Sample records for crown ether materials

  1. SYNTHESIS OF NOVEL CROWN ETHERS BEARING THE exo-cis-2,3-NORBORNYL GROUP AS POTENTIAL Na+ AND K+ EXTRACTANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robeson, R.M.; Bonnesen, P.

    2007-01-01

    The synthesis of a series of novel dinorbornyl-16-crown-5 and dinorbornyl-18-crown-6 ethers that incorporate the exo-cis-2,3-norbornyl moiety within the macrocycle framework is described. The key starting material for the crown ethers, exo-cis-2,3-norbornanediol, was successfully prepared on a large (>30g) scale in 88% yield from norbornylene by osmium tetroxide-catalyzed hydroxylation. The syn and anti isomers of the dinorbornyl-16-crown-5 ether family were prepared using diethylene glycol with ring closure achieved using a methallyl linkage. The isomers cis-syn-cis and cis-anti-cis di-norbornano-15-methyleno-16-crown-5 (6A and 6B) could be separated using column chromatography, and a single crystal of the syn isomer 6A suitable for X-ray crystal structuremore » analysis was obtained, thereby confi rming the syn orientation. The syn and anti isomers of the dinorbornyl-18-crown-6 ether family were successfully prepared employing a different synthetic strategy, involving the potassium–templated cyclization of two bis-hydroxyethoxy-substituted exo-cis-2,3-norbornyl groups under high dilution conditions. Attempts to fully separate cis-syn-cis di-norbornano-18-crown-6 (10A) and cis-anti-cis di-norbornano-18-crown-6 (10B) from one another using column chromatography were unsuccessful. All intermediates and products were checked for purity using either thin layer chromatography or gas chromatography, and characterized by proton and carbon NMR. Crown ethers 6AB and 10AB are to our knowledge the fi rst crown ethers to incorporate the exo-cis-2,3-norbornyl moiety into the crown ring to be successfully synthesized and characterized.« less

  2. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash

    2008-01-01

    Ionophore incorporated PVC membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. Potentiometric sensors have some outstanding advantages including simple design and operation, wide linear dynamic range, relatively fast response and rational selectivity. The vital component of such plasticized PVC members is the ionophore involved, defining the selectivity of the electrodes' complex formation. Molecular recognition causes the formation of many different supramolecules. Different types of supramolecules, like calixarenes, cyclodextrins and podands, have been used as a sensing material in the construction of ion selective sensors. Schiff's bases and crown ethers, which feature prominently in supramolecular chemistry, can be used as sensing materials in the construction of potentiometric ion selective electrodes. Up to now, more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anion complexes will be described. Liquid membrane sensors based on Schiff's bases and crown ethers will then be discussed. PMID:27879786

  3. "Crown Ether" Synthesis: An Organic Laboratory Experiment.

    ERIC Educational Resources Information Center

    Field, Kurt W.; And Others

    1979-01-01

    This experiment is designed to acquaint the student with a macromolecular synthesis of a crown ether type compound. The starting materials are readily available and the product, a cyclic polyether, belongs to a class of compounds that has aroused the interest of chemist and biologist alike. (Author/BB)

  4. Biomedical potentials of crown ethers: prospective antitumor agents.

    PubMed

    Kralj, Marijeta; Tusek-Bozić, Ljerka; Frkanec, Leo

    2008-10-01

    Crown ethers are of enormous interest and importance in chemistry, biochemistry, materials science, catalysis, separation, transport and encapsulated processes, as well as in the design and synthesis of various synthetic systems with specific properties, diverse capabilities, and programmable functions. Classical crown ethers are macrocyclic polyethers that contain 3-20 oxygen atoms separated from each other by two or more carbon atoms. They are exceptionally versatile in selectively binding a range of metal ions and a variety of organic neutral and ionic species. Crown ethers are currently being studied and used in a variety of applications beyond their traditional place in chemistry. This review presents additional applications and the ever-increasing biomedical potentials of these intriguing compounds, with particular emphasis on the prospects of their relevance as anticancer agents. We believe that further research in this direction should be encouraged, as crown compounds could either induce toxicities that are different from those of conventional antitumor drugs, or complement drugs in current use, thereby providing a valuable adjunct to therapy.

  5. Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wu; Xiao, Jie; Wang, Deyu

    2010-02-04

    The effects of three crown ethers, 12-crown-4, 15-crown-5, and 18-crown-6, as additives and co-solvents in non-aqueous electrolytes on the cell performance of primary Li/air batteries operated in a dry air environment were investigated. Crown ethers have large effects on the discharge performance of non-aqueous electrolytes in Li/air batteries. A small amount (normally less than 10% by weight or volume in electrolytes) of 12-Crown-4 and 15-crown-5 reduces the battery performance and a minimum discharge capacity appears at the crown ether content of ca. 5% in the electrolytes. However, when the content increases to about 15%, both crown ethers improve the capacitymore » of Li/air cells by about 28% and 16%, respectively. 15-Crown-5 based electrolytes even show a maximum discharge capacity in the crown ether content range from 10% to 15%. On the other hand, the increase of 18-crown-6 amount in the electrolytes continuously lowers of the cell performance. The different battery performances of these three crown ethers in electrolytes are explained by the combined effects from the electrolytes’ contact angle, oxygen solubility, viscosity, ionic conductivity, and the stability of complexes formed between crown ether molecules and lithium ions.« less

  6. Radionuclide-binding compound, a radionuclide delivery system, a method of making a radium complexing compound, a method of extracting a radionuclide, and a method of delivering a radionuclide

    DOEpatents

    Fisher, Darrell R.; Wai, Chien M.; Chen, Xiaoyuan

    2000-01-01

    The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound. In another aspect, the invention includes a method of making a radium complexing compound, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising n phenolic hydroxyl groups; b) providing a crown ether precursor, the crown ether precursor comprising a pair of tosylated ends; c) reacting the pair of tosylated ends with a pair of the phenolic hydroxyl groups to convert said pair of phenolic hydroxyl groups to ether linkages, the ether linkages connecting the crown ether precursor to the calix[n]arene to form a calix[n]arene-crown-[m]-ether compound, wherein m is an integer greater than 3; d) converting remaining phenolic hydroxyl groups to esters; e) converting the esters to acids, the acids being proximate a crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound; and f) providing a Ra.sup.2+ ion within the crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound.

  7. Crown ethers in graphene

    DOE PAGES

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; ...

    2014-11-13

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basicmore » structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.« less

  8. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  9. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  10. Capillary electrophoresis separation of peptide diastereomers that contain methionine sulfoxide by dual cyclodextrin-crown ether systems.

    PubMed

    Zhu, Qingfu; Heinemann, Stefan H; Schönherr, Roland; Scriba, Gerhard K E

    2014-12-01

    A dual-selector system employing achiral crown ethers in combination with cyclodextrins has been developed for the separation of peptide diastereomers that contain methionine sulfoxide. The combinations of the crown ethers 15-crown-5, 18-crown-6, Kryptofix® 21 and Kryptofix® 22 and β-cyclodextrin, carboxymethyl-β-cyclodextrin, and sulfated β-cyclodextrin were screened at pH 2.5 and pH 8.0 using a 40/50.2 cm, 50 μm id fused-silica capillary and a separation voltage of 25 kV. No diastereomer separation was observed in the sole presence of crown ethers, while only sulfated β-cyclodextrin was able to resolve some peptide diastereomers at pH 8.0. Depending on the amino acid sequence of the peptide and the applied cyclodextrin, the addition of crown ethers, especially the Krpytofix® diaza-crown ethers, resulted in significantly enhanced chiral recognition. Keeping one selector of the dual system constant, increasing concentrations of the second selector resulted in increased peak resolution and analyte migration time for peptide-crown ether-cyclodextrin combinations. The simultaneous diastereomer separation of three structurally related peptides was achieved using the dual selector system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electron spin resonance and electron spin echo modulation of n-doxylstearic acid and N,N,N',N'-tetramethylbenzidine photoionization in sodium versus lithium dodecyl sulfate micellar solutions: effect of 15-crown-5 and 18-crown-6 ether addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglioni, P.; Rivara-Minten, E.; Kevan, L.

    1988-08-11

    Electron spin echo modulation and electron spin resonance spectra of photogenerated N,N,N',N'-tetramethylbenzidine (TMB) cation radical and n-doxylstearic acids (n-DSA) in frozen micellar solutions of sodium and lithium dodecyl sulfate containing 15-crown-5 and 18-crown-6 ethers in D/sub 2/O have been studied as a function of crown ether concentration. Modulation effects due to N-DSA with water deuteriums give direct evidence that both crown ethers are mainly located at the micellar interface and that this causes a decrease of the hydration of the micellar interface. Crown ether complexation constants for sodium and lithium micellar counterions are reported and show that 18-crown-6 > 15-crown-5more » for sodium counterion and 15-crown-5 > 18-crown-6 for lithium counterion. Modulation effects from TMB/sup +/ interaction with water deuteriums indicate that the TMB molecule moves toward the micelle interfacial region when sodium or lithium cations are complexed by crown ethers. The TMB/sup +/ yield upon TMB photoionization increases by about 10% with crown ether addition for SDS and LDS micellar systems, but it is greater if the absolute values for the LDS system are compared to those for the SDS micellar system. This behavior correlates with the strength of TMB/sup +/-water interactions and suggests that the main factor in the photoionization efficiency is the photocation-water interaction.« less

  12. Increasing the thermopower of crown-ether-bridged anthraquinones.

    PubMed

    Ismael, Ali K; Grace, Iain; Lambert, Colin J

    2015-11-07

    We investigate strategies for increasing the thermopower of crown-ether-bridged anthraquinones. The novel design feature of these molecules is the presence of either () crown-ether or () diaza-crown-ether bridges attached to the side of the current-carrying anthraquinone wire. The crown-ether side groups selectively bind alkali-metal cations and when combined with TCNE or TTF dopants, provide a large phase-space for optimising thermoelectric properties. We find that the optimum combination of cations and dopants depends on the temperature range of interest. The thermopowers of both and are negative and at room temperature are optimised by binding with TTF alone, achieving thermpowers of -600 μV K(-1) and -285 μV K(-1) respectively. At much lower temperatures, which are relevant to cascade coolers, we find that for , a combination of TTF and Na(+) yields a maximum thermopower of -710 μV K(-1) at 70 K, whereas a combination of TTF and Li(+) yields a maximum thermopower of -600 μV K(-1) at 90 K. For , we find that TTF doping yields a maximum thermopower of -800 μV K(-1) at 90 K, whereas at 50 K, the largest thermopower (of -600 μV K(-1)) is obtain by a combination TTF and K(+) doping. At room temperature, we obtain power factors of 73 μW m(-1) K(-2) for (in combination with TTF and Na(+)) and 90 μW m(-1) K(-2) for (with TTF). These are higher or comparable with reported power factors of other organic materials.

  13. "Leaching or not leaching": an alternative approach to antimicrobial materials via copolymers containing crown ethers as active groups.

    PubMed

    De Rosa, M; Vigliotta, G; Soriente, A; Capaccio, V; Gorrasi, G; Adami, R; Reverchon, E; Mella, M; Izzo, L

    2017-03-28

    In this work, new copolymers containing either MMA and 18C6 crown-ether pendants, or PEG, MMA and 18C6 crown-ether pendants were synthesized to test the idea that sequestering structural alkali-earth ions from the bacterial outer membrane (OM) may lead to bacterial death. The copolymers were obtained either via uncontrolled radical polymerization or ATRP; the latter approached allowed us to produce not only linear copolymers but also branched Y-like structures. After checking for the capability of complexing magnesium and calcium ions, the antimicrobial activity of all copolymers was tested placing their casted plaques in contact with pure water E. coli suspensions. All plaques adsorbed alkali-earth ions and killed bacteria, albeit with different antimicrobial efficiencies. Differences in the latter characteristic were attributed to different plaque roughness. The role of the 18C6 crown-ether pendants was elucidated by pre-saturating plaques with Mg/Ca ions, the marked reduction in antimicrobial efficiency indicating that losing the latter from OM due to surface complexation does play an important role in killing bacteria at short (<5 h) contact times. At longer times, the mode of action is instead related to the poly-cationic nature acquired by the plaques due to ion sequestering.

  14. Antitumor potential of crown ethers: structure-activity relationships, cell cycle disturbances, and cell death studies of a series of ionophores.

    PubMed

    Marjanović, Marko; Kralj, Marijeta; Supek, Fran; Frkanec, Leo; Piantanida, Ivo; Smuc, Tomislav; Tusek-Bozić, Ljerka

    2007-03-08

    The present paper demonstrates the antiproliferative ability and structure-activity relationships (SAR) of 14 crown and aza-crown ether analogues on five tumor-cell types. The most active compounds were di-tert-butyldicyclohexano-18-crown-6 (3), which exhibited cytotoxicity in the submicromolar range, and di-tert-butyldibenzo-18-crown-6 (5) (IC50 values of approximately 2 microM). Also, 3 and 5 induced marked influence on the cell cycle phase distribution--strong G1 arrest, followed by the induction of apoptosis. A computational SAR modeling effort offers insight into possible mechanisms of crown ether biological activity, presumably involving penetration into cell membranes, and points out structural features of molecules important for this activity. The results reveal that crown ethers possess marked tumor-cell growth inhibitory activity, the extent of which depends on the characteristics of the hydrophilic macrocylic cavity and the surrounding hydrophobic ring. Our work supports the hypothesis that crown ether compounds inhibit tumor-cell growth by disrupting potassium ion homeostasis, which in turn leads to cell cycle perturbations and apoptosis.

  15. High-energy metal air batteries

    DOEpatents

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2014-07-01

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  16. High-energy metal air batteries

    DOEpatents

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  17. Change in the Gibbs energy of 18-crown-6 ether transfer from methanol to methanol-acetonitrile mixtures at 298 K

    NASA Astrophysics Data System (ADS)

    Kuz'mina, I. A.; Usacheva, T. R.; Kuz'mina, K. I.; Volkova, M. A.; Sharnin, V. A.

    2015-01-01

    The Gibbs energies of the transfer of 18-crown-6 ether from methanol to its mixtures with acetonitrile (χAN = 0.0-1.0 mole fraction) are determined by means of interphase distribution at 298 K. The effect the solvent composition has on the thermodynamic characteristics of the solvation of 18-crown-6 ether is analyzed. An increase in the content of acetonitrile in the mixed solvent enhances the solvation of crown ether due to changes in the energy of the solution. Resolvation of the macrocycle is assumed to be complete at acetonitrile concentrations higher than 0.6 mole fraction.

  18. The Discovery of Crown Ethers

    NASA Astrophysics Data System (ADS)

    Pedersen, Charles J.

    1988-07-01

    The discovery of the crown ethers stemmed from efforts to control the catalytic activity of vanadium and copper by complexation with multidentate ligands. The first crown ether, 2,3,11,12-dibenzo-1,4,7,10,13,16-hexaoxacyclo-octadeca-2,11-diene, was obtained in 0.4% yield during an attempt to prepare a phenolic ligand from catechol and bis(2-chloroethyl)ether. This compound, which complexed with the sodium cation, was the first compound known to display such activity and became known as dibenzo-18-crown-6, an 18-atom heterocycle containing 6 oxygen atoms. Some 60 related compounds were made involving heterocyclic rings containing 12 to 60 atoms including 4 and 10 oxygen atoms. There are optimum polyether ring sizes for the different alkali metal cations: 15 to 18 for sodium, 18 for potassium, and 18 to 21 for cesium. Complexes having polyether to cation ratios of 1:1, 3:2, and 2:1 were prepared. Solubilization of inorganic salts in aprotic solvents, especially by saturated crown ethers, was demonstrated.

  19. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  20. Photodissociation of Non-Covalent Peptide-Crown Ether Complexes

    PubMed Central

    Wilson, Jeffrey J.; Kirkovits, Gregory J.; Sessler, Jonathan L.; Brodbelt, Jennifer S.

    2008-01-01

    Highly chromogenic 18-crown-6-dipyrrolylquinoxaline coordinates primary amines of peptides, forming non-covalent complexes that can be transferred to the gas phase by electrospray ionization. The appended chromogenic crown ether facilitates efficient energy transfer to the peptide upon ultraviolet irradiation in the gas phase, resulting in diagnostic peptide fragmentation. Collisional activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of these non-covalent complexes results only in their disassembly with the charge retained on either the peptide or crown ether, yielding no sequence ions. Upon UV photon absorption the intermolecular energy transfer is facilitated by the fast activation time scale of UVPD (< 10 ns) and by the collectively strong hydrogen bonding between the crown ether and peptide, thus allowing effective transfer of energy to the peptide moiety prior to disruption of the intermolecular hydrogen bonds. PMID:18077179

  1. The Azocyanide Functional Group.

    DTIC Science & Technology

    1979-06-05

    unsymmetrical dienes; the regioisomer distributions of these unsymmetrical adducts have been correlated with the arylazocyanide ring sub- stituents using Hammet ...the crown ether also acts as a protecting group for the diazonium ion in solution ( equation 1). N NBF4 +[0N-N The efficiency of this protection has...reaction, equation 2) were dramatically slowed in the presence of crown ethers.1 2 However, crown ether solubilization and protection of ArN 2+BF4 hor

  2. Convenient approaches to synthesis of furanoid sugar-aza-crown ethers from C-ribosyl azido aldehyde via a reductive amination/amidation.

    PubMed

    Hsieh, Yu-Chi; Chir, Jiun-Ly; Zou, Wei; Wu, Hsiu-Han; Wu, An-Tai

    2009-05-26

    A short and highly efficient route to the alpha-anomer of a furanoid sugar-aza-crown ether was developed by a one-pot reductive amination of an alpha-anomer C-ribosyl azido aldehyde. In addition, the beta-anomer furanoid sugar-aza-crown ether was synthesized from a linear disaccharide precursor via amidation and then followed by microwave-assisted amide reduction.

  3. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Oing; McBreen, James

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

  4. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.O.; McBreen, J.

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.

  5. AFOSR Technical Report Summaries, April-June 1986,

    DTIC Science & Technology

    1986-06-01

    C1HARGE DENSITY. ELECTRODES. INTERrACIAL TENSION. PRESSURE, SIIRFACE PROPERTIES. CORROSION INHIBITION, MOLECULES, ORGANIC COMPOUNDS . SORPTION . FILMS... Perfluorinated derivatives of hydrocarbon Compounds usually ewhibit different propeties than their hydrocarbon analogues. The perfluoro crown ether-s are m.arkedly...Binary Hydrocarbon Mixtures, AD-A166 130 Materials for Emergency Repair AD-A167 094 of Runways. -BROMINE COMPOUNDS AD-Ai64 225 tCHEMICAL LASERS Analysis of

  6. A colorimetric chiral sensor based on chiral crown ether for the recognition of the two enantiomers of primary amino alcohols and amines.

    PubMed

    Cho, Eun Na Rae; Li, Yinan; Kim, Hee Jin; Hyun, Myung Ho

    2011-04-01

    A new colorimetric chiral sensor material consisting of three different functional sites such as chromophore (2,4-dinitrophenylazophenol dye), binding site (crown ether), and chiral barrier (3,3'-diphenyl-1,1'-binaphthyl group) was prepared and applied to the recognition of the two enantiomers of primary amino alcohols and amines. Among five primary amino alcohols and two primary amines tested, the two enantiomers of phenylalaninol show the highest difference in the absorption maximum wavelength (Δλ(max)=43.5 nm) and in the association constants (K(S)/K(R)=2.51) upon complexation with the colorimetric chiral sensor material and, consequently, the two enantiomers of phenylalaninol were clearly distinguished from each other by the color difference. Copyright © 2010 Wiley-Liss, Inc.

  7. A study on 2, 4, 6-trinitrotolurene (TNT) vapor detection by using a quartz crystal microbalance with 18-crown-6 ether film

    NASA Astrophysics Data System (ADS)

    Phetchakul, Toempong; Phuvanatai, Pavaris

    2017-07-01

    The application of 18-crown-6 ether film for 2, 4, 6-trinitrotolurene (TNT) vapor detection by using quartz crystal microbalance (QCM) is studied. The film is coated on the quartz electrodes as sensitive material for capture TNT molecule. The parameters that are studied are concentration and mass or thickness of film. When the explosive adheres to surface of the crystal oscillator, the weight is changed and the resonance frequency of the crystal oscillator is shifted lower. The frequency shift (Δf) relates to concentration and mass or thickness. The high concentration and mass/thickness of film enhance the TNT detection.

  8. Jet-cooled electronic and vibrational spectroscopy of crown ethers: benzo-15-crown-5 ether and 4'-amino-benzo-15-crown-5 ether.

    PubMed

    Shubert, V Alvin; James, William H; Zwier, Timothy S

    2009-07-16

    Laser-induced fluorescence (LIF), ultraviolet hole-burning (UVHB), and resonant ion-dip infrared (RIDIR) spectroscopies were carried out on isolated benzo-15-crown-5 ether (B15C) and 4'-amino-benzo-15-crown-5 ether (ABC) cooled in a supersonic expansion. Three conformational isomers of B15C and four of ABC were observed and spectroscopically characterized. Full optimizations and harmonic frequency calculations were undertaken for the full set of almost 1700 conformational minima identified in a molecular mechanics force field search. When compared with TDDFT predictions, the S(0)-S(1) origin positions serve as a useful diagnostic of the conformation of the crown ether near the phenyl ring responsible for the UV absorption and to the position of the NH(2) substituent. In-plane orientations for the beta carbons produce red-shifted S(0)-S(1) origins, while out-of-plane "buckling" produces substantial blue shifts of 600 cm(-1) or more. Comparison between the alkyl CH stretch spectra of B15C and ABC divide the spectra into common subgroups shared by the two molecules. The high-frequency CH stretch transitions (above 2930 cm(-1)) reflect the number of CH...O interactions, which in turn track in a general way the degree of buckling of the crown. On this basis, assignments of each of the observed conformational isomers to a class of structure can be made. All the observed structures have some degree of buckling to them, indicating that in the absence of a strong-binding partner, the crown folds in on itself to gain additional stabilization from weak dispersive and CH...O interactions.

  9. Macrocycles inserted in graphene: from coordination chemistry on graphene to graphitic carbon oxide.

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Jingyao; Miao, Maosheng

    Tuning the electronic structure and the chemical properties of graphene by binding with metals has become a focus in the area of two dimension materials. Despite many interesting results and promising potentials, the approach suffers from weak binding and the high reactivity of the metal atoms. On the other hand, many macrocyclic molecules such as crown ether show strong and selective binding with metal atoms. The alliance of the two substances will largely benefit the two parallel fields: it will provide a scaffold for coordination chemistry as well as a controllable method for tuning the electronic structure of graphene through strong binding with metals. Here, using crown ether as an example, we demonstrate by first principles calculations that the embedment of macrocyclic molecules into graphene honeycomb lattice can be very thermochemically favored. The embedment of crown ether on graphene can form a family of new two-dimensional materials that possess varying band gaps and band edges. The one with highest O composition (C2O), with similar structure features as graphilic C3N4, shows strong potentials for photolysis and as true two-dimensional superconductor while binding with alkali metals. Calculations are performed on NSF-funded XSEDE resources (TG-DMR130005). This research is also supported by National Natural Science Foundation of China (Grants No. 21373098) in China.

  10. A crown ether appended super gelator with multiple stimulus responsiveness.

    PubMed

    Dong, Shengyi; Zheng, Bo; Xu, Donghua; Yan, Xuzhou; Zhang, Mingming; Huang, Feihe

    2012-06-26

    A crown ether appended super gelator is designed and synthesized. It can gel a variety of organic solvents and shows excellent gelation properties with both low critical gelation concentration and short gelation time. Due to the introduction of the crown ether moiety and a secondary ammonium unit, the supramolecular gels show reversible gel-sol transitions. The supramolecular gels can also be molded into shape-persistent and free-standing objects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ionic complexation of N 2O 4 by 18-crown-6

    NASA Astrophysics Data System (ADS)

    Ricard, S.; Audet, P.; Savoie, R.

    1988-08-01

    An ionic complex has been obtained from N 2O 4 in the presence of the macrocyclic ether 18-crown-6. This crystalline compound has been shown from its Raman spectrum to have the formula NO +·crown·H(NO 3) 2-, with the nitrosonium ion closely associated with the crown ether rather than with the hydrogen dinitrate accompanying ion. This adduct decomposes readily in moist air to give the known complex (HNO 3·H 2O) 2·crown.

  12. Synthesis and pKa determination of new enantiopure dimethyl-substituted acridino-crown ethers containing a carboxyl group: Useful candidates for enantiomeric recognition studies.

    PubMed

    Németh, Tamás; Dargó, Gergő; Petró, József Levente; Petrik, Zsófia; Lévai, Sándor; Krámos, Balázs; Béni, Zoltán; Nagy, József; Balogh, György Tibor; Huszthy, Péter; Tóth, Tünde

    2017-09-01

    New enantiopure dimethyl-substituted acridino-18-crown-6 and acridino-21-crown-7 ethers containing a carboxyl group at position 9 of the acridine ring [(S,S)-8, (S,S)-9, (R,R)-10] were synthesized. The pK a values of the new crown ethers [(S,S)-8, (S,S)-9, (R,R)-10] and of an earlier reported macrocycle [(R,R)-2] were determined by UV-pH titrations. Crown ether (S,S)-8 was attached to silica gel by covalent bonds and the enantiomeric separation ability of the newly prepared chiral stationary phase [(S,S)-CSP-12] was studied by high-performance liquid chromatography (HPLC). Homochiral preference was observed and the best separation was achieved for the enantiomers of 1-NEA. Ligands (S,S)-9 and (R,R)-10 are precursors of enantioselective sensor and selector molecules for the enantiomers of protonated primary amines, amino acids, and their derivatives. © 2017 Wiley Periodicals, Inc.

  13. Crown Ether Complexes of Alkali-Metal Chlorides from SO2.

    PubMed

    Reuter, Kirsten; Rudel, Stefan S; Buchner, Magnus R; Kraus, Florian; von Hänisch, Carsten

    2017-07-18

    The structures of alkali-metal chloride SO 2 solvates (Li-Cs) in conjunction with 12-crown-4 or 1,2-disila-12-crown-4 show strong discrepancies, despite the structural similarity of the ligands. Both types of crown ethers form 1:1 complexes with LiCl to give [Li(1,2-disila-12-crown-4)(SO 2 Cl)] (1) and [Li(12-crown-4)Cl]⋅4 SO 2 (2). However, 1,2-disila-12-crown-4 proved unable to coordinate cations too large for the cavity diameter, for example, by the formation of sandwich-type complexes. As a result, 12-crown-4 reacts exclusively with the heavier alkali-metal chlorides NaCl, KCl and RbCl. Compounds [Na(12-crown-4) 2 ]Cl⋅4 SO 2 (3) and [M(12-crown-4) 2 (SO 2 )]Cl⋅4 SO 2 (4: M=K; 5: M=Rb) all showed S-coordination to the chloride ions through four SO 2 molecules. Compounds 4 and 5 additionally exhibit the first crystallographically confirmed non-bridging O,O'-coordination mode of SO 2 . Unexpectedly, the disila-crown ether supports the dissolution of RbCl and CsCl in the solvent and gives the homoleptic SO 2 -solvated alkali-metal chlorides [MCl⋅3 SO 2 ] (6: M=Rb; 7: M=Cs), which incorporate bridging μ-O,O'-coordinating moieties and the unprecedented side-on O,O'-coordination mode. All compounds were characterised by single-crystal X-ray diffraction. The crown ether complexes were additionally studied by using NMR spectroscopy, and the presence of SO 2 at ambient temperature was revealed by IR spectroscopy of the neat compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Crown ether stereoisomerism: Implications in metal ion extraction and ionic liquid design

    NASA Astrophysics Data System (ADS)

    Pawlak, Alan J.

    Since their discovery more than four decades ago, crown ethers (CEs) have been the subject of intense investigation in a number of fields. Although many of the structural features that govern the behavior of these compounds have been thoroughly explored, the effect of their stereochemistry has received relatively little attention. In the present work, crown ether stereochemistry is shown to have important implications in both the design of ternary (i.e., three-component) ionic liquids (TILs) and metal ion extraction. Specifically, as a first step toward the development of guidelines for the rational design of ternary ionic liquids employing crown ethers as the neutral extractant, a systematic examination of the effect of crown ether stereochemistry (employing dicyclohexano-18-crown-6 (DCH18C6) as a representative crown compound), along with ring size, the nature and number of donor atoms, and the presence of functional groups, on the thermal properties (i.e., melting point or glass transition; decomposition or evaporation) of these compounds was carried out. Stereochemistry was found to have no appreciable impact on the onset temperature for mass loss. Rather, molecular weight and aromaticity were found to be more influential. Stereochemistry was, however, found to significantly affect the melting point of a TIL prepared from it; while the metal-CE formation constant, which varies with stereoisomer was observed to determine the onset temperature for mass loss of the TIL. To explore the implications of crown ether stereoisomerism in metal ion extraction, the formation constants for alkaline earth cation complexes with the isomers of DCH18C6 and selected stereoisomers of di-tert-butylcyclohexano-18-crown-6 (DtBuCH18C6) were measured. These values were found to vary inversely with the ligand strain (i.e., reorganizational) energy for the isomer, as determined by molecular mechanics calculations. Using this relationship (along with additional identification methods), three isomers of DtBuCH18C6, which were separated by preparative LC, were definitively identified. Three additional isomers were partially identified.

  15. Utility of charge-transfer complexation for the assessment of macrocyclic polyethers: Spectroscopic, thermal and surface morphology characteristics of two highly crown ethers complexed with acido acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Adam, Abdel Majid A.; Saad, Hosam A.

    2015-04-01

    The study of the complexing ability of macrocyclic compounds to organic and inorganic substances is of great interest. The aim of this work is to provide basic data that can be used to the assessment of macrocyclic crown ethers quantitatively based on charge-transfer (CT) complexation. This goal was achieved by preparing CT complexes of two interesting mixed nitrogen-oxygen crown ethers with acido acceptors (chloranilic and picric acid), which were fully structurally characterized. The crown ethers are 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (HDHC) and 1,4,10-trioxa-7,13-diaza-cyclopentadecane (TDPD). The obtained complexes were structurally characterized via elemental analysis, IR, Raman, 1H NMR, and UV-visible spectroscopy. Thermal properties of these complexes were also studied, and their kinetic thermodynamic parameters were calculated. Furthermore, the microstructure properties of these complexes have also been investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM).

  16. Proton-Ionizable Crown Ethers. A Short Review

    DTIC Science & Technology

    1989-05-30

    acid methyl ester using sodium hydride as the base in tetrahydrofuran. The m3thyl ester group was hydrolyzed to the carboxylic acid as shown in Procedure...prepared via the appropriate hydroxydibenzo-crown ether and allyl bromide RýIý R2 or ethyl acrylate as shown in Procedure N. 5 2 . 5 6 Disulfonic acid ...similar to Procedure p. 7 4 Once the precursor binrephtho-crown was obtained, it was coupled with bromoacetic acid methyl ester and R, , - R

  17. Studies of flerovium and element 115 homologs with macrocyclic extractants

    NASA Astrophysics Data System (ADS)

    Despotopulos, John Dustin

    Study of the chemistry of the heaviest elements, Z ? 104, poses a unique challenge due to their low production cross-sections and short half-lives. Chemistry also must be studied on the one-atom-at-a-time scale, requiring automated, fast, and very efficient chemical schemes. Recent studies of the chemical behavior of copernicium (Cn, element 112) and flerovium (Fl, element 114) together with the discovery of isotopes of these elements with half-lives suitable for chemical studies have spurred a renewed interest in the development of rapid systems designed to study the chemical properties of elements with Z ≥ 114. This dissertation explores both extraction chromatography and solvent extraction as methods for development of a rapid chemical separation scheme for the homologs of flerovium (Pb, Sn, Hg) and element 115 (Bi, Sb), with the goal of developing a chemical scheme that, in the future, can be applied to on-line chemistry of both Fl and element 115. Macrocyclic extractants, specifically crown ethers and their derivatives, were chosen for these studies. Carrier-free radionuclides, used in these studies, of the homologs of Fl and element 115 were obtained by proton activation of high purity metal foils at the Lawrence Livermore National Laboratory (LLNL) Center for Accelerator Mass Spectrometry (CAMS): natIn(p,n)113Sn, natSn(p,n)124Sb, and Au(p,n)197m,gHg. The carrier-free activity was separated from the foils by novel separation schemes based on ion exchange and extraction chromatography techniques. Carrier-free Pb and Bi isotopes were obtained from development of a novel generator based on cation exchange chromatography using the 232U parent to generate 212Pb and 212Bi. Crown ethers show high selectivity for metal ions based on their size compared to the negatively charged cavity of the ether. Extraction by crown ethers occur based on electrostatic ion-dipole interactions between the negatively charged ring atoms (oxygen, sulfur, etc.) and the positively charged metal cations. Extraction chromatography resins produced by Eichrom Technologies, specifically the Pb resin based on di-t-byutlcyclohexano-18-crown-6, were chosen as a starting point for these studies. Simple chemical systems based solely on HCl matrices were explored to determine the extent of extraction for Pb, Sn and Hg on the resin. The kinetics and mechanism of extraction were also explored to determine suitability for a Fl chemical experiment. Systems based on KI/HCl and KI/HNO3 were explored for Bi and Sb. In both cases suitable separations, with high separation factors, were performed with vacuum flow columns containing the Pb-resin. Unfortunately the kinetics of uptake for Hg are far too slow on the traditional crown-ether to perform a Fl experiment and obtain whether or not Fl has true Hg-like character or not. However, the kinetics of Pb and Sn are more than sufficient for a Fl experiment to differentiate between Pb- or Sn-like character. To assess this kinetic issue a novel macrocyclic extractant based on sulfur donors was synthesized. Hexathia-18-crown-6, the sulfur analog of 18-crown-6, was synthesized based with by a template reaction using high dilution techniques. The replacement of oxygen ring atoms with sulfur should give the extractant a softer character, which should allow for far greater affinity toward soft metals such as Hg and Pb. From HCl matrices hexathia-18-crown-6 showed far greater kinetics and affinity for Hg than the Pb-resin; however, no affinity for Pb or Sn was seen. This presumably is due to the fact the charge density of sulfur crown ethers does not point to the center of the ring, and future synthesis of a substituted sulfur crown ether which forces the charge density to mimic that of the traditional crown ether should enable extraction of Pb and Sn to a greater extent than with the Pb-resin. Initial studies show promise for the separation of Bi and Sb from HCl matrices using hexathia-18-crown-6. Other macrocyclic extractants, including 2,2,2-cryptand, calix[6]arene and tetrathia-12-crown-4, were also investigated for comparison to the crown ethers. It was noted that these extractants are inferior compared to the crown and thiacrown ethers for extraction of Fl and element 115 homologs. A potential chemical system for Fl was established based on the Eichrom Pb resin, and insight to an improved system based on thiacrown ethers is presented.

  18. Separation of Long-Lived Fission Products Tc-99 and I-129 from Synthetic Effluents by Crown Ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paviet-Hartmann, P.; Hartmann, T.

    2006-07-01

    To minimize significantly the radio-toxic inventory of nuclear geological repositories to come as well as to reduce the potential of radionuclides migration and to minimize long-term exposure, the concept of partitioning and transmutation (P/T) of nuclear waste is currently discussed. Transmutation offers the possibility to convert radio-toxic radionuclides with long half-lives into radionuclides of shorter half-lives, less toxic isotopes, or even into stable isotopes. Besides the most prominent isotopes of neptunium, plutonium, americium, and curium, the long-lived fission products Tc-99 and I-129 (half-lives of 2.13 x 10{sup 5} years, and 1.57 x 10{sup 7} years, respectively) are promising candidates formore » transmutation in order to prevent their migration from a nuclear repository. Partitioning and transmutation of the most radio-toxic radionuclides will not only minimize the nuclear waste load but most importantly will significantly reduce the long-term radio-toxic hazard of nuclear waste repositories to come. Prior to the deployment of partitioning and transmutation, selective extraction techniques are required to separate the radionuclides of concern. Since the discovery of crown ethers by C. Pedersen, various applications of crown ethers have drawn much attention. Although liquid-liquid extraction of alkali and alkali earth metals by crown ethers has been extensively studied, little data is available on the extraction of Tc-99 and I-129 by crown ethers. The methods developed herein for the specific extraction of Tc-99 and I-129 provide recommendations in support of their selectively extraction from liquid radioactive waste streams, mainly ILW. We report data on the solvent extraction of Tc-99 and I-129 from synthetic effluents by six crown ethers of varying cavity dimensions and derivatization. To satisfy the needs of new extractant systems we are demonstrating that crown ether (CE) based systems have the potential to serve as selective extractants for the separation of these long lived radionuclides from high level nuclear waste (HLW), intermediate level nuclear waste (ILW), and low level nuclear waste (LLW) streams. The experimental results show that dibenzo-18-crown-6 (DB 18C6) is highly selective towards Tc-99, and dicyclohexano-18-crown-6 (DC18C6) is highly selective towards I-129. The nature of the diluent was examined and was shown to be the most influential variable in controlling the extraction coefficients of Tc-99 and I-129. Therefore the addition of polar diluent acetone to non-polar diluent toluene enhanced the distribution coefficient of Tc-99 (DTc) was by a factor of 30. For I-129, the best extraction yield was obtained after introducing tetrachloroethane. Through the process, by a single extraction step, 85 % to 95 % of Tc-99 was extracted from synthetic effluents, while 84 % to 88 % of I-129 was extracted from different acidic media. The extraction by crown ether is a fairly rapid process and the total preparation time of the chemical separation takes about 20 minutes for a batch of eight samples. (authors)« less

  19. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, B.F.; Robison, T.W.; Gohdes, J.W.

    1999-04-06

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  20. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    2002-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  1. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    1999-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  2. Guanidinium/ammonium competition and proton transfer in the interaction of the amino acid arginine with the tetracarboxylic 18-crown-6 ionophore.

    PubMed

    Avilés-Moreno, Juan Ramón; Berden, Giel; Oomens, Jos; Martínez-Haya, Bruno

    2018-02-07

    The recognition of arginine plays a central role in modern proteomics and genomics. Arginine is unique among natural amino acids due to the high basicity of its guanidinium side chain, which sustains specific interactions and proton exchange biochemical processes. The search for suitable macrocyclic ionophores constitutes a promising route towards the development of arginine receptors. This study evaluates the conformational features involved in the binding of free arginine by the polyether macrocycle (18-crown-6)-tetracarboxylic acid. Infrared action vibrational spectroscopy and quantum-chemical computations are combined to characterize the complexes with net charges +1 and +2. The spectrum of the +1 complex can be explained in terms of a configuration predominantly stabilized by a robust bidentate coordination of guanidinium with a carboxylate group formed from the deprotonation of one side group of the crown ether. The released proton is transferred to the amino terminus of arginine, which then coordinates with the crown ether ring. In an alternative type of conformation, partly consistent with experiment, the amino terminus is neutral and the guanidinium group inserts into the crown ether cavity. In the +2 complexes, arginine is always doubly protonated and the most stable conformations are characterized by a tripodal coordination of the ammonium -NH 3 + group of arginine with the oxygen atoms of the macrocycle ring, while the interactions of the amino acid with the side carboxylic acid groups of the crown ether acquire a remarkable lesser role.

  3. Structure and Bonding in Uranyl(VI) Peroxide and Crown Ether Complexes; Comparison of Quantum Chemical and Experimental Data.

    PubMed

    Vallet, Valérie; Grenthe, Ingmar

    2017-12-18

    The structure, chemical bonding, and thermodynamics of alkali ions in M[12-crown-4] + , M[15-crown-5] + , and M[18-crown-6] + , M[UO 2 (O 2 )(OH 2 ) 2 ] + 4,5 , and M[UO 2 (O 2 )(OH)(OH 2 )] n 1-n (n = 4, 5) complexes have been explored by using quantum chemical (QC) calculations at the ab initio level. The chemical bonding has been studied in the gas phase in order to eliminate solvent effects. QTAIM analysis demonstrates features that are very similar in all complexes and typical for electrostatic M-O bonds, but with the M-O bonds in the uranyl peroxide systems about 20 kJ mol -1 stronger than in the corresponding crown ether complexes. The regular decrease in bond strength with increasing M-O bond distance is consistent with predominantly electrostatic contributions. Energy decomposition of the reaction energies in the gas phase and solvent demonstrates that the predominant component of the total attractive (ΔE elec + ΔE orb ) energy contribution is the electrostatic component. There are no steric constraints for coordination of large cations to small rings, because the M + ions are located outside the ring plane, [O n ], formed by the oxygen donors in the ligands; coordination of ions smaller than the ligand cavity results in longer than normal M-O distances or in a change in the number of bonds, both resulting in weaker complexes. The Gibbs energies, enthalpies, and entropies of reaction calculated using the conductor-like screening model, COSMO, to account for solvent effects deviate significantly from experimental values in water, while those in acetonitrile are in much better agreement. Factors that might affect the selectivity are discussed, but our conclusion is that present QC methods are not accurate enough to describe the rather small differences in selectivity, which only amount to 5-10 kJ mol -1 . We can, however, conclude on the basis of QC and experimental data that M[crown ether] + complexes in the strongly coordinating water solvent are of outer-sphere type, [M(OH 2 ) n + ][crown ether], while those in weakly coordinating acetonitrile are of inner-sphere type, [M-crown ether] + . The observation that the M[UO 2 (O 2 )(OH)(OH 2 )] n 1-n complexes are more stable in solution than those of M[crown ether] + is an effect of the different charges of the rings.

  4. Novel Ordered Crown Ether-Containing Polyimides for Ion Conduction

    NASA Technical Reports Server (NTRS)

    Irvin, Jennifer A.; Stasko, Daniel; Fallis, Stephen; Guenthner, Andrew J.; Webber, Cynthia; Blackwell, John; Chvalun, Sergei N.

    2003-01-01

    We report the synthesis and characterization of thermally-stable polyimides for use as battery and fuel cell electrolyte membranes. Dianhydrides used were 1,4,5,8- naphthalenetetracarboxylic dianhydride and/or 4,4'-(hexafluoroisopropylidene)diphthalic anhydride. Diamines used were anti-4,4-diaminodibenzo-l8-crown-6, 4,4'- diaminodibenzo-24-crown-8, 2,2-bis(4-aminophenyl)hexafluoropropane, and/or 2,5- diaminobenzenesulfonic acid. The polymers were characterized using electrochemical impedance spectroscopy (EIS), thermal analysis and X-ray diffraction. Polymers containing the hexafluoroisopropylidene (HFIP) group were soluble in common organic solvents, while polymers without the HFIP group were very poorly soluble. Sulfonation yields polymers that are sparingly soluble in aqueous base and/or methanol. Degree of sulfonation, determined by titration, was between one and three sulfonate groups per repeat unit. Proton conductivity was determined as a function of water content, with a maximum conductivity of l x 10(exp -2) per centimeter when fully hydrated. Crown ether-containing polymers exhibit a high degree of order that may be indicative of crown ether channel formation, which may facilitate Li(+) transport for use in battery membranes.

  5. Temperature-dependent IR spectroscopic and structural study of 18-crown-6 chelating ligand in the complexation with sodium surfactant salts and potassium picrate.

    PubMed

    Mihelj, Tea; Tomašić, Vlasta; Biliškov, Nikola; Liu, Feng

    2014-04-24

    18-crown-6 ether (18C6) complexes with the following anionic surfactants: sodium n-dodecylsulfate (18C6-NaDS), sodium 4-(1-pentylheptyl)benzenesulfonate (18C6-NaDBS); and potassium picrate (18C6-KP) were synthesized and studied in terms of their thermal and structural properties. Physico-chemical properties of new solid 1:1 coordination complexes were characterized by infrared (IR) spectroscopy, thermogravimetry and differential thermal analysis, differential scanning calorimetry, X-ray diffraction and microscopic observations. The strength of coordination between Na(+) and oxygen atoms of 18C6 ligand does not depend on anionic part of the surfactant, as established by thermodynamical parameters obtained by temperature-dependent IR spectroscopy. Each of these complexes exhibit different kinds of endothermic transitions in heating scan. Diffraction maxima obtained by SAXS and WAXS, refer the behavior of the compounds 18C6-NaDS and 18C6-NaDBS as smectic liquid crystalline. Distortion of 18C6-NaDS and 18C6-KP complexes occurs in two steps. Temperature of the decomplexation of solid crystal complex 18C6-KP is considerably higher than of mesophase complexes, 18C6-NaDS, and 18C6-NaDBS. The structural and liquid crystalline properties of novel 18-crown-ether complexes are function of anionic molecule geometry, type of chosen cation (Na(+), K(+)), as well as architecture of self-organized aggregates. A good combination of crown ether unit and amphiphile may provide a possibility for preparing new functionalized materials, opening the research field of ion complexation and of host-guest type behavior. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Inhibition of Fibrillar Assemblies of l-Phenylalanine by Crown Ethers: A Potential Approach toward Phenylketonuria.

    PubMed

    Banik, Debasis; Dutta, Rupam; Banerjee, Pavel; Kundu, Sangita; Sarkar, Nilmoni

    2016-08-11

    In this article, our aim is to investigate the interaction of l-phenylalanine (l-Phe) fibrils with crown ethers (CEs). For this purpose, two different CEs (15-Crown-5 (15C5) and 18-Crown-6 (18C6)) were used. Interestingly, we have observed that both CEs have the ability to arrest fibril formation. However, 18C6 was found to be a better candidate compared to 15C5. Field emission scanning electron microscopy and fluorescence lifetime imaging microscopy were used to monitor the fibril-arresting kinetics of CEs. The arresting process was further confirmed by fluorescence correlation spectroscopy and nuclear magnetic resonance studies.

  7. Coordination effect-regulated CO2 capture with an alkali metal onium salts/crown ether system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhen-Zhen; Jiang, Deen; Zhu, Xiang

    2014-01-01

    A coordination effect was employed to realize equimolar CO2 absorption, adopting easily synthesized amino group containing absorbents (alkali metal onium salts). The essence of our strategy was to increase the steric hindrance of cations so as to enhance a carbamic acid pathway for CO2 capture. Our easily synthesized alkali metal amino acid salts or phenolates were coordinated with crown ethers, in which highly sterically hindered cations were obtained through a strong coordination effect of crown ethers with alkali metal cations. For example, a CO2 capacity of 0.99 was attained by potassium prolinate/18-crown-6, being characterized by NMR, FT-IR, and quantum chemistrymore » calculations to go through a carbamic acid formation pathway. The captured CO2 can be stripped under very mild conditions (50 degrees C, N-2). Thus, this protocol offers an alternative for the development of technological innovation towards efficient and low energy processes for carbon capture and sequestration.« less

  8. Recent Advanced in Rare Earth Chemistry: IREC (International Rare Earth Conference) 85 Held at Zurich (Switzerland) on 4-8 Mar 85.

    DTIC Science & Technology

    1985-06-04

    compounds were employed since 1979. The polyfunc- studied using time-resolved spectro- tlonal ligands (L) included crown ethers scopy, and the...structure of rare earth * Aqueous complexes with cyclic poly - compounds (for example Cs3Ln2X9), was ethers crown ethers , Alstad, Univer- presented by A...Approved for public release; distribution unlimited U.S. Office of Naval Research, London ag - ’ 3 k) I 5.’ - ~1 I 9 ’<I. A -i I. 4. -A kA IS7 ASS

  9. Ion pair recognition by Zn-porphyrin/crown ether conjugates: visible sensing of sodium cyanide.

    PubMed

    Kim, Yeon-Hwan; Hong, Jong-In

    2002-03-07

    Synthesis and complexation behavior of ditopic neutral receptors composed of both a Lewis-acidic binding site (zinc porphyrin moiety) and a Lewis-basic binding site (crown ether moiety) are reported; the receptors bound only NaCN in a ditopic fashion with a color change, and in contrast other sodium salts bound to the receptors in a monotopic fashion without a color change.

  10. Secondary Li battery incorporating 12-Crown-4 ether

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan (Inventor); Distefano, Salvador (Inventor)

    1992-01-01

    A rechargeable lithium battery which utilizes a polyethylene oxide (PEO) solid polymeric electrolyte complexed with a lithium salt is disclosed. The conductivity is increased an order of magnitude and interfacial charge transfer resistance is substantially decreased by incorporating a minor amount of 12-Crown-4 ether in the PEO-lithium salt solid electrolyte film. Batteries containing the improved electrolyte permit operation at a lower temperature with improved efficiency.

  11. Room temperature rechargeable magnesium batteries with sulfur-containing composite cathodes prepared from elemental sulfur and bis(alkenyl) compound having a cyclic or linear ether unit

    NASA Astrophysics Data System (ADS)

    Itaoka, Kanae; Kim, In-Tae; Yamabuki, Kazuhiro; Yoshimoto, Nobuko; Tsutsumi, Hiromori

    2015-11-01

    Room temperature rechargeable magnesium (Mg) batteries are constructed from Mg as a negative material, sulfur (S)-containing composite prepared from elemental sulfur and the bis(alkenyl) compound having a crown ether unit (BUMB18C6) or linear ether unit (UOEE) as a positive material and the simple electrolyte (0.7 mol dm-3 Mg[N(SO2CF3)2]2-triglyme (G3) solution). The reaction between molten S and the bis(alkenyl) compound (BUMB18C6 or UOEE) provides the sulfur-containing composite, S-BUMB18C6 or S-UOEE. Both of the sulfur-containing composites are electrochemically active in the Mg salt-based electrolyte, acetonitrile- or G3- Mg[N(SO2CF3)2]2 electrolyte. The first discharge capacity of the test cells with the sulfur-containing composite is 460 Ah kg-1 (per the weight of sulfur in the composite) with the S-BUMB18C6 electrode and 495 Ah kg-1 with the S-UOEE electrode. According to the continuous charge-discharge cycle tests (at 10th cycle), the discharge capacity of the test cell with the S-BUMB18C6 electrode (68.1 Ah kg-1) is higher than that with the S-UOEE electrode (0.18 Ah kg-1). The crown ether units in the S-BUMB18C6 composite may create ion-conducting paths in the cathode, prevent rise in the internal resistance of the cathode, and provide better cycle performance of the test cells with the S-BUMB18C6 composite electrode than that with the S-UOEE electrode.

  12. Host-guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals

    NASA Astrophysics Data System (ADS)

    Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.

    2015-12-01

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.

  13. Ultrasound promoted N-alkylation of pyrrole using potassium superoxide as base in crown ether.

    PubMed

    Yim, E S; Park, M K; Han, B H

    1997-04-01

    Ultrasound accelerates the N-alkylation of pyrrole by alkylating reagents using potassium superoxide as base in the presence of 18-crown-6. A much lower yield of N-alkylated pyrrole was realized in the absence of ultrasound. N-alkylating reagents employed for pyrrole are methyl iodide, ethyl bromide, benzyl bromide, as well as acrylonitrile allyl cyanide and methyl acrylate. In an extension of this work, we have found that ultrasound was not necessary for the N-alkylation of indole and alkyl amine, such as diphenyl amine and piperidine with alkyl halides using our reagents. In all cases we observed that the 18-crown-6 catalyzed N-alkylation reaction gives higher yields of N-alkylated products than that without crown ether, when potassium superoxide was used as base. These observations are probably due to the potassium-crown complex which can be released when the reaction goes to completion.

  14. Synthesis, supramolecular behavior, and in vitro photodynamic activities of novel zinc(II) phthalocyanines "side-strapped" with crown ether bridges.

    PubMed

    Chen, Xing-Wei; Ke, Mei-Rong; Li, Xing-Shu; Lan, Wen-Liang; Zhang, Miao-Fen; Huang, Jian-Dong

    2013-12-01

    Two new tetra- or di-α-substituted zinc(II) phthalocyanines 5 and 6 have been prepared through a "side-strapped" method. In the molecules, the adjacent benzene rings of the phthalocyanine core are linked at α-position through a triethylene glycol bridge to form a hybrid aza-/oxa-crown ether. The tetra-α-substituted phthalocyanine 5 shows an eclipsed self-assembly property in CH2Cl2 and the effect on the di-α-substituted analogue 6 is significantly weakened. Furthermore, the crown ethers of these compounds can selectively complex with Fe(3+) or Cu(2+) ion in DMF, leading to formation of J-aggregated nano-assemblies, which can be disaggregated in the presence of some organic or inorganic ligands, such as triethylamine, tetramethylethylenediamine, CH3COO(-), or OH(-). In addition, both compounds are efficient singlet oxygen generators with the singlet oxygen quantum yields (Φ(Δ)) of 0.54-0.74 in DMF relative to unsubstituted zinc(II) phthalocyanine (Φ(Δ)=0.56). They exhibit photodynamic activities toward HepG2 human hepatocarcinoma cells, but the compound 6, which has more than 40-fold lower IC50 value (0.08 μM) compared to the analogue 5 (IC50=3.31 μM), shows remarkablely higher in vitro photocytotoxicity due to its significantly higher cellular uptake and singlet oxygen generation efficiency. The results suggest that these compounds can serve as promising multifunctional materials both in (opto)electronic field and photodynamic therapy. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Novel benzo-15-crown-5 sol-gel coating for solid-phase microextraction.

    PubMed

    Wang, Danhua; Xing, Jun; Peng, Jiagang; Wu, Caiying

    2003-07-11

    A novel dihydroxy-terminated benzo-15-crown-5 was synthesized and applied to prepare a solid-phase microextraction (SPME) fiber coating with sol-gel technology. The optimization of the sol-gel process was studied. The coating method with sol-gel was improved and completed in one run, which economized materials and allowed easier control of the fiber thickness. The repeatability of coating fiber to fiber was better than 4.94% (RSD). The surface of the fiber coating was well-distributed and an electron microscopy experiment suggested a porous structure for crown ether coating, providing high surface areas and allowing for high extraction efficiency. The coating has a high thermal stability (350 degrees C), long lifetime and can stand solvent (organic and inorganic) rinsing due to the chemical binding between the coating and the fiber surface. Non-polar benzene, toluene, ethylbenzene, xylenes, chlorobenzenes, polar phenolic compounds and arylamines were used to evaluate the character of the fiber coating by headspace SPME-gas chromatography technology. For phenols, the linear concentrations ranged from 5 to 1000 microg/l, the detection limits were between 0.05 and 1 microg/l, and the RSD was less than 5%. The addition of benzo-crown ether not only increases the thermal stability of the fiber coating, but also enhances the selectivity of the fiber coating. Compared with commercially available SPME fibers poly(dimethylsiloxane) and polyacrylate, the few phases showed better selectivity and sensitivity towards non-polar and polar aromatic compounds.

  16. Could LogP be a principal determinant of biological activity in 18-crown-6 ethers? Synthesis of biologically active adamantane-substituted diaza-crowns.

    PubMed

    Supek, Fran; Ramljak, Tatjana Šumanovac; Marjanović, Marko; Buljubašić, Maja; Kragol, Goran; Ilić, Nataša; Smuc, Tomislav; Zahradka, Davor; Mlinarić-Majerski, Kata; Kralj, Marijeta

    2011-08-01

    18-crown-6 ethers are known to exert their biological activity by transporting K(+) ions across cell membranes. Using non-linear Support Vector Machines regression, we searched for structural features that influence antiproliferative activity in a diverse set of 19 known oxa-, monoaza- and diaza-18-crown-6 ethers. Here, we show that the logP of the molecule is the most important molecular descriptor, among ∼1300 tested descriptors, in determining biological potency (R(2)(cv) = 0.704). The optimal logP was at 5.5 (Ghose-Crippen ALOGP estimate) while both higher and lower values were detrimental to biological potency. After controlling for logP, we found that the antiproliferative activity of the molecule was generally not affected by side chain length, molecular symmetry, or presence of side chain amide links. To validate this QSAR model, we synthesized six novel, highly lipophilic diaza-18-crown-6 derivatives with adamantane moieties attached to the side arms. These compounds have near-optimal logP values and consequently exhibit strong growth inhibition in various human cancer cell lines and a bacterial system. The bioactivities of different diaza-18-crown-6 analogs in Bacillus subtilis and cancer cells were correlated, suggesting conserved molecular features may be mediating the cytotoxic response. We conclude that relying primarily on the logP is a sensible strategy in preparing future 18-crown-6 analogs with optimized biological activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  17. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers.

    PubMed

    Du, H S; Wood, D J; Elshani, S; Wai, C M

    1993-02-01

    Thorium and the lanthanides are extracted by alpha-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed.

  18. Coordination trends in alkali metal crown ether uranyl halide complexes: the series [A(crown)]2[UO(2)X(4)] where A=Li, Na, K and X=Cl, Br.

    PubMed

    Danis, J A; Lin, M R; Scott, B L; Eichhorn, B W; Runde, W H

    2001-07-02

    UO(2)(C(2)H(3)O(2))(2).2H(2)O reacts with AX or A(C(2)H(3)O(2) or ClO(4)) (where A = Li, Na, K; X = Cl, Br) and crown ethers in HCl or HBr aqueous solutions to give the sandwich-type compounds [K(18-crown-6)](2)[UO(2)Cl(4)] (1), [K(18-crown-6)](2)[UO(2)Br(4)] (2), [Na(15-crown-5)](2)[UO(2)Cl(4)] (3), [Na(15-crown-5)](2)[UO(2)Br(4)] (4), [Li(12-crown-4)](2)[UO(2)Cl(4)] (5), and [Li(12-crown-4)](2)[UO(2)Br(4)] (6). The compounds have been characterized by single-crystal X-ray diffraction, powder diffraction, elemental analysis, IR, and Raman spectroscopy. The [UO(2)X(4)](2-) ions coordinate to two [A(crown)](+) cations through the four halides only (2), through two halides only (3), through the two uranyl oxygens and two halides (3, 4), or through the two uranyl oxygen atoms only (5, 6). Raman spectra reveal nu(U-O) values that correlate with expected trends. The structural trends are discussed within the context of classical principles of hard-soft acid-base theory.

  19. Electron spin resonance and proton matrix electron nuclear double resonance studies of N,N,N[prime],N[prime]-tetramethylbenzidine photoionization in sodium and lithium dodecyl sulfate micelles: Structural effects of crown ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManus, H.J.D.; Young Soo Kang; Kevan, L.

    1993-01-07

    The study of model membrane systems enjoys increasing attention within the area of solar energy research. An electron nuclear double resonance and electron spin resonance study of photogenerated N,N,N[prime],N[prime]-tetramethylbenzidine (TMB) cation in frozen suspensions of lithium (LDS) and sodium (SDS) dodecyl sulfate micelles containing various concentrations of cyclic polyethers was undertaken. The relative location of the TMB cation within the organic aggregate was determined from the proton matrix ENDOR line width at 142 K. A broader line width was observed in LDS compared to SDS micelles, which is due to the fact that the larger lithium cation opens the micellarmore » interface resulting in increased hydration and deeper solubilization of TMB. The proton matrix ENDOR line width decreased upon addition of crown ethers. This decrease may be explained by displacement of the TMB toward the interface as a result of the decrease in ionic strength caused by the complexation of the countercations. The photoyield shows a slight increase with addition of crown ethers. This increase is most likely caused by the increase in the effective anionic charge of the micelle effected by the complexation of the sodium or lithium ions by the crown ethers. This increase in the anionic charge mitigates the rate of thermal back electron transfer resulting in an increased photoyield. 54 refs., 6 figs., 2 tabs.« less

  20. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  1. Aza compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.Q.; McBreen, J.

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.

  2. Aza compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.

  3. Host-guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals.

    PubMed

    Bodnarchuk, Maryna I; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V

    2015-12-09

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 10(11) Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.

  4. Host–guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals

    PubMed Central

    Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.

    2015-01-01

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host–guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs. PMID:26647828

  5. The interaction between ketamine and some crown ethers in common organic solvents studied by NMR: The effect of donating atoms and ligand structure

    NASA Astrophysics Data System (ADS)

    Chekin, Fereshteh; Bordbar, Maryam; Fathollahi, Yaghoub; Alizadeh, Naader

    2006-02-01

    1H NMR spectroscopy was used to investigate the stoichiometry and stability of the drug ketamine cation complexes with some crown ethers, such as 15-crown-5 (15C5), aza-15-crown-5 (A15C5), 18-crown-6 (18C6), aza-18-crown-6 (A18C6), diaza-18-crown-6 (DA18C6), dibenzyl-diaza-18-crown-6 (DBzDA18C6) and cryptant [2,2,2] (C222) in acetonitrile (AN), dimethylsulfoxide (DMSO) and methanol (MeOH) at 27 °C. In order to evaluate the formation constants of the ketamine cation complexes, the CH 3 protons chemical shift (on the nitrogen atom of ketamine) was measured as function of ligand/ketamine mole ratio. The formation constant of resulting complexes were calculated by the computer fitting of chemical shift versus mole ratio data to appropriate equations. A significant chemical shift variation was not observed for 15C5 and 18C6. The stoichiometry of the mono aza and diaza ligands are 1:1 and 1:2 (ligand/ketamine), respectively. In all of the solvents studied, DA18C6 formed more stable complexes than other ligands. The solvent effect on the stability of these complexes is discussed.

  6. The influence of constitutional isomerism and change on molecular recognition processes.

    PubMed

    Williams, Avril R; Northrop, Brian H; Houk, Kendall N; Stoddart, J Fraser; Williams, David J

    2004-10-25

    Three constitutionally isomeric bis(naphthylmethyl)ammonium ions, in which the two naphthyl groups are substituted 1) both at their 1-positions, 2) one at its 1-position and the other at its 2-position, and 3) both at their 2-positions, have been investigated separately in solution for their propensities to undergo spontaneous self-assembly with three different [24]crown-8 derivatives, namely, pyrido[24]crown-8 (P24C8), dipyrido[24]crown-8 (DP24C8) and dibenzo[24]crown-8 (DB24C8), in turn to form [2]pseudorotaxanes. The strengths of the 1:1 complexes depend on the composition of the secondary dialkylammonium ions and on the nature of the crown ether hosts; generally, as far as the guest cation is concerned, the 1/1- and 2/2-isomers form stronger complexes, as indicated by stability constant measurements, than the 1/2-isomer and, as far as the crown ethers are concerned, the more flexible P24C8 is a much more efficient host than either DP24C8 or DB24C8. The rates of formation of the [2]pseudorotaxanes are fast (i.e., taking no more than a few minutes) in solution with the exception of one case, that is, in which the crown ether host is DB24C8 and the guest cation is the 1/1-isomer, when it can take upwards of one month for the complexation-decomplexation equilibrium to be established at room temperature. In all cases, the equilibrium between complexed and uncomplexed species is slow on the NMR timescale, allowing the determination of stability constants to be made readily using the single-point method. X-ray crystallography and molecular modeling have been used to gain insight into ground and transition state interactions, respectively, in some of the [2]pseudorotaxanes. The relative stabilities of the three [2]pseudorotaxanes formed by each guest cation in the presence of the three crown ether hosts were also evaluated in solution by competition experiments that were monitored by (1)H NMR spectroscopy. By and large the results of the competition experiments could be predicted on the basis of the derived stability constants for the individual [2]pseudorotaxanes.

  7. Anion receptor compounds for non-aqueous electrolytes

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Oing; McBreen, James

    2000-09-19

    A new family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

  8. Variational first hyperpolarizabilities of 2,3-naphtho-15-crown-5 ether derivatives with cation-complexing: a potential and selective cation detector.

    PubMed

    Yu, Hai-Ling; Wang, Wen-Yong; Hong, Bo; Zong, Ying; Si, Yan-Ling; Hu, Zhong-Qiang

    2016-09-29

    Crown ethers, as a kind of heterocycle, have been the subject of great interest over recent decades due to their selective capability to bind to metal cations. The use of a constant crown ether, such as naphtho-15-crown-5 (N15C5), and varied metal cations (Li + , Na + , K + , Be 2+ , Mg 2+ , Ca 2+ , Co 2+ , Ni 2+ , Cu 2+ ) makes it possible to determine the contributions of the metal cations to nonlinear optical (NLO) responses and to design an appropriate NLO-based cation detector. N15C5 and its metal cation derivatives have been systematically investigated by density functional theory. It is found that the dependency of the first hyperpolarizability relies on the metal cation, especially for transition metals. The decrease of the first hyperpolarizabilities for alkali metal cation derivatives is due to their relatively low oscillator strengths, whereas the significant increase of the first hyperpolarizabilities for transition metal cation derivatives can be further illustrated by their low transition energies, large amplitudes and separate distributions of first hyperpolarizability density. Thus, the alkali metal and transition metal cations are distinguishable and the transition metal cations are easier to detect by utilizing the variations in NLO responses.

  9. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-13

    A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

  10. Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: a comparative study.

    PubMed

    Song, Yang; Du, Yi; Lv, Dachao; Ye, Gang; Wang, Jianchen

    2014-06-15

    Separation of strontium is of great significance for radioactive waste treatment and environmental remediation after nuclear accidents. In this work, a novel class of adsorbent (Crown-g-MPPPs) was synthesized by chemical grafting a macrocyclic ether receptor to monodisperse porous polymer particles (MPPPs) for strontium adsorption. Meanwhile, a counterpart material (Crown@MPPPs) with the receptor molecules immobilized to the MPPPs substrate by physical impregnation was prepared. To investigate how the immobilization manner and distribution of the receptors influence the adsorption ability, a comparative study on the adsorption behaviour of the two materials towards Sr(II) in HNO3 media was accomplished. Due to the shorter diffusion path and covalently-bonded structure, Crown-g-MPPPs showed faster adsorption kinetics and better stability for cycle use. While Crown@MPPPs had the advantages of facile synthesis and higher adsorption capacity, owing to the absence of conformational constraint to form complexation with Sr(II). Kinetic functions (Lagergren pseudo-first-order/pseudo-second-order functions) and adsorption isotherm models (Langmuir/Freundlich models) were used to fit the experimental data and examine the adsorption mechanism. On this basis, a chromatographic process was proposed by using Crown@MPPPs for an effective separation of Sr(II) (91%) in simulated high level liquid waste (HLLW). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Alkali metal cation complexation by 1,3-alternate, mono-ionisable calix[4]arene-benzocrown-6 compounds

    DOE PAGES

    Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; ...

    2014-04-23

    Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable groupmore » are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.« less

  12. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOEpatents

    Abney, Kent D.; Kinkead, Scott A.; Mason, Caroline F. V.; Rais, Jiri

    1997-01-01

    Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  13. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOEpatents

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-09-09

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  14. Aqua complexes of 18—crown-6 with H 3PO 4, H 2TiF 6, and HNO 3: synthesis and vibrational spectra

    NASA Astrophysics Data System (ADS)

    Chénevert, R.; Rodrigue, A.; Chamberland, D.; Ouellet, J.; Savoie, R.

    1985-11-01

    Neutral-component complexes of 2:3:1 (acid:water:18-crown-6) stoichiometry have been obtained with H 3PO 4 and H 2TiF 6. These adducts have been studied by infrared and Raman spectroscopy, along with the corresponding (HNO 3-H 1O) 2-18-crown-6 complex, whose synthesis has already been reported. The spectra indicate that the crown ether has a highly regular conformation in these complexes. In those with H 3PO 4 and HNO 3, the binding of the acid molecule to the ether takes place through a H 2O linker, the strength of the XOH⋯OH 2 hydrogen bond being directly related to the p K a of the acid. With HNO 3, the acidic proton appears to be delocalized between the two oxygen atoms, giving a pseudo H 2O + ion whereas in the corresponding deuterocompound the D atom remains associated with the acid.

  15. Method for liquid chromatographic extraction of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  16. Supercritical fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth

    1994-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  17. Partial Molar Volumes of 15-Crown-5 Ether in Mixtures of N,N-Dimethylformamide with Water.

    PubMed

    Tyczyńska, Magdalena; Jóźwiak, Małgorzata

    2014-01-01

    The density of 15-crown-5 ether (15C5) solutions in the mixtures of N,N -dimethylformamide (DMF) and water (H 2 O) was measured within the temperature range 293.15-308.15 K using an Anton Paar oscillatory U-tube densimeter. The results were used to calculate the apparent molar volumes ( V Φ ) of 15C5 in the mixtures of DMF + H 2 O over the whole concentration range. Using the apparent molar volumes and Redlich and Mayer equation, the standard partial molar volumes of 15-crown-5 were calculated at infinite dilution ([Formula: see text]). The limiting apparent molar expansibilities ( α ) were also calculated. The data are discussed from the point of view of the effect of concentration changes on interactions in solution.

  18. Design, synthesis, characterization, and OFET properties of amphiphilic heteroleptic tris(phthalocyaninato) europium(III) complexes. The effect of crown ether hydrophilic substituents.

    PubMed

    Gao, Yingning; Ma, Pan; Chen, Yanli; Zhang, Ying; Bian, Yongzhong; Li, Xiyou; Jiang, Jianzhuang; Ma, Changqin

    2009-01-05

    Two amphiphilic heteroleptic tris(phthalocyaninato) europium complexes with hydrophilic crown ether heads and hydrophobic octyloxy tails [Pc(mCn)(4)]Eu[Pc(mCn)(4)]Eu[Pc(OC(8)H(17))(8)] [m = 12, n = 4, H(2)Pc(12C4)(4) = 2,3,9,10,16,17,23,24-tetrakis(12-crown-4)phthalocyanine; m = 18, n = 6, H(2)Pc(18C6)(4) = 2,3,9,10,16,17,23,24-tetrakis(18-crown-6)phthalocyanine; H(2)Pc(OC(8)H(17))(8) = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine] (1, 2) were designed and prepared from the reaction between homoleptic bis(phthalocyaninato) europium compound [Pc(mCn)(4)]Eu[Pc(mCn)(4)] (m = 12, n = 4; m = 18, n = 6) and metal-free H(2)Pc(OC(8)H(17))(8) in the presence of Eu(acac)(3).H(2)O (Hacac = acetylacetone) in boiling 1,2,4-trichlorobenzene. These novel sandwich triple-decker complexes were characterized by a wide range of spectroscopic methods and electrochemically studied. With the help of the Langmuir-Blodgett technique, these typical amphiphilic triple-decker complexes were fabricated into organic field effect transistors (OFET) with top contact configuration on bare SiO(2)/Si substrate, hexamethyldisilazane-treated SiO(2)/Si substrate, and octadecyltrichlorosilane (OTS)-treated SiO(2)/Si substrate, respectively. The device performance is revealed to be dependent on the species of crown ether substituents and substrate surface treatment. OFETs fabricated from the triple decker with 12-crown-4 hydrophilic substituents, 1, allow the hole transfer in the direction parallel to the aromatic phthalocyanine rings. In contrast, the devices of a triple-decker compound containing 18-crown-6 as hydrophilic heads, 2, transfer holes in a direction along the long axis of the assembly composed of face-to-face aggregated triple-decker molecules, revealing the effect of molecular structure, specifically the crown ether substituents on the film structure and OFET functional properties. The carrier mobility for hole as high as 0.33 cm(2) V(-1) s(-1) and current modulation of 7.91 x 10(5) were reached for the devices of triple-decker compound 1 deposited on the OTS-treated SiO(2)/Si substrates, indicating the effect of substrate surface treatment on the OFET performance due to the improvement on the film quality as demonstrated by the atomic force microscope investigation results.

  19. Complexation of molecular clips containing fragments of diphenylglycoluril and benzocrown ethers with paraquat and its derivatives

    PubMed Central

    Kikot', Leonid S; Kulygina, Catherine Yu; Lyapunov, Alexander Yu; Shishkina, Svetlana V; Zubatyuk, Roman I; Bogaschenko, Tatiana Yu

    2017-01-01

    The complexation of molecular clips containing fragments of diphenylglycoluril and benzocrown ethers with paraquat and its derivatives has been studied both in solution and in the solid state. In this paper we studied the influence of the crown ether ring size and the nature of the substituents at the nitrogen atoms of the paraquat derivatives on the composition and stability of these complexes. PMID:29062427

  20. 12-crown-4 ether-assisted enhancement of ionic conductivity and interfacial kinetics in polyethylene oxide electrolytes

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Di Stefano, S.

    1990-01-01

    The electrical and electrochemical properties of thin films of polyethylene oxide electrolytes with and without 12-crown-4 ether (12Cr4) are studied as a function of temperature and in the frequency regime from 100 kHz to 0.1 Hz. These measurements were made on electrolytes containing LiCF3SO3, LiBF4, or LiClO4 salts. At a given temperature, the bulk conductivity for a particular salt depends on the 12Cr4 concentration, reaching a maximum for a ratio of 12Cr4 to Li of 0.003.

  1. Characterization of the homologs of flerovium with crown ether based extraction chromatography resins: studies in nitric acid

    DOE PAGES

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; ...

    2016-09-17

    Eichrom’s Pb resin, a crown-ether-based extraction chromatography resin, was characterized for separation of the flerovium (Fl) homologs, Pb and Sn. Batch uptake of Pb(II) and Sn(IV) radionuclides was determined from an HNO 3 matrix. Pb(II) was strongly retained on the resin at all HNO 3 concentrations, while Sn(IV) showed no uptake. Extraction kinetics for Pb(II) were examined and show suitable uptake on the second time scale. Here, separation methods for the isolation of individual homologs, Pb(II) and Sn(IV), have been established using 2 mL pre-packed vacuum flow Pb resin columns.

  2. Crystal structures of dioxonium hexafluorotantalate and dioxonium hexafluoroniobate complexes with tetrabenzo-30-crown-10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furmanova, N. G., E-mail: furm@ns.crys.ras.ru; Rabadanov, M. Kh.; Chernaya, T. S.

    2008-03-15

    Two isostructural complexes of dioxonium [H{sub 5}O{sub 2}]{sup +} with tetrabenzo-30-crown-10 of the compositions [(tetrabenzo-30-crown-10 . H{sub 5}O{sub 2})][TaF{sub 6}] (I) and [(tetrabenzo-30-crown-10 . H{sub 5}O{sub 2})][NbF{sub 6}] (II) are studied using X-ray diffraction. The complexes crystallize in the monoclinic crystal system (space group C2/c, Z = 4). The unit cell parameters of these compounds are as follows: a = 15.6583(12) A, b = 15.2259(13) A, c = 16.4473(13) A, and {beta} = 99.398(6) deg. for complex I and a = 15.7117(12) A, b = 15.2785(15) A, c = 16.5247(15) A, and {beta} = 99.398(7) deg. for complex II. Thesemore » complexes belong to the ionic type. The dioxonium cation [H{sub 5}O{sub 2}]{sup +} in the form of the two-unit cluster [H{sub 3}O . H{sub 2}O]{sup +} is stabilized by the strong hydrogen bond OH-O [O-O, 2.353(4) A] and encapsulated by the crown ether. Each oxygen atom of the dioxonium cation also forms two oxygen bonds O-O(crown). The crown ether adopts an unusual two-level (pocket-like) conformation, which provides a complete encapsulation of the oxonium associate. The interaction of the cationic complex with the anion in the crystal occurs through contacts of the C-H-F type.« less

  3. Crystal structures of dioxonium hexafluorotantalate and dioxonium hexafluoroniobate complexes with tetrabenzo-30-crown-10

    NASA Astrophysics Data System (ADS)

    Furmanova, N. G.; Rabadanov, M. Kh.; Chernaya, T. S.; Fonari, M. S.; Simonov, Yu. A.; Ganin, É. V.; Gelmboldt, V. O.; Grigorash, R. Ya.; Kotlyar, S. A.; Kamalov, G. L.

    2008-03-01

    Two isostructural complexes of dioxonium [H5O2]+ with tetrabenzo-30-crown-10 of the compositions [(tetrabenzo-30-crown-10 · H5O2)][TaF6] ( I) and [(tetrabenzo-30-crown-10 · H5O2)][NbF6] ( II) are studied using X-ray diffraction. The complexes crystallize in the monoclinic crystal system (space group C2/ c, Z = 4). The unit cell parameters of these compounds are as follows: a = 15.6583(12) Å, b = 15.2259(13) Å, c = 16.4473(13) Å, and β = 99.398(6)° for complex I and a = 15.7117(12) Å, b = 15.2785(15) Å, c = 16.5247(15) Å, and β = 99.398(7)° for complex II. These complexes belong to the ionic type. The dioxonium cation [H5O2]+ in the form of the two-unit cluster [H3O · H2O]+ is stabilized by the strong hydrogen bond OH⋯O [O⋯O, 2.353(4) Å] and encapsulated by the crown ether. Each oxygen atom of the dioxonium cation also forms two oxygen bonds O⋯O(crown). The crown ether adopts an unusual two-level (pocket-like) conformation, which provides a complete encapsulation of the oxonium associate. The interaction of the cationic complex with the anion in the crystal occurs through contacts of the C-H⋯F type.

  4. New polymers for phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1981-01-01

    The synthesizing of several polyethylene glycols having crown ethers attached is reported. This work led to the identification of three new polymer types which promise to be more effective at selectively binding specific cell types. Work was completed on identification of chemical properties of the new polymer crowns and on development of new techniques for determination of polymer-phase composition.

  5. Vibrational Signatures of Large Amplitude Motions for the Shackled Hydronium Ion Nested in 18-CROWN-6 Ether Using D2 Tagging

    NASA Astrophysics Data System (ADS)

    Duong, Chinh H.; Menges, Fabian; Craig, Stephanie; Wolke, Conrad T.; Johnson, Mark

    2016-06-01

    The diffuse spectra arising from the excess proton in dilute acids suggests that its behavior is highly dependent on the local environment surrounding it. In this work, we report how the spectra of the H3O+, NH4+, and CH3NH3+ ions respond when docked to the rigid, tri-coordinated binding pocket of the 18-crown-6 ether using cryogenic ion vibrational predissociation (CIVP) spectroscopy with D2 tagging at 10 K. The H3O+{tiny^bullet}18-crown-6 ether complex displays a broad (350 cm-1 FWHM) unstructured band arising from the OH stretching fundamentals, which is significantly broader than the corresponding band (125 cm-1 FWHM) in the Eigen cation (H9O4+) spectrum. Perdeuterated isotopologue studies for both systems yield sharper bands with clear multiplet structures, indicating that the broadening arises from nuclear quantum effects. The key displacements underlying this coupling were explored using the vibrationally adiabatic scheme introduced by McCoy in the context of similar broadening in the Ca2+OH-(H2O)n system. Christopher J. Johnson, Laura C. Dzugan, Arron B. Wolk, Christopher M. Leavitt, Joseph A. Fournier, Anne B. McCoy, Mark A. Johnson, J. Phys. Chem. A 118, 2014.

  6. Small-angle neutron scattering study of specific interaction and coordination structure formed by mono-acetyl-substituted dibenzo-20-crown-6-ether and cesium ions

    DOE PAGES

    Motokawa, Ryuhei; Kobayashi, Tohru; Endo, Hitoshi; ...

    2015-10-26

    This study uses small-angle neutron scattering (SANS) to elucidate the coordination structure of the complex of mono-acetyl-substituted dibenzo-20-crown-6-ether (ace-DB20C6) with cesium ions (Cs +). SANS profiles obtained for the complex of ace-DB20C6 and Cs + (ace-DB20C6/Cs) in deuterated dimethyl sulfoxide indicated that Cs + coordination resulted in a more compact structure than the free ace-DB20C6. The data were fitted well with SANS profiles calculated using Debye function for scattering on an absolute scattering intensity scale. For this theoretical calculation of the scattering profiles, the coordination structure proposed based on density functional theory calculation was used. Furthermore, we conclude that themore » SANS analysis experimentally supports the proposed coordination structure of ace-DB20C6/Cs and suggests the following: (1) the complex of ace-DB20C6 and Cs + is formed with an ace-DB20C6/Cs molar ratio of 1/1 and (2) the two benzene rings of ace-DB20C6 fold around Cs + above the center of the crown ether ring of ace-DB20C6.« less

  7. Small-angle neutron scattering study of specific interaction and coordination structure formed by mono-acetyl-substituted dibenzo-20-crown-6-ether and cesium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motokawa, Ryuhei; Kobayashi, Tohru; Endo, Hitoshi

    This study uses small-angle neutron scattering (SANS) to elucidate the coordination structure of the complex of mono-acetyl-substituted dibenzo-20-crown-6-ether (ace-DB20C6) with cesium ions (Cs +). SANS profiles obtained for the complex of ace-DB20C6 and Cs + (ace-DB20C6/Cs) in deuterated dimethyl sulfoxide indicated that Cs + coordination resulted in a more compact structure than the free ace-DB20C6. The data were fitted well with SANS profiles calculated using Debye function for scattering on an absolute scattering intensity scale. For this theoretical calculation of the scattering profiles, the coordination structure proposed based on density functional theory calculation was used. Furthermore, we conclude that themore » SANS analysis experimentally supports the proposed coordination structure of ace-DB20C6/Cs and suggests the following: (1) the complex of ace-DB20C6 and Cs + is formed with an ace-DB20C6/Cs molar ratio of 1/1 and (2) the two benzene rings of ace-DB20C6 fold around Cs + above the center of the crown ether ring of ace-DB20C6.« less

  8. Mass dependence of calcium isotope fractionations in crown-ether resin chromatography.

    PubMed

    Fujii, Yasuhiko; Nomura, Masao; Kaneshiki, Tositaka; Sakuma, Yoichi; Suzuki, Tatsuya; Umehara, Saori; Kishimoto, Tadahumi

    2010-06-01

    Benzo 18-crown-6-ether resin was synthesised by the phenol condensation polymerisation process in porous silica beads, of which particle diameter was ca 60micro Calcium adsorption chromatography was performed with the synthesised resin packed in a glass column. The effluent was sampled in fractions, and the isotopic abundance ratios of (42)Ca, (43)Ca, (44)Ca, and (48)Ca against (40)Ca were measured by a thermo-ionisation mass spectrometer. The enrichment of heavier calcium isotopes was observed at the front boundary of calcium adsorption chromatogram. The mass dependence of mutual separation of calcium isotopes was analysed by using the three-isotope-plots method. The slopes of three-isotope-plots indicate the relative values of mutual separation coefficients for concerned isotopic pairs. The results have shown the normal mass dependence; isotope fractionation is proportional to the reduced mass difference, (M - M')/MM', where M and M' are masses of heavy and light isotope, respectively. The mass dependence clarifies that the isotope fractionations are originated from molecular vibration. The observed separation coefficient epsilon is 3.1x10(-3) for the pair of (40)Ca and (48)Ca. Productivity of enriched (48)Ca by crown-ether-resin was discussed as the function of the separation coefficient and the height equivalent to the theoretical plate.

  9. 4-Fluoro-anilinium tetra-chloridoferrate(III) 18-crown-6 clathrate.

    PubMed

    Ge, Jia-Zhen; Zhao, Min-Min

    2010-06-05

    The reaction of 4-fluoro-aniline hydro-chloride, 18-crown-6 and ferric chloride in methano-lic solution yields the title compound, (C(6)H(7)FN)[FeCl(4)]·C(12)H(24)O(6), which has an unusual supramolecular structure. N-H⋯O hydrogen-bonding inter-actions between the NH(3) (+) substituents of the 4-fluoro-anilinium cations and the O atoms of the crown ether mol-ecules result in a rotator-stator-like structure.

  10. On the radiation stability of crown ethers in ionic liquids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkrob, I.; Marin, T.; Dietz, M.

    2011-04-14

    Crown ethers (CEs) are macrocyclic ionophores used for the separation of strontium-90 from acidic nuclear waste streams. Room temperature ionic liquids (ILs) are presently being considered as replacements for traditional molecular solvents employed in such separations. It is desirable that the extraction efficacy obtained with such solvents should not deteriorate in the strong radiation fields generated by decaying radionuclides. This deterioration will depend on the extent of radiation damage to both the IL solvent and the CE solute. While radiation damage to ILs has been extensively studied, the issue of the radiation stability of crown ethers, particularly in an ILmore » matrix, has not been adequately addressed. With this in mind, we have employed electron paramagnetic resonance (EPR) spectroscopy to study the formation of CE-related radicals in the radiolysis of selected CEs in ILs incorporating aromatic (imidazolium and pyridinium) cations. The crown ethers have been found to yield primarily hydrogen loss radicals, H atoms, and the formyl radical. In the low-dose regime, the relative yield of these radicals increases linearly with the mole fraction of the solute, suggesting negligible transfer of the excitation energy from the solvent to the solute; that is, the solvent has a 'radioprotective' effect. The damage to the CE in the loading region of practical interest is relatively low. Under such conditions, the main chemical pathway leading to decreased extraction performance is protonation of the macrocycle. At high radiation doses, sufficient to increase the acidity of the IL solvent significantly, such proton complexes compete with the solvent cations as electron traps. In this regime, the CEs will rapidly degrade as the result of H abstraction from the CE ring by the released H atoms. Thus, the radiation dose to which a CE/IL system is exposed must be maintained at a level sufficiently low to avoid this regime.« less

  11. Octoxy capped Si nanoparticles synthesized by homogeneous reduction of SiCl4 with crown ether alkalide.

    PubMed

    Sletnes, M; Maria, J; Grande, T; Lindgren, M; Einarsrud, M-A

    2014-02-07

    Blue-green luminescent octoxy capped Si nanoparticles were synthesized via homogeneous reduction of SiCl4 with the crown ether alkalide K(+)(15-crown-5)2K(-) in tetrahydrofuran. The Si nanoparticles were characterized with respect to size, crystal structure, morphology, surface termination, optical properties and stability. Si diamond structure nanoparticles with narrow size distributions, and average diameters ranging from 3 to 7 nm were obtained. A finite-size effect on the lattice dimensions was observed, in the form of an expansion of the [220] lattice planes of smaller Si nanoparticles. The concentration of SiCl4 was found to be the most important parameter governing the particle size and size distribution. The octoxy capped particles were stable under an ambient atmosphere for at least one month, but exposure to water made them prone to oxidation. An average radiative recombination lifetime of 8.8 ns was measured for the blue-green luminescence. The luminescence appears to originate from surface defects, rather than from quantum confinement.

  12. 4-Fluoro­anilinium tetra­chloridoferrate(III) 18-crown-6 clathrate

    PubMed Central

    Ge, Jia-Zhen; Zhao, Min-Min

    2010-01-01

    The reaction of 4-fluoro­aniline hydro­chloride, 18-crown-6 and ferric chloride in methano­lic solution yields the title compound, (C6H7FN)[FeCl4]·C12H24O6, which has an unusual supramolecular structure. N—H⋯O hydrogen-bonding inter­actions between the NH3 + substituents of the 4-fluoro­anilinium cations and the O atoms of the crown ether mol­ecules result in a rotator–stator-like structure. PMID:21587679

  13. Crystal structures of dioxonium hexafluorotantalate and dioxonium hexafluoroniobate complexes with tetrabenzo-30-crown-10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furmanova, N. G., E-mail: furm@ns.crys.ras.ru; Rabadanov, M. Kh.; Chernaya, T. S.

    2008-03-15

    Two isostructural complexes of dioxonium [H{sub 5}O{sub 2}]{sup +} with tetrabenzo-30-crown-10 of the compositions [(tetrabenzo-30-crown-10 {center_dot} H{sub 5}O{sub 2})][TaF{sub 6}] (I) and [(tetrabenzo-30-crown-10 {center_dot} H{sub 5}O{sub 2})][NbF{sub 6}] (II) are studied using X-ray diffraction. The complexes crystallize in the monoclinic crystal system (space group C2/c, Z = 4). The unit cell parameters of these compounds are as follows: a = 15.6583(12) Angstrom-Sign , b = 15.2259(13) Angstrom-Sign , c = 16.4473(13) Angstrom-Sign , and {beta} = 99.398(6) Degree-Sign for complex I and a = 15.7117(12) Angstrom-Sign , b = 15.2785(15) Angstrom-Sign , c = 16.5247(15) Angstrom-Sign , and {beta} =more » 99.398(7) Degree-Sign for complex II. These complexes belong to the ionic type. The dioxonium cation [H{sub 5}O{sub 2}]{sup +} in the form of the two-unit cluster [H{sub 3}O {center_dot} H{sub 2}O]{sup +} is stabilized by the strong hydrogen bond OH Midline-Horizontal-Ellipsis O [O Midline-Horizontal-Ellipsis O, 2.353(4) Angstrom-Sign ] and encapsulated by the crown ether. Each oxygen atom of the dioxonium cation also forms two oxygen bonds O Midline-Horizontal-Ellipsis O(crown). The crown ether adopts an unusual two-level (pocket-like) conformation, which provides a complete encapsulation of the oxonium associate. The interaction of the cationic complex with the anion in the crystal occurs through contacts of the C-H Midline-Horizontal-Ellipsis F type.« less

  14. Novel crown-ether-methylenediphosphonotetrathioate hybrids as Zn(II) chelators.

    PubMed

    Meltzer, Diana; Gottlieb, Hugo E; Amir, Aviran; Shimon, Linda J W; Fischer, Bilha

    2015-12-28

    Hybrids of methylenediphosphonotetrathioate and crown-ether (MDPT-CE) were synthesized forming 7-,8-,9-,10- and 13-membered rings. Both 7- and 13-membered ring-containing compounds were found to be highly stable to air-oxidation for at least four weeks. These hybrids bind Zn(II) by both MDPT and CE moieties, forming a 2 : 1 L : Zn(II) complex. Interestingly, the 13-membered ring MDPT-CE showing a high affinity to Zn(II) (Ka 3 ± 0.5 × 10(6) mol(-2) L(2)) does not bind Li(I) or Na(I). The 13-Membered MDPT-CE hybrid is a promising water-soluble, air-stable, high-affinity Zn(II)-chelator, exhibiting selectivity to Zn(II) vs. Mg(II), Na(I), and Li(I).

  15. Influence of the composition of aqueous dimethylsulfoxide solvent on thermodynamics of complexing between 18-crown-6-ether and D,L-alanine

    NASA Astrophysics Data System (ADS)

    Usacheva, T. R.; Kuzmina, I. A.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.

    2012-07-01

    Standard thermodynamic parameters (log K o, Δr H o, TΔr S o) of complexing 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-dimethysulfoxide (H2O-DMSO) solvents are calculated on the basis of calorimetric titration results. A rise in the DMSO concentration in mixed solvent is found to increase stability and increase the exothermicity of the formation of [Ala-18C6] molecular complex. Changes in the reaction energetic are shown to be determined by changes in the solvation state of 18C6 that is the characteristic of the reactions of molecular complex formation between 18C6 and D,L-alanine or glycine in water-organic solvents.

  16. The influence of water-ethanol mixture on the thermodynamics of complex formation between 18-crown-6 ether and L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Usacheva, T. R.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.; Terekhova, I. V.; Kumeev, R. S.

    2012-08-01

    The influence of water-ethanol mixture composition on the complex formation between 18-crown-6 ether and L-phenylalanine was studied by titration calorimetry at Т = 298.15 K. The standard thermodynamic parameters (ΔrGо, ΔrHо, ТΔrSо) of formation of [Phe18C6] molecular complex were calculated from data obtained by means of the microcalorimetric system TAM III (TA Instruments, USA) at X(EtOH) = 0.0/0.6 mol fraction. The stability of [Phe18C6] and the mechanism of complexation in water were investigated using the 1Н and 13С NMR spectroscopy. The increase of EtOH concentration results in an increase of the complex stability and of the exothermicity of complexation.

  17. Fast Potentiometric Analysis of Lead in Aqueous Medium under Competitive Conditions Using an Acridono-Crown Ether Neutral Ionophore.

    PubMed

    Golcs, Ádám; Horváth, Viola; Huszthy, Péter; Tóth, Tünde

    2018-05-03

    Lead is a particularly toxic heavy metal that is present above acceptable levels in the water of many countries. This article describes a quick detection method of lead(II) ions using a polyvinyl chloride (PVC)-based ion-selective membrane electrode containing an acridono-crown ether ionophore by potentiometry. The electrochemical cell exhibits a Nernstian response for lead(II) ions between the concentration range of 10 −4 to 10 −2 M, and can be used in the pH range of 4⁻7. The applicability of this sensor was verified by measuring a multicomponent aqueous sample. Under the given conditions, this electrode is suitable for the selective quantitative analysis of lead(II) ions in the presence of many additional metal ions.

  18. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent.

    PubMed

    Awual, Md Rabiul; Yaita, Tsuyoshi; Taguchi, Tomitsugu; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro

    2014-08-15

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs-π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Complexation of imidazopyridine-based cations with a 24-crown-8 ether host: [2]pseudorotaxane and partially threaded structures.

    PubMed

    Moreno-Olivares, Surisadai I; Cervantes, Ruy; Tiburcio, Jorge

    2013-11-01

    A new series of linear molecules derived from 1,2-bis(imidazopyridin-2-yl)ethane can fully or partially penetrate the cavity of the dibenzo-24-crown-8 macrocycle to produce a new family of host-guest complexes. Protonation or alkylation of the nitrogen atoms on the pyridine rings led to an increase in the guest total positive charge up to 4+ and simultaneously generated two new recognition sites (pyridinium motifs) that are in competition with the 1,2-bis(benzimidazole)ethane motif for the crown ether. The relative position of the pyridine ring and the chemical nature of the N-substituent determined the preferred motif and the host-guest complex geometry: (i) for linear guests with relatively bulky groups (i.e., a benzyl substituent), the 1,2-bis(benzimidazole)ethane motif is favored, leading to a fully threaded complex with a [2]pseudorotaxane geometry; (ii) for small substituents, such as -H and -CH3 groups, regardless of the guest shape, the pyridinium motifs are preferred, leading to external partially threaded complexes in a 2:1 host to guest stoichiometry.

  20. Synthesis, characterization, and sol-gel entrapment of a crown ether-styryl fluoroionophore

    PubMed Central

    Sui, Zhijie; Hanan, Nathan J.; Phimphivong, Sam; Wysocki, Ronald J.; Saavedra, S. Scott

    2011-01-01

    The synthesis and initial evaluation of a new dye-functionalized crown-ether, 2-[2-(2,3,5,6,8,9,11,12,14,15-decahydro-1,4,7,10.13.16-benzohexaoxacyclooctadecin)ethenyl]-3-methyl benzothiazolium iodide (denoted BSD), is reported. This molecule contains a benzyl 18-crown-6 moiety as the ionophore and a benzothiazolium to spectrally transduce ion binding. Binding of K+ to BSD in methanol causes shifts in the both absorbance and fluorescence emission maxima, as well as changes in the molar absorptivity and the emission intensity. Apparent dissociation constants (Kd) in the range of 30 – 65 μM were measured. In water and neutral buffer, Kd values were approximately 1 mM. BSD was entrapped in sol-gel films composed of methyltriethoxysilane (MTES) and tetraethylorthosilicate (TEOS) with retention of its spectral properties and minimal leaching. K+ binding to BSD in sol-gels films immersed in pH 7.4 buffer causes significant fluorescence quenching, with an apparent response time of approximately 2 min and an apparent Kd of 1.5 mM. PMID:19253273

  1. Homopolyrotaxanes and Homopolyrotaxane Networks of PEO

    NASA Technical Reports Server (NTRS)

    Pugh, Coleen; Mattice, Wayne

    2005-01-01

    In order to identify the optimum size of macrocrown ether for threading, we first investigated the size and shape of simple crown ethers in the melt at 373 K, and their extent of threading with PEO in the melt using coarse-grained Monte Carlo simulations on the 2nnd (second nearest neighbor diamond) lattice, which is a high coordination lattice whose coarse-grained chains can be reverse mapped into fully atomistic models in continuous space.

  2. Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions.

    PubMed

    Song, Yingying; Cheng, Chen; Jing, Huanwang

    2014-09-26

    Aza-crown ether complex cation ionic liquids (aCECILs) were devised, fabricated, and characterized by using NMR spectroscopy, MS, thermogravimetric differential thermal analysis (TG-DTA), elemental analysis and physical properties. These new and room-temperature ILs were utilized as catalysts in various organic reactions, such as the cycloaddition reaction of CO2 to epoxides, esterification of acetic acid and alcohols, the condensation reaction of aniline and propylene carbonate, and Friedel-Crafts alkylation of indole with aldehydes were investigated carefully. In these reactions, the ionic liquid exhibited cooperative catalytic activity between the anion and cation. In addition, the aza-[18-C-6HK][HSO4]2 was the best acidic catalyst in the reactions of esterification and Friedel-Crafts alkylation under mild reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparison of classic and microwave-assisted synthesis of benzo-thio crown ethers, and investigation of their ion pair extractions

    NASA Astrophysics Data System (ADS)

    Calisir, Umit; Çiçek, Baki

    2017-11-01

    Macrocyclic benzo-thio crown ethers and benzo-oxo crown ethers were prepared using an esterification-ring closing method. These compounds were synthesised using 2,2‧-dithiodibenzoyl chloride, and various glycols and dithiols, in the presence of pyridine base under a nitrogen atmosphere in chloroform. All reactions were performed under reflux condition with conventional heating and microwave (MW) irradiation. The synthesised macrocycles were characterised by FT-IR, 1H NMR, 13C NMR, LC-MS, and elemental analysis methods. Extraction studies have been performed on these original macrocycles using liquid-liquid ion-pair extraction with Li+, Na+, K+, Ni2+, Ca2+, Mg2+, Zn2+, Fe2+,Fe3+, Co3+, Pb2+, Cr3+, Ag+, and Cd2+.The KD, ext.%, ΔG and log KExt values were also calculated. While (U1-U7) ligands exhibits selectivity for Zn2+, Ag+, Ca2+, Pb2+, Fe3+, Cr3+, Co2+, Mg2+, Cd2+, and Ni2+ metal salts, they showed no selectivity for Li+, K+ and Na+ metal salts. Furthermore, Fe3+is the most selective cation for all ligands for competitive extraction. We also observed that microwave heating can have certain benefits over conventional ovens: reaction rate acceleration, milder reaction conditions, higher chemical yield, and lower energy usage. These ligands could be used as metal sensors, enzyme inhibitors, antimicrobial/antifungal agents, and in biological applications.

  4. Crystalline smectic E phase revisited in case of symmetrical dibenzo-18-crown-6-ether azomethine dimers

    NASA Astrophysics Data System (ADS)

    Cozan, Vasile; Ardeleanu, Rodinel; Airinei, Anton; Timpu, Daniel

    2018-03-01

    Three symmetric azomethine dimers having dibenzo-18-crown-6-ether as internal moiety and halogens (F, Cl, Br) as terminal functional groups were synthesized and characterized by FTIR and 1H NMR spectroscopy. Their thermal behavior was investigated by polarized optical microscopy (POM) and DSC techniques. Interesting textures have been observed at cooling by POM as being representative for a soft crystalline smectic phase. X-ray diffraction measurements in powder at room temperature exhibited a map of reflections corresponding to crystal E phase. The influence of molecular parameters (interdigitation parameter γ, dipole moment, molecular polarizability, halogen radius) on thermal behavior was discussed. The UV-Vis investigations allowed evaluation of photostability and a bathochromic effect was noticed with the increasing of halogen atom radius. Also the values of optical band gap (Eg) are higher than those corresponding to conjugated Schiff bases.

  5. Li+-Permeable Film on Lithium Anode for Lithium Sulfur Battery.

    PubMed

    Yang, Yan-Bo; Liu, Yun-Xia; Song, Zhiping; Zhou, Yun-Hong; Zhan, Hui

    2017-11-08

    Lithium-sulfur (Li-S) battery is an important candidate for next-generation energy storage. However, the reaction between polysulfide and lithium (Li) anode brings poor cycling stability, low Coulombic efficiency, and Li corrosion. Herein, we report a Li protection technology. Li metal was treated in crown ether containing electrolyte, and thus, treated Li was further used as the anode in Li-S cell. Due to the coordination between Li + and crown ether, a Li + -permeable film can be formed on Li, and the film is proved to be able to block the detrimental reaction between Li anode and polysulfide. By using the Li anode pretreated in 2 wt % B15C5-containing electrolyte, Li-S cell exhibits significantly improved cycling stability, such as∼900 mAh g -1 after 100 cycles, and high Coulombic efficiency of>93%. In addition, such effect is also notable when high S loading condition is applied.

  6. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  7. Proton Conduction in Tröger's Base Linked Poly(crown ether)s.

    PubMed

    Patel, Hasmukh A; Selberg, John; Salah, Dhafer; Chen, Haoyuan; Liao, Yijun; Nalluri, Siva Krishna Mohan; Farha, Omar K; Snurr, Randall Q; Rolandi, Marco; Stoddart, J Fraser

    2018-06-05

    Exactly 50 years ago, the ground-breaking discovery of dibenzo[18]crown-6 (DB18C6) by Charles Pedersen, led to the use of DB18C6 as a receptor in supramolecular chemistry and a host in host‒guest chemistry. We have demonstrated proton conductivity in Tröger's base-linked polymers through hydrogen-bonded networks formed from adsorbed water molecules on the oxygen atoms of DB18C6 under humid conditions. Tröger's base-linked polymers - poly(TBL‒DB18C6)-t and poly(TBL‒DB18C6)-c - synthesized by the in situ alkylation and cyclization of either trans- or cis-di(aminobenzo) [18]crown-6 at room temperature have been isolated as high molecular weight polymers. The macromolecular structures of the isomeric poly(TBL‒DB18C6)s have been established by spectroscopic techniques and size-exclusion chromatography. The excellent solubility of these polymers in chloroform allows the formation of free-standing membranes which are thermally stable and also show stability under aqueous conditions. The hydrophilic nature of the DB18C6 building blocks in the polymer facilitates retention of the water as confirmed by water-vapor adsorption isotherms which show a 23 wt% water uptake. The adsorbed water is retained even after reducing the relative humidity to 25 %. The proton conductivity of poly(TBL‒DB18C6)-t which is found to be 1.4 x 10‒4 mS cm‒1 in a humid environment, arises from the hydrogen bonding and the associated proton hopping mechanism, as supported by a modeling study. In addition to proton conductivity, the Tröger's base-linked polymers reported here promise a wide range of applications where the sub-nanometer-sized cavities of the crown ethers and the robust film-forming ability are the governing factors in dictating their properties.

  8. Dual switchable CRET-induced luminescence of CdSe/ZnS quantum dots (QDs) by the hemin/G-quadruplex-bridged aggregation and deaggregation of two-sized QDs.

    PubMed

    Hu, Lianzhe; Liu, Xiaoqing; Cecconello, Alessandro; Willner, Itamar

    2014-10-08

    The hemin/G-quadruplex-catalyzed generation of chemiluminescence through the oxidation of luminol by H2O2 stimulates the chemiluminescence resonance energy transfer (CRET) to CdSe/ZnS quantum dots (QDs), resulting in the luminescence of the QDs. By the cyclic K(+)-ion-induced formation of the hemin/G-quadruplex linked to the QDs, and the separation of the G-quadruplex in the presence of 18-crown-6-ether, the ON-OFF switchable CRET-induced luminescence of the QDs is demonstrated. QDs were modified with nucleic acids consisting of the G-quadruplex subunits sequences and of programmed domains that can be cross-linked through hybridization, using an auxiliary scaffold. In the presence of K(+)-ions, the QDs aggregate through the cooperative stabilization of K(+)-ion-stabilized G-quadruplex bridges and duplex domains between the auxiliary scaffold and the nucleic acids associated with the QDs. In the presence of 18-crown-6-ether, the K(+)-ions are eliminated from the G-quadruplex units, leading to the separation of the aggregated QDs. By the cyclic treatment of the QDs with K(+)-ions/18-crown-6-ether, the reversible aggregation/deaggregation of the QDs is demonstrated. The incorporation of hemin into the K(+)-ion-stabilized G-quadruplex leads to the ON-OFF switchable CRET-stimulated luminescence of the QDs. By the mixing of appropriately modified two-sized QDs, emitting at 540 and 610 nm, the dual ON-OFF activation of the luminescence of the QDs is demonstrated.

  9. Lithium Ion Recognition with Nanofluidic Diodes through Host-Guest Complexation in Confined Geometries.

    PubMed

    Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Mafe, Salvador; Niemeyer, Christof M; Ensinger, Wolfgang

    2018-05-15

    The lithium ion recognition is receiving significant attention because of its application in pharmaceuticals, lubricants and, especially, in energy technology. We present a nanofluidic device for specific lithium ion recognition via host-guest complexation in a confined environment. A lithium-selective receptor molecule, the aminoethyl-benzo-12-crown-4 (BC12C4-NH 2 ), is designed and functionalized on single conical nanopores in polyethylene terephthalate (PET) membranes. The native carboxylic acid groups on the pore walls are covalently linked with the crown ether moieties and the process is monitored from the changes in the current-voltage ( I- V) curves. The B12-crown-4 moieties are known to specifically bind with lithium ions and when the modified pore is exposed to different alkali metal chloride solutions separately, significant changes in the ion current and rectification are only observed for lithium chloride. This fact suggests the generation of positively charged B12C4-Li + complexes on the pore surface. Furthermore, the nanofluidic diode is able to recognize the lithium ion even in the presence of high concentrations of potassium ions in the external electrolyte solution. Thus, this nanodevice suggests a strategy to miniaturize nanofluidic porous systems for efficient recognition, extraction, and separation of lithium from raw materials.

  10. NANOSENSOR FOR DETECTION OF SAXITOXIN

    EPA Science Inventory

    For the past several years, we have been investigating a class of crown ethers having a pendant fluorophore for the detection of saxitoxin (Figure 1).1-3 We have investigated several aromatic groups for the fluorescence response, including the anthracene,1,2...

  11. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1980-01-01

    Two demonstrations are described: (1) a variant of preparing purple benzene by phase transfer catalysis with quaternary ammonium salts and potassium permanganate in which crown ethers are used; (2) a corridor or "hallway" demonstration in which unknown molecular models are displayed and prizes awarded to students correctly identifying the…

  12. Crystal structures of complexes of the cys-syn-cys isomer of dicyclohexano-18-crown-6 with oxonium hexafluorotantalate and oxonium hexafluoroniobate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonari, M. S.; Alekseeva, O. A.; Furmanova, N. G.

    2007-03-15

    The crystal structures of [(cys-syn-cys-dicyclohexano-18-crown-6 . H{sub 3}O)][TaF{sub 6}] and [(cys-syn-cys-dicyclohexano-18-crown-6 . H{sub 3}O)][NbF{sub 6}] complex compounds are determined using X-ray diffraction analysis. The tantalum complex has two polymorphic modifications, namely, the monoclinic (I) and triclinic (II) modifications. The unit cell parameters of these compounds are as follows: a = 8.507(4) A, b = 11.947(5) A, c = 27.392(12) A, {beta} = 93.11(1) deg., Z = 4, and space group P2{sub 1}/n for modification I; and a = 10.828(1) A, b = 11.204(1) A, c = 12.378(1) A, {alpha} = 72.12(1) deg., {beta} = 79.40(1) deg., {gamma} = 73.70(1) deg.,more » Z = 2, and space group P-1 for modification II. The triclinic niobium complex [(cys-syn-cys-dicyclohexano-18-crown-6 . H{sub 3}O)][NbF{sub 6}] (III) with the unit cell parameters a = 10.796(3) A, b = 11.183(3) A, c = 12.352(3) A, {alpha} = 72.364(5) deg., {beta} = 79.577(5) deg., {gamma} = 73.773(4) deg., Z = 2, and space group P-1 is isostructural with tantalum complex II. The structures of all three complexes are ionic in character. The oxonium cation in complexes I-III is encapsulated by the crown ether and thus forms one ordinary and two bifurcated hydrogen bonds with the oxygen atoms of the crown ether. This macrocyclic cation is bound to the anions through the C-H...F contacts (H...F, 2.48-2.58 A). The conformation of the macrocycle in complex I differs substantially from that in complex II (III)« less

  13. Trivalent Lewis Acidic Cations Govern the Electronic Properties and Stability of Heterobimetallic Complexes of Nickel.

    PubMed

    Kumar, Amit; Lionetti, Davide; Day, Victor W; Blakemore, James D

    2018-01-02

    Assembly of heterobimetallic complexes is synthetically challenging due to the propensity of ditopic ligands to bind metals unselectively. Here, we employ a novel divergent approach for selective preparation of a variety of bimetallic complexes within a ditopic macrocyclic ligand platform. In our approach, nickel is readily coordinated to a Schiff base cavity, and then a range of redox-inactive cations (M=Na + , Ca 2+ , Nd 3+ , and Y 3+ ) are installed in a pendant crown-ether-like site. This modular strategy allows access to complexes with the highly Lewis acidic trivalent cations Nd 3+ and Y 3+ , a class of compounds that were previously inaccessible. Spectroscopic and electrochemical studies reveal wide variations in properties that are governed most strongly by the trivalent cations. Exposure to dimethylformamide drives loss of Nd 3+ and Y 3+ from the pendant crown-ether site, suggesting solvent effects must be carefully considered in future applications involving use of highly Lewis acidic metals. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 30 s Response Time of K+ Ion-Selective Hydrogels Functionalized with 18-Crown-6 Ether Based on QCM Sensor.

    PubMed

    Zhang, Zhenxiao; Dou, Qian; Gao, Hongkai; Bai, Bing; Zhang, Yongmei; Hu, Debo; Yetisen, Ali K; Butt, Haider; Yang, Xiaoxia; Li, Congju; Dai, Qing

    2018-03-01

    Potassium detection is critical in monitoring imbalances in electrolytes and physiological status. The development of rapid and robust potassium sensors is desirable in clinical chemistry and point-of-care applications. In this study, composite supramolecular hydrogels are investigated: polyethylene glycol methacrylate and acrylamide copolymer (P(PEGMA-co-AM)) are functionalized with 18-crown-6 ether by employing surface initiated polymerization. Real-time potassium ion monitoring is realized by combining these compounds with quartz crystal microbalance. The device demonstrates a rapid response time of ≈30 s and a concentration detection range from 0.5 to 7.0 × 10 -3 m. These hydrogels also exhibit high reusability and K + ion selectivity relative to other cations in biofluids such as Na + , NH 4 + , Mg 2+ , and Ca 2+ . These results provide a new approach for sensing alkali metal ions using P(PEGMA-co-AM) hydrogels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hydrogen bonding assemblies in host guest complexes with 18-crown-6

    NASA Astrophysics Data System (ADS)

    Fonari, M. S.; Simonov, Yu. A.; Kravtsov, V. Ch.; Lipkowski, J.; Ganin, E. V.; Yavolovskii, A. A.

    2003-02-01

    Recent X-ray crystal structural data for two novel 1:2 host-guest complexes of 18-crown-6 with neutral organic molecules, thiaamide hydrazide of 2-aminobenzoic acid and thiaamide hydrazide of 4-amino-1,2,5-thiadiazole-3-carbonic acid are reported. The supramolecular structures of these two and five relative complexes are discussed from the point of view of participation of donor groups in coordination with the crown ether, and donor and acceptor groups in the self-assembly of the guest molecules. Guest molecules have incorporated amine and hydrazine moieties as proton donors and carbonyl oxygen and sulfur (in thiadiazole and in thiaamine moieties) as proton acceptors. The guest-guest interactions appeared to be crucial in the final architecture.

  16. Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions.

    PubMed

    Ju, Xiao-Jie; Zhang, Shi-Bo; Zhou, Ming-Yu; Xie, Rui; Yang, Lihua; Chu, Liang-Yin

    2009-08-15

    A novel polymeric lead(II) adsorbent is prepared by incorporating benzo-18-crown-6-acrylamide (BCAm) as metal ion receptor into the thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel. Both stimuli-sensitive properties and the Pb(2+)-adsorption capabilities of the prepared P(NIPAM-co-BCAm) hydrogels are investigated. The prepared P(NIPAM-co-BCAm) hydrogels exhibit good ion-recognition and Pb(2+)-adsorption characteristics. When crown ether units capture Pb(2+) and form BCAm/Pb(2+) host-guest complexes, the lower critical solution temperature (LCST) of the hydrogel shifts to a higher temperature due to both the repulsion among charged BCAm/Pb(2+) groups and the osmotic pressure within the hydrogel. The adsorption results at different temperatures show that P(NIPAM-co-BCAm) hydrogels adsorb Pb(2+) ions at temperature lower than the LCST, but undergo desorption at temperature higher than the LCST due to the "stretch-to-shrink" configuration change of copolymer networks which is triggered by the change in environmental temperature. This kind of ion-recognition hydrogel is promising as a novel adsorption material for adsorption and separation of Pb(2+) ions. The adsorption and desorption of Pb(2+) could be rationally achieved by simply changing the environmental temperature.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fei; He, Yadong; Huang, Jingsong

    Porous liquids are a promising new class of materials featuring nanoscale cavity units dispersed in liquids that are suitable for applications such as gas storage and separation. In this work, we use molecular dynamics simulations to examine the multicomponent gas storage in a porous liquid consisting of crown-ether-substituted cage molecules dissolved in a 15-crown-5 solvent. We compute the storage of three prototypical small molecules including CO 2, CH 4, and N 2 and their binary mixtures in individual cage molecules. For porous liquids in equilibrium with a binary 1:1 gas mixture bath with partial gas pressure of 27.5 bar, amore » cage molecule shows a selectivity of 4.3 and 13.1 for the CO 2/CH 4 and CO 2/N 2 pairs, respectively. We provide a molecular perspective of how gas molecules are stored in the cage molecule and how the storage of one type of gas molecule is affected by other types of gas molecules. Finally, our results clarify the molecular mechanisms behind the selectivity of such cage molecules toward different gases.« less

  18. Multicomponent Gas Storage in Organic Cage Molecules

    DOE PAGES

    Zhang, Fei; He, Yadong; Huang, Jingsong; ...

    2017-05-18

    Porous liquids are a promising new class of materials featuring nanoscale cavity units dispersed in liquids that are suitable for applications such as gas storage and separation. In this work, we use molecular dynamics simulations to examine the multicomponent gas storage in a porous liquid consisting of crown-ether-substituted cage molecules dissolved in a 15-crown-5 solvent. We compute the storage of three prototypical small molecules including CO 2, CH 4, and N 2 and their binary mixtures in individual cage molecules. For porous liquids in equilibrium with a binary 1:1 gas mixture bath with partial gas pressure of 27.5 bar, amore » cage molecule shows a selectivity of 4.3 and 13.1 for the CO 2/CH 4 and CO 2/N 2 pairs, respectively. We provide a molecular perspective of how gas molecules are stored in the cage molecule and how the storage of one type of gas molecule is affected by other types of gas molecules. Finally, our results clarify the molecular mechanisms behind the selectivity of such cage molecules toward different gases.« less

  19. Developmental toxicity of diphenyl ether herbicides in nestling American kestrels.

    PubMed

    Hoffman, D J; Spann, J W; LeCaptain, L J; Bunck, C M; Rattner, B A

    1991-11-01

    Beginning the day after hatching, American kestrel (Falco sparverius) nestlings were orally dosed for 10 consecutive days with 5 microliters/g of corn oil (controls) or one of the diphenyl ether herbicides (nitrofen, bifenox, or oxyfluorfen) at concentrations of 10, 50, 250, or 500 mg/kg in corn oil. At 500 mg/kg, nitrofen resulted in complete nestling mortality, bifenox in high (66%) mortality, and oxyfluorfen in no mortality. Nitrofen at 250 mg/kg reduced nestling growth as reflected by decreased body weight, crown-rump length, and bone lengths including humerus, radius-ulna, femur, and tibiotarsus. Bifenox at 250 mg/kg had less effect on growth than nitrofen, but crown-rump, humerus, radius-ulna, and femur were significantly shorter than controls. Liver weight as a percent of body weight increased with 50 and 250 mg/kg nitrofen. Other manifestations of impending hepatotoxicity following nitrofen ingestion included increased hepatic GSH peroxidase activity in all nitrofen-treated groups, and increased plasma enzyme activities for ALT, AST, and LDH-L in the 250-mg/kg group. Bifenox ingestion resulted in increased hepatic GSH peroxidase activity in the 50- and 250-mg/kg groups. Nitrofen exposure also resulted in an increase in total plasma thyroxine (T4) concentration. These findings suggest that altricial nestlings are more sensitive to diphenyl ether herbicides than young or adult birds of precocial species.

  20. Conformational effect of dicyclo-hexano-18-crown-6 on isotopic fractionation of zinc: DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boda, A.; Singha Deb, A. K.; Ali, Sk. M.

    2014-04-24

    Generalized gradient approximated BP86 density functional employing triple zeta valence plus polarization (TZVP) basis set has been used to compute the reduced partition function ratio and isotopic separation factor for zinc isotopes. The isotopic separation factor was found to be in good agreement with the experimental results. The isotopic separation factor was found to depend on the conformation of the crown ether ligand. The trans-trans conformation shows the highest fractionation compared to cis-cis conformer. The present theoretical results can thus be used to plan the isotope separation experiments.

  1. Probing Supramolecular Interactions between a Crown Ether Appended Zinc Phthalocyanine and an Ammonium Group Appended to a C60 Derivative.

    PubMed

    Lederer, Marcus; Hahn, Uwe; Strub, Jean-Marc; Cianférani, Sarah; Van Dorsselaer, Alain; Nierengarten, Jean-François; Torres, Tomas; Guldi, Dirk M

    2016-02-01

    Self-assembly driven by crown ether complexation of zinc phthalocyanines equipped with one 18-crown-6 moiety and fullerenes bearing an ammonium head group afforded a novel donor-acceptor hybrid. In reference experiments, fullerenes containing a Boc-protected amine functionality have been probed. The circumvention of zinc phthalocyanine aggregation is important for the self-assembly, which required the addition of pyridine. From absorption and fluorescence titration assays, which provided sound and unambiguous evidence for mutual interactions between the electron donor and the electron acceptor within the hybrids, association constants in the order of 8.0×10 5  m -1 have been derived. The aforementioned is based on 1:1 stoichiometries, which have been independently confirmed by Job's plot measurements. In the excited state, which has been examined by transient absorption experiments, intermolecular charge separation evolves from the photoexcited zinc phthalocyanine to the fullerene subunit and leads to short-lived charge-separated states. Interestingly, photoexcitation of zinc phthalocyanine dimers/aggregates can also be followed by an intermolecular charge separation between vicinal phthalocyanines. These multicomponent supramolecular ensembles have also been shown by in-depth electrospray ionization mass spectrometry (ESI-MS) studies, giving rise to the formation and detection of a variety of non-covalently linked species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficient removal of caesium ions from aqueous solution using a calix crown ether in ionic liquids: mechanism and radiation effect.

    PubMed

    Xu, Chao; Yuan, Liyong; Shen, Xinghai; Zhai, Maolin

    2010-04-28

    The removal of radioactive (137)Cs from nuclear waste is of great importance for both the environment and energy saving. Herein, we report a study on the removal of Cs(+) using a calix crown ether bis(2-propyloxy)calix[4]crown-6 (BPC6) in ionic liquids [C(n)mim][NTf(2)], where [C(n)mim](+) is 1-alkyl-3-methylimidazolium and [NTf(2)](-) is bis(trifluoromethylsulfonyl)imide. The BPC6/[C(n)mim][NTf(2)] system is highly efficient in removing Cs(+) from aqueous solution, even at a low concentration of BPC6. HNO(3) and metal ions such as Na(+), Al(3+) in the aqueous phase interfered with the extraction of Cs(+) by competitive interaction with BPC6 and/or salting-out effect. UV analysis confirmed that the extraction of Cs(+) by the BPC6/[C(n)mim][NTf(2)] system involves a dual extraction mechanism, i.e., via exchange of BPC6.Cs(+) complex or Cs(+) by [C(n)mim](+). Irradiation of [C(4)mim][NTf(2)] dramatically decreases Cs(+) partitioning in the ionic liquid phase by the competitive interaction of radiation-generated H(+) with BPC6, while irradiation of BPC6/[C(4)mim][NTf(2)] decreases Cs(+) partitioning more markedly due to the radiolysis of BPC6.

  3. Persistent organic pollutants in red-crowned cranes (Grus japonensis) from Hokkaido, Japan.

    PubMed

    Kakimoto, Kensaku; Akutsu, Kazuhiko; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Tsukue, Naomi; Yoshino, Tomoo; Matsumoto, Fumio; Nakano, Takeshi; Tang, Ning; Hayakawa, Kazuichi; Toriba, Akira

    2018-01-01

    The red-crowned crane (Grus japonensis) from eastern Hokkaido is classified as a Special Natural Monument in Japan. In this study, we determined the concentrations of persistent organic pollutants (POPs) in red-crowned crane muscle tissues (n = 47). Polychlorinated biphenyls (PCBs) had the highest median concentration (240ng/g lipid weight), followed by dichlorodiphenyltrichloroethane and its metabolites (DDTs) (150ng/g lipid weight), chlordane-related compounds (CHLs) (36ng/g lipid weight), hexachlorobenzene (HCB) (16ng/g lipid weight), hexachlorocyclohexanes (HCHs) (4.4ng/g lipid weight), polybrominated diphenyl ethers (PBDEs) (1.8ng/g lipid weight), and finally, Mirex (1.5ng/g lipid weight). Additionally, a positive correlation was found among POP concentrations. No sex differences beyond body parameters were observed. Additionally, red-crowned cranes exhibited a high enantiomeric excess of (+)-alpha-HCH, with enantiomer fractions varying from 0.51 to 0.87 (average: 0.69). Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    PubMed

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions. This journal is © the Owner Societies 2011

  5. Sorption reaction mechanism of some hazardous radionuclides from mixed waste by impregnated crown ether onto polymeric resin.

    PubMed

    Shehata, F A; Attallah, M F; Borai, E H; Hilal, M A; Abo-Aly, M M

    2010-02-01

    A novel impregnated polymeric resin was practically tested as adsorbent material for removal of some hazardous radionuclides from radioactive liquid waste. The applicability for the treatment of low-level liquid radioactive waste was investigated. The material was prepared by loading 4,4'(5')di-t-butylbenzo 18 crown 6 (DtBB18C6) onto poly(acrylamide-acrylic acid-acrylonitril)-N, N'-methylenediacrylamide (P(AM-AA-AN)-DAM). The removal of (134)Cs, (60)Co, (65)Zn , and ((152+154))Eu onto P(AM-AA-AN)-DAM/DtBB18C6 was investigated using a batch equilibrium technique with respect to the pH, contact time, and temperature. Kinetic models are used to determine the rate of sorption and to investigate the mechanism of sorption process. Five kinetics models, pseudo-first-order, pseudo-second-order, intra-particle diffusion, homogeneous particle diffusion (HPDM), and Elovich models, were used to investigate the sorption process. The obtained results of kinetic models predicted that, pseudo-second-order is applicable; the sorption is controlled by particle diffusion mechanism and the process is chemisorption. The obtained values of thermodynamics parameters, DeltaH degrees , DeltaS degrees , and DeltaG degrees indicated that the endothermic nature, increased randomness at the solid/solution interface and the spontaneous nature of the sorption processes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. Gap Fill Materials Using Cyclodextrin Derivatives in ArF Lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi; Hashimoto, Keisuke

    2007-11-01

    High planarizing gap fill materials based on β-cyclodextrin in ArF photoresist under-layer materials have been developed for fast etching in CF4 gas. Gap fill materials used in the via-first dual damascene process need to have high etch rates to prevent crowning or fencing on top of the trench after etching and a small thickness bias between the dense and blanket areas to minimize issues observed during trench lithography by narrowing the process latitude. Cyclodextrin is a circular oligomer with a nanoscale porous structure that has a high number of oxygen atoms, as calculated using the Ohnishi parameter, providing high etch rates. Additionally, since gap fill materials using cyclodextrin derivatives have low viscosities and molecular weights, they are expected to exhibit excellent flow properties and minimal thermal shrinkage during baking. In this paper, we describe the composition and basic film properties of gap fill materials; planarization in the via-first dual damascene process and etch rates in CF4 gas compared with dextrin with α-glycoside bonds in polysaccharide, poly(2-hydroxypropyl methacrylate) and poly(4-hydroxystyrene). The β-cyclodextrin used in this study was obtained by esterifying the hydroxyl groups of dextrin resulting in improved wettability on via substrates and solubility in photoresist solvents such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and ethyl lactate. Gap fill materials using cyclodextrin derivatives showed good planarization and via filling performance without observing voids in via holes. In addition to superior via filling performance, the etch rate of gap fill materials using β-cyclodextrin derivatives was 2.8-2.9 times higher than that of an ArF photoresist, evaluated under CF4 gas conditions by reactive ion etching. These results were attributed to the combination of both nanoscale porous structures and a high density of oxygen atoms in our gap fill materials using cyclodextrin derivatives. The cyclodextrin derivatives may be applicable as a new type of sacrificial material under the photoresist in ArF lithography.

  7. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  8. Syntheses, structures, and physicochemical properties of diruthenium compounds of tetrachlorocatecholate with metal-metal bonded Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) cores (R = CH(3) and C(2)H(5)).

    PubMed

    Miyasaka, H; Chang, H C; Mochizuki, K; Kitagawa, S

    2001-07-02

    Metal-metal bonded Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) (R = CH(3) and CH(3)CH(2)) compounds with tetrachlorocatecholate (Cl(4)Cat) have been synthesized in the corresponding alcohol, MeOH and EtOH, from a nonbridged Ru(2+)-Ru(3+) compound, Na(3)[Ru(2)(Cl(4)Cat)(4)(THF)].3H(2)O.7THF (1). In alcohol solvents, compound 1 is continuously oxidized by oxygen to form Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) species. The presence of a characteristic countercation leads to selective isolation of either Ru(3+)(mu-OR)(2)Ru(3+) or Ru(3.5+)(mu-OR)(2)Ru(3.5+) as a stable adduct species. In methanol, Ph(4)PCl and dibenzo-18-crown-6-ether afford Ru(3+)(mu-OMe)(2)Ru(3+) species, [A](2)[Ru(2)(Cl(4)Cat)(4)(mu-OMe)(2)Na(2)(MeOH)(6)] ([A](+) = Ph(4)P(+) (2), [Na(dibenzo-18-crown-6)(H(2)O)(MeOH)](+) (3)), while benzo-15-crown-5-ether provides a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species, [Na(benzo-15-crown-5)(2)][Ru(2)(Cl(4)Cat)(4)(mu-OMe)(2)Na(2)(MeOH)(6)] (4). The air oxidation of 1 in a MeOH/EtOH mixed solvent (1:1 v/v) containing benzo-15-crown-5-ether provides a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species, [Na(benzo-15-crown-5)(H(2)O)][Ru(2)(Cl(4)Cat)(2)(mu-OMe)(2)Na(2)(EtOH)(2)(H(2)O)(2)(MeOH)(2)].(benzo-15-crown-5) (5). Similarly, the oxidation of 1 in ethanol with Ph(4)PCl provides a Ru(3.5+)(mu-OEt)(2)Ru(3.5+) species, (Ph(4)P)[Ru(2)(Cl(4)Cat)(4)(mu-OEt)(2)Na(2)(EtOH)(6)] (7). A selective formation of a Ru(3+)(mu-OEt)(2)Ru(3+) species, (Ph(4)P)(2)[Ru(2)(Cl(4)Cat)(4)(mu-OEt)(2)Na(2)(EtOH)(2)(H(2)O)(2)] (6), is found in the presence of pyrazine or 2,5-dimethylpyrazine. The crystal structures of these compounds, except 2 and 7, have been determined by X-ray crystallography, and all compounds have been characterized by several spectroscopic and magnetic investigations. The longer Ru-Ru bonds are found in the Ru(3+)(mu-OR)(2)Ru(3+) species (2.606(1) and 2.628(2) A for 3 and 6, respectively) compared with those of Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species (2.5260(6) A and 2.514(2) A for 4 and 5, respectively). These structural features and magnetic and ESR data revealed the electronic configurations of sigma(2)pi(2)delta(2)delta(2)pi(2) and sigma(2)pi(2)delta(2)delta(2)pi(1) for Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+), respectively, in which the former is diamagnetic and the latter is paramagnetic with S = (1)/(2) ground state. Compound 5 forms a one-dimensional chain with alternating arrangement of a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) unit and a free benzo-15-crown-5-ether molecule by intermolecular hydrogen bonds (O(H(2)O).O(crown-ether) = 2.91-3.04 A). The cyclic voltammetry in DMF affords characteristic metal-origin voltammograms; two reversible and two quasi-reversible redox waves were observed. The feature of cyclic voltammograms for the Ru(3+)(mu-OR)(2)Ru(3+) species (2, 3, and 6) and the Ru(3.5+)(mu-OR)(2)Ru(3.5+) species (4 and 7) are similar to each other, indicating that both species are electrochemically stable. The isolation of the pyrazine-trans-coordinated species, [Ph(4)P][Ru(Cl(4)Cat)(2)(L)(2)] (L = pyrazine (8), 2,5-dimethylpyrazine (9)), revealed the selective isolation of 6 from pyrazine-containing solution. UV-vis spectral variation by ethanolysis for 9 demonstrated the selective conversion from the pyrazine-trans-coordinated species to the Ru(3+)(mu-OEt)(2)Ru(3+) species without an oxidation to the Ru(3.5+)(mu-OEt)(2)Ru(3.5+) species. This result suggests the presence of equilibrium between [Ru(Cl(4)Cat)(2)(L)(2)](-) and Ru(3+)(mu-OEt)(2)Ru(3+) species in the synthetic condition for 6.

  9. μ-Hexa-thio-metadiphosphato-bis-[(1,4,7,10,13,16-hexa-oxa-cyclo-octa-decane-κ(6) O)rubidium] aceto-nitrile disolvate.

    PubMed

    Gjikaj, Mimoza; Pook, Niels-Patrick; Qarri, Flora

    2013-12-01

    The asymmetric unit of the title compound, [Rb2(P2S6)(C12H24O6)2]·2CH3CN, contains one half of an [Rb(18-crown-6)2]2[P2S6] unit and one aceto-nitrile solvent mol-ecule. The [Rb(18-crown-6)]2[P2S6] unit is completed by inversion symmetry. Its Rb(+) ion is situated near the centre of the macrocyclic cavity, but is displaced by 0.8972 (1) Å from the O atoms of the crown in the direction of the [P2S6](2-) moiety. The overall coordination number of the cation is eight, defined by the six crown ether O atoms and by two terminal S atoms of the [P2S6](2-) anion. The hexa-thio-metadiphosphate anion is built up from two tetra-hedral PS4 units joined together by a common edge. The crystal structure is characterized by alternating layers of [Rb(18-crown-6)]2[P2S6] and aceto-nitrile solvent mol-ecules stacked along [010].

  10. Response of a benzoxainone derivative linked to monoaza-15-crown-5 with divalent heavy metals.

    PubMed

    Addleman, R S; Bennett, J; Tweedy, S H; Elshani, S; Wai, C M

    1998-08-01

    The response of a monoaza-15-crown-5 with an optically active aminobenzoxazinone moiety to divalent cations was investigated. The crown ether was found to undergo a strong emission shift to the blue when complexed with specific divalent metals that have ionic diameters between 1.9-2.4 A. Consequently the photoactive macrocycle is responsive to Mg(2+), Ca(2+), Ba(2+), Sr(2+), Cd(2+), and particularly responsive to Hg(2+)and Pb(2+). Macrocycle emission spectra are shown to be a function of cation concentration. Alkaline metal cations and smaller transition metals ions such as Ni(2+), Co(2+)and Zn(2+)do not cause significant changes in the macrocycle emission spectra. Emission, absorption, and complex stability constants are determined. Mechanisms of cation selectivity and spectral emission shifts are discussed. Challenges involving immobilization of the macrocycle while preserving its spectral response to cations are explored.

  11. The use of functionally graded dental crowns to improve biocompatibility: a finite element analysis.

    PubMed

    Mahmoudi, Mojtaba; Saidi, Ali Reza; Hashemipour, Maryam Alsadat; Amini, Parviz

    2018-02-01

    In post-core crown restorations, the significant mismatch between stiffness of artificial crowns and dental tissues leads to stress concentration at the interfaces. The aim of the present study was to reduce the destructive stresses by using a class of inhomogeneous materials called functionally graded materials (FGMs). For the purpose of the study, a 3-dimentional computer model of a premolar tooth and its surrounding tissues were generated. A post-core crown restoration with various crown materials, homogenous and FGM materials, were simulated and analyzed by finite element method. Finite element and statistical analysis showed that, in case of oblique loading, a significant difference (p < 0.05) was found at the maximum von Mises stresses of the crown margin between FGM and homogeneous crowns. The maximum von Mises stresses of the crown margin generated by FGM crowns were lower than those generated by homogenous crowns (70.8 vs. 46.3 MPa) and alumina crown resulted in the highest von Mises stress at the crown margin (77.7 MPa). Crown materials of high modulus of elasticity produced high stresses at the cervical region. FGM crowns may reduce the stress concentration at the cervical margins and consequently reduce the possibility of fracture.

  12. Effects of 12-crown-4 ether on the electrochemical performance of CoO2 and TiS2 cathodes in Li polymer electrolyte cells

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Attia, Alan I.; Halpert, G.

    1992-01-01

    The effect of adding 12-crown-4 ether (12Cr4) to the polyethylene oxide (PEO) electrolyte on the electrochemical properties of cells with Li(x)CoO2 or TiS2 as the cathode was investigated. The polymer electrolyte films were: (1) PEO, LiBF4; (2) PEO, LiBF4 with 12Cr4; (3) Li(x)CoO2, PEO, and LiBF4; and (4) Li(x)CoO2, PEO, LiBF4, and 12Cr4. It was found that, although 12Cr4 improved the cell performance over cells without 12Cr4 in the shallow c/d cycles (cyclic voltammetric behavior), it did not seem to prolong the active life of the cell. The cells with CoO2 as the cathode failed after a few c/d cycles, while similar cells with TiS2 did not fail even after 12 c/d cycles. The probable cause of failure in the case of CoO2 is ascribed to the instability of the CoO2 cathode.

  13. A novel fluorescent probe for Cr3 + based on rhodamine-crown ether conjugate and its application to drinking water examination and bioimaging

    NASA Astrophysics Data System (ADS)

    Diao, Quanping; Ma, Pinyi; Lv, Linlin; Li, Tiechun; Wang, Xinghua; Song, Daqian

    2016-03-01

    A trivalent chromium (Cr3 +) fluorescence probe (RhC) was designed and synthesized via Schiff base reaction based on rhodamine-crown ether conjugate. This probe displayed a favorable selectivity for Cr3 + over a range of other common metal ions in DMF/H2O (3:7, v/v; PBS buffer 50 mmol L- 1; pH = 6.8) solution, leading to prominent fluorescence "OFF-ON" switching of the rhodamine fluorophore. The limit of detection was calculated to be 1.5 μmol L- 1 (S/N = 3). The binding ratio of RhC-Cr3 + complex was determined to be 1:2 according to the Job's plot and HR-MS. The probe was successfully applied to examination of Cr3 + in drinking water spiked samples. The average recoveries ranged from 104.9% to 106.9% at spiked concentration level of 10.00 μmol L- 1, and the obtained results were consistent with those obtained using atomic absorption spectrometry (AAS). Moreover, bioimaging experiments showed that RhC can sense the Cr3 + in living cells with a fluorescence enhancement signal.

  14. Determination of volatile corrosion inhibitors by capillary electrophoresis.

    PubMed

    Pereira, Elisabete A; Tavares, Marina F M

    2004-10-08

    In this work, a capillary electrophoresis (CE) method using indirect UV detection (214nm) for the simultaneous determination of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), diethylethanolamine (DEEA), monocyclohexylamine (MCHA) and dicyclohexylamine (DCHA) in water/ethanol extracts of wrapping materials containing volatile corrosion inhibitors (VCIs) was described. A running buffer consisting of 0.010 molL(-1) imidazole, 0.010 molL(-1) 2-hydroxyisobutyric acid (HIBA) and 0.010 molL(-1) 18-crown-6 ether enabled separation of the analytes in less than 7 min. A few method validation parameters were determined revealing good migration time repeatability (<0.7% RSD) and area repeatability (< 1.8% RSD). Limits of detection were in the range of 0.52-1.54 mg L(-1). Recovery values were in the range of 94.8-100.9%. The methodology was successfully applied to the analysis of three commercial products (VCI treated paper, foam and plastic). The concentration of amines in these materials varied from 0.050 to 22.3% (w/w).

  15. Absorption and biotransformation of polybrominated diphenyl ethers DE-71 and DE-79 in chicken (Gallus gallus), mallard (Anas platyrhynchos), American kestrel (Falco sparverius) and black-crowned night-heron (Nycticorax nycticorax) eggs

    USGS Publications Warehouse

    McKernan, Moira A.; Rattner, Barnett A.; Hatfield, Jeff S.; Hale, Robert C.; Ottinger, Mary Ann

    2010-01-01

    We recently reported that air cell administration of penta-brominated diphenyl ether (penta-BDE; DE-71) evokes biochemical and immunologic effects in chicken (Gallus gallus) embryos at very low doses, and impairs pipping (i.e., stage immediately prior to hatching) and hatching success at 1.8 ug g-1 egg (actual dose absorbed) in American kestrels (Falco sparverius). I n the present study, absorption of polybrominated diphenyl ether (PBDE) congeners was measured following air cell administration of a penta-BDE mixture (11.1 ug DE-71 g-1 egg) or an octa-brominated diphenyl ether mixture (octa-BDE; DE-79; 15.4 ug DE-79 g-1 egg). Uptake of PBDE congeners was measured at 24 h post-injection, midway through incubation, and at pipping in chicken, mallard (Anas platyrhynchos), and American kestrel egg contents, and at the end of incubation in black-crowned night-heron (Nycticorax nycticorax) egg contents. Absorption of penta-BDE and octa-BDE from the air cell into egg contents occurred throughout incubation; at pipping, up to 29.6% of penta-BDE was absorbed, but only 1.40-6.48% of octa-BDE was absorbed. Higher brominated congeners appeared to be absorbed more slowly than lower brominated congeners, and uptake rate was inversely proportional to the log Kow of predominant BDE congeners. Six congeners or co-eluting pairs of congeners were detected in penta-BDE-treated eggs that were not found in the dosing solution suggesting debromination in the developing embryo, extraembryonic membranes, and possibly even in the air cell membrane. This study demonstrates the importance of determining the fraction of xenobiotic absorbed into the egg following air cell administration for estimation of the lowest-observed-effect level.

  16. A Series of F-Element Chelators; Diaza Crown Ethers Functionalized with Catecholate Binding Substituents

    DOE PAGES

    Stein, Benjamin W.; Cary, Samantha K.; Berg, John M.; ...

    2017-12-06

    Here, we report on the preparation of azacrown ethers functionalized with catechol groups. The synthetic approach was (1st) novel in that it made use of the Mannich reaction and (2nd) valuable in that it provided an improved synthesis (in terms of practical deployment) of the known N,N'-bis(2,3-dihydroxybenzyl)-4,13-diaza-18-crown-6, H 4ChaCha. Moreover, it demonstrated potential application of the synthetic method for accommodating a wide range of catecholate functionalities by using the synthetic strategy to prepare N,N'-bis(2,3-dihydroxy-5-tert-butylbenzyl)-4,13-diaza-18-crown-6 (H 4 tBu 2ChaCha) for the first time. These H 4ChaCha and H 4 tBu2ChaCha macrocycles offer exciting opportunity to expand redox chemistry for the f-elements.more » As “proof-of-principle,” we isolated the unusual tetrameric cluster [La 2( tBuChaCha) 2] 2 from reactions between H 4 tBu 2ChaCha and La[N(SiMe 3) 2] 3. Characterization of [La 2( tBuChaCha) 2] 2 by elemental analysis, single crystal X-ray diffraction, IR, and UV–vis–NIR spectroscopy suggested that the complex represented a rare example of an f-element semiquinone. It further demonstrated that the combination of La 3+ and H 4 tBu 2ChaCha provided access to one-electron oxidation chemistry within redox potential windows that were amenable to mild reaction conditions.« less

  17. A Series of F-Element Chelators; Diaza Crown Ethers Functionalized with Catecholate Binding Substituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Benjamin W.; Cary, Samantha K.; Berg, John M.

    Here, we report on the preparation of azacrown ethers functionalized with catechol groups. The synthetic approach was (1st) novel in that it made use of the Mannich reaction and (2nd) valuable in that it provided an improved synthesis (in terms of practical deployment) of the known N,N'-bis(2,3-dihydroxybenzyl)-4,13-diaza-18-crown-6, H 4ChaCha. Moreover, it demonstrated potential application of the synthetic method for accommodating a wide range of catecholate functionalities by using the synthetic strategy to prepare N,N'-bis(2,3-dihydroxy-5-tert-butylbenzyl)-4,13-diaza-18-crown-6 (H 4 tBu 2ChaCha) for the first time. These H 4ChaCha and H 4 tBu2ChaCha macrocycles offer exciting opportunity to expand redox chemistry for the f-elements.more » As “proof-of-principle,” we isolated the unusual tetrameric cluster [La 2( tBuChaCha) 2] 2 from reactions between H 4 tBu 2ChaCha and La[N(SiMe 3) 2] 3. Characterization of [La 2( tBuChaCha) 2] 2 by elemental analysis, single crystal X-ray diffraction, IR, and UV–vis–NIR spectroscopy suggested that the complex represented a rare example of an f-element semiquinone. It further demonstrated that the combination of La 3+ and H 4 tBu 2ChaCha provided access to one-electron oxidation chemistry within redox potential windows that were amenable to mild reaction conditions.« less

  18. Combined transuranic-strontium extraction process

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1992-12-08

    The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal. 3 figs.

  19. Cation or Solvent-Induced Supermolecular Phthalocyanine Formation: Crown Ether Substituted Phthalocyanines.

    DTIC Science & Technology

    1987-06-01

    38.) of slightly bluish green powder (Anal, see Table I). tH NMR(CDCl 3 ) 8.02(8H,s), 4.7-3.6(64H,m), - 3.41(2H,s). ZnCRPc was obtained by reaction of...J.P.; Bencosme, S.; Evitt, E., Sessler, J. Chem. Phys. 1984, 86, 161. Mialoco, C.; Giannotti, A., Maillard , P.; Momeuteau, M. Chem. Phys. Lett. 1984

  20. Combined transuranic-strontium extraction process

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal.

  1. Solution behavior of iron(III) and iron(II) porphyrins in DMSO and reaction with superoxide. Effect of neighboring positive charge on thermodynamics, kinetics and nature of iron-(su)peroxo product.

    PubMed

    Duerr, K; Troeppner, O; Olah, J; Li, J; Zahl, A; Drewello, T; Jux, N; Harvey, J N; Ivanović-Burmazović, I

    2012-01-14

    The solution behavior of iron(III) and iron(II) complexes of 5(4),10(4),15(4),20(4)-tetra-tert-butyl-5,10,15,20-tetraphenylporphyrin (H(2)tBuTPP) and the reaction with superoxide (KO(2)) in DMSO have been studied in detail. Applying temperature and pressure dependent NMR studies, the thermodynamics of the low-spin/high-spin equilibrium between bis- and mono-DMSO Fe(II) forms have been quantified (K(DMSO) = 0.082 ± 0.002 at 298.2 K, ΔH° = +36 ± 1 kJ mol(-1), ΔS° = +101 ± 4 J K(-1) mol(-1), ΔV° = +16 ± 2 cm(3) mol(-1)). This is a key activation step for substitution and inner-sphere electron transfer. The superoxide binding constant to the iron(II) form of the studied porphyrin complex was found to be (9 ± 0.5) × 10(3) M(-1), and does not change significantly in the presence of the externally added crown ether in DMSO (11 ± 4) × 10(3) M(-1). The rate constants for the superoxide binding (k(on) = (1.30 ± 0.01) × 10(5) M(-1) s(-1)) and release (k(off) = 11.6 ± 0.7 s(-1)) are not affected by the presence of the external crown ether in solution. The resulting iron(II)-superoxide adduct has been characterized (mass spectrometry, EPR, high-pressure UV/Vis spectroscopy) and upon controlled addition of a proton source it regenerates the starting iron(II) complex. Based on DFT calculations, the reaction product without neighboring positive charge has iron(II)-superoxo character in both high-spin side-on and low-spin end-on forms. The results are compared to those obtained for the analogous complex with covalently attached crown ether, and more general conclusions regarding the spin-state equilibrium of iron(II) porphyrins, their reaction with superoxide and the electronic structure of the product species are drawn.

  2. Failure analysis of various monolithic posterior aesthetic dental crowns using finite element method

    NASA Astrophysics Data System (ADS)

    Porojan, Liliana; Topală, Florin

    2017-08-01

    The aim of the study was to assess the effect of material stiffness and load on the biomechanical performance of the monolithic full-coverage posterior aesthetic dental crowns using finite element analysis. Three restorative materials for monolithic dental crowns were selected for the study: zirconia; lithium disilicate glass-ceramic, and resin-based composite. Stresses were calculated in the crowns for all materials and in the teeth structures, under different load values. The experiments show that dental crowns made from all this new aesthetic materials processed by CAD/CAM technologies would be indicated as monolithic dental crowns for posterior areas.

  3. μ-Hexa­thio­metadiphosphato-bis­[(1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-κ6 O)rubidium] aceto­nitrile disolvate

    PubMed Central

    Gjikaj, Mimoza; Pook, Niels-Patrick; Qarri, Flora

    2013-01-01

    The asymmetric unit of the title compound, [Rb2(P2S6)(C12H24O6)2]·2CH3CN, contains one half of an [Rb(18-crown-6)2]2[P2S6] unit and one aceto­nitrile solvent mol­ecule. The [Rb(18-crown-6)]2[P2S6] unit is completed by inversion symmetry. Its Rb+ ion is situated near the centre of the macrocyclic cavity, but is displaced by 0.8972 (1) Å from the O atoms of the crown in the direction of the [P2S6]2− moiety. The overall coordination number of the cation is eight, defined by the six crown ether O atoms and by two terminal S atoms of the [P2S6]2− anion. The hexa­thio­metadiphosphate anion is built up from two tetra­hedral PS4 units joined together by a common edge. The crystal structure is characterized by alternating layers of [Rb(18-crown-6)]2[P2S6] and aceto­nitrile solvent mol­ecules stacked along [010]. PMID:24860286

  4. Isolation of (CO)1- and (CO2)1- radical complexes of rare earths via Ln(NR2)3/K reduction and [K2(18-crown-6)2]2+ oligomerization.

    PubMed

    Fang, Ming; Farnaby, Joy H; Ziller, Joseph W; Bates, Jefferson E; Furche, Filipp; Evans, William J

    2012-04-11

    Deep-blue solutions of Y(2+) formed from Y(NR(2))(3) (R = SiMe(3)) and excess potassium in the presence of 18-crown-6 at -45 °C under vacuum in diethyl ether react with CO at -78 °C to form colorless crystals of the (CO)(1-) radical complex, {[(R(2)N)(3)Y(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 1. The polymeric structure contains trigonal bipyramidal [(R(2)N)(3)Y(μ-CO)(2)](2-) units with axial (CO)(1-) ligands linked by [K(2)(18-crown-6)(2)](2+) dications. Byproducts such as the ynediolate, [(R(2)N)(3)Y](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 2, in which two (CO)(1-) anions are coupled to form (OC≡CO)(2-), and the insertion/rearrangement product, {(R(2)N)(2)Y[OC(═CH(2))Si(Me(2))NSiMe(3)]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R(2)N)(3)Y](2)(μ-OC≡CO)[K(18-crown-6)(THF)(2)](2), 2a. CO(2) reacts analogously with Y(2+) to form the (CO(2))(1-) radical complex, {[(R(2)N)(3)Y(μ-CO(2))(2)][K(2)(18-crown-6)(2)]}(n), 4, that has a structure similar to that of 1. Analogous (CO)(1-) and (OC≡CO)(2-) complexes of lutetium were isolated using Lu(NR(2))(3)/K/18-crown-6: {[(R(2)N)(3)Lu(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 5, [(R(2)N)(3)Lu](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 6, and [(R(2)N)(3)Lu](2)(μ-OC≡CO)[K(18-crown-6)(Et(2)O)(2)](2), 6a. © 2012 American Chemical Society

  5. Developmental toxicity of diphenyl ether herbicides in birds

    USGS Publications Warehouse

    Hoffman, D.J.; Rattner, B.A.; Bunck, C.M.

    1991-01-01

    Diphenyl ether herblcldes, includlng nitrofen, have been identified as mammalian teratogens and cause perinatal mortality. American kestrel (Falco sparverius) nestlings were orally dosed for 10 days w1th 5 ul/g of corn oil (controls) or one of the diphenyl ether herbicides (nitrofen, bifenox, or oxyfluorofen). At 500 mg/kg, nitrofen resulted in complete mortality, bifenox in high (66%) mortality, and oxyfluorofen in no mortality. Nitrofen, at 250 mg/kg, reduced nestling growth, as reflected by decreased body weight and bone length. Bifenox at 250 mg/kg had less effect on growth than nitrofen but crown rump, humerus, radiusulna and femur lengths were significantly less than controls. Liver welght (percent of body welght) increased with 50 mg/kg nitrofen. Other manifestations of hepatotoxicity following nitrofen ingestion included increased hepatic GSH peroxidase activity with 0 mg/kg nitrofen, and increased plasma enzyme activities for ALT, AST. and LDHL with 250 mg/kg. Blfenox lngestion (50 mg/kg) resulted in increased hepatlc GSH peroxidase activity. Nitrofen exposure increased total plasma thyroxlne (T4) concentratlon. These findings suggest that altricial nestllng kestrels are more sensitive to diphenyl ether herbicides than precocial young or adult birds.

  6. Extractant composition including crown ether and calixarene extractants

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.

    2009-04-28

    An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.

  7. Functionalized Derivatives of Benzo-Crown Ethers. Part 4. Antifungal Macrocyclic Supramolecular Complexes of Transition Metal Ions Acting as Lanosterol-14-α-Demethylase Ihibitors

    PubMed Central

    Barboiu, Mihai; Scozzafava, Andrea; Guran, Cornelia; Diaconescu, Paula; Bojin, Mihaela; Iluc, Vlad; Cot, Louis

    1999-01-01

    Poly- and mononuclear metal complexes of 2,3,11,12-bis[4-(10-aminodecylcarbonyl)]benzo-18- crown-6 (L) and Cu(II); Ni(II); Co(II) and Cr(III) have been synthesized and characterized by standard physico-chemical procedures. In the newly prepared complexes the crown moiety oxygen atoms of the macrocyclic host did not generally interact with metal ions, whereas the two amino groups of the ligand always did. Several of the newly synthesized compounds act as effective antifungal agents against Aspergillus and Candida spp., some of them showing activities comparable to ketoconazole, with minimum inhibitory concentrations in the range of 0.3−0.5 μg/mL. The mechanism of antifungal action of these coordination compounds is probably connected to an inhibition of lanosterol-14-α-demethylase, a metallo-enzyme playing a key role in sterol biosynthesis in fungi, bacteria and eukariotes. PMID:18475888

  8. The inverse sandwich complex [(K(18-crown-6))2Cp][CpFe(CO)2]--unpredictable redox reactions of [CpFe(CO)2]I with the silanides Na[SiRtBu2] (R = Me, tBu) and the isoelectronic phosphanyl borohydride K[PtBu2BH3].

    PubMed

    Sänger, Inge; Kückmann, Theresa I; Dornhaus, Franz; Bolte, Michael; Wagner, Matthias; Lerner, Hans-Wolfram

    2012-06-14

    The dimeric iron carbonyl [CpFe(CO)(2)](2) and the iodosilanes tBu(2)RSiI were obtained from the reaction of [CpFe(CO)(2)]I with the silanides Na[SiRtBu(2)] (R = Me, tBu) in THF. By the reactions of [CpFe(CO)(2)]I and Na[SiRtBu(2)] (R = Me, tBu) the disilanes tBu(2)RSiSiRtBu(2) (R = Me, tBu) were additionally formed using more than one equivalent of the silanide. In this context it should be noted that reduction of [CpFe(CO)(2)](2) with Na[SitBu(3)] gives the disilanes tBu(3)SiSitBu(3) along with the sodium ferrate [(Na(18-crown-6))(2)Cp][CpFe(CO)(2)]. The potassium analogue [(K(18-crown-6))(2)Cp][CpFe(CO)(2)] (orthorhombic, space group Pmc2(1)), however, could be isolated as a minor product from the reaction of [CpFe(CO)(2)]I with [K(18-crown-6)][PtBu(2)BH(3)]. The reaction of [CpFe(CO)(2)](2) with the potassium benzophenone ketyl radical and subsequent treatment with 18-crown-6 yielded the ferrate [K(18-crown-6)][CpFe(CO)(2)] in THF at room temperature. The crown ether complex [K(18-crown-6)][CpFe(CO)(2)] was analyzed using X-ray crystallography (orthorhombic, space group Pna2(1)) and its thermal behaviour was investigated.

  9. Hydrogen-bonding interactions and protic equilibria in room-temperature ionic liquids containing crown ethers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marin, T.; Shkrob, I.; Dietz, M.

    2011-04-14

    Nuclear magnetic resonance (NMR) spectroscopy has been used to study hydrogen-bonding interactions between water, associated and dissociated acids (i.e., nitric and methanesulfonic acids), and the constituent ions of several water-immiscible room-temperature ionic liquids (ILs). In chloroform solutions also containing a crown ether (CE), water molecules strongly associate with the IL ions, and there is rapid proton exchange between these bound water molecules and hydronium associated with the CE. In neat ILs, the acids form clusters differing in their degree of association and ionization, and their interactions with the CEs are weak. The CE can either promote proton exchange between differentmore » clusters in IL solution when their association is weak or inhibit such exchange when the association is strong. Even strongly hydrophobic ILs are shown to readily extract nitric acid from aqueous solution, typically via the formation of a 1:1:1 {l_brace}H{sub 3}O{sup +} {center_dot} CE{r_brace}NO{sub 3}{sup -} complex. In contrast, the extraction of methanesulfonic acid is less extensive and proceeds mainly by IL cation-hydronium ion exchange. The relationship of these protic equilibria to the practical application of hydrophobic ILs (e.g., in spent nuclear fuel reprocessing) is discussed.« less

  10. Conjugated Porphyrin Dimers: Cooperative Effects and Electronic Communication in Supramolecular Ensembles with C60.

    PubMed

    Moreira, Luis; Calbo, Joaquín; Aragó, Juan; Illescas, Beatriz M; Nierengarten, Iwona; Delavaux-Nicot, Béatrice; Ortí, Enrique; Martín, Nazario; Nierengarten, Jean-François

    2016-11-30

    Two new conjugated porphyrin-based systems (dimers 3 and 4) endowed with suitable crown ethers have been synthesized as receptors for a fullerene-ammonium salt derivative (1). Association constants in solution have been determined by UV-vis titration experiments in CH 2 Cl 2 at room temperature. The designed hosts are able to associate up to two fullerene-based guest molecules and present association constants as high as ∼5 × 10 8 M -1 . Calculation of the allosteric cooperative factor α for supramolecular complexes [3·1 2 ] and [4·1 2 ] showed a negative cooperative effect in both cases. The interactions accounting for the formation of the associates are based, first, on the complementary ammonium-crown ether interaction and, second, on the π-π interactions between the porphyrin rings and the C 60 moieties. Theoretical calculations have evidenced a significant decrease of the electron density in the porphyrin dimers 3 and 4 upon complexation of the first C 60 molecule, in good agreement with the negative cooperativity found in these systems. This negative effect is partially compensated by the stabilizing C 60 -C 60 interactions that take place in the more stable syn-disposition of [4·1 2 ].

  11. A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater

    PubMed Central

    Awual, Md. Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu

    2016-01-01

    Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater. PMID:26818070

  12. A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater.

    PubMed

    Awual, Md Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu

    2016-01-28

    Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater.

  13. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Lei, Ming; Zhou, Yi; Song, Bo; Li, Yongfang

    2015-08-01

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH3NH3PbI3-XClX. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than that of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (Jsc). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.

  14. High-throughput and selective solid-phase extraction of urinary catecholamines by crown ether-modified resin composite fiber.

    PubMed

    Chen, LiQin; Wang, Hui; Xu, Zhen; Zhang, QiuYue; Liu, Jia; Shen, Jun; Zhang, WanQi

    2018-08-03

    In the present study, we developed a simple and high-throughput solid phase extraction (SPE) procedure for selective extraction of catecholamines (CAs) in urine samples. The SPE adsorbents were electrospun composite fibers functionalized with 4-carboxybenzo-18-crown-6 ether modified XAD resin and polystyrene, which were packed into 96-well columns and used for high-throughput selective extraction of CAs in healthy human urine samples. Moreover, the extraction efficiency of packed-fiber SPE (PFSPE) was examined by high performance liquid chromatography coupled with fluorescence detector. The parameters affecting the extraction efficiency and impurity removal efficiency were optimized, and good linearity ranging from 0.5 to 400 ng/mL was obtained with a low limit of detection (LOD, 0.2-0.5 ng/mL) and a good repeatability (2.7%-3.7%, n = 6). The extraction recoveries of three CAs ranged from 70.5% to 119.5%. Furthermore, stable and reliable results obtained by the fluorescence detector were superior to those obtained by the electrochemical detector. Collectively, PFSPE coupled with 96-well columns was a simple, rapid, selective, high-throughput and cost-efficient method, and the proposed method could be applied in clinical chemistry. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  16. Highly K+ -Selective Fluorescent Probes for Lifetime Sensing of K+ in Living Cells.

    PubMed

    Schwarze, Thomas; Mertens, Monique; Müller, Peter; Riemer, Janine; Wessig, Pablo; Holdt, Hans-Jürgen

    2017-12-06

    The new K + -selective fluorescent probes 1 and 2 were obtained by Cu I -catalyzed 1,3-dipolar azide alkyne cycloaddition (CuAAC) reactions of an alkyne-substituted [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) ester fluorophore with azido-functionalized N-phenylaza-18-crown-6 ether and N-(o-isopropoxy) phenylaza-18-crown-6 ether, respectively. Probes 1 and 2 allow the detection of K + in the presence of Na + in water by fluorescence enhancement (2.2 for 1 at 2000 mm K + and 2.5 for 2 at 160 mm K + ). Fluorescence lifetime measurements in the absence and presence of K + revealed bi-exponential decay kinetics with similar lifetimes, however with different proportions changing the averaged fluorescence decay times (τ f(av) ). For 1 a decrease of τ f(av) from 12.4 to 9.3 ns and for 2 an increase from 17.8 to 21.8 ns was observed. Variation of the substituent in ortho position of the aniline unit of the N-phenylaza-18-crown-6 host permits the modulation of the K d value for a certain K + concentration. For example, substitution of H in 1 by the isopropoxy group (2) decreased the K d value from >300 mm to 10 mm. 2 was chosen for studying the efflux of K + from human red blood cells (RBC). Upon addition of the Ca 2+ ionophor ionomycin to a RBC suspension in a buffer containing Ca 2+ , the fluorescence of 2 slightly rose within 10 min, however, after 120 min a significant increase was observed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Material with high dielectric constant, low dielectric loss, and good mechanical and thermal properties produced using multi-wall carbon nanotubes wrapped with poly(ether sulphone) in a poly(ether ether ketone) matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Shuling; Wang, Hongsong; Wang, Guibin; Jiang, Zhenhua

    2012-07-01

    A material with high dielectric constant, low dielectric loss, and good mechanical and thermal properties was produced using multi-wall carbon nanotubes (MWCNTs) wrapped with poly(ether sulphone) (PES) dispersed in a poly(ether ether ketone) (PEEK) matrix. The material was fabricated using melt-blending, and MWCNT/PEEK composites show different degrees of improvement in the measured dielectric, mechanical, and thermal properties as compared to pure PEEK. This is attributed to the high conductivity of MWCNTs, the effect of wrapping MWCNTs with PES, the good dispersion of the wrapped MWCNTs in PEEK, and the strong interfacial adhesion between the wrapped MWCNTs and the PEEK.

  18. Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns

    PubMed Central

    Nawafleh, Noor; Öchsner, Andreas; George, Roy

    2018-01-01

    PURPOSE The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between 5℃ and 55℃. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments. PMID:29503716

  19. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    PubMed

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  20. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, R.; Aldissi, M.

    1984-07-27

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  1. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, Raimond; Aldissi, Mahmoud

    1988-01-01

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  2. The Crown Ether Promoted Base Degradation of p-Carborane.

    DTIC Science & Technology

    1982-04-20

    soluble in methylene chloride, benzene, ethanol and tetrahydrofuran. The cation may be exchanged by a two-phase acidification procedure in which the [K...472 Attn: CRD-AA-IP 800 North Quincy Street P.O. Box 1211 Arlington, Virginia 22217 2 Research Triangle Park, N.C. 27709 ONR Branch Office Naval Ocean ...21401 Washington, D.C. 20360 1 Naval Ocean Systems Center Defense Documentation Center Attn: Dr. S. Yamamoto, Marine Building 5, Cameron Station Sciences

  3. Calix[3]carbazole: A C3-symmetrical receptor for barium ion

    NASA Astrophysics Data System (ADS)

    Yang, Zhaozheng; Tian, Zhangmin; Yang, Peng; Deng, Tuo; Li, Gang; Zhou, Xue; Chen, Yan; Zhao, Liang; Shen, Hongyan

    2017-03-01

    The binding ability of calix[3]carbazole (1) to metal ions has been investigated. It is found that 1 could serve as a non crown ether based, C3-symmetrical receptor for Ba2 + via the marriage of cation-π and cation-dipole interactions. FID assay further illustrates that 1 could selectively interact with Ba2 + over Pd2 +. A possible binding mechanism for [1-Ba2 +] complex is proposed.

  4. Metal-organic and supramolecular architectures based on mechanically interlocked molecules

    NASA Astrophysics Data System (ADS)

    Fernando, Isurika Rosini

    The focus of this work is on mechanically interlocked molecules (MIMs), which have unusual physicochemical and mechanical properties with potential applications in nano-scale/molecular devices and high strength materials. Rotaxanes, for example, consist of an axle-like molecule threaded through a wheel-like molecule, with bulky groups at the two ends of the axle preventing the wheel from dissociating. The position of the wheel along the axle can be switched in a controllable and reversible manner by applying external stimuli, a feature that might lead to the next generation of computers. Molecularly woven materials (MWMs), another example of molecules with mechanically interlocked features, are predicted to be unprecedentedly strong while being lightweight and flexible. With the ultimate goal of achieving control over the functioning of molecular devices in the solid state, a variety of pseudorotaxane building blocks were prepared and characterized, including a novel, rare blue-colored motif. The temperature-dependent assembly/disassembly of pseudorotaxanes was exploited for the construction of single-wavelength colorimetric temperature sensors over a 100 °C window. Pseudorotaxanes based on aromatic crown ether wheels and disubstituted 4,4'-bipyridinium axles were converted into rotaxanes upon binding to metal complexes (zinc, cadmium, mercury, copper, cobalt), and the formation of ordered crystalline arrays was studied in the solid state. The columnar organization of pseudorotaxanes by Hg2X6 2-- complexes (X = Cl, Br, I), leading to unprecedented dichroic (blue/red) rotaxane crystals, was demonstrated for the first time. From the crystal structures studied it became apparent that negatively charged metal complexes are needed for successful assembly with the positively charged pseudorotaxane units. To be able to use the more common, positively charged metal ions for rotaxane framework construction, neutral and negatively charged pseudorotaxanes were synthesized, by attaching anionic substituents (carboxylates, sulfonates) to either the wheel or the axle component. It was found that pseudorotaxane formation also enabled resolution of two sulfonated crown ether isomers, which were inseparable by conventional methods. Organic ligands for MWM precursors were designed and synthesized according to multi-step schemes. Helical metal-complexes based on these ligands were prepared and characterized. Chromatography, Nuclear Magnetic Resonance and UV-Visible spectroscopy, Mass spectrometry, Electrochemistry, Thermogravimetric Analysis and X-ray crystallography were used in identification, purification and characterization of the compounds involved.

  5. Fracture strength of lithium disilicate crowns compared to polymer-infiltrated ceramic-network and zirconia reinforced lithium silicate crowns.

    PubMed

    Sieper, Kim; Wille, Sebastian; Kern, Matthias

    2017-10-01

    The aim of this study was to evaluate the fracture strength of crowns made from current CAD/CAM materials. In addition the influence of crown thickness and chewing simulation on the fracture strength was evaluated. Crowns were fabricated from lithium disilicate, zirconia reinforced lithium silicate (ZLS-ceramic) and a polymer-infiltrated ceramic-network (PICN) with an occlusal thickness of 1.0mm or 1.5mm, respectively (n=16). Crowns were cemented on composite dies. Subgroups of eight specimens were loaded with 5kg in a chewing simulator for 1,200,000 cycles with thermal cycling. Finally, all specimens were loaded until fracture in a universal testing machine. Three-way ANOVA was used to detect statistical interaction. Differences regarding the materials were tested with two-way ANOVA, following one-way ANOVA and a post-hoc Tukey's-Test. All crowns survived the chewing simulation. The material had a significant influence on the fracture resistance (p≤0.05). Lithium disilicate achieved the highest values of fracture strength in almost all groups followed by ZLS-ceramic. PICN achieved the lowest values of fracture strength. Chewing simulation increased the fracture strength of thick lithium disilicate crown significantly. Greater occlusal thickness of all crown materials resulted in higher crown fracture strength before chewing simulation. After chewing simulation occlusal thickness of lithium disilicate and PICN crowns had no significant influence on the fracture strength. All crowns revealed fracture strength above the clinically expected loading forces. Therefore the durability of the tested CAD/CAM materials seems promising also in an occlusal thickness of 1.0mm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A comparison of complexation of Li+ ion with macrocyclic ligands 15-crown-5 and 12-crown-4 in binary nitromethane-acetonitrile mixtures by using lithium-7 NMR technique and ab initio calculation.

    PubMed

    Alizadeh, Nina

    2011-01-01

    Lithium-7 NMR measurements were used to investigate the stoichiometry and stability of Li+ complexes with 15-crown-5 (15C5), benzo-15-crown-5 (B15C5), dibenzo-15-crown-5 (DB15C5) and 12-crown-4 (12C4) in a number of nitromethane (NM)-acetonitrile (AN) binary mixtures. In all cases, the exchange between the free and complexed lithium ion was fast on the NMR time scale and a single population average resonance was observed. While all crown ethers form 1:1 complexes with Li+ ion in the binary mixtures used, both 1:1 and 2:1 (sandwich) complexes were observed between lithium ion and 12C4 in pure nitromethane solution. Stepwise formation constants of the 1:1 and 2:1 (ligand/metal) complexes were evaluated from computer fitting of the NMR-mole ratio data to equations which relate the observed metal ion chemical shifts to formation constants. There is an inverse linear relationship between the logarithms of the stability constants and the mole fraction of acetonitrile in the solvent mixtures. The stability order of the 1:1 complexes was found to be 15C5·Li+>B15C5·Li+>DB15C5·Li+>12C4·Li+. The optimized structures of the free ligands and their 1:1 and 2:1 complexes with Li+ ion were predicted by ab initio theoretical calculations using the Gaussian 98 software, and the results are discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Dentist Material Selection for Single-Unit Crowns: Findings from The National Dental Practice-Based Research Network

    PubMed Central

    Makhija, Sonia K.; Lawson, Nathaniel C.; Gilbert, Gregg H.; Litaker, Mark S.; McClelland, Jocelyn A.; Louis, David R.; Gordan, Valeria V.; Pihlstrom, Daniel J.; Meyerowitz, Cyril; Mungia, Rahma; McCracken, Michael S.

    2016-01-01

    Objectives Dentists enrolled in the National Dental Practice-Based Research Network completed a study questionnaire about techniques and materials used for single-unit crowns and an enrollment questionnaire about dentist/practice characteristics. The objectives were to quantify dentists’ material recommendations and test the hypothesis that dentist’s and practice’s characteristics are significantly associated with these recommendations. Methods Surveyed dentists responded to a contextual scenario asking what material they would use for a single-unit crown on an anterior and posterior tooth. Material choices included: full metal, porcelain-fused-to-metal (PFM), all-zirconia, layered zirconia, lithium disilicate, leucite-reinforced ceramic, or other. Results 1,777 of 2,132 eligible dentists responded (83%). The top 3 choices for anterior crowns were lithium disilicate (54%), layered zirconia (17%), and leucite-reinforced glass ceramic (13%). There were significant differences (p<0.05) by dentist’s gender, race, years since graduation, practice type, region, practice busyness, hours worked/week, and location type. The top 3 choices for posterior crowns were all-zirconia (32%), PFM (31%), and lithium disilicate (21%). There were significant differences (p<0.05) by dentist’s gender, practice type, region, practice busyness, insurance coverage, hours worked/week, and location type. Conclusions Network dentists use a broad range of materials for single-unit crowns for anterior and posterior teeth, adopting newer materials into their practices as they become available. Material choices are significantly associated with dentist’s and practice’s characteristics. Clinical Significance Decisions for crown material may be influenced by factors unrelated to tooth and patient variables. Dentists should be cognizant of this when developing an evidence-based approach to selecting crown material. PMID:27693778

  8. Dentist material selection for single-unit crowns: Findings from the National Dental Practice-Based Research Network.

    PubMed

    Makhija, Sonia K; Lawson, Nathaniel C; Gilbert, Gregg H; Litaker, Mark S; McClelland, Jocelyn A; Louis, David R; Gordan, Valeria V; Pihlstrom, Daniel J; Meyerowitz, Cyril; Mungia, Rahma; McCracken, Michael S

    2016-12-01

    Dentists enrolled in the National Dental Practice-Based Research Network completed a study questionnaire about techniques and materials used for single-unit crowns and an enrollment questionnaire about dentist/practice characteristics. The objectives were to quantify dentists' material recommendations and test the hypothesis that dentist's and practice's characteristics are significantly associated with these recommendations. Surveyed dentists responded to a contextual scenario asking what material they would use for a single-unit crown on an anterior and posterior tooth. Material choices included: full metal, porcelain-fused-to-metal (PFM), all-zirconia, layered zirconia, lithium disilicate, leucite-reinforced ceramic, or other. 1777 of 2132 eligible dentists responded (83%). The top 3 choices for anterior crowns were lithium disilicate (54%), layered zirconia (17%), and leucite-reinforced glass ceramic (13%). There were significant differences (p<0.05) by dentist's gender, race, years since graduation, practice type, region, practice busyness, hours worked/week, and location type. The top 3 choices for posterior crowns were all-zirconia (32%), PFM (31%), and lithium disilicate (21%). There were significant differences (p<0.05) by dentist's gender, practice type, region, practice busyness, insurance coverage, hours worked/week, and location type. Network dentists use a broad range of materials for single-unit crowns for anterior and posterior teeth, adopting newer materials into their practices as they become available. Material choices are significantly associated with dentist's and practice's characteristics. Decisions for crown material may be influenced by factors unrelated to tooth and patient variables. Dentists should be cognizant of this when developing an evidence-based approach to selecting crown material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Isolation of Mn(I) Compounds Featuring a Reduced Bis(imino)pyridine Chelate and Their Relevance to Electrocatalytic Hydrogen Production.

    PubMed

    Mukhopadhyay, Tufan K; MacLean, Nicholas L; Flores, Marco; Groy, Thomas L; Trovitch, Ryan J

    2018-05-21

    We report the preparation and electronic structure determination of chelate-reduced Mn(I) compounds that are relevant to electrocatalytic proton reduction mediated by [( Ph2PPr PDI)Mn(CO)][Br]. Reducing [( Ph2PPr PDI)Mn(CO)][Br] with excess Na-Hg afforded a neutral paramagnetic complex, ( Ph2PPr PDI)Mn(CO). This compound was found to feature a low spin Mn(I) center and a PDI radical anion as determined by magnetic susceptibility measurement (1.97 μ B ), EPR spectroscopy ( S = 1 / 2 ), and density functional theory calculations. When [( Ph2PPr PDI)Mn(CO)][Br] was reduced with K-Hg, Mn(I) complexes with highly activated CO ligands were obtained. Recrystallization of the reduced product from diethyl ether solution allowed for the isolation of dimeric [(κ 4 - Ph2PPr PDI)Mn(μ-η 1 ,η 1 ,η 2 -CO)K(Et 2 O)] 2 (ν CO = 1710 cm -1 , 1656 cm -1 ), while methyl tert-butyl ether treatment afforded dimeric [(κ 4 - Ph2PPr PDI)Mn(μ-η 1 ,η 1 -CO)K(MTBE) 2 ] 2 (ν CO = 1695 cm -1 , MTBE = methyl tert-butyl ether). Addition of 18-crown-6 to these products, or conducting the K-Hg reduction of [( Ph2PPr PDI)Mn(CO)][Br] in the presence of 18-crown-6, allowed for the isolation of a monomeric example, (κ 4 - Ph2PPr PDI)Mn(μ-η 1 ,η 2 -CO)K(18-crown-6) (ν CO = 1697 cm -1 ). All three complexes were found to be diamagnetic and were characterized thoroughly by multinuclear 1D and 2D NMR spectroscopy and single crystal X-ray diffraction. Detailed analysis of the metrical parameters and spectroscopic properties suggest that all three compounds possess a Mn(I) center that is supported by a PDI dianion. Importantly, (κ 4 - Ph2PPr PDI)Mn(μ-η 1 ,η 2 -CO)K(18-crown-6) was found to react instantaneously with either HBF 4 ·OEt 2 or HOTf to evolve H 2 and generate the corresponding Mn(I) complex, [( Ph2PPr PDI)Mn(CO)][BF 4 ] or [( Ph2PPr PDI)Mn(CO)][OTf], respectively. These products are spectroscopically and electrochemically similar to previously reported [( Ph2PPr PDI)Mn(CO)][Br]. It is believed that the mechanism of [( Ph2PPr PDI)Mn(CO)][Br]-mediated proton reduction involves intermediates that are related to the compounds described herein and that their ambient temperature isolation is aided by the redox active nature of Ph2PPr PDI.

  10. CAD-FEA modeling and analysis of different full crown monolithic restorations.

    PubMed

    Dal Piva, Amanda Maria de Oliveira; Tribst, João Paulo Mendes; Borges, Alexandre Luiz Souto; Souza, Rodrigo Othávio de Assunção E; Bottino, Marco Antonio

    2018-06-19

    To investigate the influence of different materials for monolithic full posterior crowns using 3D-Finite Element Analysis (FEA). Twelve (12) 3D models of adhesively-restored teeth with different crowns according to the material and its elastic modulus were analysed: Acrylic resin, Polyetheretherketone, Composite resin, Hybrid ceramic, pressable and machinable Zirconia reinforced lithium silicate, Feldspathic, Lithium disilicate, Gold alloy, Cobalt-Chromium alloy (Co-Cr), Zirconia tetragonal partially stabilized with yttria, and Alumina. All materials were assumed to behave elastically throughout the entire deformation. Results in restoration and cementing line were obtained using maximum principal stress. In addition, maximum shear stress criteria was used for the cementing line. Restorative materials with higher elastic modulus present higher stress concentration inside the crown, mainly tensile stress on an intaglio surface. On the other hand, materials with lower elastic modulus allow stress passage for cement, increasing shear stress on this layer. Stiffer materials promote higher stress peak values. Materials with higher elastic modulus such as Co-Cr, zirconia and alumina enable higher tensile stress concentration on the crown intaglio surface and higher shear stress on the cement layer, facilitating crown debonding. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  11. Stable divalent germanium, tin and lead amino(ether)-phenolate monomeric complexes: structural features, inclusion heterobimetallic complexes, and ROP catalysis.

    PubMed

    Wang, Lingfang; Roşca, Sorin-Claudiu; Poirier, Valentin; Sinbandhit, Sourisak; Dorcet, Vincent; Roisnel, Thierry; Carpentier, Jean-François; Sarazin, Yann

    2014-03-21

    Stable germanium(II) and lead(II) amido complexes {LO(i)}M(N(SiMe3)2) (M = Ge(II), Pb(II)) bearing amino(ether)phenolate ligands are readily available using the proteo-ligands {LO(i)}H of general formula 2-CH2NR2-4,6-tBu2-C6H2OH (i = 1, NR2 = N((CH2)2OCH3)2; i = 2, NR2 = NEt2; i = 3, NR2 = aza-15-crown-5) and M(N(SiMe3)2)2 precursors. The molecular structures of these germylenes and plumbylenes, as well as those of {LO(3)}GeCl, {LO(3)}SnCl and of the congeneric {LO(4)}Sn(II)(N(SiMe3)2) where NR2 = aza-12-crown-4, have been determined crystallographically. All complexes are monomeric, with 3-coordinate metal centres. The phenolate systematically acts as a N^O(phenolate) bidentate ligand, with no interactions between the metal and the O(side-arm) atoms in these cases (for {LO(1)}(-), {LO(3)}(-) and {LO(4)}(-)) where they could potentially arise. For each family, the lone pair of electrons essentially features ns(2) character, and there is little, if any, hybridization of the valence orbitals. Heterobimetallic complexes {LO(3)}M(N(SiMe3)2)·LiOTf, where the Li(+) cation sits inside the tethered crown-ether, were prepared by reaction of {LO(3)}M(N(SiMe3)2) and LiOTf (M = Ge(II), Sn(II)). The inclusion of Li(+) (featuring a close contact with the triflate anion) in the macrocycle bears no influence on the coordination sphere of the divalent tetrel element. In association with iPrOH, the amido germylenes, stannylenes and plumbylenes catalyse the controlled polymerisation of L- and racemic lactide. The activity increases linearly according to Ge(II) ≪ Sn(II) ≪ Pb(II). The simple germylenes generate very sluggish catalysts, but the activity is significantly boosted if the heterobimetallic complex {LO(3)}Ge(N(SiMe3)2)·LiOTf is used instead. On the other hand, with 10-25 equiv. of iPrOH, the plumbylenes afford highly active binary catalysts, converting 1000 or 5000 equiv. of monomer at 60 °C within 3 or 45 min, respectively, in a controlled fashion.

  12. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite.

    PubMed

    Duan, Yuanyuan; Griggs, Jason A

    2015-06-01

    Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Reactions and Interactions in Liquid Crystalline Media

    DTIC Science & Technology

    1991-10-30

    nematic lyophases of potassium laurate, myristyl tri methylammonium bromide or sodium decylsulfate with 1-decanol and 23 water. A strong retardation of the...crystalline polyacrylate crosslinked elastomers were synthesized. 198c 0 0 96 0 0 0O-(CH12 ) 2 -0O(k 97 Crosslinking, up to 10% of structural units produced...in their isotropic state and they work as the transporting phase for the azo-crown ether molecules. The permeation of K+ from a potassium p

  14. Homogeneous catalyst formulations for methanol production

    DOEpatents

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1991-02-12

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  15. Homogeneous catalyst formulations for methanol production

    DOEpatents

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1990-01-01

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  16. Supramolecular Recognition Allows Remote, Site-Selective C-H Oxidation of Methylenic Sites in Linear Amines.

    PubMed

    Olivo, Giorgio; Farinelli, Giulio; Barbieri, Alessia; Lanzalunga, Osvaldo; Di Stefano, Stefano; Costas, Miquel

    2017-12-18

    Site-selective C-H functionalization of aliphatic alkyl chains is a longstanding challenge in oxidation catalysis, given the comparable relative reactivity of the different methylenes. A supramolecular, bioinspired approach is described to address this challenge. A Mn complex able to catalyze C(sp 3 )-H hydroxylation with H 2 O 2 is equipped with 18-benzocrown-6 ether receptors that bind ammonium substrates via hydrogen bonding. Reversible pre-association of protonated primary aliphatic amines with the crown ether selectively exposes remote positions (C8 and C9) to the oxidizing unit, resulting in a site-selective oxidation. Remarkably, such control of selectivity retains its efficiency for a whole series of linear amines, overriding the intrinsic reactivity of C-H bonds, no matter the chain length. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaodong; Zhou, Yi, E-mail: yizhou@suda.edu.cn, E-mail: songbo@suda.edu.cn, E-mail: liyf@iccas.ac.cn; Song, Bo, E-mail: yizhou@suda.edu.cn, E-mail: songbo@suda.edu.cn, E-mail: liyf@iccas.ac.cn

    2015-08-10

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH{sub 3}NH{sub 3}PbI{sub 3−X}Cl{sub X}. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than thatmore » of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (J{sub sc}). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.« less

  18. Crystallization process of zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether as organic template.

    PubMed

    Araki, Sadao; Kiyohara, Yasato; Tanaka, Shunsuke; Miyake, Yoshikazu

    2012-06-15

    There are many viewpoints on the formation mechanisms for zeolites, but the details are not clear. An understanding of the elementary steps for their formation is important for the development of large-scale membranes and efficient manufacturing processes. In this study, the effects of silicon, aluminum, and the incorporation of 18-crown-6 (18C6) ether, on the formation of zeolite rho, using 18C6 as the structure directing agent (SDA) have been investigated by using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray fluorescence spectrometry (EDX), nuclear magnetic resonance spectroscopy (NMR), thermo gravimetric analysis (TGA), and the pH measurement. These results suggested that a zeolite rho has four synthesis steps; (1) 0-3 h, the dehydration and condensation reaction between the silica and alumina to form amorphous aluminosilicates; (2) 3-20 h, the particle growth and aggregation process for the amorphous aluminosilicates; (3) 20-48 h, the crystallization and crystal growth of zeolite rho, with the incorporation of 18C6; and (4) 48-96 h, gentle growth with an increase in Na/Si ratio and a change in rate for the bounding state between the silica- and the alumina-based species. We consider the above to reflect the four steps for the formation of zeolite rho. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Crystal structures of two solvates of (18-crown-6)potassium acetate.

    PubMed

    Liebing, Phil; Zaeni, Ahmad; Olbrich, Falk; Edelmann, Frank T

    2016-12-01

    The crystal and mol-ecular strutures of two solvated forms of [K(18 c 6)]OAc (18 c 6 = 18-crown-6 = 1,4,7,10,13,16-hexa-oxa-cyclo-octa-decane and OAc = acetate) were determined by single-crystal X-ray diffraction, namely (acetato-κ 2 O , O ')(1,4,7,10,13,16-hexa-oxa-cyclo-octa-decane-κ 6 O )potassium dihydrate, [K(CH 3 COO)(C 12 H 24 O 6 )]·2H 2 O ( 1 ) and (acetato-κ 2 O , O ')aqua-(1,4,7,10,13,16-hexa-oxa-cyclo-octa-decane-κ 6 O )potassium acetic acid monosolvate [K(CH 3 COO)(C 12 H 24 O 6 )(H 2 O)]·CH 3 COOH ( 2 ). In both compounds, the acetate anion is bonded to the potassium ion in a chelating fashion and the metal atom is consequently slightly displaced from the O 6 plane of the crown ether. In the crystals, O-H⋯O hydrogen bonds lead to a polymeric ladder structure in the dihydrate 1 , while the acetic acid hydrate 2 features inversion dimers.

  20. Low dielectric fluorinated poly(phenylene ether ketone) film and coating

    NASA Technical Reports Server (NTRS)

    Cassidy, Patrick E. (Inventor); Tullos, Gordon L. (Inventor); St.clair, Anne K. (Inventor)

    1990-01-01

    The present invention relates to film and coating materials prepared from novel fluorinated poly(phenylene ether ketones). A fluorinated poly(phenylene ether ketone) is prepared by reacting a bisphenol with 1,1,1,3,3,3 hexafluoro-2,2-bis 4-(4-halobenzoyl) phenyl propane (wherein halo is fluoro or chloro), which is a novel monomer formed as the reaction product of halobenzene (wherein halo is fluoro or chloro) and 1,1,1,3,3,3 hexafluoro-2,2-bis (p-chloro formyl phenyl) propane. Especially beneficial results of this invention are that films and coating materials prepared from the novel fluorinated poly(phenylene ether ketone) are essentially optically transparent/colorless and have a lower dielectric constant than otherwise comparable, commercially available poly(phenylene ether ketones). Moreover, unlike the otherwise comparable commercially available materials, the novel fluorinated poly(phenylene ether ketones) of the present invention can be solution cast or sprayed to produce the films and coatings. Furthermore, the long term thermal stability of the polymers of the present invention is superior to that of the commercially available materials.

  1. CAD/CAM glass ceramics for single-tooth implant crowns: a finite element analysis.

    PubMed

    Akça, Kvanç; Cavusoglu, Yeliz; Sagirkaya, Elcin; Aybar, Buket; Cehreli, Murat Cavit

    2013-12-01

    To evaluate the load distribution of CAD/CAM mono-ceramic crowns supported with single-tooth implants in functional area. A 3-dimensional numerical model of a soft tissue-level implant was constructed with cement-retained abutment to support glass ceramic machinable crown. Implant-abutment complex and the retained crown were embedded in a Ø 1.5 × 1.5 cm geometric matrix for evaluation of mechanical behavior of mono-ceramic CAD/CAM aluminosilicate and leucite glass crown materials. Laterally positioned axial load of 300 N was applied on the crowns. Resulting principal stresses in the mono-ceramic crowns were evaluated in relation to different glass ceramic materials. The highest compressive stresses were observed at the cervical region of the buccal aspect of the crowns and were 89.98 and 89.99 MPa, for aluminosilicate and leucite glass ceramics, respectively. The highest tensile stresses were observed at the collar of the lingual part of the crowns and were 24.54 and 25.39 MPa, respectively. Stresses induced upon 300 N static loading of CAD/CAM aluminosalicate and leucite glass ceramics are below the compressive strength of the materials. Impact loads may actuate the progress to end failure of mono-ceramic crowns supported by metallic implant abutments.

  2. Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Despotopulos, John D.

    2015-03-12

    Study of the chemistry of the heaviest elements, Z ≥ 104, poses a unique challenge due to their low production cross-sections and short half-lives. Chemistry also must be studied on the one-atom-at-a-time scale, requiring automated, fast, and very efficient chemical schemes. Recent studies of the chemical behavior of copernicium (Cn, element 112) and flerovium (Fl, element 114) together with the discovery of isotopes of these elements with half-lives suitable for chemical studies have spurred a renewed interest in the development of rapid systems designed to study the chemical properties of elements with Z ≥ 114. This dissertation explores both extractionmore » chromatography and solvent extraction as methods for development of a rapid chemical separation scheme for the homologs of flerovium (Pb, Sn, Hg) and element 115 (Bi, Sb), with the goal of developing a chemical scheme that, in the future, can be applied to on-line chemistry of both Fl and element 115. Carrier-free radionuclides, used in these studies, of the homologs of Fl and element 115 were obtained by proton activation of high-purity metal foils at the Lawrence Livermore National Laboratory (LLNL) Center for Accelerator Mass Spectrometry (CAMS): natIn(p,n) 113Sn, natSn(p,n) 124Sb, and Au(p,n) 197m,gHg. The carrier-free activity was separated from the foils by novel separation schemes based on ion exchange and extraction chromatography techniques. Carrier-free Pb and Bi isotopes were obtained from development of a novel generator based on cation exchange chromatography using the 232U parent to generate 212Pb and 212Bi. Macrocyclic extractants, specifically crown ethers and their derivatives, were chosen for these studies; crown ethers show high selectivity for metal ions. Finally. a potential chemical system for Fl was established based on the Eichrom Pb resin, and insight to an improved system based on thiacrown ethers is presented.« less

  3. Alkaline-side extraction of technetium from tank waste using crown ethers and other extractants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnesen, P.V.; Moyer, B.A.; Presley, D.J.

    The chemical development of a new crown-ether-based solvent-extraction process for the separation of (Tc) from alkaline tank-waste supernate is ready for counter-current testing. The process addresses a priority need in the proposed cleanup of Hanford and other tank wastes. This need has arisen from concerns due to the volatility of Tc during vitrification, as well as {sup 99}Tc`s long half-life and environmental mobility. The new process offers several key advantages that direct treatability--no adjustment of the waste composition is needed; economical stripping with water; high efficiency--few stages needed; non-RCRA chemicals--no generation of hazardous or mixed wastes; co-extraction of {sup 90}Sr;more » and optional concentration on a resin. A key concept advanced in this work entails the use of tandem techniques: solvent extraction offers high selectivity, while a subsequent column sorption process on the aqueous stripping solution serves to greatly concentrate the Tc. Optionally, the stripping solution can be evaporated to a small volume. Batch tests of the solvent-extraction and stripping components of the process have been conducted on actual melton Valley Storage Tank (MVST) waste as well as simulants of MVST and Hanford waste. The tandem process was demonstrated on MVST waste simulants using the three solvents that were selected the final candidates for the process. The solvents are 0.04 M bis-4,4{prime}(5{prime})[(tert-butyl)cyclohexano]-18-crown-6 (abbreviated di-t-BuCH18C6) in a 1:1 vol/vol blend of tributyl phosphate and Isopar{reg_sign} M (an isoparaffinic kerosene); 0.02 M di-t-BuCH18C6 in 2:1 vol/vol TBP/Isopar M and pure TBP. The process is now ready for counter-current testing on actual Hanford tank supernates.« less

  4. Revisiting the Formation and Tunable Dissociation of a [2]Pseudorotaxane Formed by Slippage Approach

    PubMed Central

    Leung, Ken Cham-Fai; Lau, Kwun-Ngai; Wong, Wing-Yan

    2015-01-01

    A new [2]pseudorotaxane DB24C8⊃1-H·PF6 with dibenzo[24]crown-8 (DB24C8) crown ether-dibenzylammonium (1-H·PF6) binding which was formed by slippage approach at different solvents and temperature, had been isolated and characterized by NMR spectroscopy and mass spectrometry. The [2]pseudorotaxane DB24C8⊃1-H·PF6 was stable at room temperature. The dissociation rate of [2]pseudorotaxane DB24C8⊃1-H·PF6 could be tuned by using different stimuli such as triethylamine (TEA)/diisopropylethylamine (DIPEA) and dimethyl sulfoxide (DMSO). In particular, the dissociation of [2]pseudorotaxane DB24C8⊃1-H·PF6 by an excess of TEA/DIPEA base mixture possessed a long and sustained, complete dissociation over 60 days. Other stimuli by DMSO possessed a relatively fast dissociation over 24 h. PMID:25872145

  5. Dibenzo-18-crown-6–picric acid–water (1/2/3)

    PubMed Central

    Saleh, Muhammad Idiris; Kusrini, Eny; Rosli, Mohd Mustaqim; Fun, Hoong-Kun

    2008-01-01

    In the crown ether ring of the title compound, C20H24O6·2C6H3N3O7·3H2O, the O—C(H2)—C(H2)—O torsion angles indicate a gauche conformation of the ethyl­eneoxy units, while the C—O—C—C torsion angles indicate planarity of these segments; the dihedral angle between the two benzene rings is 44.53 (13)°. In both picric acid mol­ecules, one of the nitro groups is twisted away from the attached ring. The mol­ecules are linked into chains along the b axis via inter­molecular O—H⋯O hydrogen bonds. In addition, the crystal structure is stabilized by C—H⋯O hydrogen bonds and π–π inter­actions [centroid–centroid distance between benzene rings = 3.5697 (16) Å]. PMID:21202944

  6. Development of new solid-phase microextraction fibers by sol-gel technology for the determination of organophosphorus pesticide multiresidues in food.

    PubMed

    Yu, Jianxin; Wu, Caiying; Xing, Jun

    2004-05-21

    Allyloxy bisbenzo 16-crown-5 trimethoxysilane was first used as precursor to prepare the sol-gel-derived bisbenzo crown ether/hydroxyl-terminated silicone oil (OH-TSO) SPME coating. The coating procedure involving sol solution composition and conditioning process was presented. Compared with commercial SPME stationary phases, the new coatings showed higher extraction efficiency and therefore could provide higher sensitivity for organphosphorous pesticides (OPs). Limits of detection (LODs) were in the range of 0.003-1.0 ng/g for these OPs in food samples (honey, juice, orange and pakchoi). The optimal extraction conditions of the new coatings to OPs in these samples were investigated by adjusting extraction time, salt addition, extraction temperature, and dilution ratios of samples with distilled water by using SPME coupled with gas chromatography (GC)-flame photometric detection (FPD). The method was applied to determine the concentrations of OPs in real samples.

  7. Three-dimensional finite element analysis of the stress distribution pattern in a mandibular first molar tooth restored with five different restorative materials.

    PubMed

    D'souza, Kathleen Manuela; Aras, Meena Ajay

    2017-01-01

    Badly broken or structurally compromised posterior teeth are frequently associated with crown/root fracture. Numerous restorative materials have been used to fabricate indirect full-coverage restorations for such teeth. This study aims to evaluate and compare the effect of restorative materials on the stress distribution pattern in a mandibular first molar tooth, under varying loading conditions and to compare the stress distribution pattern in five commonly used indirect restorative materials. Five three-dimensional finite element models representing a mandibular first molar tooth restored with crowns of gold, porcelain fused to metal, composite (Artglass), alumina-based zirconia (In-Ceram Zirconia [ICZ]), and double-layered zirconia-based materials (zirconia core veneered with porcelain, Lava) were constructed, using a Finite Element Analysis Software (ANSYS version 10; ANSYS Inc., Canonsburg, PA, USA). Two loading conditions were applied, simulating maximum bite force of 600 N axially and normal masticatory bite force of 225 N axially and nonaxially. Both all-ceramic crowns allowed the least amount of stress distribution to the surrounding tooth structure. In maximum bite force-simulation test, alumina-based all-ceramic crown displayed the highest von Mises stresses (123.745 MPa). In the masticatory bite force-simulation test, both all-ceramic crowns (122.503-133.13 MPa) displayed the highest von Mises stresses. ICZ crown displayed the highest peak von Mises stress values under maximum and masticatory bite forces. ICZ and Lava crowns also allowed the least amount of stress distribution to the surrounding tooth structure, which is indicative of a favorable response of the underlying tooth structure to the overlying full-coverage indirect restorative material. These results suggest that ICZ and Lava crowns can be recommended for clinical use in cases of badly damaged teeth.

  8. Kinetic precipitation of solution-phase polyoxomolybdate followed by transmission electron microscopy: a window to solution-phase nanostructure.

    PubMed

    Zhu, Yan; Cammers-Goodwin, Arthur; Zhao, Bin; Dozier, Alan; Dickey, Elizabeth C

    2004-05-17

    This study aimed to elucidate the structural nature of the polydisperse, nanoscopic components in the solution and the solid states of partially reduced polyoxomolybdate derived from the [Mo132] keplerate, [(Mo)Mo5]12-[Mo2 acetate]30. Designer tripodal hexamine-tris-crown ethers and nanoscopic molybdate coprecipitated from aqueous solution. These microcrystalline solids distributed particle radii between 2-30 nm as assayed by transmission electron microscopy (TEM). The solid materials and their particle size distributions were snap shots of the solution phase. The mother liquor of the preparation of the [Mo132] keplerate after three days revealed large species (r=20-30 nm) in the coprecipitate, whereas [Mo132] keplerate redissolved in water revealed small species (3-7 nm) in the coprecipitate. Nanoparticles of coprecipitate were more stable than solids derived solely from partially reduced molybdate. The TEM features of all material analyzed lacked facets on the nanometer length scale; however, the structures diffracted electrons and appeared to be defect-free as evidenced by Moiré patterns in the TEM images. Moiré patterns and size-invariant optical densities of the features in the micrographs suggested that the molybdate nanoparticles were vesicular.

  9. [Quantitative assessment on artifacts of dental restorative materials in cone beam computed tomography].

    PubMed

    Yuan, Fu-song; Sun, Yu-chun; Xie, Xiao-yan; Wang, Yong; Lv, Pei-jun

    2013-12-18

    To quantitatively evaluate the artifacts appearance of eight kinds of common dental restorative materials, such as zirconia. For the full-crown tooth preparation of mandibular first molar, eight kinds of full-crowns, such as zirconia all-ceramic crown, glass ceramic crown, ceramage crown, Au-Pt based porcelain-fused-metal (PFM) crown, Pure Titanium PFM crown, Co-Cr PFM crown, Ni-Cr PFM crown, and Au-Pd metal crown were fabricated. And natural teeth in vitro were used as controls. These full-crown and natural teeth in vitro were mounted an ultraviolet-curable resin fixed plate. High resolution cone beam computed tomography (CBCT) was used to scan all of the crowns and natural teeth in vitro, and their DICOM data were imported into software MIMICS 10.0. Then, the number of stripes and the maximum diameters of artifacts around the full-crowns were evaluated quantitatively in two-dimensional tomography images. In the two-dimensional tomography images,the artifacts did not appear around the natural teeth in vitro, glass ceramic crown, and ceramage crown. But thr artifacts appeared around the zirconia all-ceramic and metal crown. The number of stripes of artifacts was five to nine per one crown. The maximum diameters of the artifacts were 2.4 to 2.6 cm and 2.2 to 2.7 cm. In the two-dimensional tomography images of CBCT, stripe-like and radical artifacts were caused around the zirconia all-ceramic crown and metal based porcelain-fused-metal crowns. These artifacts could lower the imaging quality of the full crown shape greatly. The artifact was not caused around the natural teeth in vitro, glass ceramic crown, and ceramage crown.

  10. Optical Sensing of Aromatic Amino Acids and Dipeptides by a Crown-Ether-Functionalized Perylene Bisimide Fluorophore.

    PubMed

    Weißenstein, Annike; Saha-Möller, Chantu R; Würthner, Frank

    2018-06-04

    The host-guest binding properties of a fluorescent perylene bisimide (PBI) receptor equipped with crown ether were studied in detail with a series of aromatic amino acids and dipeptides by UV/Vis, fluorescence and NMR spectroscopy. Fluorescence titration experiments showed that electron-rich aromatic amino acids and dipeptides strongly quench the fluorescence of the electron-poor PBI host molecule. Benesi-Hildebrand plots of fluorescence titration data confirmed the formation of host-guest complexes with 1:2 stoichiometry. Binding constants determined by global analysis of UV/Vis and fluorescence titration experiments revealed values between 10 3  m -1 and 10 5  m -1 in acetonitrile/methanol (9:1) at 23 °C. These data showed that amino acid l-Trp having an indole group and dipeptides containing this amino acid bind to the PBI receptor more strongly than other amino acids and dipeptides investigated here. For dipeptides containing l-Trp or l-Tyr, the binding strength is dependent on the distance between the ammonium group and the aromatic unit of the amino acids and dipeptides leading to a strong sensitivity for Ala-Trp dipeptide. 1D and 2D NMR experiments also corroborated 1:2 host-guest complexation and indicated formation of two diastereomeric species of host-guest complexes. The studies have shown that a properly functionalized PBI fluorophore functions as a molecular probe for the optical sensing of aromatic amino acids and dipeptides. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns

    PubMed Central

    Kwon, Taek-Ka; Pak, Hyun-Soon; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun

    2013-01-01

    PURPOSE All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. MATERIALS AND METHODS Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. RESULTS The mean fracture strengths were as follows: 54.9 ± 15.6 N for the Lava CAD/CAM zirconia crowns and 87.0 ± 16.0 N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. CONCLUSION The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain. PMID:23755332

  12. Cesium and strontium extraction using a mixed extractant solvent including crown ether and calixarene extractants

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.

    2007-11-06

    A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.

  13. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  14. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek

    Eichrom’s Pb resin, a crown-ether-based extraction chromatography resin, was characterized for separation of the flerovium (Fl) homologs, Pb and Sn. Batch uptake of Pb(II) and Sn(IV) radionuclides was determined from an HNO 3 matrix. Pb(II) was strongly retained on the resin at all HNO 3 concentrations, while Sn(IV) showed no uptake. Extraction kinetics for Pb(II) were examined and show suitable uptake on the second time scale. Here, separation methods for the isolation of individual homologs, Pb(II) and Sn(IV), have been established using 2 mL pre-packed vacuum flow Pb resin columns.

  16. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance

    PubMed Central

    Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth

    2013-01-01

    Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns, possibly caused by dissolution and wear of the glaze. Statistically significant differences in surface texture (p = 0.0013) and crown wear (p = 0.0078) were found at year 3 between the metal-ceramic crowns and the lithium-disilicate-based crowns. Conclusion Based on the 11 criteria, the clinical performance of ceramic-ceramic crowns was comparable to that of the metal-ceramic crowns after 2 years; however, gradual roughening occurred between years 2 and 3, which resulted in differences in surface texture and wear. PMID:22978697

  17. Dental crowns

    MedlinePlus

    ... crowns; Lab-fabricated restoration References Academy of General Dentistry. What are crowns? Updated January 2012. Knowyourteeth.org ... partial coverage restorations. In: Aschheim KW, ed. Esthetic Dentistry: A Clinical Approach to Techniques and Materials . 3rd ...

  18. A comparative evaluation of the marginal accuracy of crowns fabricated from four commercially available provisional materials: An in vitro study

    PubMed Central

    Amin, Bhavya Mohandas; Aras, Meena Ajay; Chitre, Vidya

    2015-01-01

    Purpose: The purpose of this in vitro study was to evaluate and compare the primary marginal accuracy of four commercially available provisional materials (Protemp 4, Luxatemp Star, Visalys Temp and DPI tooth moulding powder and liquid) at 2 time intervals (10 and 30 min). Materials and Methods: A customized stainless steel master model containing two interchangeable dies was used for fabrication of provisional crowns. Forty crowns (n = 10) were fabricated, and each crown was evaluated under a stereomicroscope. Vertical marginal discrepancies were noted and compared at 10 min since the start of mixing and then at 30 min. Observations and Results: Protemp 4 showed the least vertical marginal discrepancy (71.59 μ), followed by Luxatemp Star (91.93 μ) at 10 min. DPI showed a marginal discrepancy of 95.94 μ while Visalys Temp crowns had vertical marginal discrepancy of 106.81 μ. There was a significant difference in the marginal discrepancy values of Protemp 4 and Visalys Temp. At 30 min, there was a significant difference between the marginal discrepancy of Protemp 4 crowns (83.11 μ) and Visalys Temp crowns (128.97 μ) and between Protemp 4 and DPI (118.88 μ). No significant differences were observed between Protemp 4 and Luxatemp Star. Conclusion: The vertical marginal discrepancy of temporary crowns fabricated from the four commercially available provisional materials ranged from 71 to 106 μ immediately after fabrication (at 10 min from the start of mix) to 83–128 μ (30 min from the start of mix). The time elapsed after mixing had a significant influence on the marginal accuracy of the crowns. PMID:26097348

  19. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    PubMed

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  20. In vitro performance and fracture resistance of CAD/CAM-fabricated implant supported molar crowns.

    PubMed

    Rosentritt, Martin; Hahnel, Sebastian; Engelhardt, Frank; Behr, Michael; Preis, Verena

    2017-05-01

    The aim of this study is to investigate the performance and fracture resistance of different CAD/CAM ceramic and composite materials as implant- or tooth-supported single crowns with respect to the clinical procedure (screwed/bonded restoration). One hundred twenty crowns were fabricated on implants or human molar teeth simulating (a) chairside procedure ([CHAIR] implant crown bonded to abutment), (b) labside procedure ([LAB] abutment and implant crown bonded in laboratory, screwed chairside), and (c) reference ([TOOTH] crowns luted on human teeth). Four materials were investigated: ZLS (zirconia-reinforced lithium silicate ceramic; Celtra Duo, Degudent: polished (P)/crystallized (C)), RB (resin-based composite; Cerasmart, GC), and RIC (resin-infiltrated ceramic; Enamic, Vita-Zahnfabrik). LiS (lithiumdisilicate; Emax CAD, Ivoclar-Vivadent) served as reference. Combined thermal cycling and mechanical loading (TCML) was performed simulating a 5-year clinical situation. Fracture force was determined. Data were statistically analyzed (Kolmogorov-Smirnov test, one-way ANOVA; post hoc Bonferroni, α = 0.05). One crown of ZLS_C[LAB] (1,200,000 cycles) and RB[CHAIR] (890 cycles) failed during TCML. Fracture values varied between 977.7 N(RB) and 3070.4 N(LiS)[CHAIR], 1130.6 N(RB) and 2998.1 N(LiS)[LAB], and 1802.4 N(ZLS) and 2664.3 N(LiS)[TOOTH]. Significantly (p < 0.003) different forces were found between the materials in all three groups. ZLS_C, RIC, and RB showed significantly (p < 0.014) different values for the individual groups. Partly ceramic and resin-based materials performed differently on implant or tooth abutments. The insertion of a screw channel reduced the stability for individual crown materials. Insertion of the screw channel should be performed carefully. All restorations were in a range where clinical application seems not restricted, but insertion of a screw channel might reduce stability of individual materials.

  1. Trivalent scandium, yttrium and lanthanide complexes with thia-oxa and selena-oxa macrocycles and crown ether coordination.

    PubMed

    Champion, Martin J D; Farina, Paolo; Levason, William; Reid, Gillian

    2013-09-28

    Complexes of the oxa-thia macrocycles [18]aneO4S2, [15]aneO3S2 and the oxa-selena macrocycle [18]aneO4Se2 (L) of types [MCl2(L)]FeCl4 (M = Sc or Y) were prepared from [ScCl3(thf)3] or [YCl2(THF)5][YCl4(THF)2] and the ligand in anhydrous MeCN, using FeCl3 as a chloride abstractor. The [MI2(L)]I, [LaI3(L)] and [LuI2(L)]I have been prepared from the ligands and the appropriate anhydrous metal triiodide in MeCN. Complexes of type [LaI3(crown)] and [LuI2(crown)]I (crown = 18-crown-6, 15-crown-5) were made for comparison. Use of the metal iodide results in complexes with high solubility compared to the corresponding chlorides, although also with increased sensitivity to moisture. All complexes were characterised by microanalysis, IR, (1)H, (45)Sc and (77)Se NMR spectroscopy as appropriate. X-ray crystal structures are reported for [ScCl2([18]aneO4S2)][FeCl4], [ScI2([18]aneO4S2)]I, [YCl2(18-crown-6)]3[Y2Cl9], [YCl2([18]aneO4S2)][FeCl4], [LaI3(15-crown-5)], [LaI2(18-crown-6)(MeCN)]I, [LuI(18-crown-6)(MeCN)2]I2, [Lu(15-crown-5)(MeCN)2(OH2)]I3, [LaI3([18]aneO4S2)], [LaI([18]aneO4S2)(OH2)]I2, [LaI3([18]aneO4Se2)] and [LuI2([18]aneO4Se2)]I. In each complex all the neutral donor atoms of the macrocycles are coordinated to the metal centre, showing very rare examples of these oxophilic metal centres coordinated to thioether groups, and the first examples of coordinated selenoether donors. In some cases MeCN or adventitious water displaces halide ligands, but not the S/Se donors from La or Lu complexes. A complex of the oxa-tellura macrocycle [18]aneO4Te2, [ScCl2([18]aneO4Te2)][FeCl4] was isolated, but is unstable in MeCN solution, depositing elemental Te. YCl3 and 18-crown-6 produced [YCl2(18-crown-6)]3[Y2Cl9], the asymmetric unit of which contains two cations with a trans-YCl2 arrangement and a third with a cis-YCl2 group.

  2. Lithium air batteries having ether-based electrolytes

    DOEpatents

    Amine, Khalil; Curtiss, Larry A.; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2016-10-25

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  3. Li-air batteries having ether-based electrolytes

    DOEpatents

    Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2015-03-03

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  4. Survival Predictions of Ceramic Crowns Using Statistical Fracture Mechanics

    PubMed Central

    Nasrin, S.; Katsube, N.; Seghi, R.R.; Rokhlin, S.I.

    2017-01-01

    This work establishes a survival probability methodology for interface-initiated fatigue failures of monolithic ceramic crowns under simulated masticatory loading. A complete 3-dimensional (3D) finite element analysis model of a minimally reduced molar crown was developed using commercially available hardware and software. Estimates of material surface flaw distributions and fatigue parameters for 3 reinforced glass-ceramics (fluormica [FM], leucite [LR], and lithium disilicate [LD]) and a dense sintered yttrium-stabilized zirconia (YZ) were obtained from the literature and incorporated into the model. Utilizing the proposed fracture mechanics–based model, crown survival probability as a function of loading cycles was obtained from simulations performed on the 4 ceramic materials utilizing identical crown geometries and loading conditions. The weaker ceramic materials (FM and LR) resulted in lower survival rates than the more recently developed higher-strength ceramic materials (LD and YZ). The simulated 10-y survival rate of crowns fabricated from YZ was only slightly better than those fabricated from LD. In addition, 2 of the model crown systems (FM and LD) were expanded to determine regional-dependent failure probabilities. This analysis predicted that the LD-based crowns were more likely to fail from fractures initiating from margin areas, whereas the FM-based crowns showed a slightly higher probability of failure from fractures initiating from the occlusal table below the contact areas. These 2 predicted fracture initiation locations have some agreement with reported fractographic analyses of failed crowns. In this model, we considered the maximum tensile stress tangential to the interfacial surface, as opposed to the more universally reported maximum principal stress, because it more directly impacts crack propagation. While the accuracy of these predictions needs to be experimentally verified, the model can provide a fundamental understanding of the importance that pre-existing flaws at the intaglio surface have on fatigue failures. PMID:28107637

  5. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such as...

  6. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such as...

  7. Size-Independent Exciton Localization Efficiency in Colloidal CdSe/CdS Core/Crown Nanosheet Type-I Heterostructures.

    PubMed

    Li, Qiuyang; Wu, Kaifeng; Chen, Jinquan; Chen, Zheyuan; McBride, James R; Lian, Tianquan

    2016-03-22

    CdSe/CdS core/crown nanoplatelet type I heterostructures are a class of two-dimensional materials with atomically precise thickness and many potential optoelectronic applications. It remains unclear how the precise thickness and lack of energy disorder affect the properties of exciton transport in these materials. By steady-state photoluminescence excitation spectroscopy and ultrafast transient absorption spectroscopy, we show that in five CdSe/CdS core/crown structures with the same core and increasing crown size (with thickness of ∼1.8 nm, width of ∼11 nm, and length from 20 to 40 nm), the crown-to-core exciton localization efficiency is independent of crown size and increases with photon energy above the band edge (from 70% at 400 nm to ∼100% at 370 nm), while the localization time increases with the crown size. These observations can be understood by a model that accounts for the competition of in-plane exciton diffusion and selective hole trapping at the core/crown interface. Our findings suggest that the exciton localization efficiency can be further improved by reducing interfacial defects.

  8. Fracture-resistant monolithic dental crowns.

    PubMed

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  9. Hexafluorobenzene in comparison with perfluoro-15-crown-5-ether for repeated monitoring of oxygenation using 19F MRI in a mouse model.

    PubMed

    Mignion, Lionel; Magat, Julie; Schakman, Olivier; Marbaix, Etienne; Gallez, Bernard; Jordan, Bénédicte F

    2013-01-01

    Hexafluorobenzene (HFB) and perfluoro-15-crown-5-ether (15C5) were compared as fluorine reporter probes of tissue oxygenation using (19)F MRI for dynamic assessment of muscle oxygenation, with special focus on muscle tissue toxicity of the probes, and consecutive alteration of animal behavior. The latter were also compared in terms of sensitivity to changes in oxygenation as well as of signal-to-noise ratio for accurate pO(2) measurements. For that purpose, mouse muscles were imaged at 11.7 T, at 2- and 36-h after intramuscular injection of HFB or 15C5. Histological analysis of the muscle tissue revealed a lack of toxicity for 15C5 from 2 up to 36-h postinjection, whereas HFB induced tissue necrosis, blood clots and thrombosis as soon as 24-h postinjection. This muscle toxicity led to a limitation in mice mobility 24-h after injection of HFB as evidenced by behavioral testing (open-field, grip strength, and catwalk tests), which was not the case after 15C5 intramuscular injection. Finally, pO(2) measurements assessed 2-h postinjection showed consistent values with both probes, evidencing cross-validation of the (19)F MRI oximetry technique for acute measurements. However, the measurement at 36-h was hampered for HFB, which showed significant lower values of muscle pO(2), whereas 15C5 was able to reliably assess muscle pO(2) at 36-h postinjection. Copyright © 2012 Wiley Periodicals, Inc.

  10. Wear Behavior of Ceramic CAD/CAM Crowns and Natural Antagonists

    PubMed Central

    Naumova, Ella A.; Schneider, Stephan; Arnold, Wolfgang H.; Piwowarczyk, Andree

    2017-01-01

    Objective: Evaluation of wear behavior of computer-aided design/computer-aided manufacturing (CAD/CAM) crowns from various restorative materials and natural antagonists. Method: Full CAD/CAM crowns fabricated with nanoceramic resin (Lava Ultimate (LU)), a glass ceramic in a resin interpenetrating matrix (Vita Enamic (VE)) and a lithium silicate reinforced ceramic enriched with zirconia (Vita Suprinity (VS)) were cemented on human molars. The crown and antagonists were subjected to simulated chewing. 3D data sets, before and after the chewing simulation, were generated and matched. Occlusal surface roughness, vertical and volume loss of the crowns and antagonists were analyzed. Results: Crown roughness was significantly different between the LU and VE groups after chewing simulation. Crown vertical loss differed in all groups. The highest crown volume loss was found in the LU group, and the lowest in the VE group. Comparisons between the LU and VE groups and the LU and VS groups were significantly different. The highest antagonist volume loss was reached in the VE group, the lowest was in the LU group. Conclusion: Roughness increased after chewing simulation. LU crowns are the most natural antagonist-friendly; these were the most susceptible to vertical and volume loss. Of the tested materials, the VE crowns are the most stable regarding occlusion. PMID:28772602

  11. Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology.

    PubMed

    Zahran, Mohammed; El-Mowafy, Omar; Tam, Laura; Watson, Philip A; Finer, Yoav

    2008-07-01

    All-ceramic crowns are subject to fracture during function, especially in the posterior area. The use of yttrium-stabilized zirconium-oxide ceramic as a substructure for all-ceramic crowns to improve fracture resistance is unproven. The aim of this study was to compare fracture strength and fatigue resistance of new zirconium-oxide and feldspathic all-ceramic crowns made with computer-aided design/computer-aided manufacturing (CAD/CAM). An ivorine molar was prepared to receive an all-ceramic crown. Using epoxy resin, 40 replication dies were made of the prepared tooth. Twenty feldspathic all-ceramic crowns (Vita Mark II) (VMII) and 20 zirconium-oxide crown copings (In-Ceram YZ) (YZ) were made using CAD/CAM technique (CEREC-3D). The YZ copings were sintered and veneered manually with a fine-particle ceramic (VM9). All crowns were cemented to their respective dies using resin cement (Panavia F 2.0). Ten crowns in each group were subjected to compressive fatigue loading in a universal testing machine (instron). The other ten crowns from each group were loaded to fracture at a crosshead speed of 1 mm/min. Data were statistically analyzed using independent t-test and Fisher's exact test at alpha= 0.05. There was a significant difference between the survival rates of the two materials during the fatigue test (p < 0.001). All VMII crowns survived without any crack formation, while all YZ crowns fractured (40%) or developed cracks (60%). All the YZ crown fractures occurred within the veneering layer during the fatigue test. There was no significant difference in mean fracture load between the two materials (p= 0.268). Mean fracture loads (standard deviation) in N were: 1459 (492) for YZ crowns and 1272 (109) for VMII crowns. The performance of VMII crowns was superior to YZ crowns in the fatigue test. The premature fractures and cracks of the YZ crowns were attributed to weakness in the YZ veneer layer or in the core/veneer bond.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuz'mina, L. G.; Fedorova, O. A.; Andryukhina, E. N.

    A comparative study of the molecular geometry and crystal packing of crown-containing styryl heterocycles and their dimethoxy substituted analogues is performed. It is established that all the compounds exhibit an identical type of distortions of the geometry of the central styryl fragment. These are the localization of the {pi}-electron density at the ethylene bond and the bond alternation in a half of the phenyl ring due to the conjugation of lone electron pairs of the oxygen substituents with the chromophore system of the molecule. A comparative analysis of the crystal packings of the compounds reveals extended separate hydrophilic and hydrophobicmore » regions. The hydrophilic regions are built of crown ether fragments, and the hydrophobic regions consist of {pi}-conjugated and aromatic molecular fragments. The hydrophobic regions are characterized by a wide variety of packing motifs, among which stacking packing is absent. For two compounds, the formation of sandwich dimers that are preorganized to enter into the photochemical [2 + 2]cycloaddition reaction is observed.« less

  13. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate

    PubMed Central

    GOMES, Rafael Soares; de SOUZA, Caroline Mathias Carvalho; BERGAMO, Edmara Tatiely Pedroso; BORDIN, Dimorvan; DEL BEL CURY, Altair Antoninha

    2017-01-01

    Abstract Zirconia-reinforced lithium silicate (ZLS) is a ceramic that promises to have better mechanical properties than other materials with the same indications as well as improved adaptation and fracture strength. Objective In this study, marginal and internal misfit and fracture load with and without thermal-mechanical aging (TMA) of monolithic ZLS and lithium disilicate (LDS) crowns were evaluated. Material and methods Crowns were milled using a computer-aided design/computer-aided manufacturing system. Marginal gaps (MGs), absolute marginal discrepancy (AMD), axial gaps, and occlusal gaps were measured by X-ray microtomography (n=8). For fracture load testing, crowns were cemented in a universal abutment, and divided into four groups: ZLS without TMA, ZLS with TMA, LDS without TMA, and LDS with TMA (n=10). TMA groups were subjected to 10,000 thermal cycles (5-55°C) and 1,000,000 mechanical cycles (200 N, 3.8 Hz). All groups were subjected to compressive strength testing in a universal testing machine at a crosshead speed of 1 mm/min until failure. Student’s t-test was used to examine misfit, two-way analysis of variance was used to analyze fracture load, and Pearson’s correlation coefficients for misfit and fracture load were calculated (α=0.05). The materials were analyzed according to Weibull distribution, with 95% confidence intervals. Results Average MG (p<0.001) and AMD (p=0.003) values were greater in ZLS than in LDS crowns. TMA did not affect the fracture load of either material. However, fracture loads of ZLS crowns were lower than those of LDS crowns (p<0.001). Fracture load was moderately correlated with MG (r=-0.553) and AMD (r=-0.497). ZLS with TMA was least reliable, according to Weibull probability. Conclusion Within the limitations of this study, ZLS crowns had lower fracture load values and greater marginal misfit than did LDS crowns, although these values were within acceptable limits. PMID:28678947

  14. Ligand reprogramming in dinuclear helicate complexes: a consequence of allosteric or electrostatic effects?

    PubMed

    Jeffery, John C; Rice, Craig R; Harding, Lindsay P; Baylies, Christian J; Riis-Johannessen, Thomas

    2007-01-01

    The ditopic ligand 6,6'-bis(4-methylthiazol-2-yl)-3,3'-([18]crown-6)-2,2'-bipyridine (L(1)) contains both a potentially tetradentate pyridyl-thiazole (py-tz) N-donor chain and an additional "external" crown ether binding site which spans the central 2,2'-bipyridine unit. In polar solvents (MeCN, MeNO(2)) this ligand forms complexes with Zn(II), Cd(II), Hg(II) and Cu(I) ions via coordination of the N donors to the metal ion. Reaction with both Hg(II) and Cu(I) ions results in the self-assembly of dinuclear double-stranded helicate complexes. The ligands are partitioned by rotation about the central py--py bond, such that each can coordinate to both metals as a bis-bidentate donor ligand. With Zn(II) ions a single-stranded mononuclear species is formed in which one ligand coordinates the metal ion in a planar tetradentate fashion. Reaction with Cd(II) ions gives rise to an equilibrium between both the dinuclear double-stranded helicate and the mononuclear species. These complexes can further coordinate s-block metal cations via the remote crown ether O-donor domains; a consequence of which are some remarkable changes in the binding modes of the N-donor domains. Reaction of the Hg(II)- or Cd(II)-containing helicate with either Ba(2+) or Sr(2+) ions effectively reprogrammes the ligand to form only the single-stranded heterobinuclear complexes [MM'(L(1))](4+) (M=Hg(II), Cd(II); M'=Ba(2+), Sr(2+)), where the transition and s-block cations reside in the N- and O-donor sites, respectively. In contrast, the same ions have only a minor structural impact on the Zn(II) species, which already exists as a single-stranded mononuclear complex. Similar reactions with the Cd(II) system result in a shift in equilibrium towards the single-stranded species, the extent of which depends on the size and charge of the s-block cation in question. Reaction of the dicopper(I) double-stranded helicate with Ba(2+) shows that the dinuclear structure still remains intact but the pitch length is significantly increased.

  15. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  16. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS.

    PubMed

    Wu, Wenzheng; Geng, Peng; Li, Guiwei; Zhao, Di; Zhang, Haibo; Zhao, Ji

    2015-09-01

    Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone (PEEK), which could surmount these shortcomings. This paper is devoted to studying the influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK. Samples with three different layer thicknesses (200, 300 and 400 μm) and raster angles (0°, 30° and 45°) were built using a polyether-ether-ketone (PEEK) 3D printing system and their tensile, compressive and bending strengths were tested. The optimal mechanical properties of polyether-ether-ketone (PEEK) samples were found at a layer thickness of 300 μm and a raster angle of 0°. To evaluate the printing performance of polyether-ether-ketone (PEEK) samples, a comparison was made between the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) and acrylonitrile butadiene styrene (ABS) parts. The results suggest that the average tensile strengths of polyether-ether-ketone (PEEK) parts were 108% higher than those for acrylonitrile butadiene styrene (ABS), and compressive strengths were 114% and bending strengths were 115%. However, the modulus of elasticity for both materials was similar. These results indicate that the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) are superior to 3D-printed ABS.

  17. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS

    PubMed Central

    Wu, Wenzheng; Geng, Peng; Li, Guiwei; Zhao, Di; Zhang, Haibo; Zhao, Ji

    2015-01-01

    Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone (PEEK), which could surmount these shortcomings. This paper is devoted to studying the influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK. Samples with three different layer thicknesses (200, 300 and 400 μm) and raster angles (0°, 30° and 45°) were built using a polyether-ether-ketone (PEEK) 3D printing system and their tensile, compressive and bending strengths were tested. The optimal mechanical properties of polyether-ether-ketone (PEEK) samples were found at a layer thickness of 300 μm and a raster angle of 0°. To evaluate the printing performance of polyether-ether-ketone (PEEK) samples, a comparison was made between the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) and acrylonitrile butadiene styrene (ABS) parts. The results suggest that the average tensile strengths of polyether-ether-ketone (PEEK) parts were 108% higher than those for acrylonitrile butadiene styrene (ABS), and compressive strengths were 114% and bending strengths were 115%. However, the modulus of elasticity for both materials was similar. These results indicate that the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) are superior to 3D-printed ABS. PMID:28793537

  18. Influence of different post core materials on the color of Empress 2 full ceramic crowns.

    PubMed

    Ge, Jing; Wang, Xin-zhi; Feng, Hai-lan

    2006-10-20

    For esthetic consideration, dentin color post core materials were normally used for all-ceramic crown restorations. However, in some cases, clinicians have to consider combining a full ceramic crown with a metal post core. Therefore, this experiment was conducted to test the esthetical possibility of applying cast metal post core in a full ceramic crown restoration. The color of full ceramic crowns on gold and Nickel-Chrome post cores was compared with the color of the same crowns on tooth colored post cores. Different try-in pastes were used to imitate the influence of a composite cementation on the color of different restorative combinations. The majority of patients could not detect any color difference less than DeltaE 1.8 between the two ceramic samples. So, DeltaE 1.8 was taken as the objective evaluative criterion for the evaluation of color matching and patients' satisfaction. When the Empress 2 crown was combined with the gold alloy post core, the color of the resulting material was similar to that of a glass fiber reinforced resin post core (DeltaE = 0.3). The gold alloy post core and the try-in paste did not show a perceptible color change in the full ceramic crowns, which indicated that the color of the crowns might not be susceptible to change between lab and clinic as well as during the process of composite cementation. Without an opaque covering the Ni-Cr post core would cause an unacceptable color effect on the crown (DeltaE = 2.0), but with opaque covering, the color effect became more clinically satisfactory (DeltaE = 1.8). It may be possible to apply a gold alloy post core in the Empress 2 full ceramic crown restoration when necessary. If a non-extractible Ni-Cr post core exists in the root canal, it might be possible to restore the tooth with an Empress 2 crown after covering the labial surface of the core with one layer of opaque resin cement.

  19. Biaxial deformation behaviour of poly-ether-ether-ketone

    NASA Astrophysics Data System (ADS)

    Turner, Josh; Menary, Gary; Martin, Peter

    2018-05-01

    The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).

  20. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes.

    PubMed

    Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E

    2017-04-12

    Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca 2+ , Mg 2+ , and Zn 2+ ) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG 8k -co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.

  1. Preparation and characterization of poly (arylene ether isoxazole)s by fluoride ion-mediated aromatic nucleophilic displacement reactions

    NASA Technical Reports Server (NTRS)

    Herbert, C. G.; Bass, R. G.

    1994-01-01

    As part of a continuing effort to prepare novel thermally stable high-performance polymers, poly(arylene ether isoxazole)s have been prepared by fluoride ion-catalyzed aromatic nucleophilic substitution reactions with bis(trimethylsiloxyphenyl) isoxazoles and activated bisarylhalides in diphenyl sulfone. Initial investigation involving the preparation of these materials with isoxazole bisphenols and activated bisarylhalides in the presence of potassium carbonate indicated that, under reaction conditions necessary to prepare high-molecular-weight materials, the isoxazole monomer was converted to an enamino ketone. This side reaction was avoided by using fluoride as a base. However, trimethylsilyl ether derivatives of the isoxazole bisphenols were required in these polymerizations for the preparation of high-molecular-weight materials. Moderate to high inherent viscosity eta(sub inh): 0.43-0.87 dl/g) materials with good thermal stability (air: 409-477 C, helium: 435-512 C) can be prepared by the silyl ether method. Glass transition temperatures ranged from 182 to 225 C for polymers with phenyl pendants and from 170 to 214 C for those without. Molecular weight control by 2% endcapping and the incorporation of a phenyl pendant at the 4 position of the isoxazole is necessary to yield polymers soluble in polar aprotic solvents at room temperature. There is evidence, however, indicating the existence of crosslinks between the polymer chains when the silyl ether approach is utilized.

  2. Fracture resistance of five pin-retained core build-up materials on teeth with and without extracoronal preparation.

    PubMed

    Burke, F J; Shaglouf, A G; Combe, E C; Wilson, N H

    2000-01-01

    Core build-ups should provide satisfactory strength and resistance to fracture both before and after crown preparation. This paper examines the resistance to fracture of core build-ups in different materials and the fracture resistance of core build-ups when these have been reduced for full crown preparation. Standardized core build-ups were made on groups of extracted molar teeth of similar size, with 10 teeth per group. Three resin-composite (prisma APH: Dentsply, Weybridge, UK; Ti-Core, Essential Dental Systems, NJ, US and Coradent, Vivadent, Liechtenstein), one cermet (Ketac-Silver, ESPE GmbH, Seefeld, Germany) and one amalgam material (Duralloy, Degussa Ltd, Cheshire, UK). These specimens were subjected to compressive force on a universal testing machine and the force at fracture noted. Standardized full crown preparations were made on a further five groups of core build-up specimens using the same materials as above. These prepared specimens were subjected to compressive force on a universal testing machine and the force to fracture noted. The results indicated that amalgam core build-ups demonstrated higher fracture resistance than the other materials examined. There was a general decrease in the fracture strength of the specimens following crown preparation, with the teeth restored with the amalgam core build-ups showing a greater percentage reduction in fracture strength than the other materials tested. Prepared core build-ups in a hybrid composite material provided the highest fracture resistance. The cermet material used provided the lowest resistance to fracture in both the core build-up and crown preparation specimens. In terms of fracture resistance, no advantage was apparent in using the two composite materials designated as being specifically appropriate for core build-ups.

  3. Multistate λ-local-elevation umbrella-sampling (MS-λ-LEUS): method and application to the complexation of cations by crown ethers.

    PubMed

    Bieler, Noah S; Tschopp, Jan P; Hünenberger, Philippe H

    2015-06-09

    An extension of the λ-local-elevation umbrella-sampling (λ-LEUS) scheme [ Bieler et al. J. Chem. Theory Comput. 2014 , 10 , 3006 ] is proposed to handle the multistate (MS) situation, i.e. the calculation of the relative free energies of multiple physical states based on a single simulation. The key element of the MS-λ-LEUS approach is to use a single coupling variable Λ controlling successive pairwise mutations between the states of interest in a cyclic fashion. The Λ variable is propagated dynamically as an extended-system variable, using a coordinate transformation with plateaus and a memory-based biasing potential as in λ-LEUS. Compared to other available MS schemes (one-step perturbation, enveloping distribution sampling and conventional λ-dynamics) the proposed method presents a number of important advantages, namely: (i) the physical states are visited explicitly and over finite time periods; (ii) the extent of unphysical space required to ensure transitions is kept minimal and, in particular, one-dimensional; (iii) the setup protocol solely requires the topologies of the physical states; and (iv) the method only requires limited modifications in a simulation code capable of handling two-state mutations. As an initial application, the absolute binding free energies of five alkali cations to three crown ethers in three different solvents are calculated. The results are found to reproduce qualitatively the main experimental trends and, in particular, the experimental selectivity of 18C6 for K(+) in water and methanol, which is interpreted in terms of opposing trends along the cation series between the solvation free energy of the cation and the direct electrostatic interactions within the complex.

  4. Electroregulated Metal-Binding with a Crown Ether Tetrathiafulvalene Derivative: Toward Electrochemically Addressed Metal Cation Sponges.

    PubMed

    Le Derf, Franck; Mazari, Miloud; Mercier, Nicolas; Levillain, Eric; Richomme, Pascal; Becher, Jan; Garín, Javier; Orduna, Jesus; Gorgues, Alain; Sallé, Marc

    1999-12-27

    A redox responsive ligand incorporating the tetrathiafulvalene unit has been synthesized. The crystal structure of the free ligand (Z)-1 (C(20)H(30)O(5)S(8), triclinic P&onemacr;, Z = 2, a = 9.087(6) Å, b = 11.637(7) Å, c = 14.370(8) Å, alpha = 65.54(3) degrees, beta = 82.32(5) degrees, gamma = 84.18(6) degrees, V = 1368 Å(3)) shows the redox-active tetrathiafulvalene core to be essentially planar, which allows observation of two reversible one-electron processes upon electrochemical oxidation. The efficiency of this system in the control of the reversible complexation/expulsion sequence of a metallic cation (i.e., Ba(2+)) has been made possible thanks to a combination of (a) an unprecedented high coordination ability among tetrathiafulvalene-based macrocycles as determined by LSI mass spectrometry (log K degrees = 3.5, NBA-matrix) as well as by solution investigations ((1)H NMR and cyclic voltammetry titration studies), which remarkably converge to similar binding constant values (i.e., log K degrees = 4.2-4.3), and (b) reversible metal cation expulsion upon electrochemical oxidation to the dicationic state. A channel-like solid-state structure is observed for the Ba(2+) complex (C(20)H(30)O(5)S(8), Ba(2+)(CF(3)SO(3))(2)(2-), (H(2)O)(2), CD(3)CN, monoclinic C2/c, Z = 8, a = 45.66(1) Å, b = 8.897(5) Å, c = 23.124(8) Å, beta = 105.54(4) degrees, V = 9050 Å(3)), which results from the segregated stacking mode of the crown ether and the redox-active tetrathiafulvalene subunits, respectively.

  5. Hygroscopic expansion of self-adhesive resin cements and the integrity of all-ceramic crowns.

    PubMed

    Kirsten, Magdalena; Matta, Ragai Edward; Belli, Renan; Lohbauer, Ulrich; Wichmann, Manfred; Petschelt, Anselm; Zorzin, José

    2018-04-27

    Low pH neutralization and subsequent remnant hydrophilicity can lead to hygroscopic expansion of self-adhesive resin cements (SARCs) after water storage. The aim of this in vitro study was to investigate the effects of hygroscopic expansion of SARCs, used as luting and partial core build-up material, on integrity and cement gap thickness increase of all-ceramic CAD/CAM crowns. Human third molars (n=48) were prepared and anatomical all-ceramic CAD/CAM crowns were manufactured (VITABLOCS Mark II, VITA Zahnfabrik). Crowns internal surfaces were HF etched and silanized. The prepared teeth with their respective crowns were divided into 6 groups (n=8). In groups 1, 3 and 5 the coronal dentin was removed to simulate a partial core build-up. Groups 1 and 2 were luted with iCEM (Heraeus Kulzer), 3 and 4 with RelyX Unicem 2 Automix (3M), 5 and 6 with Variolink Esthetic DC (Ivoclar Vivadent). All specimens were dual cured and stored in distilled water at 37°C. Crown integrity was controlled at baseline and in regular intervals until 180 days. Cement gap thickness was measured using an optical 3D scanner (ATOS Triple scan, GOM) at baseline and after 180 days. Crown integrity was statistically analysed using Kaplan-Meier survival analysis and cement gap thickness increase using two-way ANOVA (α=0.05). After 180 days storage, crack formation was observed in all specimens of group 1 (mean survival time of 85.5 days), in one specimen of group 2 and in two specimens of group 4. Two-way ANOVA analysis revealed a statistically significant interaction between material type and build-up on cement gap size increase for iCEM. Within the limits of this study, the application of SARCs with low pH neutralization as partial build-up material under CAD/CAM crowns is not recommended for clinical use. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  6. Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.

  7. Fracture Strength of Monolithic All-Ceramic Crowns on Titanium Implant Abutments.

    PubMed

    Weyhrauch, Michael; Igiel, Christopher; Scheller, Herbert; Weibrich, Gernot; Lehmann, Karl Martin

    2016-01-01

    The fracture strengths of all-ceramic crowns cemented on titanium implant abutments may vary depending on crown materials and luting agents. The purpose of this study was to examine differences in fracture strength among crowns cemented on implant abutments using crowns made of seven different monolithic ceramic materials and five different luting agents. In total, 525 crowns (75 each of Vita Mark II, feldspathic ceramic [FSC]; Ivoclar Empress CAD, leucite-reinforced glass ceramic [LrGC]; Ivoclar e.max CAD, lithium disilicate [LiDS]; Vita Suprinity, presintered zirconia-reinforced lithium silicate ceramic [PSZirLS]; Vita Enamic, polymer-reinforced fine-structure feldspathic ceramic [PolyFSP], Lava Ultimate; resin nanoceramic [ResNC], Celtra Duo; fully crystallized zirconia-reinforced lithium silicate [FcZirLS]) were milled using a CAD/CAM system. The inner surfaces of the crowns were etched and silanized. Titanium implant abutments were fixed on implant analogs, and airborne-particle abrasion was used on their exterior specific adhesion surfaces (Al2O3, 50 μm). Then, the abutments were degreased and silanized. The crowns were cemented on the implant abutments using five luting agents (Multilink Implant, Variolink II, RelyX Unicem, GC FujiCEM, Panavia 2.0). After thermocycling for 5,000 cycles (5 to 55°C, 30 seconds dwell time), the crowns were subjected to fracture strength testing under static load using a universal testing machine. Statistical analyses were performed using analysis of variance (α = .0002) and the Bonferroni correction. No significant difference among the luting agents was found using the different all-ceramic materials. Ceramic materials LiDS, PSZirLS, PolyFSP, and ResNC showed significantly higher fracture strength values compared with FSC, FcZirLS, and LrGC. The PSZirLS especially showed significantly better results. Within the limitations of this study, fracture strength was not differentially affected by the various luting agents. However, the fracture strength was significantly higher for PSZirLS, PolyFSP, ResNC, and LiDS ceramics than for the FSP, LrGC, and the FcZirLS ceramic with all luting agents tested.

  8. [Finite element stress analysis of all-ceramic continuous crowns of the lower anterior teeth in differential shoulder thickness].

    PubMed

    Ouyang, Shao-bo; Wang, Jun; Zhang, Hong-bin; Liao, Lan; Zhu, Hong-shui

    2014-04-01

    To investigate the stress distributions under load in 3 types of all-ceramic continuous crowns of the lower anterior teeth with differential shoulder thickness. Cone-beam CT (CBCT) was used to scan the in vitro mandibular central incisors, and achieve three-dimensional finite element model of all-ceramic continuous crowns with different shoulder width by using Mimics, Abaqus software. Different load conditions were simulated based on this model to study the effect of shoulder width variation on finite element analysis of 3 kinds of different all-ceramic materials of incisors fixed continuous crowns of the mandibular. Using CBCT, Mimics10.01 software and Abaqus 6.11 software, three-dimensional finite element model of all-ceramic continuous crowns of the mandibular incisor, abutment, periodontal ligament and alveolar bone was established. Different ceramic materials and various shoulder width had minor no impact on the equivalent stress peak of periodontal membrane, as well as alveolar bone. With the same shoulder width and large area of vertical loading of 120 N, the tensile stress was the largest in In-Ceram Alumina, followed by In-Ceram Zirconia and the minimum was IPS.Empress II. Under large area loading of 120 N 45° labially, when the material was IPS.Empress II, with the shoulder width increased, the porcelain plate edge of the maximum tensile stress value increased, while the other 2 materials had no obvious change. Finite element model has good geometric similarity. In the setting range of this study, when the elastic modulus of ceramic materials is bigger, the tensile stress of the continuous crown is larger. Supported by Research Project of Department of Education, Jiangxi Province (GJJ09130).

  9. In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications.

    PubMed

    Thomas, V; Kumari, T V; Jayabalan, M

    2001-01-01

    The effect of physical cross-linking in candidate cycloaliphatic and hydrophobic poly(urethane urea) (4,4'-methylenebis(cyclohexylisocyanate), H(12)MDI/hydroxy-terminated polybutadiene, HTPBD/hexamethylenediamine, HDA) and poly(ether urethane urea)s (H(12)MDI/HTPBD-PTMG/HDA) on the in vitro calcification and blood-material interaction was studied. All the candidate poly(urethane urea)s and poly(ether urethane urea)s elicit acceptable hemolytic activity, cytocompatibility, calcification, and blood compatibility in vitro. The studies on blood-material interaction reveal that the present poly(urethane urea)s are superior to polystyrene microtiter plates which were used for the studies on blood-material interaction. The present investigation reveals the influence of physical cross-link density on biological interaction differently with poly(urethane urea) and poly(ether urethane urea)s. The higher the physical cross-link density in the poly(urethane urea)s, the higher the calcification and consumption of WBC in whole blood. On the other hand, the higher the physical cross-link density in the poly(ether urethane urea)s, the lesser the calcification and consumption of WBC in whole blood. However a reverse of the above trend has been observed with the platelet consumption in the poly(urethane urea)s and poly(ether urethane urea)s.

  10. A fluorescent combinatorial logic gate with Na+, H+-enabled OR and H+-driven low-medium-high ternary logic functions.

    PubMed

    Spiteri, Jasmine M A; Mallia, Carl J; Scerri, Glenn J; Magri, David C

    2017-12-06

    A novel fluorescent molecular logic gate with a 'fluorophore-spacer 1 -receptor 1 -spacer 2 -receptor 2 ' format is demonstrated in 1 : 1 (v/v) methanol/water. The molecule consists of an anthracene fluorophore, and tertiary alkyl amine and N-(2-methoxyphenyl)aza-15-crown-5 ether receptors. In the presence of threshold concentrations of H + and Na + , the molecule switches 'on' as an AND logic gate with a fluorescence quantum yield of 0.21 with proton and sodium binding constants of log β H+ = 9.0 and log β Na+ = 3.2, respectively. At higher proton levels, protonation also occurs at the anilinic nitrogen atom ether with a log β H+ = 4.2, which allows for Na + , H + -enabled OR (OR + AND circuit) and H + -driven ternary logic functions. The reported molecule is compared and contrasted to classic anthracene-based Na + and H + logic gates. We propose that such logic-based molecules could be useful tools for probing the vicinity of Na + , H + antiporters in biological systems.

  11. Synergistic adsorption of heavy metal ions and organic pollutants by supramolecular polysaccharide composite materials from cellulose, chitosan and crown ether

    PubMed Central

    Mututuvari, Tamutsiwa M.; Tran, Chieu D.

    2013-01-01

    We have developed a simple one-step method to synthesize novel supramolecular polysaccharide composites from cellulose (CEL), chitosan (CS) and benzo-15-crown 5 (B15C5). Butylmethylimidazolium chloride [BMIm+Cl−], an ionic liquid (IL), was used as a sole solvent for dissolution and preparation of the composites. Since majority of [BMIm+Cl−] used was recovered for reuse, the method is recyclable. The [CEL/CS + B15C5] composites obtained retain properties of their components, namely superior mechanical strength (from CEL), excellent adsorption capability for heavy metal ions and organic pollutants (from B15C5 and CS). More importantly, the [CEL/CS + B15C5] composites exhibit truly supramolecular properties. By itself CS, CEL and B15C5 can effectively adsorb Cd2+, Zn2+ and 2,4,5-trichlorophenol. However, adsorption capability of the composite was substantially and synergistically enhanced by adding B15C5 to either CEL and/or CS. That is, the adsorption capacity (qe values) for Cd2+ and Zn2+ by [CS + B15C5], [CEL + B15C5] and [CEL + CS + B15C5] composites are much higher than combined qe values of individual CS, CEL and B15C5 composites. It seems that B15C5 synergistically interact with CS (or CEL) to form more stable complexes with Cd2+ (or Zn2+), and as a consequence, the [CS + B15C5] (or the [CEL + B15C5]) composite can adsorb relatively larger amount Cd2+ (or Zn2+). Moreover, the pollutants adsorbed on the composites can be quantitatively desorbed to enable the [CS + CEL + B15C5] composites to be reused with similar adsorption efficiency. PMID:24333678

  12. Effect of the shades of background substructures on the overall color of zirconia-based all-ceramic crowns

    PubMed Central

    Tulapornchai, Chantana; Mamani, Jatuphol; Kamchatphai, Wannaporn; Thongpun, Noparat

    2013-01-01

    PURPOSE The objective of this study was to determine the effect of the color of a background substructure on the overall color of a zirconia-based all-ceramic crown. MATERIALS AND METHODS Twenty one posterior zirconia crowns were made for twenty subjects. Seven premolar crowns and six molar crowns were cemented onto abutments with metal post and core in the first and second group. In the third group, eight molar crowns were cemented onto abutments with a prefabricated post and composite core build-up. The color measurements of all-ceramic crowns were made before try-in, before and after cementation. A repeated measure ANOVA was used for a statistical analysis of a color change of all-ceramic crowns at α=.05. Twenty four zirconia specimens, with different core thicknesses (0.4-1 mm) were also prepared to obtain the contrast ratio of zirconia materials after veneering. RESULTS L*, a*, and b* values of all-ceramic crowns cemented either on a metal cast post and core or on a prefabricated post did not show significant changes (P>.05). However, the slight color changes of zirconia crowns were detected and represented by ΔE*ab values, ranging from 1.2 to 3.1. The contrast ratios of zirconia specimens were 0.92-0.95 after veneering. CONCLUSION No significant differences were observed between the L*, a*, and b* values of zirconia crowns cemented either on a metal cast post and core or a prefabricated post and composite core. However, the color of a background substructure could affect the overall color of posterior zirconia restorations with clinically recommended core thickness according to ΔE*ab values. PMID:24049574

  13. Nuclear chemistry research and spectroscopy with radioactive sources. Sixteenth annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, R.W.

    1980-10-31

    Nuclear spectroscopic studies included the decay of /sup 201/Po to /sup 201/Bi, decay of /sup 201/At, decay of /sup 187/Au, and g/sub 7/2/ intruder band in /sup 109/Ag. A systematic comparison was conducted of the Interacting Boson-Fermion Approximation model predictions with experiment on neutron-deficient odd-A gold isotopes. An international comparison of /sup 133/Ba ..gamma..-ray standards was completed. L/sub 1/, L/sub 2/, and L/sub 3/ subshells were studied, and the decay energy of /sup 207/Bi is being measured. Carrier-free /sup 18/F has been prepared in crown ether solution. (DLC)

  14. Phenylethynl-terminated poly(arylene ethers)

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Bryant, Robert G. (Inventor); Hergenrother, Paul M. (Inventor)

    1993-01-01

    Phenylethynyl-terminated poly(arylene ethers) are prepared in a wide range of molecular weights by adjusting monomer ratio and adding an appropriate amount of 4-fluoro- 4'-phenylethynyl benzophenone during polymer synthesis. The resulting phenylethynyl-terminated poly(arylene ethers) react and crosslink upon curing for one hour at 350 C to provide materials with improved solvent resistance, higher modulus, and better high temperature properties than the linear, uncrosslinked polymers.

  15. Estimating aspen crown fuels in northeastern Minnesota.

    Treesearch

    Robert M. Loomis; Peter J. Roussopoulos

    1978-01-01

    An application section presents tables for estimating foliage and branchwood (wood plus bark) of aspen tree crowns; the branchwood is subdivided by (1) living and dead material and by (2) living material alone into diameter size groups. A documentation section describes the derivation of equations and compares the equations derived with those derived by other...

  16. Influence of different restorative materials on the stress distribution in dental implants.

    PubMed

    Datte, Carlos-Eduardo; Tribst, João-Paulo-Mendes; Dal Piva, Amanda-Maria-de Oliveira; Nishioka, Renato-Sussumu; Bottino, Marco-Antonio; Evangelhista, Alexandre-Duarte M; Monteiro, Fabrício M de M; Borges, Alexandre-Luiz-Souto

    2018-05-01

    To assist clinicians in deciding the most suitable restorative materials to be used in the crowns and abutment in implant rehabilitation. For finite element analysis (FEA), a regular morse taper implant was created using a computer aided design software. The implant was inserted at the bone model with 3 mm of exposed threads. An anatomic prosthesis representing a first maxillary molar was modeled and cemented on the solid abutment. Considering the crown material (zirconia, chromium-cobalt, lithium disilicate and hybrid ceramic) and abutment (Titanium and zirconia), the geometries were multiplied, totaling eight groups. In order to perform the static analysis, the contacts were considered bonded and each material was assigned as isotropic. An axial load (200 N) was applied on the crown and fixation occurred on the base of the bone. Results using Von-Mises criteria and micro strain values were obtained. A sample identical to the CAD model was made for the Strain Gauge (SG) analysis; four SGs were bonded around the implant to obtain micro strain results in bone tissue. FEA results were 3.83% lower than SG. According to the crown material, it is possible to note that the increase of elastic modulus reduces the stress concentration in all system without difference for bone. Crown materials with high elastic modulus are able to decrease the stress values in the abutments while concentrates the stress in its structure. Zirconia abutments tend to concentrate more stress throughout the prosthetic system and may be more susceptible to mechanical problems than titanium. Key words: Finite element analysis, dental implants, ceramic.

  17. Isolation and characterization of an ether-type polyurethane-degrading micro-organism and analysis of degradation mechanism by Alternaria sp.

    PubMed

    Matsumiya, Y; Murata, N; Tanabe, E; Kubota, K; Kubo, M

    2010-06-01

    To degrade ether-type polyurethane (ether-PUR), ether-PUR-degrading micro-organism was isolated. Moreover, ether-PUR-degrading mechanisms were analysed using model compounds of ether-PUR. A fungus designated as strain PURDK2, capable of changing the configuration of ether-PUR, has been isolated. This isolated fungus was identified as Alternaria sp. Using a scanning electron microscope, the grid structure of ether-PUR was shown to be melted and disrupted by the fungus. The degradation of ether-PUR by the fungus was analysed, and the ether-PUR was degraded by the fungus by about 27.5%. To analyse the urethane-bond degradation by the fungus, a degraded product of ethylphenylcarbamate was analysed using GC/MS. Aniline and ethanol were detected by degradation with the supernatant, indicating that the fungus secreted urethane-bond-degrading enzyme(s). PURDK2 also degraded urea bonds when diphenylmethane-4,4'-dibutylurea was used as a substrate. The enzyme(s) from PURDK2 degraded urethane and urea bonds to convert the high molecular weight structure of ether-PUR to small molecules; and then the fungus seems to use the small molecules as an energy source. Ether-PUR-degrading fungus, strain PURDK2, was isolated, and the urethane- and urea-bonds-degrading enzymes from strain PURDK2 could contribute to the material recycling of ether-PUR.

  18. The effect of multicolored machinable ceramics on the esthetics of all-ceramic crowns.

    PubMed

    Reich, Sven; Hornberger, Helga

    2002-07-01

    Computer-aided design/computer-assisted machining systems offer the possibility of fabricating restorations from one machinable ceramic block. Whether multishaded blocks improve esthetic results and are a viable alternative to individually stained ceramics has not been fully determined. The aim of this investigation was to examine the effect of multishaded blocks on the esthetic appearance of all-ceramic CEREC crowns and compare these crowns with single-shade and stained restorations. Ten subjects were included in this study. For each subject, 6 different crowns were milled with the use of a CEREC machine. One crown was milled from each of the following machinable ceramic materials: CEREC Vitablocs Mark II in classic colors; Vitablocs Mark II in 3D-Master colors; Vitablocs Mark II in either classic or 3D-Master colors, with additional staining; Megadenta Bloxx multishaded; Mark II experimental multilayer; and an experimental multilayer leucite ceramic. Three independent examiners assessed the esthetic appearance of crowns fabricated to match each subject's anterior tooth shade. A scale of 1 to 6 was used to score the shade match and esthetic adaptation of each crown, with 1 representing excellent characteristics and 3.5 serving as the threshold for clinical acceptability. The examiners' scores were averaged, and the mean values were analyzed with the Wilcoxon signed rank test (P

  19. Quantization of bovine serum albumin by fluorescence enhancement effects and corresponding binding of macrocyclic host-protein assembly.

    PubMed

    Bardhan, Munmun; Misra, Tapas; Ganguly, Tapan

    2012-01-05

    The present paper reports the investigations on the spectroscopic behavior of the binary complexes of the dye aurintricarboxylic acid (ATA) with protein bovine serum albumin (BSA) and 18-crown 6 (CW) (ATA·BSA, ATA·CW) and the ternary complex ATA·CW·BSA by using UV-vis steady state and time resolved fluorescence spectroscopy. The primary aim of the work is to determine the protein (BSA) quantization by fluorescence enhancement method and investigate the 'enhancer' activity of crown ether (CW) on it to increase the resolution. Steady state and time resolved fluorescence measurements demonstrated how fluorescence intensity of ATA could be used for the determination of the protein BSA in aqueous solution. The binding of dye (probe/fluorescent medicinal molecule) with protein and the denaturing effect in the polar environment of acetonitrile of the dye protein complex act as drug binding as well as drug release activity. Apart from its basic research point of view, the present study also possesses significant importance and applications in the field of medicinal chemistry. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Thermodynamics and kinetics of gas storage in porous liquids

    DOE PAGES

    Zhang, Fei; Yang, Fengchang; Huang, Jingsong; ...

    2016-07-05

    The recent synthesis of organic molecular liquids with permanent porosity (Giri et al., Nature, 2015, 527, 216) opens up exciting new avenues for gas capture, storage, and separation. Using molecular dynamics simulations, we study the thermodynamics and kinetics for the storage of CH 4, CO 2, and N 2 molecules in porous liquids consisting of crown-ether substituted cage molecules in a 15-crown-5 solvent. It is found that the gas storage capacity per cage molecule follows the order of CH 4 > CO 2 > N 2, which does not correlate simply with the size of gas molecules. Different gas moleculesmore » are stored inside the cage differently, e.g., CO 2 molecules prefer the cage s core while CH 4 molecules favor both the core and the branch regions. All gas molecules considered can enter the cage essentially without energy barriers, and their dynamics inside the cage are only slightly hindered by the nanoscale confinement. In addition, all gas molecules can leave the cage on nanosecond time scale by overcoming a modest energy penalty. The molecular mechanisms of these observations are clarified.« less

  1. Thermodynamics and kinetics of gas storage in porous liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fei; Yang, Fengchang; Huang, Jingsong

    The recent synthesis of organic molecular liquids with permanent porosity (Giri et al., Nature, 2015, 527, 216) opens up exciting new avenues for gas capture, storage, and separation. Using molecular dynamics simulations, we study the thermodynamics and kinetics for the storage of CH 4, CO 2, and N 2 molecules in porous liquids consisting of crown-ether substituted cage molecules in a 15-crown-5 solvent. It is found that the gas storage capacity per cage molecule follows the order of CH 4 > CO 2 > N 2, which does not correlate simply with the size of gas molecules. Different gas moleculesmore » are stored inside the cage differently, e.g., CO 2 molecules prefer the cage s core while CH 4 molecules favor both the core and the branch regions. All gas molecules considered can enter the cage essentially without energy barriers, and their dynamics inside the cage are only slightly hindered by the nanoscale confinement. In addition, all gas molecules can leave the cage on nanosecond time scale by overcoming a modest energy penalty. The molecular mechanisms of these observations are clarified.« less

  2. [Research on the aging of all-ceramics restoration materials].

    PubMed

    Zhang, Dongjiao; Chen, Xinmin

    2011-10-01

    All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent functionality, aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.

  3. Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns.

    PubMed

    Kwon, Taek-Ka; Pak, Hyun-Soon; Yang, Jae-Ho; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun; Yeo, In-Sung

    2013-05-01

    All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. THE MEAN FRACTURE STRENGTHS WERE AS FOLLOWS: 54.9 ± 15.6 N for the Lava CAD/CAM zirconia crowns and 87.0 ± 16.0 N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain.

  4. Holographic evaluation of the marginal fits of complete crowns loaded at the central fossa

    NASA Astrophysics Data System (ADS)

    Chen, Terry Y.; Chang, Guan L.; Wu, Shih H.

    1995-05-01

    In dentistry, a defect of cementation on the margins of crowns accumulates bacterial plaque easily. This can result in recurrent caries and periodontal disease. In this paper holographic interferometry was applied to evaluate the effect of masticatory force on various complete crowns. Four complete molar crowns made from different materials (Au alloy, Pd-Ag alloy, Ni-Cr alloy, and porcelain fused to metal) were tested. The out-of-plane displacements of the crown specimens were measured by the method of multiple observations. The displacements measured range from 6 to 10 micrometers under normal load (25 N). However, the marginal openings of all four crowns were estimated to be less than 0.2 micrometers . In addition the defect of the crown was examined.

  5. [Two years clinical observation of a kind of castable ceramic--IPS Empress].

    PubMed

    Liu, Y; Li, Y; Nie, Y

    1999-03-01

    We used this material in clinic since 1995. Discussion on the prosthetic effects of the above-mentioned material to spreat it clinically. Through half to two years clinical observations to evaluate the effect of IPS Empress crowns in anterior teeth and inlays in posteriors. and Prosthesis made of this kind of material IPS Empress is one kind of excellent all-ceramic prosthetic material. IPS Empress also could be used in post crowns and the clinical effect was satisfactory.

  6. Evaluation of the fracture resistance of computer-aided design/computer-aided manufacturing monolithic crowns prepared in different cement thicknesses.

    PubMed

    Sagsoz, N Polat; Yanıkoglu, N

    2018-04-01

    The purpose of this study was to evaluate the fracture resistance of monolithic computer-aided design/computer-aided manufacturing (CAD/CAM) crowns that are prepared with different cement thickness. For this investigation, a human maxillary premolar tooth was selected. Master model preparation was performed with a demand bur under water spray. Master die was taken to fabricate 105 epoxy resin replicas. The crowns were milled using a CEREC 4 CAD/CAM system (Software Version, 4.2.0.57192). CAD/CAM crowns were made using resin nanoceramic, feldspathic glass ceramic, lithium disilicate, and leucite-reinforced ceramics. Each group was subdivided into three groups in accordance with three different cement thicknesses (30, 90, and 150 μm). Crowns milled out. Then RelyX ™ U200 was used as a luting agent to bond the crowns to the prepared samples. After one hour cementations, the specimens were stored in water bath at 37°C for 1 week before testing. Seven unprepared and unrestored teeth were kept and tested as a control group. A universal test machine was used to assume the fracture resistance of all specimens. The compressive load (N) that caused fracture was recorded for each specimen. Fracture resistance data were statistically analyzed by one-way ANOVA and two-factor interaction modeling test (α = 0.001). There are statistically significant differences between fracture resistances of CAD/CAM monolithic crown materials (P < 0.001). It is seen that cement thickness is not statistically significant for fracture resistance of CAD/CAM monolithic crowns (P > 0.001). CAD/CAM monolithic crown materials affected fracture resistance. Cement thickness (30, 90, and 150 μm) was not effective on fracture resistance of CAD/CAM monolithic crowns.

  7. Clinical performance of IPS-Empress 2 ceramic crowns inserted by general dental practitioners.

    PubMed

    Mansour, Yasar F; Al-Omiri, Mahmoud K; Khader, Yousef Saleh; Al-Wahadni, Ahed

    2008-05-01

    The aim of this study was to evaluate the clinical performance of IPS-Empress 2(R) all-ceramic crowns placed by general dental practitioners. Eighty-two IPS-Empress 2 crowns placed in 64 patients (27 females and 37 males) were evaluated. These crowns had been in place for 15.2 to 57.2 months (mean 25.3 months, SD=9.3). Survival analysis was conducted using the Kaplan-Meier method. Of the 82 crowns 93.9% were rated satisfactory. In terms of the integrity of the restorations, fracture was observed in three crowns and two showed a crack upon transillumination. Five crowns were rated unsatisfactory for color match; one for marginal adaptation; and none for discoloration, secondary caries, or sensitivity. IPS-Empress 2(R) is a suitable material to fabricate all-ceramic crowns; when these all-ceramic crowns were inserted by general dental practitioners, they functioned satisfactorily with low failure rates during an observation period ranging between 15.2 to 57.2 months.

  8. Holographic evaluation of the marginal fit of complete crowns loaded at central fossa

    NASA Astrophysics Data System (ADS)

    Chen, Terry Y.; Chang, Guan L.; Wu, Shih H.

    1993-07-01

    In dentistry, the defect of cementation on the margins of crowns accumulates bacterial plaque easily. This can result in recurrent caries and periodontal disease. In this paper holographic interferometry is applied to study the effect of masticatory force on various complete crowns. Four complete molar crowns made from different casting materials (Au, Pd-Ag, Ni-Cr, and PFM) were tested. The horizontal displacements of two points near the margin, measured by the method of multiple observations, could be as large as 15 micrometers under normal load (25 kgw). However, the marginal discrepancy of all four crowns estimated were quite small (< 0.2 micrometers ). This also indicates that the cementation between the crown and the tooth is quite good. Nevertheless, when the load was increased to 45 kgw, a defect of cementation was found on the Pd-Ag crown.

  9. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.

    PubMed

    Si, Wen; Xin, Pengyang; Li, Zhan-Ting; Hou, Jun-Li

    2015-06-16

    Lipid bilayer membranes separate living cells from their environment. Membrane proteins are responsible for the processing of ion and molecular inputs and exports, sensing stimuli and signals across the bilayers, which may operate in a channel or carrier mechanism. Inspired by these wide-ranging functions of membrane proteins, chemists have made great efforts in constructing synthetic mimics in order to understand the transport mechanisms, create materials for separation, and develop therapeutic agents. Since the report of an alkylated cyclodextrin for transporting Cu(2+) and Co(2+) by Tabushi and co-workers in 1982, chemists have constructed a variety of artificial transmembrane channels by making use of either the multimolecular self-assembly or unimolecular strategy. In the context of the design of unimolecular channels, important advances have been made, including, among others, the tethering of natural gramicidin A or alamethicin and the modification of various macrocycles such as crown ethers, cyclodextrins, calixarenes, and cucurbiturils. Many of these unimolecular channels exhibit high transport ability for metal ions, particularly K(+) and Na(+). Concerning the development of artificial channels based on macrocyclic frameworks, one straightforward and efficient approach is to introduce discrete chains to reinforce their capability to insert into bilayers. Currently, this approach has found the widest applications in the systems of crown ethers and calixarenes. We envisioned that for macrocycle-based unimolecular channels, control of the arrangement of the appended chains in the upward and/or downward direction would favor the insertion of the molecular systems into bilayers, while the introduction of additional interactions among the chains would further stabilize a tubular conformation. Both factors should be helpful for the formation of new efficient channels. In this Account, we discuss our efforts in designing new unimolecular artificial channels from tubular pillar[n]arenes by extending their lengths with various ester, hydrazide, and short peptide chains. We have utilized well-defined pillar[5]arene and pillar[6]arene as rigid frameworks that allow the appended chains to afford extended tubular structures. We demonstrate that the hydrazide and peptide chains form intramolecular N-H···O═C hydrogen bonds that enhance the tubular conformation of the whole molecule. The new pillar[n]arene derivatives have been successfully applied as unimolecular channels for the selective transport of protons, water, and amino acids and the voltage-gated transport of K(+). We also show that aromatic hydrazide helices and macrocycles appended with peptide chains are able to mediate the selective transport of NH4(+).

  10. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  11. 21 CFR Appendix A to Part 74 - The Procedure for Determining Ether Soluble Material in D&C Red Nos. 6 and 7

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... throughout method.) Allow the funnel to stand until the layers have separated. Transfer the bottom (aqueous) layer to a 500 mL separatory funnel, add 100 mL of ether, stopper and shake for one minute. When the layers have separated, drain off the bottom layer into a waste beaker. Pour the ether layer in the 500 mL...

  12. Surgical Tooth Implants, Combat and Field.

    DTIC Science & Technology

    1982-07-15

    design. The serrated root portion is alumina ceramic. The upper two parts of the implant (post and core and crown) are conventional dental materials...ceramic. The upper two parts of the implant (post and core and crown) are conventional dental materials, usually gold. Roots are produced by grinding...I1 Clinical Examples of Baboon Dental Implants . . . .. . . . .. 12 Clinical Chemistry and Hematology Results in Baboons. . . . . . . 20

  13. The Effect of Lengthening Cation Ether Tails on Ionic Liquid Properties

    DOE PAGES

    Lall-Ramnarine, S.; Rodriguez, C.; Fernandez, R.; ...

    2016-08-30

    In order to explore the effect of multiple ether functionalities on ionic liquid properties, a series of ten pyrrolidinium ionic liquids and ten imidazolium ionic liquids bearing ether and alkyl side chains of varying lengths (4 to 10 atoms in length) were prepared for this study. Their physical properties, such as viscosity, conductivity and thermal profile were measured and compared. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILs increases there is hardly any increase inmore » the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. These results provide significant insight on the choice of starting materials for researchers designing ILs for specific applications.« less

  14. Interaction of Cesium Ions with Calix[4]arene-bis(t-octylbenzo-18-crown-6): NMR and Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriz, Jaroslav; Dybal, Jiri; Vanura, Petr

    2011-01-01

    Using 1H, 13C, and 133Cs NMR spectra, it is shown that calix[4]arene-bis (t-octylbenzo-18-crown-6) (L) forms complexes with one (L 3 Cs ) and two (L 3 2Cs ) Cs ions offered by cesium bis(1,2-dicarbollide) cobaltate (CsDCC) in nitrobenzene-d5. The ions interact with all six oxygen atoms in the crown-ether ring and the electrons of the calixarene aromatic moieties. According to extraction technique, the stability constant of the first complex is log nb(L 3 Cs ) = 8.8 ( 0.1. According to 133Cs NMR spectra, the value of the equilibrium constant of the second complex is log Knb (2)(L 3 2Csmore » ) = 6.3(0.2, i.e., its stabilization constant is log nb(L 3 2Cs ) = 15.1 ( 0.3. Self-diffusion measurements by 1H pulsed-field gradient (PFG) NMRcombined with density functional theory (DFT) calculations suggest that one DCC ion is tightly associated with L 3 Cs , decreasing its positive charge and consequently stabilizing the second complex, L 3 2Cs . Using a saturation-transfer 133Cs NMR technique, the correlation times ex of chemical exchange between L 3 Cs and L 3 2Cs as well as between L 3 2Cs and free Cs ions were determined as 33.6 and 29.2 ms, respectively.« less

  15. Clinical Performance of a New Biomimetic Double Network Material

    PubMed Central

    Dirxen, Christine; Blunck, Uwe; Preissner, Saskia

    2013-01-01

    Background: The development of ceramics during the last years was overwhelming. However, the focus was laid on the hardness and the strength of the restorative materials, resulting in high antagonistic tooth wear. This is critical for patients with bruxism. Objectives: The purpose of this study was to evaluate the clinical performance of the new double hybrid material for non-invasive treatment approaches. Material and Methods: The new approach of the material tested, was to modify ceramics to create a biomimetic material that has similar physical properties like dentin and enamel and is still as strong as conventional ceramics. Results: The produced crowns had a thickness ranging from 0.5 to 1.5 mm. To evaluate the clinical performance and durability of the crowns, the patient was examined half a year later. The crowns were still intact and soft tissues appeared healthy and this was achieved without any loss of tooth structure. Conclusions: The material can be milled to thin layers, but is still strong enough to prevent cracks which are stopped by the interpenetrating polymer within the network. Depending on the clinical situation, minimally- up to non-invasive restorations can be milled. Clinical Relevance: Dentistry aims in preservation of tooth structure. Patients suffering from loss of tooth structure (dental erosion, Amelogenesis imperfecta) or even young patients could benefit from minimally-invasive crowns. Due to a Vickers hardness between dentin and enamel, antagonistic tooth wear is very low. This might be interesting for treating patients with bruxism. PMID:24167534

  16. Probability of survival of implant-supported metal ceramic and CAD/CAM resin nanoceramic crowns.

    PubMed

    Bonfante, Estevam A; Suzuki, Marcelo; Lorenzoni, Fábio C; Sena, Lídia A; Hirata, Ronaldo; Bonfante, Gerson; Coelho, Paulo G

    2015-08-01

    To evaluate the probability of survival and failure modes of implant-supported resin nanoceramic relative to metal-ceramic crowns. Resin nanoceramic molar crowns (LU) (Lava Ultimate, 3M ESPE, USA) were milled and metal-ceramic (MC) (Co-Cr alloy, Wirobond C+, Bego, USA) with identical anatomy were fabricated (n=21). The metal coping and a burnout-resin veneer were created by CAD/CAM, using an abutment (Stealth-abutment, Bicon LLC, USA) and a milled crown from the LU group as models for porcelain hot-pressing (GC-Initial IQ-Press, GC, USA). Crowns were cemented, the implants (n=42, Bicon) embedded in acrylic-resin for mechanical testing, and subjected to single-load to fracture (SLF, n=3 each) for determination of step-stress profiles for accelerated-life testing in water (n=18 each). Weibull curves (50,000 cycles at 200N, 90% CI) were plotted. Weibull modulus (m) and characteristic strength (η) were calculated and a contour plot used (m versus η) for determining differences between groups. Fractography was performed in SEM and polarized-light microscopy. SLF mean values were 1871N (±54.03) for MC and 1748N (±50.71) for LU. Beta values were 0.11 for MC and 0.49 for LU. Weibull modulus was 9.56 and η=1038.8N for LU, and m=4.57 and η=945.42N for MC (p>0.10). Probability of survival (50,000 and 100,000 cycles at 200 and 300N) was 100% for LU and 99% for MC. Failures were cohesive within LU. In MC crowns, porcelain veneer fractures frequently extended to the supporting metal coping. Probability of survival was not different between crown materials, but failure modes differed. In load bearing regions, similar reliability should be expected for metal ceramics, known as the gold standard, and resin nanoceramic crowns over implants. Failure modes involving porcelain veneer fracture and delamination in MC crowns are less likely to be successfully repaired compared to cohesive failures in resin nanoceramic material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Marginal and internal fit of CAD-CAM-fabricated composite resin and ceramic crowns scanned by 2 intraoral cameras.

    PubMed

    de Paula Silveira, Alessandra C; Chaves, Sacha B; Hilgert, Leandro A; Ribeiro, Ana Paula D

    2017-03-01

    The precision of fit of chairside computer-aided design and computer-aided manufacturing (CAD-CAM) complete crowns is affected by digital impression and restorative material. The purpose of this in vitro study was to evaluate by microcomputed tomography (μCT) the marginal and internal adaptation of composite resin and ceramic complete crowns fabricated with 2 different intraoral cameras and 2 restorative materials. Ten extracted human third molars received crown preparations. For each prepared molar, 2 digital impressions were made with different intraoral cameras of the CEREC system, Bluecam and Omnicam. Four groups were formed: LB (Lava Ultimate+Bluecam), EB (Emax+Bluecam), LO (Lava Ultimate+Omnicam), and EO (Emax+Omnicam). Before measuring the precision of fit, all crowns were stabilized with a silicone material. Each unit (crown + prepared tooth) was imaged with μCT, and marginal and internal discrepancies were analyzed. For the 2D analysis, 120 measurements were made of each crown for marginal adaptation, 20 for marginal discrepancy (MD), and 20 for absolute marginal discrepancy (AMD); and for internal adaptation, 40 for axial space (AS) and 40 for occlusal space (OS). After reconstructing the 3D images, the average internal space (AIS) was calculated by dividing the total volume of the internal space by the contact surface. Data were analyzed with 2-way ANOVA and quantile regression. Regarding marginal adaptation, no significant differences were observed among groups. For internal adaptation measured in the 2D evaluation, a significant difference was observed between LO and EO for the AS variable (Mann-Whitney test; P<.008). In assessment of AIS by the 3D reconstruction, LB presented significantly lower values than the other groups (Tukey post hoc test; P<.05). Bluecam presented lower values of AIS than Omnicam, and composite resin crowns showed less discrepancy than did ceramic crowns. The marginal adaptations assessed in all groups showed values within the clinically accepted range. Moreover, the composite resin blocks associated with the Bluecam intraoral camera demonstrated the best results for AIS compared with those of the other groups. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. [Clinical application of IPS-empress 2 pressable all-ceramic crowns].

    PubMed

    Wang, Ai-jun; He, Xiao-ming; Liu, Li-xia; Zhang, Chao-biao; Zhang, Min; Shen, Bei-yong

    2007-02-01

    To evaluate the clinical prosthetic effect of IPS-Empress 2 pressahie ceramic crowns. 198 teeth of 70 patients were restored with IPS-Empress 2 pressahie ceramic crowns. The patients were asked to return in one week and every half year. The clinical prosthetic effect was evaluated. Through follow-up of 3-38 months, the veneer porcelain crowns of 3 teeth were broken. 2 crowns fall off due to teeth fracture, gingivitis occurred in 2 teeth, pulpitis or periapical periodontitis occurred in 3 teeth. The shades of 3 crowns were darkening. The prosthetic effect of 185 teeth was satisfied. The rate of satisfaction was 93.4%. IPS-Empress 2 pressable all-ceramic crown has the advantages of aesthetic effect, good hiocompatihility and simple fabrication. But its strength is not enough for posterior teeth and it can not cover the deep color of non-vital teeth and metal materials.

  19. Asymmetric Synthesis of Secondary and Tertiary Propargylic Alcohols by Umpolung of Acetylenic Sulfones and ortho-Sulfinyl Carbanions.

    PubMed

    Rodríguez, Ricardo I; Ramírez, Elsie; Yuste, Francisco; Sánchez-Obregón, Rubén; Alemán, José

    2018-02-16

    The generation of diastereomerically enriched secondary benzyl propargyl alcohols by the asymmetric addition of ortho-sulfinylbenzyl carbanions to sulfonylacetylene derivatives via formation of a Csp-Csp 3 bond is described. This reaction proceeds through an unusual α-attack (anti-Michael addition) of the ortho-sulfinylbenzyl carbanions, followed by elimination of the arylsulfonyl moiety. The scope of this alkynylation reaction is also discussed. Moreover, the development of a new approach for the synthesis of optically active tertiary benzylpropargyl alcohols is described, discussing the possible stereocourse of the reaction so as the influence of the ether 18-crown-6 and steric importance of acetylenic substituent.

  20. IPS Empress crown system: three-year clinical trial results.

    PubMed

    Sorensen, J A; Choi, C; Fanuscu, M I; Mito, W T

    1998-02-01

    The IPS Empress system is a highly esthetic hot pressed glass ceramic material for fabrication of single crowns. Adhesive cementation of the system not only contributes to the esthetics but is necessary for increased strength of the crown. The purpose of this prospective clinical trials was to evaluate the longevity of 75 adhesively cemented Empress full crowns. An additional aim was to assess the adhesive cementation methodology and potential side effects. At the three-year point, one molar crown fractured for a 1.3 percent failure rate. The resin cementation technique that was employed exhibited a low incidence of microleakage with few clinical side effects. There was a 5.6 percent incidence of post-cementation sensitivity, with all symptoms subsiding by eight weeks. None of the crowns in the study required endodontic therapy.

  1. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate.

    PubMed

    Gomes, Rafael Soares; Souza, Caroline Mathias Carvalho de; Bergamo, Edmara Tatiely Pedroso; Bordin, Dimorvan; Del Bel Cury, Altair Antoninha

    2017-01-01

    In this study, marginal and internal misfit and fracture load with and without thermal-mechanical aging (TMA) of monolithic ZLS and lithium disilicate (LDS) crowns were evaluated. Crowns were milled using a computer-aided design/computer-aided manufacturing system. Marginal gaps (MGs), absolute marginal discrepancy (AMD), axial gaps, and occlusal gaps were measured by X-ray microtomography (n=8). For fracture load testing, crowns were cemented in a universal abutment, and divided into four groups: ZLS without TMA, ZLS with TMA, LDS without TMA, and LDS with TMA (n=10). TMA groups were subjected to 10,000 thermal cycles (5-55°C) and 1,000,000 mechanical cycles (200 N, 3.8 Hz). All groups were subjected to compressive strength testing in a universal testing machine at a crosshead speed of 1 mm/min until failure. Student's t-test was used to examine misfit, two-way analysis of variance was used to analyze fracture load, and Pearson's correlation coefficients for misfit and fracture load were calculated (α=0.05). The materials were analyzed according to Weibull distribution, with 95% confidence intervals. Average MG (p<0.001) and AMD (p=0.003) values were greater in ZLS than in LDS crowns. TMA did not affect the fracture load of either material. However, fracture loads of ZLS crowns were lower than those of LDS crowns (p<0.001). Fracture load was moderately correlated with MG (r=-0.553) and AMD (r=-0.497). ZLS with TMA was least reliable, according to Weibull probability. Within the limitations of this study, ZLS crowns had lower fracture load values and greater marginal misfit than did LDS crowns, although these values were within acceptable limits.

  2. A Comparison of US and Japanese Dental Restorative Care Present on Service Members Recovered from the WWII Era.

    PubMed

    Shiroma, Calvin Y

    2017-11-01

    The documentation of dental materials used in the USA during the WWII era is readily available, while references for the Japanese are minimal. It was therefore important to build a photographic database of Japanese restorative care which could be utilized as a comparison tool for the deployed odontologist. The dental restorative care of approximately 400 US and 100 Japanese sets of remains was evaluated. Both countries share many similar restorative techniques to include collared crowns, full-coverage restorations, cantilever bridge/pontics to close spaces; restorative materials such as amalgam, gold, and zinc phosphate (temporary) restorations; and removable prostheses. The dental restorative materials most commonly used by US dentists include the amalgam and silicate cement, while the full-coverage crown was the type of restoration most frequently seen on the Japanese remains. Silicates, porcelain and replaceable crowns, and partial-coverage prepared crowns were not observed on the recovered Japanese remains. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  3. Temperature rise in pulpal chamber during fabrication of provisional resinous crowns.

    PubMed

    Castelnuovo, J; Tjan, A H

    1997-11-01

    The heat generated during the exothermic polymerization reaction of autopolymerizing resinous materials and the heat generated by ultraviolet lamps during irradiation of photopolymerizing resinous materials could cause pulpal damage when a direct technique is used to fabricate provisional restorations. This could occur if temperature elevations overcome the physiological heat dissipating mechanisms of the dental-periodontal system. This in vitro study compared the rise in temperatures in the pulpal chamber during fabrication of provisional complete veneer crowns by direct method with different autopolymerizing and photopolymerizing resins. The effect of curing resinous crowns in different matrices, such as a polyvinyl siloxane impression and a vaccuum-formed polypropylene sheet, was also evaluated. The results demonstrated that the amount of heat generated during resin polymerization and transmitted to the pulpal chamber could be damaging to pulpal tissues including odontoblasts. When curing of provisional resinous crowns was performed in the polyvinyl siloxane impression, significantly lower temperatures were recorded compared with curing in the vacuum-formed polypropylene sheet. To prevent pulpal damage, effective cooling procedures are strongly recommended when directly fabricating resinous provisional crowns.

  4. Effect of Different Ceramic Crown Preparations on Tooth Structure Loss: An In Vitro Study

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, Ashkan

    Objective: To quantify and compare the amount of tooth-structure reduction following the full-coverage preparations for crown materials of porcelain-fused-to-metal, lithium disilicate glass-ceramic and yttria-stabilized tetragonal zirconia polycrystalline for three tooth morphologies. Methods: Groups of resin teeth of different morphologies were individually weighed to high precision, then prepared following the preparation guidelines. The teeth were re-weighed after preparation and the amount of structural reduction was calculated. Statistical analyses were performed to find out if there was a significant difference among the groups. Results: Amount of tooth reduction for zirconia crown preparations was the lowest and statistically different compared with the other two materials. No statistical significance was found between the amount of reduction for porcelain-fused-to-metal and lithium disilicate glass-ceramic crowns. Conclusion: Within the limitations of this study, more tooth structure can be saved when utilizing zirconia full-coverage restorations compared with lithium disilicate glass-ceramic and porcelain-fused-to-metal crowns in maxillary central incisors, first premolars and first molars.

  5. Fracture performance of computer-aided manufactured zirconia and alloy crowns.

    PubMed

    Rosentritt, Martin; Behr, Michael; Thaller, Christian; Rudolph, Heike; Feilzer, Albert

    2009-09-01

    To compare the fracture resistance and fracture performance of CAD/CAM zirconia and alloy crowns. One electrophoretic deposition alumina ceramic (Wolceram, Wolceram) and 4 zirconia-based systems (ce.novation, ce.novation; Cercon, DeguDent; Digizon, Amann Girrbach; and Lava, 3M ESPE) were investigated. A porcelain-fused-to-metal method (Academy, Bego Medical) was used in either conventional casting technique or laser sintering. Sixteen crowns of each material were fabricated and veneered with glass-ceramic as recommended by the manufacturers. Crown and root dimensions were measured, and 8 crowns of each system were adhesively bonded or conventionally cemented. After the crowns were artificially aged in a simulated oral environment (1,200,000 mechanical loads with 50 N; 3,000 thermal cycles with distilled water between 5 degrees C and 55 degrees C; 2 minutes per cycle), fracture resistance and fracture patterns were determined and defect sizes investigated. The fracture force varied between 1,111 N and 2,038 N for conventional cementation and between 1,181 N and 2,295 N for adhesive bonding. No significant differences were found between adhesive and conventional cementations. Fracture patterns presented mostly as a chipping of the veneering, in single cases as a fracture of the core, and in 1 case as a fracture of the tooth. Crown material and cementation do not have any significant influence on the fracture force and fracture performance of all-ceramic and metal-based crowns. Therefore, it may be concluded that adhesive bonding is not necessary for the application of high-strength ceramics.

  6. Novel melt-processable poly(ether ether ketone)(PEEK)/inorganic fullerene-like WS(2) nanoparticles for critical applications.

    PubMed

    Naffakh, Mohammed; Díez-Pascual, Ana M; Marco, Carlos; Gómez, Marián A; Jiménez, Ignacio

    2010-09-09

    The combination of high-performance thermoplastic poly(ether ether ketone) (PEEK) with inorganic fullerene-like tungsten disulfide (IF-WS(2)) nanoparticles offers an attractive way to combine the merits of organic and inorganic materials into novel polymer nanocomposite materials. Here, we report the processing of novel PEEK/IF-WS(2) nanocomposites, which overcome the nanoparticle agglomerate formation and provide PEEK-particle interactions. The IF-WS(2) nanoparticles do not require exfoliation or modification, making it possible to obtain stronger, lighter materials without the complexity and processing cost associated with these treatments. The nanocomposites were fabricated by melt blending, after a predispersion step based on ball milling and mechanical treatments in organic solvent, which leads to the dispersion of individually IF-WS(2) nanoparticles in the PEEK matrix as confirmed by scanning electron microscopy. In order to determine the performance of the PEEK/IF-WS(2) nanocomposites for potential critical applications, particularly for the aircraft industry, we have extensively investigated these materials with a wide range of structural, thermal, and mechanical techniques using time-resolved synchrotron X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, dynamic-mechanical analysis, and tensile and impact tests as well as thermal measurements. Modulus, tensile strengh, thermal stability, and thermal conductivity of PEEK exhibited remarkable improvement with the addition of IF-WS(2).

  7. [Fracture resistance of Procera Allceram depending on the framework design--an in vitro study].

    PubMed

    Hagmann, Edgar; Marinello, Carlo P; Zitzmann, Nicola U

    2006-01-01

    Procera AllCeram is one of the all-ceramic systems with an aluminium-oxide core employing CAD/CAM technology. The aim of the current study was to investigate the fracture resistance of Procera AllCeram full-ceramic crowns with a reduced core design compared to the conventional method. In addition, a possible influence of the preparation form (molars or premolars) and the cementation material (glas-ionomer or composite) was analyzed. For both preparation forms, 30 ceramic cores with reduced margins (collarless cores, test) and 30 cores with extended cores (control) were veneered with porcelain in a standardized procedure (total 120 crowns). For the test group, Procera-AllCeram-margin ceramic material was used for the porcelain collar. 40 crowns each were cemented on stainless steel dies with either Ketac-Cem Aplicap or Panavia F. The additional 40 crowns were set on polyurethane dies without cementation and occlusally loaded until fracture occurred. Among the molar crowns, no differences were observed in fracture resistance neither for the different core designs (test or control) nor for the cementation materials. For the premolar form, fusing of a porcelain margin was associated with a reduction in fracture resistance, while the use of composite cement was accompanied with an increase. The present in vitro results indicate that for Procera AllCeram crowns with a highly undulating preparation margin, a conventional core design combined with adhesive cementation is preferable, especially in the posterior region due to higher chewing forces; this assumption needs to be proven in clinical studies.

  8. Influence of the veneer-framework interface on the mechanical behavior of ceramic veneers: a nonlinear finite element analysis.

    PubMed

    Lazari, Priscilla Cardoso; Sotto-Maior, Bruno Salles; Rocha, Eduardo Passos; de Villa Camargos, Germana; Del Bel Cury, Altair Antoninha

    2014-10-01

    The chipping of ceramic veneers is a common problem for zirconia-based restorations and is due to the weak interface between both structures. The purpose of this study was to evaluate the mechanical behavior of ceramic veneers on zirconia and metal frameworks under 2 different bond-integrity conditions. The groups were created to simulate framework-veneer bond integrity with the crowns partially debonded (frictional coefficient, 0.3) or completely bonded as follows: crown with a silver-palladium framework cemented onto a natural tooth, ceramic crown with a zirconia framework cemented onto a natural tooth, crown with a silver-palladium framework cemented onto a Morse taper implant, and ceramic crown with a zirconia framework cemented onto a Morse taper implant. The test loads were 49 N applied to the palatal surface at 45 degrees to the long axis of the crown and 25.5 N applied perpendicular to the incisal edge of the crown. The maximum principal stress, shear stress, and deformation values were calculated for the ceramic veneer; and the von Mises stress was determined for the framework. Veneers with partial debonding to the framework (frictional coefficient, 0.3) had greater stress concentrations in all structures compared with the completely bonded veneers. The metal ceramic crowns experienced lower stress values than ceramic crowns in models that simulate a perfect bond between the ceramic and the framework. Frameworks cemented to a tooth exhibited greater stress values than frameworks cemented to implants, regardless of the material used. Incomplete bonding between the ceramic veneer and the prosthetic framework affects the mechanical performance of the ceramic veneer, which makes it susceptible to failure, independent of the framework material or complete crown support. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Human exposure to PCDDs and their precursors from heron and tern eggs in the Yangtze River Delta indicate PCP origin.

    PubMed

    Zhou, Yihui; Yin, Ge; Asplund, Lillemor; Stewart, Kathryn; Rantakokko, Panu; Bignert, Anders; Ruokojärvi, Päivi; Kiviranta, Hannu; Qiu, Yanling; Ma, Zhijun; Bergman, Åke

    2017-06-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are highly toxic to humans and wildlife. In the present study, PCDD/Fs were analyzed in the eggs of whiskered terns (Chlidonias hybrida), and genetically identified eggs from black-crowned night herons (Nycticorax nycticorax) sampled from two lakes in the Yangtze River Delta area, China. The median toxic equivalent (TEQ) of PCDD/Fs were 280 (range: 95-1500) and 400 (range: 220-1100) pg TEQ g -1 lw (WHO, 1998 for birds) in the eggs of black-crowned night heron and whiskered tern, respectively. Compared to known sources, concentrations of PCDDs relative to the sum of PCDD/Fs in bird eggs, demonstrated high abundance of octachlorodibenzo-p-dioxin (OCDD), 1,2,3,4,6,7,8-heptaCDD and 1,2,3,6,7,8-hexaCDD indicating pentachlorophenol (PCP), and/or sodium pentachlorophenolate (Na-PCP) as significant sources of the PCDD/Fs. The presence of polychlorinated diphenyl ethers (PCDEs), hydroxylated and methoxylated polychlorinated diphenyl ethers (OH- and MeO-PCDEs, known impurities in PCP products), corroborates this hypothesis. Further, significant correlations were found between the predominant congener CDE-206, 3'-OH-CDE-207, 2'-MeO-CDE-206 and OCDD, indicating a common origin. Eggs from the two lakes are sometimes used for human consumption. The WHO health-based tolerable intake of PCDD/Fs is exceeded if eggs from the two lakes are consumed regularly on a weekly basis, particularly for children. The TEQs extensively exceed maximum levels for PCDD/Fs in hen eggs and egg products according to EU legislation (2.5 pg TEQ g -1 lw). The results suggest immediate action should be taken to manage the contamination, and further studies evaluating the impacts of egg consumption from wild birds in China. Likewise, studies on dioxins and other POPs in common eggs need to be initiated around China. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. [Clinical analysis of laser welding on porcelain bonded metal surface].

    PubMed

    Weng, Jia-wei; Dai, Wen-an; Wu, Xue-ying

    2011-02-01

    To evaluate the clinical effect of laser-welded crowns and bridges. Two hundred defective crowns and bridges were welded by using Heraplus laser welding machine, and then restored by porcelain. After being welded ,those defective crowns and bridges of different materials fit well and their marginal areas were also satisfactory. During the follow up period of one year, no fractured porcelain and crack were found at welding spots. The technology of laser welding has no direct effect on welding spots between metal and porcelain and could be used to deal with the usual problems of the crowns and bridges.

  11. Assembly of Multi-Phthalocyanines on a Porphyrin Template by Fourfold Rotaxane Formation.

    PubMed

    Yamada, Yasuyuki; Kato, Tatsuhisa; Tanaka, Kentaro

    2016-08-22

    A stacked assembly composed of a porphyrin and two phthalocyanines was prepared through fourfold rotaxane formation. Two phthalocyanine molecules, bearing four 24-crown-8 units, were assembled onto a porphyrin template incorporating four sidechains with two dialkylammonium ions each through pseudorotaxane formation between crown ether units and ammonium ions. The Staudinger phosphite reaction, as the stoppering reaction, resulted in the formation of the stacked heterotrimer composed of a porphyrin and two phthalocyanines connected through a fourfold rotaxane structure. UV/Vis spectroscopic and electrochemical studies of the heterotrimer indicated that there is a significant electronic interaction between the two phthalocyanine units due to the close stacking. The electrochemical oxidation process of the stacked heterotrimer was studied by cyclic voltammetry and spectroelectrochemistry. Electron paramagnetic resonance (EPR) spectroscopy of a dinuclear Cu(II) complex, in which two Cu(II) phthalocyanines were assembled on a metal-free porphyrin template, revealed that two Cu(II) phthalocyanines were located within the stacking distance, which resulted in an antiferromagnetic interaction between the two S=1/2 spins in the ground state of the Cu(2+) ions in the heterotrimer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Crown heights in the permanent teeth of 45,X and 45,X/46,XX females.

    PubMed

    Pentinpuro, Raija Helena; Lähdesmäki, Raija Eliisa; Niinimaa, Ahti Olavi; Pesonen, Paula Ritva Orvokki; Alvesalo, Lassi Juhani

    2014-11-01

    Previous results regarding human sex chromosome aneuploidies have shown that the X and Y chromosomes affect tooth size and morphology. This study looked for the effect of sex chromosome deficiency on permanent tooth crown heights. The material, from the Finnish KVANTTI Research Project, consisted of 97 45,X females and 15 45,X/46,XX females. The controls were 32 sisters and 28 mothers of the 45,X females, eight sisters and two mothers of the 45,X/46,XX females and 35 female population controls. Crown heights of all the available teeth except third molars on both sides of the jaws were measured from panoramic radiographs with a digital calliper according to the defined procedure. The tooth crown heights were significantly smaller in the 45,X females than in the female population controls, except for the incisors and one canine in the maxilla, whereas the tooth crown heights of the 45,X/46,XX females were close to those of the normal control females. The differences between the 45,X and 45,X/46,XX females were statistically significant, excluding the upper incisor area and a few teeth in the mandible. The effect of the sex chromosome deficiency on permanent tooth crown height is due to the magnitude of lacking sex chromosome material. The present results regarding the 45,X females are parallel to previous findings in Turner patients regarding reduced mesiodistal and labiolingual dimensions and tooth crown heights in the permanent dentition.

  13. Electrospray ionization mass spectrometric investigations of the complexation behavior of macrocyclic thiacrown ethers with bivalent transitional metals (Cu, Co, Ni and Zn).

    PubMed

    Tsybizova, Alexandra; Tarábek, Ján; Buchta, Michal; Holý, Petr; Schröder, Detlef

    2012-10-15

    Heavy metals are both a problem for the environment and an important resource for industry. Their selective extraction by means of organic ligands therefore is an attractive topic. The coordination of three thiacrown ethers to late 3d-metal ions was investigated by a combination of electrospray ionization mass spectrometry (ESI-MS) and electron paramagnetic resonance (EPR). The mass spectrometric experiments were carried out in an ion trap mass spectrometer with an ESI source. Absolute binding constants were estimated by comparison with data for 18-crown-6/Na(+). EPR spectroscopy was used as a complementary method for investigating the Cu(I) /Cu(II) redox couple. The study found that thiacrown ethers preferentially bind traces of copper even at an excess of other metal ions (Co(II), Ni(II), and Zn(II)). The absolute association constants of the Cu(I) complexes were about 10(8) M(-1), and about two orders of magnitude lower for the other 3d-metal cations. The EPR spectra demonstrated that the reduction from Cu(II) to Cu(I) upon formation of the [(thiacrown)Cu](+) species takes place in solution. ESI-MS demonstrated that the three thiacrown ligands examined had high binding constants as well as good selectivities for copper(I) at low concentrations, and in the presence of other metal ions. By a combination of ESI-MS and EPR spectrometry it was shown that the reduction from Cu(II) to Cu(I) occurred in solution. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Fractographic analysis of anterior bilayered ceramic crowns that failed by veneer chipping.

    PubMed

    Du, Qian; Swain, Michael V; Zhao, Ke

    2014-05-01

    To fractographically analyze the reasons for the chipping of veneering porcelain in clinically failed anterior lithium disilicate glass-ceramic (LDG) and glass-infi ltrated alumina (GIA) crowns. Five anterior bilayered ceramic crowns with clinical veneer chipping failure were retrieved, of which three were LDG crowns and two were GIA crowns. The fractured surfaces of the failed restorations were examined using stereomicroscopy and scanning electron microscopy (SEM). The principles of fractography were used to identify the location and dimensions of the critical crack and to estimate the stress at failure. All five anterior crowns failed by cohesive failure within the veneer on the labial surface. Fractography showed that the critical crack initiated at the incisal contact area and propagated gingivally. The estimated stresses at failure for veneer chipping were lower than the characteristic strength of the veneer materials. Within the limitations of this in-vivo study, the contact damage, fatigue, and processing fl aws within the veneer are important reasons leading to chipping of veneering porcelain in anterior LDG and GIA crowns.

  15. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    PubMed

    Brondani, Lucas Pradebon; Pereira-Cenci, Tatiana; Wandsher, Vinicius Felipe; Pereira, Gabriel Kalil; Valandro, Luis Felipe; Bergoli, César Dalmolin

    2017-04-10

    Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding) and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding), resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation) for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  16. FRACTURE-RESISTANT MONOLITHIC DENTAL CROWNS

    PubMed Central

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-01-01

    Objective To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Methods Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Results Experimental measurements and XFEM predictions were self consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. Significance The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. PMID:26792623

  17. Evaluation of surface roughness and polishing techniques for new ceramic materials.

    PubMed

    Campbell, S D

    1989-05-01

    The surface roughness of crown and bridge materials should be minimized to obtain optimal biocompatability. This study used scanning electron microscopy to evaluate the effect of polishing procedures on two all-ceramic crown materials (Dicor and Cerestore). The "as formed," unpolished specimens of both Dicor and Cerestore materials presented a rough surface. It was found that any attempt to polish the Cerestore coping material resulted in an extremely rough surface. Finishing of the Dicor ceramic resulted in a smoother but pitted surface. Polishing of both ceramic materials resulted in a surface that was rougher than the glazed metal ceramic controls. The smoothest finish was obtained when the glazed veneer (Cerestore) and shading porcelain (Dicor) were applied to the all-ceramic materials.

  18. Advanced Materials for PEM-Based Fuel Cell Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due tomore » their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in herein.« less

  19. Effect of air-abrasion on the retention of zirconia ceramic crowns luted with different cements before and after artificial aging.

    PubMed

    Shahin, Ramez; Kern, Matthias

    2010-09-01

    The purpose of this in vitro study was to evaluate the effect of intaglio surface air-abrasion on the retention of CAD/CAM produced zirconia ceramic crowns cemented with three different types of cement. In addition the influence of artificial aging in masticatory simulator and thermocycling was tested. Extracted human premolars were prepared for all-ceramic crowns (12 degrees taper, 3 mm axial length). CAD/CAM zirconia crowns were manufactured. Half of the crowns were air-abraded with 50 microm alumina particles at 0.25 MPa, the rest was left as machined. The crowns were luted with zinc phosphate cement (Hoffmann), glass ionomer cement (Ketac Cem), or composite resin (Panavia 21), subgroups were either stored for 3 days in 37 degrees water bath or stored for 150 days in 37 degrees water bath, with additional 37,500 thermal cycles (5-55 degrees) and 300,000 cycles dynamic loading with 5 kg in a masticatory simulator. Then crown retention was measured in tension at a crosshead speed of 2 mm/min using a universal testing machine. Statistical analysis was performed with three-way ANOVA. Mean retention values were ranged from 2.8 to 7.1 MPa after 3 days and from 1.6 to 6.1 MPa after artificial aging. Air-abrasion significantly increased crown retention (p<0.001), while artificial aging decreased retention (p=0.017). In addition, the luting material had a significant influence on retention (p<0.001) with the adhesive luting resin providing the highest retention. The use of phosphate monomer containing composite resin on air-abraded zirconia ceramic can be recommended as most retentive luting method. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. [Influence of coping material selection and porcelain firing on marginal and internal fit of computer-aided design/computer- aided manufacturing of zirconia and titanium ceramic implant-supported crowns].

    PubMed

    Cuiling, Liu; Liyuan, Yang; Xu, Gao; Hong, Shang

    2016-06-01

    This study aimed to investigate the influence of coping material and porcelain firing on the marginal and internal fit of computer-aided design/computer-aided manufacturing (CAD/CAM) of zirconia ceramic implant- and titanium ceramic implant-supported crowns. Zirconia ceramic implant (group A, n = 8) and titanium metal ceramic implant-supported crowns (group B, n = 8) were produced from copings using the CAD/CAM system. The marginal and internal gaps of the copings and crowns were measured by using a light-body silicone replica technique combined with micro-computed tomography scanning to obtain a three-dimensional image. Marginal gap (MG), horizontal marginal discrepancy (HMD), and axial wall (AW) were measured. Statistical analyses were performed using SPSS 17.0. Prior to porcelain firing, the measurements for MG, HMD, and AW of copings in group A were significantly larger than those in group B (P < 0.05). After porcelain firing, the measurements for MG of crowns in group A were smaller than those in group B (P < 0.05), whereas HMD and AW showed no significant difference between the two groups (P > 0.05). Porcelain firing significantly reduced MG (P < 0.05) in group A but significantly increased MG, HMD, and AW in group B (P < 0.05) HMD and AW were not influenced by porcelain firing in group A (P > 0.05). The marginal fits of CAD/CAM zirconia ceramic implant-supported crowns were superior to those of CAD/CAM titanium ceramic-supported crowns. The fits of both the CAD/CAM zirconia ceramic implant- and titanium ceramic implant-supported crowns were obviously influenced by porcelain firing.

  1. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns

    PubMed Central

    ABDULLAH, Adil Othman; TSITROU, Effrosyni A; POLLINGTON, Sarah

    2016-01-01

    ABSTRACT Objective This study compared the marginal gap, internal fit, fracture strength, and mode of fracture of CAD/CAM provisional crowns with that of direct provisional crowns. Material and Methods An upper right first premolar phantom tooth was prepared for full ceramic crown following tooth preparation guidelines. The materials tested were: VITA CAD-Temp®, Polyetheretherketone “PEEK”, Telio CAD-Temp, and Protemp™4 (control group). The crowns were divided into four groups (n=10), Group1: VITA CAD-Temp®, Group 2: PEEK, Group 3: Telio CAD-Temp, and Group 4: Protemp™4. Each crown was investigated for marginal and internal fit, fracture strength, and mode of fracture. Statistical analysis was performed using GraphPad Prism software version 6.0. Results The average marginal gap was: VITA CAD-Temp® 60.61 (±9.99) µm, PEEK 46.75 (±8.26) µm, Telio CAD-Temp 56.10 (±5.65) µm, and Protemp™4 193.07(±35.96) µm (P<0.001). The average internal fit was: VITA CAD-Temp® 124.94 (±22.96) µm, PEEK 113.14 (±23.55) µm, Telio CAD-Temp 110.95 (±11.64) µm, and Protemp™4 143.48(±26.74) µm. The average fracture strength was: VITA CAD-Temp® 361.01 (±21.61) N, PEEK 802.23 (±111.29) N, Telio CAD-Temp 719.24 (±95.17) N, and Protemp™4 416.40 (±69.14) N. One-way ANOVA test showed a statistically significant difference for marginal gap, internal gap, and fracture strength between all groups (p<0.001). However, the mode of fracture showed no differences between the groups (p>0.05). Conclusions CAD/CAM fabricated provisional crowns demonstrated superior fit and better strength than direct provisional crowns. PMID:27383707

  2. Effects of coronal substrates and water storage on the microhardness of a resin cement used for luting ceramic crowns

    PubMed Central

    de MENDONÇA, Luana Menezes; PEGORARO, Luiz Fernando; LANZA, Marcos Daniel Septímio; PEGORARO, Thiago Amadei; de CARVALHO, Ricardo Marins

    2014-01-01

    Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. Objectives To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein), used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin), after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Material and Methods Thirty molars were distributed in three groups (N=10) according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal) and R (resin)- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein) and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5) were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Results Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231). Two-way ANOVA showed significant effect of substrates (p<0.001) and the Tukey test revealed that microhardness was significantly lower when crowns were cemented on resin cores and tested after 7 days of water storage (p=0.007). Conclusion The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the cement properties. PMID:25141200

  3. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    NASA Astrophysics Data System (ADS)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  4. In-vitro performance and fracture strength of thin monolithic zirconia crowns

    PubMed Central

    Weigl, Paul; Wu, Yanyun; Felber, Roland; Lauer, Hans-Christoph

    2018-01-01

    PURPOSE All-ceramic restorations required extensive tooth preparation. The purpose of this in vitro study was to investigate a minimally invasive preparation and thickness of monolithic zirconia crowns, which would provide sufficient mechanical endurance and strength. MATERIALS AND METHODS Crowns with thickness of 0.2 mm (group 0.2, n=32) or of 0.5 mm (group 0.5, n=32) were milled from zirconia and fixed with resin-based adhesives (groups 0.2A, 0.5A) or zinc phosphate cements (groups 0.2C, 0.5C). Half of the samples in each subgroup (n=8) underwent thermal cycling and mechanical loading (TCML)(TC: 5℃ and 55℃, 2×3,000 cycles, 2 min/cycle; ML: 50 N, 1.2×106 cycles), while the other samples were stored in water (37℃/24 h). Survival rates were compared (Kaplan-Maier). The specimens surviving TCML were loaded to fracture and the maximal fracture force was determined (ANOVA; Bonferroni; α=.05). The fracture mode was analyzed. RESULTS In both 0.5 groups, all crowns survived TCML, and the comparison of fracture strength among crowns with and without TCML showed no significant difference (P=.628). Four crowns in group 0.2A and all of the crowns in group 0.2C failed during TCML. The fracture strength after 24 hours of the cemented 0.2 mm-thick crowns was significantly lower than that of adhesive bonded crowns. All cemented crowns provided fracture in the crown, while about 80% of the adhesively bonded crowns fractured through crown and die. CONCLUSION 0.5 mm thick monolithic crowns possessed sufficient strength to endure physiologic performance, regardless of the type of cementation. Fracture strength of the 0.2 mm cemented crowns was too low for clinical application. PMID:29713427

  5. 46 CFR 151.50-42 - Ethyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-42 Ethyl ether. (a)(1) Gravity tanks... openings shall be in the top of the tank. (2) Pressure vessel type tanks shall be designed for the maximum pressure to which they may be subjected when pressure is used to discharge the cargo, but in no case shall...

  6. Dimensionally Stable Ether-Containing Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.

  7. Investigation of crystalline morphology in poly (ether ether ketone) using dielectric relaxation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalika, D.S.; Krishnaswamy, R.K.

    1993-12-31

    The relaxation behavior of poly (ether ether ketone) [PEEK] has been investigated using dielectric relaxation spectroscopy; the glass-rubber ({alpha}) relaxation and a sub-glass ({beta}) relaxation were examined for the amorphous material and both cold-crystallized and melt-crystallized specimens. Analysis of the data using the Cole-Cole modification of the Debye equation allowed determination of the dielectric relaxation strength and relaxation broadening parameter for both transitions as a function of material crystallization history. The crystallized specimens displayed a positive offset in isochronal loss temperature for both the {alpha} and {beta} relaxations, with the {alpha} relaxation broadened significantly. The measured dipolar response was interpretedmore » using a three-phase morphological model encompassing a crystalline phase, a mobile amorphous phase, and a rigid amorphous phase. Determination of phase fractions based on dipolar mobilization across the glass-rubber relaxation revealed a finite rigid amorphous phase fraction for both the cold-crystallized specimens which was relatively insensitive to thermal history and degree of crystallinity (W{sub RAP}40.20).« less

  8. Chemistry and adhesive properties of poly(arylene ether)s containing heterocyclic units

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1991-01-01

    Novel poly(arylene ether)s containing heterocyclic units were prepared, characterized, and evaluated as adhesives and composite matrices. The polymers were prepared by reacting a heterocyclic bisphenol with an activated aromatic dihalide in a polar aprotic solvent, using potassium carbonate. The polymerizations were generally carried out in N,N-dimethylacetamide at 155 C. In some cases, where the polymers were semicrystalline, higher temperatures and thus higher boiling solvents were necessary to keep the polymers in solution. Heterocyclic rings incorporated into the poly(arylene ether) backbone include phenylquinoxaline, phenylimidazole, benzimidazole, benzoxazole, 1,3,4-oxadiazole, and 1,2,4-triazole. The polymers were characterized by differential scanning calorimetry, solution viscosity, X-ray diffraction, thin film, and adhesive and (in some cases) composite properties. The glass transition temperatures, crystalline melt temperature, solubility, and mechanical properties varied depending upon the heterocyclic ring. The chemistry and properties of these materials are discussed.

  9. Evaluation of marginal and internal fit of ceramic and metallic crown copings using x-ray microtomography (micro-CT) technology.

    PubMed

    Pimenta, Manuel Antonio; Frasca, Luis Carlos; Lopes, Ricardo; Rivaldo, Elken

    2015-08-01

    Prosthetic crown fit to the walls of the tooth preparation may vary depending on the material used for crown fabrication. The purpose of this study was to compare the marginal and internal fit of crown copings fabricated from 3 different materials. The selected materials were zirconia (ZirkonZahn system, group Y-TZP), lithium disilicate (IPS e.max Press system, group LSZ), and nickel-chromium alloy (lost-wax casting, group NiCr). Five specimens of each material were seated on standard dies. An x-ray microtomography (micro-CT) device was used to obtain volumetric reconstructions of each specimen. Points for fit measurement were located in Adobe Photoshop, and measurements were obtained in the CTAn SkyScan software environment. Marginal fit was measured at 4 points and internal fit at 9 points in each coping. Mean measurements from the 3 groups were compared by analysis of variance (ANOVA) at the 5% significance level, and between-group differences were assessed with the Tukey range test. The nickel-chromium alloy exhibited the best marginal fit overall, comparable with zirconia and significantly different from lithium disilicate. Lithium disilicate exhibited the lowest mean values for internal fit, similar to zirconia and significantly different from the nickel-chrome alloy. The marginal and internal fit parameters of the 3 tested materials were within clinically acceptable range. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Energy values for whole trees and crowns of selected species.

    Treesearch

    James O. Howard

    1988-01-01

    Energy values, BTU's (British thermal units) per ovendry pound, were determined for whole-tree and crown materials from western hemlock (Tsuga heterophylla (Raf.) Sarg.), coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii), and western redcedar (Thuja plicata Donn ex D. Don)....

  11. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling.

    PubMed

    Deng, Xiaohu; Zeng, Zhi; Peng, Bei; Yan, Shuo; Ke, Wenchao

    2018-01-30

    Compared to the common selective laser sintering (SLS) manufacturing method, fused deposition modeling (FDM) seems to be an economical and efficient three-dimensional (3D) printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK) materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

  12. Ceramic molar crown reproducibility by digital workflow manufacturing: An in vitro study

    PubMed Central

    Kim, Chong-Myeong

    2017-01-01

    PURPOSE This in vitro study aimed to analyze and compare the reproducibility of zirconia and lithium disilicate crowns manufactured by digital workflow. MATERIALS AND METHODS A typodont model with a prepped upper first molar was set in a phantom head, and a digital impression was obtained with a video intraoral scanner (CEREC Omnicam; Sirona GmbH), from which a single crown was designed and manufactured with CAD/CAM into a zirconia crown and lithium disilicate crown (n=12). Reproducibility of each crown was quantitatively retrieved by superimposing the digitized data of the crown in 3D inspection software, and differences were graphically mapped in color. Areas with large differences were analyzed with digital microscopy. Mean quadratic deviations (RMS) quantitatively obtained from each ceramic group were statistically analyzed with Student's t-test (α=.05). RESULTS The RMS value of lithium disilicate crown was 29.2 (4.1) µm and 17.6 (5.5) µm on the outer and inner surfaces, respectively, whereas these values were 18.6 (2.0) µm and 20.6 (5.1) µm for the zirconia crown. Reproducibility of zirconia and lithium disilicate crowns had a statistically significant difference only on the outer surface (P<.001). The outer surface of lithium disilicate crown showed over-contouring on the buccal surface and under-contouring on the inner occlusal surface. The outer surface of zirconia crown showed both over- and under-contouring on the buccal surface, and the inner surface showed under-contouring in the marginal areas. CONCLUSION Restoration manufacturing by digital workflow will enhance the reproducibility of zirconia single crowns more than that of lithium disilicate single crowns. PMID:28874991

  13. Influence of weight and type of planting material on fruit quality and its heterogeneity in pineapple [Ananas comosus (L.) Merrill].

    PubMed

    Fassinou Hotegni, V Nicodème; Lommen, Willemien J M; Agbossou, Euloge K; Struik, Paul C

    2014-01-01

    Cultural practices can affect the quality of pineapple fruits and its variation. The objectives of this study were to investigate (a) effects of weight class and type of planting material on fruit quality, heterogeneity in quality and proportion and yield of fruits meeting European export standards, and (b) the improvement in quality, proportion and yield of fruits meeting export standards when flowering was induced at optimum time. Experiments were conducted in Benin with cvs Sugarloaf (a Perola type) and Smooth Cayenne. In cv. Sugarloaf, experimental factors were weight class of planting material (light, mixed, heavy) and time of flowering induction (farmers', optimum) (Experiment 1). In cv. Smooth Cayenne an additional experimental factor was the type of planting material (hapas, ground suckers, a mixture of the two) (Experiment 2). Fruits from heavy planting material had higher infructescence and fruit weights, longer infructescences, shorter crowns, and smaller crown: infructescence length than fruits from light planting material. The type of planting material in Experiment 2 did not significantly affect fruit quality except crown length: fruits from hapas had shorter crowns than those from ground suckers. Crops from heavy planting material had a higher proportion and yield of fruits meeting export standards than those from other weight classes in Experiment 1 only; also the type of planting material in Experiment 2 did not affect these variates. Heterogeneity in fruit quality was usually not reduced by selecting only light or heavy planting material instead of mixing weights; incidentally the coefficient of variation was significantly reduced in fruits from heavy slips only. Heterogeneity was also not reduced by not mixing hapas and ground suckers. Flowering induction at optimum time increased the proportion and yield of fruits meeting export standards in fruits from light and mixed slip weights and in those from the mixture of heavy hapas plus ground suckers.

  14. Influence of weight and type of planting material on fruit quality and its heterogeneity in pineapple [Ananas comosus (L.) Merrill

    PubMed Central

    Fassinou Hotegni, V. Nicodème; Lommen, Willemien J. M.; Agbossou, Euloge K.; Struik, Paul C.

    2015-01-01

    Cultural practices can affect the quality of pineapple fruits and its variation. The objectives of this study were to investigate (a) effects of weight class and type of planting material on fruit quality, heterogeneity in quality and proportion and yield of fruits meeting European export standards, and (b) the improvement in quality, proportion and yield of fruits meeting export standards when flowering was induced at optimum time. Experiments were conducted in Benin with cvs Sugarloaf (a Perola type) and Smooth Cayenne. In cv. Sugarloaf, experimental factors were weight class of planting material (light, mixed, heavy) and time of flowering induction (farmers', optimum) (Experiment 1). In cv. Smooth Cayenne an additional experimental factor was the type of planting material (hapas, ground suckers, a mixture of the two) (Experiment 2). Fruits from heavy planting material had higher infructescence and fruit weights, longer infructescences, shorter crowns, and smaller crown: infructescence length than fruits from light planting material. The type of planting material in Experiment 2 did not significantly affect fruit quality except crown length: fruits from hapas had shorter crowns than those from ground suckers. Crops from heavy planting material had a higher proportion and yield of fruits meeting export standards than those from other weight classes in Experiment 1 only; also the type of planting material in Experiment 2 did not affect these variates. Heterogeneity in fruit quality was usually not reduced by selecting only light or heavy planting material instead of mixing weights; incidentally the coefficient of variation was significantly reduced in fruits from heavy slips only. Heterogeneity was also not reduced by not mixing hapas and ground suckers. Flowering induction at optimum time increased the proportion and yield of fruits meeting export standards in fruits from light and mixed slip weights and in those from the mixture of heavy hapas plus ground suckers. PMID:25653659

  15. Preformed crowns for decayed primary molar teeth.

    PubMed

    Innes, Nicola P T; Ricketts, David; Chong, Lee Yee; Keightley, Alexander J; Lamont, Thomas; Santamaria, Ruth M

    2015-12-31

    Crowns for primary molars are preformed and come in a variety of sizes and materials to be placed over decayed or developmentally defective teeth. They can be made completely of stainless steel (know as 'preformed metal crowns' or PMCs), or to give better aesthetics, may be made of stainless steel with a white veneer cover or made wholly of a white ceramic material. In most cases, teeth are trimmed for the crowns to be fitted conventionally using a local anaesthetic. However, in the case of the Hall Technique, PMCs are pushed over the tooth with no local anaesthetic, carious tissue removal or tooth preparation. Crowns are recommended for restoring primary molar teeth that have had a pulp treatment, are very decayed or are badly broken down. However, few dental practitioners use them in clinical practice. This review updates the original review published in 2007. Primary objectiveTo evaluate the clinical effectiveness and safety of all types of preformed crowns for restoring primary teeth compared with conventional filling materials (such as amalgam, composite, glass ionomer, resin modified glass ionomer and compomers), other types of crowns or methods of crown placement, non-restorative caries treatment or no treatment. Secondary objectiveTo explore whether the extent of decay has an effect on the clinical outcome of primary teeth restored with all types of preformed crowns compared with those restored with conventional filling materials. We searched the following electronic databases: Cochrane Oral Health Group Trials Register (to 21 January 2015), Cochrane Central Register of Controlled Trials (CENTRAL; The Cochrane Library, 2014, Issue 12), MEDLINE via Ovid (1946 to 21 January 2015) and EMBASE via Ovid (1980 to 21 January 2015). We searched the US National Institutes of Health Trials Register (http://clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform for ongoing trials and Open Grey for grey literature (to 21 January 2015). No restrictions were placed on the language or date of publication when searching the databases. Randomised controlled trials (RCTs) that assessed the effectiveness of crowns compared with fillings, other types of crowns, non-restorative approaches or no treatment in children with untreated tooth decay in one or more primary molar teeth. We would also have included trials comparing different methods of fitting crowns.For trials to be considered for this review, the success or failure of the interventions and other clinical outcomes had to be reported at least six months after intervention (with the exception of 'pain/discomfort during treatment and immediately postoperatively'). Two review authors independently assessed the title and abstracts for each article from the search results. and independently assessed the full text for each potentially relevant study. At least two authors assessed risk of bias and extracted data using a piloted data extraction form. We included five studies that evaluated three comparisons. Four studies compared crowns with fillings; two of them compared conventional PMCs with open sandwich restorations, and two compared PMCs fitted using the Hall Technique with fillings. One of these studies included a third arm, which allowed the comparison of PMCs (fitted using the Hall Technique) versus non-restorative caries treatment. In the two studies using crowns fitted using the conventional method, all teeth had undergone pulpotomy prior to the crown being placed. The final study compared two different types of crowns: PMCs versus aesthetic stainless steel crowns with white veneers. No RCT evidence was found that compared different methods of fitting preformed metal crowns (i.e. Hall Technique versus conventional technique).We considered outcomes reported at the dental appointment or within 24 hours of it, and in the short term (less than 12 months) or long term (12 months or more). Some of our outcomes of interest were not measured in the studies: time to restoration failure or retreatment, patient satisfaction and costs. Crowns versus fillingsAll studies in this comparison used PMCs. One study reported outcomes in the short term and found no reports of major failure or pain in either group. There was moderate quality evidence that the risk of major failure was lower in the crowns group in the long term (risk ratio (RR) 0.18, 95% confidence interval (CI) 0.06 to 0.56; 346 teeth in three studies, one conventional and two using Hall Technique). Similarly, there was moderate quality evidence that the risk of pain was lower in the long term for the crown group (RR 0.15, 95% CI 0.04 to 0.67; 312 teeth in two studies).Discomfort associated with the procedure was lower for crowns fitted using the Hall Technique than for fillings (RR 0.56, 95% CI 0.36 to 0.87; 381 teeth) (moderate quality evidence).It is uncertain whether there is a clinically important difference in the risk of gingival bleeding when using crowns rather than fillings, either in the short term (RR 1.69, 95% CI 0.61 to 4.66; 226 teeth) or long term (RR 1.74, 95% CI 0.99 to 3.06; 195 teeth, two studies using PMCs with conventional technique at 12 months) (low quality evidence). Crowns versus non-restorative caries treatmentOnly one study compared PMCs (fitted with the Hall Technique) with non-restorative caries treatment; the evidence quality was very low and we are therefore we are uncertain about the estimates. Metal crowns versus aesthetic crownsOne split-mouth study (11 participants) compared PMCs versus aesthetic crowns (stainless steel with white veneers). It provided very low quality evidence so no conclusions could be drawn. Crowns placed on primary molar teeth with carious lesions, or following pulp treatment, are likely to reduce the risk of major failure or pain in the long term compared to fillings. Crowns fitted using the Hall Technique may reduce discomfort at the time of treatment compared to fillings. The amount and quality of evidence for crowns compared to non-restorative caries, and for metal compared with aesthetic crowns, is very low. There are no RCTs comparing crowns fitted conventionally versus using the Hall Technique.

  16. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6.

    PubMed

    Pereira, Jose Henrique; Heins, Richard A; Gall, Daniel L; McAndrew, Ryan P; Deng, Kai; Holland, Keefe C; Donohue, Timothy J; Noguera, Daniel R; Simmons, Blake A; Sale, Kenneth L; Ralph, John; Adams, Paul D

    2016-05-06

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50-70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less

  18. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6

    DOE PAGES

    Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; ...

    2016-03-03

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less

  19. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6*

    PubMed Central

    Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; McAndrew, Ryan P.; Deng, Kai; Holland, Keefe C.; Donohue, Timothy J.; Noguera, Daniel R.; Simmons, Blake A.; Sale, Kenneth L.; Ralph, John; Adams, Paul D.

    2016-01-01

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. PMID:26940872

  20. Computer-aided fabrication of a zirconia 14-unit removable dental prosthesis: a technical report.

    PubMed

    Grösser, Julian; Sachs, Caroline; Stadelmann, Markus; Schweiger, Josef; Güthe, Jan-Frederik; Beuer, Florian

    2014-01-01

    Double crown systems with primary crowns made from zirconia are used to support removable dental prostheses (RDPs). However, the fabrication of RDPs is labor-intensive and costly. Manufacturing primary and secondary crowns from zirconia with a CAD/CAM system might simplify the fabrication protocol and reduce costs. Furthermore, only ceramic materials are used in this method, providing an RDP with the highest possible biocompatibility and greatest possible esthetics. This article describes the fabrication protocol step by step.

  1. Management intensity and genetics affect loblolly pine crown characteristics

    Treesearch

    B. Landis Herrin; Scott D. Roberts; Randall J. Rousseau

    2012-01-01

    The development of elite loblolly pine (Pinus taeda L) genotypes may lead to reduced planting densities as a means of reducing establishment costs. However, this can lead to undesirable crown and branch characteristics in some genotypes. Selecting appropriate genetic material, combined with appropriate silvicultural management, is essential to...

  2. Estimating northern red oak crown component weights in the Northeastern United States.

    Treesearch

    Robert M. Loomis; Richard W. Blank

    1981-01-01

    Equations are described for estimating crown weights for northern red oak trees. These estimates are for foliage and branchwood weights. Branchwood (wood plus bark) amounts are subdivided by living and dead material into four size groups. Applicability of the equations for other species is examined.

  3. Fatigue Resistance of CAD/CAM Resin Composite Molar Crowns

    PubMed Central

    Shembish, Fatma A.; Tong, Hui; Kaizer, Marina; Janal, Malvin N.; Thompson, Van P.; Opdam, Niek J.; Zhang, Yu

    2016-01-01

    Objective To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Methods Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n = 24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n = 24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electronic microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. Results The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700 N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450 N. Significance Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3 – 4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. PMID:26777092

  4. Assessment of exposures and potential risks to the US adult population from the leaching of elements from gold and ceramic dental restorations.

    PubMed

    Richardson, G Mark; James, Kyle Jordan; Peters, Rachel Elizabeth; Clemow, Scott Richard; Siciliano, Steven Douglas

    2016-01-01

    Using data from the 2001 to 2004 US National Health and Nutrition Examination Survey (NHANES) on the number and placement of tooth restorations in adults, we quantified daily doses due to leaching of elements from gold (Au) alloy and ceramic restorative materials. The elements with the greatest leaching rates from these materials are often the elements of lowest proportional composition. As a result, exposure due to wear will predominate for those elements of relatively high proportional composition, while exposure due leaching may predominate for elements of relatively low proportional composition. The exposure due to leaching of silver (Ag) and palladium (Pd) from Au alloys exceeded published reference exposure levels (RELs) for these elements when multiple full surface crowns were present. Six or more molar crowns would result in exceeding the REL for Ag, whereas three or more crowns would be necessary to exceed the REL for Pd. For platinum (Pt), the majority of tooth surfaces, beyond just molar crowns, would be necessary to exceed the REL for Pd. Exposures due to leaching of elements from ceramic dental materials were less than published RELs for all components examined here, including having all restorations composed of ceramic.

  5. Hall versus conventional stainless steel crown techniques: in vitro investigation of marginal fit and microleakage using three different luting agents.

    PubMed

    Erdemci, Zeynep Yalçınkaya; Cehreli, S Burçak; Tirali, R Ebru

    2014-01-01

    This study's purpose was to investigate microleakage and marginal discrepancies in stainless steel crowns (SSCs) placed using conventional and Hall techniques and cemented with three different luting agents. Seventy-eight human primary maxillary second molars were randomly assigned to two groups (N=39), and SSCs were applied either with the Hall or conventional technique. These two groups were further subgrouped according to the material used for crown cementation (N=13 per group). Two specimens in each group were processed for scanning electron microscopy investigation. The extent of microleakage and marginal fit was quantified in millimeters on digitally photographed sections using image analysis software. The data were compared with a two-way independent and a two-way mixed analysis of variance (P=.05). The scores in the Hall group were significantly worse than those in the conventional technique group (P<.05). In both groups, resin cement displayed the lowest extent of microleakage, followed by glass ionomer and polycarboxylate cements (P<.05). Stainless steel crowns applied using the Hall technique displayed higher microleakage scores than those applied using the conventional technique, regardless of the cementation material. When the interaction of the material and technique was assessed, resin cement presented as the best choice for minimizing microleakage in both techniques.

  6. Comparative evaluation of marginal leakage of provisional crowns cemented with different temporary luting cements: In vitro study.

    PubMed

    Arora, Sheen Juneja; Arora, Aman; Upadhyaya, Viram; Jain, Shilpi

    2016-01-01

    As, the longevity of provisional restorations is related to, a perfect adaptation and a strong, long-term union between restoration and teeth structures, therefore, evaluation of marginal leakage of provisional restorative materials luted with cements using the standardized procedures is essential. To compare the marginal leakage of the provisional crowns fabricated from Autopolymerizing acrylic resin crowns and bisphenol A-glycidyl dimethacrylate (BIS-GMA) resin crowns. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin crowns and BIS-GMA resin crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin (SC-10) crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from BIS-GMA resin crowns (Protemp 4) cemented with different temporary luting cements. Freshly extracted 60 maxillary premolars of approximately similar dimensions were mounted in dental plaster. Tooth reduction with shoulder margin was planned to use a customized handpiece-holding jig. Provisional crowns were prepared using the wax pattern fabricated from computer aided designing/computer aided manufacturing milling machine following the tooth preparation. Sixty provisional crowns were made, thirty each of SC-10 and Protemp 4 and were then cemented with three different luting cements. Specimens were thermocycled, submerged in a 2% methylene blue solution, then sectioned and observed under a stereomicroscope for the evaluation of marginal microleakage. A five-level scale was used to score dye penetration in the tooth/cement interface and the results of this study was analyzed using the Chi-square test, Mann-Whitney U-test, Kruskal-Wallis H-test and the results were statistically significant P < 0.05 the power of study - 80%. Marginal leakage was significant in both provisional crowns cemented with three different luting cements along the axial walls of teeth (P < 0.05) confidence interval - 95%. The temporary cements with eugenol showed more microleakage than those without eugenol. SC-10 crowns showed more microleakage compared to Protemp 4 crowns. SC-10 crowns cemented with Kalzinol showed maximum microleakage and Protemp 4 crowns cemented with HY bond showed least microleakage.

  7. Fatigue resistance of ultrathin CAD/CAM complete crowns with a simplified cementation process.

    PubMed

    Magne, Pascal; Carvalho, Adriana O; Bruzi, Greciana; Giannini, Marcelo

    2015-10-01

    Traditional tooth preparation for complete crowns requires a substantial amount of hard tissue reduction. This is in contrast with the principles of minimally invasive dentistry. An ultrathin complete crown preparation is proposed instead. The purpose of this in vitro study was to assess the fatigue resistance and failure mode of computer-aided design and computer-aided manufacturing (CAD/CAM) ultrathin complete molar crowns placed with self-adhesive cement. Different restorative materials (resin nanoceramic [RNC], feldspathic ceramic [FEL], and lithium disilicate [LD]) were compared. Forty-five extracted molars with a standardized crown preparation were restored with the Cerec 3 CAD/CAM system using FEL, LD, or RNC (n=15). FEL and LD restorations were etched with hydrofluoric acid and silanated. RNC restorations and all preparations were treated with airborne-particle abrasion. All restorations (thickness=0.7 mm) were cemented with RelyX Unicem II Automix cement and submitted to cyclic isometric loading, beginning with a load of 200 N (5000 cycles) and followed by stages of 400, 600, 800, 1000, 1200, and 1400 N at a maximum of 30 000 cycles each. The specimens were loaded until failure or for a maximum of 185 000 cycles. The failure mode was categorized as "catastrophic," "possibly reparable," or "reparable." The groups were compared using life table survival analysis (log rank test at α=.05). Previously published data from the same authors about traditional complete crowns (thickness 1.5 mm) using the same experimental design were included for comparison. All specimens survived the fatigue test until the 600 N step. RNC, LD, and FEL failed at an average load of 1014 N (1 survival), 1123 N (2 survivals), and 987 N (no survivals), and no difference in survival rate was found. No catastrophic failures were reported after the fatigue test. Comparison with previously published data showed that 1.5-mm thick complete crowns demonstrated higher survival rates than the ultrathin restorations, independent of the material. The fatigue resistance of ultrathin complete molar crowns (placed with a simplified cementation process) made of RNC, LD, and FEL was not significantly different. All materials survived the normal range of masticatory forces. All failures were re-restorable. Regular crowns of 1.5 to 2.0 mm thickness may present higher survival rates than ultrathin ones. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Failure modes and materials design for biomechanical layer structures

    NASA Astrophysics Data System (ADS)

    Deng, Yan

    Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa) and strength (400--1400MPa): Y-TZP zirconia, InCeram alumina and Empress II glass-ceramic. Explicit relations for the critical loads P to produce these different damage modes in bilayer and trilayer structures are developed in terms of basic material properties (modulus E, strength, hardness H and toughness T) and geometrical variables (thickness d and contact sphere radius r). These experimentally validated relations are used to design of optimal material combinations for improved fracture resistance and to predict mechanical performance of current dental materials.

  9. Optical properties of paint-on resins for shade modification of crown and bridge resins--light transmittance characteristics--.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Homma, Tetsuya; Takahashi, Hideo; Ban, Seiji

    2003-09-01

    The purpose of this study was to examine the light transmittance characteristics of the paint-on resins for shade modification. Three shades of paint-on resin, one crown and bridge resin, and human enamel were used. Specimens with four different thicknesses (75-150 microm) were prepared. The light transmittances including its wavelength distribution and diffusion characteristics were measured. The color values and the color differences among thicknesses of specimens were also determined. The light transmittance values of the paint-on resins ranged from 60.3% to 88.3% at 100 microm thickness, which were lower or nearly equal in comparison with the crown and bridge resin and enamel. Although differences in the wavelength distribution of transmittance among materials were found at lower wavelengths, all materials showed similar diffusion characteristics. The thin layer of paint-on resin effectively changed the color of restorative resin. The paint-on resin may be an effective material for the modification of the color appearance matching required.

  10. Degradation of blending vulcanized natural rubber and nitril rubber (NR/NBR) by dimethyl ether through variation of elastomer ratio

    NASA Astrophysics Data System (ADS)

    Saputra, A. H.; Juneva, S.; Sari, T. I.; Cifriadi, A.

    2018-04-01

    Dimethyl ether can cause degradation of the rubber material seal in some applications. In order to use of natural rubber in industry, research about a blending of natural rubber (NR) and nitrile rubber (NBR) to produce rubber to meet the standard seal material application were conducted. This study will observe the degradation mechanisms that occur in the blending natural rubber and nitrile rubber (NR/NBR) by dimethyl ether. Nitrile rubber types used in this study is medium quality nitrile rubber with 33% of acrylonitrile content (NBR33). The observed parameters are percent change in mass, mechanical properties and surface morphology. This study is limited to see the effect of variation vulcanized blending ratio (NR/NBR33) against to swelling. The increase of nitrile rubber (NBR33) ratio of blending rubber vulcanized can reduce the tensile strength and elongation. The best elastomer variation was obtained after comparing with the standard feasibility material of seal is rubber vulcanized blending (NR/NBR33) with ratio 40:60 NR: NBR.

  11. In vitro comparative evaluation of mechanical properties of temporary restorative materials used in fixed partial denture

    PubMed Central

    Saisadan, D.; Manimaran, P.; Meenapriya, P. K.

    2016-01-01

    Introduction: Materials used to fabricate provisional restorations can be classified as acrylics or resin composites. Provisional crows can be either prefabricated or custom made. Acrylics: These materials have been used to fabricate provisional restorations since the 1930s and usually available as powder and liquid. They are the most commonly used materials today for both single-unit and multiple-unit restorations. In general, their popularity is due to their low cost, acceptable esthetics, and versatility. Composites: Composite provisional materials use bis-acryl resin, a hydrophobic material that is similar to bis-GMA. Composites are available as auto-polymerized, dualpolymerized and visible light polymerized. Preformed Crowns: Preformed provisional crowns or matrices usually consist of tooth-shaped shells of plastic, cellulose acetate or metal. They are commercially available in various tooth sizes and are usually selected for a particular tooth anatomy. They are commonly relined with acrylic resin to provide a more custom fit before cementation, but the plastic and metal crown shells can also be cemented directly onto prepared teeth. Aims and Objectives: The aim of this study is to choose a material to serve as a better interim prosthesis and to compare three different properties – flexural strength, compressive strength, and color stability. Materials and Methods: The samples were made with three different provisional materials (Revotek LC, Protemp 4, TemSpan). Result: It was inferred from the study that no one material was superior in all three tested parameters. PMID:27829758

  12. [Preliminary evaluation of clinical effect of computer aided design and computer aided manufacture zirconia crown].

    PubMed

    Wang, Yu-guang; Xing, Yan-xi; Sun, Yu-chun; Zhao, Yi-jiao; Lü, Pei-jun; Wang, Yong

    2013-06-01

    To evaluate clinical effects of computer aided design and computer aided manufacturing (CAD/CAM) milled zirconia crown in three aspects: aesthetic, contact wear and fracture. Sixty patients were divided into two groups.In one group, 35 full contour CAD/CAM zirconia crown were made on molars of 30 patients. The manufacturing process of zirconia crown was as follow. First, the three dimensional(3-D) data of working models, antagonist impression and check records were acquired by 3-D laser scanning Dental wings S50. Then full contour zirconia crowns, which had functional occlusal contacts with antagonistic teeth, and appropriate contact with adjacent teeth were designed with Zeno-CAD(V4.2.5.5.12919) software. ZENOSTAR Zr pure zirconia material was milled in digital controlled machine WIELAND 4030 M1.In the end, the zirconia crown were completed with the method of second sintering and polishing. After clinical try-in, the crown was cemented.In the control group, thirty gold alloy full crown were made and cemented on molars of 30 patients. According to the modified U S Public Health Service Criteria(USPHS) evaluation standard, all crowns were evaluated on the same day, at three months, half a year, one year and two years following delivery. There were three aspects we were focusing on in the evaluation: aesthetic, contact wear(restoration and antagonist), and fracture. In all the prosthesis we evaluated during the 24 months, no fracture was found. Contact wear of crowns varies according to different antagonist teeth. The zirconia crowns show privilege in aesthesis, toughness and anti-wearing.However, there is contact wear on antagonistic natural teeth. Thus it is a good choice when full zirconia crowns are indicated on two antagonistic teeth in both jaws.

  13. Biomechanical validation of an artificial tooth–periodontal ligament–bone complex for in vitro orthodontic load measurement

    PubMed Central

    Xia, Zeyang; Chen, Jie

    2014-01-01

    Objectives To develop an artificial tooth–periodontal ligament (PDL)–bone complex (ATPBC) that simulates clinical crown displacement. Material and Methods An ATPBC was created. It had a socket hosting a tooth with a thin layer of silicon mixture in between for simulating the PDL. The complex was attached to a device that allows applying a controlled force to the crown and measuring the resulting crown displacement. Crown displacements were compared to previously published data for validation. Results The ATPBC that had a PDL made of two types of silicones, 50% gasket sealant No. 2 and 50% RTV 587 silicone, with a thickness of 0.3 mm, simulated the PDL well. The mechanical behaviors (1) force-displacement relationship, (2) stress relaxation, (3) creep, and (4) hysteresis were validated by the published results. Conclusion The ATPBC simulated the crown displacement behavior reported from biological studies well. PMID:22970752

  14. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  15. A high-spin and durable polyradical: poly(4-diphenylaminium-1,2-phenylenevinylene).

    PubMed

    Murata, Hidenori; Takahashi, Masahiro; Namba, Kazuaki; Takahashi, Naoki; Nishide, Hiroyuki

    2004-02-06

    A purely organic, high-spin, and durable polyradical molecule was synthesized: It is based on the non-Kekulé- and non-disjoint design of a pi-conjugated poly(1,2-phenylenevinylene) backbone pendantly 4-substituted with multiple robust arylaminium radicals. 4-N,N-Bis(4-methoxy- and -tert-butylphenyl)amino-2-bromostyrene 5 were synthesized and polymerized with a palladium-phosphine catalyst to afford the head-to-tail-linked polyradical precursors (1). Oxidation of 1 with the nitrosonium ion solubilized with a crown ether gave the aminium polyradicals (1(+)()) which were durable (half-life > 1 month) at room temperature in air. A high-spin ground state with an average S = (4.5)/2 for 1a(+) was proved even at room temperature by magnetic susceptibility, magnetization, ESR, and NMR measurements.

  16. UV-Vis Action Spectroscopy Reveals a Conformational Collapse in Hydrogen-Rich Dinucleotide Cation Radicals.

    PubMed

    Korn, Joseph A; Urban, Jan; Dang, Andy; Nguyen, Huong T H; Tureček, František

    2017-09-07

    We report the generation of deoxyriboadenosine dinucleotide cation radicals by gas-phase electron transfer to dinucleotide dications and their noncovalent complexes with crown ether ligands. Stable dinucleotide cation radicals of a novel hydrogen-rich type were generated and characterized by tandem mass spectrometry and UV-vis photodissociation (UVPD) action spectroscopy. Electron structure theory analysis indicated that upon electron attachment the dinucleotide dications underwent a conformational collapse followed by intramolecular proton migrations between the nucleobases to give species whose calculated UV-vis absorption spectra matched the UVPD action spectra. Hydrogen-rich cation radicals generated from chimeric riboadenosine 5'-diesters gave UVPD action spectra that pointed to novel zwitterionic structures consisting of aromatic π-electron anion radicals intercalated between stacked positively charged adenine rings. Analogies with DNA ionization are discussed.

  17. Maxillary and mandibular anterior crown width/height ratio and its relation to various arch perimeters, arch length, and arch width groups

    PubMed Central

    Shahid, Fazal; Alam, Mohammad Khursheed; Khamis, Mohd Fadhli

    2015-01-01

    Objective: To investigate the maxillary and mandibular anterior crown width/height ratio and its relation to various arch perimeters, arch length, and arch width (intercanine, interpremolar, and intermolar) groups. Materials and Methods: The calculated sample size was 128 subjects. The crown width/height, arch length, arch perimeter, and arch width of the maxilla and mandible were obtained via digital calliper (Mitutoyo, Japan). A total of 4325 variables were measured. The sex differences in the crown width and height were evaluated. Analysis of variance was applied to evaluate the differences between arch length, arch perimeter, and arch width groups. Results: Males had significantly larger mean values for crown width and height than females (P ≤ 0.05) for maxillary and mandibular arches, both. There were no significant differences observed for the crown width/height ratio in various arch length, arch perimeter, and arch width (intercanine, interpremolar, and intermolar) groups (P ≤ 0.05) in maxilla and mandible, both. Conclusions: Our results indicate sexual disparities in the crown width and height. Crown width and height has no significant relation to various arch length, arch perimeter, and arch width groups of maxilla and mandible. Thus, it may be helpful for orthodontic and prosthodontic case investigations and comprehensive management. PMID:26929686

  18. Comparison of polymer-based temporary crown and fixed partial denture materials by diametral tensile strength.

    PubMed

    Ha, Seung-Ryong; Yang, Jae-Ho; Lee, Jai-Bong; Han, Jung-Suk; Kim, Sung-Hun

    2010-03-01

    The purpose of this study was to investigate the diametral tensile strength of polymer-based temporary crown and fixed partial denture (FPD) materials, and the change of the diametral tensile strength with time. One monomethacrylate-based temporary crown and FPD material (Trim) and three dimethacrylate-based ones (Protemp 3 Garant, Temphase, Luxtemp) were investigated. 20 specimens (ø 4 mm × 6 mm) were fabricated and randomly divided into two groups (Group I: Immediately, Group II: 1 hour) according to the measurement time after completion of mixing. Universal Testing Machine was used to load the specimens at a cross-head speed of 0.5 mm/min. The data were analyzed using one-way ANOVA, the multiple comparison Scheffe test and independent sample t test (α = 0.05). Trim showed severe permanent deformation without an obvious fracture during loading at both times. There were statistically significant differences among the dimethacrylate-based materials. The dimethacrylate-based materials presented an increase in strength from 5 minutes to 1 hour and were as follows: Protemp 3 Garant (23.16 - 37.6 MPa), Temphase (22.27 - 28.08 MPa), Luxatemp (14.46 - 20.59 MPa). Protemp 3 Garant showed the highest value. The dimethacrylate-based temporary materials tested were stronger in diametral tensile strength than the monomethacrylate-based one. The diametral tensile strength of the materials investigated increased with time.

  19. Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s.

    PubMed

    Zhan, Fengping; Liao, Xiaolei; Gao, Feng; Qiu, Weiwei; Wang, Qingxiang

    2017-06-15

    A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu 2+ ) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu 2+ by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Health assessment of gasoline and fuel oxygenate vapors: developmental toxicity in rats.

    PubMed

    Roberts, Linda G; Gray, Thomas M; Trimmer, Gary W; Parker, Robert M; Murray, F Jay; Schreiner, Ceinwen A; Clark, Charles R

    2014-11-01

    Gasoline-vapor condensate (BGVC) or condensed vapors from gasoline blended with methyl t-butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME) diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA) were evaluated for developmental toxicity in Sprague-Dawley rats exposed via inhalation on gestation days (GD) 5-20 for 6h/day at levels of 0 (control filtered air), 2000, 10,000, and 20,000mg/m(3). These exposure durations and levels substantially exceed typical consumer exposure during refueling (<1-7mg/m(3), 5min). Dose responsive maternal effects were reduced maternal body weight and/or weight change, and/or reduced food consumption. No significant malformations were seen in any study. Developmental effects occurred at 20,000mg/m(3) of G/TAME (reduced fetal body weight, increased incidence of stunted fetuses), G/TBA (reduced fetal body weight, increased skeletal variants) and G/DIPE (reduced fetal weight) resulting in developmental NOAEL of 10,000mg/m(3) for these materials. Developmental NOAELs for other materials were 20,000mg/m(3) as no developmental toxicity was induced in those studies. Developmental NOAELs were equal to or greater than the concurrent maternal NOAELs which ranged from 2000 to 20,000mg/m(3). There were no clear cut differences in developmental toxicity between vapors of gasoline and gasoline blended with the ether or alcohol oxygenates. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Rubber-Modified Epoxies. I. Cure, Transitions, and Morphology.

    DTIC Science & Technology

    1984-10-01

    thermosetting systems has been developed. An aromatic tetrafunctional diamine-cured diglycidyl ether of bis- phenol A epoxy resin [maximum glass transition...systems has been developed. An aromatic tetrafunctional diamine-cured digly- cidyl ether of bisphenol A epoxy resin [maximum glass transition...epoxy resins are brittle materials. The crack resistance can be improved by the addition of reactive liquid rubber to uncured neat epoxy systems (1-3

  2. Influence of ceramic dental crown coating substrate thickness ratio on strain energy release rate

    NASA Astrophysics Data System (ADS)

    Khasnulhadi, K.; Daud, R.; Mat, F.; Noor, S. N. F. M.; Basaruddin, K. S.; Sulaiman, M. H.

    2017-10-01

    This paper presents the analysis of coating substrate thickness ratio effect on the crown coating fracture behaviour. The bi-layer material is examined under four point bending with pre-crack at the bottom of the core material by using finite element. Three different coating thickness of core/substrate was tested which is 1:1, 1:2 and 2:1. The fracture parameters are analysed based on bilayer and homogenous elastic interaction. The result shows that the ratio thickness of core/veneer provided a significant effect on energy release rate.

  3. Space, Time, Ether, and Kant

    NASA Astrophysics Data System (ADS)

    Wong, Wing-Chun Godwin

    This dissertation focused on Kant's conception of physical matter in the Opus postumum. In this work, Kant postulates the existence of an ether which fills the whole of space and time with its moving forces. Kant's arguments for the existence of an ether in the so-called Ubergang have been acutely criticized by commentators. Guyer, for instance, thinks that Kant pushes the technique of transcendental deduction too far in trying to deduce the empirical ether. In defense of Kant, I held that it is not the actual existence of the empirical ether, but the concept of the ether as a space-time filler that is subject to a transcendental deduction. I suggested that Kant is doing three things in the Ubergang: First, he deduces the pure concept of a space-time filler as a conceptual hybrid of the transcendental object and permanent substance to replace the category of substance in the Critique. Then he tries to prove the existence of such a space-time filler as a reworking of the First Analogy. Finally, he takes into consideration the empirical determinations of the ether by adding the concept of moving forces to the space -time filler. In reconstructing Kant's proofs, I pointed out that Kant is absolutely committed to the impossibility of action-at-a-distance. If we add this new principle of no-action-at-a-distance to the Third Analogy, the existence of a space-time filler follows. I argued with textual evidence that Kant's conception of ether satisfies the basic structure of a field: (1) the ether is a material continuum; (2) a physical quantity is definable on each point in the continuum; and (3) the ether provides a medium to support the continuous transmission of action. The thrust of Kant's conception of ether is to provide a holistic ontology for the transition to physics, which can best be understood from a field-theoretical point of view. This is the main thesis I attempted to establish in this dissertation.

  4. Survival rates of IPS empress 2 all-ceramic crowns and fixed partial dentures: results of a 5-year prospective clinical study.

    PubMed

    Marquardt, Pascal; Strub, Jörg Rudolf

    2006-04-01

    The aim of this prospective clinical study was to evaluate the survival rates of IPS Empress 2 (Ivoclar Vivadent) all-ceramic crowns and fixed partial dentures (FPDs) after an observation period of up to 5 years. Forty-three patients (19 women and 24 men) were included in this study. The patients were treated with a total of 58 adhesive bonded IPS Empress 2 restorations. A total of 27 single crowns were placed on molars and premolars, and 31 three-unit FPDs were placed in the anterior and premolar regions. Clinical follow-up examinations took place at 6, 12, 24, 36, 48, and 60 months after insertion. Statistical analysis of the data was calculated using the Kaplan-Meier method. Results of the 50-month analysis (interquartile range, 33 to 61 months) showed that the survival rate was 100% for crowns and 70% for FPDs. Six failures that occurred exclusively in the three-unit FPDs were observed. Framework fractures were recorded in three FPD units where the connector dimensions did not meet the manufacturer specifications. Only one FPD exhibited an irreparable partial veneer fracture, and 2 FPDs showed evidence of biologic failures. The accuracy of fit and esthetic parameters were clinically satisfactory for crowns and FPDs. The results of this 5-year clinical evaluation suggest that IPS Empress 2 ceramic is an appropriate material for the fabrication of single crowns. Because of the reduced survival rates, strict conditions should be considered before the use of IPS Empress 2 material for the fabrication of three-unit FPDs.

  5. Advanced Materials for PEM-Based Fuel Cell Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 °C. However, application of these membranes is limited due to theirmore » high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in this final report.« less

  6. Color stability and flexural strength of poly (methyl methacrylate) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to beverages and food dye: an in vitro study.

    PubMed

    Gujjari, Anil K; Bhatnagar, Vishrut M; Basavaraju, Ravi M

    2013-01-01

    To evaluate the color stability and flexural strength of poly (methyl methacrylate) (PMMA) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to tea, coffee, cola, and food dye. Two provisional crown and bridge resins, one DPI self-cure tooth molding powder (PMMA) (Group A), and one Protemp 4 Temporization Material (bis-acrylic composite) (Group B) were used. Disk-shaped specimens for color stability testing (n = 30 for each material) and bar-shaped specimens for flexural strength testing (n = 30 for each material) were fabricated using a metal mold. The specimens were immersed in artificial saliva, artificial saliva + tea, artificial saliva + coffee, artificial saliva + cola, and artificial saliva + food dye solutions and stored in an incubator at 37°C. Color measurements were taken before immersion, and then after 3 and 7 days of immersion. Flexural strength was evaluated after 7 days of immersion. Group A showed significantly higher color stability as compared to Group B, and artificial saliva + coffee solution had the most staining capacity for the resins. Test solutions had no effect on the flexural strength of Group A, but Group B specimens immersed in artificial saliva + cola showed significantly lower flexural strength values as compared to the control group. The findings of the study showed that for materials used in the study, PMMA was more color stable than bis-acrylic composite based resin. Also, material based on PMMA was more resistant to damage from dietary beverages as compared to bis-acrylic composite based provisional crown and bridge resin.

  7. Marginal adaptation of full-coverage CAD/CAM restorations: in vitro study using a non-destructive method.

    PubMed

    Romeo, E; Iorio, M; Storelli, S; Camandona, M; Abati, S

    2009-03-01

    Marginal fit of full-coverage crowns is a major requirement for long term success of this kind of restorations. The purpose of the study was to verify the marginal adaptation of computer assisted design (CAD)/computer assisted manufacturing (CAM) crowns on prepared teeth and on plaster dies. Four couples of materials: zirconia-ceramic veneering (DC-Zircon, DCS Dental, Allschwill, CH/Cercon S, Degussa, DeguDent GmbH, Hanau, Germany), fiber-reinforced composite-composite veneering (DC-Tell, DCS Dental/Gradia, GC Europe, LEuven, Belgium), titanium-ceramic veneering (DC Titan, DCS Dental/Tikrom, Orotig, Verona, Italy) and titanium-composite veneering (DC Titan, DCS Dental/Gradia, GC Europe) were evaluated following the guidelines provided by ADA specific #8. Five crowns were fabricated for each material. Marginal gap values were measured at four points (0 degrees, 90 degrees, 180 degrees and 270 degrees starting from the centre of the vestibular surface) around the finishing line, on prepared teeth and on plaster dies at each step of the fabrication process. Digital photographs were taken at each reference point and a computer software was used to measure the amount of marginal discrepancy in microm. Statistical analysis was performed using t test at 95 percent confidence interval. All the tested materials, except for fiber-reinforced composite, show a marginal adaptation within the limits of ADA specification (25-40 microm). The application of veneering material causes decay in marginal adaptation, except for fiber-reinforced composite. Within the limitations of this study, it was concluded that marginal fit of CAD/CAM restoration is within the limits considered clinically acceptable by ADA specification #8. From the results of this in vitro study, it can be stated that CAD/CAM crowns produced with DCS system show a marginal adaptation within the limits of ADA specific #8, therefore milled CAD/CAM crowns can be considered a good alternative to more traditional waxing-investing-casting technique.

  8. Comparative evaluation of marginal leakage of provisional crowns cemented with different temporary luting cements: In vitro study

    PubMed Central

    Arora, Sheen Juneja; Arora, Aman; Upadhyaya, Viram; Jain, Shilpi

    2016-01-01

    Background or Statement of Problem: As, the longevity of provisional restorations is related to, a perfect adaptation and a strong, long-term union between restoration and teeth structures, therefore, evaluation of marginal leakage of provisional restorative materials luted with cements using the standardized procedures is essential. Aims and Objectives: To compare the marginal leakage of the provisional crowns fabricated from Autopolymerizing acrylic resin crowns and bisphenol A-glycidyl dimethacrylate (BIS-GMA) resin crowns. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin crowns and BIS-GMA resin crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin (SC-10) crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from BIS-GMA resin crowns (Protemp 4) cemented with different temporary luting cements. Methodology: Freshly extracted 60 maxillary premolars of approximately similar dimensions were mounted in dental plaster. Tooth reduction with shoulder margin was planned to use a customized handpiece-holding jig. Provisional crowns were prepared using the wax pattern fabricated from computer aided designing/computer aided manufacturing milling machine following the tooth preparation. Sixty provisional crowns were made, thirty each of SC-10 and Protemp 4 and were then cemented with three different luting cements. Specimens were thermocycled, submerged in a 2% methylene blue solution, then sectioned and observed under a stereomicroscope for the evaluation of marginal microleakage. A five-level scale was used to score dye penetration in the tooth/cement interface and the results of this study was analyzed using the Chi-square test, Mann–Whitney U-test, Kruskal–Wallis H-test and the results were statistically significant P < 0.05 the power of study - 80%. Results: Marginal leakage was significant in both provisional crowns cemented with three different luting cements along the axial walls of teeth (P < 0.05) confidence interval - 95%. Conclusion: The temporary cements with eugenol showed more microleakage than those without eugenol. SC-10 crowns showed more microleakage compared to Protemp 4 crowns. SC-10 crowns cemented with Kalzinol showed maximum microleakage and Protemp 4 crowns cemented with HY bond showed least microleakage. PMID:27134427

  9. Methods for degrading lignocellulosic materials

    DOEpatents

    Vlasenko, Elena [Davis, CA; Cherry, Joel [Davis, CA; Xu, Feng [Davis, CA

    2008-04-08

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermentating microoganisms; and (c) recovering the organic substance from the fermentation.

  10. Methods for degrading lignocellulosic materials

    DOEpatents

    Vlasenko, Elena [Davis, CA; Cherry, Joel [Davis, CA; Xu, Feng [Davis, CA

    2011-05-17

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermenting microorganisms; and (c) recovering the organic substance from the fermentation.

  11. Methods for degrading lignocellulosic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasenko, Elena; Cherry, Joel; Xu, Feng

    2008-04-08

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolyticmore » enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermentating microoganisms; and (c) recovering the organic substance from the fermentation.« less

  12. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations.

    PubMed

    Sghaireen, Mohd G

    2015-06-01

    The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p < .05). The highest fracture loads were associated with metal-ceramic crowns supported by titanium abutments (p = .000). IPS Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.

  13. Loading capacity of zirconia implant supported hybrid ceramic crowns.

    PubMed

    Rohr, Nadja; Coldea, Andrea; Zitzmann, Nicola U; Fischer, Jens

    2015-12-01

    Recently a polymer infiltrated hybrid ceramic was developed, which is characterized by a low elastic modulus and therefore may be considered as potential material for implant supported single crowns. The purpose of the study was to evaluate the loading capacity of hybrid ceramic single crowns on one-piece zirconia implants with respect to the cement type. Fracture load tests were performed on standardized molar crowns milled from hybrid ceramic or feldspar ceramic, cemented to zirconia implants with either machined or etched intaglio surface using four different resin composite cements. Flexure strength, elastic modulus, indirect tensile strength and compressive strength of the cements were measured. Statistical analysis was performed using two-way ANOVA (p=0.05). The hybrid ceramic exhibited statistically significant higher fracture load values than the feldspar ceramic. Fracture load values and compressive strength values of the respective cements were correlated. Highest fracture load values were achieved with an adhesive cement (1253±148N). Etching of the intaglio surface did not improve the fracture load. Loading capacity of hybrid ceramic single crowns on one-piece zirconia implants is superior to that of feldspar ceramic. To achieve maximal loading capacity for permanent cementation of full-ceramic restorations on zirconia implants, self-adhesive or adhesive cements with a high compressive strength should be used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. OCT evaluation of single ceramic crowns: comparison between conventional and chair-side CAD/CAM technologies

    NASA Astrophysics Data System (ADS)

    Gabor, A.; Jivanescu, A.; Zaharia, C.; Hategan, S.; Topala, F. I.; Levai, C. M.; Negrutiu, M. L.; Sinescu, C.; Duma, V.-F.; Bradu, A.; Podoleanu, A. Gh.

    2016-03-01

    Digital impressions were introduced to overcome some of the obstacles due to traditional impression materials and techniques. The aim of this in vitro study is to compare the accuracy of all ceramic crowns obtained with digital impression and CAD-CAM technology with the accuracy of those obtained with conventional impression techniques. Two groups of 10 crowns each have been considered. The digital data obtained from Group 1 have been processed and the all-ceramic crowns were milled with a CAD/CAM technology (CEREC MCX, Sirona). The all ceramic crowns in Group 2 were obtained with the classical technique of pressing (emax, Ivoclar, Vivadent). The evaluation of the marginal adaptation was performed with Time Domain Optical Coherence Tomography (TD OCT), working at a wavelength of 1300 nm. Tri-dimensional (3D) reconstructions of the selected areas were obtained. Based on the findings in this study, one may conclude that the marginal accuracy of all ceramic crowns fabricated with digital impression and the CAD/CAM technique is superior to the conventional impression technique.

  15. A new high-speed hollow fiber based liquid phase microextraction method using volatile organic solvent for determination of aromatic amines in environmental water samples prior to high-performance liquid chromatography.

    PubMed

    Sarafraz-Yazdi, A; Mofazzeli, F; Es'haghi, Z

    2009-07-15

    A new and fast hollow fiber based liquid phase microextraction (HF-LPME) method using volatile organic solvents coupled with high-performance liquid chromatography (HPLC) was developed for determination of aromatic amines in the environmental water samples. Analytes including 3-nitroaniline, 3-chloroaniline and 4-bromoaniline were extracted from 6 mL basic aqueous sample solution (donor phase, NaOH 1 mol L(-1)) into the thin film of organic solvent that surrounded and impregnated the pores of the polypropylene hollow fiber wall (toluene, 20 microL), then back-extracted into the 6 mL acidified aqueous solution (acceptor phase, HCl 0.5 mol L(-1)) in the lumen of the two-end sealed hollow fiber. After the extraction, 5 microL of the acceptor phase was withdrawn into the syringe and injected directly into the HPLC system for the analysis. The parameters influencing the extraction efficiency including the kind of organic solvent and its volume, composition of donor and acceptor phases and the volume ratio between them, extraction time, stirring rate, salt addition and the effect of the analyte complexation with 18-crown-6 ether were investigated and optimized. Under the optimal conditions (donor phase: 6 mL of 1 mol L(-1) NaOH with 10% NaCl; organic phase: 20 microL of toluene; acceptor phase: 6 microL of 0.5 mol L(-1) HCl and 600 mmol L(-1) 18-crown-6 ether; pre-extraction and back-extraction times: 75 s and 10 min, respectively; stirring rate: 800 rpm), the obtained EFs were between 259 and 674, dynamic linear ranges were 0.1-1000 microg L(-1) (R>0.9991), and also the limits of detection were in the range of 0.01-0.1 micro gL(-1). The proposed procedure worked very well for real environmental water samples with microgram per liter level of the analytes, and good relative recoveries (91-102%) were obtained for the spiked sample solutions.

  16. [All-ceramic peripheral restorations: crowns and bridges].

    PubMed

    Legros, Caroline; Vanheusden, Alain

    2006-01-01

    Over the last years, current technologies in dental ceramics are strongly improved, constantly producing new materials for the restoration of the single or plural teeth. Feldspathic porcelains fused to a cast metal substructure, the so-called "metal-ceramic crown," has been long time the gold standard; this is primarily due to their predictable long-term strength characteristics. All-ceramic systems are a focus of interest, because they offer aesthetic results that may be difficult to achieve with metal-ceramic systems. Nowadays, the new ceramics associate aesthetic and good mechanical qualities, biocompatibility, accurate marginal fit and low invasive preparations. Thanks to the diversification of all-ceram processes, materials properties and clinical situations are now the prime criteria which determine the practitioner's choice. In this article, we try to summarize different clinical concepts for peripheric all-ceram restoration, such as crowns and bridges used in a daily dental practice.

  17. Optical X-ray density of composite resin luting agents.

    PubMed

    Carracho, Helena G; da Silveira, Ivori D; Soares, Clarissa G; Paranhos, Maria Paula G; Júnior, Luiz Henrique Burnett; Spohr, Ana Maria

    2011-01-01

    This study verified the optical density of four composite resin luting agents - RelyX ARC (RY), Enforce (E), C&B Cement (CB) and Flow it (FI), at thicknesses of 2, 3, and 4 mm. The optical density of the luting agents was compared with that of enamel and dentin at the same thicknesses. Fifteen tooth crowns were embedded in PVC cylinders with self-cured acrylic resin. In addition, acrylic resin was poured into 5 PVC cylinders and four equidistant 5 mm diameter holes were prepared, with one luting material inserted in each. A laboratory cutting machine was used to prepare 4-, 3- and 2-mm thick slices of the tooth crowns and materials. Digital images were obtained with a Digora system. Three radiographs of each thickness were obtained, totalizing 135 radiographs of the crowns and 45 of the materials. Three readings were carried out on each radiograph: three in enamel, three in dentin and three in each material, totalizing 1350. According to Students t-test (p

  18. Comparison of the Effect of Dentin Bonding, Dentin Sealing Agents on the Microleakage of Provisional Crowns Fabricated with Direct and Indirect Technique-An Invitro Study

    PubMed Central

    Muthukumar, B; Kumar, M Vasantha

    2015-01-01

    Background Postoperative sensitivity after temporization is a common complaint in Fixed Partial Denture patients. It is caused by weak and ill fitting temporary restorations which results in microleakage. This can be controlled by providing good temporary restorations and by coating the exposed dentinal tubules of the prepared tooth with dentin bonding agent or dental varnish. Aim The purpose of the study was to determine the effect of dentin-bonding, dentin sealing agents on the microleakage of temporary crowns made by tooth colored auto polymerizing resin fabricated with direct and indirect technique. Materials and Methods Thirty premolar and molar human teeth were collected which were extracted recently was used for the study. The teeth were marked and divided into 3 groups each containing 10 nos. They were individually mounted with self-cure acrylic resin. It was then mounted on a milling machine and crown preparations done. Temporary crowns were fabricated by direct and indirect method with two types of materials. In group A (Control group), the temporary crowns fabricated with both direct and indirect method were cemented directly with temporary luting cement. In group B dentine-bonding agent (solobond M) was applied once to the prepared surface of each tooth specimen before the cementation of temporary crowns where as in case of group C a single layer of dental varnish is applied prior to crown cementation. The entire specimens were immersed in 1% methylene blue and allowed to undergo thermal treatment. It was then sectioned in a hard tissue microtome. Each section was evaluated for dye penetration into the dentin tubules by comparing it with a visual scale. Statistical Analysis SPSS Version 13 software was used for non-parametric data analysis by a qualified statistician. P-values less than 0.05 (p-value<0.05) were considered to be statistically significant. Results Group B (Dentin Bonding Agent) specimens cemented with crowns fabricated in direct technique showed the least amount of microleakage when compared with group A and group C. Group C (Dental Varnish) specimen showed comparatively more amount of microleakage than that of group B. Group A (control group) specimens showed the maximum amount of microleakage. Conclusion The application of a single layer of Dental varnish appears to be of no significant benefit when compared to crowns cemented with the application of Dentin bonding agent on the tooth surface. The application of a single layer of Dentin bonding agent (Solobond M) and temporary crowns fabricated with direct technique may be of some benefit for crown preparations as an interim measure prior to the luting of final crown. PMID:26266219

  19. Reducing the risk of sensitivity and pulpal complications after the placement of crowns and fixed partial dentures.

    PubMed

    Brännström, M

    1996-10-01

    Sensitivity after cementation of a crown with glass-ionomer cement is often attributed to an adverse effect on the pulp by the luting agent. Most permanent restorative materials in common use today do not tend to irritate the pulp; the main cause of pulpal damage is infection, the bacteria originating in the smear layer or deep in the dental tubules, inaccessible to caries-excavating procedures. A poorly fitting provisional crown may expose cut dentin to the oral fluids, and mechanical trauma caused by frictional heat during preparation may also damage the pulp. The following precautions are recommended during precementation procedures to reduce the risk of an inflammatory response in the pulp: (1) The provisional crown should be well fitting, covering cervical dentin but not impinging on the periodontal tissues. The permanent crown should be cemented as soon as possible. (2) The superficial smear layer should be removed and the dentinal surface should be treated with an antibacterial solution before the provisional crown is placed. (3) To decrease dentinal permeability under the provisional crown, the dentinal surface should be covered with a liner that can be easily removed before final cementation. (4) to ensure optimal mircomechanical bonding, the dentinal surface should be thoroughly cleaned, and the dentin should be kept moist until cementation. (5) The occlusion should be carefully checked before cementation of the crown.

  20. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    PubMed Central

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578

  1. 21 CFR Appendix A to Part 74 - The Procedure for Determining Ether Soluble Material in D&C Red Nos. 6 and 7

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and 7 The dye is dissolved in glacial acetic and 8 N hydrochloric acids (1.33 : 1) and extracted with... required. (A) Glacial Acetic Acid (ACS grade). (B) Diethyl ether (Anhydrous)—Note and follow safety... acetic acid to the beaker and stir. Place the beaker on a hot plate and heat with stirring, until all of...

  2. 21 CFR Appendix A to Part 74 - The Procedure for Determining Ether Soluble Material in D&C Red Nos. 6 and 7

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and 7 The dye is dissolved in glacial acetic and 8 N hydrochloric acids (1.33 : 1) and extracted with... required. (A) Glacial Acetic Acid (ACS grade). (B) Diethyl ether (Anhydrous)—Note and follow safety... acetic acid to the beaker and stir. Place the beaker on a hot plate and heat with stirring, until all of...

  3. Crowns and other extra-coronal restorations: try-in and cementation of crowns.

    PubMed

    Wassell, R W; Barker, D; Steele, J G

    2002-07-13

    Having successfully negotiated the planning, preparation, impression and prescription of your crown, the cementation stage represents the culmination of all your efforts. This stage is not difficult, but a successful outcome needs as much care as the preceding stages. Once a restoration is cemented there is no scope for modification or repeat You have to get it right first time. Decemented crowns often have thick layers of residual cement suggesting problems with either initial seating or cement handling. When the fate of restorations costing hundreds of pounds depends on correct proportioning of cements and the quality of the mix, the value of a well-trained and experienced dental nurse is easy to see. Both dentist and nurse need a working knowledge of the materials they are handling.

  4. A NEW QUANTUM MECHANICAL THEORY OF EVOLUTION OF UNIVERSE AND LIFE

    PubMed Central

    Nigam, M C

    1990-01-01

    Based upon the principles of ancient science of Life, which admits both consciousness and matter, a new Quantum Mechanical theory of evolution of universe and life is propounded. The theory advocates: Right from the time, the evolution of universe takes place, life also starts evolving energies and ethereal – consciousness (subtler and real) in anti-electrons, as the complimentary partners. The material body acquires electrons for cordoning of atomic nuclei and displaying its manifestation, in the three spatial dimensions in scale of time. The ethereal consciousness acquires anti electrons for gaining necessary energy for superimposing itself over any of the manifested bodies of equivalent electronic energy and deriving the bliss of materialization. The theory is based upon the solid foundation of the ancient science (ethereal consciousness) laid down by the ancient seekers of knowledge like Kapila and Caraka who interpret many of the riddles of modern science on the frontiers of various disciplines of knowledge. PMID:22556513

  5. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability.

    PubMed

    Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo

    2016-11-09

    Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (T g ) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100-200 kHz and in the temperature range of 25-300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C -1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature.

  6. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability

    NASA Astrophysics Data System (ADS)

    Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo

    2016-11-01

    Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (Tg) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100-200 kHz and in the temperature range of 25-300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C-1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature.

  7. Co-processing as a tool to improve aqueous dispersibility of cellulose ethers.

    PubMed

    Sharma, Payal; Modi, Sameer R; Bansal, Arvind K

    2015-01-01

    Cellulose ethers are important materials with numerous applications in pharmaceutical industry. They are widely employed as stabilizers and viscosity enhancers for dispersed systems, binders in granulation process and as film formers for tablets. These polymers, however, exhibit challenge during preparation of their aqueous dispersions. Rapid hydration of their surfaces causes formation of a gel that prevents water from reaching the inner core of the particle. Moreover, the surfaces of these particles become sticky, thus leading to agglomeration, eventually reducing their dispersion kinetics. Numerous procedures have been tested to improve dispersibility of cellulose ethers. These include the use of cross-linking agents, alteration in the synthesis process, adjustment of water content of cellulose ether, modification by attaching hydrophobic substituents and co-processing using various excipients. Among these, co-processing has provided the most encouraging results. This review focuses on the molecular mechanisms responsible for the poor dispersibility of cellulose ethers and the role of co-processing technologies in overcoming the challenge. An attempt has been made to highlight various co-processing techniques and specific role of excipients used for co-processing.

  8. Wholly Aromatic Ether-imides. Potential Materials for n-Type Semiconductors

    NASA Technical Reports Server (NTRS)

    Dingemans, Theo J.; St.Clair, Terry L.; Samulski, Edward T.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We report on the synthesis and characterization of a novel series low-molar-mass ether-imide rod-shaped model compounds. All ether-imides were obtained by terminating the appropriate rigid core dianhydride, i.e. pyromellitic dianhydride (PMDA), 1,4,5,8-naphthalenetetracarboxylic dianhydride (NDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), and 3,3,4,4'-oxydiphthalic dianhydride (ODPA) with three flexible aryl-ether tails of different chain length. The mono-functional aryl-ether amines, i.e. 4-(3-phenoxy-phenoxy)-phenylamine (2) and 4-(3-phenoxy-3-phenoxy-phenoxy)-phenylamine (4), were synthesized using standard fluoro-displacement and Ullmann condensation techniques. The corresponding ether-imide model compounds were obtained in high yields using a one-step solution imidization procedure. Increasing the number of meta-substituted aryl-ether units reduces the melt transition temperatures and at the same time it increases the solubility of the model compounds. Most model compounds are crystalline solids and form isotropic melts upon heating. 2,7-Bis-(-4-phenoxy-phenyl)-benzo[Imn][3,8]phenanthroline1,3,6,8-tetraone (NDA-n0), however, displays a smectic A (SA) when cooled from the isotropic phase, followed by what appears to be either a highly ordered smectic phase or a, columnar phase. This is the first example, known to date, in which a mesophase is detected in a wholly aromatic ether-imide compound. For all compounds we present spectroscopic data and X-ray diffraction data. Cyclic voltammetry was used to determine the redox behavior and pertinent energy levels of the model compounds.

  9. Color stability and marginal integrity of interim crowns: An in vitro study

    PubMed Central

    Elagra, Marwa I.; Rayyan, Mohammad R.; Alhomaidhi, Maisam M.; Alanaziy, Areej A.; Alnefaie, Mona O.

    2017-01-01

    Objective: Many commercial dental materials are used to fabricate interim restorations. This study aimed to compare the color stability and the marginal integrity of four different interim crown materials. Materials and Methods: An ivorine right maxillary central incisor was prepared for a full coverage all-ceramic restoration. A total of 36 specimens in the form of crowns were fabricated on the master die using four different materials (n = 9); Polymethyl methacrylate (PMMA) resin (TrimPLUS), PMMA computer-aided design, and computer-aided manufacturing (CAD-CAM) blocks (Ceramill TEMP), cold cure bis-acryl resin (Success CD), and bis-acryl resin dual-cure composite (TempSpan). Color change ΔE for each sample was calculated by measuring its color as Commission Internationale de l’Eclairage L* a* b* with a spectrophotometer before and after immersing in a concentrated tea solution for 7 days. Marginal gap was measured at four reference points using stereomicroscope at ×40. One-way ANOVA and the Tukey multiple comparisons test were used to determine any statistically significant difference between the four groups, (α = 0.05). Results: Success CD showed significantly the greatest color change (7.7) among all the tested materials, while no significant difference was found between the other three materials. TempSpan showed significantly the highest marginal gap formation (430.15 μm), while no significant difference was found between the three other materials. Conclusions: Bis-acryl resin composite materials demonstrated clinically noticeable change in color while PMMA materials demonstrated superior color stability. Dual cure interim materials exhibited significantly higher marginal discrepancy in comparison to PMMA and cold cure bis-acrylic resin materials. CAD-CAM PMMA material exhibited the best color stability and marginal integrity. PMID:28932142

  10. Radiographic, microcomputer tomography, and optical coherence tomography investigations of ceramic interfaces

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda Lavinia; Ionita, Ciprian; Topala, Florin; Petrescu, Emanuela; Rominu, Roxana; Pop, Daniela Maria; Marsavina, Liviu; Negru, Radu; Bradu, Adrian; Rominu, Mihai; Podoleanu, Adrian Gh.

    2010-12-01

    Imagistic investigation of the metal-ceramic crowns and fixed partial prostheses represent a very important issue in nowadays dentistry. At this time, in dental office, it is difficult or even impossible to evaluate a metal ceramic crown or bridge before setting it in the oral cavity. The possibilities of ceramic fractures are due to small fracture lines or material defects inside the esthetic layers. Material and methods: In this study 25 metal ceramic crowns and fixed partial prostheses were investigated by radiographic method (Rx), micro computer tomography (MicroCT) and optical coherence tomography (OCT) working in Time Domain, at 1300 nm. The OCT system contains two interferometers and one scanner. For each incident analysis a stuck made of 100 slices was obtain. These slices were used in order to obtain a 3D model of the ceramic interface. Results: RX and MicroCT are very powerful instruments that provide a good characterization of the dental construct. It is important to observe the reflections due to the metal infrastructure that could affect the evaluation of the metal ceramic crowns and bridges. The OCT investigations could complete the imagistic evaluation of the dental construct by offering important information when it is need it.

  11. Method for determination of methyl tert-butyl ether and its degradation products in water

    USGS Publications Warehouse

    Church, C.D.; Isabelle, L.M.; Pankow, J.F.; Rose, D.L.; Tratnyek, P.G.

    1997-01-01

    An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.

  12. Fracture resistance of metal-free composite crowns-effects of fiber reinforcement, thermal cycling, and cementation technique.

    PubMed

    Lehmann, Franziska; Eickemeyer, Grit; Rammelsberg, Peter

    2004-09-01

    The improved mechanical properties of contemporary composites have resulted in their extensive use for the restoration of posterior teeth. However, the influence of fiber reinforcement, cementation technique, and physical stress on the fracture resistance of metal-free crowns is unknown. This in vitro study evaluated the effect of fiber reinforcement, physical stress, and cementation methods on the fracture resistance of posterior metal-free Sinfony crowns. Ninety-six extracted human third molars received a standardized tooth preparation: 0.5-mm chamfer preparation and occlusal reduction of 1.3 to 1.5 mm. Sinfony (nonreinforced crowns, n=48) and Sinfony-Vectris (reinforced crowns, n=48) crowns restoring original tooth contour were prepared. Twenty-four specimens of each crown type were cemented, using either glass ionomer cement (GIC) or resin cement. Thirty-two crowns (one third) were stored in humidity for 48 hours. Another third was exposed to 10,000 thermal cycles (TC) between 5 degrees C and 55 degrees C. The remaining third was treated with thermal cycling and mechanical loading (TCML), consisting of 1.2 million axial loads of 50 N. The artificial crowns were then vertically loaded with a steel sphere until failure occurred. Significant differences in fracture resistance (N) between experimental groups were assessed by nonparametric Mann-Whitney U-test (alpha=.05). Fifty percent of the Sinfony and Sinfony-Vectris crowns cemented with glass ionomer cement loosened after thermal cycling. Thermal cycling resulted in a significant reduction in the mean fracture resistance for Sinfony crowns cemented with GIC, from 2037 N to 1282 N (P=.004). Additional fatigue produced no further effects. Fiber reinforcement significantly increased fracture resistance, from 1555 N to 2326 N (P=.001). The minimal fracture resistance was above 600 N for all combinations of material, cement and loading. Fracture resistance of metal-free Sinfony crowns was significantly increased by fiber reinforcement. Adhesive cementation may be recommended to avoid cementation failure.

  13. Single crowns versus conventional fillings for the restoration of root filled teeth.

    PubMed

    Fedorowicz, Zbys; Carter, Ben; de Souza, Raphael Freitas; Chaves, Carolina de Andrade Lima; Nasser, Mona; Sequeira-Byron, Patrick

    2012-05-16

    Endodontic treatment, involves removal of the dental pulp and its replacement by a root canal filling. Restoration of root filled teeth can be challenging due to structural differences between vital and non-vital root filled teeth. Direct restoration involves placement of a restorative material e.g. amalgam or composite directly into the tooth. Indirect restorations consist of cast metal or ceramic (porcelain) crowns. The choice of restoration depends on the amount of remaining tooth which may influence long term survival and cost. The comparative in service clinical performance of crowns or conventional fillings used to restore root filled teeth is unclear. To assess the effects of restoration of endodontically treated teeth (with or without post and core) by crowns versus conventional filling materials. We searched the following databases: the Cochrane Oral Health Group's Trials Register, CENTRAL, MEDLINE via OVID, EMBASE via OVID, CINAHL via EBSCO, LILACS via BIREME and the reference lists of articles as well as ongoing trials registries.There were no restrictions regarding language or date of publication. Date of last search was 13 February 2012. Randomised controlled trials (RCTs) or quasi-randomised controlled trials in participants with permanent teeth which have undergone endodontic treatment. Single full coverage crowns compared with any type of filling materials for direct restoration, as well as indirect partial restorations (e.g. inlays and onlays). Comparisons considered the type of post and core used (cast or prefabricated post), if any. Two review authors independently assessed trial quality and extracted data. One trial judged to be at high risk of bias due to missing outcome data, was included. 117 participants with a root filled premolar tooth restored with a carbon fibre post, were randomised to either a full coverage metal-ceramic crown or direct adhesive composite restoration. At 3 years there was no reported difference between the non-catastrophic failure rates in both groups. Decementation of the post and marginal gap formation occurred in a small number of teeth. There is insufficient evidence to support or refute the effectiveness of conventional fillings over crowns for the restoration of root filled teeth. Until more evidence becomes available clinicians should continue to base decisions on how to restore root filled teeth on their own clinical experience, whilst taking into consideration the individual circumstances and preferences of their patients.

  14. Randomized trial investigating zirconia electroplated telescopic retainers: quality of life outcomes.

    PubMed

    Schwindling, Franz Sebastian; Deisenhofer, Ulrich Karl; Séché, Anne-Christiane; Lehmann, Franziska; Rammelsberg, Peter; Stober, Thomas

    2017-05-01

    The study aims to evaluate the effect of electroplated telescopic removable dental prostheses (E-RDPs) with zirconia primary crowns on oral-health-related quality of life (OHRQoL). For E-RDPs, electroplating is used to produce precisely fitting gold copings on telescopic primary crowns. These copings are bonded intra-orally to the denture framework. Fifty-six participants in need of 60 removable restorations were randomly allocated one of two materials for the primary crowns: cobalt-chromium alloy or zirconia. OHRQoL was assessed by use of the 49-item Oral Health Impact Profile (OHIP-49) and by additional patient self-rating at baseline before treatment, and after 6 and 12 months. Statistical analysis was performed by use of one- and two-sample t-tests and analysis of covariance. Mean OHIP sum score at baseline was 53.4 (SD 37.4, 95 % CI 41.3-62). At follow-ups, it decreased significantly (after 6 months: mean 20, SD 26, 95 % CI 13-27.1; after 12 months: mean 16.4, SD 17.9, 95 % CI 11.6-21.2). The mean reduction in OHIP sum score after 12 months was 25 (SD 31.2, 95 % CI 13.1-36.9) for cobalt-chromium alloy and 44.4 (SD 32.3, 95 % CI 31.1-57.8) for zirconia. However, no statistically significant difference of the two materials on OHIP change or patient self-rating was detected. Although OHRQoL was improved by using both cobalt-chromium alloy and zirconia primary crowns for E-RDPs, post-treatment differences between the groups were not statistically significant. Zirconia E-RDPs enhance OHRQoL. However, zirconia primary crowns do not outperform cobalt-chromium alloy crowns regarding patient satisfaction-despite their tooth-like color.

  15. Chairside Fabrication of an All-Ceramic Partial Crown Using a Zirconia-Reinforced Lithium Silicate Ceramic

    PubMed Central

    Pabel, Anne-Kathrin; Rödiger, Matthias

    2016-01-01

    The chairside fabrication of a monolithic partial crown using a zirconia-reinforced lithium silicate (ZLS) ceramic is described. The fully digitized model-free workflow in a dental practice is possible due to the use of a powder-free intraoral scanner and the computer-aided design/computer-assisted manufacturing (CAD/CAM) of the restorations. The innovative ZLS material offers a singular combination of fracture strength (>370 Mpa), optimum polishing characteristics, and excellent optical properties. Therefore, this ceramic is an interesting alternative material for monolithic restorations produced in a digital workflow. PMID:27042362

  16. Early complications and performance of 327 heat-pressed lithium disilicate crowns up to five years

    PubMed Central

    2016-01-01

    PURPOSE The prospective follow-up aimed to assess the performance of lithium disilicate crowns and clinical reasons of adverse events compromising survival and quality. MATERIALS AND METHODS 58 patients were treated with 375 heat-pressed monolithic crowns, which were bonded with resin cement. Annual recalls up to five years included a complete dental examination as well as quality assessment using CDA-criteria. Any need for clinical intervention led to higher complication rate and any failure compromised the survival rate. Kaplan-Meier-method was applied to all crowns and a dataset containing one randomly selected crown from each patient. RESULTS Due to drop-outs, 45 patients (31 females, 14 males) with the average age of 43 years (range = 17–73) who had 327 crowns (176 anterior, 151 posterior; 203 upper jaw, 124 lower jaw) were observed and evaluated for between 4 and 51 months (median = 28). Observation revealed 4 chippings, 3 losses of retention, 3 fractures, 3 secondary caries, 1 endodontic problem, and 1 tooth fracture. Four crowns had to be removed. Survival and complication rate was estimated 98.2% and 5.4% at 24 months, and 96.8% and 7.1% at 48 months. The complication rate was significantly higher for root canal treated teeth (12%, P<.01) at 24 months. At the last observation, over 90% of all crowns showed excellent ratings (CDA-rating Alfa) for color, marginal fit, and caries. CONCLUSION Heat pressed lithium disilicate crowns showed an excellent performance. Besides a careful luting, dentists should be aware of patients' biological prerequisites (grade of caries, oral hygiene) to reach full success with these crowns. PMID:27350853

  17. Piezoresistive microcantilever based lab-on-a-chip system for detection of macronutrients in the soil

    NASA Astrophysics Data System (ADS)

    Patkar, Rajul S.; Ashwin, Mamta; Rao, V. Ramgopal

    2017-12-01

    Monitoring of soil nutrients is very important in precision agriculture. In this paper, we have demonstrated a micro electro mechanical system based lab-on-a-chip system for detection of various soil macronutrients which are available in ionic form K+, NO3-, and H2PO4-. These sensors are highly sensitive piezoresistive silicon microcantilevers coated with a polymer matrix containing methyltridodecylammonium nitrate ionophore/ nitrate ionophore VI for nitrate sensing, 18-crown-6 ether for potassium sensing and Tributyltin chloride for phosphate detection. A complete lab-on-a-chip system integrating a highly sensitive current excited Wheatstone's bridge based portable electronic setup along with arrays of microcantilever devices mounted on a printed circuit board with a liquid flow cell for on the site experimentation for soil test has been demonstrated.

  18. Polyether complexes of groups 13 and 14.

    PubMed

    Swidan, Ala'aeddeen; Macdonald, Charles L B

    2016-07-21

    Notable aspects of the chemistry of complexes of polyether ligands including crown ethers, cryptands, glycols, glymes, and related polyether ligands with heavier group 13 and 14 elements are reviewed with a focus on results from 2005 to the present. The majority of reported polyether complexes contain lead(ii) and thallium(i) but recent breakthroughs in regard to the preparation of low oxidation state reagents of the lighter congeners have allowed for the generation of complexes containing indium(i), gallium(i), germanium(ii), and even silicon(ii). The important roles of ligand size, donor types, and counter anions in regard to the chemical properties of the polyether complexes is highlighted. A particular focus on the structural aspects of the numerous coordination complexes provides a rationale for some of the spectacular contributions that such compounds have made to Modern Main Group Chemistry.

  19. Co9 S8 /Co as a High-Performance Anode for Sodium-Ion Batteries with an Ether-Based Electrolyte.

    PubMed

    Zhao, Yingying; Pang, Qiang; Wei, Yingjin; Wei, Luyao; Ju, Yanming; Zou, Bo; Gao, Yu; Chen, Gang

    2017-12-08

    Co 9 S 8 has been regarded as a desirable anode material for sodium-ion batteries because of its high theoretical capacity. In this study, a Co 9 S 8 anode material containing 5.5 wt % Co (Co 9 S 8 /Co) was prepared by a solid-state reaction. The electrochemical properties of the material were studied in carbonate and ether-based electrolytes (EBE). The results showed that the material had a longer cycle life and better rate capability in EBE. This excellent electrochemical performance was attributed to a low apparent activation energy and a low overpotential for Na deposition in EBE, which improved the electrode kinetic properties. Furthermore, EBE suppressed side reactions of the electrode and electrolyte, which avoided the formation of a solid electrolyte interphase film. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application of annular centrifugal contactors in the hot test of the improved total partitioning process for high level liquid waste.

    PubMed

    Duan, Wuhua; Chen, Jing; Wang, Jianchen; Wang, Shuwei; Feng, Xiaogui; Wang, Xinghai; Li, Shaowei; Xu, Chao

    2014-08-15

    High level liquid waste (HLLW) produced from the reprocessing of the spent nuclear fuel still contains moderate amounts of uranium, transuranium (TRU) actinides, (90)Sr, (137)Cs, etc., and thus constitutes a permanent hazard to the environment. The partitioning and transmutation (P&T) strategy has increasingly attracted interest for the safe treatment and disposal of HLLW, in which the partitioning of HLLW is one of the critical technical issues. An improved total partitioning process, including a TRPO (tri-alkylphosphine oxide) process for the removal of actinides, a CESE (crown ether strontium extraction) process for the removal of Sr, and a CECE (calixcrown ether cesium extraction) process for the removal of Cs, has been developed to treat Chinese HLLW. A 160-hour hot test of the improved total partitioning process was carried out using 72-stage 10-mm-dia annular centrifugal contactors (ACCs) and genuine HLLW. The hot test results showed that the average DFs of total α activity, Sr and Cs were 3.57 × 10(3), 2.25 × 10(4) and 1.68 × 10(4) after the hot test reached equilibrium, respectively. During the hot test, 72-stage 10-mm-dia ACCs worked stable, continuously with no stage failing or interruption of the operation. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Anti-fertility effects of different fractions of Anethum graveolens L. extracts on female rats.

    PubMed

    Malihezaman, Monsefi; Mojaba, Masoudi; Elham, Hosseini; Farnaz, Gramifar; Ramin, Miri

    2012-01-01

    Our previous studies showed the effects of aqueous and ethanol extracts of Anethum graveolens L. (dill) on female infertility. In the present study we investigated whether different fractions of this herb extract can cause infertility in rats. Female rats were divided into the control groups, the groups receiving either a low (0.5 g/kg)) or a high dose (5g/kg) of water, N-butanol, chloroform and ether fractions of the aqueous plant extract, and the groups receiving either a low (0.045 g/kg) or a high dose (0.45 g/kg) of the same fractions of ethanol extract. The mentioned doses were gavaged in 1mL for 10 days. Vaginal smears were prepared daily. Estradiol and progesterone levels were measured. The left oviduct and ovary were removed, their tissue subsequently being prepared in form of histology slides and stained using haematoxylin-eosin and Masson's trichrome. Female rats assigned to each group were mated with males; after that, crown-rump lengths and weights of newborn rats were measured. Results showed that each fraction produced some changes such as hormonal level reduction (chloroform fraction), diestrus phase prolongation and infertility (water fraction), and increase in pregnancy duration (chloroform and ether fractions). We concluded that each fraction comprises only some of the mentioned components and therefore recommended the usage of crude extract, especially the aqueous one, in case infertility aims to be induced.

  2. Synthesis of Perfluorinated Ethers by Solution Phase Direct Fluorination: An Adaptation of the La-Mar Technique

    DTIC Science & Technology

    1990-08-22

    Six of the 3 perfluorinated ethers prepared have been previously synthesized by other methods: perfluoro -5,5-bis(ethoxy- f methyl) -3,7-dioxanonane...from partially fluorinated starting material [34]. Third, as with perfluoroalkanes and simple perfluoroethers , Clark’s experimental results indicated 3...a highly branched perfluoroether ) by direct fluorination 3 in solution. Second, since some of these perfluorinated compounds had been previously

  3. Clinical evaluation of fiber-reinforced composite crowns in pulp-treated primary molars: 12-month results

    PubMed Central

    Mohammadzadeh, Zahra; Parisay, Iman; Mehrabkhani, Maryam; Madani, Azam Sadat; Mazhari, Fatemeh

    2016-01-01

    Objective: The aim of this study was to evaluate the clinical performance of tooth-colored fiber-reinforced composite (FRC) crowns in pulp-treated second primary mandibular teeth. Materials and Methods: This split-mouth randomized, clinical trial performed on 67 children between 3 and 6 years with two primary mandibular second molars requiring pulp treatment. After pulp therapy, the teeth were randomly assigned to stainless steel crown (SSC) or FRC crown groups. Modified United States Public Health Service criteria were used to evaluate marginal integrity, marginal discoloration, and secondary caries in FRC crowns at intervals of 3, 6, and 12 months. Retention rate and gingival health were also compared between the two groups. The data were analyzed using Friedman, Cochran, and McNemar's tests at a significance level of 0.05. Results: Intact marginal integrity in FRC crowns at 3, 6, and 12 months were 93.2%, 94.8%, and 94.2%, respectively. Marginal discoloration and secondary caries were not found at any of the FRC crowns. The retention rates of the FRC crowns were 100%, 98.3%, and 89.7% at 3, 6 and 12 months, respectively, whereas all the SSCs were found to be present and intact after 12 months (P = 0.016). There was no statistically significant difference between the two groups in gingival health. Conclusion: According to the results of this study, it seems that when esthetics is a concern, in cooperative patients with good oral hygiene, FRC crowns can be considered as a valuable procedure. PMID:28042269

  4. Effect of the infrastructure material on the failure behavior of prosthetic crowns.

    PubMed

    Sonza, Queli Nunes; Della Bona, Alvaro; Borba, Márcia

    2014-05-01

    To evaluate the effect of infrastructure (IS) material on the fracture behavior of prosthetic crowns. Restorations were fabricated using a metal die simulating a prepared tooth. Four groups were evaluated: YZ-C, Y-TZP (In-Ceram YZ, Vita) IS produced by CAD-CAM; IZ-C, In-Ceram Zirconia (Vita) IS produced by CAD-CAM; IZ-S, In-Ceram Zirconia (Vita) IS produced by slip-cast; MC, metal IS (control). The IS were veneered with porcelain and resin cemented to fiber-reinforced composite dies. Specimens were loaded in compression to failure using a universal testing machine. The 30° angle load was applied by a spherical piston, in 37°C distilled water. Fractography was performed using stereomicroscope and SEM. Data were statistically analyzed with Anova and Student-Newman-Keuls tests (α=0.05). Significant differences were found between groups (p=0.022). MC showed the highest mean failure load, statistically similar to YZ-C. There was no statistical difference between YZ-C, IZ-C and IZ-S. MC and YZ-C showed no catastrophic failure. IZ-C and IZ-S showed chipping and catastrophic failures. The fracture behavior is similar to reported clinical failures. Considering the ceramic systems evaluated, YZ-C and MC crowns present greater fracture load and a more favorable failure mode than In-Ceram Zirconia crowns, regardless of the fabrication type (CAD-CAM or slip-cast). Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. [Survival rate of IPS-Empress 2 all-ceramic crowns and bridges: three year's results].

    PubMed

    Zimmer, Doris; Gerds, Thomas; Strub, Jörg R

    2004-01-01

    The objective of this prospective clinical study was to calculate the survival rate of IPS-Empress2 crowns and fixed partial dentures (FPD) over a three-year period. In 43 patients 27 IPS-Empress2 crowns and 31 fixed partial dentures were adhesively luted. Crowns were placed on premolars and molars and FPDs were inserted in the anterior and premolar area. Abutments were prepared with a circular 1.2 mm wide shoulder. The clinical follow-up examination took place after 6, 12, 24, 36 and 48 months. After a mean of 38 months, the survival rate (Kaplan-Meier) of all-ceramic crowns was 100% and of the three unit FDP 72.4%. There were a total of six complete failures which occurred only with the three-unit IPS-Empress2 FPDs. Three FPDs exhibited fractures of the framework for which the manufacturer's instructions of connector-dimension was not satisfied, and one FPD exhibited an irreparable incomplete veneer fracture. Further two FPDs showed biological failures. The accuracy of fit and esthetics were clinically satisfactory. The three-year results showed the IPS-Empress2-ceramic as an adequate all-ceramic material for single crowns. The use for FPD needs further critical consideration.

  6. Effect of cements on fracture resistance of monolithic zirconia crowns

    PubMed Central

    Nakamura, Keisuke; Mouhat, Mathieu; Nergård, John Magnus; Lægreid, Solveig Jenssen; Kanno, Taro; Milleding, Percy; Örtengren, Ulf

    2016-01-01

    Abstract Objectives The present study investigated the effect of cements on fracture resistance of monolithic zirconia crowns in relation to their compressive strength. Materials and methods Four different cements were tested: zinc phosphate cement (ZPC), glass-ionomer cement (GIC), self-adhesive resin-based cement (SRC) and resin-based cement (RC). RC was used in both dual cure mode (RC-D) and chemical cure mode (RC-C). First, the compressive strength of each cement was tested according to a standard (ISO 9917-1:2004). Second, load-to-failure test was performed to analyze the crown fracture resistance. CAD/CAM-produced monolithic zirconia crowns with a minimal thickness of 0.5 mm were prepared and cemented to dies with each cement. The crown–die samples were loaded until fracture. Results The compressive strength of SRC, RC-D and RC-C was significantly higher than those of ZPC and GIC (p < 0.05). However, there was no significant difference in the fracture load of the crown between the groups. Conclusion The values achieved in the load-to-failure test suggest that monolithic zirconia crowns with a minimal thickness of 0.5 mm may have good resistance against fracture regardless of types of cements. PMID:27335900

  7. In vitro Evaluation of the Marginal Fit and Internal Adaptation of Zirconia and Lithium Disilicate Single Crowns: Micro-CT Comparison Between Different Manufacturing Procedures.

    PubMed

    Riccitiello, Francesco; Amato, Massimo; Leone, Renato; Spagnuolo, Gianrico; Sorrentino, Roberto

    2018-01-01

    Prosthetic precision can be affected by several variables, such as restorative materials, manufacturing procedures, framework design, cementation techniques and aging. Marginal adaptation is critical for long-term longevity and clinical success of dental restorations. Marginal misfit may lead to cement exposure to oral fluids, resulting in microleakage and cement dissolution. As a consequence, marginal discrepancies enhance percolation of bacteria, food and oral debris, potentially causing secondary caries, endodontic inflammation and periodontal disease. The aim of the present in vitro study was to evaluate the marginal and internal adaptation of zirconia and lithium disilicate single crowns, produced with different manufacturing procedures. Forty-five intact human maxillary premolars were prepared for single crowns by means of standardized preparations. All-ceramic crowns were fabricated with either CAD-CAM or heat-pressing procedures (CAD-CAM zirconia, CAD-CAM lithium disilicate, heat-pressed lithium disilicate) and cemented onto the teeth with a universal resin cement. Non-destructive micro-CT scanning was used to achieve the marginal and internal gaps in the coronal and sagittal planes; then, precision of fit measurements were calculated in a dedicated software and the results were statistically analyzed. The heat-pressed lithium disilicate crowns were significantly less accurate at the prosthetic margins (p<0.05) while they performed better at the occlusal surface ( p <0.05). No significant differences were noticed between CAD-CAM zirconia and lithium disilicate crowns ( p >0.05); nevertheless CAD-CAM zirconia copings presented the best marginal fit among the experimental groups. As to the thickness of the cement layer, reduced amounts of luting agent were noticed at the finishing line, whereas a thicker layer was reported at the occlusal level. Within the limitations of the present in vitro investigation, the following conclusions can be drawn: the recorded marginal gaps were within the clinical acceptability irrespective of both the restorative material and the manufacturing procedures; the CAD-CAM processing techniques for both zirconia and lithium disilicate produced more consistent marginal gaps than the heat-pressing procedures; the tested universal resin cement can be safely used with both restorative materials.

  8. Rapid, Efficient and Versatile Strategies for Functionally Sophisticated Polymers and Nanoparticles: Degradable Polyphosphoesters and Anisotropic Distribution of Chemical Functionalities

    NASA Astrophysics Data System (ADS)

    Zhang, Shiyi

    The overall emphasis of this dissertation research included two kinds of asymmetrically-functionalized nanoparticles with anisotropic distributions of chemical functionalities, three degradable polymers synthesized by organocatalyzed ring-opening polymerizations, and two polyphosphoester-based nanoparticle systems for various biomedical applications. Inspired by the many hierarchical assembly processes that afford complex materials in Nature, the construction of asymmetrically-functionalized nanoparticles with efficient surface chemistries and the directional organization of those building blocks into complex structures have attracted much attention. The first method generated a Janus-faced polymer nanoparticle that presented two orthogonally click-reactive surface chemistries, thiol and azido. This robust method involved reactive functional group transfer by templating against gold nanoparticle substrates. The second method produced nanoparticles with sandwich-like distribution of crown ether functionalities through a stepwise self-assembly process that utilized crown ether-ammonium supramolecular interactions to mediate inter-particle association and the local intra-particle phase separation of unlike hydrophobic polymers. With the goal to improve the efficiency of the production of degradable polymers with tunable chemical and physical properties, a new type of reactive polyphosphoester was synthesized bearing alkynyl groups by an organocatalyzed ring-opening polymerization, the chemical availability of the alkyne groups was investigated by employing "click" type azide-alkyne Huisgen cycloaddition and thiol-yne radical-mediated reactions. Based on this alkyne-functionalized polyphosphoester polymer and its two available "click" type reactions, two degradable nanoparticle systems were developed. To develop the first system, the well defined poly(ethylene oxide)-block-polyphosphester diblock copolymer was transformed into a multifunctional Paclitaxel drug conjugate by densely attaching the polyphosphoester block with azide-functionalized Paclitaxel by azide-alkyne Huisgen cycloaddition. This Paclitaxel drug conjugate provides a powerful platform for combinational cancer therapy and bioimaging due to its ultra-high Paclitaxel loading (> 65 wt%), high water solubility (>6.2 mg/mL for PTX) and easy functionalization. Another polyphosphoester-based nanoparticle system has been developed by a programmable process for the rapid and facile preparation of a family of nanoparticles with different surface charges and functionalities. The non-ionic, anionic, cationic and zwitterionic nanoparticles with hydrodynamic diameters between 13 nm to 21 nm and great size uniformity could be rapidly prepared from small molecules in 6 h or 2 days. The anionic and zwitterionic nanoparticles were designed to load silver ions to treat pulmonary infections, while the cationic nanoparticles are being applied to regulate lung injuries by serving as a degradable iNOS inhibitor conjugates. In addition, a direct synthesis of acid-labile polyphosphoramidate by organobase-catalyzed ring-opening polymerization and an improved two-step preparation of polyphosphoester ionomer by acid-assisted cleavage of phosphoramidate bonds on polyphosphoramidate were developed. Polyphosphoramidate and polyphosphoester ionomers may be applied to many applications, due to their unique chemical and physical properties.

  9. Pressure-assisted introduction of urine samples into a short capillary for electrophoretic separation with contactless conductivity and UV spectrometry detection.

    PubMed

    Makrlíková, Anna; Opekar, František; Tůma, Petr

    2015-08-01

    A computer-controlled hydrodynamic sample introduction method has been proposed for short-capillary electrophoresis. In the method, the BGE flushes sample from the loop of a six-way sampling valve and is carried to the injection end of the capillary. A short pressure impulse is generated in the electrolyte stream at the time when the sample zone is at the capillary, leading to injection of the sample into the capillary. Then the electrolyte flow is stopped and the separation voltage is turned on. This way of sample introduction does not involve movement of the capillary and both of its ends remain constantly in the solution during both sample injection and separation. The amount of sample introduced to the capillary is controlled by the duration of the pressure pulse. The new sample introduction method was tested in the determination of ammonia, creatinine, uric acid, and hippuric acid in human urine. The determination was performed in a capillary with an overall length of 10.5 cm, in two BGEs with compositions 50 mM MES + 5 mM NaOH (pH 5.1) and 1 M acetic acid + 1.5 mM crown ether 18-crown-6 (pH 2.4). A dual contactless conductivity/UV spectrometric detector was used for the detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preparation and Structural Properties of InIII–H Complexes

    PubMed Central

    Sickerman, Nathaniel S.; Henry, Renée M.; Ziller, Joseph W.

    2013-01-01

    The use of the tripodal ligands tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H3buea]3−) and the sulfonamide-based N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzene-sulfonamidato) ([MST]3−) has led to the synthesis of two structurally distinct In(III)–OH complexes. The first example of a five-coordinate indium(III) complex with a terminal hydroxide ligand, K[InIIIH3buea(OH)], was prepared by addition of In(OAc)3 and water to a deprotonated solution of H6buea. X-ray diffraction analysis, as well as FTIR and 1H NMR spectroscopic methods, provided evidence for the formation of a monomeric In(III)–OH complex. The complex contains an intramolecular hydrogen bonding (H-bonding) network involving the In(III)–OH unit and [H3buea]3− ligand, which aided in isolation of the complex. Isotope labeling studies verified the source of the hydroxo ligand as water. Treatment of the [InIIIMST] complex with a mixture of 15-crown-5 ether and NaOH led to isolation of the complex [15-crown-5⊃NaI-(μ-OH)-InIIIMST], whose solid-state structure was confirmed using X-ray diffraction methods. Nuclear magnetic resonance studies on this complex suggest it retains its heterobimetallic structure in solution. PMID:25309019

  11. Determination of ammonium in wastewaters by capillary electrophoresis on a column-coupling chip with conductivity detection.

    PubMed

    Luc, Milan; Kruk, Pavol; Masár, Marián

    2011-07-01

    Analytical potentialities of a chip-based CE in determination of ammonium in wastewaters were investigated. CZE with the electric field and/or ITP sample stacking was performed on a column-coupling (CC) chip with integrated conductivity detectors. Acetate background electrolytes (pH ∼3) including 18-crown-6-ether (18-crown-6) and tartaric acid were developed to reach rapid (in 7-8 min) CZE and ITP-CZE resolutions of ammonium from other cations (sodium, potassium, calcium and magnesium) present in wastewater samples. Under preferred working conditions (suppressed hydrodynamic flow (HDF) and EOF on the column-coupling chip), both the employed methods did provide very good repeatabilities of the migration (RSD of 0.2-0.8% for the migration time) and quantitative (RSD of 0.3-4.9% for the peak area) parameters in the model and wastewater samples. Using a 900-nL sample injection volume, LOD for ammonium were obtained at 20 and 40 μg/L concentrations in CZE and ITP-CZE separations, respectively. Very good agreements of the CZE and ITP-CZE determinations of ammonium in six untreated wastewater samples (only filtration and dilution) with the results obtained by a reference spectrometric method indicate a very good accuracy of both the CE methods presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Retention Load Values of Telescopic Crowns Made of Y-TZP and CoCr with Y-TZP Secondary Crowns: Impact of Different Taper Angles

    PubMed Central

    Merk, Susanne; Wagner, Christina; Stock, Veronika; Schmidlin, Patrick R.; Roos, Malgorzata; Eichberger, Marlis; Stawarczyk, Bogna

    2016-01-01

    This study aimed to examine and compare the retention load values (RL) of different telescopic crown assemblies (Y-TZP and CoCr primary crowns with electroformed and Y-TZP secondary crowns each) with three different taper angles (0°, 1° and 2°). Thirty Y-TZP primary crowns with electroformed gold copings (Z/G group) and Y-TZP secondary crowns (Z/Z group) and 30 CoCr primary crowns with electroformed gold copings (C/G group) and Y-TZP secondary crowns (C/Z group), each with taper angles of 0°, 1° and 2°, were fabricated, respectively. With the exception of the electroformed gold copings, all specimens were Computer-Aided-Design/Computer-Aided-Manufacturing (CAD/CAM)-milled, then sintered and afterwards manually adapted. In order to stabilize the gold copings, they were fixed in a tertiary structure. The secondary crowns were constructed with a hook, which ensured self-alignment with an upper chain. Afterwards, 20 pull-off test cycles were performed in a universal testing machine under artificial saliva and after weighing the secondary crowns with a 5 kg object for 20 s. Data were analyzed by one-way and two-way Analysis of Variance (ANOVA). C/Z with 1° showed higher (p = 0.009) RL than 0° and 2° tapers. C/G at 1° also showed higher (p = 0.001) RL than at tapers of 0° and 2°. Z/G and C/G at 0° showed lower RL than Z/Z and C/Z (p < 0.001). Primary crowns had no impact on the 0° group. Z/G showed lower RL as compared to C/Z within the 1° group (p = 0.007) and Z/Z in the 2° group (p = 0.006). The primary crown material had no influence on RL. Electroformed copings showed lower RL. Further investigations for 1° as well as for the long-term performance after thermomechanical aging are necessary. PMID:28773477

  13. Biomedical implications of dental-ceramic defects investigated by numerical simulation, radiographic, microcomputer tomography, and time-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda Lavinia; Ionita, Ciprian; Marsavina, Liviu; Negru, Radu; Topala, Florin; Petrescu, Emanuela; Rominu, Roxana; Fabriky, Mihai; Bradu, Adrian; Rominu, Mihai; Podoleanu, Adrian Gh.

    2011-10-01

    Imagistic investigation of the metal-ceramic crowns and fixed partial prostheses represent a very important issue in nowadays dentistry. At this time, in dental office, it is difficult or even impossible to evaluate a metal ceramic crown or bridge before setting it in the oral cavity. The possibilities of ceramic fractures are due to small fracture lines or material defects inside the esthetic layers. Material and methods: In this study 25 metal ceramic crowns and fixed partial prostheses were investigated by radiographic method (Rx), micro computer tomography (MicroCT) and optical coherence tomography (OCT) working in Time Domain, at 1300 nm. The OCT system contains two interferometers and one scanner. For each incident analysis a stuck made of 100 slices was obtain. These slices were used in order to obtain a 3D model of the ceramic interface. After detecting the presence and the positions of the ceramic defects the numerical simulation method was used to estimate the biomechanical effect of the masticatory forces on fractures propagations in ceramic materials. Results: For all the dental ceramic defects numerical simulation analysis was performed. The simulation of crack propagation shows that the crack could initiate from the upper, lower or both parts of the defect and propagates through the ceramic material where tensile stress field is present. RX and MicroCT are very powerful instruments that provide a good characterization of the dental construct. It is important to observe the reflections due to the metal infrastructure that could affect the evaluation of the metal ceramic crowns and bridges. The OCT investigations could complete the imagistic evaluation of the dental construct by offering important information when it is need it.

  14. Materials based on cellulose fabric and PVC with porous structures formed by jointed aza- and oxa-aza-crown macromolecules

    NASA Astrophysics Data System (ADS)

    Fridman, A. Ya.; Tsivadze, A. Yu.; Morozova, E. M.; Sokolova, N. P.; Shiryaev, A. A.; Petukhova, G. A.; Voloshchuk, A. M.; Bardyshev, I. I.; Gorbunov, A. M.; Polyakova, I. Ya.; Novikov, A. K.; Titova, V. N.; Yavich, A. A.; Petrova, N. V.

    2016-12-01

    A material with porous structures formed by jointed aza- and oxa-aza-crowns with peripheral OHgroups is synthesized on the basis of cellulose fabric and PVC transformed into hydroxyethylcyclam. Mesopores are mainly observed on the fiber surface. The specific surface of the material is 6 m2/g; the volume of free space is 0.112 cm3/g. Assuming the internal pores have a disk-like shape, their width is estimated at 2 nm. The material sorbs vapors of aliphatic and aromatic hydrocarbons, alcohols, aldehydes, ketones, amines, amides, nitriles, and sulfoxides. It also swells to a limited degree in organic solvents. When sulfuric acid or sodium hydroxide is sorbed in the pores, compounds of them with H+- and OH--conducting systems of hydrogen bonds are formed.

  15. Effect of Crystallization Firing on Marginal Gap of CAD/CAM Fabricated Lithium Disilicate Crowns.

    PubMed

    Gold, Steven A; Ferracane, Jack L; da Costa, Juliana

    2018-01-01

    To evaluate the marginal gaps of CAD/CAM (CEREC 3) produced crowns made from leucite-reinforced glass-ceramic (IPS Empress CAD) blocks (LG), and lithium-disilicate (IPS e.max CAD) blocks before (LD-B), and after (LD-A) crystallization firing. A human molar tooth (#19) was mounted with adjacent teeth on a typodont and prepared for a full-coverage ceramic crown. The typodont was assembled in the mannequin head to simulate clinical conditions. After tooth preparation 15 individual optical impressions were taken by the same operator using titanium dioxide powder and a CEREC 3 camera per manufacturer's instructions. One operator designed and machined the crowns in leucite-reinforced glass-ceramic blocks (n = 5) and lithium-disilicate blocks (n = 10) using the CEREC 3 system. The crowns were rigidly seated on the prepared tooth, and marginal gaps (μm) were measured with an optical microscope (500×) at 12 points, 3 on each of the M, B, D, and L surfaces of the leucite-reinforced glass-ceramic crowns and the lithium-disilicate crowns before and after crystallization firing. Results were analyzed by two-way ANOVA followed by a Tukey's post hoc multiple comparison test (α = 0.05). The overall mean marginal gaps (μm) for the crowns evaluated were: LG = 49.2 ± 5.5, LD-B = 42.9 ± 12.2, and LD-A = 57.2 ± 16.0. The marginal gaps for LG and LD-B were not significantly different, but both were significantly less than for LD-A. The type of ceramic material did not affect the marginal gap of CAD/CAM crowns. The crystallization firing process required for lithium-disilicate crowns resulted in a significant increase in marginal gap size, likely due to shrinkage of the ceramic during the crystallization process. The marginal gap of CAD/CAM-fabricated lithium disilicate crowns increases following crystallization firing. The marginal gap still remains within clinically acceptable parameters. © 2017 by the American College of Prosthodontists.

  16. Polyaryl ethers and related polysiloxane copolymer molecular coatings preparation and radiation degrdation

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.; Hedrick, J. L.; Webster, D. C.; Johnson, B. C.; Mohanty, D. K.; Yilgor, I.

    1983-01-01

    Poly(arylene ether sulfones) comprise a class of materials known as engineering thermoplastics which have a variety of important applications. These polymers are tough, rigid materials with good mechanical properties over a wide temperature range, and they are processed by conventional methods into products typically having excellent hydrolytic, thermal, oxidative and dimensional stability. Wholly aromatic random copolymers of hydroquinone and biphenol with 4.4 prime dichlorodiphenyl sulfone were synthesized via mechanical nucleophilic displacement. Their structures were characterized and mechanical behavior studied. These tough, ductile copolymers show excellent radiation resistance to electron beam treatment and retain much of the mechanical properties up to at least 700 Mrads under argon.

  17. Polyimides with carbonyl and ether connecting groups between the aromatic rings

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    New polyimides have been prepared from the reaction of aromatic dianhydrides with novel aromatic diamines containing carbonyl and ether connecting groups between the aromatic rings. Several of these polyimides are shown to be semi-crystalline as evidenced by wide angle x ray diffraction and differential scanning calorimetry. Most of the polyimides form tough solvent resistant films with high tensile properties. Several of these materials can be thermally processed to form solvent and base resistant moldings.

  18. Tribological assessment of a flexible carbon-fibre-reinforced poly(ether-ether-ketone) acetabular cup articulating against an alumina femoral head.

    PubMed

    Scholes, S C; Inman, I A; Unsworth, A; Jones, E

    2008-04-01

    New material combinations have been introduced as the bearing surfaces of hip prostheses in an attempt to prolong their life by overcoming the problems of failure due to wear-particle-induced osteolysis. This will hopefully reduce the need for revision surgery. The study detailed here used a hip simulator to assess the volumetric wear rates of large-diameter carbon-fibre-reinforced pitch-based poly(ether-ether-ketone) (CFR-PEEK) acetabular cups articulating against alumina femoral heads. The joints were tested for 25 x 10(6) cycles. Friction tests were also performed on these joints to determine the lubrication regime under which they operate. The average volumetric wear rate of the CFR-PEEK acetabular component of 54 mm diameter was 1.16 mm(3)/10(6) cycles, compared with 38.6 mm(3)/10(6) cycles for an ultra-high-molecular-weight polyethylene acetabular component of 28 mm diameter worn against a ceramic head. This extremely low wear rate was sustained over 25 x 10(6) cycles (the equivalent of up to approximately 25 years in vivo). The frictional studies showed that the joints worked under the mixed-boundary lubrication regime. The low wear produced by these joints showed that this novel joint couple offers low wear rates and therefore may be an alternative material choice for the reduction of osteolysis.

  19. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOEpatents

    Diebold, James P.; Scahill, John W.; Chum, Helena L.; Evans, Robert J.; Rejai, Bahman; Bain, Richard L.; Overend, Ralph P.

    1996-01-01

    A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

  20. Crown-level tree species classification from AISA hyperspectral imagery using an innovative pixel-weighting approach

    NASA Astrophysics Data System (ADS)

    Liu, Haijian; Wu, Changshan

    2018-06-01

    Crown-level tree species classification is a challenging task due to the spectral similarity among different tree species. Shadow, underlying objects, and other materials within a crown may decrease the purity of extracted crown spectra and further reduce classification accuracy. To address this problem, an innovative pixel-weighting approach was developed for tree species classification at the crown level. The method utilized high density discrete LiDAR data for individual tree delineation and Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for pure crown-scale spectra extraction. Specifically, three steps were included: 1) individual tree identification using LiDAR data, 2) pixel-weighted representative crown spectra calculation using hyperspectral imagery, with which pixel-based illuminated-leaf fractions estimated using a linear spectral mixture analysis (LSMA) were employed as weighted factors, and 3) representative spectra based tree species classification was performed through applying a support vector machine (SVM) approach. Analysis of results suggests that the developed pixel-weighting approach (OA = 82.12%, Kc = 0.74) performed better than treetop-based (OA = 70.86%, Kc = 0.58) and pixel-majority methods (OA = 72.26, Kc = 0.62) in terms of classification accuracy. McNemar tests indicated the differences in accuracy between pixel-weighting and treetop-based approaches as well as that between pixel-weighting and pixel-majority approaches were statistically significant.

  1. A facile synthesis of highly stable multiblock poly(arylene ether)s based alkaline membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Jasti, Amaranadh; Shahi, Vinod K.

    2014-12-01

    Herein, we are disclosing simple route for the preparation of alkaline membranes (AMs) based on aminated multiblock poly(arylene ether)s (AMPEs) synthesized by nucleophilic substitution-poly condensation followed by quaternization and alkalization reactions. In this procedure, four quaternary ammonium groups are successfully introduced without use of carcinogenic reagents such as chloromethylmethyl ether (CMME). Hydrophilic/hydrophobic phase separation is responsible for their high hydroxide conductivity (∼150 mS cm-1 at 80 °C) due to development of interconnected ion transport pathway. AMs are exhibiting good alkaline stability due to the presence of two vicinal quaternary ammonium groups and avoid degradation such as Sommelet-Hauser rearrangement and Hofmann elimination. Vicinal quaternary ammonium groups also resist nucleophilic (OH-) attack and suppress the Stevens rearrangement as well as SN2 substitution reaction due to stearic hindrance. Optimized AM (AMPE-M20N15 (55% DCM)) exhibits about 0.95 V open circuit voltage (OCV) and 48.8 mW cm-2 power density at 65 °C in alkaline direct methanol fuel cell (ADMFC) operation. These results suggest promising begin for the preparation of stable and conductive AMs for ADMFC applications and useful for developing hydroxide conductive materials.

  2. Fracture Strength of Titanium based Lithium Disilicate and Zirconia Abutment Crowns

    DTIC Science & Technology

    2017-06-12

    to assisting you in your future publication/presentation efforts. LINDA STEEL -GOODWIN, Col, USAF, BSC Director, Clinical Investigations & Research...The specimens were cemented to a titanium-base implant system, subjected to thermocycling and cyclic loading, and fractured in a material testing...being lost. No complications were noted with respect to the abutments and only three crowns had complications (i.e., 2 debonded, 1 excess cement

  3. Anisotropic dielectric phase transition triggered by pendulum-like motion coupled with proton transfer in a layered hybrid crystalline material (4-nitroanilinium+) (18-crown-6) (H2PO4-) (H3PO4)2

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhu, Chun-li; Qin, Liu-lei; Zheng, Xiao-yuan; Liu, Zun-qi

    2018-07-01

    The organic-inorganic hybrid phase-transition material, (4-nitroanilinium+) (18-crown-6) (H2PO4-) (H3PO4)2 (1), was successfully synthesized. The organic (4-nitroanilinium) (18-crown-6)+ supramolecular cation layer and inorganic phosphate anion layer were arranged alternately. Differential scanning calorimetry (DSC), temperature-dependent dielectric measurements, and variable-temperature single-crystal X-ray diffraction analysis confirmed the reversible isostructural phase transition of 1 with the same space group Pbca at 225 K, wherein the synergistic effect between the pendulum-like motion of organic cations and the proton transfer in the Osbnd H⋯O hydrogen bonding of inorganic anions was mainly responsible for the phase-transition behavior of 1. The most striking dielectric property was the remarkable anisotropy along various crystallographic axes. A potential-energy calculation further supported the possibility of dynamic motion of cations in the crystal.

  4. [Comparison of magnetic resonance imaging artifacts of five common dental materials].

    PubMed

    Xu, Yisheng; Yu, Risheng

    2015-06-01

    To compare five materials commonly used in dentistry, including three types of metals and two types of ceramics, by using different sequences of three magnetic resonance imaging (MRI) field strengths (0.35, 1.5, and 3.0 T). Three types of metals and two types of ceramics that were fabricated into the same size and thickness as an incisor crown were placed in a plastic tank filled with saline. The crowns were scanned using an magnetic resonance (MR) machine at 0.35, 1.5, and 3.0 T field strengths. The TlWI and T2WI images were obtained. The differences of various materials in different artifacts of field MR scans were determined. The zirconia crown presented no significant artifacts when scanned under the three types of MRI field strengths. The artifacts of casting ceramic were minimal. All dental precious metal alloys, nickel-chromium alloy dental porcelain, and cobalt-chromium ceramic alloy showed varying degrees of artifacts under the three MRI field strengths. Zirconia and casting ceramics present almost no or faint artifacts. By contrast, precious metal alloys, nickel-chromium alloy dental porcelain and cobalt-chromium ceramic alloy display MRI artifacts. The artifact area increase with increasing magnetic field.

  5. In vitro study comparing fracture strength recovery of teeth restored with three esthetic bonding materials using different techniques.

    PubMed

    Rajput, Akhil; Ataide, Ida; Lambor, Rajan; Monteiro, Jeanne; Tar, Malika; Wadhawan, Neeraj

    2010-01-01

    Reattachment of the fractured fragment of a traumatized tooth (whenever available and usable) has become the treatment of choice in cases of uncomplicated crown fractures. Despite the presence of various bonding materials and techniques, laboratory data evaluating the biomechanical aspects of such procedures is largely lacking in the literature. The objective of this in vitro study was to evaluate the fracture strength recovery of incisors, following fragment restoration with three different techniques. A total of 90 extracted human maxillary central incisors were subjected to crown fractured under standard conditions. This was carried out by applying a compressive force from the buccal aspect of the clinical crown using a universal strength testing machine. The fractured teeth were equality distributed in three groups, defined on the basis of the technique used for reattachment: i) overcontour, ii) internal dentinal groove and iii) direct buildup. Each group was further subdivided into three subgroups on the basis of the intermediate restorative material used for reattachment, namely: i) hybrid composite (Filtek Z100 Universal Restorative, ii) nanocomposite (Filtek Z350) and iii) Ormocer (Voco Admira). Following reattachment, the crowns were re-fractured under standard conditions. The force required for fracture was recorded and was expressed as a percentage of the fracture strength of the intact tooth. The data was expressed as a percentage of the fracture strength of the intact tooth. The data was analyzed using two-way ANOVA and Bonferroni tests for pair-wise comparison. The results showed no statistically significant differences in fractures strength between the three groups (P > 0.05). However, comparison of the subgroups revealed statistically significant higher strength recovery percentages for the hybrid and the nanocomposite compared with the Ormocer material (P < 0.05). It was concluded that material properties have a significant influence on the success of reattachment procedures.

  6. Effect of resin coating as a means of preventing marginal leakage beneath full cast crowns.

    PubMed

    Kosaka, Satomi; Kajihara, Hirotada; Kurashige, Hisanori; Tanaka, Takuo

    2005-03-01

    The purpose of this study was to evaluate the effectiveness of resin coating as a means of preventing marginal leakage beneath full cast crowns which were emplaced using different cements. Standard full cast crown preparation was made on 64 extracted premolars. These samples were then divided into four groups, with half of each group coated with dentin coating material after preparation. Crowns were cemented onto the teeth using zinc cement, Fuji I, Vitremer, or C&B Metabond. The samples were thermal-cycled for 10,000 cycles. They were then immersed in erythrosine solution, sectioned, and observed under a microscope. Microleakage analyses were performed using a 0-4 point system. The data were statistically analyzed. There were significant differences between the coated specimens and the uncoated specimens using Fuji I and Vitremer. The results showed that a resin coating could decrease the amount of marginal leakage when applied with these two cements.

  7. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability

    PubMed Central

    Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo

    2016-01-01

    Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (Tg) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100–200 kHz and in the temperature range of 25–300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C−1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature. PMID:27827436

  8. Friction and wear performance of some thermoplastic polymers and polymer composites against unsaturated polyester

    NASA Astrophysics Data System (ADS)

    Unal, H.; Mimaroglu, A.; Arda, T.

    2006-09-01

    Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 × 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 × 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.

  9. Clinical outcome of double crown-retained implant overdentures with zirconia primary crowns

    PubMed Central

    Buergers, Ralf; Ziebolz, Dirk; Roediger, Matthias

    2015-01-01

    PURPOSE This retrospective study aims at the evaluation of implant-supported overdentures (IODs) supported by ceramo-galvanic double crowns (CGDCs: zirconia primary crowns + galvano-formed secondary crown). MATERIALS AND METHODS In a private practice, 14 patients were restored with 18 IODs (mandible: 11, maxilla: 7) retained by CGDCs on 4 - 8 implants and annually evaluated for technical and/or biological failures/complications. RESULTS One of the 86 inserted implants failed during the healing period (cumulative survival rate (CSR) implants: 98.8%). During the prosthetic functional period (mean: 5.9 ± 2.2 years), 1 implant demonstrated an abutment fracture (CSR-abutments: 98.2%), and one case of peri-implantitis was detected. All IODs remained in function (CSR-denture: 100%). A total of 15 technical complications required interventions to maintain function (technical complication rate: 0.178 treatments/patients/year). CONCLUSION Considering the small sample size, the use of CGDCs for the attachment of IODs is possible without an increased risk of technical complications. However, for a final evaluation, results from a larger cohort are required. PMID:26330981

  10. Evaluation of sub-chronic toxic effects of petroleum ether, a laboratory solvent in Sprague-Dawley rats

    PubMed Central

    Parasuraman, Subramani; Sujithra, Jeyabalan; Syamittra, Balakrishnan; Yeng, Wong Yeng; Ping, Wu Yet; Muralidharan, Selvadurai; Raj, Palanimuthu Vasanth; Dhanaraj, Sokkalingam Arumugam

    2014-01-01

    Background: In general, organic solvents are inhibiting many physiological enzymes and alter the behavioural functions, but the available scientific knowledge on laboratory solvent induced organ specific toxins are very limited. Hence, the present study was planned to determine the sub-chronic toxic effects of petroleum ether (boiling point 40–60°C), a laboratory solvent in Sprague-Dawley (SD) rats. Materials and Methods: The SD rats were divided into three different groups viz., control, low exposure petroleum ether (250 mg/kg; i.p.) and high exposure petroleum ether (500 mg/kg; i.p.) administered group. The animals were exposed with petroleum ether once daily for 2 weeks. Prior to the experiment and end of the experiment animals behaviour, locomotor and memory levels were monitored. Before initiating the study animals were trained for 2 weeks for its learning process and its memory levels were evaluated. Body weight (BW) analysis, locomotor activity, anxiogenic effect (elevated plus maze) and learning and memory (Morris water navigation task) were monitored at regular intervals. On 14th day of the experiment, few ml of blood sample was collected from all the experimental animals for estimation of biochemical parameters. At the end of the experiment, all the animals were sacrificed, and brain, liver, heart, and kidney were collected for biochemical and histopathological analysis. Results: In rats, petroleum ether significantly altered the behavioural functions; reduced the locomotor activity, grip strength, learning and memory process; inhibited the regular body weight growth and caused anxiogenic effects. Dose-dependent organ specific toxicity with petroleum ether treated group was observed in brain, heart, lung, liver, and kidney. Extrapyramidal effects that include piloerection and cannibalism were also observed with petroleum ether administered group. These results suggested that the petroleum ether showed a significant decrease in central nervous system (CNS) activity, and it has dose-dependent toxicity on all vital organs. Conclusion: The dose-dependent CNS and organ specific toxicity was observed with sub-chronic administration of petroleum ether in SD rats. PMID:25316988

  11. Fractography of clinically fractured, implant-supported dental computer-aided design and computer-aided manufacturing crowns

    PubMed Central

    Lohbauer, Ulrich; Belli, Renan; Cune, Marco S; Schepke, Ulf

    2017-01-01

    Today, a substantial part of the dental crown production uses computer-aided design and computer-aided manufacturing (CAD/CAM) technology. A recent step in restorative dentistry is the replacement of natural tooth structure with pre-polymerized and machined resin-based methacrylic polymers. Recently, a new CAD/CAM composite was launched for the crown indication in the load-bearing area, but the clinical reality forced the manufacturer to withdraw this specific indication. In parallel, a randomized clinical trial of CAD/CAM composite crowns luted on zirconia implant abutments revealed a high incidence of failure within the first year of service. Fractured crowns of this clinical trial were retrieved and submitted to a fractographic examination. The aim of the case series presented in this article was to identify failure reasons for a new type of CAD/CAM composite crown material (Lava Ultimate; 3M Oral Care, St. Paul, Minnesota, USA) via fractographic examinations and analytical assessment of luting surfaces and water absorption behavior. As a result, the debonding of the composite crowns from the zirconia implant abutments was identified as the central reason for failure. The adhesive interface was found the weakest link. A lack of silica at the zirconia surface certainly has compromised the bonding potential of the adhesive system from the beginning. Additionally, the hydrolytic stress released from swelling of the resin-based crown (water absorption) and transfer to the luting interface further added to the interfacial stress and most probably contributed to a great extend to the debonding failure. PMID:29204275

  12. Fractography of clinically fractured, implant-supported dental computer-aided design and computer-aided manufacturing crowns.

    PubMed

    Lohbauer, Ulrich; Belli, Renan; Cune, Marco S; Schepke, Ulf

    2017-01-01

    Today, a substantial part of the dental crown production uses computer-aided design and computer-aided manufacturing (CAD/CAM) technology. A recent step in restorative dentistry is the replacement of natural tooth structure with pre-polymerized and machined resin-based methacrylic polymers. Recently, a new CAD/CAM composite was launched for the crown indication in the load-bearing area, but the clinical reality forced the manufacturer to withdraw this specific indication. In parallel, a randomized clinical trial of CAD/CAM composite crowns luted on zirconia implant abutments revealed a high incidence of failure within the first year of service. Fractured crowns of this clinical trial were retrieved and submitted to a fractographic examination. The aim of the case series presented in this article was to identify failure reasons for a new type of CAD/CAM composite crown material (Lava Ultimate; 3M Oral Care, St. Paul, Minnesota, USA) via fractographic examinations and analytical assessment of luting surfaces and water absorption behavior. As a result, the debonding of the composite crowns from the zirconia implant abutments was identified as the central reason for failure. The adhesive interface was found the weakest link. A lack of silica at the zirconia surface certainly has compromised the bonding potential of the adhesive system from the beginning. Additionally, the hydrolytic stress released from swelling of the resin-based crown (water absorption) and transfer to the luting interface further added to the interfacial stress and most probably contributed to a great extend to the debonding failure.

  13. Proceedings of the International Conference for the Promotion of Advanced Fire Resistant Aircraft Interior Materials, Held in Atlantic City, New Jersey on February 9 - 11, 1993

    DTIC Science & Technology

    1993-02-11

    aged for 14 days at 120OF and 95% relative humidity (hot and humid ). After... aging tests indicate, Uralane 5774-A/B is not adversely affected by hot and humid environments . In fact, in many cases, mechanical strengths improved...Presently included in these industrially important thermoplastics are the poly (arylene ether ketone )s (PEKs) and poly (arylene ether sulfone)s (PESs). Poly

  14. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  15. [Analysis of the unsuccessful cases of the porcelain-fused-to-metal-crowns and bridges].

    PubMed

    Zhai, Li-Yun; Zhao, Yu-Zhen; Wang, Shao-Ping; Yang, Yue-Hua

    2005-06-01

    To discuss the unsuccessful reasons and the preventive methods of the unsuccessful clinic cases. The retrospective analysis was carried on the 80 prosthesis in 70 patients from 1994 to 2001 which were suffered with unsuccessful results after the restoration of the metal crowns and bridges. There were 68 teeth which had collapsed or broken. 20 teeth had the post loosing or shedding. Root breaking, food impaction, unharmony colors of porcelain and the changing color of gingival were 3, 3, 6 and 2 teeth. It is necessary to select suitable repairing materials and operate correctly for preventing the occurring of the unsuccessful results in the porcelain-fused-to-metal-crowns and bridges.

  16. Alumina-zirconia machinable abutments for implant-supported single-tooth anterior crowns.

    PubMed

    Sadoun, M; Perelmuter, S

    1997-01-01

    Innovative materials and application techniques are constantly being developed in the ongoing search for improved restorations. This article describes a new material and the fabrication process of aesthetic machinable ceramic anterior implant abutments. The ceramic material utilized is a mixture of alumina (aluminum oxide) and ceria (cerium oxide) with partially stabilized zirconia (zirconium oxide). The initial core material is a cylinder with a 9-mm diameter and a 15-mm height, obtained by ceramic injection and presintering processes. The resultant alumina-zirconia core is porous and readily machinable. It is secured to the analog, and its design is customized by machining the abutment to suit the particular clinical circumstances. The machining is followed by glass infiltration, and the crown is finalized. The learning objective of this article is to gain a basic knowledge of the fabrication and clinical application of the custom machinable abutments.

  17. Toothbrush abrasion of paint-on resins for shade modification and crown resins: effect of water absorption.

    PubMed

    Fujii, Koichi; Arikawa, Hiroyuki; Kanie, Takahito; Ban, Seiji

    2004-06-01

    In order to investigate the clinical application of paint-on resins, the effect of water absorption on toothbrush abrasion and light transmittance of ten crown resins including three paint-on resins was examined. Water absorption into each material ranged from 0.29 to 0.89 mg/cm2 after storage in distilled-water for 6 weeks and their hardnesses decreased by 3.5-22.3%. Maximum surface roughness (Rmax) of the materials stored in distilled water for 6 weeks increased with an increasing number of toothbrush abrasion cycles and ranged from 1.9 to 10.5 microm after 100,000 cycles. Also, Maximum depth and weight loss as an indicator of the amount of each material lost by abrasion showed similar behaviors similar to Rmax. These results indicated that the abrasion resistance of paint-on resins was located in the middle among all materials examined.

  18. Chairside Computer-Aided Design/Computer-Aided Manufacture All-Ceramic Crown and Endocrown Restorations: A 7-Year Survival Rate Study.

    PubMed

    Fages, Michel; Raynal, Jacques; Tramini, Paul; Cuisinier, Frédéric Jg; Durand, Jean-Cédric

    The objective of the present study was to analyze the clinical outcomes of 447 monoblock ceramic chairside computer-aided design/computer-aided manufacture (CAD/CAM) reconstructions over a 7-year functional period. Of these reconstructions, 212 were peripheral crowns and 235 were endocrowns. The restorations were placed between 2003 and 2008 in a total of 323 patients. They were created using a chairside CAD/CAM method and the same materials in all cases. All of the crowns were manufactured and glued during the same clinical session by the same practitioner. Data were descriptively analyzed and survival probabilities were calculated using Kaplan-Meier statistics. Of the 447 restorations, only 6 failures occurred, resulting in a success rate of 98.66%. All of the failures were the result of a partial ceramic fracture. Of the six ceramic fractures, five appeared on peripheral crowns and one on an endocrown. All fractures appeared in the first 24 months, including two in the first month. Log-rank test comparing incidence rates between crowns and endocrowns showed no significant differences (P = .08). This survival rate study reinforced the use of CAD/CAM full ceramic crowns and endocrowns on molars, showing a much more favorable survival rate for endocrowns.

  19. Comparison of the fit of cast gold crowns fabricated from the digital and the conventional impression techniques

    PubMed Central

    Jeon, Young-Chan; Jeong, Chang-Mo

    2017-01-01

    PURPOSE The purpose of this study was to compare the fit of cast gold crowns fabricated from the conventional and the digital impression technique. MATERIALS AND METHODS Artificial tooth in a master model and abutment teeth in ten patients were restored with cast gold crowns fabricated from the digital and the conventional impression technique. The forty silicone replicas were cut in three sections; each section was evaluated in nine points. The measurement was carried out by using a measuring microscope and I-Soultion. Data from the silicone replica were analyzed and all tests were performed with α-level of 0.05. RESULTS 1. The average gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. 2. In marginal and internal axial gap of cast gold crowns, no statistical differences were found between the two impression techniques. 3. The internal occlusal gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. CONCLUSION Both prostheses presented clinically acceptable results with comparing the fit. The prostheses fabricated from the digital impression technique showed more gaps, in respect of occlusal surface. PMID:28243386

  20. Recent Advances in Macrocyclic Fluorescent Probes for Ion Sensing.

    PubMed

    Wong, Joseph K-H; Todd, Matthew H; Rutledge, Peter J

    2017-01-25

    Small-molecule fluorescent probes play a myriad of important roles in chemical sensing. Many such systems incorporating a receptor component designed to recognise and bind a specific analyte, and a reporter or transducer component which signals the binding event with a change in fluorescence output have been developed. Fluorescent probes use a variety of mechanisms to transmit the binding event to the reporter unit, including photoinduced electron transfer (PET), charge transfer (CT), Förster resonance energy transfer (FRET), excimer formation, and aggregation induced emission (AIE) or aggregation caused quenching (ACQ). These systems respond to a wide array of potential analytes including protons, metal cations, anions, carbohydrates, and other biomolecules. This review surveys important new fluorescence-based probes for these and other analytes that have been reported over the past five years, focusing on the most widely exploited macrocyclic recognition components, those based on cyclam, calixarenes, cyclodextrins and crown ethers; other macrocyclic and non-macrocyclic receptors are also discussed.

  1. Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions.

    PubMed

    Hu, Yuwei; Kahn, Jason S; Guo, Weiwei; Huang, Fujian; Fadeev, Michael; Harries, Daniel; Willner, Itamar

    2016-12-14

    We present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems. The removal of the stress by a counter-trigger restores the original linear bilayer hydrogel. The stiffness of the DNA hydrogel layers is controlled by thermal, pH (i-motif), K + ion/crown ether (G-quadruplexes), chemical (pH-doped polyaniline), or biocatalytic (glucose oxidase/urease) triggers. A theoretical model relating the experimental bending radius of curvatures of the hydrogels with the Young's moduli and geometrical parameters of the hydrogels is provided. Promising applications of shape-regulated stimuli-responsive asymmetric hydrogels include their use as valves, actuators, sensors, and drug delivery devices.

  2. Molecular recognition of organic ammonium ions in solution using synthetic receptors

    PubMed Central

    Späth, Andreas

    2010-01-01

    Summary Ammonium ions are ubiquitous in chemistry and molecular biology. Considerable efforts have been undertaken to develop synthetic receptors for their selective molecular recognition. The type of host compounds for organic ammonium ion binding span a wide range from crown ethers to calixarenes to metal complexes. Typical intermolecular interactions are hydrogen bonds, electrostatic and cation–π interactions, hydrophobic interactions or reversible covalent bond formation. In this review we discuss the different classes of synthetic receptors for organic ammonium ion recognition and illustrate the scope and limitations of each class with selected examples from the recent literature. The molecular recognition of ammonium ions in amino acids is included and the enantioselective binding of chiral ammonium ions by synthetic receptors is also covered. In our conclusion we compare the strengths and weaknesses of the different types of ammonium ion receptors which may help to select the best approach for specific applications. PMID:20502608

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Custelcean, Radu; Bartsch, Richard A.

    Two series of novel mono-ionizable calix[4]arene-benzocrown-6 ligands in 1,3-alternate conformations are synthesized. In one series, the proton-ionizable group (PIG) is attached to the para position of one aromatic ring in the calixarene framework, thereby positioning it over the polyether ring cavity. In the other series, the PIG is a substituent on the benzo group in the polyether ring. This orients the PIG away from the crown ether cavity. In addition to carboxylic acid functions, the PIGs include N-(X)sulfonyl carboxamide groups. With X group variation from methyl to phenyl to 4-nitrophenyl to trifluoromethyl, the acidity of the PIG is 'tuned'. Solventmore » extraction of Ag{sup +} from aqueous solutions into chloroform is used to probe the influence of structural variation within the mono-ionizable calixcrown ligand on metal ion extraction efficiency, including the identity and acidity of the PIG and its orientation with respect to the polyether ring.« less

  4. Biomechanical Assessment of Restored Mandibular Molar by Endocrown in Comparison to a Glass Fiber Post-Retained Conventional Crown: 3D Finite Element Analysis.

    PubMed

    Helal, Mohammed Abu; Wang, Zhigang

    2017-10-25

    To compare equivalent and contact stresses in a mandibular molar restored by all-ceramic crowns through two methods: ceramic endocrowns and ceramic crowns supported by fiber-reinforced composite (FRC) posts and core, by using 3D finite element analysis during normal masticatory load. Three 3D models of a mandibular first molar were made and labeled as such: intact molar with no restoration (A); ceramic endocrown-restored molar (B); ceramic crown supported by FRC posts and core restored molar (C). By using 3D FE analysis with contact components, normal masticatory load was simulated. The mvM stresses in all models were calculated. Maximal mvM stresses in the ceramic of restorations, dentin, and luting cement were contrasted among models and to values of materials' strength. Contact shear and tensile stresses in the restoration/tooth interface around restorations were also calculated. The highest mvM stress levels in the enamel and dentin for the tooth restored by ceramic endocrown were lower in the crown ceramic than in tooth restored with FRC posts and all-ceramic crowns; however, in the resin adhesive cement interface it was lower for ceramic crown supported by FRC posts than the in ceramic endocrown restoration. The maximum contact shear and tensile stress values along the restoration/tooth interface of ceramic endocrowns were lower than those with ceramic crowns supported by FRC posts. Ceramic endocrown restorations presented a lower mvM stress level in dentin than the conventional ceramic crowns supported by FRC posts and core. Ceramic endocrown restorations in molars are less susceptible to damage than those with conventional ceramic crowns retained by FRC posts. Ceramic endocrowns properly cemented in molars must not be fractured or loosen during normal masticatory load. Therefore, ceramic endocrowns are advised as practicable, minimally invasive, and esthetic restorations for root canal treated mandibular molars. © 2017 by the American College of Prosthodontists.

  5. Clinical outcome of single porcelain-fused-to-zirconium dioxide crowns: a systematic review.

    PubMed

    Takeichi, Takuro; Katsoulis, Joannis; Blatz, Markus B

    2013-12-01

    The increasing demand by patients for esthetic and metal-free restorations has driven the development of ceramic restorations with good esthetic and mechanical stability. Recent clinical studies have investigated the use of zirconium dioxide as a core material for complete crowns and computer-aided-design/computer-aided-manufacturing fabricated restorations. The aim of this systematic review was to evaluate the clinical survival rates of porcelain-fused-to-zirconia (PFZ) single crowns on anterior and posterior teeth and to compare them with metal ceramic (MC) crowns. A systematic search was conducted with PubMed and manual research to identify literature written in English that refers to in vivo studies published from January 1, 1950 through July 1, 2011. Clinical trials that evaluated PFZ and MC single crowns on natural teeth were selected for further analysis. Titles and/or abstracts of articles identified through the electronic searches were reviewed and evaluated for appropriateness. In addition, a hand search of relevant dental journals was peformed, and reference lists of culled articles were screened to identify publications. The search resulted in a total of 488 initial matches. Nineteen studies with a total of 3621 crowns met the inclusion criteria. The survival rates of PFZ crowns (total 300) ranged from 92.7% to 100% for a follow-up time of 24 to 39 months, whereas those of MC crowns (total 3321) ranged from 70% to 100% for a follow-up time of 12 to 298 months. Studies that reported long-term results were found only for the MC crown group. The scientific clinical data available to compare PFZ and MC crowns are limited. The survival rates may well be influenced by the selection and appropriate use of the veneering ceramic, and, therefore, additional prospective long-term clinical trials are necessary to draw reliable conclusions. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  6. Energy Storage of Polyarylene Ether Nitriles at High Temperature

    NASA Astrophysics Data System (ADS)

    Tang, Xiaohe; You, Yong; Mao, Hua; Li, Kui; Wei, Renbo; Liu, Xiaobo

    2018-03-01

    Polyarylene ether nitrile (PEN) was synthesized and used as film capacitors for energy storage at high temperature. Scanning electron microscopy observation indicated that the films of PEN have pinholes at nanoscales which restricted the energy storage properties of the material. The pinhole shadowing effect through which the energy storage properties of PEN were effectively improved to be 2.3 J/cm3 was observed by using the overlapped film of PEN. The high glass transition temperature (T g) of PEN was as high as 216 °C and PEN film showed stable dielectric constant, breakdown strength and energy storage density before the T g. The PEN films will be a potential candidate as high performance electronic storage materials used at high temperature.

  7. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (Etbe) ...

    EPA Pesticide Factsheets

    In September 2016, the U.S. Environmental Protection Agency's (USEPA) released the draft Integrated Risk Information System (IRIS) Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE). Consistent with the 2013 IRIS Enhancements, draft IRIS assessments are released prior to external peer review for a 60-day public comment period and discussed at an upcoming public science meeting. Accordingly, the toxicological review, supplementary information, and other materials pertaining to this draft assessment are posted on this site. This material is being released for public viewing and comment prior to a public meeting, providing an opportunity for the IRIS Program to engage in early discussions with stakeholders and the public on data that may be used to identify adverse health effects and characterize exposure-response relationships.

  8. Poly(aryl ethers) and related polysiloxane copolymer molecular coatings: Preparation and radiation degradation

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.

    1982-01-01

    The radiation degradation of poly(arylene ether sulfones) and related materials is studied. These basic studies are important both as a means to developing stronger, more stable matrix resins for composite materials, as well as to improve the data base in regard to chemical structure-physical property relationships. Thirty homo and copolymers were synthesized, at least partially characterized and, in several cases suitable film casting techniques were developed. Four samples were chosen for initial radiation degradation. Poly(dimethyl siloxane) soft bocks/segments can preferentially migrate to the surface of copolymer films. Since siloxanes are utilized as thermal control coatings, this form of 'molecular' coating is of interest. The chemistry for preparing such copolymers with any of the polymers described was demonstrated.

  9. Summary of GPC/DV results for space exposed poly(arylene ether phosphine oxide)s

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie

    1995-01-01

    Gel Permeation Chromatography (GPC) was used to analyze poly(arylene ether phosphine oxide)s whose backbones were identical except for the ketone content and placement. These samples were exposed to low Earth orbit environment (predominantly atomic oxygen) on space shuttle flights. The materials and their unexposed controls were then characterized by GPC to investigate the effect of atomic oxygen on the molecular weight distributions. Analysis of the soluble portion of the samples revealed that there was significant loss of high molecular weight species. The presence of insoluble material also suggested that crosslinking was induced by the atomic oxygen exposure and that this very likely occurred at the high molecular weight portion of the molecular weight distribution.

  10. Polymer blend compositions and methods of preparation

    DOEpatents

    Naskar, Amit K.

    2016-09-27

    A polymer blend material comprising: (i) a first polymer containing hydrogen bond donating groups having at least one hydrogen atom bound to a heteroatom selected from oxygen, nitrogen, and sulfur, or an anionic version of said first polymer wherein at least a portion of hydrogen atoms bound to a heteroatom is absent and replaced with at least one electron pair; (ii) a second polymer containing hydrogen bond accepting groups selected from nitrile, halogen, and ether functional groups; and (iii) at least one modifying agent selected from carbon particles, ether-containing polymers, and Lewis acid compounds; wherein, if said second polymer contains ether functional groups, then said at least one modifying agent is selected from carbon particles and Lewis acid compounds. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  11. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOEpatents

    Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

    1996-04-02

    A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

  12. Design and preparation of novel polyarylene ether materials based on Diels-Alder reaction as the crosslinker for electrooptical modulators

    NASA Astrophysics Data System (ADS)

    Gao, Wu; Hou, Wenjun; Zhen, Zhen; Liu, Xinhou; Liu, Jialei; Fedorchuk, A. A.; Czaja, P.

    2016-07-01

    Novel crosslinkable organic linear electro-optical (EO) material based on polyarylene ether as the main chain host polymer was designed and prepared. The host polymer with rigid aromatic has demonstrated a good compatibility with the guest chromophore. Long side chain with anthracene ensured the crosslinkable reaction and appropriate glass transition temperature of the host polymer (55 °C). The EO r33 tensor coefficient for this novel EO material has been magnitude of 66 pm/V at 1310 nm and the excellent long term stability at 85 °C. These parameters permit to consider their application in fabrication of organic electro optical devices. The semi-empirical and DFT quantum chemical simulations were performed for 4 principal chromophores to clarify a role of cross-linker in the enhancement of the ground state dipole moments and effective hyperpolarizabilities.

  13. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

    PubMed Central

    Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-01-01

    PURPOSE The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃–55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns. PMID:26949485

  14. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis.

    PubMed

    Lee, Ki-Sun; Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan; Lee, Jeong-Yol

    2017-01-01

    The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.

  15. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis

    PubMed Central

    Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan

    2017-01-01

    The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems. PMID:28386547

  16. Wear resistance of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted carbon fiber reinforced poly(ether ether ketone) liners against metal and ceramic femoral heads.

    PubMed

    Yamane, Shihori; Kyomoto, Masayuki; Moro, Toru; Hashimoto, Masami; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko

    2018-04-01

    Younger, active patients who undergo total hip arthroplasty (THA) have increasing needs for wider range of motion and improved stability of the joint. Therefore, bearing materials having not only higher wear resistance but also mechanical strength are required. Carbon fiber-reinforced poly(ether ether ketone) (CFR-PEEK) is known as a super engineering plastic that has great mechanical strength. In this study, we focused on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted CFR-PEEK and investigated the effects of PMPC grafting and the femoral heads materials on the wear properties of CFR-PEEK liners. Compared with untreated CFR-PEEK, the PMPC-grafted CFR-PEEK surface revealed higher wettability and lower friction properties under aqueous circumstances. In the hip simulator wear test, wear particles generated from the PMPC-grafted CFR-PEEK liners were fewer than those of the untreated CFR-PEEK liners. There were no significant differences in the size and the morphology of the wear particles between the differences of PMPC-grafting and the counter femoral heads. Zirconia-toughened alumina (ZTA) femoral heads had significantly smoother surfaces compared to cobalt-chromium-molybdenum alloy femoral heads after the hip simulator test. Thus, we conclude that the bearing combination of the PMPC-grafted CFR-PEEK liner and ZTA head is expected to be a lifelong bearing interface in THA. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1028-1037, 2018. © 2017 Wiley Periodicals, Inc.

  17. Thermal degradation of polybrominated diphenyl ethers over as-prepared Fe3O4 micro/nano-material and hypothesized mechanism.

    PubMed

    Li, Qianqian; Yang, Fan; Su, Guijin; Huang, Linyan; Lu, Huijie; Zhao, Yuyang; Zheng, Minghui

    2016-01-01

    The thermal degradation of decabromodiphenyl ether (BDE-209) featuring fully substituted bromines was investigated over an as-prepared Fe3O4 micro/nano-material at 300 °C. Degradation followed pseudo-first-order kinetics with kobs = 0.15 min(-1) higher than that for decachlorobiphenyl (CB-209). Twenty-six newly produced polybrominated diphenyl ether (PBDE) congeners were identified using the available PBDE standards, while four PBDE congener products were predicted using third-order polynomial regression equation. Analysis of the products indicated that BDE-209 underwent stepwise hydrodebromination over as-prepared Fe3O4. Similar to the case for CB-209, two initial hydrodebromination steps are favored at the BDE-209 meta-positions, giving the major products BDE-207 and BDE-197. However, the variance about the preferred products began to emerge from the start of heptabromodiphenyl ethers (hepta-BDEs). The majorly produced hepta-BDE isomer with BDE-183 is unbrominated at one ortho-position. However, this is different from the reported degradation of CB-209, which always produced the products chlorinated at all four ortho-positions until the ortho-position had to be removed for the formation of trichlorobiphenyls and dichlorobiphenyl still majorly chlorinated at three or two ortho-positions. The early BDE-209 hydrodebromination steps appear to be strongly influenced by steric effects, whereas subsequent hydrodebromination steps, as more bromine atoms are removed, will be gradually governed more by thermodynamics.

  18. [Direct restoration of the tooth crown using various core build-up materials].

    PubMed

    Maksimovskaya, L N; Krutov, V A; Kuprin, P V; Kuprina, M A

    The aim of the study was to assess direct restorations mechanical properties (both in vitro and in vivo) to improve dental restorations quality after root canal treatment. Laboratory tests showed that using nanocomposite materials of dual curing with the fiberglass reinforced posts improves restoration strength in endodontically treated teeth: by 3.9±5.8% in class II Peroz restorations, 12.6±5.9 and 24.2±4.2% in class III and IV, correspondently. Using fiberglass reinforced posts (LuxaPost) for the restoration of the tooth crown after endodontic treatment significantly decreases the number of complications associated with marginal leakage of the restoration during first 2 years after treatment (p<005).

  19. Survival of resin infiltrated ceramics under influence of fatigue.

    PubMed

    Aboushelib, Moustafa N; Elsafi, Mohamed H

    2016-04-01

    to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, P<0.005) of the initial fracture strength of the tested specimens. Zirconia showed the highest deterioration percent (34% reduction in strength) followed by (IPS)Empress (32.2%), (IPS)e.max (27.1%) while Lava Ultimate and Vita Enamic showed the lowest percent of reduction in strength. The two types of resin infiltrated ceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while the characteristic strength of zirconia prevented core fracture but failure still occurred from the weaker veneer ceramic. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes

    NASA Astrophysics Data System (ADS)

    Hu, Yuanfang; Wang, Bingxi; Li, Xiao; Chen, Dongyang; Zhang, Weiying

    2018-05-01

    To develop high performance anion exchange membranes (AEMs), a novel bisphenol monomer bearing eight benzylmethyl groups at the outer edge of the molecule was synthesized, which after condensation polymerization with various amounts of 4,4‧-dihydroxydiphenylsulfone and 4,4‧-difluorobenzophenone yielded novel poly(arylene ether)s with densely located benzylmethyl groups. These benzylmethyl groups were then converted to quaternary ammonium groups by radical-initiated bromination and quaternization in tandem, leading to the emergence of densely quaternized poly(arylene ether sulfone)s (QA-PAEs) with controlled ion exchange capacities (IECs) ranging from 1.61 to 2.32 mmol g-1. Both small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) studies revealed distinct phase separation in the QA-PAEs. The QA-PAE-40 with an IEC of 2.32 mmol g-1 exhibited a Br- conductivity of 9.2 mS cm-1 and a SO42- conductivity of 14.0 mS cm-1 at room temperature, much higher than those of a control membrane with a similar IEC but without obvious phase separation. Therefore, phase separation of AEMs was validated to be advantageous for the efficient conducting of anions. The experimental results also showed that the QA-PAEs were promising AEM materials, especially for non-alkaline applications.

  1. Leaching characteristics of polybrominated diphenyl ethers (PBDEs) from flame-retardant plastics.

    PubMed

    Kim, Yong-Jin; Osako, Masahiro; Sakai, Shin-ichi

    2006-10-01

    To investigate the effect of leachant on the leachability of polybrominated diphenyl ethers (PBDEs), we determined the leaching concentrations of PBDEs from flame-retardant plastic samples (TV housings and raw materials before molding processing) that are regarded as a source of PBDEs in landfill sites. The leachants used were distilled water, 20% methanol solution, and dissolved humic solution (DHS) of 1000 mg/l based on organic carbon. The leaching test conditions were a liquid-to-solid ratio of 100:1, and a contact period of five days, with twice-daily agitation in a temperature-controlled room of 30 degrees C without pH or ionic strength control. The leaching concentrations of PBDEs increased with increased content, and were found to be remarkably enhanced when methanol and DHS were used instead of distilled water. The enhancement of leachability in the presence of the latter was attributed to the cosolvency effect, and complex formations between the PBDEs and dissolved humic matter (DHM). PBDE concentrations in the leachate obtained from the leaching test and an actual landfill site revealed a significant presence of congeners below heptabromodiphenyl ethers (H7BDEs), detected in the leachate of the actual landfill, while significant amounts of nonabromodiphenyl ethers (N9BDEs) and decabromodiphenyl ether (D10BDE) were detected in the leachate of the leaching test.

  2. Exposure to volatile organic compounds and kidney dysfunction in thin film transistor liquid crystal display (TFT-LCD) workers.

    PubMed

    Chang, Ta-Yuan; Huang, Kuei-Hung; Liu, Chiu-Shong; Shie, Ruei-Hao; Chao, Keh-Ping; Hsu, Wen-Hsin; Bao, Bo-Ying

    2010-06-15

    Many volatile organic compounds (VOCs) are emitted during the manufacturing of thin film transistor liquid crystal displays (TFT-LCDs), exposure to some of which has been reported to be associated with kidney dysfunction, but whether such an effect exists in TFT-LCD industry workers is unknown. This cross-sectional study aimed to investigate the association between exposure to VOCs and kidney dysfunction among TFT-LCD workers. The results showed that ethanol (1811.0+/-1740.4 ppb), acetone (669.0+/-561.0 ppb), isopropyl alcohol (187.0+/-205.3 ppb) and propylene glycol monomethyl ether acetate (PGMEA) (102.9+/-102.0 ppb) were the four dominant VOCs present in the workplace. The 63 array workers studied had a risk of kidney dysfunction 3.21-fold and 3.84-fold that of 61 cell workers and 18 module workers, respectively. Workers cumulatively exposed to a total level of isopropyl alcohol, PGMEA and propylene glycol monomethyl ether> or =324 ppb-year had a significantly higher risk of kidney dysfunction (adjusted OR=3.41, 95% CI=1.14-10.17) compared with those exposed to <25 ppb-year after adjustment for potential confounding factors. These findings indicated that array workers might be the group at greatest risk of kidney dysfunction within the TFT-LCD industry, and cumulative exposure to specific VOCs might be associated with kidney dysfunction. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  3. Alternative Fuels Compatibility with Army Equipment Testing - Alternative Fuels Material Compatibility Analysis

    DTIC Science & Technology

    2012-02-21

    Testing and Materials °C Celsius DiEGME Diethylene Glycol Monomethyl Ether EPDM Ethylene Propylene Diene Monomer FARE Forward Area Refueling...urethane class AU, polyether urethane class EU, EPDM , Viton®, fluorosilicone class FQ, polytetrafluoroethylene (PTFE), polyolefin and polyester...sleeve Material not provided AAFARS 4720-00-540-1368 Hose, nonmetallic Material not provided AAFARS 4720-01-218-6958 Hose, preformed Rubber

  4. Synthesis of interlocked molecules by olefin metathesis

    NASA Astrophysics Data System (ADS)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic polyammonium scaffold. Diolefin polyether fragments were coordinated and "clipped" around the ammonium sites within the polymer backbone using ring-closing olefin metathesis, giving the molecular "charm bracelet". Confirmation of the interlocked nature of the product was achieved via 1H NMR spectroscopy and two-dimensional diffusion ordered NMR spectroscopy. A simple strategy for a one-pot, multi-component synthesis of polyrotaxanes using acyclic diene metathesis polymerization was developed. The polyrotaxanes were characterized by traditional 1H NMR spectroscopy as well as size exclusion chromatography, and the interlocked topology was confirmed using two-dimension diffusion-ordered NMR spectroscopy. The dynamic, self-correcting nature of the ADMET polymerization was also explored through the equilibration of a capped polyammonium polymer in the presence of dibenzo-24-crown-8 ether and olefin metathesis catalysts. The efficiency and ease with which these mechanically interlocked macromolecules can be assembled should facilitate rapid modulation to achieve versatile polyrotaxane architectures. Flexible, switchable [c2]daisy-chain dimers (DCDs) were synthesized, where the macromer ammonium binding site was adjacent to the crown-type recognition structure and separated from the cap by an alkyl chain. A DCD of this topology is expected to have an extended structure in the bound conformation (when the ammonium was coordinated to the crown). Several different macromer candidates were designed to allow access to DCDs with flexible alkyl chains between the ammonium binding site and the cap, and a number of synthetic routes were explored in an effort to access these challenging materials. While the first generation DCD structure proved to be unstable due to a labile ester linkage, work is continuing toward the development of several cap structures in an effort to replace the ester linkage with an ether linkage, which, in the second generation model systems, has proven much more stable to the acidic and basic conditions necessary to induce switching of the dimeric architecture. One of the efforts in our lab is directed at the synthesis of 18F-labeled nanoparticles to be used as tumor imaging agents in positron emission tomography. We have been working to optimize fluorine incorporation while minimizing NP crosslinking. Because of evidence of NP side-reactions with the potassium carbonate base, we have begun to use potassium benzoate solid-state beads. To analyze the fluorinated NPs, various sorbents were explored. It was found that silica sorbents rapidly reacted and bound to the NPs, while the NPs remained unreactive and mobile on alumina. Further analysis of the NPs has been accomplished using 2D-DOSY NMR spectroscopy. Future work with the NPs will involve a systematic evaluation of the role of water on the extent of fluorination, as well as functionalization of the NPs with Cy5.5 dye for use in studies on eyes to be done in collaboration with researchers at the Mayo Clinic.

  5. Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes

    PubMed Central

    Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.

    2012-01-01

    This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597

  6. Capsules with highly active pores and interiors: versatile platforms at the nanoscale.

    PubMed

    Müller, Achim; Gouzerh, Pierre

    2014-04-22

    Spherical porous capsules offer new exciting approaches in chemistry, materials sciences, and in context of physical and biological phenomena. The underlying concepts are reported with particular emphasis on metal oxide based capsules of the {M132 } Keplerate type which display-due to their exceptional structural features and easy variation/derivatization as well as exchange of building units-an unmatched range of properties and offer unique opportunities for investigating a variety of basic aspects of nanoscience, including the discovery of some new phenomena, especially those related to hydrophobicity issues that are of significance for everyday life. This relies in particular on the existence of a large number of flexible crown ether type pores/channels and the possibility of changing the interior from completely hydrophilic to completely hydrophobic due to the presence of numerous easily exchangeable internal ligands/functionalities; the capsules can even be constructed so that they enclose a large number of highly active Lewis and Brønsted acid sites. The manifold of possible applications/uses are outlined as subtitles with reference to results as well as possible future studies. There are, among many others, options to control passing cations under different internal frames allowing also their separations, to conduct studies about hydrophobic recognitions and clustering of biological interest in water, controlled internal ion transport, nanoscale dewetting, and to carry out basic as well as new types of reactions under confined conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fabrication of crown restoration retrofitting to existing clasps using CAD/CAM: fitness accuracy and retentive force.

    PubMed

    Ozawa, Daisuke; Suzuki, Yasunori; Kawamura, Noboru; Ohkubo, Chikahiro

    2015-04-01

    A crown restoration engaged by a clasp as an abutment tooth for a removable partial denture (RPD) occasionally might be removed and eliminated due to secondary caries or apical lesions. However, if the RPD is clinically acceptable without any problems and refabricating the RPD is not recommended, the new crown must be made to retrofit to the existing clasp of the RPD. This in vitro study evaluated the conventional and CAD/CAM procedures for retrofitting crown restorations to the existing clasps by measuring the fitness accuracy and the retentive forces. The crown restoration on #44 was fabricated with CP titanium and zirconium on the plaster model with #45 and #46 teeth missing to retrofit to the existing clasp using conventional thin coping and CAD/CAM procedures. The gap distance between the clasp (tip, shoulder, and rest regions) and the fabricated crown was measured using silicone impression material. The retentive force of the clasp was also measured, using an autograph at a crosshead speed of 50mm/min. The obtained data were analyzed by one-way ANOVA/Tukey's multiple comparison test (α=0.05). The CAD/CAM procedure caused significantly smaller gap distances in all of the clasp regions, as compared to the conventional procedure (p<0.05). The retentive force of the CAD/CAM crown was significantly higher than for the conventional one (p<0.05). When a crown restoration must be remade to retrofit an existing clasp, CAD/CAM fabrication can be recommended so that both appropriate fitness and retentive force are obtained. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  8. Load-bearing capacity of various CAD/CAM monolithic molar crowns under recommended occlusal thickness and reduced occlusal thickness conditions

    PubMed Central

    Choi, Sulki

    2017-01-01

    PURPOSE The goal of this study was to evaluate the fracture resistances of various monolithic crowns fabricated by computer-aided design and computer-aided manufacturing (CAD/CAM) with different thickness. MATERIALS AND METHODS Test dies were fabricated as mandibular molar forms with occlusal reductions using CAD/CAM. With different occlusal thickness (1.0 or 1.5 mm), a polymer-infiltrated ceramic network (Enamic, EN), and zirconia-reinforced lithium silicate (Suprinity, SU and Celtra-Duo, CD) were used to fabricate molar crowns. Lithium disilicate (e.max CAD, EM) crowns (occlusal: 1.5 mm) were fabricated as control. Seventy crowns (n=10 per group) were bonded to abutments and stored in water for 24 hours. A universal testing machine was used to apply load to crown until fracture. The fractured specimens were examined with a scanning electron microscopy. RESULTS The type of ceramics and the occlusal thickness showed a significant interaction. With a recommended thickness (1.5 mm), the SU revealed the mean load similar to the EM, higher compared with those of the EN and CD. The fracture loads in a reduced thickness (1.0 mm) were similar among the SU, CD, and EN. The mean fracture load of the SU and CD enhanced significantly when the occlusal thickness increased, whereas that of the EN did not. CONCLUSION The fracture loads of monolithic crowns were differently influenced by the changes in occlusal thickness, depending on the type of ceramics. Within the limitations of this study, all the tested crowns withstood the physiological masticatory loads both at the recommended and reduced occlusal thickness. PMID:29279761

  9. Fracture strength testing of crowns made of CAD/CAM composite resins.

    PubMed

    Okada, Ryota; Asakura, Masaki; Ando, Akihiro; Kumano, Hirokazu; Ban, Seiji; Kawai, Tatsushi; Takebe, Jun

    2018-03-28

    The purpose of this study was to ascertain whether computer aided design/computer aided manufacturing (CAD/CAM) composite resin crowns have sufficient strength to withstand the bite force of the molar teeth. The null hypothesis was that the fracture strength of CAD/CAM composite resin crowns is lower than the average maximum bite force of the molar tooth. The crowns, which shape is the right maxillary first molar, were fabricated using four CAD/CAM blanks made of composite resins (Block HC: HC, KZR-CAD HR: HR, KZR-CAD HR2: HR2, Avencia Block: AVE) and one CAD/CAM blank made of lithium disilicate glass-ceramic (IPS e.max CAD: IPS), which was used as a control. Fracture strength of fabricated crowns bonded to metal abutment and biaxial flexural strength of the materials were evaluated. The results of fracture strength test and biaxial flexural strength test showed different tendencies. The fracture strength of CAD/CAM composite resin crowns except HC ranged from 3.3kN to 3.9kN, and was similar to that of IPS (3.3kN). In contrast, biaxial flexural strength of CAD/CAM composite resins ranged from 175MPa to 247MPa, and was significantly lower than that of IPS (360MPa). All CAD/CAM composite resin crowns studied presented about 3-4 times higher fracture strength than the average maximum bite force of the molar tooth (700-900N), which result leads to the conclusion that CAD/CAM composite resin crowns would have sufficient strength to withstand the bite force of the molar teeth. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns.

    PubMed

    Abdullah, Adil Othman; Tsitrou, Effrosyni A; Pollington, Sarah

    2016-01-01

    This study compared the marginal gap, internal fit, fracture strength, and mode of fracture of CAD/CAM provisional crowns with that of direct provisional crowns. An upper right first premolar phantom tooth was prepared for full ceramic crown following tooth preparation guidelines. The materials tested were: VITA CAD-Temp®, Polyetheretherketone "PEEK", Telio CAD-Temp, and Protemp™4 (control group). The crowns were divided into four groups (n=10), Group1: VITA CAD-Temp®, Group 2: PEEK, Group 3: Telio CAD-Temp, and Group 4: Protemp™4. Each crown was investigated for marginal and internal fit, fracture strength, and mode of fracture. Statistical analysis was performed using GraphPad Prism software version 6.0. The average marginal gap was: VITA CAD-Temp® 60.61 (±9.99) µm, PEEK 46.75 (±8.26) µm, Telio CAD-Temp 56.10 (±5.65) µm, and Protemp™4 193.07(±35.96) µm (P<0.001). The average internal fit was: VITA CAD-Temp® 124.94 (±22.96) µm, PEEK 113.14 (±23.55) µm, Telio CAD-Temp 110.95 (±11.64) µm, and Protemp™4 143.48(±26.74) µm. The average fracture strength was: VITA CAD-Temp® 361.01 (±21.61) N, PEEK 802.23 (±111.29) N, Telio CAD-Temp 719.24 (±95.17) N, and Protemp™4 416.40 (±69.14) N. One-way ANOVA test showed a statistically significant difference for marginal gap, internal gap, and fracture strength between all groups (p<0.001). However, the mode of fracture showed no differences between the groups (p>0.05). CAD/CAM fabricated provisional crowns demonstrated superior fit and better strength than direct provisional crowns.

  11. FEM evaluation of cemented-retained versus screw-retained dental implant single-tooth crown prosthesis

    PubMed Central

    Cicciu, Marco; Bramanti, Ennio; Matacena, Giada; Guglielmino, Eugenio; Risitano, Giacomo

    2014-01-01

    Prosthetic rehabilitation of partial or total edentulous patients is today a challenge for clinicians and dental practitioners. The application of dental implants in order to recover areas of missing teeth is going to be a predictable technique, however some important points about the implant angulation, the stress distribution over the bone tissue and prosthetic components should be well investigated for having final long term clinical results. Two different system of the prosthesis fixation are commonly used. The screw retained crown and the cemented retained one. All of the two restoration techniques give to the clinicians several advantages and some disadvantages. Aim of this work is to evaluate all the mechanical features of each system, through engineering systems of investigations like FEM and Von Mises analyses. The FEM is today a useful tool for the prediction of stress effect upon material and biomaterial under load or strengths. Specifically three different area has been evaluated through this study: the dental crown with the bone interface; the passant screw connection area; the occlusal surface of the two different type of crown. The elastic features of the materials used in the study have been taken from recent literature data. Results revealed an adequate response for both type of prostheses, although cemented retained one showed better results over the occlusal area. PMID:24955150

  12. Comparison of leaf gas exchange and stable isotope signature of water-soluble compounds along canopy gradients of co-occurring Douglas-fir and European beech.

    PubMed

    Bögelein, Rebekka; Hassdenteufel, Martin; Thomas, Frank M; Werner, Willy

    2012-07-01

    Combined δ(13) C and δ(18) O analyses of water-soluble leaf and twig phloem material were used to determine intrinsic water-use efficiency (iWUE) and variability of stomatal conductance at different crown positions in adult European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) trees. Simultaneous gas exchange measurements allowed evaluation of the differences in calculating iWUE from leaf or phloem water-soluble compounds, and comparison with a semi-quantitative dual isotope model to infer variability of net photosynthesis (A(n) ) between the investigated crown positions. Estimates of iWUE from δ(13) C of leaf water-soluble organic matter (WSOM) outperformed the estimates from phloem compounds. In the beech crown, δ(13) C of leaf WSOM coincided clearly with gas exchange measurements. The relationship was not as reliable in the Douglas-fir. The differences in δ(18) O between leaf and phloem material were found to correlate with stomatal conductance. The semi-quantitative model approach was applicable for comparisons of daily average A(n) between different crown positions and trees. Intracanopy gradients were more pronounced in the beech than in the Douglas-fir, which reached higher values of iWUE at the respective positions, particularly under dry air conditions. © 2012 Blackwell Publishing Ltd.

  13. Crown oxygen-doping graphene with embedded main-group metal atoms

    NASA Astrophysics Data System (ADS)

    Wu, Liyuan; Wang, Qian; Yang, Chuanghua; Quhe, Ruge; Guan, Pengfei; Lu, Pengfei

    2018-02-01

    Different main-group metal atoms embedded in crown oxygen-doping graphene (metal@OG) systems are studied by the density functional theory. The binding energies and electronic structures are calculated by using first-principles calculations. The binding energy of metal@OG system mainly depends on the electronegativity of the metal atom. The lower the value of the electronegativity, the larger the binding energy, indicating the more stable the system. The electronic structure of metal@OG arouses the emergence of bandgap and shift of Dirac point. It is shown that interaction between metal atom and crown oxygen-doping graphene leads to the graphene's stable n-doping, and the metal@OG systems are stable semiconducting materials, which can be used in technological applications.

  14. Sensitive and selective cataluminescence-based sensor system for acetone and diethyl ether determination.

    PubMed

    Wang, Qihui; Li, Bo; Wang, Yuhuai; Shou, Zhouxiang; Shi, Guolong

    2015-05-01

    A three-dimensional hierarchical CdO nanostructure with a novel bio-inspired morphology is reported. The field emission scanning electronic microscopy, transmission electron microscopy and X-ray diffractometer were employed to characterize the as-prepared samples. In gas-sensing measurements, acetone and diethyl ether were employed as target gases to investigate cataluminescence (CTL) sensing properties of the CdO nanostructure. The results show that the as-fabricated CdO nanostructure exhibited outstanding CTL properties such as stable intensity, high signal/noise values, short response and recovery time. The limit of detection of acetone and diethyl ether was ca. 6.5 ppm and 6.7 ppm, respectively, which was below the standard permitted concentrations. Additionally, a principal components analysis method was used to investigate the recognizable ability of the CTL sensor, and it was found that acetone and diethyl ether can be distinguished clearly. The performance of the bio-inspired CdO nanostructure-based sensor system suggested the promising application of the CdO nanostructure as a novel highly efficient CTL sensing material. Copyright © 2014 John Wiley & Sons, Ltd.

  15. The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics.

    PubMed

    Müller, Axel; Becker, Roland; Dorgerloh, Ute; Simon, Franz-Georg; Braun, Ulrike

    2018-05-14

    Microplastics are increasingly entering marine, limnic and terrestrial ecosystems worldwide, where they sorb hydrophobic organic contaminants. Here, the sorption behavior of the fuel-related water contaminants benzene, toluene, ethyl benzene and xylene (BTEX) and four tertiary butyl ethers to virgin and via UV radiation aged polypropylene (PP) and polystyrene (PS) pellets was investigated. Changes in material properties due to aging were recorded using appropriate polymer characterization methods, such as differential scanning calorimetry, Fourier transform infrared spectroscopy, gel permeation chromatography, X-ray photoelectron spectroscopy, and microscopy. Pellets were exposed to water containing BTEX and the ethers at 130-190 μg L -1 for up to two weeks. Aqueous sorbate concentrations were determined by headspace gas chromatography. Sorption to the polymers was correlated with the sorbate's K ow and was significant for BTEX and marginal for the ethers. Due to substantially lower glass transition temperatures, PP showed higher sorption than PS. Aging had no effect on the sorption behavior of PP. PS sorbed less BTEX after aging due to an oxidized surface layer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. [Contrastive analysis of artifacts produced by metal dental crowns in 3.0 T magnetic resonance imaging with six sequences].

    PubMed

    Lan, Gao; Yunmin, Lian; Pu, Wang; Haili, Huai

    2016-06-01

    This study aimed to observe and evaluate six 3.0 T sequences of metallic artifacts produced by metal dental crowns. Dental crowns fabricated with four different materials (Co-Gr, Ni-Gr, Ti alloy and pure Ti) were evaluated. A mature crossbreed dog was used as the experimental animal, and crowns were fabricated for its upper right second premolar. Each crown was examined through head MRI (3.0 T) with six sequences, namely, T₁ weighted-imaging of spin echo (T₁W/SE), T₂ weighted-imaging of inversion recovery (T₂W/IR), T₂ star gradient echo (T₂*/GRE), T2 weighted-imaging of fast spin echo (T₂W/FSE), T₁ weighted-imaging of fluid attenuate inversion recovery (T₂W/FLAIR), and T₂ weighted-imaging of propeller (T₂W/PROP). The largest area and layers of artifacts were assessed and compared. The artifact in the T₂*/GRE sequence was significantly wider than those in the other sequences (P < 0.01), whose artifact extent was not significantly different (P > 0.05). T₂*/GRE exhibit the strongest influence on the artifact, whereas the five other sequences contribute equally to artifact generation.

  17. Composite bonding to stainless steel crowns using a new universal bonding and single-bottle systems.

    PubMed

    Hattan, Mohammad Ali; Pani, Sharat Chandra; Alomari, Mohammad

    2013-01-01

    Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80) stainless steel crowns (SSCs) were divided into four groups (20 each). Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group), Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany), and Group C and Group D using two different brands of single-bottle adhesive systems. Shear bond strengths were calculated and the types of failure also were recorded. Results. The shear strength of Group B was significantly greater than that of other groups. No significant differences were found between the shear bond strengths of Groups C and D. The control group had significantly lower shear bond strength (P < 0.05) to composite than the groups that utilized bonding agents. Conclusion. Composites bonding to stainless steel crowns using the new universal bonding agent (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany) show significantly greater shear bond strengths and fewer adhesive failures when compared to traditional single-bottle systems.

  18. Enhancing fatigue life of cylinder-crown integrated structure by optimizing dimension

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Wang, Xiaosong; Wang, Zhongren; Yuan, Shijian

    2015-03-01

    Cylinder-crown integrated hydraulic press (CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown, which has lower weight and higher section modulus compared with the conventional hydraulic cylinder and press crown. As a result, the material strength capacity is better utilized. During the engineering design of cylinder-crown integrated structure, in order to increase the fatigue life, structural optimization on the basis of the adaptive macro genetic algorithms (AMGA) is first conducted to both reduce weight and decrease peak stress. It is shown that the magnitude of the maximum principal stress is decreased by 28.6%, and simultaneously the total weight is reduced by 4.4%. Subsequently, strain-controlled fatigue test is carried out, and the stress-strain hysteresis loops and cyclic hardening curve are obtained. Based on linear fit, the fatigue properties are calculated and used for the fatigue life prediction. It is shown that the predicted fatigue life is significantly increased from 157000 to 1070000 cycles after structural optimization. Finally, according to the optimization design, a 6300 kN CCIHP has been manufactured, and priority application has been also suggested.

  19. Improved selectivity for Pb(II) by sulfur, selenium and tellurium analogues of 1,8-anthraquinone-18-crown-5: synthesis, spectroscopy, X-ray crystallography and computational studies.

    PubMed

    Mariappan, Kadarkaraisamy; Alaparthi, Madhubabu; Hoffman, Mariah; Rama, Myriam Alcantar; Balasubramanian, Vinothini; John, Danielle M; Sykes, Andrew G

    2015-07-14

    We report here a series of heteroatom-substituted macrocycles containing an anthraquinone moiety as a fluorescent signaling unit and a cyclic polyheteroether chain as the receptor. Sulfur, selenium, and tellurium derivatives of 1,8-anthraquinone-18-crown-5 (1) were synthesized by reacting sodium sulfide (Na2S), sodium selenide (Na2Se) and sodium telluride (Na2Te) with 1,8-bis(2-bromoethylethyleneoxy)anthracene-9,10-dione in a 1 : 1 ratio. The optical properties of the new compounds are examined and the sulfur and selenium analogues produce an intense green emission enhancement upon association with Pb(II) in acetonitrile. Selectivity for Pb(II) is markedly improved as compared to the oxygen analogue 1 which was also competitive for Ca(II) ion. UV-Visible and luminescence titrations reveal that 2 and 3 form 1 : 1 complexes with Pb(II), confirmed by single-crystal X-ray studies where Pb(II) is complexed within the macrocycle through coordinate covalent bonds to neighboring carbonyl, ether and heteroether donor atoms. Cyclic voltammetry of 2-8 showed classical, irreversible oxidation potentials for sulfur, selenium and tellurium heteroethers in addition to two one-electron reductions for the anthraquinone carbonyl groups. DFT calculations were also conducted on 1, 2, 3, 6, 6 + Pb(II) and 6 + Mg(II) to determine the trend in energies of the HOMO and the LUMO levels along the series.

  20. Comparative evaluation of the effect of different crown ferrule designs on the fracture resistance of endodontically treated mandibular premolars restored with fiber posts, composite cores, and crowns: An ex-vivo study

    PubMed Central

    Dua, Nikita; Kumar, Bhupendra; Arunagiri, D.; Iqbal, Mohammad; Pushpa, S.; Hussain, Juhi

    2016-01-01

    Introduction: In cases of severe hard tissue loss, 2 mm circumferential ferrule is difficult to achieve which leads to incorporation of different ferrule designs. Aim: To compare and evaluate the effect of different crown ferrule designs on the fracture resistance of mandibular premolars restored with fiber posts, composite cores, and crowns. Materials and Methods: Fifty freshly extracted mandibular premolars were endodontically treated and divided into five groups: Group I - 2 mm circumferential ferrule above the cementoenamel junction (CEJ); Group II - 2 mm ferrule on the facial aspect above CEJ; Group III - 2 mm ferrule on the lingual aspect above CEJ; Group IV - 2 mm ferrule on the facial and lingual aspects above CEJ with interproximal concavities, and Group V - no ferrule (control group) and were later restored with fiber posts, composite cores, and crowns. Specimens were mounted on a universal testing machine, and compressive load was applied at a crosshead speed of 1 mm/min until fracture occurred. Results: The results showed that circumferential ferrule produced the highest mean fracture resistance and the least fracture resistance was found in the control group. Conclusion: Circumferential ferrule increases the fracture resistance of endodontically treated teeth restored with bonded post, core, and crown. PMID:27217642

  1. Polybrominated diphenyl ethers in articles: a review of its applications and legislation.

    PubMed

    Jinhui, Li; Yuan, Chen; Wenjing, Xiao

    2017-02-01

    Polybrominated diphenyl ethers (PBDEs), especially commercial decabrominated diphenyl ethers (c-decaBDE), have been widely produced and applied to numerous materials because of their highly effective flame-retardant capabilities. The production of commercial pentaBDE (c-pentaBDE) and commercial octaBDE (c-octaBDE) ended in 2004 because they are persistent, bioaccumulative, and toxic to both humans and the environment, but decaBDE production and use continue. Furthermore, many congeners of PBDEs are still prevalent in consumer products and articles that they pose enormous threat to both the environment and human health. PBDEs have been detected in the casing of electrical and electronic equipment, textile materials, automotive interiors, polyurethane foam (PUF) in seat cushions, children's toys, kitchenware, and other products. With increasing evidence about PBDE pollution and the adoption of international conventions, many developed countries have drawn more public attention to PBDEs and developed sound strategies for their management. This review summaries the utilization and management of PBDEs in a number of countries and reaches the conclusion that PBDEs are still prevalent in consumer articles, while specific regulations or policies for articles containing PBDEs are rare. Public awareness should be raised on the importance of sound management of articles containing PBDEs.

  2. Perfluorocyclobutane containing aromatic ether polymers as planarization materials for alternative magnetic media substrates

    NASA Astrophysics Data System (ADS)

    Perettie, Donald J.; Judy, Jack; Chen, Qixu; Keirstead, Rick

    1994-11-01

    Perfluorocyclobutane aromatic ether polymers (PFCB) are being researched as planarization materials for alternative magnetic media substrates allowing smoother surfaces for lower head flying recording. The results of current work reported herein have shown that PFCB can be used to affect surfaces on canasite with R(sub A)'s less than 2 nm. In addition, magnetic media can be produced of a quality comparative to that obtained on standard NiP-coated Al as well as that produced on regular canasite with equivalent coercivities at about 1500-1600 Oe and squarenesses of 0.8 or better. In addition to the above magnetic properties the recording performance was excellent with signal-to-noise ratios of planarized media 3.5 dB higher than that on regular canasite.

  3. Determination of the thermal stability of perfluoropolyalkyl ethers by tensimetry

    NASA Technical Reports Server (NTRS)

    Helmick, Larry A.; Jones, William R., Jr.

    1992-01-01

    The thermal decomposition temperatures of several perfluoropolyalkyl ether fluids were determined with a computerized tensimeter. In general, the decomposition temperatures of the commercial fluids were all similar and significantly higher than those for noncommercial fluids. Correlation of the decomposition temperatures with the molecular structures of the primary components of the commercial fluids revealed that the stability of the fluids was not affected by carbon chain length, branching, or adjacent difluoroformal groups. Instead, stability was limited by the presence of small quantities of thermally unstable material and/or chlorine-containing material arising from the use of chlorine containing solvents during synthesis. Finally, correlation of decomposition temperatures with molecular weights for two fluids supports a chain cleavage reaction mechanism for one and an unzipping reaction mechanism for the other.

  4. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials.

    PubMed

    Kim, Young-Kyun; Kim, Su-Gwan; Yun, Pil-Young; Yeo, In-Sung; Jin, Seung-Chan; Oh, Ji-Su; Kim, Heung-Joong; Yu, Sun-Kyoung; Lee, Sook-Young; Kim, Jae-Sung; Um, In-Woong; Jeong, Mi-Ae; Kim, Gyung-Wook

    2014-01-01

    This study evaluated the surface structures and physicochemical characteristics of a novel autogenous tooth bone graft material currently in clinical use. The material's surface structure was compared with a variety of other bone graft materials via scanning electron microscope (SEM). The crystalline structure of the autogenous tooth bone graft material from the crown (AutoBT crown) and root (AutoBT root), xenograft (BioOss), alloplastic material (MBCP), allograft (ICB), and autogenous mandibular cortical bone were compared using x-ray diffraction (XRD) analysis. The solubility of each material was measured with the Ca/P dissolution test. The results of the SEM analysis showed that the pattern associated with AutoBT was similar to that from autogenous cortical bones. In the XRD analysis, AutoBT root and allograft showed a low crystalline structure similar to that of autogenous cortical bones. In the CaP dissolution test, the amount of calcium and phosphorus dissolution in AutoBT was significant from the beginning, while displaying a pattern similar to that of autogenous cortical bones. In conclusion, autogenous tooth bone graft materials can be considered to have physicochemical characteristics similar to those of autogenous bones. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Retention Load of Telescopic Crowns with Different Taper Angles between Cobalt-Chromium and Polyetheretherketone Made with Three Different Manufacturing Processes Examined by Pull-Off Test.

    PubMed

    Wagner, Christina; Stock, Veronika; Merk, Susanne; Schmidlin, Patrick R; Roos, Malgorzata; Eichberger, Marlis; Stawarczyk, Bogna

    2018-02-01

    To investigate the retention loads of differently fabricated secondary telescopic polyetheretherketone (PEEK) crowns on cobalt-chromium primary crowns with different tapers. Cobalt-chromium primary crowns with 0°, 1°, and 2° tapers were constructed, milled, and sintered. Corresponding secondary crowns were fabricated by milling, pressing from pellets, and pressing from granules. For these nine test groups, the pull-off tests of each crown combination were performed 20 times, and the retention loads were measured (Zwick 1445, 50 mm/min). Data were analyzed using linear regression, covariance analysis, mixed models, Kruskal-Wallis, and Mann-Whitney U-test, together with the Benferroni-Holm correction. The mixed models covariance analysis reinforced stable retention load values (p = 0.162) for each single test sequence. There was no interaction between the groups and the separation cycles (p = 0.179). Milled secondary crowns with 0° showed the lowest mean retention load values compared to all tested groups (p = 0.003) followed by those pressed form pellets with 1°. Regarding the different tapers, no effect of manufacturing method on the results was observed within 1° and 2° groups (p = 0.540; p = 0.052); however, among the 0° groups, the milled ones showed significantly the lowest retention load values (p = 0.002). Among the manufacturing methods, both pressed groups showed no impact of taper on the retention load values (p > 0.324 and p > 0.123, respectively), whereas among the milled secondary crowns, the 0° taper showed significantly lower retention load values than the 1° and 2° taper (p < 0.002). Based on these results, telescopic crowns made of PEEK seem to show stable retention load values for each test sequence; however, data with thermo-mechanical aging are still required. In addition, further developments in CAD/CAM manufacturing of PEEK materials for telescopic crowns are warranted, especially for 0°. © 2016 by the American College of Prosthodontists.

  6. Comparison of Marginal Circumference of Two Different Pre-Crimped Stainless Steel Crowns for Primary Molars After Re-Crimping

    PubMed Central

    Afshar, Hossein; Ghandehari, Mehdi; Soleimani, Banafsheh

    2015-01-01

    Objectives: It is not clear what type of pre-crimped crown is more successful in achieving greater marginal adaptation following re-crimping. This study aimed to assess the changes in the circumference of 3M ESPE and MIB pre-crimped stainless steel crowns (SSCs) for the primary maxillary and mandibular first and second molars following re-crimping. Materials and Methods: This was an in-vitro, experimental study. Initial photographs were obtained from the margins of 3M and MIB SSCs for the upper and lower primary molars using a digital camera. Crown margins were crimped by applying 0.2N force using 114 and 137 pliers. Post-crimping photographs were also obtained and the changes in crown circumference after crimping were calculated using AutoCad software. The percentage of reduction in the circumference of crowns for each tooth was statistically analyzed based on the type of crown using student t-test. The effect of crown design and the associated teeth on the decreased circumference percentage was statistically analyzed by two-sided ANOVA. Results: The percentage of reduction in lower E SSC circumference was 3.71±0.39% in MIB and 6.29±0.62% in 3M crowns. These values were 3.55±0.55% and 7.15±1.13% for the lower Ds, and 3.95±0.43 and 6.24±0.85% for the upper Ds, respectively. For the upper Es, these values were found to be 3.12±0.65% and 5.14±0.94%, respectively. For each tooth, a significant difference was found between MIB and 3M SSCs in terms of the percentage of reduction in crown circumference following crimping. The magnitude of this reduction was smaller in MIB compared to 3M SSCs (P<0.001). Conclusion: Considering the significant reduction in the marginal circumference of precrimped SSCs following re-crimping, it appears that this manipulation must be necessarily performed for MIB and 3M pre-crimped SSCs. By using 3M SSCs, higher marginal adaptation can be achieved following crimping. PMID:27559353

  7. Esthetic Rehabilitation of Primary Anterior Teeth using Temporization Material: A Novel Approach

    PubMed Central

    Pandit, IK; Gupta, Monika; Nagpal, Jyoti

    2017-01-01

    Pediatric dentists should always aim for esthetic and functional rehabilitation of decayed/traumatized primary teeth. The most common method for restoring such teeth involves the use of “strip crowns” with composites, while the recent trend is toward using other extracoronal restorations including preve-neered stainless steel crowns and zirconia crowns. All these restorative options have shown good success rates, but also have some limitations. This case series depicts novel clinical technique of using a temporization material for full-coronal restoration(s) in primary anterior teeth. This included the chair-side custom fabrication of full-coronal restoration using temporization material, which has resulted in good immediate esthetics and might be a cost-effective alternative for restoring primary anterior teeth in future. How to cite this article Gugnani N, Pandit IK, Gupta M, Nagpal J. Esthetic Rehabilitation of Primary Anterior Teeth using Temporization Material: A Novel Approach. Int J Clin Pediatr Dent 2017;10(1):111-114. PMID:28377667

  8. Ten-year survival and complication rates of lithium-disilicate (Empress 2) tooth-supported crowns, implant-supported crowns, and fixed dental prostheses.

    PubMed

    Teichmann, Maren; Göckler, Fabian; Weber, Volker; Yildirim, Murat; Wolfart, Stefan; Edelhoff, Daniel

    2017-01-01

    To prospectively evaluate the clinical long-term outcome of tooth-supported crowns (SCs), implant-supported crowns (ISCs), and fixed dental prostheses (FDPs) made of a lithium-disilicate glass-ceramic framework material (IPS Empress 2). Between 1997 and 1999, a total of 184 restorations (106 SCs, 32 ISCs, 33 FDPs, and 13 diverse restorations) were placed in 73 patients. Kaplan-Meier estimation was applied for survival and chipping-free rates. Inter-group comparison of both rates was realized by a log rank test and a 2×2 contingency table. Also, SCs and FDPs were compared regarding adhesive vs. conventional cementation, and anterior vs. posterior positioning, for impact on survival. Due to 14 dropouts (34 restorations) and reasonable exclusion of 19 other restorations, the final dataset included: i) 87 SCs [37 patients, mean observation time 11.4 (±3.8)years]; ii) 17 ISCs [12 patients, mean observation time 13.3 (±2.3)years; and iii) 27 FDPs [19 patients, mean observation time 8.9 (±5.4)years]. The 10-year survival rate/chipping-free rate for SCs were 86.1%/83.4%, for ISCs 93.8%/94.1%, and for FDPs were 51.9%/90.8%. Both ISCs and SCs had a significantly higher survival than FDPs (ISCs vs. FDPs: both tests p=0.001; SCs vs. FDPs: p=0.001 and p=0.005). Differences in the chipping-free rates did not reach significance. Also, neither the cementation mode nor positioning of the restoration had an impact on survival. SCs had a slightly lower outcome than can generally be expected from single crowns. In contrast, ICSs had a favorable outcome and the FDPs predominantly failed. The practitioner's choice of dental materials is based (at best) on long-term experience. The present 10-year results are based on comprehensive data analyses and show the high potential of lithium-disilicate as a reliable material, especially for single-unit restoration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Comparison of waste pumpkin material and its potential use in extruded snack foods.

    PubMed

    Norfezah, M N; Hardacre, A; Brennan, C S

    2011-08-01

    Material was produced from Crown pumpkin (Cucurbita maxima) processed from fractions of the fruit which are regarded as waste stream products (peel, flesh and seed). The flour from the three different fractions (peel, flesh and seed) of Crown pumpkin flour was incorporated into an extruded snack product formulation at levels 10%, 30% and 50% (w/w with corn grit) and processed in a twin-screw extruder to make 10 expanded snack products. Proximate analysis was carried out to determine the nutritional value of the raw pumpkin and pumpkin flour. A physical analysis of the product was used to determine its color, the expansion ratio, bulk density and texture. Inclusion of waste stream material (peel and seed) at 10%, yielded extruded products with similar expansion and density characteristics to the control sample; however, an inclusion of greater than 10% yielded significant challenges to product quality (hardness of the product).

  10. Optical and color stabilities of paint-on resins for shade modification of restorative resins.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji; Homma, Tetsuya; Takahashi, Hideo

    2004-06-01

    The purpose of this study was to examine the optical and color stabilities of the paint-on resin used for shade modification of restorative resins. Three shades of paint-on resin and two crown and bridge resins were used. The light transmittance characteristics of the materials during accelerated aging tests such as water immersion, toothbrush abrasion, ultraviolet (UV) light irradiation, and staining tests were measured. Discolorations of materials resulting from tests were also determined. There were no significant effects of water immersion, toothbrush abrasion and UV light irradiation on the light transmittance and visible color change of paint-on resins, whereas the staining tests significantly decreased the light transmittance and increased color change of the translucent shades of materials. Our results indicate that the paint-on resins exhibit stable optical properties and color appearance, which are at least as good as the crown and bridge resins.

  11. The Effect of Various Finish Line Configurations on the Marginal Seal and Occlusal Discrepancy of Cast Full Crowns After Cementation - An In-vitro Study

    PubMed Central

    Nemane, Vaishali; Meshram, Suresh

    2015-01-01

    Background The marginal fit of crowns is of clinical importance. It is found that marginal and occlusal discrepancies are commonly increased following cementation. The resistance of cementing materials is a factor that prevents cast restorations from being correctly seated. Different finish lines behave differently in facilitating the escape of the cement. When the escape path of the cement decreases, the crown fails to seat further. Materials and Methods This study was planned with an aim to evaluate the effect of various finish lines on the marginal seal and occlusal seat of full crown preparations. Six stainless steel metal dies were machined to simulate molar crown preparations. The diameter was 10 mm and height was 6mm. The occlusal surface was kept flat and a small circular dimple was machined for reorientation of the wax pattern and metal copings, margins of various designs were machined accurately. The margins prepared were Group A- 900C shoulder, Group B- Rounded shoulder, Group C- 45 degree sloped shoulder, Group D- Chamfer, Group E- Long chamfer, Group F- Feather edge. Full cast metal crowns of base metal alloy were fabricated over the metal dies. Zinc phosphate luting cement was used for the cementation. After twenty four hours, the cemented crown and die assembly were embedded in clear acrylic resin so as to hold the assembly together while sectioning. Twenty four hours later, all the samples were sectioned sagitally. The sectioned halves were focused under a stereomicroscope and the cement spaces were measured to the nearest micron. The cement thickness was measured at two points on the occlusal surface and one at each margin. Results Significant differences were observed in the occlusal seat and marginal seal of all the finish line configurations. The rounded shoulder had the best occlusal seat, followed by 900C shoulder. The occlusal seat and marginal seal afforded by the shoulder finish lines were similar whereas there was a vast difference in the seating and sealing of long chamfer and feather edged preparations. They showed the worst occlusal seat. Conclusion It was found that the finish lines like shoulder preparations which exhibit poor sealing prior to complete cementation allow good seating whereas margins which seal earlier do not allow escape of cement and hence do not seat completely. PMID:26436039

  12. Single crowns versus conventional fillings for the restoration of root-filled teeth.

    PubMed

    Sequeira-Byron, Patrick; Fedorowicz, Zbys; Carter, Ben; Nasser, Mona; Alrowaili, Eman F

    2015-09-25

    Endodontic treatment involves removal of the dental pulp and its replacement by a root canal filling. Restoration of root filled teeth can be challenging due to structural differences between vital and non-vital root-filled teeth. Direct restoration involves placement of a restorative material e.g. amalgam or composite, directly into the tooth. Indirect restorations consist of cast metal or ceramic (porcelain) crowns. The choice of restoration depends on the amount of remaining tooth, and may influence durability and cost. The decision to use a post and core in addition to the crown is clinician driven. The comparative clinical performance of crowns or conventional fillings used to restore root-filled teeth is unknown. This review updates the original, which was published in 2012. To assess the effects of restoration of endodontically treated teeth (with or without post and core) by crowns versus conventional filling materials. We searched the following databases: the Cochrane Oral Health Group's Trials Register, CENTRAL, MEDLINE via OVID, EMBASE via OVID, CINAHL via EBSCO, LILACS via BIREME. We also searched the reference lists of articles and ongoing trials registries.There were no restrictions regarding language or date of publication. The search is up-to-date as of 26 March 2015. Randomised controlled trials (RCTs) or quasi-randomised controlled trials in participants with permanent teeth that have undergone endodontic treatment. Single full coverage crowns compared with any type of filling materials for direct restoration or indirect partial restorations (e.g. inlays and onlays). Comparisons considered the type of post and core used (cast or prefabricated post), if any. Two review authors independently extracted data from the included trial and assessed its risk of bias. We carried out data analysis using the 'treatment as allocated' patient population, expressing estimates of intervention effect for dichotomous data as risk ratios, with 95% confidence intervals (CI). We included one trial, which was judged to be at high risk of performance, detection and attrition bias. The 117 participants with a root-filled, premolar tooth restored with a carbon fibre post, were randomised to either a full coverage metal-ceramic crown or direct adhesive composite restoration. None experienced a catastrophic failure (i.e. when the restoration cannot be repaired), although only 104 teeth were included in the final, three-year assessment. There was no clear difference between the crown and composite group and the composite only group for non-catastrophic failures of the restoration (1/54 versus 3/53; RR 0.33; 95% CI 0.04 to 3.05) or failures of the post (2/54 versus 1/53; RR 1.96; 95% CI 0.18 to 21.01) at three years. The quality of the evidence for these outcomes is very low. There was no evidence available for any of our secondary outcomes: patient satisfaction and quality of life, incidence or recurrence of caries, periodontal health status, and costs. There is insufficient evidence to assess the effects of crowns compared to conventional fillings for the restoration of root-filled teeth. Until more evidence becomes available, clinicians should continue to base decisions about how to restore root-filled teeth on their own clinical experience, whilst taking into consideration the individual circumstances and preferences of their patients.

  13. A gas chromatography/high-resolution mass spectrometry (GC/HRMS) method for determination of polybrominated diphenyl ethers in fish.

    PubMed

    Alaee, M; Sergeant, D B; Ikonomou, M G; Luross, J M

    2001-09-01

    A method for the determination of polybrominated diphenyl ethers (PBDEs) in biota for routine analysis is described. The mass spectroscopic (MS) evaluation of 23 brominated diphenyl ethers, under electron ionization and electron capture negative ion conditions using magnetic sector and quadrupole mass spectrometers, showed that high-resolution mass spectrometry (HRMS) under electron ionization conditions was the most reliable technique, with high selectivity and adequate sensitivity. The instrument detection limit for this method ranged for individual congeners between 4.8 and 0.1 pg for 3-bromodiphenyl ether (BDE-2) and 2,3',4,4'-tetrabromodiphenyl ether (BDE-66), respectively, and method detection limit for each homologue group ranged between 5 pg/g for salmon certified reference material (CRM) and 93 pg/g for lake trout CRM. The effectiveness of this method was evaluated by analyzing the occurrence of PBDEs in commercially available CRMs comprising Lake Ontario lake trout, Pacific herring, and sockeye salmon. The average coefficients of variation for the replicate analyses of PDBEs in several tissue samples were: 25% for lake trout, 36% for Pacific herring, and 34% for sockeye salmon. The average deviations in the inter-laboratory study were: 14% for lake trout, 15% for Pacific herring, and 37% for sockeye salmon. Results indicated that the described method, based on gas chromatography/high-resolution mass spectrometry, is reliable for determining PBDE concentrations in biological tissues.

  14. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    DOEpatents

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  15. Oxime ether lipids containing hydroxylated head groups are more superior siRNA delivery agents than their nonhydroxylated counterparts

    PubMed Central

    Gupta, Kshitij; Mattingly, Stephanie J; Knipp, Ralph J; Afonin, Kirill A; Viard, Mathias; Bergman, Joseph T; Stepler, Marissa; Nantz, Michael H; Puri, Anu; Shapiro, Bruce A

    2015-01-01

    Aim: To evaluate the structure–activity relationship of oxime ether lipids (OELs) containing modifications in the hydrophobic domains (chain length, degree of unsaturation) and hydrophilic head groups (polar domain hydroxyl groups) toward complex formation with siRNA molecules and siRNA delivery efficiency of resulting complexes to a human breast cancer cell line (MDA-MB-231). Materials & methods: Ability of lipoplex formation between oxime ether lipids with nucleic acids were examined using biophysical techniques. The potential of OELs to deliver nucleic acids and silence green fluorescent protein (GFP) gene was analyzed using MDA-MB-231 and MDA-MB-231/GFP cells, respectively. Results & conclusion: Introduction of hydroxyl groups to the polar domain of the OELs and unsaturation into the hydrophobic domain favor higher transfection and gene silencing in a cell culture system. PMID:26107486

  16. Reactivity of long chain alkylamines to lignin moieties: implications on hydrophobicity of lignocellulose materials.

    PubMed

    Kudanga, Tukayi; Prasetyo, Endry Nugroho; Sipilä, Jussi; Guebitz, Georg M; Nyanhongo, Gibson S

    2010-08-20

    Enzymatic processes provide new perspectives for modification of lignocellulose materials. In the current study, laccase catalyzed coupling of long chain alkylamines to lignin model molecules and lignocellulose was investigated. Up to two molecules of dodecylamine (DA) and dihexylamine (DHA) were successfully coupled with lignin monomers (guaiacol, catechol and ferulic acid) while coupling onto complex lignin model compounds (syringylglycerol beta-guaiacyl ether, guaiacylglycerol beta-guaiacyl ether and dibenzodioxocin) yielded 1:1 coupling products. Surface analysis of beech veneers enzymatically grafted with DA showed an increase in nitrogen content of 3.18% compared to 0.71% in laccase only treated controls while the O/C ratio decreased from 0.52 to 0.46. Concomitantly the grafting of DHA or DA onto beech veneers resulted in a 53.8% and 84.2% increase in hydrophobicity, respectively when compared to simple adsorption. Therefore, laccase-mediated grafting of long chain alkylamines onto lignocellulose materials can be potentially exploited for improving their hydrophobicity. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Repairing a Facial Cleft by Polyether-Ether-Ketone Implant Combined With Titanium Mesh.

    PubMed

    Deng, Yuan; Tang, Weiwei; Li, Zhengkang

    2018-05-15

    The Tessier Number 4 cleft is one of the rarest, most complex craniofacial anomalies that presents difficulties in surgical treatment. In this article, we report a case of simultaneous facial depression, eye displacement, and medial canthus deformity. In this case, the maxillary bony defect was reconstructed using computer-assisted design computer-assisted manufacturing (CAD-CAM) polyether-ether-ketone (PEEK) material, and the orbital floor defect was repaired with AO prefabricated titanium mesh. Additionally, the medial canthus was modified with canthopexy and a single Z-plasty flap. Owing to its relative rarity and varied clinical presentations, no definitive operative methods have been accepted for Tessier No. 4 facial cleft. This study presents the combination of CAD-CAM manufactured PEEK material and titanium mesh as an alternative approach for reconstructing the bony defect of Tessier No. 4 facial clefts.

  18. Comparative Evaluation of Conventional and Accelerated Castings on Marginal Fit and Surface Roughness

    PubMed Central

    Jadhav, Vivek Dattatray; Motwani, Bhagwan K.; Shinde, Jitendra; Adhapure, Prasad

    2017-01-01

    Aims: The aim of this study was to evaluate the marginal fit and surface roughness of complete cast crowns made by a conventional and an accelerated casting technique. Settings and Design: This study was divided into three parts. In Part I, the marginal fit of full metal crowns made by both casting techniques in the vertical direction was checked, in Part II, the fit of sectional metal crowns in the horizontal direction made by both casting techniques was checked, and in Part III, the surface roughness of disc-shaped metal plate specimens made by both casting techniques was checked. Materials and Methods: A conventional technique was compared with an accelerated technique. In Part I of the study, the marginal fit of the full metal crowns as well as in Part II, the horizontal fit of sectional metal crowns made by both casting techniques was determined, and in Part III, the surface roughness of castings made with the same techniques was compared. Statistical Analysis Used: The results of the t-test and independent sample test do not indicate statistically significant differences in the marginal discrepancy detected between the two casting techniques. Results: For the marginal discrepancy and surface roughness, crowns fabricated with the accelerated technique were significantly different from those fabricated with the conventional technique. Conclusions: Accelerated casting technique showed quite satisfactory results, but the conventional technique was superior in terms of marginal fit and surface roughness. PMID:29042726

  19. Applying extrusive orthodontic force without compromising the obturated canal space.

    PubMed

    Keinan, David; Szwec, Jerard; Matas, Avital; Moshonov, Joshua; Yitschaky, Oded

    2013-08-01

    Complicated tooth fractures can be the unfortunate result of orofacial trauma and can offer a therapeutic challenge for the dentist. A conservative solution for gaining supragingival sound tooth structure often includes orthodontic forced eruption. Usually, this procedure is carried out by applying extrusive force after placing a provisional acrylic Richmond crown on the tooth. However, this long-lasting dental treatment may jeopardize the coronal seal of the root canal space, leading to microleakage and endodontic failure. Orthodontic forced eruption demands application of force to an attachment connected to the remaining short clinical crown. In this article, the authors describe a case in which they used a new technique for orthodontic forced eruption of a traumatized tooth, using an extracanal attachment to apply extrusion force, and discuss its possible advantages and limitations. An extracanal attachment approach for orthodontic forced eruption without compromising the obturated canal space can be a solution for posttraumatic crown fracture. Practical Implications. The described procedure for forced eruption by using an extracanal pin attachment is efficient and convenient and does not require the clinician to apply force directly to the provisional crown. Therefore, during the application of force, there is less risk of loosening the provisional crown, and the canal space is kept intact with either the final restoration or dressing material.

  20. Perceptions of Altered Smile Esthetics: A Comparative Evaluation in Orthodontists, Dentists, and Laypersons

    PubMed Central

    Shagmani, Muftah; Al Kaddah, Fatma

    2016-01-01

    Objective. The current investigation was proposed to determine the impression of trained dental professionals and laypeople towards the modified smile esthetics. Materials and Methods. Twenty-six images were randomized in a survey and graded according to attractiveness by the orthodontists, general dentists, and laypeople. Photographs of gingival display, midline diastema, central incisor crown length, and lateral incisor crown width were manipulated with five minor changes in each. For smile arc and buccal corridor, two major changes were incorporated besides the ideal photograph. One-way ANOVA and Post Hoc analysis of the responses were measured for each group. Results. Most evaluators opined that the ideal smile in each category was the most acceptable. Orthodontists were more perceptive and exacting in accepting variations in the smile arc and buccal corridors. Dental professionals and laypeople indicated that either complete absence or a 0.5 mm of alterations in a gingival display, midline diastema, and crown length makes a smile beautiful and pleasant. Changes in crown width were not perceivable by all the three groups. Conclusion. Eastern Arabic laymen are more conscious about alterations in gingival display, midline diastema, and crown length in their smile. Hence, the orthodontist should pay attention to these factors during any orthodontic treatment. PMID:27774105

  1. Graft-crosslinked copolymers based on poly(arylene ether ketone)-gc-sulfonated poly(arylene ether sulfone) for PEMFC applications.

    PubMed

    Zhang, Xuan; Hu, Zhaoxia; Luo, Linqiang; Chen, Shanshan; Liu, Jianmei; Chen, Shouwen; Wang, Lianjun

    2011-07-15

    Novel poly(arylene ether ketone) polymers with fluorophenyl pendants and phenoxide-terminated wholly sulfonated poly(arylene ether sulfone) oligomers are prepared via Ni(0)-catalyzed and nucleophilic polymerization, respectively, and subsequently used as starting materials to obtain graft-crosslinked membranes as polymer electrolyte membranes. The phenoxide-terminated sulfonated moieties are introduced as hydrophilic parts as well as crosslinking units. The chemical structure and morphology of the obtained membranes are confirmed by (1) H NMR and tapping-mode AFM. The properties required for fuel cell applications, including water uptake and dimensional change, as well as proton conductivity, are investigated. AFM results show a clear nanoscale phase-separation microstructure of the obtained membranes. The membranes show good dimensional stability and reasonably high proton conductivities under 30-90% relative humidity. The anisotropic proton conductivity ratios (σ(formula see text) ) of the membranes in water are in the range 0.65-0.92, and increase with an increase in hydrophilic block length. The results indicate that the graft-crosslinked membranes are promising candidates for applications as polymer electrolyte membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Implant Failure After Motec Wrist Joint Prosthesis Due to Failure of Ball and Socket-Type Articulation-Two Patients With Adverse Reaction to Metal Debris and Polyether Ether Ketone.

    PubMed

    Karjalainen, Teemu; Pamilo, Konsta; Reito, Aleksi

    2018-04-21

    We describe 2 cases of articulation-related failures resulting in revision surgery after a Motec total wrist arthroplasty: one with an adverse reaction to metal debris and the other with an adverse reaction to polyether ether ketone. In the first patient, blood cobalt and chrome levels were elevated and magnetic resonance imaging showed clear signs of a pseudotumor. The other patient had an extensive release of polyether ether ketone particles into the surrounding synovia due to adverse wear conditions in the cup, leading to the formation of a fluid-filled cyst sac with a black lining and diffuse lymphocyte-dominated inflammation in the synovia. We recommend regular follow-up including x-rays, monitoring of cobalt and chrome ion levels, and a low threshold for cross-sectional imaging in patients who have undergone total wrist arthroplasty with a Motec joint prosthesis. Wear-related problems can also develop in implants in which polyether ether ketone is the bulk material. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  3. Catalysis and co-catalysis of bond cleavages in coal and coal analogs. Final report, August 1, 1990--January 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, B.

    1994-05-01

    In work prior to the inception of this project, the authors observed that mixtures of phenolic materials and polyalkoxyaromatic molecules were appreciably more effective in catalyzing the decompositions of di-2-naphthyl ether and of di-1-naphthyl sulfide in tetralin solutions at 450{degrees}C than were the phenols by themselves, even though the polyalkoxyaromatic molecules, in the absence of phenolic co- catalysts, show essentially no catalytic activity. This was of appreciable interest in coal research because dinapthyl ether and dinapthyl sulfide have been employed as model compounds for coals in studies aimed at cleaving ether and sulfide bonds similar to those in coals. Themore » authors proposed (R. K. Sharma, K. P. Raman, and B. Miller) that the mixed catalysts used in these studies catalyze cleavages of ether and sulfide bonds by means of a mechanism involving electron transfer from the polyalkoxyaromatics to the substrates, which are activated as electron acceptors by hydrogen bonding to phenols. Since phenols themselves are electron donors, they also proposed that the well known effects of phenols in catalyzing the conversion of coals are due to similar electron transfer mechanisms.« less

  4. The biosorption capacity of biochar for 4-bromodiphengl ether: study of its kinetics, mechanism, and use as a carrier for immobilized bacteria.

    PubMed

    Du, Jingting; Sun, Pengfei; Feng, Zhuo; Zhang, Xin; Zhao, Yuhua

    2016-02-01

    Polybrominated diphenyl ethers (PBDEs) are known as ubiquitous pollutants in ecological systems and thus pose a great threat to the health of humans and other organisms due to their bioamplification and bioaccumulation along the food chain. The present study was designed to investigate the biosorption capacity of biochar for the removal of 4-monobromodiphengl ether and its synergistic effect when used as a carrier to immobilize the 4-monobromodiphengl ether-degrading strain Sphingomonas sp. DZ3. The raw biochar material was prepared by pyrolyzing maize straw at 350 °C under oxygen-limited conditions. The maximum biosorption capacity of biochar for 4-bromodiphengl ether was determined to be 50.23 mg/L under an initial concentration of 800 mg/L at pH 7.0 and 40 °C. The data obtained from the biosorption studies were fitted successfully with the pseudo-first-order kinetic and Freundlich isotherm models. The Weber-Morris model analysis indicated that intraparticle diffusion was the limiting step in the biosorption of 4-bromodiphengl ether onto the biosorbent. The values of thermodynamic parameters △G0 were calculated as -24.61 kJ/mol (20 °C), -24.35 kJ/mol (30 °C), and -23.98 kJ/mol (40 °C), △S(0) was -8.45 kJ/mol/K, and △H(0) was 21.36 kJ/mol. The artificial neural network analysis indicated that the initial concentration appeared to be the most influential parameter on the biosorption processes. The removal rate of 4-bromodiphengl ether achieved using the biochar-microorganism system was increased by 63 and 83% compared with the rates obtained with biochar and the strain individually, respectively. The morphology of the biochar and immobilized strain was determined using a scanning electron microscope, and information of the surface functional groups of biochar was obtained through an infrared spectra study.

  5. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.

    PubMed

    Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F

    2013-11-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  6. Time-dependent fracture probability of bilayer, lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation

    PubMed Central

    Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine

    2013-01-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349

  7. Effect of Heat Treatment on the Physical Properties of Provisional Crowns during Polymerization: An in Vitro Study

    PubMed Central

    Mei, May L.; So, Sam Y. C.; Li, Hao; Chu, Chun-Hung

    2015-01-01

    This study concerned the effect of heat treatment during setting on the physical properties of four resin-based provisional restorative materials: Duralay (polymethyl methacrylate), Trim II (polyethyl methacrylate), Luxatemp (bis-acrylic composite), and Protemp 4 (bis-acrylic composite). Specimens were prepared at 23, 37, or 60 °C for evaluation of flexural strength, surface roughness, color change and marginal discrepancy. Flexural strength was determined by a three-point bending test. Surface profile was studied using atomic force microscopy. Color change was evaluated by comparing the color of the materials before and after placement in coffee. A travelling microscope helped prepare standardized crowns for assessment of marginal discrepancy. Flexural strength of all tested materials cured at 23 °C or 37 °C did not significantly change. The surface roughness and marginal discrepancy of the materials increased at 60 °C curing temperature. Marginal discrepancies, color stability, and other physical properties of materials cured at 23 °C or 37 °C did not significantly change. Flexural strength of certain provisional materials cured at 60 °C increased, but there was also an increase in surface roughness and marginal discrepancy. PMID:28788031

  8. Adaptation of zirconia crowns created by conventional versus optical impression: in vitro study

    PubMed Central

    Bahrami, Babak; Fossoyeux, InÈs; Atash, Ramin

    2017-01-01

    PURPOSE The aim of this study was to compare the precision of optical impression (Trios, 3Shape) versus that of conventional impression (Imprint IV, 3M-ESPE) with three different margins (shoulder, chamfer, and knife-edge) on Frasaco teeth. MATERIALS AND METHODS The sample comprised of 60 zirconia half-crowns, divided into six groups according to the type of impression and margin. Scanning electron microscopy enabled us to analyze the gap between the zirconia crowns and the Frasaco teeth, using ImageJ software, based on eight reproducible and standardized measuring points. RESULTS No statistically significant difference was found between conventional impressions and optical impressions, except for two of the eight points. A statistically significant difference was observed between the three margin types; the chamfer and knife-edge finishing lines appeared to offer better adaptation results than the shoulder margin. CONCLUSION Zirconia crowns created from optical impression and those created from conventional impression present similar adaptation. While offering identical results, the former have many advantages. In view of our findings, we believe the chamfer margin should be favored. PMID:28680553

  9. Zirconia removable telescopic dentures retained on teeth or implants for maxilla rehabilitation. Three-year observation of three cases.

    PubMed

    Zafiropoulos, Gregory-George; Rebbe, Jochen; Thielen, Ulrich; Deli, Giorgio; Beaumont, Christian; Hoffmann, Oliver

    2010-01-01

    This report addresses maxillary restoration with removable telescopic crown-retained palatal free dentures. One patient with 7 natural teeth (PERIO), a second patient with 6 dental implants (IMPL), and a third patient with 2 natural teeth and 4 dental implants (IMPL-PERIO) were treated. Zirconia copings for natural teeth and individual zirconia implant abutments were fabricated in CAD/CAM and used as primary crowns. Electroformed gold copings were used as secondary telescopes. All maxilla supraconstructions were fabricated with zirconia and CAD/CAM. Patients were monitored during a 3-year period; all teeth and implants survived, and no biological or mechanical complications occurred. The peri-implant and periodontal conditions were healthy. While recognizing the limitations of this report, results showed that fabricating removable zirconia structures by means of CAD/CAM can yield highly functional and esthetic results. Galvanoforming technology is the preferable means of fabricating secondary crowns. The combination of these techniques and materials results in a prosthetic reconstruction of high quality, good fit, and biocompatibility. Long-term studies of large populations are necessary to investigate the clinical properties of the material utilized in this type of construction.

  10. Biologic restoration: a treatment option for reconstruction of anterior teeth.

    PubMed

    Babaji, Prashant; Khanna, Priyanka; S, Shankar; Chaurasia, Vishwajit Rampratap; Masamatti, Vinaykumar S

    2014-11-01

    Several procedures are advised to manage fractured anterior tooth structure using acrylic resin, composite restoration, ceramic or metal crown with ceramic facing. Biologic restoration is a procedure to restore fractured tooth structure with natural tooth material. In this in vitro case we have made an attempt for aesthetic rehabilitation of maxillary central incisor with similar biologic crown taken form extracted maxillary central incisor. It was observed that biologic restoration is an aesthetic, economical, fast and functional procedure which can be used as an alternative method to restore fractured primary or permanent anteriors.

  11. Fracture load of ceramic restorations after fatigue loading.

    PubMed

    Baladhandayutham, Balasudha; Lawson, Nathaniel C; Burgess, John O

    2015-08-01

    A clinician must decide what ceramic coping and veneer material to prescribe based on the amount of tooth reduction possible and the desired esthetic outcome of the restoration. The purpose of this in vitro study was to compare the fracture strength of monolithic and bilayered lithium disilicate (IPS e.max) and zirconia (LAVA) crowns at clinically relevant thicknesses after load cycling. Crowns (n=8) were fabricated from 6 groups: 1.2-mm monolithic lithium disilicate, 1.5-mm monolithic lithium disilicate, 1.5-mm bilayered lithium disilicate with hand-layered veneer, 0.6 mm monolithic zirconia, 1.2-mm bilayered zirconia with hand-layered veneer, and 1.2-mm bilayered zirconia with milled veneer (dimension represents thickness at the occlusal pit). Crowns were cemented to identical milled resin dies with resin-modified glass ionomer cement. Cemented crowns were stored at 37°C for 24 hours and load cycled for 200,000 cycles at 25 N at a rate of 40 cycles/minute. The ultimate fracture load for each specimen was measured in a universal testing machine. Data were analyzed with a 1-way ANOVA and Tukey honest significant difference post hoc analysis (α=.05). Mean ±SD fracture load values were 1465 ±330 N for monolithic lithium disilicate (1.2-mm thickness) and 2027 ±365 N (1.5-mm thickness) and 1732 ±315 N for bilayered hand-veneered lithium disilicate (1.5-mm thickness). Fracture loads were 1669 ±311 N for monolithic zirconia crowns (0.6mm thickness), 2625 ±300 N for zirconia milled-veneered (1.2-mm thickness), and 2655 ±590N for zirconia hand-veneered crowns (1.2mm thickness). One-way ANOVA showed a statistically significant difference among the groups (P<.01). Veneered zirconia crowns showed the highest fracture strength, 1.2-mm hand veneered zirconia was similar to that of 1.5-mm monolithic zirconia, and all other groups were not statistically different. Crowns of 1.2-mm bilayered zirconia had higher fracture loads than 0.6-mm zirconia or 1.2-mm lithium disilicate monolithic crowns. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics

    NASA Astrophysics Data System (ADS)

    Régnier, S.; Walsh, R. W.; Alexander, C. E.

    2011-09-01

    Context. The Solar Dynamics Observatory (SDO) was launched in February 2010 and is now providing an unprecedented view of the solar activity at high spatial resolution and high cadence covering a broad range of temperature layers of the atmosphere. Aims: We aim at defining the structure of a polar crown cavity and describing its evolution during the erupting process. Methods: We use the high-cadence time series of SDO/AIA observations at 304 Å (50 000 K) and 171 Å (0.6 MK) to determine the structure of the polar crown cavity and its associated plasma, as well as the evolution of the cavity during the different phases of the eruption. We report on the observations recorded on 13 June 2010 located on the north-west limb. Results: We observe coronal plasma shaped by magnetic field lines with a negative curvature (U-shape) sitting at the bottom of a cavity. The cavity is located just above the polar crown filament material. We thus observe the inner part of the cavity above the filament as depicted in the classical three part coronal mass ejection (CME) model composed of a filament, a cavity, and a CME front. The filament (in this case a polar crown filament) is part of the cavity, and it makes a continuous structuring from the filament to the CME front depicted by concentric ellipses (in a 2D cartoon). Conclusions: We propose to define a polar crown cavity as a density depletion sitting above denser polar crown filament plasma drained down the cavity by gravity. As part of the polar crown filament, plasma at different temperatures (ranging from 50 000 K to 0.6 MK) is observed at the same location on the cavity dips and sustained by a competition between the gravity and the curvature of magnetic field lines. The eruption of the polar crown cavity as a solid body can be decomposed into two phases: a slow rise at a speed of 0.6 km s-1 and an acceleration phase at a mean speed of 25 km s-1. Two movies are only available at http://www.aanda.org

  13. Comparative Evaluation of Flexural Strength of Provisional Crown and Bridge Materials-An Invitro Study

    PubMed Central

    Garg, Sandeep

    2016-01-01

    Introduction Provisional restorations serve a key role as a functional and esthetic try-in for the design of the final prosthesis. During selection of materials for this restoration, clinicians must consider physical properties, ease of handling, cost and patient satisfaction and approval. Aim To evaluate and compare the flexural strength of provisional crown and bridge materials available commercially. Materials and Methods This in-vitro study was done to compare the flexural strength of six temporary crown and bridge materials available commercially at 24 hours, 8 days and after repair. Three poly methyl methacrylate based materials (DPI, SC10 and Trulon) and three bis-acrylic based composite resins (Protemp, Cooltemp and Luxatemp) were selected. A total of 72 specimens of dimensions 64mm×10mm×2.5mm were prepared from these materials (12 from each material) and divided into two groups (n=36). Specimens were stored in artificial saliva and were fractured after 24 hours and 8 days using Universal Testing Machine. The fractured samples from the 8 days study were then subjected to repair. A uniform space of 2mm and a 450 bevel was maintained for all the repaired samples for better distribution of forces. Flexural strength of these repaired samples was recorded using the same machine. Results were recorded and statistically analysed by one-way Anova and Post hoc tests. Result: Results revealed that there was decrease in flexural strength for all the materials tested from 24 hours to 8 days, though flexural strength between poly methyl methacrylate and bis-acrylic resins was similar at 24 hours and 8 days time interval. A substantial decrease was noticed in the strength of bis-acrylic composite resins after repair. Conclusion From the current study it can be suggested that though there is decrease in flexural strength for all the materials from 24 hours to 8 days, both can be used to fabricate the provisional restorations. However, in the event of a fracture of a bis-acrylic provisional restoration, it may be more advantageous to make a new provisional restoration than to repair the fractured one. PMID:27656568

  14. Preparation and characterization of chitosan membranes by using a combined freeze gelation and mild crosslinking method.

    PubMed

    Orrego, Carlos E; Valencia, Jesús S

    2009-02-01

    When gelification is performed by freezing-thawing repeated cycles, the resultant gel-like polymer systems are called cryogels. This work aims to assess the effect of the addition of glutaraldehyde and 18 Crown Ether-6 on surface properties and protein loading of dried chitosan cryogel films. Residual water content of treated chitosan membranes ranged between 11.93 and 13.86%, while their water activities vary from 0.5 to 0.7 (measured from 4 to 60 degrees C). Based on thermal data, water evaporation peak and degradation temperatures of chitosan membranes shifted to a higher temperature for crosslinked samples. X-ray diffractograms provide high values of crystallinity for all the samples (70.67-92.86%), the highest value being for the glutaraldehyde-treated membrane. Candida rugosa lipase can be immobilized successfully on chitosan membranes. Lipase immobilized on glutaraldehyde-crosslinked chitosan yielded the highest efficiency in terms of total coupled protein and protein loading efficiency.

  15. Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis.

    PubMed

    Guo, Da-liang; Yuan, Hong-you; Yin, Xiu-li; Wu, Chuang-zhi; Wu, Shu-bin; Zhou, Zhao-qiu

    2014-01-01

    The effects of Na as organic bound form or as inorganic salts form on the pyrolysis products characteristics of alkali lignin were investigated by using thermogravimetric analyzer coupled with Fourier transform infrared spectrometry (TG-FTIR), tube furnace and thermo-gravimetric analyzer (TGA). Results of TG-FTIR and tube furnace indicated that the two chemical forms Na reduced the releasing peak temperature of CO and phenols leading to the peak temperature of the maximum mass loss rate shifted to low temperature zone. Furthermore, organic bound Na obviously improved the elimination of alkyl substituent leading to the yields of phenol and guaiacol increased, while inorganic Na increased the elimination of phenolic hydroxyl groups promoting the formation of ethers. It was also found the two chemical forms Na had different effects on the gasification reactivity of chars. For inorganic Na, the char conversion decreased with increasing the char forming temperature, while organic bound Na was opposite. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Effect of Additives on the Selectivity and Reactivity of Enzymes.

    PubMed

    Liang, Yi-Ru; Wu, Qi; Lin, Xian-Fu

    2017-01-01

    Enzymes have been widely used as efficient, eco-friendly, and biodegradable catalysts in organic chemistry due to their mild reaction conditions and high selectivity and efficiency. In recent years, the catalytic promiscuity of many enzymes in unnatural reactions has been revealed and studied by chemists and biochemists, which has expanded the application potential of enzymes. To enhance the selectivity and activity of enzymes in their natural or promiscuous reactions, many methods have been recommended, such as protein engineering, process engineering, and media engineering. Among them, the additive approach is very attractive because of its simplicity to use and high efficiency. In this paper, we will review the recent developments about the applications of additives to improve the catalytic performances of enzymes in their natural and promiscuous reactions. These additives include water, organic bases, water mimics, cosolvents, crown ethers, salts, surfactants, and some particular molecular additives. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [Determination of inorganic ions in explosive residues by capillary zone electrophoresis].

    PubMed

    Feng, Junhe; Guo, Baoyuan; Lin, Jin-Ming; Xu, Jianzhong; Zhou, Hong; Sun, Yuyou; Liu, Yao; Quan, Yangke; Lu, Xiaoming

    2008-11-01

    Five anions (chlorate, perchlorate, nitrate, nitrite, and sulfate) and two cations (ammonium and potassium) in explosive residues have been separated and determined by capillary zone electrophoresis (CZE) with indirect ultraviolet detection. The electrolyte buffer for the cation separation was 10 mmol/L pyridine (pH 4.5) -3 mmol/L 18-crown-6-ether. Ammonium and potassium ions were baseline separated in less than 2.6 min with the detection limits of 0.10 mg/L and 0.25 mg/L (S/N = 3), respectively. The electrolyte buffer for the anion separation consisted of 40 mmol/L boric acid-1.8 mmol/L potassium dichromate-2 mmol/L sodium tetraborate (pH 8.6), and tetramethyl ammonium hydroxide (TMAOH) was used as electroosmotic flow modifier. All five anions were well separated in less than 4.6 min with the detection limit range of 0.10 - 1.85 mg/L (S/N = 3). The method was successfully used in real sample investigations to confirm the type of explosives.

  18. Nickel Complexes of a Binucleating Ligand Derived from an SCS Pincer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Sonja M.; Helm, Monte L.; Appel, Aaron M.

    2015-01-01

    A binucleating ligand has been prepared that contains an SCS pincer and three oxygen donor ligands in a partial crown ether loop. To enable metalation with Ni0, a bromoarene precursor was used and resulted in the formation of a nickel-bromide complex in the SCS pincer. Reaction of the nickel complex with a lithium salt yielded a heterobimetallic complex with bromide bridging the two metal centers. The solid-state structures were determined for this heterobimetallic complex and the nickel-bromide precursor, and the two complexes were characterized electrochemically to determine the influence of coordinating the second metal. This research was supported by themore » US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less

  19. Reversible mechanical protection: building a 3D “suit” around a T-shaped benzimidazole axle† †Electronic supplementary information (ESI) available: Synthetic details and full characterisation of all new compounds. CCDC 1533271 and 1533272. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc00790f Click here for additional data file. Click here for additional data file.

    PubMed Central

    Baggi, Giorgio; Vukotic, V. Nicholas

    2017-01-01

    The T-shaped benzimidazolium/crown ether recognition motif was used to prepare suit[1]anes. These novel mechanically interlocked molecules (MIMs) were fully characterized by 1H and 13C NMR spectroscopy, single-crystal X-ray diffraction, UV-vis absorption and fluorescence spectroscopy. By conversion to a suit[1]ane, a simple benzimidazole was shown to be protected from deprotonation by strong base. Moreover, it was demonstrated that this unique three-dimensional encapsulation can be made reversible, thus introducing the concept of “reversible mechanical protection”; a protecting methodology that may have potential applications in synthetic organic chemistry and the design of molecular machinery. PMID:28626559

  20. Influence of surface treatment on the in-vitro fracture resistance of zirconia-based all-ceramic anterior crowns.

    PubMed

    Schmitter, M; Lotze, G; Bömicke, W; Rues, S

    2015-12-01

    The purpose of this study was to assess the effect of surface treatment on the fracture resistance of zirconia-based all-ceramic anterior crowns. Sixty-four zirconia-based all-ceramic anterior crowns, veneered by use of a press-on technique, were produced. For 48 crowns intraoral adjustment was simulated (A-group), 16 crowns remained unadjusted (WA-group). The adjusted area was then treated in three ways: 1. no further surface treatment; 2. polishing, with irrigation, using polishers interspersed with diamond grit for ceramics; and 3. polishing and glaze firing. Half of the specimens were loaded until fracture in an universal testing device without artificial ageing; the other crowns underwent thermocycling and chewing simulation before ultimate-load testing. Explorative statistical analysis was performed by use of non-parametric and parametric tests. In addition, fracture-strength tests according to ISO 6872 were performed for veneer ceramic subjected to the different surface treatments. Finite element analysis was also conducted for the crowns, and surface roughness was measured. Crowns in the A-group were more sensitive to aging than crowns in the WA-group (p=0.038). Although both polishing and glaze firing slightly improved the fracture resistance of the specimens, the fracture resistance in the WA-group (initial fracture resistance (IFR): 652.0 ± 107.7N, remaining fracture resistance after aging (RFR): 560.6 ± 233.3N) was higher than the fracture resistance in the A-group (polished: IFR: 477.9 ± 108.8N, RFR: 386.0 ± 218.5N; glaze firing: IFR: 535.5 ± 128.0N, RFR: 388.6 ± 202.2N). Surface roughness without adjustment was Ra=0.1 μm; for adjustment but without further treatment it was Ra=1.4 μm; for adjustment and polishing it was Ra=0.3 μm; and for adjustment, polishing, and glazing it was Ra=0.6 μm. Stress distributions obtained by finite element analysis in combination with fracture strength tests showed that fractures most probably originated from the occlusal surface. To improve fracture resistance and reduce the incidence of failure, extensive occlusal adjustment of veneered anterior zirconia restorations should be avoided. Neither polishing nor glazing could restore the fracture resistance to the level maintained with unadjusted crowns. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Ion sensing by charge transfer absorption variations of benzocrown-bipyridinium conjugates with an alkyl chain.

    PubMed

    Kuwabara, Tetsuo; Satake, Ryota; Guo, Haocheng

    2015-01-01

    Two benzocrown ether-bipyridinium conjugates, 1 and 2, each having a different length of alkyl chains with butyl and dodecyl groups, respectively, have been synthesized for the purpose of developing a new guest-responsive color-change chemosensor. Both 1 and 2 showed yellow colors with broad absorption bands around 400 nm in acetonitrile. These are associated with the intramolecular charge transfer (CT) absorption, in which the benzocrown ether and bipyridinium units act as the donor and acceptor, respectively. Upon addition of the guest; such as Na(+), they faded in color due to the blue shift in their intramolecular charge transfer absorption bands. These are associated with the formation of 1:1 host-guest inclusion complex. Analogues, 3 and 4, both being similar in structure to 1 and 2 with non-crown ether unit, also showed intramolecular CT absorptions around 400 nm, but did not change their absorption spectra upon addition of the guest because of the lack of guest-binding abilities. The guest-induced color change of 1 and 2 can be used for alkali and alkaline metal ion sensing. Both 1 and 2 could detect divalent cations such as Mg(2+) and Ca(2+) rather than univalent ones, Li(+), Na(+), K(+), Rb(+), and Cs(+). Although a marked difference between 1 and 2 was not observed in their guest sensing abilities, the remarkable recognition of 1 and 2 for Mg(2+) and Ca(2+) was found compared with that of 5, which has benzyl unit instead of alkyl chains of 1 and 2. The sensitivity values of 1 and 2 were roughly proportional to their binding constants, as shown by the binding constants with Li(+), Na(+), Mg(2+), and Ca(2+) with the values of 910, 260, 820, and 2300 M(-1) for 1 and 930, 290, 1270, and 2790 M(-1) for 2, while the binding constants of 5 were estimated to be 930, 440, 210, and 1200 M(-1) for Li(+), Na(+), Mg(2+), and Ca(2+), respectively. The limit concentration of detection of 2 for Ca(2+) was estimated to be 0.016 mM, which was the smallest value in this system.

  2. Triclosan antimicrobial polymers

    PubMed Central

    Petersen, Richard C.

    2016-01-01

    Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling into a solid or alternatively applied as a coating through several different methods with dissolving into an organic solvent and dried on by evaporation as a common means. PMID:27280150

  3. Polynuclear Hydroxido-Bridged Complexes of Platinum(IV) with Terminal Nitrato Ligands.

    PubMed

    Vasilchenko, Danila; Berdugin, Semen; Tkachev, Sergey; Baidina, Iraida; Romanenko, Galina; Gerasko, Olga; Korenev, Sergey

    2015-05-18

    For the first time the polynuclear hydroxido-bridged platinum(IV) nitrato complexes with nuclearity higher than two were isolated from nitric acid solutions of [Pt(H2O)2(OH)4] and crystallized as supramolecular compounds of macrocyclic cavitands cucurbit[n]uril (CB[n], n = 6,8) and 18-crown-6 ether: [Pt4(μ3-OH)2(μ2-OH)4(NO3)10]·CB[6]·25H2O (I), [Pt6(μ3-OH)4(μ2-OH)6(NO3)12](NO3)2·CB[8]·50H2O (II), and [H3O⊂18-crown-6]2[Pt2(μ2-OH)2(NO3)8][Pt4(μ3-OH)2(μ2-OH)4(NO3)10] (III). The isolation of the compounds in the single crystalline state allows the determination of the structure of the tetranuclear and hexanuclear complexes [Pt4(μ3-OH)2(μ2-OH)4(NO3)10] and [Pt6(μ3-OH)4(μ2-OH)6(NO3)12](2+), which have been previously unknown in the solid state. Stability of Ptx(OH)y cores of the polynuclear nitrato complexes toward alkaline hydrolysis was verified by (195)Pt NMR spectroscopy. Analysis of (195)Pt NMR spectra of the compound III reveals that addition of every Pt(μ-OH)2Pt ring results in ∼260 ppm downfield shift relative to the mononuclear form, which allows the prediction of signal positions for complexes of higher nuclearity.

  4. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory

    NASA Astrophysics Data System (ADS)

    Mrugalla, Florian; Kast, Stefan M.

    2016-09-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.

  5. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory.

    PubMed

    Mrugalla, Florian; Kast, Stefan M

    2016-09-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.

  6. Influence of finish line in the distribution of stress trough an all ceramic implant-supported crown.

    PubMed Central

    SANNINO, G.; GLORIA, F.; OTTRIA, L.; BARLATTANI, A.

    2010-01-01

    SUMMARY Porpose. The aim of this study was to evaluate, by finite element analysis (FEA), the influence of finish line on stress distribution and resistance to the loads of a ZrO2 crown and porcelain in implant-supported. Material and methods. The object of this analysis consisted of a fxture, an abutment, a passing screw, a layer of cement, a framework crown, a feldspatic porcelain veneering. The abutment’s marginal design was used in 3 different types of preparation: feather edge, slight chamfer and 50°, each of them was of 1 mm depth over the entire circumference. The ZrO2Y-TZP coping was 0.6 mm thick. Two material matching for the abutment and the framework was used for the simulations: ZrO2 framework and ZrO2 abutment, ZrO2 framework and T abutment. A 600 N axial force distributed over the entire surface of the crown was applied. The numerical simulations with finite elements were used to verify the different distribution of equivalent von Mises stress for three different geometries of abutment and framework. Results Slight chamfer on the matching ZrO2 - ZrO2 is the geometry with minimum equivalent stress of von Mises. Even for T abutment and ZrO2 framework slight chamfer is the best configuration to minimize the localized stress. Geometry that has the highest average stress is one with abutment at 50°, we see a downward trend for all three configurations using only zirconium for both components. Conclusions Finite element analysis. performed for the manifacturing of implant-supported crown, gives exact geometric guide lines about the choice of chamfer preparation, while the analysis of other marginal geometries suggests a possible improved behavior of the mating between ZrO2 abutment and ZrO2 coping. for three different geometries of the abutment and the coping. PMID:23285359

  7. Influence of Intracanal Materials in Vertical Root Fracture Pathway Detection with Cone-beam Computed Tomography.

    PubMed

    Dutra, Kamile Leonardi; Pachêco-Pereira, Camila; Bortoluzzi, Eduardo Antunes; Flores-Mir, Carlos; Lagravère, Manuel O; Corrêa, Márcio

    2017-07-01

    Investigating the vertical root fracture (VRF) pathway under different clinical scenarios may help to diagnose this condition properly. We aimed to determine the capability and intrareliability of VRF pathway detection through cone-beam computed tomographic (CBCT) imaging as well as analyze the influence of different intracanal and crown materials. VRFs were mechanically induced in 30 teeth, and 4 clinical situations were reproduced in vitro: no filling, gutta-percha, post, and metal crown. A Prexion (San Mateo, CA) 3-dimensional tomographic device was used to generate 104 CBCT scans. The VRF pathway was determined by using landmarks in the Avizo software (Version 8.1; FEI Visualization Sciences Group, Burlington, MA) by 1 observer repeated 3 times. Analysis of variance and post hoc tests were applied to compare groups. Intrareliability demonstrated an excellent agreement (intraclass correlation coefficient mean = 0.93). Descriptive analysis showed that the fracture line measurement was smaller in the post and metal crown groups than in the no-filling and gutta-percha groups. The 1-way analysis of variance test found statistically significant differences among the groups measurements. The Bonferroni correction showed statistically significant differences related to the no-filling and gutta-percha groups versus the post and metal crown groups. The VRF pathway can be accurately detected in a nonfilled tooth using limited field of view CBCT imaging. The presence of gutta-percha generated a low beam hardening artifact that did not hinder the VRF extent. The presence of an intracanal gold post made the fracture line appear smaller than it really was in the sagittal images; in the axial images, a VRF was only detected when the apical third was involved. The presence of a metal crown did not generate additional artifacts on the root surface compared to the intracanal gold post by itself. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Dietary exposure of PBDEs resulting from a subsistence diet in three First Nation communities in the James Bay Region of Canada.

    PubMed

    Liberda, Eric N; Wainman, Bruce C; Leblanc, Alain; Dumas, Pierre; Martin, Ian; Tsuji, Leonard J S

    2011-04-01

    Concerns regarding the persistence, bioaccumulation, long-range transport, and adverse health effects of polybrominated dipheyl ethers (PBDEs) have recently come to light. PBDEs may potentially be of concern to indigenous (First Nations) people of Canada who subsist on traditional foods, but there is a paucity of information on this topic. To investigate whether the traditional diet is a major source of PBDEs in sub-Arctic First Nations populations of the Hudson Bay Lowlands (James and Hudson Bay),Ontario, Canada, a variety of tissues from wild game and fish were analyzed for PBDE content (n=147) and dietary exposure assessed and compared to the US EPA reference doses (RfDs). In addition, to examine the effect of isolation/industrialization on PBDE body burdens, the blood plasma from three First Nations (Cree Nation of Oujé-Bougoumou, Quebec; Fort Albany First Nation, Ontario; and Weenusk First Nation [Peawanuck], Ontario, Canada) were collected (n=54) and analyzed using a log-linear contingency model. The mean values of PBDEs in wild meats and fish adjusted for standard consumption values and body weight, did not exceed the US EPA RfD. Log linear modeling of the human PBDE body burden showed that PBDE body burden increases as access to manufactured goods increases. Thus, household dust from material goods containing PBDEs is likely responsible for the human exposure; the traditional First Nations diet appears to be a minor source of PBDEs. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  9. Oxygen Sensing with Perfluorocarbon-Loaded Ultraporous Mesostructured Silica Nanoparticles.

    PubMed

    Lee, Amani L; Gee, Clifford T; Weegman, Bradley P; Einstein, Samuel A; Juelfs, Adam R; Ring, Hattie L; Hurley, Katie R; Egger, Sam M; Swindlehurst, Garrett; Garwood, Michael; Pomerantz, William C K; Haynes, Christy L

    2017-06-27

    Oxygen homeostasis is important in the regulation of biological function. Disease progression can be monitored by measuring oxygen levels, thus producing information for the design of therapeutic treatments. Noninvasive measurements of tissue oxygenation require the development of tools with minimal adverse effects and facile detection of features of interest. Fluorine magnetic resonance imaging ( 19 F MRI) exploits the intrinsic properties of perfluorocarbon (PFC) liquids for anatomical imaging, cell tracking, and oxygen sensing. However, the highly hydrophobic and lipophobic properties of perfluorocarbons require the formation of emulsions for biological studies, though stabilizing these emulsions has been challenging. To enhance the stability and biological loading of perfluorocarbons, one option is to incorporate perfluorocarbon liquids into the internal space of biocompatible mesoporous silica nanoparticles. Here, we developed perfluorocarbon-loaded ultraporous mesostructured silica nanoparticles (PERFUMNs) as 19 F MRI detectable oxygen-sensing probes. Ultraporous mesostructured silica nanoparticles (UMNs) have large internal cavities (average = 1.8 cm 3 g -1 ), facilitating an average 17% loading efficiency of PFCs, meeting the threshold fluorine concentrations needed for imaging studies. Perfluoro-15-crown-5-ether PERFUMNs have the highest equivalent nuclei per PFC molecule and a spin-lattice (T 1 ) relaxation-based oxygen sensitivity of 0.0032 mmHg -1 s -1 at 16.4 T. The option of loading PFCs after synthesizing UMNs, rather than traditional in situ core-shell syntheses, allows for use of a broad range of PFC liquids from a single material. The biocompatible and tunable chemistry of UMNs combined with the intrinsic properties of PFCs makes PERFUMNs a MRI sensor with potential for anatomical imaging, cell tracking, and metabolic spectroscopy with improved stability.

  10. Industrial scale-plant for HLW partitioning in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzekun, E.G.; Glagolenko, Y.V.; Drojko, E.G.

    1996-12-31

    Radiochemical plant of PA <> at Ozersk, which was come on line in December 1948 originally for weapon plutonium production and reoriented on the reprocessing of spent fuel, till now keeps on storage HLW of the military program. Application of the vitrification method since 1986 has not essentially reduced HLW volumes. So, as of September 1, 1995 vitrification installations had been processed 9590 m{sup 3} HLW and 235 MCi of radionuclides was included in glass. However only 1100 m{sup 3} and 20.5 MCi is part of waste of the military program. The reason is the fact, that the technology andmore » equipment of vitrification were developed for current waste of Purex-process, for which low contents of corrosion-dangerous impurity to materials of vitrification installation is characteristic of. With reference to HLW, which are growing at PA <> in the course of weapon plutonium production, the program of Science-Research Works includes the following main directions of work. Development of technology and equipment of installations for immobilising HLW with high contents of impurity into a solid form at induction melter. Application of High-temperature Adsorption Method for sorption of radionuclides from HLW on silica gel. Application of Partitioning Method of radionuclides from HLW, based on extraction cesium and strontium into cobalt dicarbollyde or crown-ethers, but also on recovery of cesium radionuclides by sorption on inorganic sorbents. In this paper the results of work on creation of first industrial scale-plant for partitioning HLW by the extraction and sorption methods are reported.« less

  11. Analysis of reproductive health hazard information on material safety data sheets for lead and the ethylene glycol ethers.

    PubMed

    Paul, M; Kurtz, S

    1994-03-01

    Material Safety Data Sheets (MSDSs) are essential sources of information regarding health risks from exposure to toxic chemicals. We analyzed the reproductive health hazard descriptions on nearly 700 MSDSs for lead- or ethylene glycol ether-containing products submitted by central Massachusetts firms to the Department of Environmental Protection under provisions of the Massachusetts Right-to-Know Law. Over 60% of the MSDSs made no mention whatsoever of effects on the reproductive system. Those that did were much more likely to address developmental risks than male reproductive effects. The MSDSs from firms employing 100 or more workers mentioned reproductive system effects more frequently than those from smaller companies. While the informativeness of the health hazard descriptions increased over time, 53% of the MSDSs prepared after promulgation of the OSHA Hazard Communication Standard still contained no information on reproductive risks.

  12. 40 CFR Table 6 to Subpart Jj of... - VHAP of Potential Concern

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... glycol butyl ether, ethylene glycol ethyl ether (2-ethoxy ethanol), ethylene glycol hexyl ether, ethylene..., ethylene glycol mono-2-ethylhexyl ether, diethylene glycol butyl ether, diethylene glycol ethyl ether... glycol propyl ether, triethylene glycol butyl ether, triethylene glycol ethyl ether, triethylene glycol...

  13. Resin composite repair for implant-supported crowns.

    PubMed

    Bonfante, Estevam A; Suzuki, Marcelo; Hirata, Ronaldo; Bonfante, Gerson; Fardin, Vinicius P; Coelho, Paulo G

    2017-08-01

    This study evaluated the reliability of implant-supported crowns repaired with resin composites. Fifty-four titanium abutments were divided in three groups (n = 18 each) to support resin nanoceramic molar crowns, as follows: (LU) (Lava Ultimate, 3M ESPE); LU repaired with either a direct or an indirect resin composite. Samples were subjected to mouth-motion accelerated-life testing in water (n = 18). Cumulative damage with a use stress of 300 N was used to plot Weibull curves for group comparison. Reliability was calculated for a mission of 100,000 cycles at 400 N load. Beta values were 0.83 for LU, 0.31 and 0.27 for LU repaired with Filtek and Ceramage, respectively. Weibull modulus for LU was 9.5 and η = 1047 N, m = 6.85, and η = 1002 N for LU repaired with Ceramage, and m = 4.65 and η = 766 N for LU repaired with Filtek (p < 0.10 between LU and LU repaired with Filtek). Reliability at 400 N was 100% for both LU and LU repaired with Ceramage which were significantly higher than LU Filtek repair (32%). LU restored crowns failed cohesively. Fractures were confined within the restored material, and detailed fractography is presented. The performance of resin nanoceramic material repaired with an indirect composite was maintained after accelerated-life testing compared to unrepaired controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1481-1489, 2017. © 2016 Wiley Periodicals, Inc.

  14. Influence of curing protocol and ceramic composition on the degree of conversion of resin cement

    PubMed Central

    Lanza, Marcos Daniel Septimio; Andreeta, Marcello Rubens Barsi; Pegoraro, Thiago Amadei; Pegoraro, Luiz Fernando; Carvalho, Ricardo Marins De

    2017-01-01

    Abstract Due to increasing of aesthetic demand, ceramic crowns are widely used in different situations. However, to obtain long-term prognosis of restorations, a good conversion of resin cement is necessary. Objective: To evaluate the degree of conversion (DC) of one light-cure and two dual-cure resin cements under a simulated clinical cementation of ceramic crowns. Material and Methods: Prepared teeth were randomly split according to the ceramic's material, resin cement and curing protocol. The crowns were cemented as per manufacturer's directions and photoactivated either from occlusal suface only for 60 s; or from the buccal, occlusal and lingual surfaces, with an exposure time of 20 s on each aspect. After cementation, the specimens were stored in deionized water at 37°C for 7 days. Specimens were transversally sectioned from occlusal to cervical surfaces and the DC was determined along the cement line with three measurements taken and averaged from the buccal, lingual and approximal aspects using micro-Raman spectroscopy (Alpha 300R/WITec®). Data were analyzed by 3-way ANOVA and Tukey test at =5%. Results: Statistical analysis showed significant differences among cements, curing protocols and ceramic type (p<0.001). The curing protocol 3x20 resulted in higher DC for all tested conditions; lower DC was observed for Zr ceramic crowns; Duolink resin cement culminated in higher DC regardless ceramic composition and curing protocol. Conclusion: The DC of resin cement layers was dependent on the curing protocol and type of ceramic. PMID:29211292

  15. Influence of Abutment Design on Stiffness, Strength, and Failure of Implant-Supported Monolithic Resin Nano Ceramic (RNC) Crowns.

    PubMed

    Joda, Tim; Huber, Samuel; Bürki, Alexander; Zysset, Philippe; Brägger, Urs

    2015-12-01

    Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation. © 2014 Wiley Periodicals, Inc.

  16. Dielectric characterization of high-performance spaceflight materials

    NASA Astrophysics Data System (ADS)

    Kleppe, Nathan; Nurge, Mark A.; Bowler, Nicola

    2015-03-01

    As commercial space travel increases, the need for reliable structural health monitoring to predict possible weaknesses or failures of structural materials also increases. Monitoring of these materials can be done through the use of dielectric spectroscopy by comparing permittivity or conductivity measurements performed on a sample in use to that of a pristine sample from 100 μHz to 3 GHz. Fluctuations in these measured values or of the relaxation frequencies, if present, can indicate chemical or physical changes occurring within the material and the possible need for maintenance/replacement. In this work, we establish indicative trends that occur due to changes in dielectric spectra during accelerated aging of various high-performance polymeric materials: ethylene vinyl alcohol (EVOH), Poly (ether ether ketone) (PEEK), polyphenylene sulfide (PPS), and ultra-high molecular weight polyethylene (UHMWPE). Uses for these materials range from electrical insulation and protective coatings to windows and air- or space-craft parts that may be subject to environmental damage over long-term operation. Samples were prepared by thermal exposure and, separately, by ultraviolet/water-spray cyclic aging. The aged samples showed statistically-significant trends of either increasing or decreasing real or imaginary permittivity values, relaxation frequencies, conduction or the appearance of new relaxation modes. These results suggest that dielectric testing offers the possibility of nondestructive evaluation of the extent of age-related degradation in these materials.

  17. Thermoplastic composites for veneering posterior teeth-a feasibility study.

    PubMed

    Gegauff, Anthony G; Garcia, Jose L; Koelling, Kurt W; Seghi, Robert R

    2002-09-01

    This pilot study was conducted to explore selected commercially-available thermoplastic composites that potentially had physical properties superior to currently available dental systems for restoring esthetic posterior crowns. Polyurethane, polycarbonate, and poly(ethylene/tetrafluoroethylene) (ETFE) composites and unfilled polyurethane specimens were injection molded to produce shapes adaptive to five standardized mechanical tests. The mechanical testing included abrasive wear rate, yield strength, apparent fracture toughness (strength ratio), flexural strength, and compressive strength. Compared to commercially available dental composites, abrasion wear rates were lower for all materials tested, yield strength was greater for the filled polycarbonates and filled polyurethane resins, fracture toughness testing was invalid (strength ratios were calculated for comparison of the pilot test materials), flexural strength was roughly similar except for the filled ETFE which was significantly greater, and compressive strength was lower. Commercially available thermoplastic resin composites, such as polyurethane, demonstrate the potential for development of an artificial crown material which exceeds the mechanical properties of currently available esthetic systems, if compressive strength can be improved.

  18. In vitro comparative evaluation of mechanical properties of temporary restorative materials used in fixed partial denture.

    PubMed

    Saisadan, D; Manimaran, P; Meenapriya, P K

    2016-10-01

    Materials used to fabricate provisional restorations can be classified as acrylics or resin composites. Provisional crows can be either prefabricated or custom made. These materials have been used to fabricate provisional restorations since the 1930s and usually available as powder and liquid. They are the most commonly used materials today for both single-unit and multiple-unit restorations. In general, their popularity is due to their low cost, acceptable esthetics, and versatility. Composite provisional materials use bis-acryl resin, a hydrophobic material that is similar to bis-GMA. Composites are available as auto-polymerized, dualpolymerized and visible light polymerized. Preformed provisional crowns or matrices usually consist of tooth-shaped shells of plastic, cellulose acetate or metal. They are commercially available in various tooth sizes and are usually selected for a particular tooth anatomy. They are commonly relined with acrylic resin to provide a more custom fit before cementation, but the plastic and metal crown shells can also be cemented directly onto prepared teeth. The aim of this study is to choose a material to serve as a better interim prosthesis and to compare three different properties - flexural strength, compressive strength, and color stability. The samples were made with three different provisional materials (Revotek LC, Protemp 4, TemSpan). It was inferred from the study that no one material was superior in all three tested parameters.

  19. Evaluation of retentive strength of four luting cements with stainless steel crowns in primary molars: An in vitro study

    PubMed Central

    Parisay, Iman; Khazaei, Yegane

    2018-01-01

    Background: Stainless steel crown (SSC) is the most reliable restoration for primary teeth with extensive caries. Retention is of great importance for a successful restoration and is provided by various factors such as luting cements. The aim of this study was to evaluate the retentive strength of SSC cemented with four different luting cements. Materials and Methods: In this in vitro study, A total of 55 extracted primary first molars were selected. Following crown selection and cementation (one with no cement and four groups cemented with resin, glass ionomer, zinc phosphate, and polycarboxylate), all the specimens were incubated and thermocycled in 5°C–55°C. Retentive properties of SSCs were tested with a mechanical test machine. First dislodgement of each specimen and full crown removal were recorded. One-way ANOVA test followed by least significant difference test and Kruskal–Wallis test was used for retentive strength comparison at the level of significance of P < 0.05. Results: The results of the study showed that the specimens cemented with zinc phosphate exhibited higher retentive strength as compared to glass ionomer and polycarboxylate (P < 0.001 and P = 0.023, respectively). Conclusion: Zinc phosphate cement showed the most promising results; thus, it can be preferably used for cementation of the teeth with no grossly broken down crowns. PMID:29922339

  20. Uniaxial Stretching of Poly(keto-ether-imide) Films

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Dezern, James F.; Feuz, L.; Klinedinst, D.

    1999-01-01

    Fully-cured aromatic polyimides were prepared from various combinations of five dianhydrides and six diamines. When heated progressively under constant load, most of the films elongated rapidly near their glass transition temperatures. In about half of the nineteen materials, the strain was self-limiting - a possible indication of strain-induced crystallinity. The presence of crystallinity was established unambiguously for one material.

Top