonable process plans with suitable configurations of RMT help to improve product quality and reduce production cost. Therefore, a cooperative strategy is needed to concurrently solve the above issue. In this paper, the cooperative optimization model for RMT configurations and production process plan is presented. Its objectives take into account both impacts of process and configuration. Moreover, a novel genetic algorithm is also developed to provide optimal or near-optimal solutions: firstly, its chromosome is redesigned which is composed of three parts, operations, process plan and configurations of RMTs, respectively; secondly, its new selection, crossover and mutation operators are also developed to deal with the process constraints from operation processes (OP) graph, otherwise these operators could generate illegal solutions violating the limits; eventually the optimal configurations for RMT under optimal process plan design can be obtained. At last, a manufacturing line case is applied which is composed of three RMTs. It is shown from the case that the optimal process plan and configurations of RMT are concurrently obtained, and the production cost decreases 6.28% and nonmonetary performance increases 22%. The proposed method can figure out both RMT configurations and production process, improve production capacity, functions and equipment utilization for RMT.

  2. A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem

    PubMed Central

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  3. A Solution Method of Job-shop Scheduling Problems by the Idle Time Shortening Type Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Ida, Kenichi; Osawa, Akira

    In this paper, we propose a new idle time shortening method for Job-shop scheduling problems (JSPs). We insert its method into a genetic algorithm (GA). The purpose of JSP is to find a schedule with the minimum makespan. We suppose that it is effective to reduce idle time of a machine in order to improve the makespan. The left shift is a famous algorithm in existing algorithms for shortening idle time. The left shift can not arrange the work to idle time. For that reason, some idle times are not shortened by the left shift. We propose two kinds of algorithms which shorten such idle time. Next, we combine these algorithms and the reversal of a schedule. We apply GA with its algorithm to benchmark problems and we show its effectiveness.

  4. Packing Boxes into Multiple Containers Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Menghani, Deepak; Guha, Anirban

    2016-07-01

    Container loading problems have been studied extensively in the literature and various analytical, heuristic and metaheuristic methods have been proposed. This paper presents two different variants of a genetic algorithm framework for the three-dimensional container loading problem for optimally loading boxes into multiple containers with constraints. The algorithms are designed so that it is easy to incorporate various constraints found in real life problems. The algorithms are tested on data of standard test cases from literature and are found to compare well with the benchmark algorithms in terms of utilization of containers. This, along with the ability to easily incorporate a wide range of practical constraints, makes them attractive for implementation in real life scenarios.

  5. Airport Flight Departure Delay Model on Improved BN Structure Learning

    NASA Astrophysics Data System (ADS)

    Cao, Weidong; Fang, Xiangnong

    An high score prior genetic simulated annealing Bayesian network structure learning algorithm (HSPGSA) by combining genetic algorithm(GA) with simulated annealing algorithm(SAA) is developed. The new algorithm provides not only with strong global search capability of GA, but also with strong local hill climb search capability of SAA. The structure with the highest score is prior selected. In the mean time, structures with lower score are also could be choice. It can avoid efficiently prematurity problem by higher score individual wrong direct growing population. Algorithm is applied to flight departure delays analysis in a large hub airport. Based on the flight data a BN model is created. Experiments show that parameters learning can reflect departure delay.

  6. Deadlock-free genetic scheduling algorithm for automated manufacturing systems based on deadlock control policy.

    PubMed

    Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng

    2012-06-01

    Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.

  7. Land Use Zoning at the County Level Based on a Multi-Objective Particle Swarm Optimization Algorithm: A Case Study from Yicheng, China

    PubMed Central

    Liu, Yaolin; Wang, Hua; Ji, Yingli; Liu, Zhongqiu; Zhao, Xiang

    2012-01-01

    Comprehensive land-use planning (CLUP) at the county level in China must include land-use zoning. This is specifically stipulated by the China Land Management Law and aims to achieve strict control on the usages of land. The land-use zoning problem is treated as a multi-objective optimization problem (MOOP) in this article, which is different from the traditional treatment. A particle swarm optimization (PSO) based model is applied to the problem and is developed to maximize the attribute differences between land-use zones, the spatial compactness, the degree of spatial harmony and the ecological benefits of the land-use zones. This is subject to some constraints such as: the quantity limitations for varying land-use zones, regulations assigning land units to a certain land-use zone, and the stipulation of a minimum parcel area in a land-use zoning map. In addition, a crossover and mutation operator from a genetic algorithm is adopted to avoid the prematurity of PSO. The results obtained for Yicheng, a county in central China, using different objective weighting schemes, are compared and suggest that: (1) the fundamental demand for attribute difference between land-use zones leads to a mass of fragmentary land-use zones; (2) the spatial pattern of land-use zones is remarkably optimized when a weight is given to the sub-objectives of spatial compactness and the degree of spatial harmony, simultaneously, with a reduction of attribute difference between land-use zones; (3) when a weight is given to the sub-objective of ecological benefits of the land-use zones, the ecological benefits get a slight increase also at the expense of a reduction in attribute difference between land-use zones; (4) the pursuit of spatial harmony or spatial compactness may have a negative effect on each other; (5) an increase in the ecological benefits may improve the spatial compactness and spatial harmony of the land-use zones; (6) adjusting the weights assigned to each sub-objective can generate a corresponding optimal solution, with a different quantity structure and spatial pattern to satisfy the preference of the different decision makers; (7) the model proposed in this paper is capable of handling the land-use zoning problem, and the crossover and mutation operator can improve the performance of the model, but, nevertheless, leads to increased time consumption. PMID:23066398

  8. Non-adaptive and adaptive hybrid approaches for enhancing water quality management

    NASA Astrophysics Data System (ADS)

    Kalwij, Ineke M.; Peralta, Richard C.

    2008-09-01

    SummaryUsing optimization to help solve groundwater management problems cost-effectively is becoming increasingly important. Hybrid optimization approaches, that combine two or more optimization algorithms, will become valuable and common tools for addressing complex nonlinear hydrologic problems. Hybrid heuristic optimizers have capabilities far beyond those of a simple genetic algorithm (SGA), and are continuously improving. SGAs having only parent selection, crossover, and mutation are inefficient and rarely used for optimizing contaminant transport management. Even an advanced genetic algorithm (AGA) that includes elitism (to emphasize using the best strategies as parents) and healing (to help assure optimal strategy feasibility) is undesirably inefficient. Much more efficient than an AGA is the presented hybrid (AGCT), which adds comprehensive tabu search (TS) features to an AGA. TS mechanisms (TS probability, tabu list size, search coarseness and solution space size, and a TS threshold value) force the optimizer to search portions of the solution space that yield superior pumping strategies, and to avoid reproducing similar or inferior strategies. An AGCT characteristic is that TS control parameters are unchanging during optimization. However, TS parameter values that are ideal for optimization commencement can be undesirable when nearing assumed global optimality. The second presented hybrid, termed global converger (GC), is significantly better than the AGCT. GC includes AGCT plus feedback-driven auto-adaptive control that dynamically changes TS parameters during run-time. Before comparing AGCT and GC, we empirically derived scaled dimensionless TS control parameter guidelines by evaluating 50 sets of parameter values for a hypothetical optimization problem. For the hypothetical area, AGCT optimized both well locations and pumping rates. The parameters are useful starting values because using trial-and-error to identify an ideal combination of control parameter values for a new optimization problem can be time consuming. For comparison, AGA, AGCT, and GC are applied to optimize pumping rates for assumed well locations of a complex large-scale contaminant transport and remediation optimization problem at Blaine Naval Ammunition Depot (NAD). Both hybrid approaches converged more closely to the optimal solution than the non-hybrid AGA. GC averaged 18.79% better convergence than AGCT, and 31.9% than AGA, within the same computation time (12.5 days). AGCT averaged 13.1% better convergence than AGA. The GC can significantly reduce the burden of employing computationally intensive hydrologic simulation models within a limited time period and for real-world optimization problems. Although demonstrated for a groundwater quality problem, it is also applicable to other arenas, such as managing salt water intrusion and surface water contaminant loading.

  9. Nuclear fuel management optimization using genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1995-07-01

    The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less

  10. Medical image segmentation using genetic algorithms.

    PubMed

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  11. Naturally selecting solutions: the use of genetic algorithms in bioinformatics.

    PubMed

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.

  12. Determination of thiamine HCl and pyridoxine HCl in pharmaceutical preparations using UV-visible spectrophotometry and genetic algorithm based multivariate calibration methods.

    PubMed

    Ozdemir, Durmus; Dinc, Erdal

    2004-07-01

    Simultaneous determination of binary mixtures pyridoxine hydrochloride and thiamine hydrochloride in a vitamin combination using UV-visible spectrophotometry and classical least squares (CLS) and three newly developed genetic algorithm (GA) based multivariate calibration methods was demonstrated. The three genetic multivariate calibration methods are Genetic Classical Least Squares (GCLS), Genetic Inverse Least Squares (GILS) and Genetic Regression (GR). The sample data set contains the UV-visible spectra of 30 synthetic mixtures (8 to 40 microg/ml) of these vitamins and 10 tablets containing 250 mg from each vitamin. The spectra cover the range from 200 to 330 nm in 0.1 nm intervals. Several calibration models were built with the four methods for the two components. Overall, the standard error of calibration (SEC) and the standard error of prediction (SEP) for the synthetic data were in the range of <0.01 and 0.43 microg/ml for all the four methods. The SEP values for the tablets were in the range of 2.91 and 11.51 mg/tablets. A comparison of genetic algorithm selected wavelengths for each component using GR method was also included.

  13. Identification of a key recombinant narrows the CADASIL gene region to 8 cM and argues against allelism of CADASIL and familial hemiplegic migraine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dichgans, M.; Mayer, M.; Straube, A.

    1996-02-15

    This article reports on new information regarding the genetic mapping of the human CADASIL gene region. Previously, the gene had been mapped to human chromosome 19q12. Using the identification of a chromosomal crossover, the region has been refined to an 8-cM interval. 11 refs., 2 figs., 1 tab.

  14. Stochastic search in structural optimization - Genetic algorithms and simulated annealing

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1993-01-01

    An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.

  15. Unscented Sampling Techniques For Evolutionary Computation With Applications To Astrodynamic Optimization

    DTIC Science & Technology

    2016-09-01

    to both genetic algorithms and evolution strategies to achieve these goals. The results of this research offer a promising new set of modified ...abs_all.jsp?arnumber=203904 [163] Z. Michalewicz, C. Z. Janikow, and J. B. Krawczyk, “A modified genetic algo- rithm for optimal control problems...Available: http://arc.aiaa.org/doi/abs/10.2514/ 2.7053 375 [166] N. Yokoyama and S. Suzuki, “ Modified genetic algorithm for constrained trajectory

  16. Amplified fragment length polymorphism analysis to assess crossover interference and homozygosity in gynogenetic diploid Pacific abalone (Haliotis discus hannai).

    PubMed

    Nie, H-T; Li, Q; Kong, L-F

    2014-06-01

    Recombination analysis in gynogenetic diploids is a powerful tool for assessing the degree of inbreeding, investigating crossover events and understanding chiasma interference during meiosis. To estimate the marker-centromere recombination rate, the inheritance pattern of 654 amplified fragment length polymorphism (AFLP) markers was examined in the 72-h veliger larvae of two meiogynogenetic diploid families in the Pacific abalone (Haliotis discus hannai). The second-division segregation frequency (y) of the AFLP loci ranged from 0.00 to 0.96, with 23.9% of loci showing y-values higher than 0.67, evidencing the existence of interference. The average recombination frequency across the 654 AFLP loci was 0.45, allowing estimation of the fixation index of 0.55, indicating that meiotic gynogenesis could provide an effective means of rapid inbreeding in the Pacific abalone. The AFLP loci have a small proportion (4.4%) of y-values greater than 0.90, suggesting that a relatively low or intermediate degree of chiasma interference occurred in the abalone chromosomes. The information obtained in this study will enhance our understanding of the abalone genome and will be useful for genetic studies in the species. © 2014 Stichting International Foundation for Animal Genetics.

  17. A novel structure-aware sparse learning algorithm for brain imaging genetics.

    PubMed

    Du, Lei; Jingwen, Yan; Kim, Sungeun; Risacher, Shannon L; Huang, Heng; Inlow, Mark; Moore, Jason H; Saykin, Andrew J; Shen, Li

    2014-01-01

    Brain imaging genetics is an emergent research field where the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. Most existing SCCA algorithms are designed using the soft threshold strategy, which assumes that the features in the data are independent from each other. This independence assumption usually does not hold in imaging genetic data, and thus inevitably limits the capability of yielding optimal solutions. We propose a novel structure-aware SCCA (denoted as S2CCA) algorithm to not only eliminate the independence assumption for the input data, but also incorporate group-like structure in the model. Empirical comparison with a widely used SCCA implementation, on both simulated and real imaging genetic data, demonstrated that S2CCA could yield improved prediction performance and biologically meaningful findings.

  18. A Smart Itsy Bitsy Spider for the Web.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Chung, Yi-Ming; Ramsey, Marshall; Yang, Christopher C.

    1998-01-01

    This study tested two Web personal spiders (i.e., agents that take users' requests and perform real-time customized searches) based on best first-search and genetic-algorithm techniques. Both results were comparable and complementary, although the genetic algorithm obtained higher recall value. The Java-based interface was found to be necessary…

  19. Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Michaeli, Linor; Bahabad, Alon

    2018-05-01

    We employ a genetic algorithm to control a pulse-shaping system pumping a nonlinear photonic crystal with ultrashort pulses. With this system, we are able to modify the spectrum of the generated supercontinuum (SC) radiation to yield narrow Gaussian-like features around pre-selected wavelengths over the whole SC spectrum.

  20. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    PubMed Central

    Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.

    2014-01-01

    The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

  1. A genetic-algorithm approach for assessing the liquefaction potential of sandy soils

    NASA Astrophysics Data System (ADS)

    Sen, G.; Akyol, E.

    2010-04-01

    The determination of liquefaction potential is required to take into account a large number of parameters, which creates a complex nonlinear structure of the liquefaction phenomenon. The conventional methods rely on simple statistical and empirical relations or charts. However, they cannot characterise these complexities. Genetic algorithms are suited to solve these types of problems. A genetic algorithm-based model has been developed to determine the liquefaction potential by confirming Cone Penetration Test datasets derived from case studies of sandy soils. Software has been developed that uses genetic algorithms for the parameter selection and assessment of liquefaction potential. Then several estimation functions for the assessment of a Liquefaction Index have been generated from the dataset. The generated Liquefaction Index estimation functions were evaluated by assessing the training and test data. The suggested formulation estimates the liquefaction occurrence with significant accuracy. Besides, the parametric study on the liquefaction index curves shows a good relation with the physical behaviour. The total number of misestimated cases was only 7.8% for the proposed method, which is quite low when compared to another commonly used method.

  2. Complex motion measurement using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Jianjun; Tu, Dan; Shen, Zhenkang

    1997-12-01

    Genetic algorithm (GA) is an optimization technique that provides an untraditional approach to deal with many nonlinear, complicated problems. The notion of motion measurement using genetic algorithm arises from the fact that the motion measurement is virtually an optimization process based on some criterions. In the paper, we propose a complex motion measurement method using genetic algorithm based on block-matching criterion. The following three problems are mainly discussed and solved in the paper: (1) apply an adaptive method to modify the control parameters of GA that are critical to itself, and offer an elitism strategy at the same time (2) derive an evaluate function of motion measurement for GA based on block-matching technique (3) employ hill-climbing (HC) method hybridly to assist GA's search for the global optimal solution. Some other related problems are also discussed. At the end of paper, experiments result is listed. We employ six motion parameters for measurement in our experiments. Experiments result shows that the performance of our GA is good. The GA can find the object motion accurately and rapidly.

  3. Optimization of fuels from waste composition with application of genetic algorithm.

    PubMed

    Małgorzata, Wzorek

    2014-05-01

    The objective of this article is to elaborate a method to optimize the composition of the fuels from sewage sludge (PBS fuel - fuel based on sewage sludge and coal slime, PBM fuel - fuel based on sewage sludge and meat and bone meal, PBT fuel - fuel based on sewage sludge and sawdust). As a tool for an optimization procedure, the use of a genetic algorithm is proposed. The optimization task involves the maximization of mass fraction of sewage sludge in a fuel developed on the basis of quality-based criteria for the use as an alternative fuel used by the cement industry. The selection criteria of fuels composition concerned such parameters as: calorific value, content of chlorine, sulphur and heavy metals. Mathematical descriptions of fuel compositions and general forms of the genetic algorithm, as well as the obtained optimization results are presented. The results of this study indicate that the proposed genetic algorithm offers an optimization tool, which could be useful in the determination of the composition of fuels that are produced from waste.

  4. Research on prediction of agricultural machinery total power based on grey model optimized by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng

    2009-07-01

    Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.

  5. Logistic regression trees for initial selection of interesting loci in case-control studies

    PubMed Central

    Nickolov, Radoslav Z; Milanov, Valentin B

    2007-01-01

    Modern genetic epidemiology faces the challenge of dealing with hundreds of thousands of genetic markers. The selection of a small initial subset of interesting markers for further investigation can greatly facilitate genetic studies. In this contribution we suggest the use of a logistic regression tree algorithm known as logistic tree with unbiased selection. Using the simulated data provided for Genetic Analysis Workshop 15, we show how this algorithm, with incorporation of multifactor dimensionality reduction method, can reduce an initial large pool of markers to a small set that includes the interesting markers with high probability. PMID:18466557

  6. Routine Discovery of Complex Genetic Models using Genetic Algorithms

    PubMed Central

    Moore, Jason H.; Hahn, Lance W.; Ritchie, Marylyn D.; Thornton, Tricia A.; White, Bill C.

    2010-01-01

    Simulation studies are useful in various disciplines for a number of reasons including the development and evaluation of new computational and statistical methods. This is particularly true in human genetics and genetic epidemiology where new analytical methods are needed for the detection and characterization of disease susceptibility genes whose effects are complex, nonlinear, and partially or solely dependent on the effects of other genes (i.e. epistasis or gene-gene interaction). Despite this need, the development of complex genetic models that can be used to simulate data is not always intuitive. In fact, only a few such models have been published. We have previously developed a genetic algorithm approach to discovering complex genetic models in which two single nucleotide polymorphisms (SNPs) influence disease risk solely through nonlinear interactions. In this paper, we extend this approach for the discovery of high-order epistasis models involving three to five SNPs. We demonstrate that the genetic algorithm is capable of routinely discovering interesting high-order epistasis models in which each SNP influences risk of disease only through interactions with the other SNPs in the model. This study opens the door for routine simulation of complex gene-gene interactions among SNPs for the development and evaluation of new statistical and computational approaches for identifying common, complex multifactorial disease susceptibility genes. PMID:20948983

  7. Continuous Adaptive Population Reduction (CAPR) for Differential Evolution Optimization.

    PubMed

    Wong, Ieong; Liu, Wenjia; Ho, Chih-Ming; Ding, Xianting

    2017-06-01

    Differential evolution (DE) has been applied extensively in drug combination optimization studies in the past decade. It allows for identification of desired drug combinations with minimal experimental effort. This article proposes an adaptive population-sizing method for the DE algorithm. Our new method presents improvements in terms of efficiency and convergence over the original DE algorithm and constant stepwise population reduction-based DE algorithm, which would lead to a reduced number of cells and animals required to identify an optimal drug combination. The method continuously adjusts the reduction of the population size in accordance with the stage of the optimization process. Our adaptive scheme limits the population reduction to occur only at the exploitation stage. We believe that continuously adjusting for a more effective population size during the evolutionary process is the major reason for the significant improvement in the convergence speed of the DE algorithm. The performance of the method is evaluated through a set of unimodal and multimodal benchmark functions. In combining with self-adaptive schemes for mutation and crossover constants, this adaptive population reduction method can help shed light on the future direction of a completely parameter tune-free self-adaptive DE algorithm.

  8. A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering

    ERIC Educational Resources Information Center

    Chahine, Firas Safwan

    2012-01-01

    Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…

  9. HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN

    EPA Science Inventory

    While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...

  10. Genetic algorithms for multicriteria shape optimization of induction furnace

    NASA Astrophysics Data System (ADS)

    Kůs, Pavel; Mach, František; Karban, Pavel; Doležel, Ivo

    2012-09-01

    In this contribution we deal with a multi-criteria shape optimization of an induction furnace. We want to find shape parameters of the furnace in such a way, that two different criteria are optimized. Since they cannot be optimized simultaneously, instead of one optimum we find set of partially optimal designs, so called Pareto front. We compare two different approaches to the optimization, one using nonlinear conjugate gradient method and second using variation of genetic algorithm. As can be seen from the numerical results, genetic algorithm seems to be the right choice for this problem. Solution of direct problem (coupled problem consisting of magnetic and heat field) is done using our own code Agros2D. It uses finite elements of higher order leading to fast and accurate solution of relatively complicated coupled problem. It also provides advanced scripting support, allowing us to prepare parametric model of the furnace and simply incorporate various types of optimization algorithms.

  11. Design of synthetic biological logic circuits based on evolutionary algorithm.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei

    2013-08-01

    The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.

  12. Preliminary Structural Design Using Topology Optimization with a Comparison of Results from Gradient and Genetic Algorithm Methods

    NASA Technical Reports Server (NTRS)

    Burt, Adam O.; Tinker, Michael L.

    2014-01-01

    In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.

  13. Structured parenting of toddlers at high versus low genetic risk: two pathways to child problems.

    PubMed

    Leve, Leslie D; Harold, Gordon T; Ge, Xiaojia; Neiderhiser, Jenae M; Shaw, Daniel; Scaramella, Laura V; Reiss, David

    2009-11-01

    Little is known about how parenting might offset genetic risk to prevent the onset of child problems during toddlerhood. We used a prospective adoption design to separate genetic and environmental influences and test whether associations between structured parenting and toddler behavior problems were conditioned by genetic risk for psychopathology. The sample included 290 linked sets of adoptive families and birth mothers and 95 linked birth fathers. Genetic risk was assessed via birth mother and birth father psychopathology (anxiety, depression, antisociality, and drug use). Structured parenting was assessed via microsocial coding of adoptive mothers' behavior during a cleanup task. Toddler behavior problems were assessed with the Child Behavior Checklist. Controlling for temperamental risk at 9 months, there was an interaction between birth mother psychopathology and adoptive mothers' parenting on toddler behavior problems at 18 months. The interaction indicated two pathways to child problems: structured parenting was beneficial for toddlers at high genetic risk but was related to behavior problems for toddlers at low genetic risk. This crossover interaction pattern was replicated with birth father psychopathology as the index of genetic risk. The effects of structured parenting on toddler behavior problems varied as a function of genetic risk. Children at genetic risk might benefit from parenting interventions during toddlerhood that enhance structured parenting.

  14. Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm

    NASA Astrophysics Data System (ADS)

    Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda

    2017-04-01

    Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.

  15. An Improved SoC Test Scheduling Method Based on Simulated Annealing Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Shen, Zhihang; Gao, Huaien; Chen, Bianna; Zheng, Weida; Xiong, Xiaoming

    2017-02-01

    In this paper, we propose an improved SoC test scheduling method based on simulated annealing algorithm (SA). It is our first to disorganize IP core assignment for each TAM to produce a new solution for SA, allocate TAM width for each TAM using greedy algorithm and calculate corresponding testing time. And accepting the core assignment according to the principle of simulated annealing algorithm and finally attain the optimum solution. Simultaneously, we run the test scheduling experiment with the international reference circuits provided by International Test Conference 2002(ITC’02) and the result shows that our algorithm is superior to the conventional integer linear programming algorithm (ILP), simulated annealing algorithm (SA) and genetic algorithm(GA). When TAM width reaches to 48,56 and 64, the testing time based on our algorithm is lesser than the classic methods and the optimization rates are 30.74%, 3.32%, 16.13% respectively. Moreover, the testing time based on our algorithm is very close to that of improved genetic algorithm (IGA), which is state-of-the-art at present.

  16. Demonstrating the suitability of genetic algorithms for driving microbial ecosystems in desirable directions.

    PubMed

    Vandecasteele, Frederik P J; Hess, Thomas F; Crawford, Ronald L

    2007-07-01

    The functioning of natural microbial ecosystems is determined by biotic interactions, which are in turn influenced by abiotic environmental conditions. Direct experimental manipulation of such conditions can be used to purposefully drive ecosystems toward exhibiting desirable functions. When a set of environmental conditions can be manipulated to be present at a discrete number of levels, finding the right combination of conditions to obtain the optimal desired effect becomes a typical combinatorial optimisation problem. Genetic algorithms are a class of robust and flexible search and optimisation techniques from the field of computer science that may be very suitable for such a task. To verify this idea, datasets containing growth levels of the total microbial community of four different natural microbial ecosystems in response to all possible combinations of a set of five chemical supplements were obtained. Subsequently, the ability of a genetic algorithm to search this parameter space for combinations of supplements driving the microbial communities to high levels of growth was compared to that of a random search, a local search, and a hill-climbing algorithm, three intuitive alternative optimisation approaches. The results indicate that a genetic algorithm is very suitable for driving microbial ecosystems in desirable directions, which opens opportunities for both fundamental ecological research and industrial applications.

  17. Comparative Analysis of Soft Computing Models in Prediction of Bending Rigidity of Cotton Woven Fabrics

    NASA Astrophysics Data System (ADS)

    Guruprasad, R.; Behera, B. K.

    2015-10-01

    Quantitative prediction of fabric mechanical properties is an essential requirement for design engineering of textile and apparel products. In this work, the possibility of prediction of bending rigidity of cotton woven fabrics has been explored with the application of Artificial Neural Network (ANN) and two hybrid methodologies, namely Neuro-genetic modeling and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling. For this purpose, a set of cotton woven grey fabrics was desized, scoured and relaxed. The fabrics were then conditioned and tested for bending properties. With the database thus created, a neural network model was first developed using back propagation as the learning algorithm. The second model was developed by applying a hybrid learning strategy, in which genetic algorithm was first used as a learning algorithm to optimize the number of neurons and connection weights of the neural network. The Genetic algorithm optimized network structure was further allowed to learn using back propagation algorithm. In the third model, an ANFIS modeling approach was attempted to map the input-output data. The prediction performances of the models were compared and a sensitivity analysis was reported. The results show that the prediction by neuro-genetic and ANFIS models were better in comparison with that of back propagation neural network model.

  18. The mGA1.0: A common LISP implementation of a messy genetic algorithm

    NASA Technical Reports Server (NTRS)

    Goldberg, David E.; Kerzic, Travis

    1990-01-01

    Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.

  19. High-throughput measurement of recombination rates and genetic interference in Saccharomyces cerevisiae.

    PubMed

    Raffoux, Xavier; Bourge, Mickael; Dumas, Fabrice; Martin, Olivier C; Falque, Matthieu

    2018-06-01

    Allelic recombination owing to meiotic crossovers is a major driver of genome evolution, as well as a key player for the selection of high-performing genotypes in economically important species. Therefore, we developed a high-throughput and low-cost method to measure recombination rates and crossover patterning (including interference) in large populations of the budding yeast Saccharomyces cerevisiae. Recombination and interference were analysed by flow cytometry, which allows time-consuming steps such as tetrad microdissection or spore growth to be avoided. Moreover, our method can also be used to compare recombination in wild-type vs. mutant individuals or in different environmental conditions, even if the changes in recombination rates are small. Furthermore, meiotic mutants often present recombination and/or pairing defects affecting spore viability but our method does not involve growth steps and thus avoids filtering out non-viable spores. Copyright © 2018 John Wiley & Sons, Ltd.

  20. The rate of meiotic gene conversion varies by sex and age

    PubMed Central

    Halldorsson, Bjarni V.; Hardarson, Marteinn T.; Kehr, Birte; Styrkarsdottir, Unnur; Gylfason, Arnaldur; Thorleifsson, Gudmar; Zink, Florian; Jonasdottir, Adalbjorg; Jonasdottir, Aslaug; Sulem, Patrick; Masson, Gisli; Thorsteinsdottir, Unnur; Helgason, Agnar; Kong, Augustine; Gudbjartsson, Daniel F.; Stefansson, Kari

    2016-01-01

    Meiotic recombination involves a combination of gene conversion and crossover events that along with mutations produce germline genetic diversity. Here, we report the discovery of 3,176 SNP and 61 indel gene conversions. Our estimate of the non-crossover (NCO) gene conversion rate (G) is 7.0 for SNPs and 5.8 for indels per Mb per generation, and the GC bias is 67.6%. For indels we demonstrate a 65.6% preference for the shorter allele. NCO gene conversions from mothers are longer than those from fathers and G is 2.17 times greater in mothers. Notably, G increases with the age of mothers, but not fathers. A disproportionate number of NCO gene conversions in older mothers occur outside double strand break (DSB) regions and in regions with relatively low GC content. This points to age-related changes in the mechanisms of meiotic gene conversions in oocytes. PMID:27643539

Top