Sample records for crown pull-off test

  1. Retention Load of Telescopic Crowns with Different Taper Angles between Cobalt-Chromium and Polyetheretherketone Made with Three Different Manufacturing Processes Examined by Pull-Off Test.

    PubMed

    Wagner, Christina; Stock, Veronika; Merk, Susanne; Schmidlin, Patrick R; Roos, Malgorzata; Eichberger, Marlis; Stawarczyk, Bogna

    2018-02-01

    To investigate the retention loads of differently fabricated secondary telescopic polyetheretherketone (PEEK) crowns on cobalt-chromium primary crowns with different tapers. Cobalt-chromium primary crowns with 0°, 1°, and 2° tapers were constructed, milled, and sintered. Corresponding secondary crowns were fabricated by milling, pressing from pellets, and pressing from granules. For these nine test groups, the pull-off tests of each crown combination were performed 20 times, and the retention loads were measured (Zwick 1445, 50 mm/min). Data were analyzed using linear regression, covariance analysis, mixed models, Kruskal-Wallis, and Mann-Whitney U-test, together with the Benferroni-Holm correction. The mixed models covariance analysis reinforced stable retention load values (p = 0.162) for each single test sequence. There was no interaction between the groups and the separation cycles (p = 0.179). Milled secondary crowns with 0° showed the lowest mean retention load values compared to all tested groups (p = 0.003) followed by those pressed form pellets with 1°. Regarding the different tapers, no effect of manufacturing method on the results was observed within 1° and 2° groups (p = 0.540; p = 0.052); however, among the 0° groups, the milled ones showed significantly the lowest retention load values (p = 0.002). Among the manufacturing methods, both pressed groups showed no impact of taper on the retention load values (p > 0.324 and p > 0.123, respectively), whereas among the milled secondary crowns, the 0° taper showed significantly lower retention load values than the 1° and 2° taper (p < 0.002). Based on these results, telescopic crowns made of PEEK seem to show stable retention load values for each test sequence; however, data with thermo-mechanical aging are still required. In addition, further developments in CAD/CAM manufacturing of PEEK materials for telescopic crowns are warranted, especially for 0°. © 2016 by the American College of Prosthodontists.

  2. Suitability of Secondary PEEK Telescopic Crowns on Zirconia Primary Crowns: The Influence of Fabrication Method and Taper.

    PubMed

    Merk, Susanne; Wagner, Christina; Stock, Veronika; Eichberger, Marlis; Schmidlin, Patrick R; Roos, Malgorzata; Stawarczyk, Bogna

    2016-11-08

    This study investigates the retention load (RL) between ZrO₂ primary crowns and secondary polyetheretherketone (PEEK) crowns made by different fabrication methods with three different tapers. Standardized primary ZrO₂ crowns were fabricated with three different tapers: 0°, 1°, and 2° ( n = 10/group). Ten secondary crowns were fabricated (i) milled from breCam BioHPP blanks (PM); (ii) pressed from industrially fabricated PEEK pellets (PP) (BioHPP Pellet); or (iii) pressed from granular PEEK (PG) (BioHPP Granulat). One calibrated operator adjusted all crowns. In total, the RL of 90 secondary crowns were measured in pull-off tests at 50 mm/min, and each specimen was tested 20 times. Two- and one-way ANOVAs followed by a Scheffé's post-hoc test were used for data analysis ( p < 0.05). Within crowns with a 0° taper, the PP group showed significantly higher retention load values compared with the other groups. Among the 1° taper, the PM group presented significantly lower retention loads than the PP group. However, the pressing type had no impact on the results. Within the 2° taper, the fabrication method had no influence on the RL. Within the PM group, the 2° taper showed significantly higher retention load compared with the 1° taper. The taper with 0° was in the same range value as the 1° and 2° tapers. No impact of the taper on the retention value was observed between the PP groups. Within the PG groups, the 0° taper presented significantly lower RL than the 1° taper, whereas the 2° taper showed no differences. The fabrication method of the secondary PEEK crowns and taper angles showed no consistent effect within all tested groups.

  3. Test and Analysis of Composite Hat Stringer Pull-off Test Specimens

    NASA Technical Reports Server (NTRS)

    Li, Jian; OBrien, T. Kevin; Rousseau, Carl Q.

    1996-01-01

    Hat stringer pull-off tests were performed to evaluate the delamination failure mechanisms in the flange region for a rod-reinforced hat stringer section. A special test fixture was used to pull the hat off the stringer while reacting the pull-off load through roller supports at both stringer flanges. Microscopic examinations of the failed specimens revealed that failure occurred at the ply termination in the flange area where the flange of the stiffener is built up by adding 45/-45 tape plies on the top surface. Test results indicated that the as-manufactured microstructure in the flange region has a strong influence on the delamination initiation and the associated pull-off loads. Finite element models were created for each specimen with a detailed mesh based on micrographs of the critical location. A fracture mechanics approach and a mixed mode delamination criterion were used to predict the onset of delamination and the pull-off load. By modeling the critical local details of each specimen from micrographs, the model was able to accurately predict the hat stringer pull-off loads and replicate the variability in the test results.

  4. In Vitro Retentive Effect of Groove, Sandblasting, and Cement Type on Stainless Steel Crowns in Primary Molars.

    PubMed

    Pathak, Sidhant; Shashibhushan, K K; Bharath, K P; Poornima, P; Reddy, V V Subba

    2015-01-01

    The purpose of this study was to evaluate and compare the effect of placing vertical grooves, sandblasting, and luting cements on the retention of stainless steel crowns (SSCs). Eighty extracted primary molars were mounted in acrylic blocks. Specimens were divided into Group 1 (RelyX U200) and Group 2 (Smart Cem2). Teeth in each group were further subdivided into Subgroup A (no vertical grooves and no sandblasting), Subgroup B (vertical grooves), Subgroup C (sandblasting of crowns), and Subgroup D (vertical grooves and sandblasting of crowns). After cementation, SSCs were pulled off using a universal testing machine. One-way analysis of variance was used for statistical analyses. In Groups 1 and 2, the highest retentive strengths were found in Subgroup D (1,124 and 783 kPa, respectively), followed by Subgroup C (1,066 and 748 kPa, respectively), Subgroup A (762 and 356 kPa, respectively), and Subgroup B (743 and 314 kPa, respectively). Retentive strength in Group one was significantly higher than in Group two; Subgroups A and B were significantly lower than C and D. RelyX U200 showed higher retentive strength than Smart Cem2. Sandblasting increased the retention strength, whereas a vertical groove had no significant effect on retention.

  5. Retention Load Values of Telescopic Crowns Made of Y-TZP and CoCr with Y-TZP Secondary Crowns: Impact of Different Taper Angles

    PubMed Central

    Merk, Susanne; Wagner, Christina; Stock, Veronika; Schmidlin, Patrick R.; Roos, Malgorzata; Eichberger, Marlis; Stawarczyk, Bogna

    2016-01-01

    This study aimed to examine and compare the retention load values (RL) of different telescopic crown assemblies (Y-TZP and CoCr primary crowns with electroformed and Y-TZP secondary crowns each) with three different taper angles (0°, 1° and 2°). Thirty Y-TZP primary crowns with electroformed gold copings (Z/G group) and Y-TZP secondary crowns (Z/Z group) and 30 CoCr primary crowns with electroformed gold copings (C/G group) and Y-TZP secondary crowns (C/Z group), each with taper angles of 0°, 1° and 2°, were fabricated, respectively. With the exception of the electroformed gold copings, all specimens were Computer-Aided-Design/Computer-Aided-Manufacturing (CAD/CAM)-milled, then sintered and afterwards manually adapted. In order to stabilize the gold copings, they were fixed in a tertiary structure. The secondary crowns were constructed with a hook, which ensured self-alignment with an upper chain. Afterwards, 20 pull-off test cycles were performed in a universal testing machine under artificial saliva and after weighing the secondary crowns with a 5 kg object for 20 s. Data were analyzed by one-way and two-way Analysis of Variance (ANOVA). C/Z with 1° showed higher (p = 0.009) RL than 0° and 2° tapers. C/G at 1° also showed higher (p = 0.001) RL than at tapers of 0° and 2°. Z/G and C/G at 0° showed lower RL than Z/Z and C/Z (p < 0.001). Primary crowns had no impact on the 0° group. Z/G showed lower RL as compared to C/Z within the 1° group (p = 0.007) and Z/Z in the 2° group (p = 0.006). The primary crown material had no influence on RL. Electroformed copings showed lower RL. Further investigations for 1° as well as for the long-term performance after thermomechanical aging are necessary. PMID:28773477

  6. Ultrasonic Evaluation of the Pull-Off Adhesion between Added Repair Layer and a Concrete Substrate

    NASA Astrophysics Data System (ADS)

    Czarnecki, Slawomir

    2017-10-01

    This paper concerns the evaluation of the pull-off adhesion between a concrete added repair layer with variable thickness and a concrete substrate, based on parameters assessed using ultrasonic pulse velocity (UPV) method. In construction practice, the experimental determination of pull-off adhesion f b, between added repair layer and a concrete substrate is necessary to assess the quality of repair. This is usually carried out with the use of pull-off method which results in local damage of the added concrete layer in all the testing areas. Bearing this in mind, it is important to describe the method without these disadvantages. The prediction of the pull-off adhesion of the two-layer concrete elements with variable thickness of each layer might be provided by means of UPV method with two-sided access to the investigated element. For this purpose, two-layered cylindrical specimens were obtained by drilling the borehole from a large size specially prepared concrete element. Those two-layer elements were made out of concrete substrate layer and Polymer Cement Concrete (PCC) mortar as an added repair layer. The values of pull-off adhesion f b of the elements were determined before obtaining the samples by using the semi-destructive pull-off method. The ultrasonic wave velocity was determined in samples with variable thickness of each layer and was then compared to theoretical ultrasonic wave velocity predicted for those specimens. The regression curve for the dependence of velocity and pull-off adhesion, determined by the pulloff method, was made. It has been proved that together with an increase of ratio of investigated ultrasonic wave velocity divided by theoretical ultrasonic wave velocity, the pull-off adhesion value f b between added repair layer with variable thickness and a substrate layer also increases.

  7. Biomechanical properties of polymer-infiltrated ceramic crowns on one-piece zirconia implants after long-term chewing simulation.

    PubMed

    Baumgart, Pia; Kirsten, Holger; Haak, Rainer; Olms, Constanze

    2018-05-23

    Implant and superstructure provide a complex system, which has to withstand oral conditions. Concerning the brittleness of many ceramics, fractures are a greatly feared issue. Therefore, polymer-infiltrated ceramic networks (PICNs) were developed. Because of its low Young's modulus and high elastic modulus, the PICN crown on a one-piece zirconia implant might absorb forces to prevent the system from fracturing in order to sustain oral forces. Recommendations for the material of superstructure on zirconia implants are lacking, and only one study investigates PICN crowns on these types of implants. Accordingly, this study aimed to examine PICN crowns on one-piece zirconia implants regarding bond strength and surface wear after long-term chewing simulation (CS). Twenty-five hybrid ceramic crowns (Vita Enamic, Vita Zahnfabrik) were produced using computer-aided design/computer-aided manufacturing (CAD/CAM) technology and adhesively bonded (RelyX™ Ultimate, 3M ESPE) to zirconia implants. Twenty of the specimens underwent simultaneous mechanical loading and thermocycling simulating a 5-year clinical situation (SD Mechatronik GmbH). Wear depth and wear volume, based on X-ray micro-computed tomography volume scans (Skyscan 1172-100-50, Bruker) before and after CS, were evaluated. All crowns were removed from the implants using a universal testing machine (Z010, Zwick GmbH&Co.KG). Subsequently, luting agent was light microscopically localized (Stemi 2000-C, Zeiss). With a scanning electron microscope (SEM, Phenom™ G2 pro, Phenom World), the area of abrasion was assessed. 1. After CS, none of the tested crowns were fractured or loosened. 2. The maximum vertical wear after CS was M = 0.31 ± 0.04 mm (mean ± standard deviation), and the surface wear was M = 0.74 ± 0.23 mm 3 . 3. The pull-off tests revealed a 1.8 times higher bond strength of the control group compared to the experimental group (t(23) = 8.69, p < 0.001). 4. Luting agent was mostly located in the crowns, not on the implants. 5. The area of abrasion showed avulsion and a rough surface. PICN on one-piece zirconia implants showed high bond strength and high wear after CS.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.; McGruer, N. E.; Adams, G. G.

    We report the observation of two distinct modes of rate-dependent behavior during contact cycling tests. One is a higher pull-off force at low cycling rates and the other is a higher pull-off force at high cycling rates. Subsequent investigation of these contacts using scanning electron microscopy (SEM) demonstrates that these two rate-dependent modes can be related to brittle and ductile separation modes. The former behavior is indicative of brittle separation, whereas the latter accompanies ductile separation. Thus by monitoring the rate dependence of the pull-off force, the type of separation mode can be identified during cycling without interrupting the testmore » to perform SEM.« less

  9. Test and analysis results for composite transport fuselage and wing structures

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Madan, Ram C.; Chen, Victor L.

    1992-01-01

    Automated tow placement (ATP) and stitching of dry textile composite preforms followed by resin transfer molding (RTM) are being studied as cost effective manufacturing processes for obtaining damage tolerant fuselage and wing structures for transport aircraft. Data are presented to assess the damage tolerance of ATP and RTM fuselage elements with stitched-on stiffeners from compression tests of impacted three J-stiffened panels and from stiffener pull-off tests. Data are also presented to assess the damage tolerance of RTM wing elements which had stitched skin and stiffeners from impacted single stiffener and three blade stiffened compression tests and stiffener pull-off tests.

  10. Impaction Force Influences Taper-Trunnion Stability in Total Hip Arthroplasty.

    PubMed

    Danoff, Jonathan R; Longaray, Jason; Rajaravivarma, Raga; Gopalakrishnan, Ananthkrishnan; Chen, Antonia F; Hozack, William J

    2018-07-01

    This study investigated the influence of femoral head impaction force, number of head strikes, the energy sequence of head strikes, and head offset on the strength of the taper-trunnion junction. Thirty titanium-alloy trunnions were mated with 36-mm zero-offset cobalt-chromium femoral heads of corresponding taper angle. A drop tower impacted the head with 2.5J or 8.25J, resulting in 6 kN or 14 kN impaction force, respectively, in a single strike or combinations of 6 kN + 14 kN or 14 kN + 14 kN. In addition, ten 36-mm heads with -5 and +5 offset were impacted with sequential 14 kN + 14 kN strikes. Heads were subsequently disassembled using a screw-driven mechanical testing frame, and peak distraction force was recorded. Femoral head pull-off force was 45% the strike force, and heads struck with a single 14 kN impact showed a pull-off force twice that of the 6 kN group. Two head strikes with the same force did not improve pull-off force for either 6 kN (P = .90) or 14 kN (P = .90). If the forces of the 2 impactions varied, but either impact measured 14 kN, a 51% higher pull-off force was found compared to impactions of either 6 kN or 6 kN + 6 kN. Femoral head offset did not significantly change the pull-off force among -5, 0, and +5 heads (P = .37). Femoral head impaction force influenced femoral head trunnion-taper stability, whereas offset did not affect pull-off force. Multiple head strikes did not add additional stability, as long as a single strike achieved 14 kN force at the mallet-head impactor interface. Insufficient impaction force may lead to inadequate engagement of the trunnion-taper junction. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Adhesive behavior of micro/nano-textured surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben

    2015-02-01

    A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.

  12. Finger-attachment device for the feedback of gripping and pulling force in a manipulating system for brain tumor resection.

    PubMed

    Chinbe, Hiroyuki; Yoneyama, Takeshi; Watanabe, Tetsuyou; Miyashita, Katsuyoshi; Nakada, Mitsutoshi

    2018-01-01

    Development and evaluation of an effective attachment device for a bilateral brain tumor resection robotic surgery system based on the sensory performance of the human index finger in order to precisely detect gripping- and pulling-force feedback. First, a basic test was conducted to investigate the performance of the human index finger in the gripping- and pulling-force feedback system. Based on the test result, a new finger-attachment device was designed and constructed. Then, discrimination tests were conducted to assess the pulling force and the feedback on the hardness of the gripped material. The results of the basic test show the application of pulling force on the side surface of the finger has an advantage to distinguish the pulling force when the gripping force is applied on the finger-touching surface. Based on this result, a finger-attachment device that applies a gripping force on the finger surface and pulling force on the side surface of the finger was developed. By conducting a discrimination test to assess the hardness of the gripped material, an operator can distinguish whether the gripped material is harder or softer than a normal brain tissue. This will help in confirming whether the gripped material is a tumor. By conducting a discrimination test to assess the pulling force, an operator can distinguish the pulling-force resistance when attempting to pull off the soft material. Pulling-force feedback may help avoid the breaking of blood pipes when they are trapped in the gripper or attached to the gripped tissue. The finger-attachment device that was developed for detecting gripping- and pulling-force feedback may play an important role in the development of future neurosurgery robotic systems for precise and safe resection of brain tumors.

  13. TESTING BALANCE AND FALL RISK IN PERSONS WITH PARKINSON DISEASE, AN ARGUMENT FOR ECOLOGICALLY VALID TESTING

    PubMed Central

    Foreman, K. Bo; Addison, Odessa; Kim, Han S.; Dibble, Leland E.

    2010-01-01

    Introduction Despite clear deficits in postural control, most clinical examination tools lack accuracy in identifying persons with Parkinson disease (PD) who have fallen or are at risk for falls. We assert that this is in part due to the lack of ecological validity of the testing. Methods To test this assertion, we examined the responsiveness and predictive validity of the Functional Gait Assessment (FGA), the Pull test, and the Timed up and Go (TUG) during clinically defined ON and OFF medication states. To address responsiveness, ON/OFF medication performance was compared. To address predictive validity, areas under the curve (AUC) of receiver operating characteristic (ROC) curves were compared. Comparisons were made using separate non-parametric tests. Results Thirty-six persons (24 male, 12 female) with PD (22 fallers, 14 non-fallers) participated. Only the FGA was able to detect differences between fallers and non-fallers for both ON/OFF medication testing. The predictive validity of the FGA and the TUG for fall identification was higher during OFF medication compared to ON medication testing. The predictive validity of the FGA was higher than the TUG and the Pull test during ON and OFF medication testing. Discussion In order to most accurately identify fallers, clinicians should test persons with PD in ecologically relevant conditions and tasks. In this study, interpretation of the OFF medication performance and use of the FGA provided more accurate prediction of those who would fall. PMID:21215674

  14. Impact of Gluma Desensitizer on the tensile strength of zirconia crowns bonded to dentin: an in vitro study.

    PubMed

    Stawarczyk, Bogna; Hartmann, Leonie; Hartmann, Rahel; Roos, Malgorzata; Ender, Andreas; Ozcan, Mutlu; Sailer, Irena; Hämmerle, Christoph H F

    2012-02-01

    This study tested the impact of Gluma Desensitizer on the tensile strength of zirconia crowns bonded to dentin. Human teeth were prepared and randomly divided into six groups (N = 144, n = 24 per group). For each tooth, a zirconia crown was manufactured. The zirconia crowns were cemented with: (1) Panavia21 (PAN), (2) Panavia21 combined with Gluma Desensitizer (PAN-G), (3) RelyX Unicem (RXU), (4) RelyX Unicem combined with Gluma Desensitizer (RXU-G), (5) G-Cem (GCM) and (6) G-Cem combined with Gluma Desensitizer (GCM-G). The initial tensile strength was measured in half (n = 12) of each group and the other half (n = 12) subjected to a chewing machine (1.2 Mio, 49 N, 5°C/50°C). The cemented crowns were pulled in a Universal Testing Machine (1 mm/min, Zwick Z010) until failure occurred and tensile strength was calculated. Data were analyzed with one-way and two-way ANOVA followed by a post hoc Scheffé test, t test and Kaplan-Meier analysis with a Breslow-Gehan analysis test (α = 0.05). After the chewing simulation, the self-adhesive resin cements combined with Gluma Desensitizer showed significantly higher tensile strength (RXU-G, 12.8 ± 4.3 MPa; GCM-G, 13.4 ± 6.2 MPa) than PAN (7.3 ± 1.7 MPa) and PAN-G (0.9 ± 0.6). Within the groups, PAN, PAN-G and RXU resulted in significantly lower values when compared to the initial tensile strength; the values of all other test groups were stable. In this study, self-adhesive resin cements combined with Gluma Desensitizer reached better long-term stability compared to PAN and PAN-G after chewing simulation.

  15. Test and analysis results for composite transport fuselage and wing structures

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Madan, Ram C.; Chen, Victor L.

    1992-01-01

    Automated tow placement (ATP) and stitching of dry textile composite preforms followed by resin transfer molding (RTM) are being investigated by researchers at NASA LaRC and Douglas Aircraft Company as cost-effective manufacturing processes for obtaining damage tolerant fuselage and wing structures for transport aircraft. The Douglas work is being performed under a NASA contract entitled 'Innovative Composites Aircraft Primary Structures (ICAPS)'. Data are presented in this paper to assess the damage tolerance of ATP and RTM fuselage elements with stitched-on stiffeners from compression tests of impacted three-J-stiffened panels and from stiffener pull-off tests. Data are also presented to assess the damage tolerance of RTM wing elements which had stitched skin and stiffeners from impacted single stiffener and three blade-stiffened compression tests and stiffener pull-off tests.

  16. Performance evaluation and specification of trackless tack : [project summary].

    DOT National Transportation Integrated Search

    2016-09-01

    Researchers compared two tracking resistance tests for tack: a track-free time test and a modified dynamic shear rheometer (DSR) tackiness test. : Researchers compared four bond strength tests: interface shear, pull-off, torque, and Arcan. Then, usin...

  17. The surprising benefit of passive-aggressive behaviour at Christmas parties: being crowned king of the crackers.

    PubMed

    Huang, B Emma; Clifford, David; Lê Cao, Kim-Anh

    2014-12-11

    To test the effects of technique and attitude in pulling Christmas crackers. A binomial trial conducted at a Christmas-in-July dinner party involving five anonymous dinner guests, including two of the authors. Number of wins achieved by different strategies, with a win defined as securing the larger portion of the cracker. The previously "guaranteed" strategy for victory, employing a downwards angle towards the puller, failed to differentiate itself from random chance (win rate, 6/15; probability of winning, 0.40; 95% CI, 0.15-0.65). A novel passive-aggressive strategy, in which one individual just holds on without pulling, provided a significant advantage (win rate, 11/12; probability of winning, 0.92; 95% CI, 0.76-1.00). The passive-aggressive strategy of failing to pull has a high rate of success at winning Christmas crackers; however, excessive adoption of this approach will result in a complete failure, with no winners at all.

  18. Adhesive strength of total knee endoprostheses to bone cement - analysis of metallic and ceramic femoral components under worst-case conditions.

    PubMed

    Bergschmidt, Philipp; Dammer, Rebecca; Zietz, Carmen; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer

    2016-06-01

    Evaluation of the adhesive strength of femoral components to the bone cement is a relevant parameter for predicting implant safety. In the present experimental study, three types of cemented femoral components (metallic, ceramic and silica/silane-layered ceramic) of the bicondylar Multigen Plus knee system, implanted on composite femora were analysed. A pull-off test with the femoral components was performed after different load and several cementing conditions (four groups and n=3 components of each metallic, ceramic and silica/silane-layered ceramic in each group). Pull-off forces were comparable for the metallic and the silica/silane-layered ceramic femoral components (mean 4769 N and 4298 N) under standard test condition, whereas uncoated ceramic femoral components showed reduced pull-off forces (mean 2322 N). Loading under worst-case conditions led to decreased adhesive strength by loosening of the interface implant and bone cement using uncoated metallic and ceramic femoral components, respectively. Silica/silane-coated ceramic components were stably fixed even under worst-case conditions. Loading under high flexion angles can induce interfacial tensile stress, which could promote early implant loosening. In conclusion, a silica/silane-coating layer on the femoral component increased their adhesive strength to bone cement. Thicker cement mantles (>2 mm) reduce adhesive strength of the femoral component and can increase the risk of cement break-off.

  19. Sticking properties of ice grains

    NASA Astrophysics Data System (ADS)

    Jongmanns, M.; Kumm, M.; Wurm, G.; Wolf, D. E.; Teiser, J.

    2017-06-01

    We study the size dependence of pull-off forces of water ice in laboratory experiments and numerical simulations. To determine the pull-off force in our laboratory experiments, we use a liquid nitrogen cooled centrifuge. Depending on its rotation frequency, spherical ice grains detach due to the centrifugal force which is related to the adhesive properties. Numerical simulations are conducted by means of molecular dynamics simulations of hexagonal ice using a standard coarse-grained water potential. The pull-off force of a single contact between two spherical ice grains is measured due to strain controlled simulations. Both, the experimental study and the simulations reveal a dependence between the pull-off force and the (reduced) particle radii, which differ significantly from the linear dependence of common contact theories.

  20. Multiseasonal Tree Crown Structure Mapping with Point Clouds from OTS Quadrocopter Systems

    NASA Astrophysics Data System (ADS)

    Hese, S.; Behrendt, F.

    2017-08-01

    OTF (Off The Shelf) quadro copter systems provide a cost effective (below 2000 Euro), flexible and mobile platform for high resolution point cloud mapping. Various studies showed the full potential of these small and flexible platforms. Especially in very tight and complex 3D environments the automatic obstacle avoidance, low copter weight, long flight times and precise maneuvering are important advantages of these small OTS systems in comparison with larger octocopter systems. This study examines the potential of the DJI Phantom 4 pro series and the Phantom 3A series for within-stand and forest tree crown 3D point cloud mapping using both within stand oblique imaging in different altitude levels and data captured from a nadir perspective. On a test site in Brandenburg/Germany a beach crown was selected and measured with 3 different altitude levels in Point Of Interest (POI) mode with oblique data capturing and deriving one nadir mosaic created with 85/85 % overlap using Drone Deploy automatic mapping software. Three different flight campaigns were performed, one in September 2016 (leaf-on), one in March 2017 (leaf-off) and one in May 2017 (leaf-on) to derive point clouds from different crown structure and phenological situations - covering the leaf-on and leafoff status of the tree crown. After height correction, the point clouds where used with GPS geo referencing to calculate voxel based densities on 50 × 10 × 10 cm voxel definitions using a topological network of chessboard image objects in 0,5 m height steps in an object based image processing environment. Comparison between leaf-off and leaf-on status was done on volume pixel definitions comparing the attributed point densities per volume and plotting the resulting values as a function of distance to the crown center. In the leaf-off status SFM (structure from motion) algorithms clearly identified the central stem and also secondary branch systems. While the penetration into the crown structure is limited in the leaf-on status (the point cloud is a mainly a description of the interpolated crown surface) - the visibility of the internal crown structure in leaf-off status allows to map also the internal tree structure up to and stopping at the secondary branch level system. When combined the leaf-on and leaf-off point clouds generate a comprehensive tree crown structure description that allows a low cost and detailed 3D crown structure mapping and potentially precise biomass mapping and/or internal structural differentiation of deciduous tree species types. Compared to TLS (Terrestrial Laser Scanning) based measurements the costs are neglectable and in the range of 1500-2500 €. This suggests the approach for low cost but fine scale in-situ applications and/or projects where TLS measurements cannot be derived and for less dense forest stands where POI flights can be performed. This study used the in-copter GPS measurements for geo referencing. Better absolute geo referencing results will be obtained with DGPS reference points. The study however clearly demonstrates the potential of OTS very low cost copter systems and the image attributed GPS measurements of the copter for the automatic calculation of complex 3D point clouds in a multi temporal tree crown mapping context.

  1. Economic feeder for recharging and ``topping off''

    NASA Astrophysics Data System (ADS)

    Fickett, Bryan; Mihalik, G.

    2000-04-01

    Increasing the size of the melt charge significantly increases yield and reduces costs. Siemens Solar Industries is optimizing a method to charge additional material after meltdown (top-off) using an external feeder system. A prototype feeder system was fabricated consisting of a hopper and feed delivery system. The low-cost feeder is designed for simple operation and maintenance. The system is capable of introducing up to 60 kg of granular silicon while under vacuum. An isolation valve permits refilling of the hopper while maintaining vacuum in the growth furnace. Using the feeder system in conjunction with Siemens Solar Industries' energy efficient hot zone dramatically reduces power and argon consumption. Throughput is also improved as faster pull speeds can be attained. The increased pull speeds have an even greater impact when the charge size is increased. Further cost reduction can be achieved by refilling the crucible after crystal growth and pulling a second ingot run. Siemens Solar Industries is presently testing the feeder in production.

  2. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces.

    PubMed

    Jogikalmath, G; Stuart, J K; Pungor, A; Hlady, V

    1999-08-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface more uniform. The subsequent hydrolysis of the terminal epoxide groups resulted in a larger surface heterogeneity which was modeled by two populations of the terminal hydroxyl groups, each with its own distribution of adhesion forces and force variance. The activation of the hydroxyls with carbonyldiimmidazole (CDI) healed the surface and lowered its adhesion, however, the force variance remained rather large. Finally, the grafting of the α,ω-diamino poly(ethyleneoxide) chains to the CDI-activated glass largely eliminated adhesion except at a few discrete regions. The adhesion on the PEO grafted layer followed the Poisson distribution of the pull-off forces. With the exception of the glass surface, a correlation between the water contact angles and the mean pull-off forces measured with the Si(3)N(4) tip surfaces was found for all modified glass surfaces.

  3. Fatigue Resistance of CAD/CAM Resin Composite Molar Crowns

    PubMed Central

    Shembish, Fatma A.; Tong, Hui; Kaizer, Marina; Janal, Malvin N.; Thompson, Van P.; Opdam, Niek J.; Zhang, Yu

    2016-01-01

    Objective To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Methods Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n = 24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n = 24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electronic microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. Results The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700 N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450 N. Significance Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3 – 4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. PMID:26777092

  4. Bony integration of titanium implants with a novel bioactive calcium titanate (Ca4Ti3O10) surface treatment in a rabbit model.

    PubMed

    Haenle, Maximilian; Lindner, Tobias; Ellenrieder, Martin; Willfahrt, Manfred; Schell, Hanna; Mittelmeier, Wolfram; Bader, Rainer

    2012-10-01

    Nowadays total joint replacement is an indispensable component of modern medicine. The surfaces characteristics of cementless prostheses may be altered to achieve an accelerated and enduring bony integration. Classic surface coatings bear the risk of loosening or flaking from the implant body. This risk is excluded by the chemical conversion of the naturally existing TiO(2) surface layer into calcium titanate. The aim of this experimental animal study was to investigate the bony integration of implants with a new calcium titanate surface (Ca(4)Ti(3)O(10)) compared with a conventional standard Ti6Al4V surface. Cylindrical implants, made of titanium alloy (Ti6Al4V) were implanted in both lateral femoral condyles of New Zealand white rabbits. In each animal, an implant with and without surface treatment was inserted in a blinded manner. Animals were sacrificed after 4, 12, and 36 weeks, respectively. The axial pull-off forces were determined for 25 animals using a universal testing machine (Zwick Z010, Ulm, Germany). Furthermore, a histological analysis of the bony integration of the implants was performed in 12 specimens. In general, the pull-off forces for untreated and treated implants increased with longer survival times of the rabbits. No significant difference could be shown after 4 weeks between treated and untreated implants. After 12 weeks, the treated implants revealed a statistical significant higher pull-off force. After 36 weeks, the pull-off forces for treated and untreated implants aligned again. Titanium implants treated with calcium titanate, may offer an interesting and promising implant surface modification for endoprosthetic implants. They might lead to an accelerated osseointegration of total hip and knee replacements. Copyright © 2012 Wiley Periodicals, Inc.

  5. Effects of tip-substrate gap, deposition temperature, holding time, and pull-off velocity on dip-pen lithography investigated using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin

    2012-05-01

    The process parameters in the dip-pen nanolithography process, including tip-substrate gap, deposition temperature, holding time, and pull-off velocity are evaluated in terms of the mechanism of molecular transference, alkanethiol meniscus characteristic, surface adsorbed energy, and pattern formation using molecular dynamics simulations. The simulation results clearly show that the optimum deposition occurs at a smaller tip-substrate gap, a slower pull-off velocity, a higher temperature, and a longer holding time. The pattern area increases with decreasing tip-substrate gap and increasing deposition temperature and holding time. With an increase in deposition temperature, the molecular transfer ability significantly increases. Pattern height is a function of meniscus length. When the pull-off velocity is decreased, the pattern height increases. The height of the neck in meniscus decreases and the neck width increases with holding time. Meniscus size increases with increasing deposition temperature and holding time.

  6. The effect of aspect ratio on adhesion and stiffness for soft elastic fibres

    PubMed Central

    Aksak, Burak; Hui, Chung-Yuen; Sitti, Metin

    2011-01-01

    The effect of aspect ratio on the pull-off stress and stiffness of soft elastic fibres is studied using elasticity and numerical analysis. The adhesive interface between a soft fibre and a smooth rigid surface is modelled using the Dugdale–Barenblatt model. Numerical simulations show that, while pull-off stress increases with decreasing aspect ratio, fibres get stiffer. Also, for sufficiently low aspect ratio fibres, failure occurs via the growth of internal cracks and pull-off stress approaches the intrinsic adhesive strength. Experiments carried out with various aspect ratio polyurethane elastomer fibres are consistent with the numerical simulations. PMID:21227962

  7. Mechanical modeling and characteristic study for the adhesive contact of elastic layered media

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Tu, Qiaoan; Sun, Jianjun; Ma, Chenbo

    2017-11-01

    This paper investigates the adhesive contact between a smooth rigid sphere and a smooth elastic layered medium with different layer thicknesses, layer-to-substrate elastic modulus ratios and adhesion energy ratios. A numerical model is established by combining elastic responses of the contact system and an equation of equivalent adhesive contact pressure which is derived based on the Hamaker summation method and the Lennard-Jones intermolecular potential law. Simulation results for hard layer cases demonstrate that variation trends of the pull-off force with the layer thickness and elastic modulus ratio are complex. On one hand, when the elastic modulus ratio increases, the pull-off force decreases at smaller layer thicknesses, decreases at first and then increases at middle layer thicknesses, while increases monotonously at larger layer thicknesses. On the other hand, the pull-off force decreases at first and then increases with the increase in the layer thickness. Furthermore, a critical layer thickness above which the introduction of hard layer cannot reduce adhesion and an optimum layer thickness under which the pull-off force reaches a minimum are found. Both the critical and optimum layer thicknesses become larger with an increase in the Tabor parameter, while they tend to decrease with the increase in the elastic modulus ratio. In addition, the pull-off force increases sublinearly with the adhesion energy ratio if the layer thickness and elastic modulus ratio are fixed.

  8. The Effects of Substrate Material and Thermal Processing Atmosphere on the Strength of PS304: A High Temperature Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2002-01-01

    PS304, a plasma spray deposited solid lubricant coating developed for high temperature sliding contacts was deposited on nine different substrate metals, heat treated at 650C in either air or argon and subsequently tested for strength using a commercially available pull-off adhesion test. Some samples were examined metallographically to help elucidate and explain the results. As deposited coatings exhibit pull-off strengths typically between 16 and 20 MPa with failure occuring (cohesively) within the coating. Heat treatment in argon at 650 C results in a slight increase in coating (cohesive) strength of about 30 percent to 21 to 27 MPa. Heat treatment in air at 650 C results in a dramatic increase in strength to over 30 MPa, exceeding the strength of the epoxy used in the pull test. Cross section metallographic analyses show that no microstructural coating changes occur following the argon heat treatments, however, exposure to air at 650C gives rise to the formation of a second chromium-rich phase precipitate within the PS304 NiCr constituent which provides a strengthening effect and a slight (approximately 5 percent) coating thickness increase. Subsequent heat treatments do not result in any further coating changes. Based upon these studies, PS304 is a suitable coating for use on a wide variety of high temperature substrates and must be heat treated following deposition to enhance strength and ensure dimensional stability.

  9. Comparison of fracture resistance and fracture characterization of bilayered zirconia/fluorapatite and monolithic lithium disilicate all ceramic crowns.

    PubMed

    Altamimi, Abdulaziz M; Tripodakis, Aris Petros; Eliades, George; Hirayama, Hiroshi

    2014-01-01

    To compare the fracture resistance between bilayered zirconia/ fluorapatite and monolithic lithium disilicate heat-pressed crowns and characterize the mode of fracture failure. Thirty crown samples were sequentially fitted on a mandibular right first molar metal replica of an ivory prepared molar tooth. The crown specimens were divided in three groups (A, B, and C; n = 10 for each group). Group A consisted of bilayered zirconia/fluorhapatite pressed-over crowns with standard design crown copings (0.7 mm uniform thickness), Group B of bilayered zirconia/fluorhapatite with anatomical design crown copings, and Group C of lithium disilicate monolithic crowns. The samples were then dynamically loaded under water for 100,000 cycles with a profile of 250 N maximum load at 1,000 N/s rate and 2.0 Hz frequency. Loading was performed with a steel ball (5 mm in diameter) coming into contact with the test crown, loading to maximum, holding for 0.2 s, unloading and lifting off 0.5 mm. The samples were then fractured under static loading, in order to determine the ultimate crown strength. Analysis of the recorded fracture load values was carried out with one-way analysis of variance (ANOVA) followed by Tukey tests. Fractured specimens were examined by stereomicroscopy and scanning electron microscopy. The fracture loads measured were (N, means and standard deviations): Group A: 561.87 (72.63), Group B: 1,014.16 (70.18) and Group C: 1,360.63 (77.95). All mean differences were statistically significant (P < 0.001). Catastrophic fractures occurred in Group C, whereas mainly veneer fractures were observed in Groups A and B. In the present study, the heat-pressed monolithic lithium-disilicate crowns showed more fracture resistance than zirconia/fluorapatite pressed-over crowns. Within the bilayered groups, the anatomical zirconia coping design presented increased ceramic fracture resistance.

  10. The Influence of Contamination and Cleaning on the Strength of Modular Head Taper Fixation in Total Hip Arthroplasty.

    PubMed

    Krull, Annika; Morlock, Michael M; Bishop, Nicholas E

    2017-10-01

    Intraoperative interface contamination of modular head-stem taper junctions of hip implants can lead to poor fixation strength, causing fretting and crevice corrosion or even stem taper fracture. Careful cleaning before assembly should help to reduce these problems. The purpose of this study was to determine the effect of cleaning (with and without drying) contaminated taper interfaces on the taper fixation strength. Metal or ceramic heads were impacted onto titanium alloy stem tapers with cleaned or contaminated (fat or saline solution) interfaces. The same procedure was performed after cleaning and drying the contaminated interfaces. Pull-off force was used to determine the influence of contamination and cleaning on the taper strength. Pull-off forces after contamination with fat were significantly lower than those for uncontaminated interfaces for both head materials. Pull-off forces after application of saline solution were not significantly different from those for uncontaminated tapers. However, a large variation in taper strength was observed, pull-off forces for cleaned and dried tapers were similar to those for uncontaminated tapers for both head materials. Intraoperative contamination of taper interfaces may be difficult to detect but has a major influence on taper fixation strength. Cleaning of the stem taper with saline solution and drying with gauze directly before assembly allows the taper strength of the pristine components to be achieved. Not drying the taper results in a large variation in pull-off forces, emphasizing that drying is essential for sufficient and reproducible fixation strength. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Upper and lower bounds for the speed of pulled fronts with a cut-off

    NASA Astrophysics Data System (ADS)

    Benguria, R. D.; Depassier, M. C.; Loss, M.

    2008-02-01

    We establish rigorous upper and lower bounds for the speed of pulled fronts with a cut-off. For all reaction terms of KPP type a simple analytic upper bound is given. The lower bounds however depend on details of the reaction term. For a small cut-off parameter the two leading order terms in the asymptotic expansion of the upper and lower bounds coincide and correspond to the Brunet-Derrida formula. For large cut-off parameters the bounds do not coincide and permit a simple estimation of the speed of the front.

  12. [Fatigue damage analysis of porcelain in all-ceramic crowns].

    PubMed

    Liu, Yi-hong; Feng, Hai-lan; Liu, Guang-hua; Shen, Zhi-jian

    2010-02-18

    To investigate the fatigue damage mechanism of porcelain, and its relation with the microscopic defects in clinically failed all-ceramic crowns. Collecting the bilayered all-ceramic crowns failed in vivo. The fractured surfaces and occlusial surfaces of failed crowns were examined by an optical microscope followed by detailed fractography investigations using a field emission scanning electron microscope. When chemical impurities were of concern, energy-dispersive X-ray spectroscopy analysis was performed to examine chemical composition. A standard practice for fractography failure analysis of advanced ceramics is applied to disclose the fracture mode, and damage character. Three types of fracture features are defined as breakdown of the entire crown, and porcelain chipping-off/delamination. Alumina crowns were usually characterized by breakdown of the entire crown, while zirconia crowns by porcelain chipping-off and delamination. The fatigue damage of porcelain was classified into surface wear, cone crack, and porcelain delamination. The observed microscopic defects in this study included air bubbles and impurity particles. The multi-point occlusial contacts were recommended in all-ceramic restorations clinically. The thickness of porcelain is important for the anti-fatigue ability of porcelain. Cautions have to be taken to avoid contaminations during the veneering processes.

  13. Push-pull aminobithiophenes--highly fluorescent stable fluorophores.

    PubMed

    Dong, Yanmei; Bolduc, Andréanne; McGregor, Nicholas; Skene, W G

    2011-04-01

    Stable 2-aminobithiophenes were prepared using the Gewald reaction. The resulting push-pull bithiophenes exhibited both unprecedented high fluorescence yields and stability in addition to demonstrating fluorescence on-off properties.

  14. Plasma Polymer Coatings to Prevent Pipeline Corrosion and Reduce Friction.

    DTIC Science & Technology

    1986-05-21

    w fairnt lime rainbiNw Salt (1) failed R. 6% ; Pull (3) 10 or- 90%/ film left): Y1 c rc.. (4) CluSO4, very small silIver- crys, a. COLIC . e r-ust Cu...Pull C 0% 10 500 440 S film left, Pull E 60% film S left, both Pulls cream film 4 90 120 S peels off St 1 Repeat run 864214; film flaky G rainbow

  15. Cement selection for implant-supported crowns fabricated with different luting space settings.

    PubMed

    Gultekin, Pinar; Gultekin, B Alper; Aydin, Murat; Yalcin, Serdar

    2013-02-01

    To measure and compare the retentive strength of cements specifically formulated for luting restorations onto implant abutments and to investigate the effect of varying cement gap on retention strength of implant-supported crowns. Standard titanium abutments were scanned by means of a 3D digital laser scanner. One hundred and sixty standard metal copings were designed by a Computer Aided Design/Computer Aided Manufacturing (CAD/CAM) system with two cement gap values (20 and 40 μm). The copings were cemented to the abutments using the following eight cements with one being the control, zinc oxide temporary cement, while the other seven were specifically formulated implant cements (n = 10): Premier Implant Cement, ImProv, Multilink Implant, EsTemp Implant, Cem-Implant, ImplaTemp, MIS Crown Set, and TempBond NE. The specimens were placed in 100% humidity for 24 hours, and subjected to a pull-out test using a universal testing machine at a 0.5 mm/min crosshead speed. The test results were analyzed with two-way ANOVA, one-way ANOVA, post hoc Tamhane' s T2, and student's t-tests at a significance level of 0.05. Statistical analysis revealed significant differences in retention strength across the cement groups (p < 0.01). Resin-based cements showed significantly higher decementation loads than a noneugenol zinc oxide provisional cement (TempBond NE) (p < 0.01), with the highest tensile resistance seen with Multilink Implant, followed by Cem-Implant, MIS Crown Set, ImProv, Premier Implant Cement, EsTemp Implant, and ImplaTemp. Increasing the cement gap from 20 to 40 μm improved retention significantly for the higher strength cements: Multilink Implant, Premier Implant Cement, ImProv, Cem-Implant, and MIS Crown Set (p < 0.01), while it had no significant effect on retention for the lower strength cements: EsTemp Implant, ImplaTemp, and TempBond NE (p > 0.05). Resin cements specifically formulated for implant-supported restorations demonstrated significant differences in retention strength. The ranking of cements presented in the study is meant to be an arbitrary guide for the clinician in deciding the appropriate cement selection for CAD/CAM-fabricated metal copings onto implant abutments with different luting space settings. © 2012 by the American College of Prosthodontists.

  16. Sapling structure and regeneration strategy in 18 Shorea species co-occurring in a tropical rainforest.

    PubMed

    Aiba, Masahiro; Nakashizuka, Tohru

    2005-08-01

    Inevitable trade-offs in structure may be a basis for differentiation in plant strategies. Juvenile trees in different functional groups are characterized by specific suites of structural traits such as crown architecture and biomass distribution. The relationship between juvenile tree structure and function was tested to find out if it is robust among functionally and taxonomically similar species of the genus Shorea that coexist sympatrically in a tropical rain forest in Borneo. The sapling structures of 18 species were compared for standardized dry masses of 5 and 30 g. Pairwise simple correlation and multiple correlation patterns among structural traits of juveniles (0.1-1.5 m in height) of 18 Shorea species were examined using Pearson's correlation and principal component analysis (PCA), respectively. The correlation was then tested between the PCA results and three indices of shade tolerance: the net photosynthetic rate, the wood density of mature trees and seed size. The structural variation in saplings of the genus Shorea was as large as that found in sets of species with much more diverse origins. The PCA showed that both crown architecture and allocation to leaves are major sources of variation in the structures of the 18 species investigated. Of these two axes, allocation to leaves was significantly correlated with wood density and showed a limited correlation with photosynthetic rate, whereas crown architecture was significantly correlated to seed size. Overall, the results suggest that an allocation trade-off between leaves and other organs, which co-varied with wood density and to a certain extent with photosynthetic capacity, accounts for the difference in shade tolerance among congeneric, functionally similar species. In contrast, the relationship between the architecture and regeneration strategy differed from the pattern found between functional groups, and the function of crown architecture was ambiguous.

  17. Drawbar Pull (DP) Procedures for Off-Road Vehicle Testing

    NASA Technical Reports Server (NTRS)

    Creager, Colin; Asnani, Vivake; Oravec, Heather; Woodward, Adam

    2017-01-01

    As NASA strives to explore the surface of the Moon and Mars, there is a continued need for improved tire and vehicle development. When tires or vehicles are being designed for off-road conditions where significant thrust generation is required, such as climbing out of craters on the Moon, it is important to use a standard test method for evaluating their tractive performance. The drawbar pull (DP) test is a way of measuring the net thrust generated by tires or a vehicle with respect to performance metrics such as travel reduction, sinkage, or power efficiency. DP testing may be done using a single tire on a traction rig, or with a set of tires on a vehicle; this report focuses on vehicle DP tests. Though vehicle DP tests have been used for decades, there are no standard procedures that apply to exploration vehicles. This report summarizes previous methods employed, shows the sensitivity of certain test parameters, and provides a body of knowledge for developing standard testing procedures. The focus of this work is on lunar applications, but these test methods can be applied to terrestrial and planetary conditions as well. Section 1.0 of this report discusses the utility of DP testing for off-road vehicle evaluation and the metrics used. Section 2.0 focuses on test-terrain preparation, using the example case of lunar terrain. There is a review of lunar terrain analogs implemented in the past and a discussion on the lunar terrain conditions created at the NASA Glenn Research Center, including methods of evaluating the terrain strength variation and consistency from test to test. Section 3.0 provides details of the vehicle test procedures. These consist of a review of past methods, a comprehensive study on the sensitivity of test parameters, and a summary of the procedures used for DP testing at Glenn.

  18. Suspended few-layer graphene beam electromechanical switch with abrupt on-off characteristics and minimal leakage current

    NASA Astrophysics Data System (ADS)

    Kim, Sung Min; Song, Emil B.; Lee, Sejoon; Seo, Sunae; Seo, David H.; Hwang, Yongha; Candler, R.; Wang, Kang L.

    2011-07-01

    Suspended few-layer graphene beam electro-mechanical switches (SGSs) with 0.15 μm air-gap are fabricated and electrically characterized. The SGS shows an abrupt on/off current characteristics with minimal off current. In conjunction with the narrow air-gap, the outstanding mechanical properties of graphene enable the mechanical switch to operate at a very low pull-in voltage (VPI) of 1.85 V, which is compatible with conventional complimentary metal-oxide-semiconductor (CMOS) circuit requirements. In addition, we show that the pull-in voltage exhibits an inverse dependence on the beam length.

  19. Improvement of ECM Techniques through Implementation of a Genetic Algorithm

    DTIC Science & Technology

    2008-03-01

    Range Gate Pull-Off (RGPO), where pulse returns are time - delayed to induce an increase in target distance, and Velocity Gate Pull-Off (VGPO), which...estima- tion, the assumption given is that the signal is a stationary, bandlimited process, 13 where the time delay will be fixed for each interval [11...This configuration, known as a transponder system with constant gain, uses time delayed copies of the original to rebroadcast back into the environment

  20. Expedient Spall Repair Methods and Equipment for Airfield Pavements Preprint

    DTIC Science & Technology

    2009-08-01

    placement (3). RESEACH OBJECTIVES AND SCOPE The objective of this research was to develop one or more methods that will allow field personnel to...cores were used to perform in-situ tensile pull-off tests to evaluate the bond between the repair material and the substrate. Also, a series of 4...inch diameters cores were cut, and direct shear tests were performed on the repair material/substrate interface. Finally, all spalls were trafficked for

  1. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    NASA Astrophysics Data System (ADS)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  2. Nanoparticle flotation collectors: mechanisms behind a new technology.

    PubMed

    Yang, Songtao; Pelton, Robert; Raegen, Adam; Montgomery, Miles; Dalnoki-Veress, Kari

    2011-09-06

    This is the first report describing a new technology where hydrophobic nanoparticles adsorb onto much larger, hydrophilic mineral particle surfaces to facilitate attachment to air bubbles in flotation. The adsorption of 46 nm cationic polystyrene nanoparticles onto 43 μm diameter glass beads, a mineral model, facilitates virtually complete removal of the beads by flotation. As little as 5% coverage of the bead surfaces with nanoparticles promotes high flotation efficiencies. The maximum force required to pull a glass bead from an air bubble interface into the aqueous phase was measured by micromechanics. The pull-off force was 1.9 μN for glass beads coated with nanoparticles, compared to 0.0086 μN for clean beads. The pull-off forces were modeled using Scheludko's classical expression. We propose that the bubble/bead contact area may not be dry (completely dewetted). Instead, for hydrophobic nanoparticles sitting on a hydrophilic surface, it is possible that only the nanoparticles penetrate the air/water interface to form a three-phase contact line. We present a new model for pull-off forces for such a wet contact patch between the bead and the air bubble. Contact angle measurements of both nanoparticle coated glass and smooth films from dissolved nanoparticles were performed to support the modeling. © 2011 American Chemical Society

  3. A Theory of Inference Derivation for Qualitative Data: Development and Test with Application to Criminal and Terrorist Detection

    DTIC Science & Technology

    1991-07-01

    me ’Don’t struggle or scream or cIzc you’]’ ’e a d-ad girl .’ He made me kneel with my back to him. He kept saying ’How old are you ?’ and he also kept...your boyfriend or the police. If I hear from anybody that you have told anybody you will be a dead girl ’. He then said ’don’t move until I’ve gone’. He...down. He pulled my tights and panties off completely. He undid his trousers and got back on top of me and had sex with me. He stood up and pulled me up

  4. Pilot Emergency Tutoring System for F-4 Aircraft Fuel System Malfunction Using Means-Ends Analysis

    DTIC Science & Technology

    1990-06-01

    pulled , and wing transfer pressure is normal. What operator do you choose? For example: type look_at INDICATOR for looked_at(INDICATOR) type set...cb internal wing transfer is pulled , and wing transfer pressure is normal. What operator do you choose? For example: type look_at INDICATOR for...at, external transfer is off, internal wing transfer is stop trans, refuel probe is extended, cb internal wing transfer is pulled ,and wing

  5. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    PubMed

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  6. Air Operations in Israel’s War Against Hezbollah: Learning from Lebanon and Getting It Right in Gaza

    DTIC Science & Technology

    2011-01-01

    alongside the 113 Steven Erlanger, “As Israel Begins to Pull Troops Out, Lebanon and the UN Prepare to Replace Them,” New York Times, August 16...engagement. Then, just before pulling abreast of the Ababil, he fired a Python 4 infrared missile using his helmet-mounted sight for high off-boresight...shock for two weeks after the Wehrmacht’s surprise attack on the Soviet Union in 1941, Nasrallah pulled himself back together fairly quickly. Shortly

  7. Thermal Processing Effects on the Adhesive Strength of PS304 High Temperature Solid Lubricant Coatings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Edmonds, Brian J.; Benoy, Patricia A.

    2001-01-01

    In this paper the effects of post deposition heat treatments on the cohesive and adhesive strength properties of PS304, a plasma sprayed nickel-chrome based, high temperature solid lubricant coating deposited on stainless steel, are studied. Plasma spray deposited coating samples were exposed in air at temperatures from 432 to 650 C for up to 500 hr to promote residual stress relief, enhance particle to particle bonding and increase coating to substrate bond strength. Coating pull-off strength was measured using a commercial adhesion tester that utilizes 13 mm diameter aluminum pull studs attached to the coating surface with epoxy. Pull off force was automatically recorded and converted to coating pull off strength. As deposited coating samples were also tested as a baseline. The as-deposited (untreated) samples either delaminated at the coating-substrate interface or failed internally (cohesive failure) at about 17 MPa. Samples heat treated at temperatures above 540 C for 100 hr or at 600 C or above for more than 24 hr exhibited strengths above 31 MPa, nearly a two fold increase. Coating failure occurred inside the body of the coating (cohesive failure) for nearly all of the heat-treated samples and only occasionally at the coating substrate interface (adhesive failure). Metallographic analyses of heat-treated coatings indicate that the Nickel-Chromium binder in the PS304 appears to have segregated into two phases, a high nickel matrix phase and a high chromium precipitated phase. Analysis of the precipitates indicates the presence of silicon, a constituent of a flow enhancing additive in the commercial NiCr powder. The exact nature and structure of the precipitate phase is not known. This microstructural change is believed to be partially responsible for the coating strength increase. Diffusion bonding between particles may also be playing a role. Increasing the heat treatment temperature, exposure time or both accelerate the heat treatment process. Preliminary measurements indicate that the heat treatment also results in a one time, permanent coating thickness increase of about 3%. Based upon these results, the incorporation of a heat treatment prior to final finishing has been incorporated in the application process of this coating technology.

  8. [Clinical application of IPS-empress 2 pressable all-ceramic crowns].

    PubMed

    Wang, Ai-jun; He, Xiao-ming; Liu, Li-xia; Zhang, Chao-biao; Zhang, Min; Shen, Bei-yong

    2007-02-01

    To evaluate the clinical prosthetic effect of IPS-Empress 2 pressahie ceramic crowns. 198 teeth of 70 patients were restored with IPS-Empress 2 pressahie ceramic crowns. The patients were asked to return in one week and every half year. The clinical prosthetic effect was evaluated. Through follow-up of 3-38 months, the veneer porcelain crowns of 3 teeth were broken. 2 crowns fall off due to teeth fracture, gingivitis occurred in 2 teeth, pulpitis or periapical periodontitis occurred in 3 teeth. The shades of 3 crowns were darkening. The prosthetic effect of 185 teeth was satisfied. The rate of satisfaction was 93.4%. IPS-Empress 2 pressable all-ceramic crown has the advantages of aesthetic effect, good hiocompatihility and simple fabrication. But its strength is not enough for posterior teeth and it can not cover the deep color of non-vital teeth and metal materials.

  9. Drawbar Pull

    DTIC Science & Technology

    2017-01-26

    Includes procedures for hard surface, soil , and water tests. Discusses vehicle preparation, instrumentation method of computing results, data reduction...and amphibious vehicles. 15. SUBJECT TERMS Bollard pull Soft- soil mobility Drawbar pull Vehicle, amphibious Drawbar horsepower Vehicle...4.3 Drawbar Pull in Soft Soil ................................................. 8 4.4 Amphibious Vehicle Tests (Drawbar Pull in Water and Bollard Pull

  10. Electrochemical and In Vitro Behavior of Nanostructure Sol-Gel Coated 316L Stainless Steel Incorporated with Rosemary Extract

    NASA Astrophysics Data System (ADS)

    Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba

    2013-06-01

    The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.

  11. Construct Related Validity for the Baumgartner Modified Pull-Up Test

    ERIC Educational Resources Information Center

    Baumgartner, Ted A.; Gaunt, Sharon j.

    2005-01-01

    Traditionally the pull-up was used as a measure of arm and shoulder girdle strength and endurance. This measure did not discriminate among ability levels because many zero scores occur. Baumgartner (1978) developed a modified pull-up test that was easier than the traditional pull-up test. The Baumgartner Modified Pull-Up (BMPU) has been used as an…

  12. Manufacturing issues which affect coating erosion performance in wind turbine blades

    NASA Astrophysics Data System (ADS)

    Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.

    2017-10-01

    Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).

  13. Progressive-overload whole-body vibration training as part of periodized, off-season strength training in trained women athletes.

    PubMed

    Jones, Margaret T

    2014-09-01

    The purpose was to examine the effects of progressive-overload, whole-body vibration (WBV) training on strength and power as part of a 15-week periodized, strength training (ST) program. Eighteen collegiate women athletes with ≥1 year of ST and no prior WBV training participated in the crossover design. Random assignment to 1 of the 2 groups followed pretests of seated medicine ball throw (SMBT), single-leg hop for distance (LSLH, RSLH), countermovement jump (CMJ), 3 repetition maximum (3RM) front squat (FS), pull-up (PU), and 3RM bench press (BP). Whole-body vibration was two 3-week phases of dynamic and static hold body weight exercises administered 2 d·wk in ST sessions throughout the 15-week off-season program. Total WBV exposure was 6 minutes broken into 30-second bouts with 60-second rest (1:2 work-to-relief ratio). Exercises, frequency, and amplitude progressed in intensity from the first 3-week WBV training to the second 3-week phase. Repeated-measures analysis of variances were used to analyze the SMBT, CMJ, LSLH, RSLH, FS, PU, and BP tests. Alpha level was p ≤ 0.05. Front squat, LSLH, and RSLH increased (p = 0.001) from pre- to posttest; FS increased from mid- to posttest. Pull-up increased (p = 0.008) from pre- to posttest. Seated medicine ball throw and BP showed a trend of increased performance from pre- to posttest (p = 0.11). Two 3-week phases of periodized, progressive-overload WBV + ST training elicited gains in strength and power during a 15-week off-season program. Greatest improvements in performance tests occurred in the initial WBV phase. Implementing WBV in conjunction with ST appears to be more effective in the early phases of training.

  14. Barnacles resist removal by crack trapping

    PubMed Central

    Hui, Chung-Yuen; Long, Rong; Wahl, Kathryn J.; Everett, Richard K.

    2011-01-01

    We study the mechanics of pull-off of a barnacle adhering to a thin elastic layer which is bonded to a rigid substrate. We address the case of barnacles having acorn shell geometry and hard, calcarious base plates. Pull-off is initiated by the propagation of an interface edge crack between the base plate and the layer. We compute the energy release rate of this crack as it grows along the interface using a finite element method. We also develop an approximate analytical model to interpret our numerical results and to give a closed-form expression for the energy release rate. Our result shows that the resistance of barnacles to interfacial failure arises from a crack-trapping mechanism. PMID:21208968

  15. A technological advance for 21st century obstetricians: the electronically-controlled vacuum extractor.

    PubMed

    Perone, Nicola

    2018-04-25

    To describe an innovative electronically-controlled vacuum extractor (VE) in detail and to illustrate its performance characteristics, as observed in a laboratory study. Thirty simulated, vacuum-assisted deliveries. (1) The ability to measure in real-time of the pull applied and to sound an alert, when the traction approaches the negative pressure under the cup, to prevent its detachment. (2) The recording and printing of a graphic representation of the pull applied (vacuum delivery graph). (3) The emission of a warning signal when the 15-min time limit of continuous cup application on the fetal scalp, is reached. No cup detachment occurred in any of the 15 vacuum-assisted deliveries, in which traction was kept below the adhesive force of the cup [44 lb (20 kg)], except in three cases, due to loss of negative pressure. In the remaining 15 tests, in which traction was greater than the adhesive force of the cup, "pull-offs" inevitably occurred. Furthermore, upon reaching the 15-min time limit of continuous cup application on the fetal cephalic model, a warning signal was emitted, as programmed. Conclusions We demonstrated that the electronically-controlled VE, with its distinctive pull-sensing handle, performs suitably for its intended purposes. The ability of the modernized device to decrease the incidence of cup detachment, secondary to the inadvertent application of excessive traction, may result in considerable safety, medico-legal and didactic advantages.

  16. Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology.

    PubMed

    Zahran, Mohammed; El-Mowafy, Omar; Tam, Laura; Watson, Philip A; Finer, Yoav

    2008-07-01

    All-ceramic crowns are subject to fracture during function, especially in the posterior area. The use of yttrium-stabilized zirconium-oxide ceramic as a substructure for all-ceramic crowns to improve fracture resistance is unproven. The aim of this study was to compare fracture strength and fatigue resistance of new zirconium-oxide and feldspathic all-ceramic crowns made with computer-aided design/computer-aided manufacturing (CAD/CAM). An ivorine molar was prepared to receive an all-ceramic crown. Using epoxy resin, 40 replication dies were made of the prepared tooth. Twenty feldspathic all-ceramic crowns (Vita Mark II) (VMII) and 20 zirconium-oxide crown copings (In-Ceram YZ) (YZ) were made using CAD/CAM technique (CEREC-3D). The YZ copings were sintered and veneered manually with a fine-particle ceramic (VM9). All crowns were cemented to their respective dies using resin cement (Panavia F 2.0). Ten crowns in each group were subjected to compressive fatigue loading in a universal testing machine (instron). The other ten crowns from each group were loaded to fracture at a crosshead speed of 1 mm/min. Data were statistically analyzed using independent t-test and Fisher's exact test at alpha= 0.05. There was a significant difference between the survival rates of the two materials during the fatigue test (p < 0.001). All VMII crowns survived without any crack formation, while all YZ crowns fractured (40%) or developed cracks (60%). All the YZ crown fractures occurred within the veneering layer during the fatigue test. There was no significant difference in mean fracture load between the two materials (p= 0.268). Mean fracture loads (standard deviation) in N were: 1459 (492) for YZ crowns and 1272 (109) for VMII crowns. The performance of VMII crowns was superior to YZ crowns in the fatigue test. The premature fractures and cracks of the YZ crowns were attributed to weakness in the YZ veneer layer or in the core/veneer bond.

  17. Soft money, hard times.

    NASA Astrophysics Data System (ADS)

    Cardelli, J. A.

    1996-02-01

    As one young physicist told Science magazine, "The job market this year is about average. Things are worse than last year and better than next year". Universities, like corporations, are shifting people off payroll and onto contracts. Yet the astronomical community is not powerless; if we pull together, we can ward off the worst.

  18. Evaluation of Marine Corps Manpower Computer Simulation Model

    DTIC Science & Technology

    2016-12-01

    merit- based promotion selection that is in conjunction with the “up or out” manpower system. To ensure mission accomplishment within M&RA, it is...historical data the MSM pulls from an online Oracle database. Two types of data base pulls occur here: acquiring historical data of manpower pyramid...is based off of the assumption that the historical manpower progression is constant, and therefore is controllable. This unfortunately does not marry

  19. Non-uniform breaking of molecular bonds, peripheral morphology and releasable adhesion by elastic anisotropy in bio-adhesive contacts

    PubMed Central

    Liu, Yan; Gao, Yanfei

    2015-01-01

    Biological adhesive contacts are usually of hierarchical structures, such as the clustering of hundreds of sub-micrometre spatulae on keratinous hairs of gecko feet, or the clustering of molecular bonds into focal contacts in cell adhesion. When separating these interfaces, releasable adhesion can be accomplished by asymmetric alignment of the lowest scale discrete bonds (such as the inclined spatula that leads to different peeling force when loading in different directions) or by elastic anisotropy. However, only two-dimensional contact has been analysed for the latter method (Chen & Gao 2007 J. Mech. Phys. Solids 55, 1001–1015 (doi:10.1016/j.jmps.2006.10.008)). Important questions such as the three-dimensional contact morphology, the maximum to minimum pull-off force ratio and the tunability of releasable adhesion cannot be answered. In this work, we developed a three-dimensional cohesive interface model with fictitious viscosity that is capable of simulating the de-adhesion instability and the peripheral morphology before and after the onset of instability. The two-dimensional prediction is found to significantly overestimate the maximum to minimum pull-off force ratio. Based on an interface fracture mechanics analysis, we conclude that (i) the maximum and minimum pull-off forces correspond to the largest and smallest contact stiffness, i.e. ‘stiff-adhere and compliant-release’, (ii) the fracture toughness is sensitive to the crack morphology and the initial contact shape can be designed to attain a significantly higher maximum-to-minimum pull-off force ratio than a circular contact, and (iii) since the adhesion is accomplished by clustering of discrete bonds or called bridged crack in terms of fracture mechanics terminology, the above conclusions can only be achieved when the bridging zone is significantly smaller than the contact size. This adhesion-fracture analogy study leads to mechanistic predictions that can be readily used to design biomimetics and releasable adhesives. PMID:25392403

  20. T-Cap Pull-Off and Bending Behavior for Stitched Structure

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in largescale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  1. Hair pull test: Evidence-based update and revision of guidelines.

    PubMed

    McDonald, Katherine A; Shelley, Amanda J; Colantonio, Sophia; Beecker, Jennifer

    2017-03-01

    The hair pull test lacks validation and has unclear pretest guidelines. We sought to quantify normal hair pull test values and elucidate the effect of pretest hair washing and brushing. The impact of hair texture and lifestyle was also examined. Participants (n = 181) completed a questionnaire recording demographics, medications, and hair health/history. A single hair pull test (scalp vertex) was performed. The mean number of hairs removed per pull was 0.44 (SD 0.75). There was no significant difference in the mean number of hairs removed regardless of when participants washed (P = .20) or brushed (P = .25) their hair. Hair pull test values were similar between Caucasian-, Asian-, and Afro-textured hair. There was no significant difference in hair pull values between participants taking medications affecting hair loss and participants not taking these medications (P = .33). Tight hairstyles did not influence hair pull test values. Participant hair washing and brushing could not be controlled during the study, but this information was documented and analyzed. Normal values for the hair pull test should be reduced to 2 hairs or fewer (97.2% of participants). The current 5-day restriction on pretest hair washing can be reduced and brushing be made permissible. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  2. The disposition of snow caught by conifer crowns

    Treesearch

    Donald R. Satterlund; Harold F. Haupt

    1970-01-01

    Snow interception studies during the warm winters of 1966-1967 and 1967-1968 in northern Idaho revealed that Douglas fir and western white pine saplings caught about one third of the snow that fell in 22 storms. More than 80% of the snow initially caught in the crowns ultimately reached the ground being washed off by subsequent rain, falling by direct mass release, or...

  3. Atomic scale study of nanocontacts

    NASA Astrophysics Data System (ADS)

    Buldum, A.; Ciraci, S.; Batra, Inder P.; Fong, C. Y.

    1998-03-01

    Nanocontact and subsequent pulling off a sharp Ni(111) tip on a Cu(110) surface are investigated by using molecular dynamics method with embedded atom model. As the contact is formed, the sharp tip experiences multiple jump to contact in the attractive force range. The contact interface develops discontinuously mainly due to disorder-order transformations which lead to disappearance of a layer and hence abrupt changes in the normal force variation. Atom exchange occurs in the repulsive range. The connective neck is reduced also discontinuously by pulling off the tip. The novel atomic structure of the neck under the tensile force is analyzed. We also presented a comperative study for the contact by a Si(111) tip on Si(111)-(2x1) surface.

  4. Experimental Investigations on the Pull-Out Behavior of Tire Strips Reinforced Sands.

    PubMed

    Li, Li-Hua; Chen, Yan-Jun; Ferreira, Pedro Miguel Vaz; Liu, Yong; Xiao, Heng-Lin

    2017-06-27

    Waste tires have excellent mechanical performance and have been used as reinforcing material in geotechnical engineering; however, their interface properties are poorly understood. To further our knowledge, this paper examines the pull-out characteristics of waste tire strips in a compacted sand, together with uniaxial and biaxial geogrids also tested under the same conditions. The analysis of the results shows that the interlocking effect and pull-out resistance between the tire strip and the sand is very strong and significantly higher than that of the geogrids. In the early stages of the pull-out test, the resistance is mainly provided by the front portion of the embedded tire strips, as the pull-out test continues, more and more of the areas towards the end of the tire strips are mobilized, showing a progressive failure mechanism. The deformations are proportional to the frictional resistance between the tire-sand interface, and increase as the normal stresses increase. Tire strips of different wear intensities were tested and presented different pull-out resistances; however, the pull-out resistance mobilization patterns were generally similar. The pull-out resistance values obtained show that rubber reinforcement can provide much higher pull-out forces than the geogrid reinforcements tested here, showing that waste tires are an excellent alternative as a reinforcing system, regardless of the environmental advantages.

  5. Microhole Drilling Tractor Technology Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Western Well Tool

    2007-07-09

    In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiledmore » Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT inside 4.5 inch tubing at depths of 800-950 ft. The MDT successfully demonstrated On-Off capability, pulled with up to 1465 lbs force, and verified its capability to transmit torque though it from the Orienter. Forces generated by the tractor were limited due to insufficient differential pressure because of the unloaded downhole motor, which is not typical during drilling conditions. Additionally, the Coefficient of Friction between the MDT grippers and the tubing was much less than the anticipated COF of the sandstone formation. Despite these minor limitations, to summarize the MDT operated as expected. Minor modifications to the MDT are being incorporated to improve gripping capability of the tractor. Additional demonstration wells are being arranged to expand on the project's goals of delivering a fully operational utilitarian tool for use throughout the US to improve reserves.« less

  6. Tectonic Evolution of the Izmir Ankara Suture Zone in Northwest Turkey Using Zircon U-Pb Geochronology and Zircon Lu-Hf Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Campbell, C.; Taylor, M. H.; Licht, A.; Mueller, M.; Ocakglu, F.; Moeller, A.; Metais, G.; Beard, K. C.

    2017-12-01

    Detrital zircons from a Cretaceous forearc basin and Tertiary foreland basin located along the Sakarya Zone of the Western Pontides were analyzed to better understand the closure history of the Tethyan oceans. The Variscan Orogeny is characterized by abundant 350-300 Ma U-Pb ages and vertical ɛHf arrays, consistent with a mature magmatic arc that emplaced plutons through a southward growing accretionary margin. An ɛHf pull-up is observed from 300-250 Ma interpreted as rifting of the Intra-Pontide Ocean. The Cimmerian Orogeny is characterized by a 250-230 Ma ɛHf pull-down, followed by a 230-200 Ma magmatic gap consistent with underthrusting of the Karakaya Complex. From 200-120 Ma another magmatic lull is observed. The Alpine Orogeny is characterized by an ɛHf pull-down from 120-85 Ma within Cretaceous forearc sediments and a 100 Ma deviant ɛHf vertical array within Tertiary foreland basin sediments. Minor zircon U-Pb age peaks and contrasting inter-basinal ɛHf evolution are interpreted to represent onset of Andean-style subduction along the southern margin of the Sakarya Zone at 120 Ma followed by crustal thickening until 85 Ma. The deviant 100 Ma ɛHf vertical array within foreland basin detritus is interpreted as initiation of intra-oceanic subduction within the Izmir-Ankara Ocean. An 85-75 Ma ɛHf pull-up from forearc basin sediments is interpreted as slab roll-back along the southern margin of the Sakarya Zone, responsible for final rifting of the Western Black Sea. At 80 Ma, a vertical ɛHf array from Tertiary foreland basin deposits is interpreted to represent synchronous melting of the Tavsanli Zone and intra-oceanic slab break-off. A single 66 Myr pre-collisional grain defines a sharp ɛHf pull-down immediately prior to total arc shut-off, interpreted to represent incipient collision between the Sakarya and Tavsanli zones. A 52 Ma syn-collisional tuff yields minimally intermediate ɛHf values followed by a slight 48 Ma ɛHf pull-down, interpreted as a second episode of slab break-off followed by crustal thickening, a result of renewed underthrusting.

  7. Retention of veneered stainless steel crowns on replicated typodont primary incisors: an in vitro study.

    PubMed

    Guelmann, Marcio; Gehring, Daren F; Turner, Clara

    2003-01-01

    The purpose of this in vitro study was to determine the effect of crimping and cementation on retention of veneered stainless steel crowns. One hundred twenty crowns, 90 from 3 commercially available brands of veneered stainless steel crowns (Dura Crown, Kinder Krown, and NuSmile Primary Crown) and 30 (plain) Unitek stainless steel crowns were assessed for retention. An orthodontic wire was soldered perpendicular to the incisal edge of the crowns; the crowns were fitted to acrylic replicas of ideal crown preparations and were divided equally into 3 test groups: group 1--crowns were crimped only (no cement used); group 2--crowns were cemented only; and group 3--crowns were crimped and cemented to the acrylic replicas. An Instron machine recorded the amount of force necessary to dislodge the crowns and the results were statistically analyzed using 2-way ANOVA and Tukey honestly significant difference (HSD) test. Group 3 was statistically more retentive than groups 1 and 2. Group 2 was statistically more retentive than group 1 (P < .001). In group 1, Unitek crowns were statistically more retentive than the veneered crowns (P < .05). In group 2, NuSmile crowns showed statistically less retention values than all other crowns (P < .05). In group 3,Kinder Krown crowns showed statistically better retention rates than all other brands (P < .05). Significantly higher retention values were obtained for all brands tested when crimping and cement were combined. The crowns with veneer facings were significantly more retentive than the nonveneered ones when cement and crimping were combined.

  8. Airpower’s Role in Homeland Defense: A Western Hemisphere Perspective

    DTIC Science & Technology

    2002-06-01

    remain concerning airpower’s contribution to homeland defense. This thesis is neither about how to tactically solve the goalie CAP gameplan over the...Francisco to solve liaison issues between AAF units and the Navy. Aircraft were rushed to the West Coast as Lend-Lease planes were pulled off East...detect and interrogate aircraft over land out to 200 NM with a nine-hour endurance. These are usually based at Curacao, but have been pulled back since

  9. Centrosome centering and decentering by microtubule network rearrangement

    PubMed Central

    Letort, Gaëlle; Nedelec, Francois; Blanchoin, Laurent; Théry, Manuel

    2016-01-01

    The centrosome is positioned at the cell center by pushing and pulling forces transmitted by microtubules (MTs). Centrosome decentering is often considered to result from asymmetric, cortical pulling forces exerted in particular by molecular motors on MTs and controlled by external cues affecting the cell cortex locally. Here we used numerical simulations to investigate the possibility that it could equally result from the redistribution of pushing forces due to a reorientation of MTs. We first showed that MT gliding along cell edges and pivoting around the centrosome regulate MT rearrangement and thereby direct the spatial distribution of pushing forces, whereas the number, dynamics, and stiffness of MTs determine the magnitude of these forces. By modulating these parameters, we identified different regimes, involving both pushing and pulling forces, characterized by robust centrosome centering, robust off-centering, or “reactive” positioning. In the last-named conditions, weak asymmetric cues can induce a misbalance of pushing and pulling forces, resulting in an abrupt transition from a centered to an off-centered position. Taken together, these results point to the central role played by the configuration of the MTs on the distribution of pushing forces that position the centrosome. We suggest that asymmetric external cues should not be seen as direct driver of centrosome decentering and cell polarization but instead as inducers of an effective reorganization of the MT network, fostering centrosome motion to the cell periphery. PMID:27440925

  10. Three-year clinical evaluation of two ceramic crown systems: a preliminary study.

    PubMed

    Etman, Maged K; Woolford, M J

    2010-02-01

    The clinical performance and failure mechanisms of recently introduced ceramic crown systems used to restore posterior teeth have not been adequately examined. The purpose of this prospective clinical study was to evaluate and compare the clinical performance of 2 new ceramic crown systems with that of metal ceramic crowns using modified United States Public Health Services (USPHS) criteria. Ninety posterior teeth requiring crown restorations in 48 patients were randomized into 3 equal groups (n=30) for which different crown systems were used: an experimental hot-pressed glass ceramic based on a modified lithium disilicate ceramic (IPS e.max Press), an alumina-coping-based ceramic (Procera AllCeram), and a metal ceramic (Simidur S 2 veneered with IPS Classic Porcelain). The crowns were assessed over 3 years using the modified USPHS criteria. Crowns that developed visible cracks were sectioned and removed, and the surfaces were analyzed using a scanning electron microscope (SEM). The data were analyzed using the Kruskal-Wallis nonparametric statistical test, followed by the Mann-Whitney test with Bonferroni correction (alpha=.05). USPHS evaluation showed that the IPS e.max Press and metal ceramic crowns experienced fewer clinical changes than Procera AllCeram. Visible roughness, wear, and deformity were noticed in occlusal contact areas of Procera AllCeram crowns. SEM images showed well defined wear facets in both ceramic crown systems. Kruskal-Wallis tests showed a significant difference (P<.05) in Alpha scores among the 3 crown systems. Mann-Whitney tests showed significant differences among groups. IPS e.max Press crowns demonstrated clinical behavior comparable to Procera AllCeram and metal ceramic crowns, but the wear resistance of this crown type was superior to the Procera AllCeram crowns, according to modified USPHS criteria.

  11. RATE-DEPENDENT PULL-OUT BEARING CAPACITY OF PILES BY SIMILITUDE MODEL TESTS USING SEEPAGE FORCE

    NASA Astrophysics Data System (ADS)

    Kato, Tatsuya; Kokusho, Takaji

    Pull-out test of model piles was conducted by varying the pull-out velocity and skin friction of piles using a seepage force similitude model test apparatus. Due to the seepage consolidation under the pressure of 150kPa, the effective stress distribution in a prototype saturated soil of 17m could be successfully reproduced in the model ground of 28cm thick, in which the pull-out tests were carried out. The pull-out load rose to a peak value at small displacement, and then decreased to a residual value. At the same time, pore pressure in the vicinity of the pile decreased due to suction near the tip and the positive dilatancy near the pile skin. The maximum pull-out load, pile axial load, side friction and the corresponding displacement increased dramatically with increasing pull-out velocity. It was found that these rate-dependent trends become more prominent with increasing skin friction.

  12. Experimental Investigations on the Pull-Out Behavior of Tire Strips Reinforced Sands

    PubMed Central

    Li, Li-Hua; Chen, Yan-Jun; Ferreira, Pedro Miguel Vaz; Liu, Yong; Xiao, Heng-Lin

    2017-01-01

    Waste tires have excellent mechanical performance and have been used as reinforcing material in geotechnical engineering; however, their interface properties are poorly understood. To further our knowledge, this paper examines the pull-out characteristics of waste tire strips in a compacted sand, together with uniaxial and biaxial geogrids also tested under the same conditions. The analysis of the results shows that the interlocking effect and pull-out resistance between the tire strip and the sand is very strong and significantly higher than that of the geogrids. In the early stages of the pull-out test, the resistance is mainly provided by the front portion of the embedded tire strips, as the pull-out test continues, more and more of the areas towards the end of the tire strips are mobilized, showing a progressive failure mechanism. The deformations are proportional to the frictional resistance between the tire-sand interface, and increase as the normal stresses increase. Tire strips of different wear intensities were tested and presented different pull-out resistances; however, the pull-out resistance mobilization patterns were generally similar. The pull-out resistance values obtained show that rubber reinforcement can provide much higher pull-out forces than the geogrid reinforcements tested here, showing that waste tires are an excellent alternative as a reinforcing system, regardless of the environmental advantages. PMID:28773069

  13. Competitive control of cognition in rhesus monkeys.

    PubMed

    Kowaguchi, Mayuka; Patel, Nirali P; Bunnell, Megan E; Kralik, Jerald D

    2016-12-01

    The brain has evolved different approaches to solve problems, but the mechanisms that determine which approach to take remain unclear. One possibility is that control progresses from simpler processes, such as associative learning, to more complex ones, such as relational reasoning, when the simpler ones prove inadequate. Alternatively, control could be based on competition between the processes. To test between these possibilities, we posed the support problem to rhesus monkeys using a tool-use paradigm, in which subjects could pull an object (the tool) toward themselves to obtain an otherwise out-of-reach goal item. We initially provided one problem exemplar as a choice: for the correct option, a food item placed on the support tool; for the incorrect option, the food item placed off the tool. Perceptual cues were also correlated with outcome: e.g., red, triangular tool correct, blue, rectangular tool incorrect. Although the monkeys simply needed to touch the tool to register a response, they immediately pulled it, reflecting a relational reasoning process between themselves and another object (R self-other ), rather than an associative one between the arbitrary touch response and reward (A resp-reward ). Probe testing then showed that all four monkeys used a conjunction of perceptual features to select the correct option, reflecting an associative process between stimuli and reward (A stim-reward ). We then added a second problem exemplar and subsequent testing revealed that the monkeys switched to using the on/off relationship, reflecting a relational reasoning process between two objects (R other-other ). Because behavior appeared to reflect R self-other rather than A resp-reward , and A stim-reward prior to R other-other , our results suggest that cognitive processes are selected via competitive control dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Sexual dimorphism in the attachment ability of the ladybird beetle Coccinella septempunctata on soft substrates

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Petersen, Dennis S.; Tölle, Lisa; Wolff, Jonas O.; Gorb, Stanislav N.

    2017-01-01

    Many insects possess adhesive foot pads, which enable reliable attachment to diverse and unpredictable substrates. The function of these adhesive organs was shown to be affected by environmental conditions such as substrate roughness, chemistry, and ambient humidity. So far, the attachment ability of insects and also that of spiders and geckos has been tested on rigid substrates only. However, the natural habitats of climbing animals may provide a variety of substrate stiffness ranging from rigid rock surfaces to soft, biofilm covered substrates. In order to test the effect of different substrate stiffness on the attachment ability of insects, we have performed friction experiments with female and male ladybird beetles Coccinella septempunctata on smooth silicone elastomer substrates of different stiffness, using a centrifugal force tester. Whereas in females, the attachment ability was not affected by the substrate stiffness within the range of tested stiffness, males showed decreasing attachment ability with decreasing substrate stiffness. This sexual dimorphism in attachment ability is explained by the presence of a specialized, discoidal seta type in males, which is not present in females. It is argued that discoidal setae, when softer if compared to the substrate, may show an advantageous peak-free interfacial stress distribution when being pulled off the substrate. For such setae being stiffer if compared the substrate, they potentially show increased edge stress concentration. In this case, lower pull-off forces are expected, in agreement with the experimentally obtained results. With the present study, we demonstrate for the first time that the substrate stiffness may have an effect on the attachment ability of climbing animals, which may also be of relevance for technical and medical applications involving adhesion to soft substrates.

  15. The surprising dynamics of a chain on a pulley: lift off and snapping.

    PubMed

    Brun, P-T; Audoly, Basile; Goriely, Alain; Vella, Dominic

    2016-06-01

    The motion of weights attached to a chain or string moving on a frictionless pulley is a classic problem of introductory physics used to understand the relationship between force and acceleration. Here, we consider the dynamics of the chain when one of the weights is removed and, thus, one end is pulled with constant acceleration. This simple change has dramatic consequences for the ensuing motion: at a finite time, the chain 'lifts off' from the pulley, and the free end subsequently accelerates faster than the end that is pulled. Eventually, the chain undergoes a dramatic reversal of curvature reminiscent of the crack or snap, of a whip. We combine experiments, numerical simulations and theoretical arguments to explain key aspects of this dynamical problem.

  16. Ground-based remote sensing with long lens video camera for upper-stem diameter and other tree crown measurements

    Treesearch

    Neil A. Clark; Sang-Mook Lee

    2004-01-01

    This paper demonstrates how a digital video camera with a long lens can be used with pulse laser ranging in order to collect very large-scale tree crown measurements. The long focal length of the camera lens provides the magnification required for precise viewing of distant points with the trade-off of spatial coverage. Multiple video frames are mosaicked into a single...

  17. Two-body wear comparison of zirconia crown, gold crown, and enamel against zirconia.

    PubMed

    Kwon, Min-Seok; Oh, Sang-Yeob; Cho, Sung-Am

    2015-07-01

    Full zirconia crowns have recently been used for dental restorations because of their mechanical properties. However, there is little information about their wear characteristics against enamel, gold, and full zirconia crowns. The purpose of this study was to compare the wear rate of enamel, gold crowns, and zirconia crowns against zirconia blocks using an in vitro wear test. Upper specimens were divided into three groups: 10 enamels (group 1), 10 gold crowns (group 2, Type III gold), and 10 zirconia crowns (group 3, Prettau(®)Zirkon 9H, Zirkonzahn, Italy). Each of these specimens was wear tested against a zirconia block (40×30×3mm(3)) as a lower specimen (30 total zirconia blocks). Each specimen of the groups was abraded against the zirconia block for 600 cycles at 1Hz with 15mm front-to-back movement on an abrading machine. Moreover, the load applied during the abrading test was 50N, and the test was performed in a normal saline emulsion for 10min. Three-dimensional images were taken before and after the test, and the statistical analysis was performed using the Krushal-Wallis test and Mann-Whitney test (p=0.05). The mean volume loss of group 1 was 0.47mm(3), while that of group 2 and group 3 was 0.01mm(3). The wear volume loss of enamels against zirconia was higher than that of gold and zirconia crowns. Moreover, according to this result, zirconia crowns are not recommended for heavy bruxers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. 40 CFR 63.1384 - Performance test requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... performance test, the owner or operator must monitor and record the glass pull rate for each glass-melting furnace and, if different, the glass pull rate for each rotary spin manufacturing line and flame attenuation manufacturing line. Record the glass pull rate every 15 minutes during any performance test...

  19. Reporting numeric values of complete crowns. Part 2: Retention and resistance theories.

    PubMed

    Tiu, Janine; Al-Amleh, Basil; Waddell, J Neil; Duncan, Warwick J

    2015-07-01

    Determining the retention and resistance of a tooth preparation for a complete crown has only existed in theory, and these theories have never been measured on tooth preparations performed in vivo. The purpose of this study was to measure the theoretical retention and resistance of clinically produced complete crown preparations by using an objective measuring method. Stone dies from 236 complete crown preparations were collected from dental laboratories. The dies were scanned and analyzed with the coordinate geometry method. Cross-sectional images were captured, and the surface area was measured with a cone frustum and right truncated pyramid formula. Two different theories of resistance form, the "on" or "off" theory (limiting taper) and the linear model (resistance length), were calculated for premolar and molar preparations. The mean surface areas ranged from 33.97 mm(2) to 105.44 mm(2) for the cone frustum formula and 41.75 mm(2) to 117.50 mm(2) for the right truncated pyramid formula. The facial side of maxillary premolars exhibited the highest percentage of resistance form with the limiting taper, at 58%, and the mesial side of the mandibular molars exhibited the lowest percentage of resistance form, at 6%. The objective method used in this study provides a way for retention and resistance theories to be tested and for further clinical implications to be investigated. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Underway Recovery Test 6 (URT-6) - Day 2 Activites

    NASA Image and Video Library

    2018-01-18

    Off the rear of the USS Anchorage, the Orion test article is pulled in by a winch line at the rear of the USS Anchorage’s well deck that brings the capsule into the ship, along with four manned LLAMAs (Line Load Attenuation Mechanism Assembly) that control the capsule’s side-to-side movement and a tending line attached to a rigid hull inflatable boat for controlling Orion’s movement behind the ship. The Underway Recovery Test 6 (URT-6) is spearheaded by Kennedy Space Center's NASA Recovery Team. In partnership with the U.S. Navy, the testing will provide important data that is being used to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean.

  1. Operation New Arrivals. Phase 3 - The Phasedown, 29 June 1975 - 19 September 1975. Part 3

    DTIC Science & Technology

    1975-10-01

    easiest way to remove the tent was to peel it off the end of the frame into a truck. When a truck load had been pulled off they were taken to the yard...68.64 Peas $ 58.28 FRUITS § $.13/bottle Bananas $493.36 Applesauce/Apricots $43.68 Applesauce $322.80 Peaches $305.04 Pears

  2. Bonding and Sealing Evaluations for Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1997-01-01

    Several different cryogenic tank concepts are being considered for reusable launch vehicles (RLV'S) . Though different tank concepts are being considered, many will require that the cryogenic insulation be evacuated and be bonded to a structure. In this work, an attempt was made to evaluate the effectiveness of maintaining a vacuum on a specimen where foam or honeycomb core was encased within Gr/Ep. In addition to these tests, flatwise adhesion pull off tests were performed at room temperature with PR 1664, EA 9394, FM-300, Crest 3170, and HT 435 adhesives. The materials bonded included Gr/Ep, Gr/BMI, Al, and stainless steel facesheets, and Ti honeycomb, Hexcel honeycomb, and Rohacell foam core materials.

  3. Fracture resistance of aluminium oxide and lithium disilicate-based crowns using different luting cements: an in vitro study.

    PubMed

    Al-Wahadni, Ahed M; Hussey, David L; Grey, Nicholas; Hatamleh, Muhanad M

    2009-03-01

    The aim of this study was to investigate the fracture resistance of two types of ceramic crowns cemented with two different cements. Forty premolar crowns were fabricated using lithium-disilicate (IPS Empress-2) and glass-infiltrated aluminium-oxide (In-Ceram) ceramic systems. The crowns were divided into four groups (n=10) with Group 1 (IPS Empress-2) and Group 2 (In-Ceram) cemented with glass ionomer cement. Group 3 (IPS Empress-2) and Group 4 (In-Ceram) were cemented with resin cement. Crowns were tested in a universal testing machine at a compressive-load speed of 10 mm/min. Fracture modes were grouped into five categories. One way analysis of variance (ANOVA) and Bonferroni post-hoc tests were used to detect statistical significances (p<0.05). The mean (SD) fracture resistance (Newtons) for Groups 1 to 4 were: 245.35 (82.69), 390.48 (67.03), 269.69 (10.33), and 418.36 (26.24). The cement type had no statistical significant effect (p>0.05) on fracture resistance within each ceramic system tested. In-Ceram crowns cemented with either glass ionomer or resin cements exhibited a statistically significantly higher fracture-resistance than IPS Empress-2 crowns (p<0.05). Minimal fracture in the test crowns was the common mode exhibited. Fracture resistance of IPS Empress-2 and In-Ceram crowns was not affected by the type of cement used for luting. Both In-Ceram and IPS Empress-2 crowns can be successfully luted with the cements tested with In-Ceram exhibiting higher fracture resistance than IPS Empress-2.

  4. Remote Sensing Protocols for Parameterizing an Individual, Tree-Based, Forest Growth and Yield Model

    DTIC Science & Technology

    2014-09-01

    Leaf-Off Tree Crowns in Small Footprint, High Sampling Density LIDAR Data from Eastern Deciduous Forests in North America.” Remote Sensing of...William A. 2003. “Crown-Diameter Prediction Models for 87 Species of Stand- Grown Trees in the Eastern United States.” Southern Journal of Applied...ER D C/ CE RL T R- 14 -1 8 Base Facilities Environmental Quality Remote Sensing Protocols for Parameterizing an Individual, Tree -Based

  5. Lifitegrast Ophthalmic

    MedlinePlus

    ... when you are finished. Do not save the liquid left in the container for your next dose.To instill the eye drops follow these steps: Wash your hands thoroughly with soap and water. Pull off one container of medication ...

  6. Zirconia-implant-supported all-ceramic crowns withstand long-term load: a pilot investigation.

    PubMed

    Kohal, Ralf-J; Klaus, Gerold; Strub, Jörg R

    2006-10-01

    The purpose of this pilot investigation was to test whether zirconia implants restored with different all-ceramic crowns would fulfill the biomechanical requirements for clinical use. Therefore, all-ceramic Empress-1 and Procera crowns were cemented on zirconia implants and exposed to the artificial mouth. Afterwards, the fracture strength of the all-ceramic implant-crown systems was evaluated. Conventional titanium implants restored with porcelain-fused-to-metal (PFM) crowns served as controls. Sixteen titanium implants with 16 PFM crowns and 32 zirconia implants with 16 Empress-1 crowns and 16 Procera crowns each--i.e., three implant-crown groups--were used in this investigation. The titanium implants were fabricated using the ReImplant system and the zirconia implants using the Celay system. The upper left central incisor served as a model for the fabrication of the implants and the crowns. Eight samples of each group were submitted to a long-term load test in the artificial mouth (1.2 million chewing cycles). Subsequently, a fracture strength test was performed with seven of the eight crowns. The remaining eight samples of each group were not submitted to the long-term load in the artificial mouth but were fracture-tested immediately. One loaded and one unloaded sample of each group were evaluated regarding the marginal fit of the crowns. All test samples survived the exposure to the artificial mouth. Three Empress-1 crowns showed cracks in the area of the loading steatite ball. The values for the fracture load in the titanium implant-PFM crown group without artificial loading ranged between 420 and 610 N (mean: 531.4 N), between 460 and 570 N (mean: 512.9 N) in the Empress-1 crown group, and in the Procera crown group the values were between 475 and 700 N (mean: 575.7 N) when not loaded artificially. The results when the specimens were loaded artificially with 1.2 million cycles were as follows: the titanium implant-PFM crowns fractured between 440 and 950 N (mean: 668.6 N), the Empress-1 crowns between 290 and 550 N (mean: 410.7 N), and the Procera crowns between 450 and 725 N (mean: 555.5 N). No statistically significant differences could be found among the groups without artificial load. The fracture values for the PFM and the Procera crowns after artificial loading were statistically significantly higher than that for the loaded Empress-1 crowns. There was no significant difference between the PFM crown group and the Procera group. Within the limits of this pilot investigation, it seems that zirconia implants restored with the Procera crowns possibly fulfill the biomechanical requirements for anterior teeth. However, further investigations with larger sample sizes have to confirm these preliminary results. As three Empress-1 crowns showed crack development in the loading area of the steatite balls in the artificial mouth, their clinical use on zirconia implants has to be questioned.

  7. Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns

    PubMed Central

    Nawafleh, Noor; Öchsner, Andreas; George, Roy

    2018-01-01

    PURPOSE The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between 5℃ and 55℃. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments. PMID:29503716

  8. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    NASA Astrophysics Data System (ADS)

    Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.

    2013-10-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.

  9. Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns.

    PubMed

    Kwon, Taek-Ka; Pak, Hyun-Soon; Yang, Jae-Ho; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun; Yeo, In-Sung

    2013-05-01

    All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. THE MEAN FRACTURE STRENGTHS WERE AS FOLLOWS: 54.9 ± 15.6 N for the Lava CAD/CAM zirconia crowns and 87.0 ± 16.0 N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain.

  10. 40 CFR 63.1384 - Performance test requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... parameter. (3) During each performance test, the owner or operator must monitor and record the glass pull rate for each glass-melting furnace and, if different, the glass pull rate for each rotary spin manufacturing line and flame attenuation manufacturing line. Record the glass pull rate every 15 minutes during...

  11. 40 CFR 63.1384 - Performance test requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... parameter. (3) During each performance test, the owner or operator must monitor and record the glass pull rate for each glass-melting furnace and, if different, the glass pull rate for each rotary spin manufacturing line and flame attenuation manufacturing line. Record the glass pull rate every 15 minutes during...

  12. Fracture strength of lithium disilicate crowns compared to polymer-infiltrated ceramic-network and zirconia reinforced lithium silicate crowns.

    PubMed

    Sieper, Kim; Wille, Sebastian; Kern, Matthias

    2017-10-01

    The aim of this study was to evaluate the fracture strength of crowns made from current CAD/CAM materials. In addition the influence of crown thickness and chewing simulation on the fracture strength was evaluated. Crowns were fabricated from lithium disilicate, zirconia reinforced lithium silicate (ZLS-ceramic) and a polymer-infiltrated ceramic-network (PICN) with an occlusal thickness of 1.0mm or 1.5mm, respectively (n=16). Crowns were cemented on composite dies. Subgroups of eight specimens were loaded with 5kg in a chewing simulator for 1,200,000 cycles with thermal cycling. Finally, all specimens were loaded until fracture in a universal testing machine. Three-way ANOVA was used to detect statistical interaction. Differences regarding the materials were tested with two-way ANOVA, following one-way ANOVA and a post-hoc Tukey's-Test. All crowns survived the chewing simulation. The material had a significant influence on the fracture resistance (p≤0.05). Lithium disilicate achieved the highest values of fracture strength in almost all groups followed by ZLS-ceramic. PICN achieved the lowest values of fracture strength. Chewing simulation increased the fracture strength of thick lithium disilicate crown significantly. Greater occlusal thickness of all crown materials resulted in higher crown fracture strength before chewing simulation. After chewing simulation occlusal thickness of lithium disilicate and PICN crowns had no significant influence on the fracture strength. All crowns revealed fracture strength above the clinically expected loading forces. Therefore the durability of the tested CAD/CAM materials seems promising also in an occlusal thickness of 1.0mm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Large deformation contact mechanics of a pressurized long rectangular membrane. II. Adhesive contact

    PubMed Central

    Srivastava, Abhishek; Hui, Chung-Yuen

    2013-01-01

    In part I of this work, we presented a theory for adhesionless contact of a pressurized neo-Hookean plane-strain membrane to a rigid substrate. Here, we extend our theory to include adhesion using a fracture mechanics approach. This theory is used to study contact hysteresis commonly observed in experiments. Detailed analysis is carried out to highlight the differences between frictionless and no-slip contact. Membrane detachment is found to be strongly dependent on adhesion: for low adhesion, the membrane ‘pinches-off’, whereas for large adhesions, it detaches unstably at finite contact (‘pull-off’). Expressions are derived for the critical adhesion needed for pinch-off to pull-off transition. Above a threshold adhesion, the membrane exhibits bistability, two stable states at zero applied pressure. The condition for bistability for both frictionless and no-slip boundary conditions is obtained explicitly. PMID:24353472

  14. Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law

    NASA Astrophysics Data System (ADS)

    Zhu, Xinyao; Xu, Wei

    2018-02-01

    The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.

  15. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    DOEpatents

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Asif, Syed Amanula Syed

    2013-05-07

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  16. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    DOEpatents

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Syed Asif, Syed Amanula

    2014-07-29

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  17. Antenna Deployment for a Pathfinder Lunar Radio Observatory

    NASA Astrophysics Data System (ADS)

    MacDowall, Robert J.; Minetto, F. A.; Lazio, T. W.; Jones, D. L.; Kasper, J. C.; Burns, J. O.; Stewart, K. P.; Weiler, K. W.

    2012-05-01

    A first step in the development of a large radio observatory on the moon for cosmological or other astrophysical and planetary goals is to deploy a few antennas as a pathfinder mission. In this presentation, we describe a mechanism being developed to deploy such antennas from a small craft, such as a Google Lunar X-prize lander. The antenna concept is to deposit antennas and leads on a polyimide film, such as Kapton, and to unroll the film on the lunar surface. The deployment technique utilized is to launch an anchor which pulls a double line from a reel at the spacecraft. Subsequently, the anchor is set by catching on the surface or collecting sufficient regolith. A motor then pulls in one end of the line, pulling the film off of its roller onto the lunar surface. Detection of a low frequency cutoff of the galactic radio background or of solar radio bursts by such a system would determine the maximum lunar ionospheric density at the time of measurement. The current design and testing, including videos of the deployment, will be presented. These activities are funded in part by the NASA Lunar Science Institute as an activity of the Lunar University Network for Astrophysical Research (LUNAR) consortium. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  18. Antenna Deployment for a Pathfinder Lunar Radio Observatory

    NASA Technical Reports Server (NTRS)

    MacDowall, Robert J.; Minetto, F. A.; Lazio, T. W.; Jones, D. L.; Kasper, J. C.; Burns, J. O.; Stewart, K. P.; Weiler, K. W.

    2012-01-01

    A first step in the development of a large radio observatory on the moon for cosmological or other astrophysical and planetary goals is to deploy a few antennas as a pathfinder mission. In this presentation, we describe a mechanism being developed to deploy such antennas from a small craft, such as a Google Lunar X-prize lander. The antenna concept is to deposit antennas and leads on a polyimide film, such as Kapton, and to unroll the film on the lunar surface. The deployment technique utilized is to launch an anchor which pulls a double line from a reel at the spacecraft. Subsequently, the anchor is set by catching on the surface or collecting sufficient regolith. A motor then pulls in one end of the line, pulling the film off of its roller onto the lunar surface. Detection of a low frequency cutoff of the galactic radio background or of solar radio bursts by such a system would determine the maximum lunar ionospheric density at the time of measurement. The current design and testing, including videos of the deployment, will be presented. These activities are funded in part by the NASA Lunar Science Institute as an activity of the Lunar University Network for Astrophysical Research (LUNAR) consortium. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  19. Effect of thermally growth oxides (TGO) on adhesion strength for high purity yitria stabilised zirconia (YSZ) and rare - Earth lanthanum zirconates (LZ) multilayer thermal barrier coating before and after isothermal heat treatment

    NASA Astrophysics Data System (ADS)

    Yunus, Salmi Mohd; Johari, Azril Dahari; Husin, Shuib

    2017-12-01

    Investigation on the effect of Thermally Growth Oxides (TGO) on the adhesion strength for thermal barrier coating (TBC) was carried out. The TBC under studied was the multilayer systems which consist of NiCrAlY bond coat and YSZ/LZ ceramic coating deposited on Ni-based superalloy substrates. The development of thermally growth oxides (TGO) for both TBC systems after isothermal heat treatment was measured. Isothermal heat treatment was carried out at 1100 ˚C for 100 hours to age the samples. ASTM D4541: Standard Test Method for Pull-off Strength of Coatings using Portable Adhesion Tester was used to measure the adhesion strength of both TBC systems before and after heat treatment. The effect of the developed TGO on the measured adhesion strength was examined and correlation between them was established individually for both TBC systems. The failure mechanism of the both system was also identified; either cohesive or adhesive or the combination of both. The results showed that TGO has more than 50% from the bond coat layer for rare-earth LZ system compared to the typical YSZ system, which was less than 10 % from the bond coat layer. This leads to the lower adhesion strength of rare-earth LZ coating system compared to typical YSZ system. Failure mechanism during the pull-off test also was found to be different for both TBC systems. The typical YSZ system experienced cohesive failure whereas the rare-earth LZ system experienced the combination of cohesive and adhesive failure.

  20. Analysis of Full-Test tools and their limitations as applied to terminal junction blocks

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1983-01-01

    Discovery of unlocked contacts in Deutsch Block terminal junctions in Solid Rocket Booster flight hardware prompted an investigation into pull test techniques to help insure against possible failures. Internal frictional forces between socket and pin and between wire and grommet were examined. Pull test force must be greater than internal friction yet less than the crimp strength of the pin or socket. For this reason, a 100 percent accurate test is impossible. Test tools were evaluated. Available tools are adequate for pull testing.

  1. Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns

    PubMed Central

    Kwon, Taek-Ka; Pak, Hyun-Soon; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun

    2013-01-01

    PURPOSE All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. MATERIALS AND METHODS Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. RESULTS The mean fracture strengths were as follows: 54.9 ± 15.6 N for the Lava CAD/CAM zirconia crowns and 87.0 ± 16.0 N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. CONCLUSION The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain. PMID:23755332

  2. Comparative evaluation of marginal leakage of provisional crowns cemented with different temporary luting cements: In vitro study.

    PubMed

    Arora, Sheen Juneja; Arora, Aman; Upadhyaya, Viram; Jain, Shilpi

    2016-01-01

    As, the longevity of provisional restorations is related to, a perfect adaptation and a strong, long-term union between restoration and teeth structures, therefore, evaluation of marginal leakage of provisional restorative materials luted with cements using the standardized procedures is essential. To compare the marginal leakage of the provisional crowns fabricated from Autopolymerizing acrylic resin crowns and bisphenol A-glycidyl dimethacrylate (BIS-GMA) resin crowns. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin crowns and BIS-GMA resin crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin (SC-10) crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from BIS-GMA resin crowns (Protemp 4) cemented with different temporary luting cements. Freshly extracted 60 maxillary premolars of approximately similar dimensions were mounted in dental plaster. Tooth reduction with shoulder margin was planned to use a customized handpiece-holding jig. Provisional crowns were prepared using the wax pattern fabricated from computer aided designing/computer aided manufacturing milling machine following the tooth preparation. Sixty provisional crowns were made, thirty each of SC-10 and Protemp 4 and were then cemented with three different luting cements. Specimens were thermocycled, submerged in a 2% methylene blue solution, then sectioned and observed under a stereomicroscope for the evaluation of marginal microleakage. A five-level scale was used to score dye penetration in the tooth/cement interface and the results of this study was analyzed using the Chi-square test, Mann-Whitney U-test, Kruskal-Wallis H-test and the results were statistically significant P < 0.05 the power of study - 80%. Marginal leakage was significant in both provisional crowns cemented with three different luting cements along the axial walls of teeth (P < 0.05) confidence interval - 95%. The temporary cements with eugenol showed more microleakage than those without eugenol. SC-10 crowns showed more microleakage compared to Protemp 4 crowns. SC-10 crowns cemented with Kalzinol showed maximum microleakage and Protemp 4 crowns cemented with HY bond showed least microleakage.

  3. Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns.

    PubMed

    Kassem, Amr S; Atta, Osama; El-Mowafy, Omar

    2012-01-01

    The aim of this study was to determine effect of compressive cyclic loading on fatigue resistance and microleakage of monolithic CAD/CAM molar ceramic and composite crowns. Thirty-two extracted molars were prepared to receive CEREC crowns according to manufacturer's guidelines using a special paralleling device (Parallel-A-Prep). Sixteen feldspathic ceramic crowns (VITABLOCS Mark II) (VMII) and 16 resin-composite crowns (Paradigm-MZ100 blocks) (PMZ) were milled using a CEREC-3D machine. Eight crowns of each group were cemented to their respective teeth using self-etching resin cement (Panavia-F-2.0) (PAN), and eight were cemented using self-adhesive resin cement (RelyX-Unicem-Clicker) (RXU). Following storage for 1 week in water, specimens were subjected to uniaxial compressive cyclic loading in an Instron testing machine at 12 Hz for 1,000,000 cycles. Load was applied at the central fossa, and the cycle range was 60-600 N. Specimens were then subjected to microleakage testing. Data were statistically analyzed using factorial ANOVA and Post Hoc (Tukey HSD) tests. All composite crowns survived compressive cyclic loading without fracture, while three ceramic crowns from the subgroup cemented with RXU developed surface cracks at the center of occlusal surfaces, extending laterally. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other three subgroups (p < 0.05). After 1,000,000 cycles of compressive cyclic loading, PMZ composite molar crowns were more fatigue-resistant than VMII ceramic crowns. Cement type had a significant effect on fatigue resistance of the ceramic crowns but not the composite ones. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other subgroups (p < 0.05). © 2011 by The American College of Prosthodontists.

  4. Analytical solutions for efficient interpretation of single-well push-pull tracer tests

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Christ, John A.; Goltz, Mark N.

    2010-08-01

    Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations describing the governing processes acting on a dissolved compound during a modified push-pull test (advection, longitudinal and transverse dispersion, first-order decay, and rate-limited sorption/partitioning in steady, divergent, and convergent flow fields) is developed. The coupling of this solution with inverse modeling to estimate aquifer parameters provides an efficient methodology for subsurface characterization. Synthetic data for single-well push-pull tests are employed to demonstrate the utility of the solution for determining (1) estimates of aquifer longitudinal and transverse dispersivities, (2) sorption distribution coefficients and rate constants, and (3) non-aqueous phase liquid (NAPL) saturations. Employment of the solution to estimate NAPL saturations based on partitioning and non-partitioning tracers is designed to overcome limitations of previous efforts by including rate-limited mass transfer. This solution provides a new tool for use by practitioners when interpreting single-well push-pull test results.

  5. Fracture loads of all-ceramic crowns under wet and dry fatigue conditions.

    PubMed

    Borges, Gilberto A; Caldas, Danilo; Taskonak, Burak; Yan, Jiahau; Sobrinho, Lourenco Correr; de Oliveira, Wildomar José

    2009-12-01

    The aim of this study was to test the hypothesis that fracture loads of fatigued dental ceramic crowns are affected by testing environment and luting cement. One hundred and eighty crowns were prepared from bovine teeth using a lathe. Ceramic crowns were prepared from three types of ceramic systems: an alumina-infiltrated ceramic, a lithia-disilicate-based glass ceramic, and a leucite-reinforced ceramic. For each ceramic system, 30 crowns were cemented with a composite resin cement, and the remaining 30 with a resin-modified glass ionomer cement. For each ceramic system and cement, ten specimens were loaded to fracture without fatiguing. A second group (n = 10) was subjected to cyclic fatigue and fracture tested in a dry environment, and a third group (n = 10) was fatigued and fractured in distilled water. The results were statistically analyzed using one-way ANOVA and Tukey HSD test. The fracture loads of ceramic crowns decreased significantly after cyclic fatigue loading (p

  6. Close up view of switchboard panel operator's station #1; panel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of switchboard panel operator's station #1; panel contains 1200 push-pull button switches which control poer to red, green, and white indicating lights on the model board; white lights indicate that power is off; green lights indicate that equipment (switch breaker or transformer) is off; red lights indicate that equipment is on - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA

  7. Fit of cast commercially pure titanium and Ti-6Al-4V alloy crowns before and after marginal refinement by electrical discharge machining.

    PubMed

    Contreras, Edwin Fernando Ruiz; Henriques, Guilherme Elias Pessanha; Giolo, Suely Ruiz; Nobilo, Mauro Antonio Arruda

    2002-11-01

    Titanium has been suggested as a replacement for alloys currently used in single-tooth restorations and fixed partial dentures. However, difficulties in casting have resulted in incomplete margins and discrepancies in marginal fit. This study evaluated and compared the marginal fit of crowns fabricated from a commercially pure titanium (CP Ti) and from Ti-6Al-4V alloy with crowns fabricated from a Pd-Ag alloy that served as a control. Evaluations were performed before and after marginal refinement by electrical discharge machining (EDM). Forty-five bovine teeth were prepared to receive complete cast crowns. Stone and copper-plated dies were obtained from impressions. Fifteen crowns were cast with each alloy (CP Ti, Ti-6Al-4V, and Pd-Ag). Marginal fit measurements (in micrometers) were recorded at 4 reference points on each casting with a traveling microscope. Marginal refinement with EDM was conducted on the titanium-based crowns, and measurements were repeated. Data were analyzed with the Kruskal-Wallis test, paired t test, and independent t test at a 1% probability level. The Kruskal-Wallis test showed significant differences among mean values of marginal fit for the as-cast CP Ti crowns (mean [SD], 83.9 [26.1] microm) and the other groups: Ti-6Al-4V (50.8 [17.2] microm) and Pd-Ag (45.2 [10.4] microm). After EDM marginal refinement, significant differences were detected among the Ti-6Al-4V crowns (24.5 [10.9] microm) and the other 2 groups: CP Ti (50.6 [20.0] microm) and Pd-Ag (not modified by EDM). Paired t test results indicated that marginal refinement with EDM effectively improved the fit of CP Ti crowns (from 83.9 to 50.6 microm) and Ti-6Al-4V crowns (from 50.8 to 24.5 microm). However, the difference in improvement between the two groups was not significant by t test. Within the limitations of this study, despite the superior results for Ti-6Al-4V, both groups of titanium-based crowns had clinically acceptable marginal fits. After EDM marginal refinement, the fit of cast CP Ti and Ti-6Al-4V crowns improved significantly.

  8. The effect of zirconium-based surface treatment on the cathodic disbonding resistance of epoxy coated mild steel

    NASA Astrophysics Data System (ADS)

    Ghanbari, A.; Attar, M. M.

    2014-10-01

    The effect of zirconium-based surface treatment on the cathodic disbonding resistance and adhesion performance of an epoxy coated mild steel substrate was investigated. The obtained data from pull-off, cathodic disbonding test and electrochemical impedance spectroscopy (EIS) indicated that the zirconium conversion layer significantly improved the adhesion strength and cathodic disbonding resistance of the epoxy coating. This may be attributed to formation of some polar zirconium compounds on the surface and increment of surface roughness, that were evident in the results of field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM), respectively.

  9. The seating mechanics of head-neck modular tapers in vitro: Load-displacement measurements, moisture, and rate effects.

    PubMed

    Ouellette, Eric S; Shenoy, Aarti A; Gilbert, Jeremy L

    2018-04-01

    The mechanically assisted crevice corrosion performance of head-neck modular tapers is a significant concern in orthopedic biomaterials. Fretting crevice corrosion processes in modular tapers are thought to be influenced by a wide array of factors including seating mechanics of the junction, hence there is a need for in vitro test methods that can assess their performance. This study presented a test method to directly measure the load-displacement seating mechanics of modular tapers and used this method to compare the seating mechanics for different tapers, moisture, seating loads and seating rates. Seating mechanics were explored whereby the instantaneous load-displacement behavior of the head seating onto the neck is captured and used to define the mechanics of seating. Two distinct taper design/material combinations were assembled wet or dry using axially applied loads (500, 1,000, 2,000, and 4,000 N) at two loading rates of 100 and 10 4  N/s (n = 5 for each condition) using a servohydraulic test frame. The results showed that pull-off strength scaled with seating load and ranged between 43% and 68% of seating load depending on sample and wetness. Tapers seated wet had higher pull-off strengths (2,200 ± 300 N) than those seated dry (1,800 ± 200 N, p < 0.05). Seating mechanics (load-displacement plots) varied due to sample type and due to wetness with differences in seating energy, seating stiffness, and seating displacement. These results show the detailed mechanics of seating during assembly and provide significant insight into the complex interplay of factors associated with even "ideal" seating (axial, quasistatic) loading. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1164-1172, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. In Vitro Evaluation and Mechanism Analysis of the Fiber Shedding Property of Textile Pile Debridement Materials

    PubMed Central

    Fu, Yijun; Xie, Qixue; Lao, Jihong; Wang, Lu

    2016-01-01

    Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times) were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration. PMID:28773428

  11. Evaluation of the fracture resistance of computer-aided design/computer-aided manufacturing monolithic crowns prepared in different cement thicknesses.

    PubMed

    Sagsoz, N Polat; Yanıkoglu, N

    2018-04-01

    The purpose of this study was to evaluate the fracture resistance of monolithic computer-aided design/computer-aided manufacturing (CAD/CAM) crowns that are prepared with different cement thickness. For this investigation, a human maxillary premolar tooth was selected. Master model preparation was performed with a demand bur under water spray. Master die was taken to fabricate 105 epoxy resin replicas. The crowns were milled using a CEREC 4 CAD/CAM system (Software Version, 4.2.0.57192). CAD/CAM crowns were made using resin nanoceramic, feldspathic glass ceramic, lithium disilicate, and leucite-reinforced ceramics. Each group was subdivided into three groups in accordance with three different cement thicknesses (30, 90, and 150 μm). Crowns milled out. Then RelyX ™ U200 was used as a luting agent to bond the crowns to the prepared samples. After one hour cementations, the specimens were stored in water bath at 37°C for 1 week before testing. Seven unprepared and unrestored teeth were kept and tested as a control group. A universal test machine was used to assume the fracture resistance of all specimens. The compressive load (N) that caused fracture was recorded for each specimen. Fracture resistance data were statistically analyzed by one-way ANOVA and two-factor interaction modeling test (α = 0.001). There are statistically significant differences between fracture resistances of CAD/CAM monolithic crown materials (P < 0.001). It is seen that cement thickness is not statistically significant for fracture resistance of CAD/CAM monolithic crowns (P > 0.001). CAD/CAM monolithic crown materials affected fracture resistance. Cement thickness (30, 90, and 150 μm) was not effective on fracture resistance of CAD/CAM monolithic crowns.

  12. [Design on tester of pull-out force for orthodontic micro implant].

    PubMed

    Su, He; Wu, Pei; Wang, Huiyuan; Chen, Yan; Bao, Xuemei

    2013-09-01

    A special device for measuring the pull-out force of orthodontic micro implant was designed, which has the characteristics of simple construction and easy operation, and can be used to detect the pull-out-force of orthodontic micro implant. The tested data was stored and analyzed by a computer, and as the results, the pull-out-force curve, maximum pull-out force as well as average pull-out force were outputted, which was applied in analyzing or investigating the initial stability and immediate loading property of orthodontic micro implant.

  13. Dual switchable CRET-induced luminescence of CdSe/ZnS quantum dots (QDs) by the hemin/G-quadruplex-bridged aggregation and deaggregation of two-sized QDs.

    PubMed

    Hu, Lianzhe; Liu, Xiaoqing; Cecconello, Alessandro; Willner, Itamar

    2014-10-08

    The hemin/G-quadruplex-catalyzed generation of chemiluminescence through the oxidation of luminol by H2O2 stimulates the chemiluminescence resonance energy transfer (CRET) to CdSe/ZnS quantum dots (QDs), resulting in the luminescence of the QDs. By the cyclic K(+)-ion-induced formation of the hemin/G-quadruplex linked to the QDs, and the separation of the G-quadruplex in the presence of 18-crown-6-ether, the ON-OFF switchable CRET-induced luminescence of the QDs is demonstrated. QDs were modified with nucleic acids consisting of the G-quadruplex subunits sequences and of programmed domains that can be cross-linked through hybridization, using an auxiliary scaffold. In the presence of K(+)-ions, the QDs aggregate through the cooperative stabilization of K(+)-ion-stabilized G-quadruplex bridges and duplex domains between the auxiliary scaffold and the nucleic acids associated with the QDs. In the presence of 18-crown-6-ether, the K(+)-ions are eliminated from the G-quadruplex units, leading to the separation of the aggregated QDs. By the cyclic treatment of the QDs with K(+)-ions/18-crown-6-ether, the reversible aggregation/deaggregation of the QDs is demonstrated. The incorporation of hemin into the K(+)-ion-stabilized G-quadruplex leads to the ON-OFF switchable CRET-stimulated luminescence of the QDs. By the mixing of appropriately modified two-sized QDs, emitting at 540 and 610 nm, the dual ON-OFF activation of the luminescence of the QDs is demonstrated.

  14. Comparative evaluation of marginal leakage of provisional crowns cemented with different temporary luting cements: In vitro study

    PubMed Central

    Arora, Sheen Juneja; Arora, Aman; Upadhyaya, Viram; Jain, Shilpi

    2016-01-01

    Background or Statement of Problem: As, the longevity of provisional restorations is related to, a perfect adaptation and a strong, long-term union between restoration and teeth structures, therefore, evaluation of marginal leakage of provisional restorative materials luted with cements using the standardized procedures is essential. Aims and Objectives: To compare the marginal leakage of the provisional crowns fabricated from Autopolymerizing acrylic resin crowns and bisphenol A-glycidyl dimethacrylate (BIS-GMA) resin crowns. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin crowns and BIS-GMA resin crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin (SC-10) crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from BIS-GMA resin crowns (Protemp 4) cemented with different temporary luting cements. Methodology: Freshly extracted 60 maxillary premolars of approximately similar dimensions were mounted in dental plaster. Tooth reduction with shoulder margin was planned to use a customized handpiece-holding jig. Provisional crowns were prepared using the wax pattern fabricated from computer aided designing/computer aided manufacturing milling machine following the tooth preparation. Sixty provisional crowns were made, thirty each of SC-10 and Protemp 4 and were then cemented with three different luting cements. Specimens were thermocycled, submerged in a 2% methylene blue solution, then sectioned and observed under a stereomicroscope for the evaluation of marginal microleakage. A five-level scale was used to score dye penetration in the tooth/cement interface and the results of this study was analyzed using the Chi-square test, Mann–Whitney U-test, Kruskal–Wallis H-test and the results were statistically significant P < 0.05 the power of study - 80%. Results: Marginal leakage was significant in both provisional crowns cemented with three different luting cements along the axial walls of teeth (P < 0.05) confidence interval - 95%. Conclusion: The temporary cements with eugenol showed more microleakage than those without eugenol. SC-10 crowns showed more microleakage compared to Protemp 4 crowns. SC-10 crowns cemented with Kalzinol showed maximum microleakage and Protemp 4 crowns cemented with HY bond showed least microleakage. PMID:27134427

  15. Push-pull tests for estimating effective porosity: expanded analytical solution and in situ application

    NASA Astrophysics Data System (ADS)

    Paradis, Charles J.; McKay, Larry D.; Perfect, Edmund; Istok, Jonathan D.; Hazen, Terry C.

    2018-03-01

    The analytical solution describing the one-dimensional displacement of the center of mass of a tracer during an injection, drift, and extraction test (push-pull test) was expanded to account for displacement during the injection phase. The solution was expanded to improve the in situ estimation of effective porosity. The truncated equation assumed displacement during the injection phase was negligible, which may theoretically lead to an underestimation of the true value of effective porosity. To experimentally compare the expanded and truncated equations, single-well push-pull tests were conducted across six test wells located in a shallow, unconfined aquifer comprised of unconsolidated and heterogeneous silty and clayey fill materials. The push-pull tests were conducted by injection of bromide tracer, followed by a non-pumping period, and subsequent extraction of groundwater. The values of effective porosity from the expanded equation (0.6-5.0%) were substantially greater than from the truncated equation (0.1-1.3%). The expanded and truncated equations were compared to data from previous push-pull studies in the literature and demonstrated that displacement during the injection phase may or may not be negligible, depending on the aquifer properties and the push-pull test parameters. The results presented here also demonstrated the spatial variability of effective porosity within a relatively small study site can be substantial, and the error-propagated uncertainty of effective porosity can be mitigated to a reasonable level (< ± 0.5%). The tests presented here are also the first that the authors are aware of that estimate, in situ, the effective porosity of fine-grained fill material.

  16. Autonomous Sensor Motes Employing Liquid-Bearing Rotary Stages

    DTIC Science & Technology

    2014-03-06

    breaks off (Fig. 27d) as shown in the sudden change in force, indicating rotor pull off. The minimum of each curve indicates the maximum tensile load...configuration, with marks on the curves at the minimum energy positions are shown in Fig. 39. The minimum energy positions from Fig. 39are plotted as...rates between 5 and 17 Hz rotation rate plotted vs. rotor eccentricity. The minimum energy positions are indicated on each curve . 3.3 Discussion

  17. Does the plant defend itself against leaf-feeding insects?

    Treesearch

    Paul M. Rafes

    1991-01-01

    Trees do not actively respond to herbivore grazing, they react to the deterioration in the balance of their roots and crowns functions, which comes when transpiration powers fall off. Such inherent reactions of plants originated as abilities to restore photosynthesis.

  18. Apomorphine

    MedlinePlus

    ... needle unit. Wash your hands with soap and water. If you already have a medication cartridge in the injector pen, go to step 7 below. To insert a new medication cartridge into the injector pen, follow steps 3 through 6. Pull off the grey pen cap. Unscrew the cartridge holder from the ...

  19. Adhesive contact of a rigid circular cylinder to a soft elastic substrate--the role of surface tension.

    PubMed

    Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen

    2015-05-21

    This article studies the effects of surface tension on the adhesive contact mechanics of a long rigid cylinder on an infinite half space comprising an incompressible elastic material. We present an exact solution based on small strain theory. The relationship between the indentation force and contact width was found to depend on a single dimensionless parameter ω = σ/[4(μR)(2/3)(W(ad)/2π)(1/3'), where R is the cylinder radius, Wad is the interfacial work of adhesion, and σ and μ are the surface tension and shear modulus of the half space, respectively. For small ω the solution reduces to the classical Johnson-Kendall-Roberts (JKR) theory, whereas for large ω the solution reduces to the small slope version of the Young-Dupre equation. The pull-off phenomenon was carefully examined and it was found that the contact width at pull-off reduces to zero when surface tension is larger than a critical value.

  20. Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads

    PubMed Central

    Xue, Longjian; Kovalev, Alexander; Eichler-Volf, Anna; Steinhart, Martin; Gorb, Stanislav N.

    2015-01-01

    Many insect species reversibly adhere to surfaces by combining contact splitting (contact formation via fibrillar contact elements) and wet adhesion (supply of liquid secretion via pores in the insects’ feet). Here, we fabricate insect-inspired fibrillar pads for wet adhesion containing continuous pore systems through which liquid is supplied to the contact interfaces. Synergistic interaction of capillarity and humidity-induced pad softening increases the pull-off force and the work of adhesion by two orders of magnitude. This increase and the independence of pull-off force on the applied load are caused by the capillarity-supported formation of solid–solid contact between pad and the surface. Solid–solid contact dominates adhesion at high humidity and capillarity at low humidity. At low humidity, the work of adhesion strongly depends on the amount of liquid deposited on the surface and, therefore, on contact duration. These results may pave the way for the design of insect-inspired adhesive pads. PMID:25791574

  1. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete.

    PubMed

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-29

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.

  2. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete

    PubMed Central

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-01

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant. PMID:28787948

  3. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate.

    PubMed

    Gomes, Rafael Soares; Souza, Caroline Mathias Carvalho de; Bergamo, Edmara Tatiely Pedroso; Bordin, Dimorvan; Del Bel Cury, Altair Antoninha

    2017-01-01

    In this study, marginal and internal misfit and fracture load with and without thermal-mechanical aging (TMA) of monolithic ZLS and lithium disilicate (LDS) crowns were evaluated. Crowns were milled using a computer-aided design/computer-aided manufacturing system. Marginal gaps (MGs), absolute marginal discrepancy (AMD), axial gaps, and occlusal gaps were measured by X-ray microtomography (n=8). For fracture load testing, crowns were cemented in a universal abutment, and divided into four groups: ZLS without TMA, ZLS with TMA, LDS without TMA, and LDS with TMA (n=10). TMA groups were subjected to 10,000 thermal cycles (5-55°C) and 1,000,000 mechanical cycles (200 N, 3.8 Hz). All groups were subjected to compressive strength testing in a universal testing machine at a crosshead speed of 1 mm/min until failure. Student's t-test was used to examine misfit, two-way analysis of variance was used to analyze fracture load, and Pearson's correlation coefficients for misfit and fracture load were calculated (α=0.05). The materials were analyzed according to Weibull distribution, with 95% confidence intervals. Average MG (p<0.001) and AMD (p=0.003) values were greater in ZLS than in LDS crowns. TMA did not affect the fracture load of either material. However, fracture loads of ZLS crowns were lower than those of LDS crowns (p<0.001). Fracture load was moderately correlated with MG (r=-0.553) and AMD (r=-0.497). ZLS with TMA was least reliable, according to Weibull probability. Within the limitations of this study, ZLS crowns had lower fracture load values and greater marginal misfit than did LDS crowns, although these values were within acceptable limits.

  4. Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test.

    PubMed

    Ramos Verri, Fellippo; Santiago Junior, Joel Ferreira; de Faria Almeida, Daniel Augusto; de Oliveira, Guilherme Bérgamo Brandão; de Souza Batista, Victor Eduardo; Marques Honório, Heitor; Noritomi, Pedro Yoshito; Pellizzer, Eduardo Piza

    2015-01-02

    The study of short implants is relevant to the biomechanics of dental implants, and research on crown increase has implications for the daily clinic. The aim of this study was to analyze the biomechanical interactions of a singular implant-supported prosthesis of different crown heights under vertical and oblique force, using the 3-D finite element method. Six 3-D models were designed with Invesalius 3.0, Rhinoceros 3D 4.0, and Solidworks 2010 software. Each model was constructed with a mandibular segment of bone block, including an implant supporting a screwed metal-ceramic crown. The crown height was set at 10, 12.5, and 15 mm. The applied force was 200 N (axial) and 100 N (oblique). We performed an ANOVA statistical test and Tukey tests; p<0.05 was considered statistically significant. The increase of crown height did not influence the stress distribution on screw prosthetic (p>0.05) under axial load. However, crown heights of 12.5 and 15 mm caused statistically significant damage to the stress distribution of screws and to the cortical bone (p<0.001) under oblique load. High crown to implant (C/I) ratio harmed microstrain distribution on bone tissue under axial and oblique loads (p<0.001). Crown increase was a possible deleterious factor to the screws and to the different regions of bone tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Retention of esthetic veneers on primary stainless steel crowns.

    PubMed

    Baker, L H; Moon, P; Mourino, A P

    1996-01-01

    The purpose of this study was to ascertain the amount of shearing force necessary to fracture, dislodge or deform the esthetic veneer facings of four commercially available veneered primary incisor stainless steel crowns. The four types tested were: Cheng Crowns, [Peter Cheng Orthodontic Laboratory]; Whiter Biter Crown II, [White Bite Inc.]; Kinder Krowns, [Mayclin Dental Studio, Inc]; and NuSmile Primary Crowns, [Orthodontic Technologies, Inc]. The crowns (#4 right central incisor) from each manufacturer were obtained with the facings attached. The crowns were soaked for ninety days and thermocycled at 4 degrees C and 55 degrees C for 500 45-second cycles. The crowns were cemented to standardized chromium cobalt metal dies. Each die was placed in to a custom holder on the Instron Universal testing machine. A force was applied at the incisal edge of the veneer at 148 degrees, (the primary interincisal angle), with a crosshead speed of 0.05 inches/minute until the veneer either fractured, dislodged or deformed. The mean force (Ibs) required +/- SD to produce failure, in descending order, was as follows: Cheng (107.8 +/- 17.3); NuSmile (100.2 +/- 18.2); KinderKrown (91.3 +/- 27.4)d Whiter Biter (81.5 +/- 21.7). To test the hypothesis of no difference among the four manufacturers, an analysis of variance was performed using PROC GLM. The resultant F statistic was 2.79 (p < 0.0543), indicating a marginally statistically significant difference in the response variable "pressure" among the four groups. A posthoc test was then performed to ascertain where these differences occurred. These results, using Turkey's studentized range test for pairwise comparisons, suggested that the only difference was between the Cheng and Whiter Biter manufacturers.

  6. Analytical solutions for efficient interpretation of single-well push-pull tracer tests

    EPA Science Inventory

    Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations descr...

  7. Customer Responsiveness

    NASA Technical Reports Server (NTRS)

    Chiu, Mary

    2002-01-01

    If you know anyone who's been involved in building a spacecraft, I'm sure you've heard the mantra, 'Test what you fly, and fly what you test.' Listen to a project manager from my institution (The Johns Hopkins Applied Physics Laboratory, a.k.a. APL) talking in his or her sleep, and this is likely what you're going to hear. At APL, we do a lot of testing. We probably do more testing in the initial stages of a project than we could explain to review boards. Perhaps we are conservative in this respect, but our project managers and engineers believe in getting a good night's sleep before a launch, and testing is a good way of ensuring that. So you can imagine my reaction when the NASA project manager, Don Margolies, suggested that on the Advanced Composition Explorer (ACE) mission we pull all the instruments off the spacecraft after we had just completed the full range of environmental testing. This would allow the scientists to do a better job of calibrating their instruments.

  8. Chemicals and Structural Foams to Neutralize or Defeat Anti-Personnel Mines

    DTIC Science & Technology

    1990-10-01

    first-level goals in LD. This shows the basic approach used for this analysis. I OVERALL GOALi Select Best Foam System II Best Foam Product Best Delivery...pouring back and forth three times would have three steps for that part of the process, plus any other motions, such as pulling off the lid, and...i B-II I I I I I I :’½ j> I I I I 3 Typical Tilt-Rod AP Mine I I I I I I Typical Pull Firing Pin Device H I I I I I I I iPrsu -SniiePatcCsdMn I i

  9. Installing fiber insulation

    NASA Technical Reports Server (NTRS)

    Wang, D. S.; Warren, A. D. (Inventor)

    1980-01-01

    A method for installing fragile, high temperature insulation batting in an elongated cavity or in a resilient wire sleeve to form a resilient seal. The batting is preformed to rough dimensions and wrapped in a plastic film, the film being of a material which is fugitive at a high temperature. The film is heat sealed and trimmed to form a snugly fit skin which overlaps at least at one end to permit attachment of a pull cord. The film absorbs the tensile force of pulling the film enclosed batting through the cavity or wire mesh sleeve and is subsequently driven off by high temperature baking, leaving only the insulation in the cavity or wire mesh sleeve.

  10. Effect of cements on fracture resistance of monolithic zirconia crowns

    PubMed Central

    Nakamura, Keisuke; Mouhat, Mathieu; Nergård, John Magnus; Lægreid, Solveig Jenssen; Kanno, Taro; Milleding, Percy; Örtengren, Ulf

    2016-01-01

    Abstract Objectives The present study investigated the effect of cements on fracture resistance of monolithic zirconia crowns in relation to their compressive strength. Materials and methods Four different cements were tested: zinc phosphate cement (ZPC), glass-ionomer cement (GIC), self-adhesive resin-based cement (SRC) and resin-based cement (RC). RC was used in both dual cure mode (RC-D) and chemical cure mode (RC-C). First, the compressive strength of each cement was tested according to a standard (ISO 9917-1:2004). Second, load-to-failure test was performed to analyze the crown fracture resistance. CAD/CAM-produced monolithic zirconia crowns with a minimal thickness of 0.5 mm were prepared and cemented to dies with each cement. The crown–die samples were loaded until fracture. Results The compressive strength of SRC, RC-D and RC-C was significantly higher than those of ZPC and GIC (p < 0.05). However, there was no significant difference in the fracture load of the crown between the groups. Conclusion The values achieved in the load-to-failure test suggest that monolithic zirconia crowns with a minimal thickness of 0.5 mm may have good resistance against fracture regardless of types of cements. PMID:27335900

  11. Investigation on Bond-Slip Behavior of Z-Pin Interfaces in X-Cor® Sandwich Structures Using Z-Pin Pull-Out Test

    NASA Astrophysics Data System (ADS)

    Shan, Hangying; Xiao, Jun; Chu, Qiyi

    2018-05-01

    The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.

  12. INTERSESSION RELIABILITY OF UPPER EXTREMITY ISOKINETIC PUSH-PULL TESTING.

    PubMed

    Riemann, Bryan L; Davis, Sarah E; Huet, Kevin; Davies, George J

    2016-02-01

    Based on the frequency pushing and pulling patterns are used in functional activities, there is a need to establish an objective method of quantifying the muscle performance characteristics associated with these motions, particularly during the later stages of rehabilitation as criteria for discharge. While isokinetic assessment offers an approach to quantifying muscle performance, little is known about closed kinetic chain (CKC) isokinetic testing of the upper extremity (UE). To determine the intersession reliability of isokinetic upper extremity measurement of pushing and pulling peak force and average power at slow (0.24 m/s), medium (0.43 m/s) and fast (0.61 m/s) velocities in healthy young adults. The secondary purpose was to compare pushing and pulling peak force (PF) and average power (AP) between the upper extremity limbs (dominant, non-dominant) across the three velocities. Twenty-four physically active men and women completed a test-retest (>96 hours) protocol in order to establish isokinetic UE CKC reliability of PF and AP during five maximal push and pull repetitions at three velocities. Both limb and speed orders were randomized between subjects. High test-retest relative reliability using intraclass correlation coefficients (ICC2, 1) were revealed for PF (.91-.97) and AP (.85-.95) across velocities, limbs and directions. PF typical error (% coefficient of variation) ranged from 6.1% to 11.3% while AP ranged from 9.9% to 26.7%. PF decreased significantly (p < .05) as velocity increased whereas AP increased as velocity increased. PF and AP during pushing were significantly greater than pulling at all velocities, however the push-pull differences in PF became less as velocity increased. There were no significant differences identified between the dominant and nondominant limbs. Isokinetically derived UE CKC push-pull PF and AP are reliable measures. The lack of limb differences in healthy normal participants suggests that clinicians can consider bilateral comparisons when interpreting test performance. The increase in pushing PF and AP compared to pulling can be attributed to the muscles involved and the frequency that pushing patterns are used during functional activities. 3.

  13. Toward automating Hammersmith pulled-to-sit examination of infants using feature point based video object tracking.

    PubMed

    Dogra, Debi P; Majumdar, Arun K; Sural, Shamik; Mukherjee, Jayanta; Mukherjee, Suchandra; Singh, Arun

    2012-01-01

    Hammersmith Infant Neurological Examination (HINE) is a set of tests used for grading neurological development of infants on a scale of 0 to 3. These tests help in assessing neurophysiological development of babies, especially preterm infants who are born before (the fetus reaches) the gestational age of 36 weeks. Such tests are often conducted in the follow-up clinics of hospitals for grading infants with suspected disabilities. Assessment based on HINE depends on the expertise of the physicians involved in conducting the examinations. It has been noted that some of these tests, especially pulled-to-sit and lateral tilting, are difficult to assess solely based on visual observation. For example, during the pulled-to-sit examination, the examiner needs to observe the relative movement of the head with respect to torso while pulling the infant by holding wrists. The examiner may find it difficult to follow the head movement from the coronal view. Video object tracking based automatic or semi-automatic analysis can be helpful in this case. In this paper, we present a video based method to automate the analysis of pulled-to-sit examination. In this context, a dynamic programming and node pruning based efficient video object tracking algorithm has been proposed. Pulled-to-sit event detection is handled by the proposed tracking algorithm that uses a 2-D geometric model of the scene. The algorithm has been tested with normal as well as marker based videos of the examination recorded at the neuro-development clinic of the SSKM Hospital, Kolkata, India. It is found that the proposed algorithm is capable of estimating the pulled-to-sit score with sensitivity (80%-92%) and specificity (89%-96%).

  14. Fracture load and failure analysis of zirconia single crowns veneered with pressed and layered ceramics after chewing simulation.

    PubMed

    Stawarczyk, Bogna; Ozcan, Mutlu; Roos, Malgorzata; Trottmann, Albert; Hämmerle, Christoph H F

    2011-01-01

    This study determined the fracture load of zirconia crowns veneered with four overpressed and four layered ceramics after chewing simulation. The veneered zirconia crowns were cemented and subjected to chewing cycling. Subsequently, the specimens were loaded at an angle of 45° in a Universal Testing Machine to determine the fracture load. One-way ANOVA, followed by a post-hoc Scheffé test, t-test and Weibull statistic were performed. Overpressed crowns showed significantly lower fracture load (543-577 N) compared to layered ones (805-1067 N). No statistical difference was found between the fracture loads within the overpressed group. Within the layered groups, LV (1067 N) presented significantly higher results compared to LC (805 N). The mean values of all other groups were not significantly different. Single zirconia crowns veneered with overpressed ceramics exhibited lower fracture load than those of the layered ones after chewing simulation.

  15. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate

    PubMed Central

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-01-01

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns. PMID:27023532

  16. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate.

    PubMed

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-03-25

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns.

  17. A Protocol for Measuring Pull-off Stress of Wound-Treatment Polymers

    PubMed Central

    Kheyfets, Vitaly O.; Thornton, Rita C.; Kowal, Mikala; Finol, Ender A.

    2014-01-01

    Skin wounds and burns compromise the body's natural barrier to bacteria and other pathogens. While many forms of wound dressings are available, polymeric films are advantageous for various reasons, ranging from the ease of application to durability. One common drawback of using polymeric films for a wound bandage is that the films tend to adhere to common inanimate objects. Patients spend hours in contact with soft and hard materials pressed against their skin, which, if the skin was dressed with a polymeric film, would inflict further wound damage upon body movement. In this work, we present a novel technique that allowed for measuring polymeric tackiness, after a long incubation period, with materials regularly encountered in a hospital or home setting, and soft fabrics. The polymers were exposed to an environment intended to simulate daily conditions and the technique is designed to perform multiple experiments simultaneously with ease. Four commercially available polymers (new-skin, no-sting skin-prep, skin shield, and Silesse) were tested as proof-of-concept to gather preliminary data for an overall assessment of wound treatment efficacy, resulting in the estimation of pull-off stress of the polymers from a specimen of porcine skin. Silesse did not reveal a measurable tackiness, no-sting skin-prep had the highest mean tackiness (13.8 kPa), while the mean tackiness between new-skin and skin shield was approximately equal (9.8 kPa vs. 10.1 kPa, respectively), p = 0.05. Future work on polymeric fluids for wound dressing applications should include tensile stress and dynamic viscosity estimations. PMID:24718322

  18. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1982-01-01

    The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.

  19. Ion Beam Deflection (AKA Push-Me/Pull-You)

    NASA Technical Reports Server (NTRS)

    Brophy, John

    2013-01-01

    The Ion Beam Deflection provides the following potential advantages over other asteroid deflection systems. Like the gravity tractor, it doesn't require despinning of the asteroid. Unlike the gravity tractor, it provides a significantly higher coupling force that is independent of the asteroid size. The concept could be tested as part of the baseline Asteroid Redirect Robotic Mission. The thrust and total impulse are entirely within the design of the SEP vehicle. The total impulse is potentially competitive with kinetic impactors and eliminates the need for a second rendezvous spacecraft.?Gridded ion thrusters provide beam divergence angles of a few degrees enabling long stand-off distances from the asteroid. Mitigating control issues. Minimizing back-sputter contamination risks

  20. Fast Electromechanical Switches Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma-enhanced chemical vapor deposition. In the device regions, the SiO2 layer was patterned to thin it to the 20-nm trench depth. The trenches were then patterned by electron- beam lithography and formed by reactive- ion etching of the pattern through the 20-nm-thick SiO2 to the Nb layer.

  1. Cryogenic insulation strength and bond tester

    NASA Technical Reports Server (NTRS)

    Schuerer, P. H.; Ehl, J. H.; Prasthofer, W. P. (Inventor)

    1985-01-01

    A method and apparatus for testing the tensile strength and bonding strength of sprayed-on foam insulation attached to metal cryogenic fuel tanks is described. A circular cutter is used to cut the insulation down to the surface of the metal tank to form plugs of the insulation for testing in situ on the tank. The apparatus comprises an electromechanical pulling device powered by a belt battery pack. The pulling device comprises a motor driving a mechanical pulling structure comprising a horizontal shaft connected to two bell cracks which are connected to a central member. When the lower end of member is attached to a fitting, which in turn is bonded to a plug, a pulling force is exerted on the plug sufficient to rupture it. The force necessary to rupture the plug or pull it loose is displayed as a digital read-out.

  2. The influence of different cementation modes on the fracture resistance of feldspathic ceramic crowns.

    PubMed

    Groten, M; Pröbster, L

    1997-01-01

    One hundred twenty pressed feldspathic ceramic crowns were luted to 20 steel dies using six different cementation modes. Fracture resistance was tested under an angle of 45 degrees and was determined as the maximal fracture load. Crowns were tested with luting agent only (groups A and C) and after etching with hydrofluoric acid, silanating, and the application of a bonding agent (groups B, D, E, and F). The resulting means were: phosphate cement 294.3 (A) and 282.2 (B); glass-ionomer cement 217.2 (C) and 255.4 (D); resin composite 382.2 (E) and 687.6 (F). Statistical analysis revealed significantly greater fracture resistance (P < .01) of resin luted crowns. Bonding to the die almost doubled the fracture resistance. Conditioning of the inner surfaces of the crowns did not improve the fracture resistance of crowns luted using zinc phosphate or glass-ionomer cements.

  3. Treatment Recommendations for Single-Unit Crowns: Findings from The National Dental Practice-Based Research Network

    PubMed Central

    McCracken, Michael S.; Louis, David R.; Litaker, Mark S.; Minyé, Helena M.; Mungia, Rahma; Gordan, Valeria V.; Marshall, Don G.; Gilbert, Gregg H.

    2016-01-01

    Background Objectives were to: (1) quantify practitioner variation in likelihood to recommend a crown; and (2) test whether certain dentist, practice, and clinical factors are significantly associated with this likelihood. Methods Dentists in the National Dental Practice-Based Research Network completed a questionnaire about indications for single-unit crowns. In four clinical scenarios, practitioners ranked their likelihood of recommending a single-unit crown. These responses were used to calculate a dentist-specific “Crown Factor” (CF; range 0–12). A higher score implies a higher likelihood to recommend a crown. Certain characteristics were tested for statistically significant associations with the CF. Results 1,777 of 2,132 eligible dentists responded (83%). Practitioners were most likely to recommend crowns for teeth that were fractured, cracked, endodontically-treated, or had a broken restoration. Practitioners overwhelmingly recommended crowns for posterior teeth treated endodontically (94%). Practice owners, Southwest practitioners, and practitioners with a balanced work load were more likely to recommend crowns, as were practitioners who use optical scanners for digital impressions. Conclusions There is substantial variation in the likelihood of recommending a crown. While consensus exists in some areas (posterior endodontic treatment), variation dominates in others (size of an existing restoration). Recommendations varied by type of practice, network region, practice busyness, patient insurance status, and use of optical scanners. Practical Implications Recommendations for crowns may be influenced by factors unrelated to tooth and patient variables. A concern for tooth fracture -- whether from endodontic treatment, fractured teeth, or large restorations -- prompted many clinicians to recommend crowns. PMID:27492046

  4. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.

    1980-01-01

    Results of an experimental program to develop several types of graphite/polyimide (GR/PI) bonded and bolted joints for lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Tasks accomplished include: a literature survey; design of static discriminator specimens; design allowables testing; fabrication of test panels and specimens; small specimen testing; and standard joint testing. Detail designs of static discriminator specimens for each of the four major attachment types are presented. Test results are given for the following: (1) transverse tension of Celion 3000/PMR-15 laminate; (2) net tension of a laminate for both a loaded and unloaded bolt hole; (3) comparative testing of bonded and co-cured doublers along with pull-off tests of single and double bonded angles; (4) single lap shear tests, transverse tension and coefficient of thermal expansion tests of A7F (LARC-13 amide-imide modified) adhesive; and (5) tension tests of standard single lap, double lap, and symmetric step lap bonded joints. Also, included are results of a finite element analysis of a single lap bonded composite joint.

  5. Photovoltaics for the Defense Community through Manufacturing Advances

    DTIC Science & Technology

    2009-04-27

    the mod- ule, the inverter, and the balance of system (BOS) costs. The module is the “solar panel ” component that generates electricity, the inverter...Silicon Key areas Examples Ingot Crystal Structures • Multicrystalline • Monocrystalline Wafering Techniques • Wire sawing • Pulling slices off the ingot

  6. Cloud Control

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2012-01-01

    Your learning curriculum needs a new technological platform, but you don't have the expertise or IT equipment to pull it off in-house. The answer is a learning system that exists online, "in the cloud," where learners can access it anywhere, anytime. For trainers, cloud-based coursework often means greater ease of instruction resulting in greater…

  7. Peeling off the Elitist Label: Smart Politics.

    ERIC Educational Resources Information Center

    Peterson, Jean

    1993-01-01

    A high school teacher describes efforts to develop a comprehensive gifted education program while recognizing political realities. The program emphasized use of before-school and after-school periods rather than pull-out, addressed the burdens rather than blessings of high capability, focused on the underachieving gifted, and tried to avoid…

  8. Evaluation of sulfate reduction at experimentally induced mixing interfaces using small-scale push-pull tests in an aquifer-wetland system

    USGS Publications Warehouse

    Kneeshaw, T.A.; McGuire, J.T.; Smith, E.W.; Cozzarelli, I.M.

    2007-01-01

    This paper presents small-scale push-pull tests designed to evaluate the kinetic controls on SO42 - reduction in situ at mixing interfaces between a wetland and aquifer impacted by landfill leachate at the Norman Landfill research site, Norman, OK. Quantifying the rates of redox reactions initiated at interfaces is of great interest because interfaces have been shown to be zones of increased biogeochemical transformations and thus may play an important role in natural attenuation. To mimic the aquifer-wetland interface and evaluate reaction rates, SO42 --rich anaerobic aquifer water (??? 100 mg / L SO42 -) was introduced into SO42 --depleted wetland porewater via push-pull tests. Results showed SO42 - reduction was stimulated by the mixing of these waters and first-order rate coefficients were comparable to those measured in other push-pull studies. However, rate data were complex involving either multiple first-order rate coefficients or a more complex rate order. In addition, a lag phase was observed prior to SO42 - reduction that persisted until the mixing interface between test solution and native water was recovered, irrespective of temporal and spatial constraints. The lag phase was not eliminated by the addition of electron donor (acetate) to the injected test solution. Subsequent push-pull tests designed to elucidate the nature of the lag phase support the importance of the mixing interface in controlling terminal electron accepting processes. These data suggest redox reactions may occur rapidly at the mixing interface between injected and native waters but not in the injected bulk water mass. Under these circumstances, push-pull test data should be evaluated to ensure the apparent rate is actually a function of time and that complexities in rate data be considered. ?? 2007 Elsevier Ltd. All rights reserved.

  9. Comparison of Amount of Primary Tooth Reduction Required for Anterior and Posterior Zirconia and Stainless Steel Crowns.

    PubMed

    Clark, Larkin; Wells, Martha H; Harris, Edward F; Lou, Jennifer

    2016-01-01

    To determine if aggressiveness of primary tooth preparation varied among different brands of zirconia and stainless steel (SSC) crowns. One hundred primary typodont teeth were divided into five groups (10 posterior and 10 anterior) and assigned to: Cheng Crowns (CC); EZ Pedo (EZP); Kinder Krowns (KKZ); NuSmile (NSZ); and SSC. Teeth were prepared, and assigned crowns were fitted. Teeth were weighed prior to and after preparation. Weight changes served as a surrogate measure of tooth reduction. Analysis of variance showed a significant difference in tooth reduction among brand/type for both the anterior and posterior. Tukey's honest significant difference test (HSD), when applied to anterior data, revealed that SSCs required significantly less tooth removal compared to the composite of the four zirconia brands, which showed no significant difference among them. Tukey's HSD test, applied to posterior data, revealed that CC required significantly greater removal of crown structure, while EZP, KKZ, and NSZ were statistically equivalent, and SSCs required significantly less removal. Zirconia crowns required more tooth reduction than stainless steel crowns for primary anterior and posterior teeth. Tooth reduction for anterior zirconia crowns was equivalent among brands. For posterior teeth, reduction for three brands (EZ Pedo, Kinder Krowns, NuSmile) did not differ, while Cheng Crowns required more reduction.

  10. Periodontal response to all-ceramic crowns (IPS Empress) in general practice.

    PubMed

    Al-Wahadni, A M; Mansour, Y; Khader, Y

    2006-02-01

    The purpose of this study was to investigate the periodontal response to the presence of all-ceramic crowns (IPS Empress) in general practice patients. The convenience sample included 82 IPS Empress crowns placed in 64 patients. These crowns had been in place for an average of 16.27 (SD 9.26) months and ranged from 6.2 to 48.87 months at the time of clinical examination. Periodontal health status (as determined by dental plaque, gingival health status, periodontal pockets) was assessed around all crowned teeth and around matched contralateral teeth by one calibrated examiner. Periodontal indices utilized included the Plaque Index (PI), Gingival Index (GI) and pocket depth (PD) with calibrated probes graduated in millimetres. Plaque, gingival and PD values for crowned teeth were compared with those for control teeth using Wilcoxon signed-rank test for each clinical parameters. Chi-square was used to test the significance of the difference in their distribution between crowns and control teeth. Statistically, PI (0.35), GI (0.41) and mean PD scores (1.42) of IPS Empress crowned teeth compared less favourably with scores of the control teeth (0.27, 0.23 and 0.86 respectively). Teeth with IPS Empress crowns had poorer periodontal health and more clinically evident plaque than uncrowned teeth.

  11. The effect of luting media on the fracture resistance of a flame sprayed all-ceramic crown.

    PubMed

    Casson, A M; Glyn Jones, J C; Youngson, C C; Wood, D J

    2001-11-01

    This in vitro study investigated the effect of selected luting media on the fracture resistance of a flame-sprayed all-ceramic crown. Three groups of 10 human upper premolar teeth were prepared for crowning using a standardised technique. Flame sprayed crowns were fabricated and cemented onto the preparations using zinc phosphate (ZPC), glass polyalkenoate (GPC) or composite luting cement (CLC). During crown seating, a pressure perfusion system simulated pulpal fluid outflow equivalent to 300mm of H2O. Compressive fracture resistance was determined for each group using a Universal Testing Machine with a crosshead speed of 1mm min(-1). A group of unrestored teeth acted as a control. The fracture resistance of the groups ranked as follows: ZPC>CLC>GPC=unrestored teeth. The difference between the fracture resistance of ZPC and CLC groups and the control group was statistically significant. The mode of fracture between the luted crowns and natural crowns was markedly different. When tested in compression, a new, flame-sprayed all-ceramic crown, when luted in place using ZPC, GPC or CLC, could produce strengths comparable to or greater than natural unrestored teeth. The luting agent used significantly affected the recorded fracture loads.

  12. Investigation of the influence of coolant-lubricant modification on selected effects of pull broaching

    NASA Astrophysics Data System (ADS)

    Adamczuk, Krzysztof; Legutko, Stanisław; Laber, Alicja; Serwa, Wojciech

    2017-10-01

    The paper presents the results of testing the wear of the tool (pull broach) and a gear wheel splineway surface roughness after the friction node of pull broach/gear wheel (CuSn12Ni2) had been lubricated with metal machining oil and the same oil modified with chemically active exploitation additive. To designate the influence of modifying metal machining oil by the exploitation additive on the lubricating properties, anti-wear and antiseizure indicators have been appointed. Exploitation tests have proved purposefulness of modifying metal machining oil. Modification of the lubricant has contributed to reduction of the wear of the tools - pull broaches and to reduction of roughness of the splineway surfaces.

  13. In vitro fracture resistance of three commercially available zirconia crowns for primary molars.

    PubMed

    Townsend, Janice A; Knoell, Patrick; Yu, Qingzhao; Zhang, Jian-Feng; Wang, Yapin; Zhu, Han; Beattie, Sean; Xu, Xiaoming

    2014-01-01

    The purpose of this study was to measure the fracture resistance of primary mandibular first molar zirconia crowns from three different manufacturers-EZ Pedo (EZP), NuSmile (NSZ), and Kinder Krowns (KK)-and compare it with the thickness of the zirconia crowns and the measured fracture resistance of preveneered stainless steel crowns (SSCs). The thickness of 20 zirconia crowns from three manufacturers were measured. The mean force required to fracture the crowns was determined. Preveneered NuSmile (NSW) SSCs were tested as a control. EZP crowns were significantly thicker in three of the six measured locations. The force required to fracture the EZP crown was significantly higher than that required for NSZ and KK. There was a positive correlation between fracture resistance and crown thickness in the mesial, distal, mesioocclusal, and distoocclusal dimensions. None of the zirconia crowns proved to be as resistant to fracture as the preveneered SSCs. Statistically significant differences were found among the forces required to fracture zirconia crowns by three different manufacturers. The increase in force correlated with crown thickness. The forces required to fracture the preveneered stainless steel crowns were greater than the forces required to fracture all manufacturers' zirconia crowns.

  14. Primary screen for potential sheep scab control agents.

    PubMed

    Dunn, J A; Prickett, J C; Collins, D A; Weaver, R J

    2016-07-15

    The efficacy of potential acaricidal agents were assessed against the sheep scab mite Psoroptes ovis using a series of in vitro assays in modified test arenas designed initially to maintain P. ovis off-host. The mortality effects of 45 control agents, including essential oils, detergents, desiccants, growth regulators, lipid synthesis inhibitors, nerve action/energy metabolism disruptors and ecdysteroids were assessed against adults and nymphs. The most effective candidates were the desiccants (diatomaceous earth, nanoclay and sorex), the growth regulators (buprofezin, hexythiazox and teflubenzuron), the lipid synthesis inhibitors (spirodiclofen, spirotetramat and spiromesifen) and the nerve action and energy metabolism inhibitors (fenpyroximate, spinosad, tolfenpyrad, and chlorantraniliprole). Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  15. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate

    PubMed Central

    GOMES, Rafael Soares; de SOUZA, Caroline Mathias Carvalho; BERGAMO, Edmara Tatiely Pedroso; BORDIN, Dimorvan; DEL BEL CURY, Altair Antoninha

    2017-01-01

    Abstract Zirconia-reinforced lithium silicate (ZLS) is a ceramic that promises to have better mechanical properties than other materials with the same indications as well as improved adaptation and fracture strength. Objective In this study, marginal and internal misfit and fracture load with and without thermal-mechanical aging (TMA) of monolithic ZLS and lithium disilicate (LDS) crowns were evaluated. Material and methods Crowns were milled using a computer-aided design/computer-aided manufacturing system. Marginal gaps (MGs), absolute marginal discrepancy (AMD), axial gaps, and occlusal gaps were measured by X-ray microtomography (n=8). For fracture load testing, crowns were cemented in a universal abutment, and divided into four groups: ZLS without TMA, ZLS with TMA, LDS without TMA, and LDS with TMA (n=10). TMA groups were subjected to 10,000 thermal cycles (5-55°C) and 1,000,000 mechanical cycles (200 N, 3.8 Hz). All groups were subjected to compressive strength testing in a universal testing machine at a crosshead speed of 1 mm/min until failure. Student’s t-test was used to examine misfit, two-way analysis of variance was used to analyze fracture load, and Pearson’s correlation coefficients for misfit and fracture load were calculated (α=0.05). The materials were analyzed according to Weibull distribution, with 95% confidence intervals. Results Average MG (p<0.001) and AMD (p=0.003) values were greater in ZLS than in LDS crowns. TMA did not affect the fracture load of either material. However, fracture loads of ZLS crowns were lower than those of LDS crowns (p<0.001). Fracture load was moderately correlated with MG (r=-0.553) and AMD (r=-0.497). ZLS with TMA was least reliable, according to Weibull probability. Conclusion Within the limitations of this study, ZLS crowns had lower fracture load values and greater marginal misfit than did LDS crowns, although these values were within acceptable limits. PMID:28678947

  16. Improving estimation of kinetic parameters in dynamic force spectroscopy using cluster analysis

    NASA Astrophysics Data System (ADS)

    Yen, Chi-Fu; Sivasankar, Sanjeevi

    2018-03-01

    Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according to their pulling speeds, and the mean force and loading rate of each group are calculated. These data are subsequently fit to established models, and energy landscape parameters such as the intrinsic off-rate (koff) and the width of the potential energy barrier (xβ) are extracted. However, due to large uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff and xβ can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS experiment can be dramatically improved by sorting rupture events into groups using cluster analysis instead of sorting them according to their pulling speeds. We test different clustering algorithms including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these clustering algorithms over a wide range of koff and xβ, under different levels of thermal noise, and as a function of both the number of unbinding events and the number of pulling speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the accuracy of parameter estimation, particularly when the number of unbinding events are limited and not well separated into distinct groups. Cluster analysis is easy to implement, and our performance benchmarks serve as a guide in choosing an appropriate method for DFS data analysis.

  17. Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion.

    PubMed Central

    Hui, C-Y; Glassmaker, N. J.; Tang, T.; Jagota, A.

    2004-01-01

    This study addresses the strength and toughness of generic fibrillar structures. We show that the stress sigmac required to pull a fibril out of adhesive contact with a substrate has the form sigma(c) = sigma(0)Phi(chi). In this equation, sigma(0) is the interfacial strength, Phi(chi) is a dimensionless function satisfying 0 > 1, but is flaw insensitive for chi < 1. The important parameter chi also controls the stability of a homogeneously deformed non-fibrillar (flat) interface. Using these results, we show that the work to fail a unit area of fibrillar surface can be much higher than the intrinsic work of adhesion for a flat interface of the same material. In addition, we show that cross-sectional fibril dimensions control the pull-off force, which increases with decreasing fibril radius. Finally, an increase in fibril length is shown to increase the work necessary to separate a fibrillar interface. Besides our calculations involving a single fibril, we study the concept of equal load sharing (ELS) for a perfect interface containing many fibrils. We obtain the practical work of adhesion for an idealized fibrillated interface under equal load sharing. We then analyse the peeling of a fibrillar surface from a rigid substrate and establish a criterion for ELS. PMID:16849151

  18. Failure probability of three designs of zirconia crowns

    PubMed Central

    Ramos, G. Freitas; Monteiro, E. Barbosa Carmona; Bottino, M.A.; Zhang, Y.; de Melo, R. Marques

    2015-01-01

    Objectives This study utilized a 2-parameter Weibull analysis for evaluation of lifetime of fully or partially porcelain-/glaze-veneered zirconia crowns after fatigue test. Methods Sixty first molars were selected and prepared for full-coverage crowns with three different designs(n = 20): Traditional –crowns with zirconia framework covered with feldspathic porcelain; Modified– crowns partially covered with veneering porcelain; and Monolithic–full-contour zirconia crowns. All specimens were treated with a glaze layer. Specimens were subjected to mechanical cycling (100N, 3Hz) with a piston with hemispherical tip (Ø=6 mm) until the specimens failed or up to 2×106 cycles. Every 500,000 cycles intervals, the fatigue tests were interrupted, and stereomicroscopy (10 X) was used to inspect the specimens for damage. We performed Weibull analysis of interval data to calculate the number of failures in each interval. Results The types and number of failures according to the groups were: cracking (Traditional-13, Modified-6) and chipping (Traditional-4) of the feldspathic porcelain, followed by delamination (Traditional-1) at the veneer/core interface and debonding (Monollithic-2) at the cementation interface. Weibull parameters (beta, scale; and eta, shape), with a two-sided confidence interval of 95%, were: Traditional – 1.25 and 0.9 × 106cycles; Modified– 0.58 and 11.7 × 106 cycles; and Monolithic – 1.05 and 16.5 × 106 cycles. Traditional crowns showed greater susceptibility to fatigue, the Modified group presented higher propensity to early failures, and the Monolithic group showed no susceptibility to fatigue. The Modified and Monolithic groups presented the highest number of crowns with no failures after the fatigue test. Conclusions The three crown designs presented significantly different behaviors under fatigue. The Modified and the Monolithic groups presented less probability to failure after 2×106cycles. PMID:26509988

  19. Influence of surface treatment on the in-vitro fracture resistance of zirconia-based all-ceramic anterior crowns.

    PubMed

    Schmitter, M; Lotze, G; Bömicke, W; Rues, S

    2015-12-01

    The purpose of this study was to assess the effect of surface treatment on the fracture resistance of zirconia-based all-ceramic anterior crowns. Sixty-four zirconia-based all-ceramic anterior crowns, veneered by use of a press-on technique, were produced. For 48 crowns intraoral adjustment was simulated (A-group), 16 crowns remained unadjusted (WA-group). The adjusted area was then treated in three ways: 1. no further surface treatment; 2. polishing, with irrigation, using polishers interspersed with diamond grit for ceramics; and 3. polishing and glaze firing. Half of the specimens were loaded until fracture in an universal testing device without artificial ageing; the other crowns underwent thermocycling and chewing simulation before ultimate-load testing. Explorative statistical analysis was performed by use of non-parametric and parametric tests. In addition, fracture-strength tests according to ISO 6872 were performed for veneer ceramic subjected to the different surface treatments. Finite element analysis was also conducted for the crowns, and surface roughness was measured. Crowns in the A-group were more sensitive to aging than crowns in the WA-group (p=0.038). Although both polishing and glaze firing slightly improved the fracture resistance of the specimens, the fracture resistance in the WA-group (initial fracture resistance (IFR): 652.0 ± 107.7N, remaining fracture resistance after aging (RFR): 560.6 ± 233.3N) was higher than the fracture resistance in the A-group (polished: IFR: 477.9 ± 108.8N, RFR: 386.0 ± 218.5N; glaze firing: IFR: 535.5 ± 128.0N, RFR: 388.6 ± 202.2N). Surface roughness without adjustment was Ra=0.1 μm; for adjustment but without further treatment it was Ra=1.4 μm; for adjustment and polishing it was Ra=0.3 μm; and for adjustment, polishing, and glazing it was Ra=0.6 μm. Stress distributions obtained by finite element analysis in combination with fracture strength tests showed that fractures most probably originated from the occlusal surface. To improve fracture resistance and reduce the incidence of failure, extensive occlusal adjustment of veneered anterior zirconia restorations should be avoided. Neither polishing nor glazing could restore the fracture resistance to the level maintained with unadjusted crowns. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles

    PubMed Central

    Sarwar, A.; Nemirovski, A.; Shapiro, B.

    2011-01-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell’s equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm3 volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm3), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths. PMID:23335834

  1. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles.

    PubMed

    Sarwar, A; Nemirovski, A; Shapiro, B

    2012-03-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm(3) volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm(3)), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths.

  2. Effect of components and surface treatments of fiber-reinforced composite posts on bond strength to composite resin.

    PubMed

    Asakawa, Yuya; Takahashi, Hidekazu; Kobayashi, Masahiro; Iwasaki, Naohiko

    2013-10-01

    The aim of this study was to clarify the effect of the components and surface treatments of fiber-reinforced composite (FRC) posts on the durable bonding to core build-up resin evaluated using the pull-out and microtensile tests. Four types of experimental FRC posts, combinations of two types of matrix resins (polymethyl methacrylate and urethane dimethacrylate) and two types of fiberglass (E-glass and zirconia-containing glass) were examined. The FRC posts were subjected to one of three surface treatments (cleaned with ethanol, dichloromethane, or sandblasting). The bond strength between the FRC posts and core build-up resin were measured using the pull-out and microtensile tests before and after thermal cycling. The bond strengths obtained by each test before and after thermal cycling were statistically analyzed by three-way ANOVA and Tukey's multiple comparisons test (p<0.05). The bond strengths except for UDMA by the pull-out test decreased after thermal cycling. Regardless the test method and thermal cycling, matrix resins, the surface treatment and their interaction were statistically significant, but fiberglass did not. Dichloromethane treatment was effective for the PMMA-based FRC posts by the pull-out test, but not by the microtensile test. Sandblasting was effective for both PMMA- and UDMA-based FRC posts, regardless of the test method. The bond strengths were influenced by the matrix resin of the FRC post and the surface treatment. The bond strengths of the pull-out test showed a similar tendency of those of the microtensile test, but the value obtained by these test were different. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Establishment of a new pull-out strength testing method to quantify early osseointegration-An experimental pilot study.

    PubMed

    Nonhoff, J; Moest, T; Schmitt, Christian Martin; Weisel, T; Bauer, S; Schlegel, K A

    2015-12-01

    The animal study aims to evaluate a new experimental model for measuring sole the influence of the surface characteristics independent from implant macro-design on the level of osseointegration by registering the pull-out strength needed for removal of experimental devices with different surfaces from artificial defects. Seventy-two test bodies (36 with the FRIADENT(®) plus surface, 36 with the P15/HAp biofunctionalized surface) were inserted in six adult domestic pigs with artificial calvarial defects. The experimental devices were designed to fit in the defects leaving a gap between the test body and the local bone. After 21 days of healing, the animals were sacrificed and the test bodies were pulled out with a standardised reproducible pull-out device measuring the pull-out strength. The pull-out strength for both groups was compared. Twenty-one days after insertion a mean force of 412 ± 142 N for the P15/HAp group and 183 ± 105 N for the FRIADENT(®) plus group was measured for the removal of the specimens from the calvarial bone. The difference between the groups was statistically significant (p < 0.0001). The experimental set-up seems to be a suitable method when measuring the impact of implant surfaces on the early stage of osseointegration. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Physical Employment Standards for UK Firefighters

    PubMed Central

    Stevenson, Richard D.M.; Siddall, Andrew G.; Turner, Philip F.J.; Bilzon, James L.J.

    2017-01-01

    Objective: The aim of this study was to assess sensitivity and specificity of surrogate physical ability tests as predictors of criterion firefighting task performance and to identify corresponding minimum muscular strength and endurance standards. Methods: Fifty-one (26 male; 25 female) participants completed three criterion tasks (ladder lift, ladder lower, ladder extension) and three corresponding surrogate tests [one-repetition maximum (1RM) seated shoulder press; 1RM seated rope pull-down; repeated 28 kg seated rope pull-down]. Surrogate test standards were calculated that best identified individuals who passed (sensitivity; true positives) and failed (specificity; true negatives) criterion tasks. Results: Best sensitivity/specificity achieved were 1.00/1.00 for a 35 kg seated shoulder press, 0.79/0.92 for a 60 kg rope pull-down, and 0.83/0.93 for 23 repetitions of the 28 kg rope pull-down. Conclusions: These standards represent performance on surrogate tests commensurate with minimum acceptable performance of essential strength-based occupational tasks in UK firefighters. PMID:28045801

  5. In vitro evaluation of marginal adaptation in five ceramic restoration fabricating techniques.

    PubMed

    Ural, Cağri; Burgaz, Yavuz; Saraç, Duygu

    2010-01-01

    To compare in vitro the marginal adaptation of crowns manufactured using ceramic restoration fabricating techniques. Fifty standardized master steel dies simulating molars were produced and divided into five groups, each containing 10 specimens. Test specimens were fabricated with CAD/CAM, heat-press, glass-infiltration, and conventional lost-wax techniques according to manufacturer instructions. Marginal adaptation of the test specimens was measured vertically before and after cementation using SEM. Data were statistically analyzed by one-way ANOVA with Tukey HSD tests (a = .05). Marginal adaptation of ceramic crowns was affected by fabrication technique and cementation process (P < .001). The lowest marginal opening values were obtained with Cerec-3 crowns before and after cementation (P < .001). The highest marginal discrepancy values were obtained with PFM crowns before and after cementation. Marginal adaptation values obtained in the compared systems were within clinically acceptable limits. Cementation causes a significant increase in the vertical marginal discrepancies of the test specimens.

  6. Stop/Start: Overview

    Science.gov Websites

    /Start technology conserves energy by shutting off the gasoline engine when the vehicle is at rest, such as at a traffic light, and automatically re-starting it when the driver pushes the gas pedal to go engine when pulling out from a stop and generating electricity which is stored in the battery. Main stage

  7. Hearing Aids

    MedlinePlus

    ... of pulling off wearing a hearing aid (or making others forget it's there) is by acting like you don't even notice it. If you continue to be ... of them than other people are. Most people don't even notice that someone is ... about them. They'll be too busy thinking about you as a person — what you' ...

  8. Child Care and the Economy

    ERIC Educational Resources Information Center

    Karolak, Eric

    2009-01-01

    Unemployment has topped 7% nationally and economists predict it will approach 10% by 2010. Child care programs experience a trickle-down effect: when businesses cut back hours or lay people off, parents cut back child care hours or pull children from programs. "We're seeing more and more families lose their child care assistance and have nowhere…

  9. Method of measuring metal coating adhesion

    DOEpatents

    Roper, J.R.

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  10. Method of measuring metal coating adhesion

    DOEpatents

    Roper, John R.

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  11. Wear resistance and compression strength of ceramics tested in fluoride environments.

    PubMed

    Theodoro, Guilherme Teixeira; Fiorin, Lívia; Moris, Izabela Cristina Maurício; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria; Faria, Adriana Cláudia Lapria

    2017-01-01

    Dental ceramics have been widely used because of aesthetic, but wear is still questioned. There are relates that ceramic surface is prone to degradation by acidulated fluoride, that can increase wear rates. The aim of this study was to evaluate the effect of neutral and acidulated fluoride gel, used as preventive agents for professional use, at wear and compression strength of dental ceramics IPS e.max ZirPress (ZIR), IPS Empress Esthetic (EMP) e IPS Inline POM (POM). For this, 30 crowns and 30 disks were obtained by heat-pressing. Crowns and disks were submitted to two-body wear test at machine of mechanical loading, simulating occlusion, lateral movement and disocclusion. It was performed 300,000 cycles at 1Hz frequency under 20N load, to simulate 1 year of mastication. Samples were totally immersed during the test and were divided into three groups according to the gel used for immersion (n=10): control, neutral (sodium fluoride 2%) and acidulated (acidulated phosphate fluoride 1.23%). Samples (crowns and disks) were analyzed for vertical height loss after the test using, respectively, profile projector and stereomicroscope. Roughness of worn surface of crowns and disks was evaluated by laser confocal microscopy. Data of height loss and roughness were evaluated by two-way ANOVA and Bonferroni's test. A crown/disk of each group was analyzed by scanning electronic microscopy. After wear resistance tests, crowns were cemented to their abutments and submitted to compressive load at 30° angulation and 1mm/min speed. Type of failures was compared by qui-square test. Ceramic EMP worn less while ZIR worn more. Control gel worn more at crowns while acidulated gel worn more at disks. Surface roughness of samples tested at acidulated gel was significantly lower. Type of failures found at compression resistance tests was affected by ceramic type, but not by gel used. The results suggest that ceramic and fluoride gel affect wear and roughness of worn surface while type of failure is only affected by ceramic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. [Clinical evaluation of the effect of gold alloy and Ni-Cr alloy porcelain fused metal crown restorations].

    PubMed

    Sun, Wei-ge; Liu, Xiang-hui; Zhang, Ling; Zhang, Chun; Xie, Ming-yi; Zhou, Wen-juan

    2009-02-01

    To observe the clinical effect of gold alloy porcelain fused metal (PFM) crown restoration and Ni-Cr alloy PFM crown restoration. A total of 168 teeth from 48 patients were restored with gold alloy PFM crown. The other 48 patients, with a total of 179 teeth were restored with Ni-Cr alloy PFM crown. They were examined in integrality, retention, shade, cervical margin, and gingival health immediately, 6 months, one year, two years ,and three years after restoration. The date was analyzed by rank sum test using SPSS12.0 software package. The clinical effect of Ni-Cr alloy PFM crown was as good as gold alloy PFM crown when checked up after cementation at once. However, when they were examined 6 months, one year, two years ,and three years after restoration, the clinical effect of gold alloy PFM crown group was significantly better than that of Ni-Cr alloy PFM crown, P<0.05. The gold alloy PFM crown has better properties than Ni-Cr alloy PFM crown as a kind of long-term restoration, especially on the aspect of shade.

  13. Evaluation of tensile retention of Y-TZP crowns after long-term aging: effect of the core substrate and crown surface conditioning.

    PubMed

    Amaral, R; Rippe, M; Oliveira, B G; Cesar, P F; Bottino, M A; Valandro, L F

    2014-01-01

    This study evaluated the effect of the core substrate type (dentin and composite resin) on the retention of crowns made of yttrium oxide stabilized tetragonal zirconia polycrystal (Y-TZP), submitted to three inner surface conditionings. For this purpose, 72 freshly extracted molars were embedded in acrylic resin, perpendicular to the long axis, and prepared for full crowns: 36 specimens had crown preparations in dentin; the remaining 36 teeth had the crowns removed, and crown preparations were reconstructed with composite resin plus fiber posts with dimensions identical to the prepared dentin. The preparations were impressed using addition silicone, and 72 Y-TZP copings for the tensile test were produced. Cementation was performed with a dual-cured cement containing phosphate monomers. For cementation, the crown preparation (dentin or resin) was conditioned with the adhesive system, and the ceramic was subjected to one of three surface treatments: isopropyl alcohol, tribochemical silica coating, or thin low-fusing glassy porcelain layer application plus silanization. After 24 hours, all specimens were submitted to thermocycling (6000 cycles) and placed in a special tensile testing device in a universal testing machine to determine failure loads. The failure modes of all samples were analyzed under a stereomicroscope. Two-way analysis of variance showed that the surface treatment and substrate type (α=0.05) affected the tensile retention results. The dentin substrate presented the highest tensile retention values, regardless of the surface treatment. When the substrate was resin, the tribochemical silica coating and low-fusing glaze application plus silanization groups showed the higher retention values.

  14. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi = K′ Ls Wm M [1.0−(LOI/100)] where: Pi = glass pull rate at interval “i”, Mg/hr (ton/hr). Ls = line speed, m...

  15. The effect of retentive groove, sandblasting and cement type on the retentive strength of stainless steel crowns in primary second molars--an in vitro comparative study.

    PubMed

    Veerabadhran, M M; Reddy, V; Nayak, U A; Rao, A P; Sundaram, M A

    2012-01-01

    This in vitro study was conducted to find out the effect of retentive groove, sand blasting and cement type on the retentive strength of stainless steel crowns in primary second molars. Thirty-two extracted intact human maxillary and mandibular primary second molars were embedded in aluminum blocks utilizing autopolymerising acrylic resin. After tooth preparation, the 3M stainless steel crown was adjusted to the prepared tooth. Then weldable buccal tubes were welded on the buccal and lingual surfaces of each crown as an attachment for the testing machine. A full factorial design matrix for four factors (retentive groove placement on the tooth, cement type, sandblasting and primary second molar) at two levels each was developed and the study was conducted as dictated by the matrix. The lower and upper limits for each factor were without and with retentive groove placement on the tooth, GIC and RMGIC, without and with sandblasting of crown, maxillary and mandibular second primary molar. For those teeth for which the design matrix dictated groove placement, the retentive groove was placed on the middle third of the buccal surface of the tooth horizontally and for those crowns for which sandblasting of the crowns are to be done, sandblasting was done with aluminium oxide with a particle size of 250 mm. The crowns were luted with either GIC or RMGIC, as dictated by the design matrix. Then the retentive strength of each sample was evaluated by means of an universal testing machine. The obtained data was analyzed using ANOVA for statistical analysis of the data and 't'- tests for pairwise comparison. The mean retentive strength in kg/cm 2 stainless steel crowns luted with RMGIC was 19.361 and the mean retentive strength of stainless steel crowns luted with GIC was 15.964 kg/cm 2 with a mean difference of 3.397 kg/cm 2 and was statistically significant. The mean retentive strength in kg/cm 2 of stainless steel crowns, which was not sandblasted, was 18.880 and which was sandblasted was 16.445 kg/cm 2 with a mean difference of 2.436 kg/cm 2 . These results were again statistically significant. It was found that the crowns luted with resin-modified glass ionomer cements (RMGIC's) offered better retentive strength of crowns than glass ionomer cements (GIC) and stainless steel crowns which were cemented without sandblasting showed higher mean retentive strength than with sandblasting of crowns. The presence of groove did not influence the retentive strength of stainless steel crowns.

  16. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations.

    PubMed

    Sghaireen, Mohd G

    2015-06-01

    The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p < .05). The highest fracture loads were associated with metal-ceramic crowns supported by titanium abutments (p = .000). IPS Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.

  17. Evaluation of tensile retention of Y-TZP crowns cemented on resin composite cores: effect of the cement and Y-TZP surface conditioning.

    PubMed

    Rippe, M P; Amaral, R; Oliveira, F S; Cesar, P F; Scotti, R; Valandro, L F; Bottino, M A

    2015-01-01

    This study evaluated the effect of the cement type (adhesive resin, self-adhesive, glass ionomer, and zinc phosphate) on the retention of crowns made of yttria-stabilized polycrystalline tetragonal zirconia (Y-TZP). Therefore, 108 freshly extracted molars were embedded in acrylic resin, perpendicular to their long axis, and prepared for full crowns: the crown preparations were removed and reconstructed using composite resin plus fiber posts with dimensions identical to the prepared dentin. The preparations were impressed using addition silicone, and Y-TZP copings were produced, which presented a special setup for the tensile testing. Cementation was performed with two adhesive resin cements (Multilink Automix, Ivoclar-Vivadent; RelyX ARC, 3M ESPE, St Paul, MN, USA), one self-adhesive resin cement (RelyX U100, 3M ESPE), one glass ionomer based cement (RelyX Luting, 3M ESPE), and one zinc phosphate cement (Cimento de Zinco, SS White, Rio de Janeiro, Brazil). For the resin cement groups, the inner surfaces of the crowns were subjected to three surface treatments: cleaning with isopropyl alcohol, tribochemical silica coating, or application of a thin low-fusing glass porcelain layer plus silanization. After 24 hours, all groups were subjected to thermocycling (6000 cycles) and included in a special device for tensile testing in a universal testing machine to test the retention of the infrastructure. After testing, the failure modes of all samples were analyzed under a stereomicroscope. The Kruskal-Wallis test showed that the surface treatment and cement type (α=0.05) affected the tensile retention results. The Multilink cement presented the highest tensile retention values, but that result was not statistically different from RelyX ARC. The surface treatment was statistically relevant only for the Multilink cement. The cement choice was shown to be more important than the crown surface treatment for cementation of a Y-TZP crown to a composite resin substrate.

  18. Push-pull tracer tests: Their information content and use for characterizing non-Fickian, mobile-immobile behavior: INFORMATION CONTENT OF PUSH-PULL TESTS

    DOE PAGES

    Hansen, Scott K.; Berkowitz, Brian; Vesselinov, Velimir V.; ...

    2016-12-01

    Path reversibility and radial symmetry are often assumed in push-pull tracer test analysis. In reality, heterogeneous flow fields mean that both assumptions are idealizations. In this paper, to understand their impact, we perform a parametric study which quantifies the scattering effects of ambient flow, local-scale dispersion, and velocity field heterogeneity on push-pull breakthrough curves and compares them to the effects of mobile-immobile mass transfer (MIMT) processes including sorption and diffusion into secondary porosity. We identify specific circumstances in which MIMT overwhelmingly determines the breakthrough curve, which may then be considered uninformative about drift and local-scale dispersion. Assuming path reversibility, wemore » develop a continuous-time-random-walk-based interpretation framework which is flow-field-agnostic and well suited to quantifying MIMT. Adopting this perspective, we show that the radial flow assumption is often harmless: to the extent that solute paths are reversible, the breakthrough curve is uninformative about velocity field heterogeneity. Our interpretation method determines a mapping function (i.e., subordinator) from travel time in the absence of MIMT to travel time in its presence. A mathematical theory allowing this function to be directly “plugged into” an existing Laplace-domain transport model to incorporate MIMT is presented and demonstrated. Algorithms implementing the calibration are presented and applied to interpretation of data from a push-pull test performed in a heterogeneous environment. A successful four-parameter fit is obtained, of comparable fidelity to one obtained using a million-node 3-D numerical model. In conclusion, we demonstrate analytically and numerically how push-pull tests quantifying MIMT are sensitive to remobilization, but not immobilization, kinetics.« less

  19. Push-pull tracer tests: Their information content and use for characterizing non-Fickian, mobile-immobile behavior: INFORMATION CONTENT OF PUSH-PULL TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott K.; Berkowitz, Brian; Vesselinov, Velimir V.

    Path reversibility and radial symmetry are often assumed in push-pull tracer test analysis. In reality, heterogeneous flow fields mean that both assumptions are idealizations. In this paper, to understand their impact, we perform a parametric study which quantifies the scattering effects of ambient flow, local-scale dispersion, and velocity field heterogeneity on push-pull breakthrough curves and compares them to the effects of mobile-immobile mass transfer (MIMT) processes including sorption and diffusion into secondary porosity. We identify specific circumstances in which MIMT overwhelmingly determines the breakthrough curve, which may then be considered uninformative about drift and local-scale dispersion. Assuming path reversibility, wemore » develop a continuous-time-random-walk-based interpretation framework which is flow-field-agnostic and well suited to quantifying MIMT. Adopting this perspective, we show that the radial flow assumption is often harmless: to the extent that solute paths are reversible, the breakthrough curve is uninformative about velocity field heterogeneity. Our interpretation method determines a mapping function (i.e., subordinator) from travel time in the absence of MIMT to travel time in its presence. A mathematical theory allowing this function to be directly “plugged into” an existing Laplace-domain transport model to incorporate MIMT is presented and demonstrated. Algorithms implementing the calibration are presented and applied to interpretation of data from a push-pull test performed in a heterogeneous environment. A successful four-parameter fit is obtained, of comparable fidelity to one obtained using a million-node 3-D numerical model. In conclusion, we demonstrate analytically and numerically how push-pull tests quantifying MIMT are sensitive to remobilization, but not immobilization, kinetics.« less

  20. Evaluation of retentive strength of four luting cements with stainless steel crowns in primary molars: An in vitro study.

    PubMed

    Parisay, Iman; Khazaei, Yegane

    2018-01-01

    Stainless steel crown (SSC) is the most reliable restoration for primary teeth with extensive caries. Retention is of great importance for a successful restoration and is provided by various factors such as luting cements. The aim of this study was to evaluate the retentive strength of SSC cemented with four different luting cements. In this in vitro study, A total of 55 extracted primary first molars were selected. Following crown selection and cementation (one with no cement and four groups cemented with resin, glass ionomer, zinc phosphate, and polycarboxylate), all the specimens were incubated and thermocycled in 5°C-55°C. Retentive properties of SSCs were tested with a mechanical test machine. First dislodgement of each specimen and full crown removal were recorded. One-way ANOVA test followed by least significant difference test and Kruskal-Wallis test was used for retentive strength comparison at the level of significance of P < 0.05. The results of the study showed that the specimens cemented with zinc phosphate exhibited higher retentive strength as compared to glass ionomer and polycarboxylate ( P < 0.001 and P = 0.023, respectively). Zinc phosphate cement showed the most promising results; thus, it can be preferably used for cementation of the teeth with no grossly broken down crowns.

  1. Equivalence Reliability among the FITNESSGRAM[R] Upper-Body Tests of Muscular Strength and Endurance

    ERIC Educational Resources Information Center

    Sherman, Todd; Barfield, J. P.

    2006-01-01

    This study was designed to investigate the equivalence reliability between the suggested FITNESSGRAM[R] muscular strength and endurance test, the 90[degrees] push-up (PSU), and alternate FITNESSGRAM[R] tests of upper-body strength and endurance (i.e., modified pull-up [MPU], flexed-arm hang [FAH], and pull-up [PU]). Children (N = 383) in Grades 3…

  2. Holographic evaluation of the marginal fits of complete crowns loaded at the central fossa

    NASA Astrophysics Data System (ADS)

    Chen, Terry Y.; Chang, Guan L.; Wu, Shih H.

    1995-05-01

    In dentistry, a defect of cementation on the margins of crowns accumulates bacterial plaque easily. This can result in recurrent caries and periodontal disease. In this paper holographic interferometry was applied to evaluate the effect of masticatory force on various complete crowns. Four complete molar crowns made from different materials (Au alloy, Pd-Ag alloy, Ni-Cr alloy, and porcelain fused to metal) were tested. The out-of-plane displacements of the crown specimens were measured by the method of multiple observations. The displacements measured range from 6 to 10 micrometers under normal load (25 N). However, the marginal openings of all four crowns were estimated to be less than 0.2 micrometers . In addition the defect of the crown was examined.

  3. A comparison of parallel and diverging screw angles in the stability of locked plate constructs.

    PubMed

    Wähnert, D; Windolf, M; Brianza, S; Rothstock, S; Radtke, R; Brighenti, V; Schwieger, K

    2011-09-01

    We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm(3)) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.

  4. Orion Underway Recovery Test 5 (URT-5)

    NASA Image and Video Library

    2016-10-30

    U.S. Navy divers and other personnel in several rigid hull inflatable and Zodiac boats have surrounded a test version of the Orion crew module during Underway Recovery Test 5 in the Pacific Ocean off the coast of California. An orange winch line has been attached to the test module to pull it into the well deck of the USS San Diego. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests using the Navy ship, various watercraft and equipment to practice for recovery of Orion on its return from deep space missions. The testing allows the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.

  5. Analysis of TID process, geometry, and bias condition dependence in 14-nm FinFETs and implications for RF and SRAM performance

    DOE PAGES

    King, M. P.; Wu, X.; Eller, Manfred; ...

    2016-12-07

    Here, total ionizing dose results are provided, showing the effects of different threshold adjust implant processes and irradiation bias conditions of 14-nm FinFETs. Minimal radiation-induced threshold voltage shift across a variety of transistor types is observed. Off-state leakage current of nMOSFET transistors exhibits a strong gate bias dependence, indicating electrostatic gate control of the sub-fin region and the corresponding parasitic conduction path are the largest concern for radiation hardness in FinFET technology. The high-Vth transistors exhibit the best irradiation performance across all bias conditions, showing a reasonably small change in off-state leakage current and Vth, while the low-Vth transistors exhibitmore » a larger change in off-state leakage current. The “worst-case” bias condition during irradiation for both pull-down and pass-gate nMOSFETs in static random access memory is determined to be the on-state (Vgs = Vdd). We find the nMOSFET pull-down and pass-gate transistors of the SRAM bit-cell show less radiation-induced degradation due to transistor geometry and channel doping differences than the low-Vth transistor. Near-threshold operation is presented as a methodology for reducing radiation-induced increases in off-state device leakage current. In a 14-nm FinFET technology, the modeling indicates devices with high channel stop doping show the most robust response to TID allowing stable operation of ring oscillators and the SRAM bit-cell with minimal shift in critical operating characteristics.« less

  6. Analysis of TID process, geometry, and bias condition dependence in 14-nm FinFETs and implications for RF and SRAM performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, M. P.; Wu, X.; Eller, Manfred

    Here, total ionizing dose results are provided, showing the effects of different threshold adjust implant processes and irradiation bias conditions of 14-nm FinFETs. Minimal radiation-induced threshold voltage shift across a variety of transistor types is observed. Off-state leakage current of nMOSFET transistors exhibits a strong gate bias dependence, indicating electrostatic gate control of the sub-fin region and the corresponding parasitic conduction path are the largest concern for radiation hardness in FinFET technology. The high-Vth transistors exhibit the best irradiation performance across all bias conditions, showing a reasonably small change in off-state leakage current and Vth, while the low-Vth transistors exhibitmore » a larger change in off-state leakage current. The “worst-case” bias condition during irradiation for both pull-down and pass-gate nMOSFETs in static random access memory is determined to be the on-state (Vgs = Vdd). We find the nMOSFET pull-down and pass-gate transistors of the SRAM bit-cell show less radiation-induced degradation due to transistor geometry and channel doping differences than the low-Vth transistor. Near-threshold operation is presented as a methodology for reducing radiation-induced increases in off-state device leakage current. In a 14-nm FinFET technology, the modeling indicates devices with high channel stop doping show the most robust response to TID allowing stable operation of ring oscillators and the SRAM bit-cell with minimal shift in critical operating characteristics.« less

  7. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi=K′ Ls Wm M [1.0−(LOI/100)] where: Pi=glass pull rate at interval “i”, Mg/hr (ton/hr). Ls=line speed, m/min...

  8. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi=K′ Ls Wm M [1.0−(LOI/100)] where: Pi=glass pull rate at interval “i”, Mg/hr (ton/hr). Ls=line speed, m/min...

  9. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi=K′ Ls Wm M [1.0−(LOI/100)] where: Pi=glass pull rate at interval “i”, Mg/hr (ton/hr). Ls=line speed, m/min...

  10. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi=K′ Ls Wm M [1.0−(LOI/100)] where: Pi=glass pull rate at interval “i”, Mg/hr (ton/hr). Ls=line speed, m/min...

  11. Morphometric and immunohistochemical study of the rumen of red deer during prenatal development.

    PubMed

    Franco, A J; Masot, A J; Aguado, Ma C; Gómez, L; Redondo, E

    2004-06-01

    Abstract A detailed study of the ontogenesis of deer stomach has not been undertaken to date, and our aim was to sequence several histological phenomena that occur during the ontogenesis of one of the gastric compartments, the rumen. Histomorphometric and immunohistochemical analyses were carried out on 50 embryos and fetuses of deer from the initial stages of prenatal life until birth. For the purposes of testing, the animals were divided into five experimental groups: group I, 1.4-3.6 cm crown-rump length, 30-60 days, 1-25% of gestation; group II, 4.5-7.2 cm crown-rump length, 67-90 days, 25-35% of gestation; group III, 8-19 cm crown-rump length, 97-135 days, 35-50% of gestation; group IV, 21-33 cm crown-rump length, 142-191 days, 45-70% of gestation; and group V, 36-40 cm crown-rump length, 205-235 days, 75-100% of gestation. The rumen of the primitive gastric tube was observed at approximately 60 days. At 67 days the rumen consisted of three layers: internal or mucosal, middle or muscular, and external or serosal layer. The stratification of the epithelial layer was accompanied by changes in its structure with the appearance of ruminal pillars and papillae. The outline of the ruminal papillae began to appear at 142 days of prenatal development as evaginations of the basal zone toward the ruminal lumen, pulling with it in its configuration the stratum basale, the lamina propria and the submucosa. From the pluripotential blastemic tissue at 60 days we witnessed the histodifferentiation of the primitive tunica muscularis, composed of two layers of myoblasts with a defined arrangement. It was also from the pluripotential blastemic tissue, at 97 days, that the lamina propria and the submucosa were differentiated. The serosa showed continuity in growth as well as differentiation, already detected in the undifferentiated outline phase. The tegumentary mucosa of deer rumen was shown without secretory capacity in the initial embryonic phases; neutral mucopolysaccharides appeared from 67 days. The presence of neuroendocrine cells (non-neuronal enolase) in the ruminal wall of deer during development was not detected until 97 days. The glial cells were detected at 142 days for glial fibrillary acidic protein and at 67 days for vimentin. The immunodetection of neuropeptides vasointestinal peptide and neuropeptide Y progressively increased with gestation period, starting from 97 days. In terms of the structure of the rumen of the primitive gastric tube, our observations revealed that the deer is less precocious than small and large domestic ruminants. Thus its secretory capacity, detected by the presence of neutral mucopolysaccharides, and its neuroendocrine nature, determined by the presence of positive non-neuronal enolase cells, were evident in more advanced stages of prenatal development than those detected in the sheep, goat and cow.

  12. Simulations of Forest Fires by the Cellular Automata Model "ABBAMPAU"

    NASA Astrophysics Data System (ADS)

    di Gregorio, S.; Bendicenti, E.

    2003-04-01

    Forest fires represent a serious environmental problem, whose negative impact is becoming day by day more worrisome. Forest fires are very complex phenomena; that need an interdisciplinary approach. The adopted method to modelling involves the definition of local rules, from which the global behaviour of the system can emerge. The paradigm of Cellular Automata was applied and the model ABBAMPAU was projected to simulate the evolution of forest fires. Cellular Automata features (parallelism and a-centrism) seem to match the system "forest fire"; the parameters, describing globally a forest fire, i.e. propagation rate, flame length and direction, fireline intensity, fire duration time et c. are mainly depending on some local characteristics i.e. vegetation type (live and dead fuel), relative humidity, fuel moisture, heat, territory morphology (altitude, slope), et c.. The only global characteristic is given by wind velocity and direction, but wind velocity and direction is locally altered according to the morphology; therefore wind has also to be considered at local level. ABBAMPAU accounts for the following aspects of the phenomenon: effects of combustion in surface and crown fire inside the cell, crown fire triggering off; surface and crown fire spread, determination of the local wind rate and direction. A validation of ABBAMPAU was tested on a real case of forest fire, in the territory of Villaputzu, Sardinia island, August 22nd, 1998. First simulations account for the main characteristics of the phenomenon and agree with the observations. The results show that the model could be applied for the forest fire preventions, the productions of risk scenarios and the evaluation of the forest fire environmental impact.

  13. Are single-well "push-pull" tests suitable tracer methods for aquifer characterization?

    NASA Astrophysics Data System (ADS)

    Hebig, Klaus; Zeilfelder, Sarah; Ito, Narimitsu; Machida, Isao; Scheytt, Traugott; Marui, Atsunao

    2013-04-01

    Recently, investigations were conducted for geological and hydrogeological characterisation of the sedimentary coastal basin of Horonobe (Hokkaido, Japan). Coastal areas are typical geological settings in Japan, which are less tectonically active than the mountain ranges. In Asia, and especially in Japan, these areas are often densely populated. Therefore, it is important to investigate the behaviour of solutes in such unconsolidated aquifers. In such settings sometimes only single boreholes or groundwater monitoring wells are available for aquifer testing for various reasons, e.g. depths of more than 100 m below ground level and slow groundwater velocities due to density driven flow. A standard tracer test with several involved groundwater monitoring wells is generally very difficult or even not possible at these depths. One of the most important questions in our project was how we can obtain information about chemical and hydraulic properties in such aquifers. Is it possible to characterize solute transport behaviour parameters with only one available groundwater monitoring well or borehole? A so-called "push-pull" test may be one suitable method for aquifer testing with only one available access point. In a push-pull test a known amount of several solutes including a conservative tracer is injected into the aquifer ("push") and afterwards extracted ("pull"). The measured breakthrough curve during the pumping back phase can then be analysed. This method has already been used previously with various aims, also in the recent project (e.g. Hebig et al. 2011, Zeilfelder et al. 2012). However, different test setups produced different tracer breakthrough curves. As no systematic evaluation of this aquifer tracer test method was done so far, nothing is known about its repeatability. Does the injection and extraction rate influence the shape of the breakthrough curve? Which role plays the often applied "chaser", which is used to push the test solution out from the borehole and gravel pack? How does density difference between the original groundwater and the test solution influence the tracer breakthrough curves? To solve these questions, seven push-pull tests were performed under controlled boundary conditions in the same well DD-2 (100 m depth). Only single parameters, as e.g. flow rate or salinization of the test solution, were varied during the experiments. By conducting these different test setups, conclusions could be drawn about the application of the push-pull method under different settings. References: Hebig, K.H., Ito, N., Scheytt, T.J. & Marui, A. (2011). Hydraulic and hydrochemical characterization of deep coastal sedimentary basins by single-well Push-Pull tests. GSA Annual Meeting, 9-12 October 2011, Minneapolis, USA. Zeilfelder, S., Ito, N., Marui, A., Hebig, K. & Scheytt, T. (2012). Push-Pull-Test und Tracer-Test in ei-nem tiefen Grundwasserleiter in Kameoka, Japan. Kurzfassung in: Liedl, R., Burghardt, D., Simon, E., Reimann, T. & Kaufmann-Knoke (Hg.). Grundwasserschutz und Grundwassernutzung. Tagung der Fachsektion Hydrogeologie in der DGG (FH-DGG). 16. - 20. Mai 2012, Dresden. Kurfassungen der Vorträge und Poster. Schriftenreihe der DGG, Heft 78, S. 192.

  14. Court of Public Opinion

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2011-01-01

    It was late on Election Day 2010 and Vander Plaats, a Sioux City, Iowa, businessman and leader of a campaign to oust three Iowa Supreme Court justices, had just gotten word that he and his team had pulled it off. The voters had rejected the three justices up for a retention vote: David Baker, Michael Streit, and Chief Justice Marsha Ternus.…

  15. "Today I Wonder How We Ever Pulled It off": How a Band of High School Students Influenced Desegregation.

    ERIC Educational Resources Information Center

    McCormick, Peter

    2003-01-01

    As a senior in a segregated Virginia high school, John Stokes helped organize a student strike for better classroom conditions. The retired school principal describes how the events in Prince Edward County in 1951 went on to become part of the Brown v. Board case. (EV)

  16. Load-bearing capacity of various CAD/CAM monolithic molar crowns under recommended occlusal thickness and reduced occlusal thickness conditions

    PubMed Central

    Choi, Sulki

    2017-01-01

    PURPOSE The goal of this study was to evaluate the fracture resistances of various monolithic crowns fabricated by computer-aided design and computer-aided manufacturing (CAD/CAM) with different thickness. MATERIALS AND METHODS Test dies were fabricated as mandibular molar forms with occlusal reductions using CAD/CAM. With different occlusal thickness (1.0 or 1.5 mm), a polymer-infiltrated ceramic network (Enamic, EN), and zirconia-reinforced lithium silicate (Suprinity, SU and Celtra-Duo, CD) were used to fabricate molar crowns. Lithium disilicate (e.max CAD, EM) crowns (occlusal: 1.5 mm) were fabricated as control. Seventy crowns (n=10 per group) were bonded to abutments and stored in water for 24 hours. A universal testing machine was used to apply load to crown until fracture. The fractured specimens were examined with a scanning electron microscopy. RESULTS The type of ceramics and the occlusal thickness showed a significant interaction. With a recommended thickness (1.5 mm), the SU revealed the mean load similar to the EM, higher compared with those of the EN and CD. The fracture loads in a reduced thickness (1.0 mm) were similar among the SU, CD, and EN. The mean fracture load of the SU and CD enhanced significantly when the occlusal thickness increased, whereas that of the EN did not. CONCLUSION The fracture loads of monolithic crowns were differently influenced by the changes in occlusal thickness, depending on the type of ceramics. Within the limitations of this study, all the tested crowns withstood the physiological masticatory loads both at the recommended and reduced occlusal thickness. PMID:29279761

  17. Fracture strength testing of crowns made of CAD/CAM composite resins.

    PubMed

    Okada, Ryota; Asakura, Masaki; Ando, Akihiro; Kumano, Hirokazu; Ban, Seiji; Kawai, Tatsushi; Takebe, Jun

    2018-03-28

    The purpose of this study was to ascertain whether computer aided design/computer aided manufacturing (CAD/CAM) composite resin crowns have sufficient strength to withstand the bite force of the molar teeth. The null hypothesis was that the fracture strength of CAD/CAM composite resin crowns is lower than the average maximum bite force of the molar tooth. The crowns, which shape is the right maxillary first molar, were fabricated using four CAD/CAM blanks made of composite resins (Block HC: HC, KZR-CAD HR: HR, KZR-CAD HR2: HR2, Avencia Block: AVE) and one CAD/CAM blank made of lithium disilicate glass-ceramic (IPS e.max CAD: IPS), which was used as a control. Fracture strength of fabricated crowns bonded to metal abutment and biaxial flexural strength of the materials were evaluated. The results of fracture strength test and biaxial flexural strength test showed different tendencies. The fracture strength of CAD/CAM composite resin crowns except HC ranged from 3.3kN to 3.9kN, and was similar to that of IPS (3.3kN). In contrast, biaxial flexural strength of CAD/CAM composite resins ranged from 175MPa to 247MPa, and was significantly lower than that of IPS (360MPa). All CAD/CAM composite resin crowns studied presented about 3-4 times higher fracture strength than the average maximum bite force of the molar tooth (700-900N), which result leads to the conclusion that CAD/CAM composite resin crowns would have sufficient strength to withstand the bite force of the molar teeth. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. Diet-related die-off of captive black-crowned night herons

    USGS Publications Warehouse

    Carpenter, J.W.; Spann, J.W.; Novilla, M.N.

    1979-01-01

    Several species of herons, which are top-level consumers in aquatic food chains, have experienced population declines in certain areas o f their normal range (7,13) -- areas in which elevated levels of various environmental pollutants are known to occur. (6) To determine the effects of environmental contaminants on the Ardeidae, a colony of black-crowned night herons (Nycticorax nycticorax) was established in 1972 at the Patuxent Wildlife Research Center. The night heron was selected as the model species because of its widespread occurrence and its ability to survive and reproduce in captivity. Birds for the colony were obtained from either the New York Zoological Park and Dallas Zoo or were wild-caught along the Maryland and Virginia coasts in 1972, 1973, and 1975. This report describes a die-off in the colony following a change in the origina of their food source. The data suggest that the mortality was diet-related, most likely caused by vitamin E deficiency. Excessive dietary thiaminase may have resulted in concurrent thiamine deficiency, but evidence for this is equivocal.

  19. Holographic evaluation of the marginal fit of complete crowns loaded at central fossa

    NASA Astrophysics Data System (ADS)

    Chen, Terry Y.; Chang, Guan L.; Wu, Shih H.

    1993-07-01

    In dentistry, the defect of cementation on the margins of crowns accumulates bacterial plaque easily. This can result in recurrent caries and periodontal disease. In this paper holographic interferometry is applied to study the effect of masticatory force on various complete crowns. Four complete molar crowns made from different casting materials (Au, Pd-Ag, Ni-Cr, and PFM) were tested. The horizontal displacements of two points near the margin, measured by the method of multiple observations, could be as large as 15 micrometers under normal load (25 kgw). However, the marginal discrepancy of all four crowns estimated were quite small (< 0.2 micrometers ). This also indicates that the cementation between the crown and the tooth is quite good. Nevertheless, when the load was increased to 45 kgw, a defect of cementation was found on the Pd-Ag crown.

  20. Material test machine for tension-compression tests at high temperature

    DOEpatents

    Cioletti, Olisse C.

    1988-01-01

    Apparatus providing a device for testing the properties of material specimens at high temperatures and pressures in controlled water chemistries includes, inter alia, an autoclave housing the specimen which is being tested. The specimen is connected to a pull rod which couples out of the autoclave to an external assembly which includes one or more transducers, a force balance chamber and a piston type actuator. The pull rod feeds through the force balance chamber and is compensated thereby for the pressure conditions existing within the autoclave and tending to eject the pull rod therefrom. The upper end of the push rod is connected to the actuator through elements containing a transducer comprising a linear variable differential transformer (LVDT). The housing and coil assembly of the LVDT is coupled to a tube which runs through a central bore of the pull rod into the autoclave where it is connected to one side of the specimen. The movable core of the LVDT is coupled to a stem which runs through the tube where it is then connected to the other side of the specimen through a coupling member. A transducer in the form of a load cell including one or more strain gages is located on a necked-down portion of the upper part of the pull rod intermediate the LVDT and force balance chamber.

  1. Influence of surface treatment and cyclic loading on the durability of repaired all-ceramic crowns

    PubMed Central

    ATTIA, Ahmed

    2010-01-01

    Objective This study investigated the durability of repaired all-ceramic crowns after cyclic loading. Material and methods Eighty In-ceram zirconia crowns were fabricated to restore prepared maxillary premolars. Resin cement was used for cementation of crowns. Palatal cusps were removed to simulate fracture of veneering porcelain and divided into 4 groups (n = 20). Fracture site was treated before repair as follows: roughening with diamond bur, (DB); air abrasion using 50 µm Al2O3, (AA) and silica coating using Cojet system followed by silane application, (SC). Control group (CG) 20 specimens were left without fracture. Palatal cusps were repaired using composite resin. Specimens were stored in water bath at 37°C for one week. Ten specimens of each group were subjected to cyclic loading. Fracture load (N) was recorded for each specimen using a universal testing machine. Two-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) test (α=.05) were used for statistical analysis. Results There was statistically significant difference between control and tested groups, (p<0.001). Post Hoc analysis with the Tukey HSD test showed that cyclic loading fatigue significantly decreased means fracture load of control and test groups as follows (CG, 950.4±62.6 / 872.3±87.4, P = 0.0004), (DB, 624.2 ±38 / 425.5± 31.7, P <.001), (AA, 711.5 ±15.5 / 490 ± 25.2, p <0.001) and (SC, 788.7 ± 18.1 / 610.2 ± 25.2, P <.001), while silica coating and silane application significantly increased fracture load of repaired crowns (p<0.05). Conclusion Repair of fractured Inceram zirconia crowns after chairside treatment of the fracture site by silica coating and silane application could improve longevity of repaired In-ceram zirconia crowns. PMID:20485932

  2. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures.

    PubMed

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-09-30

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R(2) = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables.

  3. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures

    PubMed Central

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-01-01

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables. PMID:21072126

  4. Evaluation of retentive strength of four luting cements with stainless steel crowns in primary molars: An in vitro study

    PubMed Central

    Parisay, Iman; Khazaei, Yegane

    2018-01-01

    Background: Stainless steel crown (SSC) is the most reliable restoration for primary teeth with extensive caries. Retention is of great importance for a successful restoration and is provided by various factors such as luting cements. The aim of this study was to evaluate the retentive strength of SSC cemented with four different luting cements. Materials and Methods: In this in vitro study, A total of 55 extracted primary first molars were selected. Following crown selection and cementation (one with no cement and four groups cemented with resin, glass ionomer, zinc phosphate, and polycarboxylate), all the specimens were incubated and thermocycled in 5°C–55°C. Retentive properties of SSCs were tested with a mechanical test machine. First dislodgement of each specimen and full crown removal were recorded. One-way ANOVA test followed by least significant difference test and Kruskal–Wallis test was used for retentive strength comparison at the level of significance of P < 0.05. Results: The results of the study showed that the specimens cemented with zinc phosphate exhibited higher retentive strength as compared to glass ionomer and polycarboxylate (P < 0.001 and P = 0.023, respectively). Conclusion: Zinc phosphate cement showed the most promising results; thus, it can be preferably used for cementation of the teeth with no grossly broken down crowns. PMID:29922339

  5. Adhesive Cementation Promotes Higher Fatigue Resistance to Zirconia Crowns.

    PubMed

    Campos, F; Valandro, L F; Feitosa, S A; Kleverlaan, C J; Feilzer, A J; de Jager, N; Bottino, M A

    The aim of this study was to investigate the influence of the cementation strategy on the fatigue resistance of zirconia crowns. The null hypothesis was that the cementation strategy would not affect the fatigue resistance of the crowns. Seventy-five simplified molar tooth crown preparations were machined in glass fiber-filled epoxy resin. Zirconia crowns were designed (thickness=0.7 mm), milled by computer-aided design/computer-aided manufacturing, and sintered, as recommended. Crowns were cemented onto the resin preparations using five cementation strategies (n=15): ZP, luting with zinc phosphate cement; PN, luting with Panavia F resin cement; AL, air particle abrasion with alumina particles (125 μm) as the crown inner surface pretreatment + Panavia F; CJ, tribochemical silica coating as crown inner surface pretreatment + Panavia F; and GL, application of a thin layer of porcelain glaze followed by etching with hydrofluoric acid and silanization as crown inner surface pretreatment + Panavia F. Resin cement was activated for 30 seconds for each surface. Specimens were tested until fracture in a stepwise stress fatigue test (10,000 cycles in each step, 600 to 1400 N, frequency of 1.4 Hz). The mode of failure was analyzed by stereomicroscopy and scanning electron microscopy. Data were analyzed by Kaplan-Meier and Mantel-Cox (log rank) tests and a pairwise comparison (p<0.05) and by Weibull analysis. The CJ group had the highest load mean value for failure (1200 N), followed by the PN (1026 N), AL (1026 N), and GL (1013 N) groups, while the ZP group had the lowest mean value (706 N). Adhesively cemented groups (CJ, AL, PN, and GL) needed a higher number of cycles for failure than the group ZP did. The groups' Weibull moduli (CJ=5.9; AL=4.4; GL=3.9; PN=3.7; ZP=2.1) were different, considering the number of cycles for failure data. The predominant mode of failure was a fracture that initiated in the cement/zirconia layer. Finite element analysis showed the different stress distribution for the two models. Adhesive cementation of zirconia crowns improves fatigue resistance.

  6. Resistance of full veneer metal crowns with different forms of axial grooves

    NASA Astrophysics Data System (ADS)

    Hidayat, A. S.; Masulili, C.; Indrasari, M.

    2017-08-01

    Dental crowns or bridges can occasionally come loose or separate from the tooth during chewing, particularly when they are situated on small, short, and conical teeth. The main cause of this separation is a lack of retention and resistance to the tooth. There are several methods available to increase the retention and resistance of the crown during both inlay and onlay preparation, including parallelism, groove preparation, crown build-up, and surface roughness. The aim of this study was to determine the differences in resistance of full veneer metal crowns with various forms of groove preparation. The study involved the compressive strength testing of a total of 24 specimens, namely six specimens without groove preparation, six specimens with box-shaped grooves, six specimens with V-shaped grooves, and six specimens with half round grooves. The mean values of the metal crowns that separated from the teeth during testing were 27.97 ± 1.08 kgF for the crowns with box-shaped grooves, 6.15 ± 0.22 kgF for those with V-shaped grooves, 1.77 ± 0.12 kgF for those with half round grooves, and 0.95 ± 0.13 kgF for those without grooves. This study found that the resistance is best in crowns with box-shaped grooves, followed by those with V-shaped grooves, half round grooves, and those without groove. When clinicians are working on short and conical molar teeth, it is therefore recommended that box-shaped grooves are used to increase the resistance of the crown.

  7. Landsat TM Classifications For SAFIS Using FIA Field Plots

    Treesearch

    William H. Cooke; Andrew J. Hartsell

    2001-01-01

    Wall-to-wall Landsat Thematic Mapper (TM) classification efforts in Georgia require field validation. We developed a new crown modeling procedure based on Forest Health Monitoring (FHM) data to test Forest Inventory and Analysis (FIA) data. These models simulate the proportion of tree crowns that reflect light on a FIA subplot basis. We averaged subplot crown...

  8. Corrosion Induced Loss of Capacity of Post Tensioned Seven Wire Strand Cable Used in Multistrand Anchor Systems Installed at Corps Projects

    DTIC Science & Technology

    2016-12-01

    Universal Test Machine. .................. 7 Figure 2.2. Pull-test results of PT seven-wire strand cable surrounded by a quickset, steel - reinforced epoxy...13 Figure 2.7. Pull-test results of PT seven-wire strand cable surrounded by a quickset, steel - reinforced...surrounded by a thick layer of quickset, steel -reinforced epoxy and with 40% reduced wedges. ....................................................... 15

  9. The marginal fit of lithium disilicate crowns: Press vs. CAD/CAM.

    PubMed

    Azar, Basel; Eckert, Steve; Kunkela, Josef; Ingr, Tomaš; Mounajjed, Radek

    2018-01-01

    This study aimed to compare the vertical marginal gap of teeth restored with lithium disilicate crowns fabricated using CAD/CAM or by pressed ceramic approach. Twenty mandibular third molar teeth were collected after surgical extractions and prepared to receive full veneer crowns. Teeth were optically scanned and lithium disilicate blocks were used to fabricate crowns using CAD/CAM technique. Polyvinyl siloxane impressions of the prepared teeth were made and monolithic pressed lithium disilicate crowns were fabricated. The marginal gap was measured using optical microscope at 200× magnification (Keyence VHX-5000, Japan). Statistical analysis was performed using Wilcoxon test. The lithium disilicate pressed crowns had significantly smaller (p = 0.006) marginal gaps (38 ± 12 μm) than the lithium disilicate CAD/CAM crowns (45 ± 12 μm). This research indicates that lithium disilicate crowns fabricated with the press technique have measurably smaller marginal gaps compared with those fabricated with CAD/CAM technique within in vitro environments. The marginal gaps achieved by the crowns across all groups were within a clinically acceptable range.

  10. Information Foraging in Nuclear Power Plant Control Rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.L. Boring

    2011-09-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators tomore » appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.« less

  11. Dynein-mediated pulling forces drive rapid mitotic spindle elongation in Ustilago maydis

    PubMed Central

    Fink, Gero; Schuchardt, Isabel; Colombelli, Julien; Stelzer, Ernst; Steinberg, Gero

    2006-01-01

    Spindle elongation segregates chromosomes and occurs in anaphase, an essential step in mitosis. Dynein-mediated pulling forces position the spindle, but their role in anaphase is a matter of debate. Here, we demonstrate that dynein is responsible for rapid spindle elongation in the model fungus Ustilago maydis. We show that initial slow elongation is supported by kinesin-5, which is located in the spindle mid-zone. When the spindle reaches ∼2 μm in length, the elongation rate increases four-fold. This coincides with the appearance of long and less-dynamic microtubules (MTs) at each pole that accumulate dynein at their tips. Laser-mediated nanosurgery revealed that these MTs exert pulling forces in control cells, but not in dynein mutants. In addition, dynein mutants undergo initial slow anaphase, but fail to establish less-dynamic MTs and do not perform rapid spindle elongation, suggesting that dynein drives anaphase B. This is most likely mediated by cortical sliding of astral MTs along stationary dynein, which is off-loaded from the MT plus-end to the cortex. PMID:17024185

  12. Multiple balance tests improve the assessment of postural stability in subjects with Parkinson's disease

    PubMed Central

    Jacobs, J V; Horak, F B; Tran, V K; Nutt, J G

    2006-01-01

    Objectives Clinicians often base the implementation of therapies on the presence of postural instability in subjects with Parkinson's disease (PD). These decisions are frequently based on the pull test from the Unified Parkinson's Disease Rating Scale (UPDRS). We sought to determine whether combining the pull test, the one‐leg stance test, the functional reach test, and UPDRS items 27–29 (arise from chair, posture, and gait) predicts balance confidence and falling better than any test alone. Methods The study included 67 subjects with PD. Subjects performed the one‐leg stance test, the functional reach test, and the UPDRS motor exam. Subjects also responded to the Activities‐specific Balance Confidence (ABC) scale and reported how many times they fell during the previous year. Regression models determined the combination of tests that optimally predicted mean ABC scores or categorised fall frequency. Results When all tests were included in a stepwise linear regression, only gait (UPDRS item 29), the pull test (UPDRS item 30), and the one‐leg stance test, in combination, represented significant predictor variables for mean ABC scores (r2 = 0.51). A multinomial logistic regression model including the one‐leg stance test and gait represented the model with the fewest significant predictor variables that correctly identified the most subjects as fallers or non‐fallers (85% of subjects were correctly identified). Conclusions Multiple balance tests (including the one‐leg stance test, and the gait and pull test items of the UPDRS) that assess different types of postural stress provide an optimal assessment of postural stability in subjects with PD. PMID:16484639

  13. 42 CFR 84.151 - Harness test; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... concrete floor without disarranging the harness or exerting a pull on the facepiece. (5) The arrangement... manner that prevents a pull equivalent to dragging the maximum length of the hose over a concrete floor...

  14. Stress and Reliability Analysis of a Metal-Ceramic Dental Crown

    NASA Technical Reports Server (NTRS)

    Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.

    1996-01-01

    Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.

  15. Evaluation of a Modified Atmosphere Packaging System to Increase Fresh Fruit and Vegetable Shelf Life for Extended Military Supply Chains

    DTIC Science & Technology

    2012-02-24

    Three key items – iceberg lettuce, romaine lettuce, and broccoli crowns – were tested in the Pacific Region Guam supply chain. Due to longer total...7 2.1.1 Extra Apio Broccoli for Test Shipments 2 and 3 ................................................8 2.2 Test...49 3.3 Broccoli Crowns .............................................................................................................49 3.3.1

  16. Fracture rates of IPS Empress all-ceramic crowns--a systematic review.

    PubMed

    Heintze, Siegward D; Rousson, Valentin

    2010-01-01

    The aim of this study was to evaluate the clinical fracture rate of crowns fabricated with the pressable, leucite-reinforced ceramic IPS Empress, and relate the results to the type of tooth restored. The database SCOPUS was searched for clinical studies involving full-coverage crowns made of IPS Empress. To assess the fracture rate of the crowns in relation to the type of restored tooth and study, Poisson regression analysis was used. Seven clinical studies were identified involving 1,487 adhesively luted crowns (mean observation time: 4.5+/-1.7 years) and 81 crowns cemented with zinc-phosphate cement (mean observation time: 1.6+/-0.8 years). Fifty-seven of the adhesively luted crowns fractured (3.8%). The majority of fractures (62%) occurred between the third and sixth year after placement. There was no significant influence regarding the test center on fracture rate, but the restored tooth type played a significant role. The hazard rate (per year) for crowns was estimated to be 5 in every 1,000 crowns for incisors, 7 in every 1,000 crowns for premolars, 12 in every 1,000 crowns for canines, and 16 in every 1,000 crowns for molars. One molar crown in the zinc-phosphate group fractured after 1.2 years. Adhesively luted IPS Empress crowns showed a low fracture rate for incisors and premolars and a somewhat higher rate for molars and canines. The sample size of the conventionally luted crowns was too small and the observation period too short to draw meaningful conclusions.

  17. Field demonstration of CO2 leakage detection and potential impacts on groundwater quality at Brackenridge Field Laboratory

    NASA Astrophysics Data System (ADS)

    Zou, Y.; Yang, C.; Guzman, N.; Delgado, J.; Mickler, P. J.; Horvoka, S.; Trevino, R.

    2015-12-01

    One concern related to GCS is possible risk of unintended CO2 leakage from the storage formations into overlying potable aquifers on underground sources of drinking water (USDW). Here we present a series of field tests conducted in an alluvial aquifer which is on a river terrace at The University of Texas Brackenridge Field Laboratory. Several shallow groundwater wells were completed to the limestone bedrock at a depth of 6 m and screened in the lower 3 m. Core sediments recovered from the shallow aquifer show that the sediments vary in grain size from clay-rich layers to coarse sandy gravels. Two main types of field tests were conducted at the BFL: single- (or double-) well push-pull test and pulse-like CO2 release test. A single- (or double-) well push-pull test includes three phases: the injection phase, the resting phase and pulling phase. During the injection phase, groundwater pumped from the shallow aquifer was stored in a tank, equilibrated with CO2 gasand then injected into the shallow aquifer to mimic CO2 leakage. During the resting phase, the groundwater charged with CO2 reacted with minerals in the aquifer sediments. During the pulling phase, groundwater was pumped from the injection well and groundwater samples were collected continuously for groundwater chemistry analysis. In such tests, large volume of groundwater which was charged with CO2 can be injected into the shallow aquifer and thus maximize contact of groundwater charged with CO2. Different than a single- (or double-) well push-pull test, a pulse-like CO2 release test for validating chemical sensors for CO2 leakage detection involves a CO2 release phase that CO2 gas was directly bubbled into the testing well and a post monitoring phase that groundwater chemistry was continuously monitored through sensors and/or grounder sampling. Results of the single- (or double-) well push-pull tests conducted in the shallow aquifer shows that the unintended CO2 leakage could lead to dissolution of carbonates and some silicates and mobilization of heavy metals from the aquifer sediments to groundwater, however, such mobilization posed no risks on groundwater quality at this site. The pulse-like tests have demonstrated it is plausible to use chemical sensors for CO2 leakage detection in groundwater.

  18. Does apical root resection in endodontic microsurgery jeopardize the prosthodontic prognosis?

    PubMed Central

    Cho, Sin-Yeon

    2013-01-01

    Apical surgery cuts off the apical root and the crown-to-root ratio becomes unfavorable. Crown-to-root ratio has been applied to periodontally compromised teeth. Apical root resection is a different matter from periodontal bone loss. The purpose of this paper is to review the validity of crown-to-root ratio in the apically resected teeth. Most roots have conical shape and the root surface area of coronal part is wider than apical part of the same length. Therefore loss of alveolar bone support from apical resection is much less than its linear length.The maximum stress from mastication concentrates on the cervical area and the minimum stress was found on the apical 1/3 area. Therefore apical root resection is not so harmful as periodontal bone loss. Osteotomy for apical resection reduces longitudinal width of the buccal bone and increases the risk of endo-perio communication which leads to failure. Endodontic microsurgery is able to realize 0 degree or shallow bevel and precise length of root resection, and minimize the longitudinal width of osteotomy. The crown-to-root ratio is not valid in evaluating the prosthodontic prognosis of the apically resected teeth. Accurate execution of endodontic microsurgery to preserve the buccal bone is essential to avoid endo-perio communication. PMID:23741707

  19. Three-Dimensional Analysis of Internal Adaptations of Crowns Cast from Resin Patterns Fabricated Using Computer-Aided Design/Computer-Assisted Manufacturing Technologies.

    PubMed

    Liu, Yushu; Ye, Hongqiang; Wang, Yong; Zhao, Yijao; Sun, Yuchun; Zhou, Yongsheng

    2018-05-17

    To evaluate the internal adaptations of cast crowns made from resin patterns produced using three different computer-aided design/computer-assisted manufacturing technologies. A full-crown abutment made of zirconia was digitized using an intraoral scanner, and the design of the crown was finished on the digital model. Resin patterns were fabricated using a fused deposition modeling (FDM) 3D printer (LT group), a digital light projection (DLP) 3D printer (EV group), or a five-axis milling machine (ZT group). All patterns were cast in cobalt-chromium alloy crowns. Crowns made from traditional handmade wax patterns (HM group) were used as controls. Each group contained 10 samples. The internal gaps of the patterns were analyzed using a 3D replica method and optical digitization. The results were compared using Kruskal-Wallis analysis of variance (ANOVA), a one-sample t test, and signed rank test (α = .05). For the LT group, the marginal and axial gaps were significantly larger than in the other three groups (P < .05), but the occlusal adaptation did not reveal a significant difference (P > .05). In the ZT group, the axial gap was slightly smaller than in the HM group (P < .0083). All the means of gaps in all areas in the four groups were less than 150 μm. Casting crowns using casting patterns made from all three CAD/CAM systems could not produce the prescribed parameters, but the crowns showed clinically acceptable internal adaptations.

  20. Retentive [correction of Preventive] efficacy of glass ionomer, zinc phosphate and zinc polycarboxylate luting cements in preformed stainless steel crowns: a comparative clinical study.

    PubMed

    Khinda, V I S; Grewal, N

    2002-06-01

    This study was undertaken to assess the efficacy of three luting cements, namely, glass ionomer, zinc phosphate and zinc polycarboxylate in retainng the preformed stainless steel crowns in-vivo. Twenty subjects, with an indication for restoration of three primary molars with stainless steel crowns, were selected. Sixty teeth were taken up for the study, and twenty crowns were cemented with each of the three luting cements. After an eight month follow up the crowns were assessed for their presence/ absence or "rocking". Statistical analysis was done using Chi-square test. The results have shown no significant difference in retentivity of stainless steel crowns with the use of either of the three luting agents.

  1. Warning Analysis for the Information Age: Rethinking the Intelligence Process

    DTIC Science & Technology

    2003-12-01

    play soccer, they usually play “clusterball” where virtu- ally all the players are in a tight group trying to kick the ball and only the goalies and a...normal com- plement of analysts on the new crisis area is less by having been pulled off to the old crisis area. As the IC moves from crisis to crisis

  2. Emergency Management Span of Control: Optimizing Organizational Structures to Better Prepare Vermont for the Next Major or Catastrophic Disaster

    DTIC Science & Technology

    2008-12-01

    full glare of media and public scrutiny, they are expected to perform flawlessly like a goalie in hockey or soccer, or a conversion kicker in...among all levels of government, not a plan that is pulled off the shelf only during worst- case disasters. The lifecycle of disasters entails a

  3. 'Pulled in off the Street' and Available: What Qualifications and Training Do Teacher Assistants Really Need?

    ERIC Educational Resources Information Center

    Butt, Rosemary

    2018-01-01

    As more Teacher Assistants (TAs) take on the responsibility of supporting students with disability and learning difficulties questions arise as to the appropriate qualifications for such work, the adequacy of training, and the policy and practice of schools employing TAs. A qualitative study, informed by multiple perspectives, was conducted in…

  4. Adhesion control by inflation: implications from biology to artificial attachment device

    NASA Astrophysics Data System (ADS)

    Dening, Kirstin; Heepe, Lars; Afferrante, Luciano; Carbone, Giuseppe; Gorb, Stanislav N.

    2014-08-01

    There is an increasing demand for materials that incorporate advanced adhesion properties, such as an ability to adhere in a reversible and controllable manner. In biological systems, these features are known from adhesive pads of the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima. These species have convergently developed soft, hemispherically shaped pads that might be able to control their adhesion through active changing the curvature of the pad. Inspired by these biological systems, an artificial model system is developed here. It consists of an inflatable membrane clamped to the metallic cylinder and filled with air. Pull-off force measurements of the membrane surface were conducted in contact with the membrane at five different radii of curvature r c with (1) a smooth polyvinylsiloxane membrane and (2) mushroom-shaped adhesive microstructured membrane made of the same polymer. The hypothesis that an increased internal pressure, acting on the membrane, reduces the radius of the membrane curvature, resulting in turn in a lower pull-off force, is verified. Such an active control of adhesion, inspired by biological models, will lead to the development of industrial pick-and-drop devices with controllable adhesive properties.

  5. Remora fish suction pad attachment is enhanced by spinule friction.

    PubMed

    Beckert, Michael; Flammang, Brooke E; Nadler, Jason H

    2015-11-01

    The remora fishes are capable of adhering to a wide variety of natural and artificial marine substrates using a dorsal suction pad. The pad is made of serial parallel pectinated lamellae, which are homologous to the dorsal fin elements of other fishes. Small tooth-like projections of mineralized tissue from the dorsal pad lamella, known as spinules, are thought to increase the remora's resistance to slippage and thereby enhance friction to maintain attachment to a moving host. In this work, the geometry of the spinules and host topology as determined by micro-computed tomography and confocal microscope data, respectively, are combined in a friction model to estimate the spinule contribution to shear resistance. Model results are validated with natural and artificially created spinules and compared with previous remora pull-off experiments. It was found that spinule geometry plays an essential role in friction enhancement, especially at short spatial wavelengths in the host surface, and that spinule tip geometry is not correlated with lamellar position. Furthermore, comparisons with pull-off experiments suggest that spinules are primarily responsible for friction enhancement on rough host topologies such as shark skin. © 2015. Published by The Company of Biologists Ltd.

  6. Investigation on the mechanism of nitrogen plasma modified PDMS bonding with SU-8

    NASA Astrophysics Data System (ADS)

    Yang, Chengxin; Yuan, Yong J.

    2016-02-01

    Polydimethylsiloxane (PDMS) and SU-8 are both widely used for microfluidic system. However, it is difficult to permanently seal SU-8 microfluidic channels using PDMS with conventional methods. Previous efforts of combining these two materials mainly employed oxygen plasma modified PDMS. The nitrogen plasma modification of PDMS bonding with SU-8 is rarely studied in recent years. In this work, the mechanism of nitrogen plasma modified PDMS bonding with SU-8 was investigated. The fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle of a water droplet were used to analyze the nitrogen plasma modified surface and the hydrophilic stability of PDMS samples. Pull-off tests were used for estimating the bonding effect of interface between nitrogen plasma modified PDMS and SU-8.

  7. Induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens strains that produce the polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are among the most effective rhizobacteria that suppress root and crown rots, wilts and damping-off diseases of a variety of crops, and they play a key role in the natural suppressiveness of ...

  8. Method and device for determining bond separation strength using induction heating

    NASA Technical Reports Server (NTRS)

    Coultrip, Robert H. (Inventor); Johnson, Samuel D. (Inventor); Copeland, Carl E. (Inventor); Phillips, W. Morris (Inventor); Fox, Robert L. (Inventor)

    1994-01-01

    An induction heating device includes an induction heating gun which includes a housing, a U-shaped pole piece having two spaced apart opposite ends defining a gap there between, the U-shaped pole piece being mounted in one end of the housing, and a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil. A power source is connected to the tank circuit. A pull test machine is provided having a stationary chuck and a movable chuck, the two chucks holding two test pieces bonded together at a bond region. The heating gun is mounted on the pull test machine in close proximity to the bond region of the two test pieces, whereby when the tank circuit is energized, the two test pieces are heated by induction heating while a tension load is applied to the two test pieces by the pull test machine to determine separation strength of the bond region.

  9. A comparison of tree crown condition in areas with and without gypsy moth activity

    Treesearch

    KaDonna C. Randolph

    2005-01-01

    This study compared the crown condition of trees within and outside areas of gypsy moth defoliation in Virginia via hypothesis tests of mean differences for five U.S. Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis phase 3 crown condition indicators. Significant differences were found between the trees located within and outside gypsy moth...

  10. A comparison of tree crown condition in areas with and without gypsy moth activity

    Treesearch

    KaDonna C. Randolph

    2007-01-01

    This study compared the crown condition of trees within and outside areas of gypsy moth defoliation in Virginia via hypothesis tests of mean differences for five U.S. Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis phase 3 crown condition indicators. Significant differences were found between the trees located within and outside gypsy moth...

  11. Morphological causes for the retention of precipitation in the crowns of alpine plants

    Treesearch

    Russell K. Monson; Michael C. Grant; Charles H. Jaeger; Anna W. Schoettle

    1992-01-01

    Studies were conducted on 27 species of alpine plants to test the hypothesis that structural characteristics of leaves have a predictable influence on the amount of moisture retained by a plant crown following a simulated rain event. The retention of precipitation in crowns has been previously demonstrated as one factor potentially contributing to the direct effects of...

  12. The Relationship of Bole Diameters and Crown Widths of Seven Bottomland Hardwood Species

    Treesearch

    John K. Francis

    1988-01-01

    Diameters, heights, and eight crown radii per tree were measured on 75 individuals from each of seven bottomland hardwood species in Mississippi. It was determined that the seven species could not be described by a single regression equation. Crown class was tested to see whether it significantly influenced the slope or intercept of the linear relationship. Three of...

  13. Genetic variation in tree structure and its relation to size in Douglas-fir: II. crown form, branch characters, and foliage characters.

    Treesearch

    J.B. St. Clair

    1994-01-01

    Genetic variation and covariation among traits of tree size and structure were assessed in an 18-year-old Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) genetic test in the Coast Range of Oregon. Considerable genetic variation was found for relative crown width; stem increment per crown projection area; leaf...

  14. The surprising dynamics of a chain on a pulley: lift off and snapping

    PubMed Central

    Audoly, Basile

    2016-01-01

    The motion of weights attached to a chain or string moving on a frictionless pulley is a classic problem of introductory physics used to understand the relationship between force and acceleration. Here, we consider the dynamics of the chain when one of the weights is removed and, thus, one end is pulled with constant acceleration. This simple change has dramatic consequences for the ensuing motion: at a finite time, the chain ‘lifts off’ from the pulley, and the free end subsequently accelerates faster than the end that is pulled. Eventually, the chain undergoes a dramatic reversal of curvature reminiscent of the crack or snap, of a whip. We combine experiments, numerical simulations and theoretical arguments to explain key aspects of this dynamical problem. PMID:27436987

  15. Pulled microcapillary tube resonators with electrical readout for mass sensing applications

    PubMed Central

    Lee, Donghyuk; Kim, Joonhui; Cho, Nam-Joon; Kang, Taewook; Kauh, Sangken; Lee, Jungchul

    2016-01-01

    This paper reports a microfabrication-free approach to make hollow channel mass sensors by pulling a glass capillary and suspending it on top of a machined jig. A part of the pulled section makes simple contact with an actuation node and a quartz tuning fork (QTF) which acts as a sensing node. The two nodes define a pulled micro capillary tube resonator (PμTR) simply supported at two contacts. While a piezo actuator beneath the actuation node excites the PμTR, the QTF senses the resonance frequency of the PμTR. The proposed concept was validated by electrical and optical measurements of resonant spectra of PμTR. Then, different liquid samples including water, ethanol, glycerol, and their binary mixtures were introduced into the PμTR and the resonance frequency of the PμTR was measured as a function of liquid density. Density responsivity of −3,088 Hz-g−1 cm3 obtained is comparable to those of microfabricated hollow resonators. With a micro droplet generation chip configured in series with the PμTR, size distribution of oil droplets suspended in water was successfully measured with the radius resolution of 31 nm at the average droplet radius, 28.47 μm. Overall, typical off-the-shelf parts simply constitute a resonant mass sensing system along with a convenient electrical readout. PMID:27694852

  16. Ceramic molar crown reproducibility by digital workflow manufacturing: An in vitro study.

    PubMed

    Jeong, Ii-Do; Kim, Woong-Chul; Park, Jinyoung; Kim, Chong-Myeong; Kim, Ji-Hwan

    2017-08-01

    This in vitro study aimed to analyze and compare the reproducibility of zirconia and lithium disilicate crowns manufactured by digital workflow. A typodont model with a prepped upper first molar was set in a phantom head, and a digital impression was obtained with a video intraoral scanner (CEREC Omnicam; Sirona GmbH), from which a single crown was designed and manufactured with CAD/CAM into a zirconia crown and lithium disilicate crown (n=12). Reproducibility of each crown was quantitatively retrieved by superimposing the digitized data of the crown in 3D inspection software, and differences were graphically mapped in color. Areas with large differences were analyzed with digital microscopy. Mean quadratic deviations (RMS) quantitatively obtained from each ceramic group were statistically analyzed with Student's t-test (α=.05). The RMS value of lithium disilicate crown was 29.2 (4.1) µm and 17.6 (5.5) µm on the outer and inner surfaces, respectively, whereas these values were 18.6 (2.0) µm and 20.6 (5.1) µm for the zirconia crown. Reproducibility of zirconia and lithium disilicate crowns had a statistically significant difference only on the outer surface ( P <.001). The outer surface of lithium disilicate crown showed over-contouring on the buccal surface and under-contouring on the inner occlusal surface. The outer surface of zirconia crown showed both over- and under-contouring on the buccal surface, and the inner surface showed under-contouring in the marginal areas. Restoration manufacturing by digital workflow will enhance the reproducibility of zirconia single crowns more than that of lithium disilicate single crowns.

  17. Upper body push and pull strength ratio in recreationally active adults.

    PubMed

    Negrete, Rodney J; Hanney, William J; Pabian, Patrick; Kolber, Morey J

    2013-04-01

    Agonist to antagonist strength data is commonly analyzed due to its association with injury and performance. The purpose of this study was to examine the agonist to antagonist ratio of upper body strength using two simple field tests (timed push up/timed modified pull up) in recreationally active adults and to establish the basis for reference standards. One hundred eighty (180) healthy recreationally active adults (111 females and 69 males, aged 18-45 years) performed two tests of upper body strength in random order: 1. Push-ups completed during 3 sets of 15 seconds with a 45 second rest period between each set and 2. Modified pull-ups completed during 3 sets of 15 seconds with a 45 second rest period between each set. The push-up to modified pull-up ratio for the males was 1.57:1, whereas females demonstrated a ratio of 2.72:1. The results suggest that for our group of healthy recreationally active subjects, the upper body "pushing" musculature is approximately 1.5-2.7 times stronger than the musculature involved for pulling. In this study, these recreationally active adults displayed greater strength during the timed push-ups than the modified pull-ups. The relationship of these imbalances to one's performance and or injury risk requires further investigation. The reference values, however, may serve the basis for future comparison and prospective investigations. The field tests in this study can be easily implemented by clinicians and an agonist/antagonist ratio can be determined and compared to our findings. 2b.

  18. Combat Fitness a Concept Vital to National Defense

    DTIC Science & Technology

    2010-06-18

    Physical fitness testing has traditionally been focused on a 1.5- to 3-mile run, push-ups, sit-ups, and, in some Services pull -ups, flexibility, and...Performance 6 Shoot Physical Requirements Employ hand grenades Run under load, jump, bound, high/low crawl, climb, push, pull , squat, lunge, roll...jump, bound, high/low crawl, climb, push, pull , squat, lunge, roll, stop, start, change direction and get up/down. Navigate from one point to

  19. Evaluation of marginal fit of 2 CAD-CAM anatomic contour zirconia crown systems and lithium disilicate glass-ceramic crown.

    PubMed

    Ji, Min-Kyung; Park, Ji-Hee; Park, Sang-Won; Yun, Kwi-Dug; Oh, Gye-Jeong; Lim, Hyun-Pil

    2015-08-01

    This study was to evaluate the marginal fit of two CAD-CAM anatomic contour zirconia crown systems compared to lithium disilicate glass-ceramic crowns. Shoulder and deep chamfer margin were formed on each acrylic resin tooth model of a maxillary first premolar. Two CAD-CAM systems (Prettau®Zirconia and ZENOSTAR®ZR translucent) and lithium disilicate glass ceramic (IPS e.max®press) crowns were made (n=16). Each crown was bonded to stone dies with resin cement (Rely X Unicem). Marginal gap and absolute marginal discrepancy of crowns were measured using a light microscope equipped with a digital camera (Leica DFC295) magnified by a factor of 100. Two-way analysis of variance (ANOVA) and post-hoc Tukey's HSD test were conducted to analyze the significance of crown marginal fit regarding the finish line configuration and the fabrication system. The mean marginal gap of lithium disilicate glass ceramic crowns (IPS e.max®press) was significantly lower than that of the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) (P<.05). Both fabrication systems and finish line configurations significantly influenced the absolute marginal discrepancy (P<.05). The lithium disilicate glass ceramic crown (IPS e.max®press) had significantly smaller marginal gap than the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia). In terms of absolute marginal discrepancy, the CAD-CAM anatomic contour zirconia crown system (ZENOSTAR®ZR translucent) had under-extended margin, whereas the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) and lithium disilicate glass ceramic crowns (IPS e.max®press) had overextended margins.

  20. An In Vivo Evaluation of the Fit of Zirconium-Oxide Based, Ceramic Single Crowns with Vertical and Horizontal Finish Line Preparations.

    PubMed

    Vigolo, Paolo; Mutinelli, Sabrina; Biscaro, Leonello; Stellini, Edoardo

    2015-12-01

    Different types of tooth preparations influence the marginal precision of zirconium-oxide based ceramic single crowns. In this in vivo study, the marginal fits of zirconium-oxide based ceramic single crowns with vertical and horizontal finish lines were compared. Forty-six teeth were chosen in eight patients indicated for extraction for implant placement. CAD/CAM technology was used for the production of 46 zirconium-oxide-based ceramic single crowns: 23 teeth were prepared with vertical finishing lines, 23 with horizontal finishing lines. One operator accomplished all clinical procedures. The zirconia crowns were cemented with glass ionomer cement. The teeth were extracted 1 month later. Marginal gaps along vertical planes were measured for each crown, using a total of four landmarks for each tooth by means of a microscope at 50× magnification. On conclusion of microscopic assessment, ESEM evaluation was completed on all specimens. The comparison of the gap between the two types of preparation was performed with a nonparametric test (two-sample Wilcoxon rank-sum test) with a level of significance fixed at p < 0.05. All data were analyzed with STATA12. In the group with horizontal finish line preparations, the median value of the gap was 35.45 μm (Iqr, 0.33); for the vertical finish line group, the median value of the gap was 35.44 μm (Iqr, 0.40). The difference between the two groups was not statistically significant (two-sample Wilcoxon rank-sum test, p = 0.0872). Within the limitations of this study, the gaps of the zirconium-oxide-based ceramic CAD/CAM crowns with vertical and horizontal finish line preparations were not different. © 2015 by the American College of Prosthodontists.

  1. Clinical Marginal and Internal Adaptation of Maxillary Anterior Single All-Ceramic Crowns and 2-year Randomized Controlled Clinical Trial.

    PubMed

    Akın, Aslı; Toksavul, Suna; Toman, Muhittin

    2015-07-01

    The aims of this randomized-controlled clinical trial were to compare marginal and internal adaptation of all-ceramic crowns fabricated with CAD/CAM and heat-pressed (HP) techniques before luting and to evaluate the clinical outcomes at baseline and at 6, 12, and 24 months after luting. Fifteen CAD/CAM (CC) and 15 HP all-ceramic crowns were placed in 15 patients. A silicone replica was obtained to measure marginal and internal adaptation of each all-ceramic crown before luting, and they were sectioned buccolingually and mesiodistally. Marginal and internal adaptations were measured using computerized light microscope at 40× magnification. Clinical evaluations took place at baseline (2 days after luting) and at 6, 12, and 24 months after luting. Replica scores were analyzed with Mann-Whitney U and Student's t-test (α = 0.05). Survival rate of crowns was determined using Kaplan-Meier statistical analysis. The median marginal gap for the CC group was 132.2 μm and was 130.2 μm for the HP group. The mean internal adaptation for the CC group was 220.3 ± 51.3 μm and 210.5 ± 31 μm for the HP group. There were no statistically significant differences with respect to marginal opening (Mann-Whitney U test; p = 0.95) and internal adaptation (Student's t-test; p = 0.535) between the 2 groups. Based on modified Ryge criteria, 100% of the crowns were rated satisfactory during the 2-year period. In this in vivo study, CAD/CAM and HP all-ceramic crowns exhibited similar marginal and internal adaptations. A 100% success rate was recorded for the 15 CAD/CAM and for the 15 HP all-ceramic crowns during the 2-year period. © 2014 by the American College of Prosthodontists.

  2. Wear Behavior of Ceramic CAD/CAM Crowns and Natural Antagonists

    PubMed Central

    Naumova, Ella A.; Schneider, Stephan; Arnold, Wolfgang H.; Piwowarczyk, Andree

    2017-01-01

    Objective: Evaluation of wear behavior of computer-aided design/computer-aided manufacturing (CAD/CAM) crowns from various restorative materials and natural antagonists. Method: Full CAD/CAM crowns fabricated with nanoceramic resin (Lava Ultimate (LU)), a glass ceramic in a resin interpenetrating matrix (Vita Enamic (VE)) and a lithium silicate reinforced ceramic enriched with zirconia (Vita Suprinity (VS)) were cemented on human molars. The crown and antagonists were subjected to simulated chewing. 3D data sets, before and after the chewing simulation, were generated and matched. Occlusal surface roughness, vertical and volume loss of the crowns and antagonists were analyzed. Results: Crown roughness was significantly different between the LU and VE groups after chewing simulation. Crown vertical loss differed in all groups. The highest crown volume loss was found in the LU group, and the lowest in the VE group. Comparisons between the LU and VE groups and the LU and VS groups were significantly different. The highest antagonist volume loss was reached in the VE group, the lowest was in the LU group. Conclusion: Roughness increased after chewing simulation. LU crowns are the most natural antagonist-friendly; these were the most susceptible to vertical and volume loss. Of the tested materials, the VE crowns are the most stable regarding occlusion. PMID:28772602

  3. Fracture-resistant monolithic dental crowns.

    PubMed

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  4. FRACTURE-RESISTANT MONOLITHIC DENTAL CROWNS

    PubMed Central

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-01-01

    Objective To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Methods Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Results Experimental measurements and XFEM predictions were self consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. Significance The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. PMID:26792623

  5. Wall-to-wall Landsat TM classifications for Georgia in support of SAFIS using FIA plots for training and verification

    Treesearch

    William H. Cooke; Andrew J. Hartsell

    2000-01-01

    Wall-to-wall Landsat TM classification efforts in Georgia require field validation. Validation uslng FIA data was testing by developing a new crown modeling procedure. A methodology is under development at the Southern Research Station to model crown diameter using Forest Health monitoring data. These models are used to simulate the proportion of tree crowns that...

  6. Fracture Strength of Monolithic All-Ceramic Crowns on Titanium Implant Abutments.

    PubMed

    Weyhrauch, Michael; Igiel, Christopher; Scheller, Herbert; Weibrich, Gernot; Lehmann, Karl Martin

    2016-01-01

    The fracture strengths of all-ceramic crowns cemented on titanium implant abutments may vary depending on crown materials and luting agents. The purpose of this study was to examine differences in fracture strength among crowns cemented on implant abutments using crowns made of seven different monolithic ceramic materials and five different luting agents. In total, 525 crowns (75 each of Vita Mark II, feldspathic ceramic [FSC]; Ivoclar Empress CAD, leucite-reinforced glass ceramic [LrGC]; Ivoclar e.max CAD, lithium disilicate [LiDS]; Vita Suprinity, presintered zirconia-reinforced lithium silicate ceramic [PSZirLS]; Vita Enamic, polymer-reinforced fine-structure feldspathic ceramic [PolyFSP], Lava Ultimate; resin nanoceramic [ResNC], Celtra Duo; fully crystallized zirconia-reinforced lithium silicate [FcZirLS]) were milled using a CAD/CAM system. The inner surfaces of the crowns were etched and silanized. Titanium implant abutments were fixed on implant analogs, and airborne-particle abrasion was used on their exterior specific adhesion surfaces (Al2O3, 50 μm). Then, the abutments were degreased and silanized. The crowns were cemented on the implant abutments using five luting agents (Multilink Implant, Variolink II, RelyX Unicem, GC FujiCEM, Panavia 2.0). After thermocycling for 5,000 cycles (5 to 55°C, 30 seconds dwell time), the crowns were subjected to fracture strength testing under static load using a universal testing machine. Statistical analyses were performed using analysis of variance (α = .0002) and the Bonferroni correction. No significant difference among the luting agents was found using the different all-ceramic materials. Ceramic materials LiDS, PSZirLS, PolyFSP, and ResNC showed significantly higher fracture strength values compared with FSC, FcZirLS, and LrGC. The PSZirLS especially showed significantly better results. Within the limitations of this study, fracture strength was not differentially affected by the various luting agents. However, the fracture strength was significantly higher for PSZirLS, PolyFSP, ResNC, and LiDS ceramics than for the FSP, LrGC, and the FcZirLS ceramic with all luting agents tested.

  7. Three-dimensional printing spiders: back-and-forth glue application yields silk anchorages with high pull-off resistance under varying loading situations

    PubMed Central

    Herberstein, Marie E.

    2017-01-01

    The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired ‘instant’ anchorages of thread- and cable-like structures to a broad bandwidth of substrates. PMID:28228539

  8. Three-dimensional printing spiders: back-and-forth glue application yields silk anchorages with high pull-off resistance under varying loading situations.

    PubMed

    Wolff, Jonas O; Herberstein, Marie E

    2017-02-01

    The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired 'instant' anchorages of thread- and cable-like structures to a broad bandwidth of substrates. © 2017 The Author(s).

  9. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  10. Low temperature-pressure batch experiments and field push-pull tests: Assessing potential effects of an unintended CO2 release from CCUS projects on groundwater chemistry

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Yang, C.; Lu, J.; Reedy, R. C.; Scanlon, B. R.

    2012-12-01

    Carbon Capture Utilization and Storage projects (CCUS), where CO2 is captured at point sources such as power stations and compressed into a supercritical liquid for underground storage, has been proposed to reduce atmospheric CO2 and mitigate global climate change. Problems may arise from CO2 releases along discreet pathways such as abandoned wells and faults, upwards and into near surface groundwater. Migrating CO2 may inversely impact fresh water resources by increasing mineral solubility and dissolution rates and mobilizing harmful trace elements including As and Pb. This study addresses the impacts on fresh water resources through a combination of laboratory batch experiments, where aquifer sediment are reacted in their corresponding groundwater in 100% CO2 environments, and field push-pull tests where groundwater is equilibrated with 100% CO2, reacted in-situ in the groundwater system, and pulled out for analyses. Batch experiments were performed on aquifer material from carbonate dominated, mixed carbonate/silicalstic, and siliclastic dominated systems. A mixed silicalstic/carbonate system was chosen for the field based push-pull test. Batch experiment results suggest carbonate dissolution increased the concentration of Ca, Mg, Sr, Ba, Mn, U and HCO3- in groundwater. In systems with significant carbonate content, dissolution continued until carbonate saturation was achieved at approximately 1000 hr. Silicate dissolution increased the conc. of Si, K Ni and Co, but at much lower rates than carbonate dissolution. The elements As, Mo, V, Zn, Se and Cd generally show similar behavior where concentrations initially increase but soon drop to levels at or below the background concentrations (~48 hours). A Push-Pull test on one aquifer system produced similar geochemical behavior but observed reaction rates are higher in batch experiments relative to push-pull tests. Release of CO2 from CCUS sites into overlying aquifer systems may adversely impact groundwater quality primarily through carbonate dissolution which releases Ca and elements that substitute for Ca in crystal lattices. Silicate weathering releases primarily Si and K at lower rates. Chemical changes with the addition of CO2 may initially mobilize As, Mo, V, Zn, Se and Cd but these elements become immobile in the lowered pH water and sorb onto aquifer minerals. A combined laboratory batch experiment and field push-pull test in fresh water aquifers overlying CCUS projects will best characterize the response of the aquifer to increased pCO2. The long experimental duration of the batch experiments may allow reactions to reach equilibrium however; reaction rates may be artificially high due to increased mineral surface areas. Field based push-pull tests offer a more realistic water rock ratio and test a much larger volume of aquifer material but the test must be shorter in duration because the high pCO2 water is subject to mixing with low pCO2 background water and migration away from the test well with groundwater flow. A comparison of the two methods best characterizes the potential effects on groundwater chemistry

  11. A comparison of marginal fit between press-fabricated and CAD/CAM lithium disilicate crowns.

    PubMed

    Carlile, Richard S; Owens, Wade H; Greenwood, William J; Guevara, Peter H

    2018-01-01

    The purpose of this study was to compare the marginal fit of press-fabricated lithium disilicate crowns with that of computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate crowns to determine if the fabrication method has an influence on marginal fit. The marginal fit of 25 pressed and 25 CAD/CAM crowns was measured using the replica technique. The sites measured were the mesial, distal, facial, and lingual margins. A microscope at 10× magnification was used to obtain the measurements. Each site was measured 4 times, and intraclass correlation coefficients were used to assess measurement errors. An unpaired t test was used to evaluate the differences between the 2 groups. Mean marginal gap measurements were greater for CAD/CAM crowns than for pressed crowns at all sites. Only the difference in mean gap at the facial margin was statistically significant (P < 0.001). Press-fabricated lithium disilicate crowns provided a better marginal fit than those fabricated by CAD/CAM, but both fabrication methods provided crowns with a clinically acceptable marginal fit.

  12. Ceramic molar crown reproducibility by digital workflow manufacturing: An in vitro study

    PubMed Central

    Kim, Chong-Myeong

    2017-01-01

    PURPOSE This in vitro study aimed to analyze and compare the reproducibility of zirconia and lithium disilicate crowns manufactured by digital workflow. MATERIALS AND METHODS A typodont model with a prepped upper first molar was set in a phantom head, and a digital impression was obtained with a video intraoral scanner (CEREC Omnicam; Sirona GmbH), from which a single crown was designed and manufactured with CAD/CAM into a zirconia crown and lithium disilicate crown (n=12). Reproducibility of each crown was quantitatively retrieved by superimposing the digitized data of the crown in 3D inspection software, and differences were graphically mapped in color. Areas with large differences were analyzed with digital microscopy. Mean quadratic deviations (RMS) quantitatively obtained from each ceramic group were statistically analyzed with Student's t-test (α=.05). RESULTS The RMS value of lithium disilicate crown was 29.2 (4.1) µm and 17.6 (5.5) µm on the outer and inner surfaces, respectively, whereas these values were 18.6 (2.0) µm and 20.6 (5.1) µm for the zirconia crown. Reproducibility of zirconia and lithium disilicate crowns had a statistically significant difference only on the outer surface (P<.001). The outer surface of lithium disilicate crown showed over-contouring on the buccal surface and under-contouring on the inner occlusal surface. The outer surface of zirconia crown showed both over- and under-contouring on the buccal surface, and the inner surface showed under-contouring in the marginal areas. CONCLUSION Restoration manufacturing by digital workflow will enhance the reproducibility of zirconia single crowns more than that of lithium disilicate single crowns. PMID:28874991

  13. Hang Gliders for Sport

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Hang gliding is growing rapidly. Free Flight produces 1,000 gliders a month and other companies are entering the field. Wing is simple to control, pulling back on control bar allows you to pick up speed and at the same time lowers your altitude. Pushing forward slows your speed and levels you off. Birdmen can choose from prone, upright or swing seat harnesses in either kits or ready-to-fly gliders.

  14. Three scales of aerial photography compared for making stand measurements

    Treesearch

    Earl J. Rogers; Gene Avery; Roy A. Chapman

    1959-01-01

    Three scales of aerial photography were tested in an attempt to determine the best scale to use in forest surveying. This was done by comparing photo measurements of average tree height, average crown diameter, and crown-closure percent. These stand variables were selected for testing because of their applicability in making aerial estimates of timber volume.

  15. A numerical investigation of continental collision styles

    NASA Astrophysics Data System (ADS)

    Ghazian, Reza Khabbaz; Buiter, Susanne J. H.

    2013-06-01

    Continental collision after closure of an ocean can lead to different deformation styles: subduction of continental crust and lithosphere, lithospheric thickening, folding of the unsubducted continents, Rayleigh-Taylor (RT) instabilities and/or slab break-off. We use 2-D thermomechanical models of oceanic subduction followed by continental collision to investigate the sensitivity of these collision styles to driving velocity, crustal and lithospheric temperature, continental rheology and the initial density difference between the oceanic lithosphere and the asthenosphere. We find that these parameters influence the collision system, but that driving velocity, rheology and lithospheric (rather than Moho and mantle) temperature can be classified as important controls, whereas reasonable variations in the initial density contrast between oceanic lithosphere and asthenosphere are not necessarily important. Stable continental subduction occurs over a relatively large range of values of driving velocity and lithospheric temperature. Fast and cold systems are more likely to show folding, whereas slow and warm systems can experience RT-type dripping. Our results show that a continent with a strong upper crust can experience subduction of the entire crust and is more likely to fold. Accretion of the upper crust at the trench is feasible when the upper crust has a moderate to weak strength, whereas the entire crust can be scraped-off in the case of a weak lower crust. We also illustrate that weakening of the lithospheric mantle promotes RT-type of dripping in a collision system. We use a dynamic collision model, in which collision is driven by slab pull only, to illustrate that adjacent plates can play an important role in continental collision systems. In dynamic collision models, exhumation of subducted continental material and sediments is triggered by slab retreat and opening of a subduction channel, which allows upward flow of buoyant materials. Exhumation continues after slab break-off by reverse motion of the subducting plate (`eduction') caused by the reduced slab pull. We illustrate how a simple force balance of slab pull, slab push, slab bending, viscous resistance and buoyancy can explain the different collision styles caused by variations in velocity, temperature, rheology, density differences and the interaction with adjacent plates.

  16. Factors affecting minimum push and pull forces of manual carts.

    PubMed

    Al-Eisawi, K W; Kerk, C J; Congleton, J J; Amendola, A A; Jenkins, O C; Gaines, W

    1999-06-01

    The minimum forces needed to manually push or pull a 4-wheel cart of differing weights with similar wheel sizes from a stationary state were measured on four floor materials under different conditions of wheel width, diameter, and orientation. Cart load was increased from 0 to 181.4 kg in increments of 36.3 kg. The floor materials were smooth concrete, tile, asphalt, and industrial carpet. Two wheel widths were tested: 25 and 38 mm. Wheel diameters were 51, 102, and 153 mm. Wheel orientation was tested at four levels: F0R0 (all four wheels aligned in the forward direction), F0R90 (the two front wheels, the wheels furthest from the cart handle, aligned in the forward direction and the two rear wheels, the wheels closest to the cart handle, aligned at 90 degrees to the forward direction), F90R0 (the two front wheels aligned at 90 degrees to the forward direction and the two rear wheels aligned in the forward direction), and F90R90 (all four wheels aligned at 90 degrees to the forward direction). Wheel width did not have a significant effect on the minimum push/pull forces. The minimum push/pull forces were linearly proportional to cart weight, and inversely proportional to wheel diameter. The coefficients of rolling friction were estimated as 2.2, 2.4, 3.3, and 4.5 mm for hard rubber wheels rolling on smooth concrete, tile, asphalt, and industrial carpet floors, respectively. The effect of wheel orientation was not consistent over the tested conditions, but, in general, the smallest minimum push/pull forces were measured with all four wheels aligned in the forward direction, whereas the largest minimum push/pull forces were measured when all four wheels were aligned at 90 degrees to the forward direction. There was no significant difference between the push and pull forces when all four wheels were aligned in the forward direction.

  17. Virulence of Rhizoctonia solani AG2-2 isolates on sugar beet (Beta vulgaris) in response to low temperature

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani AG2-2 is not only the causal agent of Rhizoctonia root and crown rot in sugar beet (Beta vulgaris) but it can also cause a seedling damping-off. Significant losses can occur in all regions where sugar beets are grown. One recommendation for managing seedling losses to R. solani is...

  18. Multiplex assay for the quantitative assessment of Rhizoctonia solani AG2-2, AG4 and Rhizoctonia zeae from the soil

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani causes damping off and root and crown rot in sugar beets resulting in substantial losses in the field and during storage. Root rot is a difficult fungal disease to diagnose and manage, as the pathogen is usually not detected until after damage has occurred. The objective of this s...

  19. Estimation of crown closure from AVIRIS data using regression analysis

    NASA Technical Reports Server (NTRS)

    Staenz, K.; Williams, D. J.; Truchon, M.; Fritz, R.

    1993-01-01

    Crown closure is one of the input parameters used for forest growth and yield modelling. Preliminary work by Staenz et al. indicates that imaging spectrometer data acquired with sensors such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) have some potential for estimating crown closure on a stand level. The objectives of this paper are: (1) to establish a relationship between AVIRIS data and the crown closure derived from aerial photography of a forested test site within the Interior Douglas Fir biogeoclimatic zone in British Columbia, Canada; (2) to investigate the impact of atmospheric effects and the forest background on the correlation between AVIRIS data and crown closure estimates; and (3) to improve this relationship using multiple regression analysis.

  20. Effect of core thickness differences on post-fatigue indentation fracture resistance of veneered zirconia crowns.

    PubMed

    Alhasanyah, Abdulrahman; Vaidyanathan, Tritala K; Flinton, Robert J

    2013-07-01

    Despite the excellent esthetics of veneered zirconia crowns, the incidence of chipping and fracture of veneer porcelain on zirconia crowns has been recognized to be higher than in metal ceramic crowns. The objective of this investigation was to study the effect of selected variations in core thickness on the post-fatigue fracture resistance of veneer porcelain on zirconia crowns. Zirconia crowns for veneering were prepared with three thickness designs of (a) uniform 0.6-mm thick core (group A), (b) extra-thick 1.7 mm occlusal core support (group B), and (c) uniform 1.2-mm thick core (group C). The copings were virtually designed and milled by the CAD/CAM technique. Metal ceramic copings (group D) with the same design as in group C were used as controls. A sample size of N = 20 was used for each group. The copings were veneered with compatible porcelain and fatigue tested under a sinusoidal loading regimen. Loading was done with a 200 N maximum force amplitude under Hertzian axial loading conditions at the center of the crowns using a spherical tungsten carbide indenter. After 100,000 fatigue cycles, the crowns were axially loaded to fracture and maximum load levels before fracture was recorded. One-way ANOVA (P < 0.05) and post hoc Tukey tests (α = 0.05) were used to determine significant differences between means. The mean fracture failure load of group B was not significantly different from that of control group D. In contrast, the mean failure loads of groups A and C were significantly lower than that of control group D. Failure patterns also indicated distinct differences in failure mode distributions. The results suggest that proper occlusal core support improves veneer chipping fracture resistance in zirconia crowns. Extra-thick occlusal core support for porcelain veneer may significantly reduce the veneer chipping and fracture of zirconia crowns. This is suggested as an important consideration in the design of copings for zirconia crowns. © 2013 by the American College of Prosthodontists.

  1. Effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns.

    PubMed

    Kale, Ediz; Seker, Emre; Yilmaz, Burak; Özcelik, Tuncer Burak

    2016-12-01

    Monolithic zirconia crowns fabricated with computer-aided design and computer-aided manufacturing (CAD-CAM) have recently become a common practice for the restoration of posterior teeth. The marginal fit of monolithic zirconia crowns may be affected by different cement space parameters set in the CAD software. Information is scarce regarding the effect of cement space on the marginal fit of monolithic zirconia crowns fabricated with CAD-CAM technology. The purpose of this in vitro study was to evaluate the effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns before cementation. Fifteen right maxillary first molar typodont teeth with standardized anatomic preparations for complete-coverage ceramic crowns were scanned with a 3-dimensional laboratory scanner. Crowns were designed 3-dimensionally using software and then milled from presintered monolithic zirconia blocks in a computer numerical control dental milling machine. The cement space was set at 25 μm around the margins for all groups, and additional cement space starting 1 mm above the finish lines of the teeth was set at 30 μm for group 25-30, 40 μm for group 25-40, and 50 μm for group 25-50 in the CAD software. A total of 120 images (3 groups, 5 crowns per group, 8 sites per crown) were measured for vertical marginal discrepancy under a stereoscopic zoom microscope and the data were statistically analyzed with 1-way analysis of variance, followed by the Tukey honestly significant difference test (α=.05). The results showed that different cement space values had statistically significant effect on the mean vertical marginal discrepancy value of tested crowns (P<.001). The mean marginal discrepancy was 85 μm for group 25-30, 68 μm for group 25-40, and 53 μm for group 25-50. Within the limitations of this in vitro study, it was concluded that the cement space had a significant effect on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns. The marginal fit improved as the cement space decreased. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Evaluation of the amount of excess cement around the margins of cement-retained dental implant restorations: the effect of the cement application method.

    PubMed

    Chee, Winston W L; Duncan, Jesse; Afshar, Manijeh; Moshaverinia, Alireza

    2013-04-01

    Complete removal of excess cement from subgingival margins after cementation of implant-supported restorations has been shown to be unpredictable. Remaining cement has been shown to be associated with periimplant inflammation and bleeding. The purpose of this study was to investigate and compare the amount of excess cement after cementation with 4 different methods of cement application for cement-retained implant-supported restorations. Ten implant replicas/abutments (3i) were embedded in acrylic resin blocks. Forty complete veneer crowns (CVCs) were fabricated by waxing onto the corresponding plastic waxing sleeves. The wax patterns were cast and the crowns were cemented to the implant replicas with either an interim (Temp Bond) or a definitive luting agent (FujiCEM). Four methods of cement application were used for cementation: Group IM-Cement applied on the internal marginal area of the crown only; Group AH-Cement applied on the apical half of the axial walls of the crown; Group AA-Cement applied to all axial walls of the interior surface of the crown, excluding the occlusal surface; and Group PI-Crown filled with cement then seated on a putty index formed to the internal configuration of the restoration (cementation device) (n=10). Cement on the external surfaces was removed before seating the restoration. Cement layers were applied on each crown, after which the crown was seated under constant load (80 N) for 10 minutes. The excess cement from each specimen was collected and measured. One operator performed all the procedures. Results for the groups were compared, with 1 and 2-way ANOVA and the Tukey multiple range test (α=.05). No significant difference in the amount of excess/used cement was observed between the 2 different types of cements (P=.1). Group PI showed the least amount of excess cement in comparison to other test groups (P=.031). No significant difference was found in the amount of excess cement among groups MI, AH, and AA. Group AA showed the highest amount of excess cement. The volume of cement used for group PI specimens was significantly higher than for those in the other groups (P=.001). With respect to the volume of cement loaded into the test crowns no statistically significant difference was observed among other test groups (groups IM, AH, and AA). Group MI used the least amount of cement, followed by group AH and AA. No correlation between the amount of used cement and the amount of excess cement was found in any of the tested groups. Within the limitations of this in vitro study, the least amount of excess cement was present when a cementation device was used to displace the excess cement before seating the crown on the abutment (Group PI). With this technique a uniform layer of the luting agent is distributed over the internal surface of the crown leaving minimal excess cement when the restoration is seated. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  3. Children's and women's ability to fire handguns. The Pediatric Practice Research Group.

    PubMed

    Naureckas, S M; Galanter, C; Naureckas, E T; Donovan, M; Christoffel, K K

    1995-12-01

    To evaluate whether strength differences between children and women might keep children from firing handguns and to determine how many young children can fire available handguns. One- and two-index finger trigger-pull strength was tested using a standard protocol. Data on trigger-pull settings of 64 commercially available handguns were obtained. Convenience sample of well children and their mothers at four Chicago (Ill)-area pediatric practices for health supervision visits, and of siblings of emergency department patients, during an 8-week period. None. One- and two-index finger trigger-pull strength of mothers and children. Twenty-five percent of 3- to 4-year-olds, 70% of 5- to 6-year-olds, and 90% of 7- to 8-year-olds have a two-finger trigger-pull strength of at least 10 lb, the fifth percentile one-finger trigger-pull strength of adult women. Forty (62.5%) of 64 handguns require trigger-pull strength of less than 5 lb; 19 (30%) of 64 require 5 to 10 lb. Significant overlap exists in the trigger-pull strength of young children and women, limiting the potential use of increased trigger-pull settings to discourage firearm discharge by children. Young children are strong enough to fire many handguns now in circulation.

  4. Fuel containment and damage tolerance in large composite primary aircraft structures. Phase 2: Testing

    NASA Technical Reports Server (NTRS)

    Sandifer, J. P.; Denny, A.; Wood, M. A.

    1985-01-01

    Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.

  5. Comparison of a novel fixation device with standard suturing methods for spinal cord stimulators.

    PubMed

    Bowman, Richard G; Caraway, David; Bentley, Ishmael

    2013-01-01

    Spinal cord stimulation is a well-established treatment for chronic neuropathic pain of the trunk or limbs. Currently, the standard method of fixation is to affix the leads of the neuromodulation device to soft tissue, fascia or ligament, through the use of manually tying general suture. A novel semiautomated device is proposed that may be advantageous to the current standard. Comparison testing in an excised caprine spine and simulated bench top model was performed. Three tests were performed: 1) perpendicular pull from fascia of caprine spine; 2) axial pull from fascia of caprine spine; and 3) axial pull from Mylar film. Six samples of each configuration were tested for each scenario. Standard 2-0 Ethibond was compared with a novel semiautomated device (Anulex fiXate). Upon completion of testing statistical analysis was performed for each scenario. For perpendicular pull in the caprine spine, the failure load for standard suture was 8.95 lbs with a standard deviation of 1.39 whereas for fiXate the load was 15.93 lbs with a standard deviation of 2.09. For axial pull in the caprine spine, the failure load for standard suture was 6.79 lbs with a standard deviation of 1.55 whereas for fiXate the load was 12.31 lbs with a standard deviation of 4.26. For axial pull in Mylar film, the failure load for standard suture was 10.87 lbs with a standard deviation of 1.56 whereas for fiXate the load was 19.54 lbs with a standard deviation of 2.24. These data suggest a novel semiautomated device offers a method of fixation that may be utilized in lieu of standard suturing methods as a means of securing neuromodulation devices. Data suggest the novel semiautomated device in fact may provide a more secure fixation than standard suturing methods. © 2012 International Neuromodulation Society.

  6. Push-pull converter with energy saving circuit for protecting switching transistors from peak power stress

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1981-01-01

    In a push-pull converter, switching transistors are protected from peak power stresses by a separate snubber circuit in parallel with each comprising a capacitor and an inductor in series, and a diode in parallel with the inductor. The diode is connected to conduct current of the same polarity as the base-emitter juction of the transistor so that energy stored in the capacitor while the transistor is switched off, to protect it against peak power stress, discharges through the inductor when the transistor is turned on, and after the capacitor is discharges through the diode. To return this energy to the power supply, or to utilize this energy in some external circuit, the inductor may be replaced by a transformer having its secondary winding connected to the power supply or to the external circuit.

  7. A test method for determining adhesion forces and Hamaker constants of cementitious materials using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang Kejin

    2011-11-15

    A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materialsmore » obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.« less

  8. A multi-species reactive transport model to estimate biogeochemical rates based on single-well push-pull test data

    NASA Astrophysics Data System (ADS)

    Phanikumar, Mantha S.; McGuire, Jennifer T.

    2010-08-01

    Push-pull tests are a popular technique to investigate various aquifer properties and microbial reaction kinetics in situ. Most previous studies have interpreted push-pull test data using approximate analytical solutions to estimate (generally first-order) reaction rate coefficients. Though useful, these analytical solutions may not be able to describe important complexities in rate data. This paper reports the development of a multi-species, radial coordinate numerical model (PPTEST) that includes the effects of sorption, reaction lag time and arbitrary reaction order kinetics to estimate rates in the presence of mixing interfaces such as those created between injected "push" water and native aquifer water. The model has the ability to describe an arbitrary number of species and user-defined reaction rate expressions including Monod/Michelis-Menten kinetics. The FORTRAN code uses a finite-difference numerical model based on the advection-dispersion-reaction equation and was developed to describe the radial flow and transport during a push-pull test. The accuracy of the numerical solutions was assessed by comparing numerical results with analytical solutions and field data available in the literature. The model described the observed breakthrough data for tracers (chloride and iodide-131) and reactive components (sulfate and strontium-85) well and was found to be useful for testing hypotheses related to the complex set of processes operating near mixing interfaces.

  9. Randomized clinical study of wear of enamel antagonists against polished monolithic zirconia crowns

    PubMed Central

    Esquivel-Upshaw, J.F.; Kim, M.J.; Hsu, S.M.; Abdulhameed, N.; Jenkins, R.; Neal, D.; Ren, F.; Clark, A.E.

    2018-01-01

    Objectives To test the hypothesis that there is no difference in the in vivo maximum wear of enamel opposing monolithic zirconia crowns, enamel opposing porcelain fused to metal crowns and enamel opposing enamel. Methods Thirty patients needing single crowns were randomized to receive either a monolithic zirconia or metal-ceramic crown. Two non-restored opposing teeth in the same quadrants were identified to serve as enamel controls. After cementation, quadrants were scanned for baseline data. Polyvinylsiloxane impressions were obtained and poured in white stone. Patients were recalled at six-months and one-year for re-impression. Stone models were scanned using a tabletop laserscanner to determine maximum wear. Statistical analysis was performed using Mann-Whitney U to determine any significant differences between the wear of enamel against zirconia and metal-ceramic crowns. Results Sixteen zirconia and 14 metal-ceramic crowns were delivered. There were no statistical differences in mean wear of crown types (p = 0.165); enamel antagonists (p = 0.235) and enamel controls (p = 0.843) after one year. Conclusion Monolithic zirconia exhibited comparable wear of enamel compared with metal-ceramic crowns and control enamel after one year. Significance This study is clinically significant because the use of polished monolithic zirconia demonstrated comparable wear of opposing enamel to metal-ceramic and enamel antagonists. PMID:29042241

  10. Effect of air-abrasion on the retention of zirconia ceramic crowns luted with different cements before and after artificial aging.

    PubMed

    Shahin, Ramez; Kern, Matthias

    2010-09-01

    The purpose of this in vitro study was to evaluate the effect of intaglio surface air-abrasion on the retention of CAD/CAM produced zirconia ceramic crowns cemented with three different types of cement. In addition the influence of artificial aging in masticatory simulator and thermocycling was tested. Extracted human premolars were prepared for all-ceramic crowns (12 degrees taper, 3 mm axial length). CAD/CAM zirconia crowns were manufactured. Half of the crowns were air-abraded with 50 microm alumina particles at 0.25 MPa, the rest was left as machined. The crowns were luted with zinc phosphate cement (Hoffmann), glass ionomer cement (Ketac Cem), or composite resin (Panavia 21), subgroups were either stored for 3 days in 37 degrees water bath or stored for 150 days in 37 degrees water bath, with additional 37,500 thermal cycles (5-55 degrees) and 300,000 cycles dynamic loading with 5 kg in a masticatory simulator. Then crown retention was measured in tension at a crosshead speed of 2 mm/min using a universal testing machine. Statistical analysis was performed with three-way ANOVA. Mean retention values were ranged from 2.8 to 7.1 MPa after 3 days and from 1.6 to 6.1 MPa after artificial aging. Air-abrasion significantly increased crown retention (p<0.001), while artificial aging decreased retention (p=0.017). In addition, the luting material had a significant influence on retention (p<0.001) with the adhesive luting resin providing the highest retention. The use of phosphate monomer containing composite resin on air-abraded zirconia ceramic can be recommended as most retentive luting method. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Three-dimensional finite element analysis of the stress distribution pattern in a mandibular first molar tooth restored with five different restorative materials.

    PubMed

    D'souza, Kathleen Manuela; Aras, Meena Ajay

    2017-01-01

    Badly broken or structurally compromised posterior teeth are frequently associated with crown/root fracture. Numerous restorative materials have been used to fabricate indirect full-coverage restorations for such teeth. This study aims to evaluate and compare the effect of restorative materials on the stress distribution pattern in a mandibular first molar tooth, under varying loading conditions and to compare the stress distribution pattern in five commonly used indirect restorative materials. Five three-dimensional finite element models representing a mandibular first molar tooth restored with crowns of gold, porcelain fused to metal, composite (Artglass), alumina-based zirconia (In-Ceram Zirconia [ICZ]), and double-layered zirconia-based materials (zirconia core veneered with porcelain, Lava) were constructed, using a Finite Element Analysis Software (ANSYS version 10; ANSYS Inc., Canonsburg, PA, USA). Two loading conditions were applied, simulating maximum bite force of 600 N axially and normal masticatory bite force of 225 N axially and nonaxially. Both all-ceramic crowns allowed the least amount of stress distribution to the surrounding tooth structure. In maximum bite force-simulation test, alumina-based all-ceramic crown displayed the highest von Mises stresses (123.745 MPa). In the masticatory bite force-simulation test, both all-ceramic crowns (122.503-133.13 MPa) displayed the highest von Mises stresses. ICZ crown displayed the highest peak von Mises stress values under maximum and masticatory bite forces. ICZ and Lava crowns also allowed the least amount of stress distribution to the surrounding tooth structure, which is indicative of a favorable response of the underlying tooth structure to the overlying full-coverage indirect restorative material. These results suggest that ICZ and Lava crowns can be recommended for clinical use in cases of badly damaged teeth.

  12. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns

    PubMed Central

    ABDULLAH, Adil Othman; TSITROU, Effrosyni A; POLLINGTON, Sarah

    2016-01-01

    ABSTRACT Objective This study compared the marginal gap, internal fit, fracture strength, and mode of fracture of CAD/CAM provisional crowns with that of direct provisional crowns. Material and Methods An upper right first premolar phantom tooth was prepared for full ceramic crown following tooth preparation guidelines. The materials tested were: VITA CAD-Temp®, Polyetheretherketone “PEEK”, Telio CAD-Temp, and Protemp™4 (control group). The crowns were divided into four groups (n=10), Group1: VITA CAD-Temp®, Group 2: PEEK, Group 3: Telio CAD-Temp, and Group 4: Protemp™4. Each crown was investigated for marginal and internal fit, fracture strength, and mode of fracture. Statistical analysis was performed using GraphPad Prism software version 6.0. Results The average marginal gap was: VITA CAD-Temp® 60.61 (±9.99) µm, PEEK 46.75 (±8.26) µm, Telio CAD-Temp 56.10 (±5.65) µm, and Protemp™4 193.07(±35.96) µm (P<0.001). The average internal fit was: VITA CAD-Temp® 124.94 (±22.96) µm, PEEK 113.14 (±23.55) µm, Telio CAD-Temp 110.95 (±11.64) µm, and Protemp™4 143.48(±26.74) µm. The average fracture strength was: VITA CAD-Temp® 361.01 (±21.61) N, PEEK 802.23 (±111.29) N, Telio CAD-Temp 719.24 (±95.17) N, and Protemp™4 416.40 (±69.14) N. One-way ANOVA test showed a statistically significant difference for marginal gap, internal gap, and fracture strength between all groups (p<0.001). However, the mode of fracture showed no differences between the groups (p>0.05). Conclusions CAD/CAM fabricated provisional crowns demonstrated superior fit and better strength than direct provisional crowns. PMID:27383707

  13. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns.

    PubMed

    Abdullah, Adil Othman; Tsitrou, Effrosyni A; Pollington, Sarah

    2016-01-01

    This study compared the marginal gap, internal fit, fracture strength, and mode of fracture of CAD/CAM provisional crowns with that of direct provisional crowns. An upper right first premolar phantom tooth was prepared for full ceramic crown following tooth preparation guidelines. The materials tested were: VITA CAD-Temp®, Polyetheretherketone "PEEK", Telio CAD-Temp, and Protemp™4 (control group). The crowns were divided into four groups (n=10), Group1: VITA CAD-Temp®, Group 2: PEEK, Group 3: Telio CAD-Temp, and Group 4: Protemp™4. Each crown was investigated for marginal and internal fit, fracture strength, and mode of fracture. Statistical analysis was performed using GraphPad Prism software version 6.0. The average marginal gap was: VITA CAD-Temp® 60.61 (±9.99) µm, PEEK 46.75 (±8.26) µm, Telio CAD-Temp 56.10 (±5.65) µm, and Protemp™4 193.07(±35.96) µm (P<0.001). The average internal fit was: VITA CAD-Temp® 124.94 (±22.96) µm, PEEK 113.14 (±23.55) µm, Telio CAD-Temp 110.95 (±11.64) µm, and Protemp™4 143.48(±26.74) µm. The average fracture strength was: VITA CAD-Temp® 361.01 (±21.61) N, PEEK 802.23 (±111.29) N, Telio CAD-Temp 719.24 (±95.17) N, and Protemp™4 416.40 (±69.14) N. One-way ANOVA test showed a statistically significant difference for marginal gap, internal gap, and fracture strength between all groups (p<0.001). However, the mode of fracture showed no differences between the groups (p>0.05). CAD/CAM fabricated provisional crowns demonstrated superior fit and better strength than direct provisional crowns.

  14. Push-Pull Locomotion for Vehicle Extrication

    NASA Technical Reports Server (NTRS)

    Creager, Colin M.; Johnson, Kyle A.; Plant, Mark; Moreland, Scott J.; Skonieczny, Krzysztof

    2014-01-01

    For applications in which unmanned vehicles must traverse unfamiliar terrain, there often exists the risk of vehicle entrapment. Typically, this risk can be reduced by using feedback from on-board sensors that assess the terrain. This work addressed the situations where a vehicle has already become immobilized or the desired route cannot be traversed using conventional rolling. Specifically, the focus was on using push-pull locomotion in high sinkage granular material. Push-pull locomotion is an alternative mode of travel that generates thrust through articulated motion, using vehicle components as anchors to push or pull against. It has been revealed through previous research that push-pull locomotion has the capacity for generating higher net traction forces than rolling, and a unique optical flow technique indicated that this is the result of a more efficient soil shearing method. It has now been found that pushpull locomotion results in less sinkage, lower travel reduction, and better power efficiency in high sinkage material as compared to rolling. Even when starting from an "entrapped" condition, push-pull locomotion was able to extricate the test vehicle. It is the authors' recommendation that push-pull locomotion be considered as a reliable back-up mode of travel for applications where terrain entrapment is a possibility.

  15. Influence of Abutment Design on Stiffness, Strength, and Failure of Implant-Supported Monolithic Resin Nano Ceramic (RNC) Crowns.

    PubMed

    Joda, Tim; Huber, Samuel; Bürki, Alexander; Zysset, Philippe; Brägger, Urs

    2015-12-01

    Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation. © 2014 Wiley Periodicals, Inc.

  16. [Fracture resistance of Procera Allceram depending on the framework design--an in vitro study].

    PubMed

    Hagmann, Edgar; Marinello, Carlo P; Zitzmann, Nicola U

    2006-01-01

    Procera AllCeram is one of the all-ceramic systems with an aluminium-oxide core employing CAD/CAM technology. The aim of the current study was to investigate the fracture resistance of Procera AllCeram full-ceramic crowns with a reduced core design compared to the conventional method. In addition, a possible influence of the preparation form (molars or premolars) and the cementation material (glas-ionomer or composite) was analyzed. For both preparation forms, 30 ceramic cores with reduced margins (collarless cores, test) and 30 cores with extended cores (control) were veneered with porcelain in a standardized procedure (total 120 crowns). For the test group, Procera-AllCeram-margin ceramic material was used for the porcelain collar. 40 crowns each were cemented on stainless steel dies with either Ketac-Cem Aplicap or Panavia F. The additional 40 crowns were set on polyurethane dies without cementation and occlusally loaded until fracture occurred. Among the molar crowns, no differences were observed in fracture resistance neither for the different core designs (test or control) nor for the cementation materials. For the premolar form, fusing of a porcelain margin was associated with a reduction in fracture resistance, while the use of composite cement was accompanied with an increase. The present in vitro results indicate that for Procera AllCeram crowns with a highly undulating preparation margin, a conventional core design combined with adhesive cementation is preferable, especially in the posterior region due to higher chewing forces; this assumption needs to be proven in clinical studies.

  17. Continental breakup by oblique extension: the Gulf of California

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Axen, G. J.

    2017-12-01

    We address two aspects of oblique extension: 1) the evolution of pull-apart basins, and how/when they may evolve into seafloor spreading segments; and 2) the formation of microcontinents. The Gulf of California formed by oblique extension. Breakup resulted in oceanic crust generation in the southern and central parts, while in the northern Gulf/Salton Trough a thick layer of (meta-)sediments overlies thinned continental crust. We propose a simple mechanism to explain this N-S variation. We assume that oblique rifting of the proto-Gulf province resulted in pull-apart basins, and use numerical models to show that such pull-apart basins do not develop into seafloor spreading segments when their length-to-width ratios are small, as is the case in the northern Gulf. In the central and southern Gulf the length-to-width ratios were larger, promoting continent rupture. The mechanisms behind this fate of pull-apart basins will be discussed in the presentation. In the southern Gulf, potential field models show that the Tamayo Bank in the southern Gulf is likely a microcontinent, separated from the main continent by the Tamayo trough. The thickness of the ocean crust in the Tamayo trough is anomalously small, suggesting that initial seafloor spreading was magma-starved and unsuccessful, causing the location of rifting and seafloor spreading to jump. As a consequence a sliver of continent broke off, forming the microcontinent. We suggest that worldwide this may be a common process for microcontinent formation.

  18. 78 FR 42719 - Test Procedures for Showerheads, Faucets, Water Closets, Urinals, and Commercial Prerinse Spray...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... showerhead must be manufactured such that a pushing or pulling force of 8 lbf or more is required to remove... mechanically retained at the point of manufacture such that a pulling or pushing force of 8 lbf or more is...

  19. Influence of coping design on the cervical color of ceramic crowns.

    PubMed

    Paniz, Gianluca; Kang, Ki-Ho; Kim, Yongjeong; Kumagai, Naota; Hirayama, Hiroshi

    2013-12-01

    The replication of natural teeth, especially with single-tooth restorations, represents a challenge. Similar to metal ceramic crowns, different designs of zirconia substructures have been suggested to improve the esthetic results of zirconia ceramic crowns. The purpose of the study was to analyze the color of the cervical portion of single zirconia ceramic crowns fabricated with different zirconia coping designs. The color, measured on the CIELAB color scale, of 3 different groups of restorations (n=10) fabricated with zirconia coping (Lava) and feldspathic porcelain (Noritake Super Porcelain) was analyzed with a spectrophotometer. Conventional zirconia crowns with zirconia facial margins were compared with ceramic crowns with porcelain facial margins and either a horizontal reduction of the zirconia coping (1.0 mm reduction) or an additional vertical reduction (1.0 mm additional reduction). The 3 groups, each with a different coping extension, were examined with a 1-way ANOVA and the Fisher exact test, and the differences of the groups were evaluated by applying ΔE thresholds (α=.05). The mean color difference among all the groups was not clinically significant (ΔE<3.7). Reduced color differences were present between the 2 porcelain butt margin groups of crowns (ΔE=1.06, between group H and V). Increased differences were present between the zirconia margin group and the porcelain butt margin group (ΔE=2.54 between group C and H; ΔE=2.41 between group C and V). Lab* values were examined in all the groups of crowns to determine the clinical implications. Within the limitation of the study, no significant differences were present among the tested groups of crowns. Nevertheless, although some differences were present between the zirconia margin group and the porcelain butt margin group, reduced differences were present between the 2 different cutback designs. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  20. Can stature be estimated from tooth crown dimensions? A study in a sample of South-East Asians.

    PubMed

    Hossain, Mohammad Zakir; Munawar, Khalil M M; Rahim, Zubaidah H A; Bakri, Marina Mohd

    2016-04-01

    Stature estimation is an important step during medico-legal and forensic examination. Difficulty arises when highly decomposed and mutilated dead bodies with fragmentary remains are brought for forensic identification like in mass disaster or airplane crash. The body remains could be just a jaw with some teeth. The objective of this study was to explore if the stature of an individual can be determined from the tooth crown dimensions. A total of 201 volunteers participated in this study. The stature and clinical crown dimensions (length, mesiodistal and labiolingual diameters) of maxillary anterior teeth were measured. Correlation between crown dimensions and stature was analyzed by Pearson correlation test. Regression analysis was used to get equations for estimation of stature from crown measurements. The regression equations were applied in the same sample of volunteers that was used to obtain the equations. The reliability and accuracy of the equations were checked in another sample of volunteers. Length and mesiodistal diameter of the crown of central incisors and canines showed significant albeit low to moderate correlations (0.35-0.45) with the stature. The correlation co-efficient values were higher (as high as 0.537) when summation of the measurements was taken for analysis. The regression equations when applied to the same and a test sample of volunteers revealed that differences between actual and estimated stature can be as low as 0.01 to as much as 16.50cm. The findings suggest that although there are some degrees of positive correlations between stature and tooth crown dimensions, stature estimation from the tooth crown dimensions cannot provide the accuracy of estimation as required in forensic situations. The stature estimation accuracy using tooth crown dimensions is comparable to that of cephalo-facial dimensions but inferior to that of long bones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. General aviation fuel quality control

    NASA Technical Reports Server (NTRS)

    Poitz, H.

    1983-01-01

    Quality control measures for aviation gasoline, and some of the differences between quality control on avgas and mogas are discussed. One thing to keep in mind is that with motor gasoline you can always pull off to the side of the road. It's not so easy to do in an airplane. Consequently, there are reasons for having the tight specifications and the tight quality control measures on avgas as compared to motor gasoline.

  2. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance

    PubMed Central

    Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth

    2013-01-01

    Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns, possibly caused by dissolution and wear of the glaze. Statistically significant differences in surface texture (p = 0.0013) and crown wear (p = 0.0078) were found at year 3 between the metal-ceramic crowns and the lithium-disilicate-based crowns. Conclusion Based on the 11 criteria, the clinical performance of ceramic-ceramic crowns was comparable to that of the metal-ceramic crowns after 2 years; however, gradual roughening occurred between years 2 and 3, which resulted in differences in surface texture and wear. PMID:22978697

  3. Development of a torsion balance for adhesion measurements

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Maeda, Chikayoshi; Masuo, Ryuichi

    1988-01-01

    A new torsion balance for study of adhesion in ceramics is discussed. A torsion wire and a linear variable differential transformer are used to monitor load and to measure pull-off force (adhesion force). The investigation suggests that this torsion balance is valuable in studying the interfacial properties of ceramics in controlled environments such as in ultrahigh vacuum. The pull-off forces measured in dry, moist, and saturated nitrogen atmosphere demonstrate that the adhesion of silicon nitride contacts remains low at humidities below 80 percent but rises rapidly above that. The adhesion at saturation is 10 times or more greater than that below 80 percent relative humidity. The adhesion in a saturated atmosphere arises primarily from the surface tension effects of a thin film of water adsorbed on the surface. The surface tension of the water film was 58 x 10 to the minus 5 to 65 x 10 to the minus 5 power. The accepted value for water is 72.7 x 10 to the minus 5 power N/cm. Adhesion characteristics of silicon nitride in contact with metals, like the friction characteristics of silicon carbide to metal contacts, can be related to the relative chemical activity of metals in ultrahigh vacuum. The more active the metal, the higher the adhesion.

  4. Assessment of Head Displacement and Disassembly Force With Increasing Assembly Load at the Head/Trunnion Junction of a Total Hip Arthroplasty Prosthesis.

    PubMed

    Ramoutar, Darryl N; Crosnier, Emilie A; Shivji, Faiz; Miles, Anthony W; Gill, Harinderjit S

    2017-05-01

    Most femoral components used now for total hip arthroplasty are modular, requiring a strong connection at assembly. The aim of this study was to assess the effect of assembly force on the strength of head-trunnion interface and to measure the initial displacement of the head on the trunnion with different assembly forces. Three assembly load levels were assessed (A: 2 kN, B: 4 kN, C: 6 kN) with 4 implants in each group. The stems were mounted in a custom rig and the respective assembly loads were applied to the head at a constant rate of 0.05 kN/s (ISO7260-10:2003). Load levels were recorded during assembly. Head displacement was measured with a laser sensor. The disassembly force was determined by a standard pull-off test. The maximum head displacement on the trunnion was significantly different between the 2 kN group and the other 2 groups (4 kN, 6 kN, P = .029), but not between the 4 kN and 6 kN groups (P = .89). The disassembly forces between the 3 groups were significantly different (mean ± standard deviation, A: 1316 ± 223 kN; B: 2224 ± 151 kN; C: 3965 ± 344 kN; P = .007), with increasing assembly load leading to a higher pull-off force. For the 4 kN and 6 kN groups, a first peak of approximately 2.5 kN was observed on the load recordings during assembly before the required assembly load was eventually reached corresponding to sudden increase in head displacement to approximately 150 μm. An assembly force of 2 kN may be too low to overcome the frictional forces needed to engage the head and achieve maximum displacement on the trunnion and thus an assembly load of greater than 2.5 kN is recommended. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Circumferential fit assessment of CAD/CAM single crowns--a pilot investigation on a new virtual analytical protocol.

    PubMed

    Matta, Ragai E; Schmitt, Johannes; Wichmann, Manfred; Holst, Stefan

    2012-10-01

    Techniques currently applied to determine the marginal accuracy of dental crown restorations yield inadequate information. This investigation aimed to test a new virtual approach for determining the precision of fit of single-crown copings. Zirconia single crown copings were manufactured on 10 gypsum, single-tooth master casts with two different established computer-aided design/computer-assisted manufacture (CAD/CAM) systems (groups A and B). After cementation, the circumferential fit was assessed with an industrial noncontact scanner and virtual 3D analysis, following a triple-scan protocol. Marginal fit was determined by virtual sectioning; each abutment-coping complex was digitally sliced in 360 vertical sections (1 degree per section). Standardized measurement distances for analyzing the marginal fit (z, xy, xyz) were selected, and a crosshair alignment was utilized to determine whether crowns were horizontally and/or vertically too large or small. The Mann-Whitney test was applied to test for differences between groups. Significant differences in the xy direction (P = .008) were measured between groups. Group A showed a greater number of horizontally overextended margins and a higher frequency of xy distances greater than 150 Μm, in addition to a tendency for excessive z distances (P = .095). The mean marginal gap values were clinically acceptable in the present investigation; however, a full circumferential analysis revealed significant differences in marginal coping quality.

  6. Combining physical training with transcranial direct current stimulation to improve gait in Parkinson's disease: a pilot randomized controlled study.

    PubMed

    Kaski, D; Dominguez, R O; Allum, J H; Islam, A F; Bronstein, A M

    2014-11-01

    To improve gait and balance in patients with Parkinson's disease by combining anodal transcranial direct current stimulation with physical training. In a double-blind design, one group (physical training; n = 8) underwent gait and balance training during transcranial direct current stimulation (tDCS; real/sham). Real stimulation consisted of 15 minutes of 2 mA transcranial direct current stimulation over primary motor and premotor cortex. For sham, the current was switched off after 30 seconds. Patients received the opposite stimulation (sham/real) with physical training one week later; the second group (No physical training; n = 8) received stimulation (real/sham) but no training, and also repeated a sequential transcranial direct current stimulation session one week later (sham/real). Hospital Srio Libanes, Buenos Aires, Argentina. Sixteen community-dwelling patients with Parkinson's disease. Transcranial direct current stimulation with and without concomitant physical training. Gait velocity (primary gait outcome), stride length, timed 6-minute walk test, Timed Up and Go Test (secondary outcomes), and performance on the pull test (primary balance outcome). Transcranial direct current stimulation with physical training increased gait velocity (mean = 29.5%, SD = 13; p < 0.01) and improved balance (pull test: mean = 50.9%, SD = 37; p = 0.01) compared with transcranial direct current stimulation alone. There was no isolated benefit of transcranial direct current stimulation alone. Although physical training improved gait velocity (mean = 15.5%, SD = 12.3; p = 0.03), these effects were comparatively less than with combined tDCS + physical therapy (p < 0.025). Greater stimulation-related improvements were seen in patients with more advanced disease. Anodal transcranial direct current stimulation during physical training improves gait and balance in patients with Parkinson's disease. Power calculations revealed that 14 patients per treatment arm (α = 0.05; power = 0.8) are required for a definitive trial. © The Author(s) 2014.

  7. [Experimental study on the retentive force of cobalt-chromium alloy, pure titanium and vitallium cast clasps in the simulated 3-year clinical use].

    PubMed

    Yan, Hai-xin; Zhao, Yan-bo; Qin, Li-mei; Zhu, Hai-ting; Wu, Lin

    2015-12-01

    To investigate the changes of retentive force of cobalt-chromium alloy, pure titanium and vitallium cast clasps in the simulated 3-year clinical use. Fifteen metal abutment crowns made of No.QT800-2 nodular cast iron were used in the test. Five clasps from each of the following alloys: cobalt-chromium alloy, pure titanium and vitallium were fabricated. The undercut depth was 0.25 mm. A masticatory simulator was used to cycle the clasp on and off the metal abutment crown 5000 times, simulating 3-year clinical use. Retentive force was measured 11 times during this process. SPSS13.0 software package was used to analyze the results. Casting defects were observed using X-ray non destructive testing (X-ray NDT) before cyclic test. Surface characteristics were qualitatively evaluated using scanning electron microscope (SEM) before and after cyclic test. The results indicated that there were significant differences (P=0.000) in the retentive force of the 3 groups before and after the cyclic test. The highest retentive force was recorded in the vitallium clasps, and the lowest retentive force was measured in the pure titanium clasps. The results of X-ray NDT depicted the typical casting defect seen at the end of the connector. SEM examination revealed that no evidence of pores and cracks in the inner surfaces of the 3 groups was found before cyclic test. Wear was evident in the inner surfaces of the 3 groups but none of the clasps exhibited any evidence of cracks after cyclic test through SEM examination. In this in vitro test, vitallium clasps show the best retentive force in the 3 groups before and after 5000 cycles at 0.25 mm undercut depth. Cobalt-chromium alloy and vitallium clasps can maintain ideal retentive force at 0.25mm undercut depth in the long-term use. Wear may be one of the reasons for the loss of retentive force of clasps in the cyclic test.

  8. 49 CFR 572.135 - Upper and lower torso assemblies and torso flexion test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... orientation angle may not exceed 20 degrees. (8) Attach the pull cable and the load cell as shown in Figure O4. (9) Apply a tension force in the midsagittal plane to the pull cable as shown in Figure O4 at any...

  9. Using three-dimensional rapid prototyping in the design and development of orthopaedic screws in standardised pull-out tests.

    PubMed

    Leslie, Laura Jane; Connolly, Ashley; Swadener, John G; Junaid, Sarah; Theivendran, Kanthan; Deshmukh, Subodh C

    2018-06-01

    The majority of orthopaedic screws are designed, tested and manufactured by existing orthopaedics companies and are predominantly developed with healthy bone in mind. The timescales and costs involved in the development of a new screw design, for example, for osteoporotic bone, are high. In this study, standard wood screws were used to analyse the concept of using three-dimensional printing, or rapid prototyping, as a viable stage of development in the design of a new bone screw. Six wood screws were reverse engineered and printed in polymeric material using stereolithography. Three of the designs were also printed in Ti6Al4V using direct metal laser sintering; however, these were not of sufficient quality to test further. Both the original metal screws (metal) and polymeric rapid prototyping screws were then tested using standard pull-out tests from low-density polyurethane blocks (Sawbones). Results showed the highest pull-out strengths for screws with the longest thread length and the smallest inner diameter. Of the six screw designs tested, five showed no more than a 17% variance between the metal and rapid prototyping results. A similar pattern of results was shown between the screw designs for both the metal and rapid prototyping screws in five of the six cases. While not producing fully comparable pull-out results to orthopaedic screws, the results from this study do provide evidence of the potential usefulness and cost-effectiveness of rapid prototyping in the early stages of design and testing of orthopaedic screws.

  10. Push-Pull Effects of Three Plant Secondary Metabolites on Oviposition of the Potato Tuber Moth, Phthorimaea operculella

    PubMed Central

    Ma, Y.F.; Xiao, C.

    2013-01-01

    The push-pull effects of three plant secondary metabolites, azadirachtin, eucalyptol, and heptanal, on the oviposition choices of potato tubers by the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) were tested in the laboratory. Azadirachtin at concentrations from 1.5 to 12 mg/L had a significant repellent effect on oviposition. Eucalyptol at concentrations from 3 to 12 mg/L promoted oviposition. Heptanal promoted oviposition at low concentrations from 0.1875 to 3.0 mg/L but repelled it at higher concentrations from 12 to 24 mg/L. The combination of azadirachtin (12 mg/L) with eucalyptol (3.0 mg/L) resulted in a significant pushpull effect of 56.3% on oviposition. The average maximum push-pull effects occurred with the combinations of azadirachtin with heptanal (12 and 0.375 mg/L, respectively; 38.7% push-pull effect), heptanal with eucalyptol (12 and 6 mg/L, respectively; 31.4% push-pull effect), and heptanal (high concentration) with heptanal (low concentration) (12.0 and 0.375 mg/L, respectively; 25% push-pull effect). PMID:24786822

  11. Comparative Evaluation of Conventional and Accelerated Castings on Marginal Fit and Surface Roughness.

    PubMed

    Jadhav, Vivek Dattatray; Motwani, Bhagwan K; Shinde, Jitendra; Adhapure, Prasad

    2017-01-01

    The aim of this study was to evaluate the marginal fit and surface roughness of complete cast crowns made by a conventional and an accelerated casting technique. This study was divided into three parts. In Part I, the marginal fit of full metal crowns made by both casting techniques in the vertical direction was checked, in Part II, the fit of sectional metal crowns in the horizontal direction made by both casting techniques was checked, and in Part III, the surface roughness of disc-shaped metal plate specimens made by both casting techniques was checked. A conventional technique was compared with an accelerated technique. In Part I of the study, the marginal fit of the full metal crowns as well as in Part II, the horizontal fit of sectional metal crowns made by both casting techniques was determined, and in Part III, the surface roughness of castings made with the same techniques was compared. The results of the t -test and independent sample test do not indicate statistically significant differences in the marginal discrepancy detected between the two casting techniques. For the marginal discrepancy and surface roughness, crowns fabricated with the accelerated technique were significantly different from those fabricated with the conventional technique. Accelerated casting technique showed quite satisfactory results, but the conventional technique was superior in terms of marginal fit and surface roughness.

  12. Three-dimensional characterization and distribution of fabrication defects in bilayered lithium disilicate glass-ceramic molar crowns.

    PubMed

    Jian, Yutao; He, Zi-Hua; Dao, Li; Swain, Michael V; Zhang, Xin-Ping; Zhao, Ke

    2017-04-01

    To investigate and characterize the distribution of fabrication defects in bilayered lithium disilicate glass-ceramic (LDG) crowns using micro-CT and 3D reconstruction. Ten standardized molar crowns (IPS e.max Press; Ivoclar Vivadent) were fabricated by heat-pressing on a core and subsequent manual veneering. All crowns were scanned by micro-CT and 3D reconstructed. Volume, position and sphericity of each defect was measured in every crown. Each crown was divided into four regions-central fossa (CF), occlusal fossa (OF), cusp (C) and axial wall (AW). Porosity and number density of each region were calculated. Statistical analyses were performed using Welch two sample t-test, Friedman one-way rank sum test and Nemenyi post-hoc test. The defect volume distribution type was determined based on Akaike information criterion (AIC). The core ceramic contained fewer defects (p<0.001) than the veneer layer. The size of smaller defects, which were 95% of the total, obeyed a logarithmic normal distribution. Region CF showed higher porosity (p<0.001) than the other regions. Defect number density of region CF was higher than region C (p<0.001) and region AW (p=0.029), but no difference was found between region CF and OF (p>0.05). Four of ten specimens contained the largest pores in region CF, while for the remaining six specimens the largest pore was in region OF. LDG core ceramic contained fewer defects than the veneer ceramic. LDG strength estimated from pore size was comparable to literature values. Large defects were more likely to appear at the core-veneer interface of occlusal fossa, while small defects also distributed in every region of the crowns but tended to aggregate in the central fossa region. Size distribution of small defects in veneer obeyed a logarithmic normal distribution. Copyright © 2017. Published by Elsevier Ltd.

  13. Torque loss of different abutment sizes before and after cyclic loading.

    PubMed

    Moris, Izabela Cristina; Faria, Adriana Cláudia; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina

    2015-01-01

    The aim of this study was to compare 3.8- and 4.8-mm abutments submitted to simulations of masticatory cycles to examine whether abutment diameter and cemented vs screw-retained crowns affect torque loss of the abutments and crowns. Forty implant/abutment sets were divided into the following groups (n = 10 in each group): (1) G4.8S included 4.8-mm abutment with screw-retained crown; (2) G4.8C included 4.8-mm abutment with cemented crown; (3) G3.8S included 3.8-mm abutment with screw-retained crown; and (4) G3.8C included 3.8-mm abutment with cemented crown. All abutments were tightened with torque values of 20 Ncm, and 10 Ncm for screw-retained crowns. Torque loss was measured before and after cycling loading (300,000 cycles). Torque loss of screw-retained crowns significantly increased after cycling in abutments of groups G3.8S (P ≤ .05) and G4.8S (P = .001). No difference was noted between the abutments before cycling (P = .735), but G3.8S abutments presented greater torque loss than the other groups after cycling (P = .008). Significant differences were noted in the abutment torque loss before and after cycling loading only for the G3.8C group (P ≤ .05). The abutment diameter affects torque loss of screw-retained crowns and leads to failure during the test; mechanical cycling increases torque loss of abutment screw and screw-retained crowns.

  14. Marginal gap, cement thickness, and microleakage of 2 zirconia crown systems luted with glass ionomer and MDP-based cements.

    PubMed

    Sener, Isil; Turker, Begum; Valandro, Luiz Felipe; Ozcan, Mutlu

    2014-01-01

    This in vitro study evaluated the marginal gap, cement thickness, and microleakage of glass-ionomer cement (GIC) and phosphate monomer-containing resin cement (MDP-RC) under 2 zirconia crown systems (Cercon and DC-Zirkon). Forty human premolars were prepared for all-ceramic zirconia crowns with a 1 mm circumferential finish line and a 1.5 mm occlusal reduction. The crowns (n = 10 per group) from each zirconia system were randomly divided into 2 groups and cemented either with GIC (Vivaglass CEM) or MDP-RC (Panavia F 2.0) cement. The cemented crowns were thermocycled 5000 times (5°-55°C). The crowns were immersed in 0.5% basic fuchsine dye solution for 24 hours and sectioned buccolingually and mesiodistally. Specimens were examined under optical microscope (100X). Data were analyzed using Student t-test and chi-square tests (α = 0.05). Mean marginal gap values for Cercon (85 ± 11.4 μm) were significantly higher than for DC-Zircon (75.3 ± 13.2 μm) (P = 0.018). The mean cement thickness values of GIC (81.7 ± 13.9 μm) and MDP-RC (78.5 ± 12.5 μm) were not significantly different (P = 0.447). Microleakage scores did not demonstrate significant difference between GIC (P = 0.385) and MDP-RC (P = 0.631) under Cercon or DC-Zircon. Considering the cement thickness values and microleakage scores obtained, both zirconia crown systems could be cemented in combination with either GIC or MDP-RC.

  15. Comparative analysis of intraoral radiographs with variation of tube angulation to detect insufficient crown margins.

    PubMed

    Sailer, Benjamin F; Geibel, Margrit-Ann

    2013-01-01

    Variations in angulation of the x-ray tube affect the appearance of insufficient approximal crown margins on intraoral radiographs. This study examines the impact of such angular variation on the assessment of digital radiographs using three different X-ray tubes--Heliodent DS (Sirona), Gendex Expert DC (KaVo Dental) and Focus (KaVo Dental)--as well as the Gendex Visualix eHD CCD sensor (KaVo Dental). The test specimens, crowned teeth 46 from two mandibles provided by the Institute of Anatomy and Cell Biology, were examined with each tube. The results indicate great differences in the angles indicative of insufficient crown margins on X-ray images. Because of beam divergence and the crown marginal gap, the length and width of which frequently varies, it is difficult to infer any optimum angle from the data. This leads to the conclusion that at present, it is not possible to establish ideal angles for visualization of insufficient approximal crown margins.

  16. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    PubMed

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P < 0.001). Acid etch application to sandblasted surfaces significantly increased the SBS in groups 1, 2, 5, and 6. The SBS of metal brackets debonded from groups 1, 3, and 5 were not significantly different from those of groups 2, 4, and 6. All debonded metal brackets revealed a similar pattern of bond failure at the adhesive-restorative interface. However, ceramic brackets had a significantly different adhesive failure pattern with dominant failure at the adhesive-bracket interface. Ceramic fractures after bracket removal were found more often in groups 1-4. No significant difference in ceramic fracture was observed between the IPS Empress 2 and In-Ceram groups.

  17. Effect of metal opaquer on the final color of 3 ceramic crown types on 3 abutment configurations.

    PubMed

    Arif, Rabia; Yilmaz, Burak; Mortazavi, Aras; Ozcelik, Tuncer B; Johnston, William M

    2018-04-30

    The effect of a recently introduced metal opaquer when used to mask the color of a titanium abutment under ceramic crown systems is unknown. The purpose of this study was to compare the color coordinates of 3 ceramic crown types-characterized monolithic lithium disilicate (LDC) (IPS e.max; Ivoclar Vivadent AG), layered lithium disilicate (LDL) (IPS e.max; Ivoclar Vivadent AG), and layered zirconia (ZL) (H.C. Starck)-on 3 abutment configurations, nonopaqued titanium (Ti), resin opaqued titanium (Op), and zirconia (Zir). In addition, the color differences (CIEDE2000) were evaluated among the 3 crown types on 3 different abutment substrates. Ten Ti disks (10×1 mm) were fabricated with computer-aided design and computer-aided manufacturing (CAD-CAM) to represent the Ti abutments. Five Ti specimens were opaqued (Op) (whiteMetal Opaquer wMO; Blue Sky Bio), and 5 were not opaqued (Ti). Ten zirconia disks were fabricated with CAD-CAM and sintered (10×1.2 mm). Five disks were used as backings to represent Zir abutments, and 5 disks were layered with 1 mm of porcelain (B1, IPS e.Max Ceram; Ivoclar Vivadent AG) to represent layered zirconia crowns (ZL). Ten lithium disilicate plates (14×14×1.2 mm) were sectioned from CAD blocks (B1 IPS e.Max CAD; Ivoclar Vivadent AG). Five plates were layered with the same porcelain (B1, 1 mm), and 5 plates were surface characterized and glazed. An LDL crown on a Zir abutment configuration was used as the control. The 3 simulated crown types (n=5) were optically connected to each of the 3 abutment types, and the color of the 9 groups was measured using a spectroradiometer. Measured data were reported in CIELab coordinates. CIELab data were used to calculate color differences between the control and the 8 experimental groups. Color data were summarized for each group, and analyzed by repeated-measures ANOVA. For pairwise comparisons, a Bonferroni correction of t tests was used, and for interpretive analysis of resulting color difference data, a 1-way ANOVA and subsequent Tukey testing for pairwise comparisons were used. The statistical significance of the analysis of color coordinates was found to be P≤.002. Although 3-way interaction was not found to be significant (P=.335), all three 2-way interactions of the main effects were found to be significant (P≤.002). All crown types on the Zir abutment revealed color differences from the control group. The color differences of the crown types on the Op and Zir abutment configurations compared with the control (LDL/Zir) were not (P>.05) statistically different. Colors of tested crown systems on Ti backing were each unacceptably different from the control group. Colors of these systems on zirconia backing were not perceivably different. Use of opaquer on titanium backing resulted in a small color difference from the control group (P>.05) for each crown system, demonstrating that it may be used to prevent the unfavorable metal show-through that can influence the final color of all ceramic crown systems tested. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Tubular lipid membranes pulled from vesicles: Dependence of system equilibrium on lipid bilayer curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golushko, I. Yu., E-mail: vaniagolushko@yandex.ru; Rochal, S. B.

    2016-01-15

    Conditions of joint equilibrium and stability are derived for a spherical lipid vesicle and a tubular lipid membrane (TLM) pulled from this vesicle. The obtained equations establish relationships between the geometric and physical characteristics of the system and the external parameters, which have been found to be controllable in recent experiments. In particular, the proposed theory shows that, in addition to the pressure difference between internal and external regions of the system, the variable spontaneous average curvature of the lipid bilayer (forming the TLM) also influences the stability of the lipid tube. The conditions for stability of the cylindrical phasemore » of TLMs after switching off the external force that initially formed the TLM from a vesicle are discussed. The loss of system stability under the action of a small axial force compressing the TLM is considered.« less

  19. Post-fatigue fracture resistance of metal core crowns: press-on metal ceramic versus a conventional veneering system

    PubMed Central

    Agustín-Panadero, Rubén; Campos-Estellés, Carlos; Labaig-Rueda, Carlos

    2015-01-01

    Background The aim of this in vitro study was to compare the mechanical failure behavior and to analyze fracture characteristics of metal ceramic crowns with two veneering systems – press-on metal (PoM) ceramic versus a conventional veneering system – subjected to static compressive loading. Material and Methods Forty-six crowns were constructed and divided into two groups according to porcelain veneer manufacture. Group A: 23 metal copings with porcelain IPS-InLine veneering (conventional metal ceramic). Group B: 23 metal copings with IPS-InLine PoM veneering porcelain. After 120,000 fatigue cycles, the crowns were axially loaded to the moment of fracture with a universal testing machine. The fractured specimens were examined under optical stereomicroscopy and scanning electron microscope. Results Fracture resistance values showed statistically significant differences (Student’s t-test) regarding the type of ceramic veneering technique (p=0.001): Group A (conventional metal ceramics) obtained a mean fracture resistance of 1933.17 N, and Group B 1325.74N (Press-on metal ceramics). The most common type of fracture was adhesive failure (with metal exposure) (p=0.000). Veneer porcelain fractured on the occlusal surface following a radial pattern. Conclusions Metal ceramic crowns made of IPS InLine or IPS InLine PoM ceramics with different laboratory techniques all achieved above-average values for clinical survival in the oral environment according to ISO 6872. Crowns made with IPS InLine by conventional technique resisted fracture an average of 45% more than IPS InLine PoM fabricated with the press-on technique. Key words:Mechanical failure, conventional feldspathic, pressable ceramic, chewing simulator, thermocycling, compressive testing, fracture types, scanning electron microscope. PMID:26155346

  20. Comparison of three different orthodontic wires for bonded lingual retainer fabrication

    PubMed Central

    Uysal, Tancan; Gul, Nisa; Alan, Melike Busra; Ramoglu, Sabri Ilhan

    2012-01-01

    Objective We evaluated the detachment force, amount of deformation, fracture mode, and pull-out force of 3 different wires used for bonded lingual retainer fabrication. Methods We tested 0.0215-inch five-stranded wire (PentaOne, Masel; group I), 0.016 × 0.022-inch dead-soft eight-braided wire (Bond-A-Braid, Reliance; group II), and 0.0195-inch dead-soft coaxial wire (Respond, Ormco; group III). To test detachment force, deformation, and fracture mode, we embedded 94 lower incisor teeth in acrylic blocks in pairs. Retainer wires were bonded to the teeth and vertically directed force was applied to the wire. To test pull-out force, wires were embedded in composite that was placed in a hole at the center of an acrylic block. Tensile force was applied along the long axis of the wire. Results Detachment force and mode of fracture were not different between groups. Deformation was significantly higher in groups II and III than in group I (p < 0.001). Mean pull-out force was significantly higher for group I compared to groups II and III (p < 0.001). Conclusions Detachment force and fracture mode were similar for all wires, but greater deformations were seen in dead-soft wires. Wire pull-out force was significantly higher for five-stranded coaxial wire than for the other wires tested. Five-stranded coaxial wires are suggested for use in bonded lingual retainers. PMID:23112930

  1. Large-Scale CTRW Analysis of Push-Pull Tracer Tests and Other Transport in Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Hansen, S. K.; Berkowitz, B.

    2014-12-01

    Recently, we developed an alternative CTRW formulation which uses a "latching" upscaling scheme to rigorously map continuous or fine-scale stochastic solute motion onto discrete transitions on an arbitrarily coarse lattice (with spacing potentially on the meter scale or more). This approach enables model simplification, among many other things. Under advection, for example, we see that many relevant anomalous transport problems may be mapped into 1D, with latching to a sequence of successive, uniformly spaced planes. On this formulation (which we term RP-CTRW), the spatial transition vector may generally be made deterministic, with CTRW waiting time distributions encapsulating all the stochastic behavior. We demonstrate the excellent performance of this technique alongside Pareto-distributed waiting times in explaining experiments across a variety of scales using only two degrees of freedom. An interesting new application of the RP-CTRW technique is the analysis of radial (push-pull) tracer tests. Given modern computational power, random walk simulations are a natural fit for the inverse problem of inferring subsurface parameters from push-pull test data, and we propose them as an alternative to the classical type curve approach. In particular, we explore the visibility of heterogeneity through non-Fickian behavior in push-pull tests, and illustrate the ability of a radial RP-CTRW technique to encapsulate this behavior using a sparse parameterization which has predictive value.

  2. Capuchin monkeys, Cebus apella fail to understand a cooperative task

    PubMed

    Chalmeau; Visalberghi; Gallo

    1997-11-01

    We investigated whether capuchin monkeys cooperate to solve a task and to what extent they take into account the behaviour of another individual when cooperating. Two groups of capuchin monkeys (N=5 and 6) were tested in a task whose solution required simultaneous pulling of two handles which were too far from one another to be pulled by one monkey. Before carrying out the cooperation study, individual monkeys were trained to pull one handle (training phase 1) and to pull two handles simultaneously (training phase 2) for a food reward. Nine subjects were successful in training phase 1, and five in training phase 2. In the cooperation study seven subjects were successful, that is, pulled one handle while a companion pulled the other. Further analyses revealed that capuchins did not increase their pulling actions when a partner was close to or at the other handle, that is, when cooperation might occur. These data suggest that capuchin monkeys acted together at the task and got the reward without understanding the role of the partner and without taking its behaviour into consideration. Social tolerance, as well as their tendency to explore and their manual dexterity, were the major factors accounting for the capuchins' success.Copyright 1997 The Association for the Study of Animal Behaviour1997The Association for the Study of Animal Behaviour

  3. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications.

    PubMed

    Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen

    2015-11-20

    Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.

    PubMed

    Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan

    2018-01-01

    Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may still produce a significant improvement in screw pull-out force. When the correlation strength of all the tested models were compared both cement porosity and compressive strength accurately predicted pull-out force (R 2 =1.00, R 2 =0.808), though prediction accuracy depended upon the strength of the material surrounding the Sawbone. The correlations strength was low for bone with no, or weak, cortical fixation (R 2 =0.56, 0.36). Higher strength and lower porosity CPCs also produced greater pull-out force (1-1.5kN) than commercial CPC (0.2-0.5kN), but lower pull-out force than PMMA (2-3kN). The results of this study suggest that the likelihood of screw fixation failure may be reduced by selecting calcium phosphate cements with lower porosity and higher compressive strength, in patients with healthy bone mineral density and/or sufficient cortical thickness. This is of particular clinical relevance when fixation with metal plates is indicated, or where the augmentation volume is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Midday Depression vs. Midday Peak in Diurnal Light Interception: Contrasting Patterns at Crown and Leaf Scales in a Tropical Evergreen Tree.

    PubMed

    Ventre-Lespiaucq, Agustina; Flanagan, Nicola S; Ospina-Calderón, Nhora H; Delgado, Juan A; Escudero, Adrián

    2018-01-01

    Crown architecture usually is heterogeneous as a result of foraging in spatially and temporally heterogeneous light environments. Ecologists are only beginning to identify the importance of temporal heterogeneity for light acquisition in plants, especially at the diurnal scale. Crown architectural heterogeneity often leads to a diurnal variation in light interception. However, maximizing light interception during midday may not be an optimal strategy in environments with excess light. Instead, long-lived plants are expected to show crown architectures and leaf positions that meet the contrasting needs of light interception and avoidance of excess light on a diurnal basis. We expected a midday depression in the diurnal course of light interception both at the whole-crown and leaf scales, as a strategy to avoid the interception of excessive irradiance. We tested this hypothesis in a population of guava trees ( Psidium guajava L.) growing in an open tropical grassland. We quantified three crown architectural traits: intra-individual heterogeneity in foliage clumping, crown openness, and leaf position angles. We estimated the diurnal course of light interception at the crown scale using hemispheric photographs, and at the leaf scale using the cosine of solar incidence. Crowns showed a midday depression in light interception, while leaves showed a midday peak. These contrasting patterns were related to architectural traits. At the crown scale, the midday depression of light interception was linked to a greater crown openness and foliage clumping in crown tops than in the lateral parts of the crown. At the leaf scale, an average inclination angle of 45° led to the midday peak in light interception, but with a huge among-leaf variation in position angles. The mismatch in diurnal course of light interception at crown and leaf scales can indicate that different processes are being optimized at each scale. These findings suggest that the diurnal course of light interception may be an important dimension of the resource acquisition strategies of long-lived woody plants. Using a temporal approach as the one applied here may improve our understanding of the diversity of crown architectures found across and within environments.

  6. Midday Depression vs. Midday Peak in Diurnal Light Interception: Contrasting Patterns at Crown and Leaf Scales in a Tropical Evergreen Tree

    PubMed Central

    Ventre-Lespiaucq, Agustina; Flanagan, Nicola S.; Ospina-Calderón, Nhora H.; Delgado, Juan A.; Escudero, Adrián

    2018-01-01

    Crown architecture usually is heterogeneous as a result of foraging in spatially and temporally heterogeneous light environments. Ecologists are only beginning to identify the importance of temporal heterogeneity for light acquisition in plants, especially at the diurnal scale. Crown architectural heterogeneity often leads to a diurnal variation in light interception. However, maximizing light interception during midday may not be an optimal strategy in environments with excess light. Instead, long-lived plants are expected to show crown architectures and leaf positions that meet the contrasting needs of light interception and avoidance of excess light on a diurnal basis. We expected a midday depression in the diurnal course of light interception both at the whole-crown and leaf scales, as a strategy to avoid the interception of excessive irradiance. We tested this hypothesis in a population of guava trees (Psidium guajava L.) growing in an open tropical grassland. We quantified three crown architectural traits: intra-individual heterogeneity in foliage clumping, crown openness, and leaf position angles. We estimated the diurnal course of light interception at the crown scale using hemispheric photographs, and at the leaf scale using the cosine of solar incidence. Crowns showed a midday depression in light interception, while leaves showed a midday peak. These contrasting patterns were related to architectural traits. At the crown scale, the midday depression of light interception was linked to a greater crown openness and foliage clumping in crown tops than in the lateral parts of the crown. At the leaf scale, an average inclination angle of 45° led to the midday peak in light interception, but with a huge among-leaf variation in position angles. The mismatch in diurnal course of light interception at crown and leaf scales can indicate that different processes are being optimized at each scale. These findings suggest that the diurnal course of light interception may be an important dimension of the resource acquisition strategies of long-lived woody plants. Using a temporal approach as the one applied here may improve our understanding of the diversity of crown architectures found across and within environments. PMID:29904391

  7. Proceedings: Third User’s Workshop on Combat Stress; Cohesion Held at Fort Sam Houston, Texas on 21-23 September 1983.

    DTIC Science & Technology

    1983-12-01

    goalIs affects tle group’s efforts to achieve them. As 1.,ng as the unit’s goals are acept-d as legitimate, the hardships and cost are minimized, the...Individual believes or expects that if he/she behaves in a certain way, he/she will get certain things. (Example: pull SDO ot SDNCO and get the next day off

  8. Linking ice accretion and crown structure: towards a model of the effect of freezing rain on tree canopies

    PubMed Central

    Nock, Charles A.; Lecigne, Bastien; Taugourdeau, Olivier; Greene, David F.; Dauzat, Jean; Delagrange, Sylvain; Messier, Christian

    2016-01-01

    Background and Aims Despite a longstanding interest in variation in tree species vulnerability to ice storm damage, quantitative analyses of the influence of crown structure on within-crown variation in ice accretion are rare. In particular, the effect of prior interception by higher branches on lower branch accumulation remains unstudied. The aim of this study was to test the hypothesis that intra-crown ice accretion can be predicted by a measure of the degree of sheltering by neighbouring branches. Methods Freezing rain was artificially applied to Acer platanoides L., and in situ branch-ice thickness was measured directly and from LiDAR point clouds. Two models of freezing rain interception were developed: ‘IceCube’, which uses point clouds to relate ice accretion to a voxel-based index (sheltering factor; SF) of the sheltering effect of branch elements above a measurement point; and ‘IceTree’, a simulation model for in silico evaluation of the interception pattern of freezing rain in virtual tree crowns. Key Results Intra-crown radial ice accretion varied strongly, declining from the tips to the bases of branches and from the top to the base of the crown. SF for branches varied strongly within the crown, and differences among branches were consistent for a range of model parameters. Intra-crown variation in ice accretion on branches was related to SF (R2 = 0·46), with in silico results from IceTree supporting empirical relationships from IceCube. Conclusions Empirical results and simulations confirmed a key role for crown architecture in determining intra-crown patterns of ice accretion. As suspected, the concentration of freezing rain droplets is attenuated by passage through the upper crown, and thus higher branches accumulate more ice than lower branches. This is the first step in developing a model that can provide a quantitative basis for investigating intra-crown and inter-specific variation in freezing rain damage. PMID:27107412

  9. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection.

    PubMed

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-04-18

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  10. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection

    PubMed Central

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-01-01

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode. PMID:29669992

  11. 42 CFR 84.151 - Harness test; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... withstand a pull of 113 kg. (250 pounds) for 30 minutes without failure. (2) Belts, rings, and attachments... minutes without separating, and the hose attachments shall be arranged so that the pull or drag of the... attachment of the line shall permit dragging the maximum length of hose considered for approval over a...

  12. Experiential Avoidance as a Mediator of Relationships between Cognitions and Hair-Pulling Severity

    ERIC Educational Resources Information Center

    Norberg, Melissa M.; Wetterneck, Chad T.; Woods, Douglas W.; Conelea, Christine A.

    2007-01-01

    Cognitive-behavioral models suggest that certain cognitions and beliefs are functionally related to hair pulling in persons with trichotillomania (TTM), but little empirical data have been collected to test such claims. This study assessed dysfunctional beliefs about appearance, shameful cognitions, and fear of negative evaluation and their…

  13. Laboratory evaluation techniques to investigate the spatial potential of repellents for push & pull mosquito control systems

    USDA-ARS?s Scientific Manuscript database

    A protocol has been developed for the indoor evaluation of candidate spatial repellents intended for use in push and pull systems. Single treatments (catnip oil, 1-methylpiperazine and homopiperazine) and a mixture of catnip oil and homopiperazine were tested with yellow-fever mosquitoes (Aedes aegy...

  14. Survival of resin infiltrated ceramics under influence of fatigue.

    PubMed

    Aboushelib, Moustafa N; Elsafi, Mohamed H

    2016-04-01

    to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, P<0.005) of the initial fracture strength of the tested specimens. Zirconia showed the highest deterioration percent (34% reduction in strength) followed by (IPS)Empress (32.2%), (IPS)e.max (27.1%) while Lava Ultimate and Vita Enamic showed the lowest percent of reduction in strength. The two types of resin infiltrated ceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while the characteristic strength of zirconia prevented core fracture but failure still occurred from the weaker veneer ceramic. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. [Crown color match of implant-supported zirconia and porcelain-fused-to-metal restorations: a spectrophotometric comparison].

    PubMed

    Peng, Min; Fei, Wei; Hosseini, Mandana; Gotfredsen, Klaus

    2014-02-01

    This study aimed to compare the crown color match of implant-supported zirconia restorations and porcelain-fused-to-metal (PFM) restorations in the anterior maxillary region through spectrophotometric evaluation. Eighteen patients with 29 implant-supported single crowns in the anterior maxillary area were recruited. Eleven of the implant crowns were zirconia restorations and 18 were PFM restorations. Color matching of the implant crown with contra-lateral/ neighboring tooth at the position of body 1/3 of the crown was assessed using a spectrophotometer (SpectroShade) in CIE L* a* b* coordinates. Subjective crown color match scores were evaluated. Independent sample t test of SPSS 17.0 was used to compare the difference between zirconia restoration and PFM restoration. Spearman correlation was used to analyze the relationship between the spectrophotometric color difference and the subjective crown color match score. Descriptive statistics was used to analyze the distribution of color coordinates of natural anterial teeth. The crown color of the implant-supported zirconia restorations and PFM restorations were both lighter than that of natural teeth (delta L, 4.5 +/- 3.2, 1.0 +/- 2.6). The lightness difference induced by zirconia restorations was significantly larger than that induced by PFM restorations (P=0.004). The spectrophotometric crown color difference (delta E) induced by zirconia restorations (7.0 +/- 2.8) was significantly larger than that induced by PFM restorations (4.0 +/- 1.9) (P=0.002), and both values were beyond the clinical thresholds (3.7). The spectrophotometric crown color difference induced by zirconia restorations was significantly larger than that induced by PFM restorations. However, they were indistinguishable in subjective evaluation.

  16. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    PubMed

    Krasheninnikova, Anastasia

    2013-01-01

    String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  17. Effects of Computer-Aided Manufacturing Technology on Precision of Clinical Metal-Free Restorations.

    PubMed

    Lee, Ki-Hong; Yeo, In-Sung; Wu, Benjamin M; Yang, Jae-Ho; Han, Jung-Suk; Kim, Sung-Hun; Yi, Yang-Jin; Kwon, Taek-Ka

    2015-01-01

    The purpose of this study was to investigate the marginal fit of metal-free crowns made by three different computer-aided design/computer-aided manufacturing (CAD/CAM) systems. The maxillary left first premolar of a dentiform was prepared for all-ceramic crown restoration. Thirty all-ceramic premolar crowns were made, ten each manufactured by the Lava system, Cercon, and Cerec. Ten metal ceramic gold (MCG) crowns served as control. The marginal gap of each sample was measured under a stereoscopic microscope at 75x magnification after cementation. One-way ANOVA and the Duncan's post hoc test were used for data analysis at the significance level of 0.05. The mean (standard deviation) marginal gaps were 70.5 (34.4) μm for the MCG crowns, 87.2 (22.8) μm for Lava, 58.5 (17.6) μm for Cercon, and 72.3 (30.8) μm for Cerec. There were no significant differences in the marginal fit among the groups except that the Cercon crowns had significantly smaller marginal gaps than the Lava crowns (P < 0.001). Within the limitation of this study, all the metal-free restorations made by the digital CAD/CAM systems had clinically acceptable marginal accuracy.

  18. Grasses suppress shoot-borne roots to conserve water during drought

    PubMed Central

    Sebastian, Jose; Yee, Muh-Ching; Goudinho Viana, Willian; Rellán-Álvarez, Rubén; Feldman, Max; Priest, Henry D.; Trontin, Charlotte; Lee, Tak; Jiang, Hui; Mockler, Todd C.

    2016-01-01

    Many important crops are members of the Poaceae family, which develop root systems characterized by a high degree of root initiation from the belowground basal nodes of the shoot, termed the crown. Although this postembryonic shoot-borne root system represents the major conduit for water uptake, little is known about the effect of water availability on its development. Here we demonstrate that in the model C4 grass Setaria viridis, the crown locally senses water availability and suppresses postemergence crown root growth under a water deficit. This response was observed in field and growth room environments and in all grass species tested. Luminescence-based imaging of root systems grown in soil-like media revealed a shift in root growth from crown-derived to primary root-derived branches, suggesting that primary root-dominated architecture can be induced in S. viridis under certain stress conditions. Crown roots of Zea mays and Setaria italica, domesticated relatives of teosinte and S. viridis, respectively, show reduced sensitivity to water deficit, suggesting that this response might have been influenced by human selection. Enhanced water status of maize mutants lacking crown roots suggests that under a water deficit, stronger suppression of crown roots actually may benefit crop productivity. PMID:27422554

  19. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis.

    PubMed

    Bordin, Dimorvan; Bergamo, Edmara T P; Fardin, Vinicius P; Coelho, Paulo G; Bonfante, Estevam A

    2017-07-01

    To assess the probability of survival (reliability) and failure modes of narrow implants with different diameters. For fatigue testing, 42 implants with the same macrogeometry and internal conical connection were divided, according to diameter, as follows: narrow (Ø3.3×10mm) and extra-narrow (Ø2.9×10mm) (21 per group). Identical abutments were torqued to the implants and standardized maxillary incisor crowns were cemented and subjected to step-stress accelerated life testing (SSALT) in water. The use-level probability Weibull curves, and reliability for a mission of 50,000 and 100,000 cycles at 50N, 100, 150 and 180N were calculated. For the finite element analysis (FEA), two virtual models, simulating the samples tested in fatigue, were constructed. Loading at 50N and 100N were applied 30° off-axis at the crown. The von-Mises stress was calculated for implant and abutment. The beta (β) values were: 0.67 for narrow and 1.32 for extra-narrow implants, indicating that failure rates did not increase with fatigue in the former, but more likely were associated with damage accumulation and wear-out failures in the latter. Both groups showed high reliability (up to 97.5%) at 50 and 100N. A decreased reliability was observed for both groups at 150 and 180N (ranging from 0 to 82.3%), but no significant difference was observed between groups. Failure predominantly involved abutment fracture for both groups. FEA at 50N-load, Ø3.3mm showed higher von-Mises stress for abutment (7.75%) and implant (2%) when compared to the Ø2.9mm. There was no significant difference between narrow and extra-narrow implants regarding probability of survival. The failure mode was similar for both groups, restricted to abutment fracture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evaluation of different sterilization and disinfection methods on commercially made preformed crowns.

    PubMed

    Yilmaz, Y; Guler, C

    2008-12-01

    The aim of this study was to evaluate the changes caused by different sterilization or disinfection methods on the vestibular surface of four commercially made preformed crowns using stereomicroscopy and scanning electron microscopy (SEM). Preformed crowns (NuSmile Primary Anterior Crown (NSC), Kinder Krowns (KK), Pedo Pearls (PP) and polycarbonate crowns (PC)) were sterilized and/or disinfected by one of the following techniques: no sterilization or disinfection (G1 control group); steam autoclaving at 134 degrees C (30 psi) for 4 min (G2); steam autoclaving at 134 degrees C (30 psi) for 12 min (G3); steam autoclaving at 121 degrees C (15 psi) for 30 min (G4); and ultrasonication in a bath containing 4% Lysetol AF for 5 min at room temperature (chemical disinfection) (G5). Scanning electron micrographs of the crowns were taken before and after their sterilization or disinfection. The changes on the vestibular surface were then scored for the presence or absence of crazing, contour alteration, fracturing, and vestibular surface changes. The data were analyzed statistically using the chi-square test. No changes were observed before and after sterilization or disinfection in the stereomicroscopic evaluation of the vestibular surface of the crowns. However, all methods in which steam autoclaving was used to sterilize the crowns caused significant (P < 0.05) crazing and contour alterations of the vestibular surface of the crowns when they were examined by SEM. Chemical disinfection using an aldehyde-free disinfectant is the preferred method of disinfection for crowns that have been used previously in other dental patients.

  1. Optical effects of different colors of artificial gingiva on ceramic crowns.

    PubMed

    Wang, Jian; Lin, Jin; Gil, Mindy; Da Silva, John D; Wright, Robert; Ishikawa-Nagai, Shigemi

    2013-08-01

    The interaction between gingival color and the shade of ceramic restorations has never been fully studied. The purpose of this study is to investigate the optical effects of altering artificial gingival color on the ceramic crown shade in the cervical area. Thirty-one all-ceramic crowns of different shades were used in this study with six different artificial gingival colors. Using a spectrophotometer (Crystaleye(®) Olympus, Japan), we measured the shade of crowns in cervical areas with each of six different artificial gingiva. The crown color measured in the presence of pink artificial gingiva (control) was compared with the crown color with five other artificial gingiva. color difference values ΔE* were calculated and compared between the control group and test groups and the correlation of the artificial gingival color with the crown color was also assessed. Significant differences were found in the mean L* and a* values of all-ceramic crowns at the cervical regions in all six gingival color groups (p<0.001) and significant Pearson correlations were also found for the mean L* (r=0.987, p<0.001) and a* (r=0.856, p=0.03) values between the artificial gingiva and the ceramic crowns. The mean ΔE* values between the control group and each of the five other gingival groups were all significantly larger than the clinical perceptual threshold of ΔE* 1.6 (p<0.001). Different colors of artificial gingiva generated clinically detectable shade differences in the cervical region of ceramic crowns. Copyright © 2013. Published by Elsevier Ltd.

  2. The Lifferth Dome for Small Telescopes

    NASA Astrophysics Data System (ADS)

    Wilson, B. L.; Olsen, C. S.; Iverson, E. P.; Paget, A.; Lifferth, W.; Brown, P. J.; Moody, J. W.

    2004-12-01

    The Lifferth Dome is a pull-off roof designed for small telescopes and other observational equipment. It was specifically designed for the needs of the ROVOR project. The roof itself is completely removed from the observatory housing walls and cranked off to the side below the optical horizon. This is done using two swing arms on either side of the observatory that work in unison to lift the roof off the structure and rotate down and away into a cleared location. The torque is provided by a threaded rod connected to an electric motor at the back of the building. As the motor rotates, the threads turn through a threaded sleeve connected directly to the support arms. Advantages to this design are no lost horizon, no roller surfaces to keep clean, low power and simple limit switches. Operation is by computer control using by National Instruments LabVIEW via the internet. We present its design and construction.

  3. A novel hunting accident. Discharge of a firearm by a hunting dog.

    PubMed

    Baker, A M; Keller, G; Garcia, D

    2001-09-01

    The authors report the case of a 21-year-old man who was killed while duck hunting when a shotgun accidentally discharged, shooting him in the head. The loaded weapon, which had been lying on the ground with the safety off and the muzzle pointed toward a river a few feet away, discharged when a hunting dog stepped on the trigger. Scene investigation confirmed that the victim had been standing in the river, planting decoys, with his head approximately level with the adjacent bank. Autopsy examination and ballistic testing confirmed a range of fire consistent with the witness' statements. Examination of the weapon in question documented a light trigger pull but no mechanical defects. The authors review the epidemiology and causality of hunting accidents and discuss the various safety rules that were violated in this highly unusual case. The importance of a complete death investigation, including autopsy, when dealing with a firearm death is emphasized.

  4. Randomized clinical study comparing metallic and glass fiber post in restoration of endodontically treated teeth.

    PubMed

    Gbadebo, Olaide S; Ajayi, Deborah M; Oyekunle, Oyekunle O Dosumu; Shaba, Peter O

    2014-01-01

    Post-retained crowns are indicated for endodontically treated teeth (ETT) with severely damaged coronal tissue. Metallic custom and prefabricated posts have been used over the years, however, due to unacceptable color, extreme rigidity and corrosion, fiber posts, which are flexible, aesthetically pleasing and have modulus of elasticity comparable with dentin were introduced. To compare clinical performance of metallic and glass fiber posts in restoration of ETT. 40 ETT requiring post retained restorations were included. These teeth were randomly allocated into 2 groups. Twenty teeth were restored using a glass fiber-reinforced post (FRP) and 20 others received stainless steel parapost (PP), each in combination with composite core buildups. Patients were observed at 1 and 6 months after post placement and cementation of porcelain fused to metal (PFM) crown. Marginal gap consideration, post retention, post fracture, root fracture, crown fracture, crown decementation and loss of restoration were part of the data recorded. All teeth were assessed clinically and radiographically. Fisher's exact test was used for categorical values while log-rank test was used for descriptive statistical analysis. One tooth in the PP group failed, secondary to decementation of the PFM crown giving a 2.5% overall failure while none in the FRP group failed. The survival rate of FRP was thus 100% while it was 97.5% in the PP group. This however was not statistically significant (log-rank test, P = 0.32). Glass FRPs performed better than the metallic post based on short-term clinical performance.

  5. Effect of remaining coronal structure on the resistance to fracture of crowned endodontically treated maxillary first premolars.

    PubMed

    Nissan, Joseph; Barnea, Eitan; Bar Hen, Doron; Assif, David

    2008-09-01

    Endodontically treated maxillary first premolars present a restorative challenge. The objective of the present study was to assess the resistance to fracture of crowned endodontically treated maxillary first premolars under simulated occlusal load, while preserving various degrees of remaining coronal structure. The study consisted of 50 intact maxillary first premolars with bifurcated roots and similar root diameter and length, randomly divided into 5 equal experimental groups. All dowels were luted with Flexi-Flow titanium-reinforced composite resin cement. TiCore titanium-reinforced composite resin was used to fabricate the core. Complete cast crowns were fabricated and cemented with zinc phosphate cement. Forces at fracture and mode of failure were recorded. Statistically significant differences (P < .05) were found among mean failure forces for all tested groups in their resistance to fracture under load with the Kruskal-Wallias test and among all combinations of the 5 groups (Z = -1.56/-2.34; P > .05) with the Mann-Whitney test. This indicates that crowned maxillary first premolars with varying degrees of remaining coronal structure differ significantly in their resistance to fracture under occlusal load. There was increased protection against fracture under occlusal loads with more remaining tooth structure. Within the limitations of this study, remaining coronal structure influenced the fracture resistance of crowned endodontically treated maxillary first premolars. Preservation of tooth structure is important for its protection against fracture under occlusal loads and may influence the tooth prognosis.

  6. Fit of interim crowns fabricated using photopolymer-jetting 3D printing.

    PubMed

    Mai, Hang-Nga; Lee, Kyu-Bok; Lee, Du-Hyeong

    2017-08-01

    The fit of interim crowns fabricated using 3-dimensional (3D) printing is unknown. The purpose of this in vitro study was to evaluate the fit of interim crowns fabricated using photopolymer-jetting 3D printing and to compare it with that of milling and compression molding methods. Twelve study models were fabricated by making an impression of a metal master model of the mandibular first molar. On each study model, interim crowns (N=36) were fabricated using compression molding (molding group, n=12), milling (milling group, n=12), and 3D polymer-jetting methods. The crowns were prepared as follows: molding group, overimpression technique; milling group, a 5-axis dental milling machine; and polymer-jetting group using a 3D printer. The fit of interim crowns was evaluated in the proximal, marginal, internal axial, and internal occlusal regions by using the image-superimposition and silicone-replica techniques. The Mann-Whitney U test and Kruskal-Wallis tests were used to compare the results among groups (α=.05). Compared with the molding group, the milling and polymer-jetting groups showed more accurate results in the proximal and marginal regions (P<.001). In the axial regions, even though the mean discrepancy was smallest in the molding group, the data showed large deviations. In the occlusal region, the polymer-jetting group was the most accurate, and compared with the other groups, the milling group showed larger internal discrepancies (P<.001). Polymer-jet 3D printing significantly enhanced the fit of interim crowns, particularly in the occlusal region. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Coronal leakage in endodontically treated teeth restored with posts and complete crowns using different luting agent combinations.

    PubMed

    Nissan, Joseph; Rosner, Ofir; Gross, Ora; Pilo, Raphael; Lin, Shaul

    2011-04-01

    To evaluate the influence of different cement combinations on coronal microleakage in restored endodontically treated teeth using dye penetration. Human, noncarious single-rooted extracted premolars (n = 60) were divided into four experimental groups (each n = 15). After endodontic treatment, different combinations of cements were used to lute prefabricated posts and complete crown restorations: zinc phosphate cement applied on posts and cast crowns (Z) or on zinc phosphate cement posts and resin cement applied on cast crowns (ZR); resin cement applied on posts and zinc phosphate cement applied on cast crowns (RZ); and resin cement applied on posts and cast crowns (R). After artificial aging through thermal cycling (5°C to 55°C) for 2,000 cycles at 38 seconds for each cycle and 15 seconds of dwell time, specimens were immersed for 72 hours in basic fuchsin at 37°C. A buccolingual section was made through the vertical axis of specimens. A Toolmaker's microscope (Mitutoyo) was used to measure (um) dye penetration. The Kruskal-Wallis nonparametric test was used to determine intergroup difference. A nonparametric Mann-Whitney test compared each group regarding its maximal linear penetration depths on the mesial and distal aspects of each specimen (a = 0.05). Dye staining was evident to some degree in all specimens. Among groups Z, ZR, and RZ, no significant difference was shown in dye-penetration depths (mean penetration scores 1,518 to 1,807 um). However, dyepenetration depth was significantly lower in group R compared to the other groups (mean penetration score 1,073 um) (P < .05). Under study conditions, the cement combination offering the best coronal sealing was the one using only resin cement for both posts and crown restorations.

  8. Challenges of Cold Conditioning and Static Testing the Second Ares Demonstration Motor (DM-2)

    NASA Technical Reports Server (NTRS)

    Quinn, Shyla; Davis, Larry C.

    2011-01-01

    On August 31, 2010, a five-segment demonstration motor (DM) for the Ares program was successfully tested. A series of demonstration motors (DMs) will be tested in different conditioned environments to confirm they meet their design specifications. The second demonstration motor (DM-2) was the first cold motor. The motor needed to be subjected to sub-freezing temperatures for two months so that its internal propellant mean bulk temperature (PMBT) was approximately 40 F. Several challenges had to be overcome to make this a successful test. One challenge was to condition four field joints to get the O-rings approximately 32 F. This would be done by applying conditioning shrouds to externally cool each field joint after the test bay was pulled off. The purpose of this conditioning was to validate the new O-ring design and allow joint heaters to be eliminated. Another challenge was maintaining temperature requirements for components in the nozzle vectoring system. A separate heating system was used to warm these components during cold conditioning. There were 53 test objectives that required 764 channels of data to be recorded; 460 were specific to DM-2. This instrumentation had to be installed prior to conditioning, which meant the baseline process and timeline had to be modified to meet this time critical schedule.

  9. In vitro tensile strength of luting cements on metallic substrate.

    PubMed

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.

  10. Comparative Evaluation of Conventional and Accelerated Castings on Marginal Fit and Surface Roughness

    PubMed Central

    Jadhav, Vivek Dattatray; Motwani, Bhagwan K.; Shinde, Jitendra; Adhapure, Prasad

    2017-01-01

    Aims: The aim of this study was to evaluate the marginal fit and surface roughness of complete cast crowns made by a conventional and an accelerated casting technique. Settings and Design: This study was divided into three parts. In Part I, the marginal fit of full metal crowns made by both casting techniques in the vertical direction was checked, in Part II, the fit of sectional metal crowns in the horizontal direction made by both casting techniques was checked, and in Part III, the surface roughness of disc-shaped metal plate specimens made by both casting techniques was checked. Materials and Methods: A conventional technique was compared with an accelerated technique. In Part I of the study, the marginal fit of the full metal crowns as well as in Part II, the horizontal fit of sectional metal crowns made by both casting techniques was determined, and in Part III, the surface roughness of castings made with the same techniques was compared. Statistical Analysis Used: The results of the t-test and independent sample test do not indicate statistically significant differences in the marginal discrepancy detected between the two casting techniques. Results: For the marginal discrepancy and surface roughness, crowns fabricated with the accelerated technique were significantly different from those fabricated with the conventional technique. Conclusions: Accelerated casting technique showed quite satisfactory results, but the conventional technique was superior in terms of marginal fit and surface roughness. PMID:29042726

  11. Fracture resistance of 3 types of primary esthetic stainless steel crowns.

    PubMed

    Beattie, Sean; Taskonak, Burak; Jones, James; Chin, Judith; Sanders, Brian; Tomlin, Angela; Weddell, James

    2011-01-01

    Demand is increasing for esthetic restorations in pediatric dentistry. When full coverage is indicated, one option is to use esthetic stainless steel crowns (SSCs). However, this type of crown is prone to fracture. The purpose of this study was to evaluate the fracture resistance of 3 types of esthetic SSCs. Esthetic SSCs for first primary mandibular molars were cemented to idealized epoxy dies with glass ionomer cement. The die-crown units were fractured on a universal testing machine. The force was delivered by a stainless steel ball fixture, set in a uniaxial lever to replicate a cusp contact, with a crosshead speed of 1 mm/min. The differences among the 3 types of crown, in terms of force required to fracture, were compared statistically by 1-way analysis of variance. Pairwise comparisons were performed with Fisher's protected least significant difference test, at an overall significance level of 5%. The force required to fracture, expressed as average ± standard error, did not differ significantly among the 3 brands of esthetic SSCs: 1730 N ± 50 N, 1826 N ± 62 N and 1671 N ± 68 N, respectively (p = 0.19), well below the maximum bite force of pediatric patients determined in a previous study. Esthetic SSCs should be able to resist occlusal forces over short clinical periods. However, long-term occlusal loading and fatigue failures should be taken into account when evaluating the success of this type of crown.

  12. Evaluation of Hydroprocessed Renewable Diesel (HRD) Fuel in a Caterpillar Engine Using the 210 Hour TWV Cycle

    DTIC Science & Technology

    2014-05-01

    TERMS Hydroprocessed Renewable Diesel , Reference Diesel Fuel, C7, emissions, power, performance, deposition, ambient, desert, synthetic fuel injector ...the engine run-in, the engine was disassembled to determine injector nozzle tip deposits, and the piston crowns and engine combustion chamber deposits...removed from the test cell and disassembled to determine injector nozzle tip and piston crown and engine combustion chamber deposits. Post- test

  13. Probability of survival of implant-supported metal ceramic and CAD/CAM resin nanoceramic crowns.

    PubMed

    Bonfante, Estevam A; Suzuki, Marcelo; Lorenzoni, Fábio C; Sena, Lídia A; Hirata, Ronaldo; Bonfante, Gerson; Coelho, Paulo G

    2015-08-01

    To evaluate the probability of survival and failure modes of implant-supported resin nanoceramic relative to metal-ceramic crowns. Resin nanoceramic molar crowns (LU) (Lava Ultimate, 3M ESPE, USA) were milled and metal-ceramic (MC) (Co-Cr alloy, Wirobond C+, Bego, USA) with identical anatomy were fabricated (n=21). The metal coping and a burnout-resin veneer were created by CAD/CAM, using an abutment (Stealth-abutment, Bicon LLC, USA) and a milled crown from the LU group as models for porcelain hot-pressing (GC-Initial IQ-Press, GC, USA). Crowns were cemented, the implants (n=42, Bicon) embedded in acrylic-resin for mechanical testing, and subjected to single-load to fracture (SLF, n=3 each) for determination of step-stress profiles for accelerated-life testing in water (n=18 each). Weibull curves (50,000 cycles at 200N, 90% CI) were plotted. Weibull modulus (m) and characteristic strength (η) were calculated and a contour plot used (m versus η) for determining differences between groups. Fractography was performed in SEM and polarized-light microscopy. SLF mean values were 1871N (±54.03) for MC and 1748N (±50.71) for LU. Beta values were 0.11 for MC and 0.49 for LU. Weibull modulus was 9.56 and η=1038.8N for LU, and m=4.57 and η=945.42N for MC (p>0.10). Probability of survival (50,000 and 100,000 cycles at 200 and 300N) was 100% for LU and 99% for MC. Failures were cohesive within LU. In MC crowns, porcelain veneer fractures frequently extended to the supporting metal coping. Probability of survival was not different between crown materials, but failure modes differed. In load bearing regions, similar reliability should be expected for metal ceramics, known as the gold standard, and resin nanoceramic crowns over implants. Failure modes involving porcelain veneer fracture and delamination in MC crowns are less likely to be successfully repaired compared to cohesive failures in resin nanoceramic material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Marginal and internal fit of CAD-CAM-fabricated composite resin and ceramic crowns scanned by 2 intraoral cameras.

    PubMed

    de Paula Silveira, Alessandra C; Chaves, Sacha B; Hilgert, Leandro A; Ribeiro, Ana Paula D

    2017-03-01

    The precision of fit of chairside computer-aided design and computer-aided manufacturing (CAD-CAM) complete crowns is affected by digital impression and restorative material. The purpose of this in vitro study was to evaluate by microcomputed tomography (μCT) the marginal and internal adaptation of composite resin and ceramic complete crowns fabricated with 2 different intraoral cameras and 2 restorative materials. Ten extracted human third molars received crown preparations. For each prepared molar, 2 digital impressions were made with different intraoral cameras of the CEREC system, Bluecam and Omnicam. Four groups were formed: LB (Lava Ultimate+Bluecam), EB (Emax+Bluecam), LO (Lava Ultimate+Omnicam), and EO (Emax+Omnicam). Before measuring the precision of fit, all crowns were stabilized with a silicone material. Each unit (crown + prepared tooth) was imaged with μCT, and marginal and internal discrepancies were analyzed. For the 2D analysis, 120 measurements were made of each crown for marginal adaptation, 20 for marginal discrepancy (MD), and 20 for absolute marginal discrepancy (AMD); and for internal adaptation, 40 for axial space (AS) and 40 for occlusal space (OS). After reconstructing the 3D images, the average internal space (AIS) was calculated by dividing the total volume of the internal space by the contact surface. Data were analyzed with 2-way ANOVA and quantile regression. Regarding marginal adaptation, no significant differences were observed among groups. For internal adaptation measured in the 2D evaluation, a significant difference was observed between LO and EO for the AS variable (Mann-Whitney test; P<.008). In assessment of AIS by the 3D reconstruction, LB presented significantly lower values than the other groups (Tukey post hoc test; P<.05). Bluecam presented lower values of AIS than Omnicam, and composite resin crowns showed less discrepancy than did ceramic crowns. The marginal adaptations assessed in all groups showed values within the clinically accepted range. Moreover, the composite resin blocks associated with the Bluecam intraoral camera demonstrated the best results for AIS compared with those of the other groups. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Fatigue resistance of ultrathin CAD/CAM complete crowns with a simplified cementation process.

    PubMed

    Magne, Pascal; Carvalho, Adriana O; Bruzi, Greciana; Giannini, Marcelo

    2015-10-01

    Traditional tooth preparation for complete crowns requires a substantial amount of hard tissue reduction. This is in contrast with the principles of minimally invasive dentistry. An ultrathin complete crown preparation is proposed instead. The purpose of this in vitro study was to assess the fatigue resistance and failure mode of computer-aided design and computer-aided manufacturing (CAD/CAM) ultrathin complete molar crowns placed with self-adhesive cement. Different restorative materials (resin nanoceramic [RNC], feldspathic ceramic [FEL], and lithium disilicate [LD]) were compared. Forty-five extracted molars with a standardized crown preparation were restored with the Cerec 3 CAD/CAM system using FEL, LD, or RNC (n=15). FEL and LD restorations were etched with hydrofluoric acid and silanated. RNC restorations and all preparations were treated with airborne-particle abrasion. All restorations (thickness=0.7 mm) were cemented with RelyX Unicem II Automix cement and submitted to cyclic isometric loading, beginning with a load of 200 N (5000 cycles) and followed by stages of 400, 600, 800, 1000, 1200, and 1400 N at a maximum of 30 000 cycles each. The specimens were loaded until failure or for a maximum of 185 000 cycles. The failure mode was categorized as "catastrophic," "possibly reparable," or "reparable." The groups were compared using life table survival analysis (log rank test at α=.05). Previously published data from the same authors about traditional complete crowns (thickness 1.5 mm) using the same experimental design were included for comparison. All specimens survived the fatigue test until the 600 N step. RNC, LD, and FEL failed at an average load of 1014 N (1 survival), 1123 N (2 survivals), and 987 N (no survivals), and no difference in survival rate was found. No catastrophic failures were reported after the fatigue test. Comparison with previously published data showed that 1.5-mm thick complete crowns demonstrated higher survival rates than the ultrathin restorations, independent of the material. The fatigue resistance of ultrathin complete molar crowns (placed with a simplified cementation process) made of RNC, LD, and FEL was not significantly different. All materials survived the normal range of masticatory forces. All failures were re-restorable. Regular crowns of 1.5 to 2.0 mm thickness may present higher survival rates than ultrathin ones. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Quantification of the tug-back by measuring the pulling force and micro computed tomographic evaluation.

    PubMed

    Jeon, Su-Jin; Moon, Young-Mi; Seo, Min-Seock

    2017-11-01

    The aims of this study were to quantify tug-back by measuring the pulling force and investigate the correlation of clinical tug-back pulling force with in vitro gutta-percha (GP) cone adaptation score using micro-computed tomography (µCT). Twenty-eight roots from human single-rooted teeth were divided into 2 groups. In the ProTaper Next (PTN) group, root canals were prepared with PTN, and in the ProFile (PF) group, root canals were prepared using PF ( n = 14). The degree of tug-back was scored after selecting taper-matched GP cones. A novel method using a spring balance was designed to quantify the tug-back by measuring the pulling force. The correlation between tug-back scores, pulling force, and percentage of the gutta-percha occupied area (pGPOA) within apical 3 mm was investigated using µCT. The data were analyzed using Pearson's correlation analysis, one-way analysis of variance (ANOVA) and Tukey's test. Specimens with a strong tug-back had a mean pulling force of 1.24 N (range, 0.15-1.70 N). This study showed a positive correlation between tug-back score, pulling force, and pGPOA. However, there was no significant difference in these factors between the PTN and PF groups. Regardless of the groups, pGPOA and pulling force were significantly higher in the specimens with a higher tug-back score ( p < 0.05). The degree of subjective tug-back was a definitive determinant for master cone adaptation in the root canal. The use of the tug-back scoring system and pulling force allows the interpretation of subjective tug-back in a more objective and quantitative manner.

  17. A prospective 10-year study of metal ceramic single crowns and fixed dental prosthesis retainers in private practice settings.

    PubMed

    Reitemeier, Bernd; Hänsel, Kristina; Kastner, Christian; Weber, Anke; Walter, Michael H

    2013-03-01

    Metal ceramic restorations are widely used in prosthodontics, but long-term data on their clinical performance in private practice settings based on prospective trials are sparse. This clinical trial was designed to provide realistic long-term survival rates for different outcomes related to tooth loss, crown loss, and metal ceramic defect. Ninety-five participants were provided with 190 noble metal ceramic single crowns and 138 participants with 276 fixed dental prosthesis retainer crowns on vital posterior teeth. Follow-up examinations were scheduled 2 weeks after insertion, annually up to 8 years, and after 10 years. Kaplan-Meier survival analyses, Mantel-Cox logrank tests, and Cox regression analyses were conducted. Because of variations in the time of the last examinations, the maximum observation period was 12.1 years. For the primary outcome 'loss of crown or tooth', the Kaplan-Meier survival rate was 94.3% ±1.8% (standard error) at 8.0 years (last outcome event) for single crowns and 94.4% ±1.5% at 11.0 years for fixed dental prosthesis retainer crowns. The difference between the survival functions was not significant (P>.05). For the secondary outcome 'metal ceramic defect', the survival rate was 88.8% ±3.2% at 11.0 years for single crowns and 81.7% ±3.5% at 11.0 years for fixed dental prosthesis retainer crowns. In Cox regression models, the only significant covariates for the outcome event 'metal ceramic defect' were bruxism in the medical history (single crowns) and signs and symptoms of bruxism (fixed dental prosthesis retainer crowns) with hazard ratios of 3.065 (95% CI 1.063 - 8.832) and 2.554 (95% CI 1.307 - 4.992). Metal ceramic crowns provided in private practice settings show good longevity. Bruxism appears to indicate a risk for metal ceramic defects. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  18. Displacement of screw-retained single crowns into implants with conical internal connections.

    PubMed

    Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L

    2013-01-01

    Internal conical implant-abutment connections without platforms may lead to axial displacement of crowns during screw tightening. This displacement may affect proximal contacts, incisal edge position, or occlusion. This study aimed to measure the displacement of screw-retained single crowns into an implant in three dimensions during screw tightening by hand or via torque driver. A stereolithic acrylic resin cast was created using computed tomography data from a patient missing the maxillary right central incisor. A 4.0- × 11-mm implant was placed in the edentulous site. Five porcelain-fused-to-metal single crowns were made using "cast-to" abutments. Crowns were tried on the stereolithic model, representing the patient, and hand tightened. The spatial relationship of crowns to the model after hand tightening was determined using three-dimensional digital image correlation (3D DIC), an optical measurement technique. The crowns were then tightened using a torque driver to 20 Ncm and the relative crown positions were again recorded. Testing was repeated three times for each crown, and displacement of the crowns was compared between the hand-tightened and torqued states. Commercial image correlation software was used to analyze the data. Mean vertical and horizontal crown displacement values were calculated after torqueing. The interproximal contacts were evaluated before and after torquing using an 8-μm aluminum foil shim. There were vertical and horizontal differences in crown positions between hand tightening and torqueing. Although these were small in magnitude, detectable displacements occurred in both apical and facial directions. After hand tightening, the 8-μm shim could be dragged without tearing. However, after torque tightening, the interproximal contacts were too tight and the 8-μm shim could not be dragged without tearing. Differences between hand tightening and torque tightening should be taken into consideration during laboratory and clinical adjustments to prevent esthetic and functional complications.

  19. Fracture resistance of metal-free composite crowns-effects of fiber reinforcement, thermal cycling, and cementation technique.

    PubMed

    Lehmann, Franziska; Eickemeyer, Grit; Rammelsberg, Peter

    2004-09-01

    The improved mechanical properties of contemporary composites have resulted in their extensive use for the restoration of posterior teeth. However, the influence of fiber reinforcement, cementation technique, and physical stress on the fracture resistance of metal-free crowns is unknown. This in vitro study evaluated the effect of fiber reinforcement, physical stress, and cementation methods on the fracture resistance of posterior metal-free Sinfony crowns. Ninety-six extracted human third molars received a standardized tooth preparation: 0.5-mm chamfer preparation and occlusal reduction of 1.3 to 1.5 mm. Sinfony (nonreinforced crowns, n=48) and Sinfony-Vectris (reinforced crowns, n=48) crowns restoring original tooth contour were prepared. Twenty-four specimens of each crown type were cemented, using either glass ionomer cement (GIC) or resin cement. Thirty-two crowns (one third) were stored in humidity for 48 hours. Another third was exposed to 10,000 thermal cycles (TC) between 5 degrees C and 55 degrees C. The remaining third was treated with thermal cycling and mechanical loading (TCML), consisting of 1.2 million axial loads of 50 N. The artificial crowns were then vertically loaded with a steel sphere until failure occurred. Significant differences in fracture resistance (N) between experimental groups were assessed by nonparametric Mann-Whitney U-test (alpha=.05). Fifty percent of the Sinfony and Sinfony-Vectris crowns cemented with glass ionomer cement loosened after thermal cycling. Thermal cycling resulted in a significant reduction in the mean fracture resistance for Sinfony crowns cemented with GIC, from 2037 N to 1282 N (P=.004). Additional fatigue produced no further effects. Fiber reinforcement significantly increased fracture resistance, from 1555 N to 2326 N (P=.001). The minimal fracture resistance was above 600 N for all combinations of material, cement and loading. Fracture resistance of metal-free Sinfony crowns was significantly increased by fiber reinforcement. Adhesive cementation may be recommended to avoid cementation failure.

  20. Abutments with reduced diameter for both cement and screw retentions: analysis of failure modes and misfit of abutment-crown-connections after cyclic loading.

    PubMed

    Moris, Izabela Cristina Maurício; Faria, Adriana Cláudia Lapria; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira

    2017-04-01

    The aim of this study was to analyze failure modes and misfit of abutments with reduced diameter for both cement and screw retentions after cyclic loading. Forty morse-taper abutment/implant sets of titanium were divided into four groups (N = 10): G4.8S-4.8 abutment with screw-retained crown; G4.8C-4.8 abutment with cemented crown; G3.8S-3.8 abutment with screw-retained crown; and G3.8C-3.8 abutment with cemented crown. Copings were waxed on castable cylinders and cast by oxygen gas flame and injected by centrifugation. After, esthetic veneering ceramic was pressed on these copings for obtaining metalloceramic crowns of upper canine. Cemented crowns were cemented on abutments with provisional cement (Temp Bond NE), and screw-retained crowns were tightened to their abutments with torque recommended by manufacturer (10 N cm). The misfit was measured using a stereomicroscope in a 10× magnification before and after cyclic loading (300,000 cycles). Tests were visually monitored, and failures (decementation, screw loosening and fractures) were registered. Misfit was analyzed by mixed linear model while failure modes by chi-square test (α = 0.05). Cyclic loading affected misfit of 3.8C (P ≤ 0.0001), 3.8S (P = 0.0055) and 4.8C (P = 0.0318), but not of 4.8S (P = 0.1243). No differences were noted between 3.8S with 4.8S before (P = 0.1550) and after (P = 0.9861) cyclic loading, but 3.8C was different from 4.8C only after (P = 0.0015) loading. Comparing different types of retentions at the same diameter abutment, significant difference was noted before and after cyclic loading for 3.8 and 4.8 abutments. Analyzing failure modes, retrievable failures were present at 3.8S and 3.8C groups, while irretrievable were only present at 3.8S. The cyclic loading decreased misfit of cemented and screw-retained crowns on reduced diameter abutments, and misfit of cemented crowns is greater than screw-retained ones. Abutments of reduced diameter failed more than conventional. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Cooperative data dissemination to mission sites

    NASA Astrophysics Data System (ADS)

    Chen, Fangfei; Johnson, Matthew P.; Bar-Noy, Amotz; La Porta, Thomas F.

    2010-04-01

    Timely dissemination of information to mobile users is vital in many applications. In a critical situation, no network infrastructure may be available for use in dissemination, over and above the on-board storage capability of the mobile users themselves. We consider the following specialized content distribution application: a group of users equipped with wireless devices build an ad hoc network in order cooperatively to retrieve information from certain regions (the mission sites). Each user requires access to some set of information items originating from sources lying within a region. Each user desires low-latency access to its desired data items, upon request (i.e., when pulled). In order to minimize average response time, we allow users to pull data either directly from sources or, when possible, from other nearby users who have already pulled, and continue to carry, the desired data items. That is, we allow for data to be pushed to one user and then pulled by one or more additional users. The total latency experienced by a user vis-vis a certain data item is then in general a combination of the push delay and the pull delay. We assume each delay time is a function of the hop distance between the pair of points in question. Our goal in this paper is to assign data to mobile users, in order to minimize the total cost and the average latency experienced by all the users. In a static setting, we solve this problem in two different schemes, one of which is easy to solve but wasteful, one of which relates to NP-hard problems but is less so. Then in a dynamic setting, we adapt the algorithm for the static setting and develop a new algorithm with respect to users' gradual arrival. In the end we show a trade-off can be made between minimizing the cost and latency.

  2. Performance of the Boeing LRV wheels in a lunar soil simulant. Report 2: Effects of speed, Wheel load, and soil

    NASA Technical Reports Server (NTRS)

    Melzer, K.

    1971-01-01

    Two nearly identical Boeing-GM wire-mesh Lunar Roving Vehicle (LRV) wheels were laboratory tested in a lunar soil simulant to determine the influence of wheel speed and acceleration, wheel load, presence of a fender, travel direction, and soil strength on the wheel performance. Constant-slip and three types of programmed-slip tests were conducted with a single-wheel dynamometer system. Test results indicated that performance of single LRV wheels in terms of pull coefficient, power number, and efficiency were not influenced by wheel speed and acceleration, travel direction, the presence of a fender, or wheel load. Of these variables, only load influenced sinkage, which increased with increasing load. For a given slip, the pull coefficient and power number increased with increasing soil strength. However, for a given pull coefficient or slope, slip was less in firmer soil; thus, the power number decreased and efficiency increased with increasing soil strength.

  3. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    PubMed Central

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578

  4. Strength, power, and muscular endurance exercise and elite rowing ergometer performance.

    PubMed

    Lawton, Trent W; Cronin, John B; McGuigan, Michael R

    2013-07-01

    Knowledge of the relationship between weight room exercises and various rowing performance measures is limited; this information would prove useful for sport-specific assessment of individual needs and exercise prescription. The purpose of this study was to establish strength, power, and muscular endurance exercises for weight room training, which are strong determinants of success in specific performance measures used to assess elite rowers. Nineteen heavyweight elite males determined their repetition maximum (RM) loads for exercises using a Concept 2 DYNO [5, 30, 60 and 120RM leg pressing and seated arm pulling (in Joules)] and free weights [1RM power clean (in kilograms) and 6RM bench pull (in kilograms and watts)]. Rowing performance measures included a 7-stage blood lactate response ergometer test (aerobic condition), time trials (500, 2000, and 5000 m), a peak stroke power test, and a 60-minute distance trial. Pearson correlation moments (r ≥ 0.7) and stepwise multiple linear regression calculations (R ≥ 50%) were used to establish strong common variances between weight room exercises and rowing ergometer performance (p ≤ 0.05). Weight room exercises were strong predictors of 2000-m, 500-m time (in seconds), and peak stroke power performance measures only. Bench pull power (in watts) and 1RM power clean (in kilograms) were the best 2-factor predictors of peak stroke power (R = 73%; standard error of the estimates [SEE] = 59.6 W) and 500 m (R = 70%; SEE = 1.75 seconds); while 5RM leg pressing (in Joules) and either 6RM bench pull (kg) or 60RM seated arm pulling (in Joules) the best predictors of 2000 m (R = 59%; SEE = 6.3 seconds and R = 57%; SEE = 6.4 seconds, respectively). Recommended exercises for weight room training include a 1RM power clean, 6RM bench pull, 5RM leg press, and 60RM seated arm pulling.

  5. Demonstrations of bio-inspired perching landing gear for UAVs

    NASA Astrophysics Data System (ADS)

    Tieu, Mindy; Michael, Duncan M.; Pflueger, Jeffery B.; Sethi, Manik S.; Shimazu, Kelli N.; Anthony, Tatiana M.; Lee, Christopher L.

    2016-04-01

    Results are presented which demonstrate the feasibility and performance of two concepts of biologically-inspired landing-gear systems that enable bird-sized, unmanned aerial vehicles (UAV's) to land, perch, and take-off from branchlike structures and/or ledges. The first concept follows the anatomy of birds that can grasp ahold of a branch and perch as tendons in their legs are tensioned. This design involves a gravity-activated, cable-driven, underactuated, graspingfoot mechanism. As the UAV lands, its weight collapses a four-bar linkage pulling a cable which curls two opposing, multi-segmented feet to grasp the landing target. Each foot is a single, compliant mechanism fabricated by simultaneouly 3D-printing a flexible thermo-plastic and a stiffer ABS plastic. The design is optimized to grasp structures over a range of shapes and sizes. Quasi-static and flight tests of this landing gear affixed to RC rotorcraft (24 cm to 550 cm in diameter) demonstrate that the aircraft can land, perch, and take-off from a tree branch, rectangular wood board, PVC pipe, metal hand rail, chair armrest, and in addition, a stone wall ledge. Stability tests show that perching is maintained under base and wind disturbances. The second design concept, inspired by roosting bats, is a two-material, 3D-printed hooking mechanism that enables the UAV to stably suspend itself from a wire or small-diameter branch. The design balances structural stiffness for support and flexibility for the perching process. A flight-test demonstrates the attaching and dis-engaging of a small, RC quadcopter from a suspended line.

  6. Service dogs in the province of Quebec: sociodemographic profile of users and the dogs' impact on functional ability.

    PubMed

    Vincent, Claude; Gagnon, Dany; Routhier, François; Leblond, Jean; Boucher, Pascale; Blanchet, Marie; Martin-Lemoyne, Valérie

    2015-03-01

    The objectives of this study were to (1) describe the sociodemographic profile of service dog users, their physical disabilities, main occupations, living environment, and use of technical aids in daily life and (2) evaluate the impact of service dogs on wheelchair travel and picking up objects. Sociodemographic and clinical data were collected and various mobility tests were conducted in the service dog users' home environment (n = 199). The service dog users had injuries to the central or peripheral nervous system (55%), spinal cord (33%), or musculoskeletal or orthopedic system (12%). In the wheelchair travel on flat terrain test (n = 67), users travelled a longer distance in a shorter time, improving their average speed to 1.28 m/s with the service dog compared to 0.75 m/s without (p < 0.001). In a wheelchair propelling up a slope, 42% improved with the service dog (n = 60). Mounting a threshold/curb in a wheelchair, 41% improved with the service dog (n = 39). In a test where walkers and wheelchair users picked up three objects off the ground, 44% improved with the service dog (n = 164). Service dogs significantly improved wheelchair travel speed and distance on flat and ascending terrain, mounting a threshold/curb and picking up objects off the ground. Implications for Rehabilitation For people with motor impairments: Service dogs are most often used as a technical aid to pick up objects (96%), open doors (36%) and pull the wheelchair during travel (34%). Clients' performance in significant travel in a wheelchair (on flat terrain, on an upslope, mounting a threshold) improved with the service dog compared to their own performance without the dog. Clients' grasping performance (picking up three significant objects off the ground) improved with the service dog compared to their own performance without the dog.

  7. Deformation Behavior during Processing in Carbon Fiber Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Ogihara, Shinji; Kobayashi, Satoshi

    In this study, we manufacture the device for measuring the friction between the prepreg curing process and subjected to pull-out tests with it The prepreg used in this study is a unidirectional carbon/epoxy, produced by TORAY designation of T700SC/2592.When creating specimens 4-ply prepregs are prepared and laminated. The 2-ply prepregs in the middle are shifted 50mm. In order to measure the friction between the prepreg during the cure process, we simulate the environment in the autoclave in the device, and we experiment in pull-out test. Test environment simulating temperature and pressure. The speed of displacement should be calculated by coefficient of thermal expansions (CTE). By calculation, 0.05mm/min gives the order of magnitude of displacement speed. In this study, 3 pull-out speeds are used: 0.01, 0.05 and 0.1mm/min. The specimen was heated by a couple of heaters, and we controlled the heaters with a temperature controller along the curing conditions of the prepreg. We put pressure using 4 bolts. Two strain gages were put on the bolt. We can understand the load applied to the specimen from the strain of the bolt. Pressure was adjusted the tightness of the bolt according to curing conditions. By using such a device, the pull-out test performed by tensile testing machine while adding temperature and pressure. During the 5 hours, we perform experiments while recording the load and stroke. The shear stress determined from the load and the stroke, and evaluated.

  8. In vitro study of fracture load and fracture pattern of ceramic crowns: a finite element and fractography analysis.

    PubMed

    Campos, Roberto Elias; Soares, Carlos José; Quagliatto, Paulo S; Soares, Paulo Vinícius; de Oliveira, Osmir Batista; Santos-Filho, Paulo Cesar Freitas; Salazar-Marocho, Susana M

    2011-08-01

    This in vitro study investigated the null hypothesis that metal-free crowns induce fracture loads and mechanical behavior similar to metal ceramic systems and to study the fracture pattern of ceramic crowns under compressive loads using finite element and fractography analyses. Six groups (n = 8) with crowns from different systems were compared: conventional metal ceramic (Noritake) (CMC); modified metal ceramic (Noritake) (MMC); lithium disilicate-reinforced ceramic (IPS Empress II) (EMP); leucite-reinforced ceramic (Cergogold) (CERG); leucite fluoride-apatite reinforced ceramic (IPS d.Sign) (SIGN); and polymer crowns (Targis) (TARG). Standardized crown preparations were performed on bovine roots containing NiCr metal dowels and resin cores. Crowns were fabricated using the ceramics listed, cemented with dual-cure resin cement, and submitted to compressive loads in a mechanical testing machine at a 0.5-mm/min crosshead speed. Data were submitted to one-way ANOVA and Tukey tests, and fractured specimens were visually inspected under a stereomicroscope (20×) to determine the type of fracture. Maximum principal stress (MPS) distributions were calculated using finite element analysis, and fracture origin and the correlation with the fracture type were determined using fractography. Mean values of fracture resistance (N) for all groups were: CMC: 1383 ± 298 (a); MMC: 1691 ± 236 (a); EMP: 657 ± 153 (b); CERG: 546 ± 149 (bc); SIGN: 443 ± 126 (c); TARG: 749 ± 113 (b). Statistical results showed significant differences among groups (p < 0.05) represented by different lowercase letters. Metal ceramic crowns presented fracture loads significantly higher than the others. Ceramic specimens presented high incidence of fractures involving either the core or the tooth, and all fractures of polymer crown specimens involved the tooth in a catastrophic way. Based on stress and fractographic analyses it was determined that fracture occurred from the occlusal to the cervical direction. Within the limitations of this study, the results indicated that the use of ceramic and polymer crowns without a core reinforcement should be carefully evaluated before clinical use due to the high incidence of failure with tooth involvement. This mainly occurred for the polymer crown group, although the fracture load was higher than normal occlusal forces. High tensile stress concentrations were found around and between the occlusal loading points. Fractographic analysis indicated fracture originating from the load point and propagating from the occlusal surface toward the cervical area, which is the opposite direction of that observed in clinical situations. © 2011 by The American College of Prosthodontists.

  9. Comparison of 3D displacements of screw-retained zirconia implant crowns into implants with different internal connections with respect to screw tightening.

    PubMed

    Rebeeah, Hanadi A; Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin; Clelland, Nancy; Brantley, William

    2018-01-01

    Internal conical implant-abutment connections without horizontal platforms may lead to crown displacement during screw tightening and torque application. This displacement may affect the proximal contacts and occlusion of the definitive prosthesis. The purpose of this in vitro study was to evaluate the displacement of custom screw-retained zirconia single crowns into a recently introduced internal conical seal implant-abutment connection in 3D during hand and torque driver screw tightening. Stereolithic acrylic resin models were printed using computed tomography data from a patient missing the maxillary right central incisor. Two different internal connection implant systems (both ∼11.5 mm) were placed in the edentulous site in each model using a surgical guide. Five screw-retained single zirconia computer-aided design and computer-aided manufacturing (CAD-CAM) crowns were fabricated for each system. A pair of high-resolution digital cameras was used to record the relationship of the crown to the model. The crowns were tightened according to the manufacturers' specifications using a torque driver, and the cameras recorded their relative position again. Three-dimensional image correlation was used to measure and compare crown positions, first hand tightened and then torque driven. The displacement test was repeated 3 times for each crown. Commercial image correlation software was used to extract the data and compare the amount of displacement vertically, mesiodistally, and buccolingually. Repeated-measures ANOVA calculated the relative displacements for all 5 specimens for each implant for both crown screw hand tightening and after applied torque. A Student t test with Bonferroni correction was used for pairwise comparison of interest to determine statistical differences between the 2 implants (α=.05). The mean vertical displacements were statistically higher than the mean displacements in the mesiodistal and buccolingual directions for both implants (P<.001). Mean displacements in all directions were statistically significant between iterations for both implants (P<.001). No statistically significant differences were found for displacements between implants at different directions and at different iterations (P>.05). Within the limitations of this in vitro study, screw-retained zirconia crowns tended to displace in all 3 directions, with the highest mean displacement in the vertical direction at iteration 1. However, the amount of displacement of crowns between the 2 different implants was statistically insignificant for all directions and iterations. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Proceedings of the International Conference on The Performance of Off-Road Vehicles and Machines (8th). Volume 1. Held at Cambridge England, on August 5-11, 1984.

    DTIC Science & Technology

    1984-08-01

    is to " Nowo _ - . . .. ..... . , , . , . i’*.t’ "’" 36 determine the motion resistance, drawbar pull, torque, efficiency, and side force for a...Elastic-plastic soil deformation and normal load for hard soil 20 4 6-0 0Sikan I i I I I" 347 Literature (1) Wong, J.Y.:"An improved method for predicting

  11. Cohesion-decohesion asymmetry in geckos

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Truskinovsky, L.

    2013-03-01

    Lizards and insects can strongly attach to walls and then detach applying negligible additional forces. We propose a simple mechanical model of this phenomenon which implies active muscle control. We show that the detachment force may depend not only on the properties of the adhesive units, but also on the elastic interaction among these units. By regulating the scale of such cooperative interaction, the organism can actively switch between two modes of adhesion: delocalized (pull off) and localized (peeling).

  12. SEPP-ZVS High Frequency Inverter Incorporating Auxiliary Switch

    NASA Astrophysics Data System (ADS)

    Ogiwara, Hiroyuki; Itoi, Misao; Nakaoka, Mutsuo

    This paper presents a novel circuit topology to attain ZVS operation of a high frequency inverter over a wide range output power regulation using a PWM control technique by connecting an auxiliary switch to the conventional single ended push-pull (SEPP) ZVS high frequency inverter. A switching current is injected into the main switches via the auxiliary switch only during the short period between its turn-on and off times to supply a current required for its ZVS operation.

  13. A gathering for Gardner

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-07-01

    Martin Gardner, who turns 94 this autumn, seems to have pulled off an astounding trick. Every other year hundreds of people gather to honour Gardner, who is the author of over 70 books and wrote the popular "Mathematical Games" column that appeared in Scientific American for a quarter of a century from 1956. What is astonishing is that the people come from a bewildering variety of professions and include jugglers, magicians, artists, puzzle-makers, logicians, computer scientists, pseudoscience debunkers and mathematicians.

  14. Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion

    PubMed Central

    Hui, Chung-Yuen; Liu, Tianshu; Salez, Thomas; Raphael, Elie; Jagota, Anand

    2015-01-01

    The surface tension of compliant materials such as gels provides resistance to deformation in addition to and sometimes surpassing that owing to elasticity. This paper studies how surface tension changes the contact mechanics of a small hard sphere indenting a soft elastic substrate. Previous studies have examined the special case where the external load is zero, so contact is driven by adhesion alone. Here, we tackle the much more complicated problem where, in addition to adhesion, deformation is driven by an indentation force. We present an exact solution based on small strain theory. The relation between indentation force (displacement) and contact radius is found to depend on a single dimensionless parameter: ω=σ(μR)−2/3((9π/4)Wad)−1/3, where σ and μ are the surface tension and shear modulus of the substrate, R is the sphere radius and Wad is the interfacial work of adhesion. Our theory reduces to the Johnson–Kendall–Roberts (JKR) theory and Young–Dupre equation in the limits of small and large ω, respectively, and compares well with existing experimental data. Our results show that, although surface tension can significantly affect the indentation force, the magnitude of the pull-off load in the partial wetting liquid-like limit is reduced only by one-third compared with the JKR limit and the pull-off behaviour is completely determined by ω. PMID:25792953

  15. Properties Data for Adhesion and Surface Chemistry of Aluminum: Sapphire-Aluminum, Single-Crystal Couple

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pohlchuck, Bobby; Whitle, Neville C.; Hector, Louis G., Jr.; Adams, Jim

    1998-01-01

    An investigation was conducted to examine the adhesion and surface chemistry of single-crystal aluminum in contact with single-crystal sapphire (alumina). Pull-off force (adhesion) measurements were conducted under loads of 0. I to I mN in a vacuum of 10(exp -1) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) at room temperature. An Auger electron spectroscopy analyzer incorporated directly into an adhesion-measuring vacuum system was primarily used to define the chemical nature of the surfaces before and after adhesion measurements. The surfaces were cleaned by argon ion sputtering. With a clean aluminum-clean -sapphire couple the mean value and standard deviation of pull-off forces required to separate the surfaces were 3015 and 298 micro-N, respectively. With a contaminated aluminum-clean sapphire couple these values were 231 and 241 micro-N. The presence of a contaminant film on the aluminum surface reduced adhesion by a factor of 13. Therefore, surfaces cleanliness, particularly aluminum cleanliness, played an important role in the adhesion of the aluminum-sapphire couples. Pressures on the order of 10(exp -8) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) maintained a clean aluminum surface for only a short time (less then 1 hr) but maintained a clean sapphire surface, once it was achieved, for a much longer time.

  16. Synthetic Adhesive Attachment Discs based on Spider Pyriform Silk Architecture

    NASA Astrophysics Data System (ADS)

    Jain, Dharamdeep; Sahni, Vasav; Dhinojwala, Ali

    2014-03-01

    Among the variety of silks produced by spiders, pyriform silk is used in conjunction with the dragline silk to attach webs to different surfaces. Cob weaver spiders employ different architectural patterns to utilize the pyriform silk and form attachment joints with each pattern having a characteristic adhesive performance. The staple pin architecture is a one of the strongest attachment designs employed by spiders to attach their webs. Here we use a synthetic approach to create the a similar patterned architecture attachment discs on aluminum substrate using thermoplastic polyurethane. Measurable pull off forces are generated when the synthetic discs are peeled off a surface. This innovative adhesive strategy can be a source of design in various biomedical applications. Financial Support from National Science Foundation.

  17. Microfluidic valve with cored glass microneedle for microinjection.

    PubMed

    Lee, Sanghoon; Jeong, Wonje; Beebe, David J

    2003-08-01

    In this paper, a new microinjection device was constructed by fusing a glass microneedle and a PDMS-based microvalve. The microneedle was fabricated via traditional micropipette pulling. The PDMS-based microvalve regulates the fluid flow in the microchannel and microneedle. The 'ON/OFF' operation of the valve was controlled by manually supplied pneumatic pressure. The valve membrane utilized a two level geometry to improve control at low flow rates. The relation between pressure and flow was measured and the results showed that very small volumes of fluid (>1 nl) could be controlled. The valve operation was investigated by monitoring the tip of the needle and pneumatic pressure simultaneously and it demonstrated very stable 'ON/OFF' operation to the pressure change.

  18. Impact of Footprint Diameter and Off-Nadir Pointing on the Precision of Canopy Height Estimates from Spaceborne Lidar

    NASA Technical Reports Server (NTRS)

    Pang, Yong; Lefskky, Michael; Sun, Guoqing; Ranson, Jon

    2011-01-01

    A spaceborne lidar mission could serve multiple scientific purposes including remote sensing of ecosystem structure, carbon storage, terrestrial topography and ice sheet monitoring. The measurement requirements of these different goals will require compromises in sensor design. Footprint diameters that would be larger than optimal for vegetation studies have been proposed. Some spaceborne lidar mission designs include the possibility that a lidar sensor would share a platform with another sensor, which might require off-nadir pointing at angles of up to 16 . To resolve multiple mission goals and sensor requirements, detailed knowledge of the sensitivity of sensor performance to these aspects of mission design is required. This research used a radiative transfer model to investigate the sensitivity of forest height estimates to footprint diameter, off-nadir pointing and their interaction over a range of forest canopy properties. An individual-based forest model was used to simulate stands of mixed conifer forest in the Tahoe National Forest (Northern California, USA) and stands of deciduous forests in the Bartlett Experimental Forest (New Hampshire, USA). Waveforms were simulated for stands generated by a forest succession model using footprint diameters of 20 m to 70 m. Off-nadir angles of 0 to 16 were considered for a 25 m diameter footprint diameter. Footprint diameters in the range of 25 m to 30 m were optimal for estimates of maximum forest height (R(sup 2) of 0.95 and RMSE of 3 m). As expected, the contribution of vegetation height to the vertical extent of the waveform decreased with larger footprints, while the contribution of terrain slope increased. Precision of estimates decreased with an increasing off-nadir pointing angle, but off-nadir pointing had less impact on height estimates in deciduous forests than in coniferous forests. When pointing off-nadir, the decrease in precision was dependent on local incidence angle (the angle between the off-nadir beam and a line normal to the terrain surface) which is dependent on the off-nadir pointing angle, terrain slope, and the difference between the laser pointing azimuth and terrain aspect; the effect was larger when the sensor was aligned with the terrain azimuth but when aspect and azimuth are opposed, there was virtually no effect on R2 or RMSE. A second effect of off-nadir pointing is that the laser beam will intersect individual crowns and the canopy as a whole from a different angle which had a distinct effect on the precision of lidar estimates of height, decreasing R2 and increasing RMSE, although the effect was most pronounced for coniferous crowns.

  19. 6. FLOOR 1; LOOKING WEST; SHOWS UNDERDRIFT SYSTEM, FOUR POSTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FLOOR 1; LOOKING WEST; SHOWS UNDERDRIFT SYSTEM, FOUR POSTS SUPPORT BRIDGE BEAM FOR FOOT BEARING OF UPRIGHT SHAFT, SPUR PINION STONE NUTS SLIDE DOWN STONE SPINDLE TO ENGAGE, CENTRIFUGAL GOVERNOR IS MOUNTED ON A SEPARATE SPINDLE DRIVEN BY A BELT FROM THE STONE SPINDLE; ALSO SHOWN ARE THE GREAT SPUR WHEEL AND A LAYSHAFT RUNNING OFF A CROWN WHEEL JUST ABOVE THE GREAT SPUR WHEEL - Gardiner Windmill, East Hampton, Suffolk County, NY

  20. Retention of cast crown copings cemented to implant abutments.

    PubMed

    Dudley, J E; Richards, L C; Abbott, J R

    2008-12-01

    The cementation of crowns to dental implant abutments is an accepted form of crown retention that requires consideration of the properties of available cements within the applied clinical context. Dental luting agents are exposed to a number of stressors that may reduce crown retention in vivo, not the least of which is occlusal loading. This study investigated the influence of compressive cyclic loading on the physical retention of cast crown copings cemented to implant abutments. Cast crown copings were cemented to Straumann synOcta titanium implant abutments with three different readily used and available cements. Specimens were placed in a humidifier, thermocycled and subjected to one of four quantities of compressive cyclic loading. The uniaxial tensile force required to remove the cast crown copings was then recorded. The mean retention values for crown copings cemented with Panavia-F cement were statistically significantly greater than both KetacCem and TempBond non-eugenol cements at each compressive cyclic loading quantity. KetacCem and TempBond non-eugenol cements produced relatively low mean retention values that were not statistically significantly different at each quantity of compressive cyclic loading. Compressive cyclic loading had a statistically significant effect on Panavia-F specimens alone, but increased loading quantities produced no further statistically significant difference in mean retention. Within the limitations of the current in vitro conditions employed in this study, the retention of cast crown copings cemented to Straumann synOcta implant abutments with a resin, glass ionomer and temporary cement was significantly affected by cement type but not compressive cyclic loading. Resin cement is the cement of choice for the definitive non-retrievable cementation of cast crown copings to Straumann synOcta implant abutments out of the three cements tested.

  1. Design of DC-contact RF MEMS switch with temperature stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junfeng; Nanjing Electronic Devices Institute, Nanjing, 210016; Li, Zhiqun, E-mail: zhiqunli@seu.edu.cn

    In order to improve the temperature stability of DC-contact RF MEMS switch, a thermal buckle-beam structure is implemented. The stability of the switch pull-in voltage versus temperature is not only improved, but also the impact of stress and stress gradient on the drive voltage is suppressed. Test results show that the switch pull-in voltage is less sensitive to temperature between -20 °C and 100 °C. The variable rate of pull-in voltage to temperature is about -120 mV/°C. The RF performance of the switch is stable, and the isolation is almost independent of temperature. After being annealed at 280 °C formore » 12 hours, our switch samples, which are suitable for packaging, have less than 1.5% change in the rate of pull-in voltage.« less

  2. Comparative study of two precision overdenture attachment designs.

    PubMed

    Cohen, B I; Pagnillo, M; Condos, S; Deutsch, A S

    1996-08-01

    In this study two precision overdenture attachment designs were tested for retention--a nylon overdenture cap system and a new cap and keeper system. The new cap and keeper system was designed to reduce the time involved in replacing a cap worn by the conditions of the oral environment. Six groups were tested at two different angles and retentive failure was examined at two different angles (26 and 0 degrees). Failure was measured in pounds with a force gauge over a 2000 pull cycle. The amount of force required to remove caps for two overdenture caps and a replaced cap for the metal keeper system was determined. Two dependent variables were absolute force and relative force. Repeated measures analysis of variance (RMANOVA) was used to compare the between-subjects effects of cap and angle, and the within-subjects effect of pull. The results indicated a significant difference between cap types (p < 0.0001) with respect to the relative force required to remove the cap. There was no effect of angle. For absolute force, RMANOVA revealed a highly significant interaction between pull and cap (p < 0.0001). Thus, the way that force changed over pulls depended on which cap was used (no effect of angle). For relative force, RMANOVA revealed no interaction between pull and cap, but there was a main effect of cap type (p < 0.0001) (no effect of angle). The nylon cap design required less force for removal but showed more consistency in the force required over the course of the 2000 pulls when compared with the keeper with cap insert. The results obtained in this study were consistent with similar studies in literature.

  3. Muscle Strength Endurance Testing Development Based Photo Transistor with Motion Sensor Ultrasonic

    NASA Astrophysics Data System (ADS)

    Rusdiana, A.

    2017-03-01

    The endurance of upper-body muscles is one of the most important physical fitness components. As technology develops, the process of test and assessment is now getting digital; for instance, there are a sensor stuck to the shoe (Foot Pod, Polar, and Sunto), Global Positioning System (GPS) and Differential Global Positioning System (DGPS), radar, photo finish, kinematic analysis, and photocells. Those devices aim to analyze the performances and fitness of athletes particularly the endurance of arm, chest, and shoulder muscles. In relation to that, this study attempt to create a software and a hardware for pull-ups through phototransistor with ultrasonic motion sensor. Components needed to develop this device consist of microcontroller MCS-51, photo transistor, light emitting diode, buzzer, ultrasonic sensor, and infrared sensor. The infrared sensor is put under the buffer while the ultrasonic sensor is stuck on the upper pole. The components are integrated with an LED or a laptop made using Visual Basic 12 software. The results show that pull-ups test using digital device (mean; 9.4 rep) is lower than using manual calculation (mean; 11.3 rep). This is due to the fact that digital test requires the test-takers to do pull-ups perfectly.

  4. The effect of preparation taper on the retention of cemented cast crowns under lateral fatigue loading.

    PubMed

    Cameron, Stephen M; Morris, W Jack; Keesee, Stephen M; Barsky, Todd B; Parker, M Harry

    2006-06-01

    Clinicians have used resistance form as a basis for determining guidelines for preparation design to ensure clinical success of cemented cast restorations. Disagreement on whether clinical success follows the on-off or linear nature of resistance form continues. The purpose of this study was to evaluate the number of cycles required to dislodge a cemented complete crown casting under a cyclic lateral load as a function of taper and to compare this relationship for the resistive and nonresistive ranges of taper. Three dies were milled from stainless steel at each of the following tapers: 4, 8, 12, 16, 20, 24, 28, and 32 degrees. A gold-palladium metal-ceramic alloy crown was fabricated for each die, cemented, and subjected to lateral cyclic loading until failure or 1,000,000 cycles. The limiting taper for the dies with their given height and base was 26.6 degrees. Dies with taper less than 26.6 degrees had resistance form, whereas dies with taper larger than 26.6 degrees did not. A linear regression (alpha=.05) was used to evaluate the relation of cycles at dislodgement to taper. The average number of cycles to crown dislodgement or completion for each taper (SD), in units of 10,000, was as follows: 4 degrees, 100 (0); 8 degrees, 100 (0); 12 degrees, 93.54 (16.56); 16 degrees, 61.33 (38.47); 20 degrees, 25.73 (34.67); 24 degrees, 4.33 (7.36); 28 degrees, 0.06 (0.08); and 32 degrees, 0.05 (0.09). The crowns in the resistive area less than 26.6 degrees that demonstrated failure showed a linear regression with a correlation coefficient of -0.995 between the average number of cycles to dislodge the crown and the taper. The slope was significantly different from zero (P=.0048), with a value of -7.58 and a standard error of 0.53. The number of cycles required to cause crown dislodgement was linear after 12 degrees in the resistive area and nearly zero for preparations in the nonresistive area. The limiting taper concept closely predicted the transition point where the slope of the graph of cycles to dislodgement as a function of taper abruptly changed.

  5. Experimental models for cancellous bone healing in the rat

    PubMed Central

    Bernhardsson, Magnus; Sandberg, Olof; Aspenberg, Per

    2015-01-01

    Background and purpose — Cancellous bone appears to heal by mechanisms different from shaft fracture healing. There is a paucity of animal models for fractures in cancellous bone, especially with mechanical evaluation. One proposed model consists of a screw in the proximal tibia of rodents, evaluated by pull-out testing. We evaluated this model in rats by comparing it to the healing of empty drill holes, in order to explain its relevance for fracture healing in cancellous bone. To determine the sensitivity to external influences, we also compared the response to drugs that influence bone healing. Methods — Mechanical fixation of the screws was measured by pull-out test and related to the density of the new bone formed around similar, but radiolucent, PMMA screws. The pull-out force was also related to the bone density in drill holes at various time points, as measured by microCT. Results — The initial bone formation was similar in drill holes and around the screw, and appeared to be reflected by the pull-out force. Both models responded similarly to alendronate or teriparatide (PTH). Later, the models became different as the bone that initially filled the drill hole was resorbed to restore the bone marrow cavity, whereas on the implant surface a thin layer of bone remained, making it change gradually from a trauma-related model to an implant fixation model. Interpretation — The similar initial bone formation in the different models suggests that pull-out testing in the screw model is relevant for assessment of metaphyseal bone healing. The subsequent remodeling would not be of clinical relevance in either model. PMID:26200395

  6. Linking ice accretion and crown structure: towards a model of the effect of freezing rain on tree canopies.

    PubMed

    Nock, Charles A; Lecigne, Bastien; Taugourdeau, Olivier; Greene, David F; Dauzat, Jean; Delagrange, Sylvain; Messier, Christian

    2016-06-01

    Despite a longstanding interest in variation in tree species vulnerability to ice storm damage, quantitative analyses of the influence of crown structure on within-crown variation in ice accretion are rare. In particular, the effect of prior interception by higher branches on lower branch accumulation remains unstudied. The aim of this study was to test the hypothesis that intra-crown ice accretion can be predicted by a measure of the degree of sheltering by neighbouring branches. Freezing rain was artificially applied to Acer platanoides L., and in situ branch-ice thickness was measured directly and from LiDAR point clouds. Two models of freezing rain interception were developed: 'IceCube', which uses point clouds to relate ice accretion to a voxel-based index (sheltering factor; SF) of the sheltering effect of branch elements above a measurement point; and 'IceTree', a simulation model for in silico evaluation of the interception pattern of freezing rain in virtual tree crowns. Intra-crown radial ice accretion varied strongly, declining from the tips to the bases of branches and from the top to the base of the crown. SF for branches varied strongly within the crown, and differences among branches were consistent for a range of model parameters. Intra-crown variation in ice accretion on branches was related to SF (R(2) = 0·46), with in silico results from IceTree supporting empirical relationships from IceCube. Empirical results and simulations confirmed a key role for crown architecture in determining intra-crown patterns of ice accretion. As suspected, the concentration of freezing rain droplets is attenuated by passage through the upper crown, and thus higher branches accumulate more ice than lower branches. This is the first step in developing a model that can provide a quantitative basis for investigating intra-crown and inter-specific variation in freezing rain damage. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. [An in vitro study of the fracture strength of tooth preparations for Empress 2 veneers and crowns and mandibular incisors restored with Empress 2 veneers and crowns].

    PubMed

    Wei, Xue; Li, Yan

    2009-12-01

    To compare the fracture resistance of mandibular incisors' preparations for veneers and crowns, mandibular incisors restored with Empress 2 veneers and crowns. 50 human mandibular incisors were randomly divided into five groups. Each group consisted of ten teeth and the treatment obtained as follows: A, tooth preparations for veneers; B, tooth preparations for crowns; C, teeth restored with veneers; D, teeth restored with crowns; E, untreated group. The teeth received standardized preparation and the restorations were manufactured with Empress 2 system and cemented with resin luting agent. The fracture resistances of teeth were measured by Instron universal testing machine and statistically analyzed with one-way ANOVA. The fracture resistances of A, B, C, D, E were (576.11 +/- 91.53), (204.13 +/- 85.88), (451.50 +/- 116.81), (386.16 +/- 117.75) and (566.05 +/- 121.37) N, respectively. The statistical analysis demonstrated significant differences between five groups. There were no significant differences between group A and E, group C and D. Tooth preparations for veneers did not significantly reduce the fracture resistance of mandibular incisor. The fracture resistance of teeth restored with Empress 2 veneers and crowns did not significantly differ from each other.

  8. Clinical evaluation of fiber-reinforced composite crowns in pulp-treated primary molars: 12-month results

    PubMed Central

    Mohammadzadeh, Zahra; Parisay, Iman; Mehrabkhani, Maryam; Madani, Azam Sadat; Mazhari, Fatemeh

    2016-01-01

    Objective: The aim of this study was to evaluate the clinical performance of tooth-colored fiber-reinforced composite (FRC) crowns in pulp-treated second primary mandibular teeth. Materials and Methods: This split-mouth randomized, clinical trial performed on 67 children between 3 and 6 years with two primary mandibular second molars requiring pulp treatment. After pulp therapy, the teeth were randomly assigned to stainless steel crown (SSC) or FRC crown groups. Modified United States Public Health Service criteria were used to evaluate marginal integrity, marginal discoloration, and secondary caries in FRC crowns at intervals of 3, 6, and 12 months. Retention rate and gingival health were also compared between the two groups. The data were analyzed using Friedman, Cochran, and McNemar's tests at a significance level of 0.05. Results: Intact marginal integrity in FRC crowns at 3, 6, and 12 months were 93.2%, 94.8%, and 94.2%, respectively. Marginal discoloration and secondary caries were not found at any of the FRC crowns. The retention rates of the FRC crowns were 100%, 98.3%, and 89.7% at 3, 6 and 12 months, respectively, whereas all the SSCs were found to be present and intact after 12 months (P = 0.016). There was no statistically significant difference between the two groups in gingival health. Conclusion: According to the results of this study, it seems that when esthetics is a concern, in cooperative patients with good oral hygiene, FRC crowns can be considered as a valuable procedure. PMID:28042269

  9. Cross-Validation of a Short Form of the Marlowe-Crowne Social Desirability Scale.

    ERIC Educational Resources Information Center

    Zook, Avery, II; Sipps, Gary J.

    1985-01-01

    Presents a cross-validation of Reynolds' short form of the Marlowe-Crowne Social Desirability Scale (N=233). Researchers administered 13 items as a separate entity, calculated Cronbach's Alpha for each sex, and computed test-retest correlation for one group. Concluded that the short form is a viable alternative. (Author/NRB)

  10. Mapping the understorey of deciduous woodland from leaf-on and leaf-off airborne LiDAR data: A case study in lowland Britain

    NASA Astrophysics Data System (ADS)

    Hill, R. A.; Broughton, R. K.

    This study examines the understorey information present in discrete-return LiDAR (Light Detection And Ranging) data acquired for temperate deciduous woodland in mid summer (leaf-on) and in early spring when the understorey had mostly leafed out, but the overstorey had only just begun budburst (referred to here as leaf-off). The woodland is ancient, semi-natural broadleaf and has a heterogeneous structure with a mostly closed canopy overstorey and a patchy understorey layer. In this study, the understorey was defined as suppressed trees and shrubs growing beneath an overstorey canopy. Forest mensuration data for the study site were examined to identify thresholds (taking the 95th percentile) for crown depth as a percentage of crown top height for the six overstorey tree species present. These data were used in association with a digital tree species map and leaf-on first return LiDAR data, to identify the possible depth of space available below the overstorey canopy in which an understorey layer could exist. The leaf-off last return LiDAR data were then examined to identify whether they contained information on where this space was occupied by suppressed trees or shrubs forming an understorey. Thus, understorey was mapped from the leaf-off last return data where the height was below the predicted crown depth. A height threshold of 1 m was applied to separate the ground vegetation layer from the understorey. The derived understorey model formed a discontinuous layer covering 46.4 ha (or 31% of the study site), with an average height of 2.64 m and a 77% correspondence with field data on the presence/absence of suppressed trees and shrubs (kappa 0.53). Because the first return data in leaf-on and leaf-off conditions were very similar (differing by an average of just 0.87 m), it was also possible to map the understorey layer using leaf-off data alone. The resultant understorey model covered 39.4 ha (or 26% of the study site), and had a 72% correspondence with field data on the presence/absence of suppressed trees and shrubs (kappa 0.45). This moderate reduction in the area of understorey mapped and associated accuracy came with a saving of half of all data acquisition and pre-processing costs. Whilst the understorey modelling presented here undoubtedly benefited from the specific timing of LiDAR data acquisition and from ancillary data available for the study site, the conclusions have resonance beyond this case study. Given that the understorey and overstorey canopies in lowland broadleaf woodland can merge into one another, the modelling of understorey information from discrete-return LiDAR data must consider overstorey canopy characteristics and laser penetration through the overstorey. It is not adequate in such circumstances to apply simple height thresholds to LiDAR height frequency distributions, as this is unlikely to distinguish whether a return has backscattered from the lower parts of the overstorey canopy or from near the surface of the understorey canopy.

  11. 49 CFR 572.125 - Upper and lower torso assemblies and torso flexion test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of the dummy, the pull cable, and the load cell as shown in Figure N5. (7) Apply a tension force in the midsagittal plane to the pull cable as shown in Figure N5 at any upper torso deflection rate... determine the stiffness effects of the lumbar spine (drawing 127-3002), including cable (drawing 127-8095...

  12. Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions.

    PubMed

    Kalman, Dennis P; Merrill, Richard L; Wagner, Norman J; Wetzel, Eric D

    2009-11-01

    The penetration behavior of Kevlar fabric intercalated with dry particles and shear thickening fluids (STF), highly concentrated fluid-particle suspensions, is presented. In particular, the role of particle hardness is explored by comparing fabric treatments containing SiO(2) particles, which are significantly harder than Kevlar, to treatments containing softer poly(methyl methacrylate) (PMMA) particles. The fabric testing includes yarn pull-out, quasi-static spike puncture, and ballistic penetration resistance, performed on single fabric layers. It was found that both dry particle and STF treatments resulted in improvements in fabric properties relative to neat or poly(ethylene glycol) (PEG) treated fabrics. On comparison of treatments with different particle hardness, the SiO(2) materials performed better in all tests than comparable PMMA materials, although the SiO(2) treatments caused yarn failure in pull-out testing, reducing the total pull-out energy. In addition, resistance to yarn pull-out was found to be substantially higher for STF-treated fabrics than for dry particle treated fabrics. However, both dry particle addition and STF treatments exhibited comparable enhancements in puncture and ballistic resistance. These observations suggest that viscous stress transfer, friction, and physical entrainment of hard particles into filaments contribute to the demonstrated improvements in the properties of protective fabrics treated with shear thickening fluids.

  13. Octopus-like suction cups: from natural to artificial solutions.

    PubMed

    Tramacere, F; Follador, M; Pugno, N M; Mazzolai, B

    2015-05-13

    Octopus suckers are able to attach to all nonporous surfaces and generate a very strong attachment force. The well-known attachment features of this animal result from the softness of the sucker tissues and the surface morphology of the portion of the sucker that is in contact with objects or substrates. Unlike artificial suction cups, octopus suckers are characterized by a series of radial grooves that increase the area subjected to pressure reduction during attachment. In this study, we constructed artificial suction cups with different surface geometries and tested their attachment performances using a pull-off setup. First, smooth suction cups were obtained for casting; then, sucker surfaces were engraved with a laser cutter. As expected, for all the tested cases, the engraving treatment enhanced the attachment performance of the elastomeric suction cups compared with that of the smooth versions. Moreover, the results indicated that the surface geometry with the best attachment performance was the geometry most similar to octopus sucker morphology. The results obtained in this work can be utilized to design artificial suction cups with higher wet attachment performance.

  14. Collecting Currents with Water Turbines

    NASA Astrophysics Data System (ADS)

    Allen, J.; Allen, S.

    2017-12-01

    Our science poster is inspired by Florida Atlantic University's recent program to develop three types of renewable energy. They are using water turbines and the Gulf Stream Current to produce a renewable energy source. Wave, tidal and current driven energy. Our poster is called "Collecting Currents with Water Turbines". In our science poster, the purpose was to see which turbine design could produce the most power. We tested three different variables, the number of blades (four, six, and eight), the material of the blades and the shape of the blades. To test which number of blades produced the most power we cut slits into a cork. We used plastic from a soda bottle to make the blades and then we put the blades in the cork to make the turbines. We observed each blade and how much time it took for the water turbines to pull up 5 pennies. Currently water turbines are used in dams to make hydroelectric energy. But with FAU we could understand how to harness the Gulf Stream current off Florida's coast we could soon have new forms of renewable energy.

  15. Is There a Correlation Between Tensile Strength and Retrievability of Cemented Implant-Retained Crowns Using Artificial Aging?

    PubMed

    Mehl, Christian; Ali, Shurouk; El Bahra, Shadi; Harder, Sönke; Vollrath, Oliver; Kern, Matthias

    2016-01-01

    The main goal of this in-vitro study was to evaluate whether tensile strength and retrievability of cemented implant-retained crowns correlate when using artificial aging. A total of 128 crowns were fabricated from a cobalt-chromium alloy for 128 tapered titanium abutments (6 degrees taper, 4.3 mm diameter, 4 mm length, Camlog). The crowns were cemented with glass-ionomer (Ketac Cem, 3M) or resin cements (Multilink Implant, Telio CS Cem [Ivoclar Vivadent], Retrieve [Parkell]). Multilink Implant was used without priming. The experimental groups were subjected to either 37,500 thermal cycles between 5°C and 55°C, 1,200,000 chewing cycles, or a combination of both. Control groups were stored for 10 days in deionized water. The crowns were removed with a universal testing machine or a clinically used removal device (Coronaflex, KaVo). Data were statistically analyzed using nonparametrical tests. Retention values were recorded between 31 N and 362 N. Telio CS Cem showed the lowest retention values, followed by Retrieve, Ketac Cem, and Multilink Implant (P≤.0001). The number of removal attempts with the Coronaflex were not significantly different between the cements (P>.05). Thermal cycling and chewing simulation significantly influenced the retrieval of Retrieve Telio CS Cem, and Ketac Cem specimens (P≤.05). Only for Multilink Implant and Telio CS Cem correlations between removal with the universal testing machine and the Coronaflex could be revealed (P≤.0001). Ketac Cem and Multilink Implant (without silane) can be used for a semipermanent cementation. Retrieve and Telio CS Cem are recommendable for a temporary cementation.

  16. Small-scale field evaluation of push-pull system against early- and outdoor-biting malaria mosquitoes in an area of high pyrethroid resistance in Tanzania

    PubMed Central

    Mmbando, Arnold S.; Ngowo, Halfan S.; Kilalangongono, Masoud; Abbas, Said; Matowo, Nancy S.; Moore, Sarah J.; Okumu, Fredros O.

    2017-01-01

    Background: Despite high coverage of indoor interventions like insecticide-treated nets, mosquito-borne infections persist, partly because of outdoor-biting, early-biting and insecticide-resistant vectors. Push-pull systems, where mosquitoes are repelled from humans and attracted to nearby lethal targets, may constitute effective complementary interventions. Methods: A partially randomized cross-over design was used to test efficacy of push-pull in four experimental huts and four local houses, in an area with high pyrethroid resistance in Tanzania. The push-pull system consisted of 1.1% or 2.2% w/v transfluthrin repellent dispensers and an outdoor lure-and-kill device (odour-baited mosquito landing box). Matching controls were set up without push-pull. Adult male volunteers collected mosquitoes attempting to bite them outdoors, but collections were also done indoors using exit traps in experimental huts and by volunteers in the local houses. The collections were done hourly (1830hrs-0730hrs) and mosquito catches compared between push-pull and controls. An. gambiae s.l. and An. funestus s.l. were assessed by PCR to identify sibling species, and ELISA to detect Plasmodium falciparum and blood meal sources. Results: Push-pull in experimental huts reduced outdoor-biting for An. arabiensis and Mansonia species by 30% and 41.5% respectively. However, the reductions were marginal and insignificant for An. funestus (12.2%; p>0.05) and Culex (5%; p>0.05). Highest protection against all species occurred before 2200hrs. There was no significant difference in number of mosquitoes inside exit traps in huts with or without push-pull. In local households, push-pull significantly reduced indoor and outdoor-biting of An. arabiensis by 48% and 25% respectively, but had no effect on other species. Conclusion: This push-pull system offered modest protection against outdoor-biting An. arabiensis, without increasing indoor mosquito densities. Additional experimentation is required to assess how transfluthrin-based products affect mosquito blood-feeding and mortality in push-pull contexts. This approach, if optimised, could potentially complement existing malaria interventions even in areas with high pyrethroid resistance. PMID:29568808

  17. Fracture resistance of different implant abutments supporting 
all-ceramic single crowns after aging.

    PubMed

    Stimmelmayr, Michael; Heiß, Philipp; Erdelt, Kurt; Schweiger, Josef; Beuer, Florian

    To test the mechanical properties of three different restorative materials for implant abutments supporting all-ceramic single crowns. Thirty implants with butt-joint connections were distributed into three test groups: Group A with 10 one-piece zirconia abutments, Group U with 10 titanium abutments, and Group T with 10 titanium-zirconia hybrid abutments. Monolithic zirconia single crowns were cemented and artificially aged. The crowns were loaded at a 30-degree angle in a universal testing machine until fracture or bending. Additionally, after removal of the restorations, the implant-abutment interface of the fixtures was inspected using a scanning electron microscope (SEM). In Group A, the abutments failed on average at 336.78 N, in Group U at 1000.12 N, and in Group T at 1296.55 N. The mean values between Groups T and U (P = 0.009), and between Group A and Groups T and U (P < 0.001) were significantly different. The abutments in Group A failed early due to fractures of the internal parts and parts close to the implant neck. In Groups T and U, failures occurred due to bending of the implant neck. This experimental study proves that hybrid and titanium abutments have similar mechanical properties. One-piece abutments made of zirconia showed significantly lower fracture resistance.

  18. Design and testing of an electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Anderson, William J.

    1986-01-01

    Hostile environments such as the hard vacuum of space, and exposure to water or caustic fluids have fostered the development of devices which allow mechanical rotary feed throughs with positive sealing without the use of conventional dynamic seals. One such device is an electromagnetic coupling which transfers motion across a hermetic seal by means of a rotating magnetic field. Static pull-out torque and dynamic heat build-up and pull-out torque tests of a synchronous reluctance homopolar coupling are reported herein. Coupling efficiencies are estimated for a range of speeds and torques.

  19. Needle-Age Related Variability in Nitrogen, Mobile Carbohydrates, and δ13C within Pinus koraiensis Tree Crowns

    PubMed Central

    Yan, Cai-Feng; Han, Shi-Jie; Zhou, Yu-Mei; Wang, Cun-Guo; Dai, Guan-Hua; Xiao, Wen-Fa; Li, Mai-He

    2012-01-01

    For both ecologists and physiologists, foliar physioecology as a function of spatially and temporally variable environmental factors such as sunlight exposure within a tree crown is important for understanding whole tree physiology and for predicting ecosystem carbon balance and productivity. Hence, we studied concentrations of nitrogen (N), non-structural carbohydrates (NSC = soluble sugars + starch), and δ13C in different-aged needles within Pinus koraiensis tree crowns, to understand the needle age- and crown position-related physiology, in order to test the hypothesis that concentrations of N, NSC, and δ13C are needle-age and crown position dependent (more light, more photosynthesis affecting N, NSC, and δ13C), and to develop an accurate sampling strategy. The present study indicated that the 1-yr-old needles had significantly higher concentration levels of mobile carbohydrates (both on a mass and an area basis) and Narea (on an area basis), as well as NSC-N ratios, but significantly lower levels of Nmass (on a mass basis) concentration and specific leaf area (SLA), compared to the current-year needles. Azimuthal (south-facing vs. north-facing crown side) effects were found to be significant on starch [both on a mass (STmass) and an area basis (STarea)], δ13C values, and Narea, with higher levels in needles on the S-facing crown side than the N-facing crown side. Needle Nmass concentrations significantly decreased but needle STmass, STarea, and δ13C values significantly increased with increasing vertical crown levels. Our results suggest that the sun-exposed crown position related to photosynthetic activity and water availability affects starch accumulation and carbon isotope discrimination. Needle age associated with physiological activity plays an important role in determining carbon and nitrogen physiology. The present study indicates that across-scale sampling needs to carefully select tissue samples with equal age from a comparable crown position. PMID:22493732

  20. Effect of Crystallization Firing on Marginal Gap of CAD/CAM Fabricated Lithium Disilicate Crowns.

    PubMed

    Gold, Steven A; Ferracane, Jack L; da Costa, Juliana

    2018-01-01

    To evaluate the marginal gaps of CAD/CAM (CEREC 3) produced crowns made from leucite-reinforced glass-ceramic (IPS Empress CAD) blocks (LG), and lithium-disilicate (IPS e.max CAD) blocks before (LD-B), and after (LD-A) crystallization firing. A human molar tooth (#19) was mounted with adjacent teeth on a typodont and prepared for a full-coverage ceramic crown. The typodont was assembled in the mannequin head to simulate clinical conditions. After tooth preparation 15 individual optical impressions were taken by the same operator using titanium dioxide powder and a CEREC 3 camera per manufacturer's instructions. One operator designed and machined the crowns in leucite-reinforced glass-ceramic blocks (n = 5) and lithium-disilicate blocks (n = 10) using the CEREC 3 system. The crowns were rigidly seated on the prepared tooth, and marginal gaps (μm) were measured with an optical microscope (500×) at 12 points, 3 on each of the M, B, D, and L surfaces of the leucite-reinforced glass-ceramic crowns and the lithium-disilicate crowns before and after crystallization firing. Results were analyzed by two-way ANOVA followed by a Tukey's post hoc multiple comparison test (α = 0.05). The overall mean marginal gaps (μm) for the crowns evaluated were: LG = 49.2 ± 5.5, LD-B = 42.9 ± 12.2, and LD-A = 57.2 ± 16.0. The marginal gaps for LG and LD-B were not significantly different, but both were significantly less than for LD-A. The type of ceramic material did not affect the marginal gap of CAD/CAM crowns. The crystallization firing process required for lithium-disilicate crowns resulted in a significant increase in marginal gap size, likely due to shrinkage of the ceramic during the crystallization process. The marginal gap of CAD/CAM-fabricated lithium disilicate crowns increases following crystallization firing. The marginal gap still remains within clinically acceptable parameters. © 2017 by the American College of Prosthodontists.

  1. New devices for measuring forces on the kayak foot bar and on the seat during flat-water kayak paddling: a technical report.

    PubMed

    Nilsson, Johnny E; Rosdahl, Hans G

    2014-03-01

    The purpose was to develop and validate portable force-measurement devices for recording push and pull forces applied by each foot to the foot bar of a kayak and the horizontal force at the seat. A foot plate on a single-point force transducer mounted on the kayak foot bar underneath each foot allowed the push and pull forces to be recorded. Two metal frames interconnected with 4 linear ball bearings, and a force transducer allowed recording of horizontal seat force. The foot-bar-force device was calibrated by loading each foot plate with weights in the push-pull direction perpendicular to the foot plate surface, while the seat-force device was calibrated to horizontal forces with and without weights on the seat. A strong linearity (r2 = .99-1.0) was found between transducer output signal and load force in the push and pull directions for both foot-bar transducers perpendicular to the foot plate and the seat-force-measuring device. Reliability of both devices was tested by means of a test-retest design. The coefficient of variation (CV) for foot-bar push and pull forces ranged from 0.1% to 1.1%, and the CV for the seat forces varied from 0.6% to 2.2%. The current study opens up a field for new investigations of the forces generated in the kayak and ways to optimize kayak-paddling performance.

  2. Simplified cementation of lithium disilicate crowns: Retention with various adhesive resin cement combinations.

    PubMed

    Johnson, Glen H; Lepe, Xavier; Patterson, Amanda; Schäfer, Oliver

    2017-09-27

    A composite resin cement and matching self-etch adhesive was developed to simplify the dependable retention of lithium disilicate crowns. The efficacy of this new system is unknown. The purpose of this in vitro study was to determine whether lithium disilicate crowns cemented with a new composite resin and adhesive system and 2 other popular systems provide clinically acceptable crown retention after long-term aging with monthly thermocycling. Extracted human molars were prepared with a flat occlusal surface, 20-degree convergence, and 4 mm axial length. The axio-occlusal line angle was slightly rounded. The preparation surface area was determined by optical scanning and the analysis of the standard tessellation language (STL) files. The specimens were distributed into 3 cement groups (n=12) to obtain equal mean surface areas. Lithium disilicate crowns (IPS e.max Press) were fabricated for each preparation, etched with 9.5% hydrofluoric acid for 15 seconds, and cleaned. Cement systems were RelyX Ultimate with Scotch Bond Universal (3M Dental Products); Monobond S, Multilink Automix with Multilink Primer A and B (Ivoclar Vivadent AG); and NX3 Nexus with OptiBond XTR (Kerr Corp). Each adhesive provided self-etching of the dentin. Before cementation, the prepared specimens were stored in 35°C water. A force of 196 N was used to cement the crowns, and the specimens were polymerized in a 35°C oven at 100% humidity. After 24 hours of storage at 100% humidity, the cemented crowns were thermocycled (5°C to 55°C) for 5000 cycles each month for 6 months. The crowns were removed axially at 0.5 mm/min. The removal force was recorded and the dislodgement stress calculated using the preparation surface area. The type of cement failure was recorded, and the data were analyzed by 1-way ANOVA and the chi-square test (α=.05) after the equality of variances had been assessed with the Levene test. The Levene test was nonsignificant (P=.936). The ANOVA revealed the mean removal stresses, and forces did not differ for RelyX Ultimate with Scotchbond Universal (3.9 MPa; 522 N) and Multilink Automix with Multilink Primer (3.7 MPa; 511 N); both differed significantly (P=.022) from the mean for NX3 Nexus with OptiBond XTR (2.9 MPa; 387 N). For all 3 cements, the modes of failure showed cement principally on the crown intaglio, and the chi-square analysis was nonsignificant (P=.601). IPS e.max Press (lithium disilicate) crowns were well retained (2.9-3.9 MPa; 387-522 N) by the 3 cement-adhesive combinations after 6 months of aging with monthly thermocycling. These results can serve as a basis for cement selection for this type of crown because the values significantly exceeded those for zinc phosphate. Cements using their matched dentin bonding agent as the ceramic primer were as successful as cements with a separate silane coupling agent. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. In vitro analysis of the fracture resistance of CAD-CAM monolithic zirconia molar crowns with different occlusal thickness.

    PubMed

    Sorrentino, Roberto; Triulzio, Clementina; Tricarico, Maria Gabriella; Bonadeo, Giovanni; Gherlone, Enrico Felice; Ferrari, Marco

    2016-08-01

    To compare the fracture resistance and mode of failure of CAD-CAM monolithic zirconia crowns with different occlusal thickness. Forty CAD-CAM monolithic zirconia crowns with different occlusal thickness were randomly distributed into 4 experimental groups: 2.0mm (group 1), 1.5mm (group 2), 1.0mm (group 3) and 0.5mm (group 4). The restorations were cemented onto human molars with a self-adhesive resin cement. The specimens were loaded until fracture; the fracture resistance and mode of failure were recorded. The data were statistically analyzed with the one-way ANOVA followed by the Fisher׳s Exact test with Bonferroni׳s correction (p=0.05). The fracture resistance values of all the specimens exceeded the maximum physiological occlusal loads in molar regions. All the crowns showed cohesive microcracks of the zirconia core; only 1 crown with a thickness of 0.5mm was interested by a complete fracture. The occlusal thickness of CAD-CAM monolithic zirconia crowns did not influence either the fracture resistance and the mode of failure of the restorations; the occlusal thickness of CAD-CAM monolithic zirconia crowns can be reduced up to a lower bound of 0.5mm keeping a sufficient strength to withstand occlusal loads; CAD-CAM monolithic zirconia crowns showed sufficient fracture resistance to be used in molar regions, even in a thin configuration (0.5mm). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Influence of cement film thickness on the retention of implant-retained crowns.

    PubMed

    Mehl, Christian; Harder, Sönke; Steiner, Martin; Vollrath, Oliver; Kern, Matthias

    2013-12-01

    The main goal of this study was to establish a new, high precision procedure to evaluate the influence of cement film thickness on the retention of cemented implant-retained crowns. Ninety-six tapered titanium abutments (6° taper, 4.3 mm diameter, Camlog) were shortened to 4 mm. Computer-aided design was used to design the crowns, and selective laser sintering, using a cobalt-chromium alloy, was used to produce the crowns. This method used a focused high-energy laser beam to fuse a localized region of metal powder to build up the crowns gradually. Before cementing, preset cement film thicknesses of 15, 50, 80, or 110 μm were established. Glass ionomer, polycarboxylate, or resin cements were used for cementation. After 3 days storage in demineralized water, the retention of the crowns was measured in tension using a universal testing machine. The cement film thicknesses could be achieved with a high level of precision. Interactions between the factors cement and cement film thickness could be found (p ≤ 0.001). For all cements, crown retention decreased significantly between a cement film thickness of 15 and 50 μm (p ≤ 0.001). At 15 μm cement film thickness, the resin cement was the most retentive cement, followed by the polycarboxylate and then the glass ionomer cement (p ≤ 0.05). The results suggest that cement film thickness has an influence on the retentive strength of cemented implant-retained crowns. © 2013 by the American College of Prosthodontists.

  5. Advancing breeding phenology does not affect incubation schedules in chestnut-crowned babblers: Opposing effects of temperature and wind.

    PubMed

    Capp, Elliot; Liebl, Andrea L; Cones, Alexandra G; Russell, Andrew F

    2018-01-01

    Projecting population responses to climate change requires an understanding of climatic impacts on key components of reproduction. Here, we investigate the associations among breeding phenology, climate and incubation schedules in the chestnut-crowned babbler ( Pomatostomus ruficeps ), a 50 g passerine with female-only, intermittent incubation that typically breeds from late winter (July) to early summer (November). During daylight hours, breeding females spent an average of 33 min on the nest incubating (hereafter on-bouts) followed by 24-min foraging (hereafter off-bouts), leading to an average daytime nest attentiveness of 60%. Nest attentiveness was 25% shorter than expected from allometric calculations, largely because off-bout durations were double the expected value for a species with 16 g clutches (4 eggs × 4 g/egg). On-bout durations and daily attentiveness were both negatively related to ambient temperature, presumably because increasing temperatures allowed more time to be allocated to foraging with reduced detriment to egg cooling. By contrast, on-bout durations were positively associated with wind speed, in this case because increasing wind speed exacerbated egg cooling during off-bouts. Despite an average temperature change of 12°C across the breeding season, breeding phenology had no effect on incubation schedules. This surprising result arose because of a positive relationship between temperature and wind speed across the breeding season: Any benefit of increasing temperatures was canceled by apparently detrimental consequences of increasing wind speed on egg cooling. Our results indicate that a greater appreciation for the associations among climatic variables and their independent effects on reproductive investment are necessary to understand the effects of changing climates on breeding phenology.

  6. Tooth brush abrasion of paint-on resins for shade modification of crown and bridge resins.

    PubMed

    Fujii, Koichi; Ban, Seiji; McCabe, John F

    2003-09-01

    The purpose of this study was to evaluate the surface roughness and resistance to toothbrush abrasion of three experimental paint-on composite resins developed for the shade modification of crown and bridge resins. The paint-on resins had less filler volume fraction than restorative composites or the crown and bridge resins and consequently were of low viscosity. The maximum surface roughness (Rmax) and the maximum depth loss by abrasion for the paint-on resins following 40,000 cycles of brushing ranged from 2.45 to 4.07 microm and 8.63 to 13.67 microm, respectively. Rmax values were 37.7-67.5% lower than that for the crown and bridge resin subjected to the same test. Wear depth was 19.9-49.4% lower than for the crown and bridge resin. These results suggest that the paint-on resins are expected to have adequate resistance to toothbrush abrasion and may therefore be suitable for clinical use.

  7. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought

    PubMed Central

    Carnicer, Jofre; Coll, Marta; Ninyerola, Miquel; Pons, Xavier; Sánchez, Gerardo; Peñuelas, Josep

    2011-01-01

    Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community-wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web responses. Here we report a generalized increase in crown defoliation in southern European forests occurring during 1987–2007. Forest tree species have consistently and significantly altered their crown leaf structures, with increased percentages of defoliation in the drier parts of their distributions in response to increased water deficit. We assessed the demographic responses of trees associated with increased defoliation in southern European forests, specifically in the Iberian Peninsula region. We found that defoliation trends are paralleled by significant increases in tree mortality rates in drier areas that are related to tree density and temperature effects. Furthermore, we show that severe drought impacts are associated with sudden changes in insect and fungal defoliation dynamics, creating long-term disruptive effects of drought on food webs. Our results reveal a complex geographical mosaic of species-specific responses to climate change–driven drought pressures on the Iberian Peninsula, with an overwhelmingly predominant trend toward increased drought damage. PMID:21220333

  8. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought.

    PubMed

    Carnicer, Jofre; Coll, Marta; Ninyerola, Miquel; Pons, Xavier; Sánchez, Gerardo; Peñuelas, Josep

    2011-01-25

    Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community-wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web responses. Here we report a generalized increase in crown defoliation in southern European forests occurring during 1987-2007. Forest tree species have consistently and significantly altered their crown leaf structures, with increased percentages of defoliation in the drier parts of their distributions in response to increased water deficit. We assessed the demographic responses of trees associated with increased defoliation in southern European forests, specifically in the Iberian Peninsula region. We found that defoliation trends are paralleled by significant increases in tree mortality rates in drier areas that are related to tree density and temperature effects. Furthermore, we show that severe drought impacts are associated with sudden changes in insect and fungal defoliation dynamics, creating long-term disruptive effects of drought on food webs. Our results reveal a complex geographical mosaic of species-specific responses to climate change-driven drought pressures on the Iberian Peninsula, with an overwhelmingly predominant trend toward increased drought damage.

  9. Pulling the rug out from under California: Seismic images of the Mendocino Triple Junction region

    USGS Publications Warehouse

    Tréhu, Anne M.

    1995-01-01

    In 1993 and 1994 a network of large-aperture seismic profiles was collected to image the crustal and upper-mantle structure beneath northern California and the adjacent continental margin. The data include approximately 650 km of onshore seismic refraction/reflection data, 2000 km of off-shore multichannel seismic (MCS) reflection data, and simultaneous onshore and offshore recording of the MCS airgun source to yield large-aperture data. Scientists from more than 12 institutions were involved in data acquisition.

  10. KSC-04pd2092

    NASA Image and Video Library

    2004-10-04

    KENNEDY SPACE CENTER, FLA. - The Vehicle Assembly Building at KSC sports a patchwork façade after the holes created by recent hurricanes were covered with corrugated steel. The VAB lost 820 panels from the south wall during Hurricane Frances, and 25 additional panels pulled off the east wall by Hurricane Jeanne. Employees of Met-Con, a subcontractor in Cocoa, Fla., worked night and day on scaffolds hung from the 525-foot-high roof to close the holes and enable the facility to return to normal operations.

  11. Astronaut Charles Conrad poses in shower facility in crew quarters

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., Skylab 2 commander, smiles for the camera after a hot bath in the shower facility in the crew quarters of the Orbital Workshop of the Skylab 2 space station cluster in Earth orbit. In deploying the shower facility the shower curtain is pulled up from the floor and attached to the ceiling. The water comes through a push-button shower head attached to a flexible hose. Water is drawn off by a vacuum system.

  12. Graphene fixed-end beam arrays based on mechanical exfoliation

    NASA Astrophysics Data System (ADS)

    Li, Peng; You, Zheng; Haugstad, Greg; Cui, Tianhong

    2011-06-01

    A low-cost mechanical exfoliation method is presented to transfer graphite to graphene for free-standing beam arrays. Nickel film or photoresist is used to peel off and transfer patterned single-layer or multilayer graphene onto substrates with macroscopic continuity. Free-standing graphene beam arrays are fabricated on both silicon and polymer substrates. Their mechanical properties are studied by atomic force microscopy. Finally, a graphene based radio frequency switch is demonstrated, with its pull-in voltage and graphene-silicon junction investigated.

  13. Improved All-Terrain Suspension System

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.

    1994-01-01

    Redesigned suspension system for all-terrain vehicle exhibits enhanced ability to negotiate sand and rocks. Improved six-wheel suspension system includes only two links on each side. Bogie tends to pull rear wheels with it as it climbs. Designed for rover vehicle for exploration of Mars, also has potential application in off-road vehicles, military scout vehicles, robotic emergency vehicles, and toys. Predecessors of suspension system described in "Articulated Suspension Without Springs" (NPO-17354), "Four-Wheel Vehicle Suspension System" (NPO-17407), and "High-Clearance Six-Wheel Suspension" (NPO-17821).

  14. Engineering Safety- and Security-Related Requirements for Software-Intensive Systems

    DTIC Science & Technology

    2007-05-31

    University Very Large New Zoo Parking Lots Zoo Back Lots Restaurants and Shops Tropical Rainforest African SavannaChildren’s Petting Area Monkeys Great Apes...decide to ride to the Great Apes and Monkeys taxi station near the central shops and restaurants area. Mr. Smith then swipes his zoo taxi travel card...taxi station on their right, circles around the central area, and soon pulls off the Zoo Loop Line to enter the inner Great Apes and Monkeys taxi

  15. Forming a Better Joint Team: Understanding Service Culture Impact on the Effectiveness of Senior Military Leaders

    DTIC Science & Technology

    2015-04-13

    arrived, and Blue was now starting to understand fully the implications of the order. The JOC was a hub of activity. Staff officers ranging from O...if we divert the hogs down to Kandahar, that pulls them off station here and what happens if we get a troops in contact around Kabul or start ...between them. This paper’s goal is to do just that-- start examining the uniqueness of the service cultures and speculate, sometimes based on

  16. Effects of myofascial release leg pull and sagittal plane isometric contract-relax techniques on passive straight-leg raise angle.

    PubMed

    Hanten, W P; Chandler, S D

    1994-09-01

    Experimental evidence does not currently exist to support the claims of clinical effectiveness for myofascial release techniques. This presents an obvious need to document the effects of myofascial release. The purpose of this study was to compare the effects of two techniques, sagittal plane isometric contract-relax and myofascial release leg pull for increasing hip flexion range of motion (ROM) as measured by the angle of passive straight-leg raise. Seventy-five nondisabled, female subjects 18-29 years of age were randomly assigned to contract-relax, leg pull, or control groups. Pretest hip flexion ROM was measured for each subject's right hip with a passive straight-leg raise test using a fluid-filled goniometer. Subjects in the treatment groups received either contract-relax or leg pull treatment applied to the right lower extremity; subjects in the control group remained supine quietly for 5 minutes. Following treatment, posttest straight-leg raise measurements were performed. A one-way analysis of variance followed by a Newman-Keuls post hoc comparison of mean gain scores showed that subjects receiving contract-relax treatment increased their ROM significantly more than those who received leg pull treatment, and the increase in ROM of subjects in both treatment groups was significantly higher than those of the control group. The results suggest that while both contract-relax and leg pull techniques can significantly increase hip flexion ROM in normal subjects, contract-relax treatment may be more effective and efficient than leg pull treatment.

  17. Evaluation of Mechanical Properties and Marginal Fit of Crowns Fabricated Using Commercially Pure Titanium and FUS-Invest

    PubMed Central

    Wu, Jinshuang; Wang, Xianli; Xing, Helin; Guo, Tianwen; Dong, Chaofang

    2017-01-01

    This study investigated the mechanical properties and single crown accuracy of the tailor-made Fourth University Stomatology investment (FUS-invest) for casting titanium. Background. Current investment for casting titanium is not optimal for obtaining high-quality castings, and the commercially available titanium investment is costly. Methods. Titanium specimens were cast using the tailor-made FUS-invest. The mechanical properties were tested using a universal testing machine. Fractured castings were characterized by energy-dispersive spectroscopy. 19 titanium crowns were produced using FUS-invest and another 19 by Symbion. The accuracy of crowns was evaluated. Results. The mechanical properties of the titanium cast by FUS-invest were elastic modulus 125.6 ± 8.8 GPa, yield strength 567.5 ± 11.1 MPa, tensile strength 671.2 ± 15.6 MPa, and elongation 4.6 ± 0.2%. For marginal fit, no significant difference (P > 0.05) was found at four marker points of each group. For internal fit, no significant difference (P > 0.05) was found between two groups, whereas significant difference (P < 0.01) was found at different mark point of each group. Conclusions. The mechanical properties of titanium casted using FUS-invest fulfilled the ISO 9693 criteria. The marginal and internal fit of the titanium crowns using either the FUS-invest or Symbion were similar. PMID:28913355

  18. Retentive force and microleakage of stainless steel crowns cemented with three different luting agents.

    PubMed

    Yilmaz, Yucel; Dalmis, Anya; Gurbuz, Taskin; Simsek, Sera

    2004-12-01

    The aim of this investigation was to compare the tensile strength, microleakage, and Scanning Electron Microscope (SEM) evaluations of SSCs cemented using different adhesive cements on primary molars. Sixty-three extracted primary first molars were used. Tooth preparations were done. Crowns were altered and adapted for investigation purpose, and then cemented using glass ionomer cement (Aqua Meron), resin modified cement (RelyX Luting), and resin cement (Panavia F) on the prepared teeth. Samples were divided into two groups of 30 samples each for tensile strength and microleakage tests. The remaining three samples were used for SEM evaluation. Data were analyzed with one-way ANOVA and Tukey test. The statistical analysis of ANOVA revealed significant differences among the groups for both tensile strength and microleakage tests (p < 0.05). Tukey test showed statistically significant difference between Panavia F and RelyX Luting (p < 0.05), but none between the others (p > 0.05). This study showed that the higher the retentive force a crown possessed, the lower would be the possibility of microleakage.

  19. An investigation of heat transfer to the implant-bone interface when drilling through a zirconia crown attached to a titanium or zirconia abutment.

    PubMed

    Mason, Amy G; Sutton, Alan; Turkyilmaz, Ilser

    2014-11-01

    Thermal injury to the implant-bone interface may lead to bone necrosis and loss of osseointegration. This is a concern during manipulation of the implant throughout the restorative phase of treatment. The risk of heat transfer to the implant-bone interface during abutment preparation or prosthesis removal should be considered. The purpose of the study was to examine the amount of heat transferred to the implant-bone interface when a zirconia crown is drilled to access the screw channel or section a crown with a high-speed dental handpiece. Of the 64 ceramic-veneered zirconia crowns fabricated, 32 had a coping thickness of 0.5 mm and 32 had a coping thickness of 1.0 mm. The crowns were cemented on either titanium stock abutments or zirconia stock abutments. Each group was further subdivided to evaluate heat transfer when the screw channel was accessed or the crown was sectioned with a high-speed handpiece with or without irrigation. Temperature change was recorded for each specimen at the cervical and apical aspect of the implant with thermocouples and a logging thermometer. ANOVA was used to assess the statistical significance in temperature change between the test combinations, and nonparametric Mann-Whitney U tests were used to evaluate the findings. The use of irrigation during both crown removal processes yielded an average temperature increase of 3.59 ±0.35°C. Crown removal in the absence of irrigation yielded an average temperature increase of 18.76 ±3.09°C. When all parameter combinations in the presence of irrigation were evaluated, the maximum temperature change was below the threshold of thermal injury to bone. The maximum temperature change was above the threshold for thermal injury at the coronal aspect of the implant and below the threshold at the apical aspect in the absence of irrigation. Within the limitations of this investigation, the use of irrigation with a high-speed dental handpiece to remove a ceramic-veneered zirconia crown results in a temperature increase at the implant-bone interface insufficient to cause irreversible damage. Conversely, a lack of irrigation may yield a temperature increase capable of producing irreversible damage at the coronal aspect of the implant. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Influence of different post core materials on the color of Empress 2 full ceramic crowns.

    PubMed

    Ge, Jing; Wang, Xin-zhi; Feng, Hai-lan

    2006-10-20

    For esthetic consideration, dentin color post core materials were normally used for all-ceramic crown restorations. However, in some cases, clinicians have to consider combining a full ceramic crown with a metal post core. Therefore, this experiment was conducted to test the esthetical possibility of applying cast metal post core in a full ceramic crown restoration. The color of full ceramic crowns on gold and Nickel-Chrome post cores was compared with the color of the same crowns on tooth colored post cores. Different try-in pastes were used to imitate the influence of a composite cementation on the color of different restorative combinations. The majority of patients could not detect any color difference less than DeltaE 1.8 between the two ceramic samples. So, DeltaE 1.8 was taken as the objective evaluative criterion for the evaluation of color matching and patients' satisfaction. When the Empress 2 crown was combined with the gold alloy post core, the color of the resulting material was similar to that of a glass fiber reinforced resin post core (DeltaE = 0.3). The gold alloy post core and the try-in paste did not show a perceptible color change in the full ceramic crowns, which indicated that the color of the crowns might not be susceptible to change between lab and clinic as well as during the process of composite cementation. Without an opaque covering the Ni-Cr post core would cause an unacceptable color effect on the crown (DeltaE = 2.0), but with opaque covering, the color effect became more clinically satisfactory (DeltaE = 1.8). It may be possible to apply a gold alloy post core in the Empress 2 full ceramic crown restoration when necessary. If a non-extractible Ni-Cr post core exists in the root canal, it might be possible to restore the tooth with an Empress 2 crown after covering the labial surface of the core with one layer of opaque resin cement.

  1. Marginal Fit of Lithium Disilicate Crowns Fabricated Using Conventional and Digital Methodology: A Three-Dimensional Analysis.

    PubMed

    Mostafa, Nezrine Z; Ruse, N Dorin; Ford, Nancy L; Carvalho, Ricardo M; Wyatt, Chris C L

    2018-02-01

    To compare the marginal fit of lithium disilicate (LD) crowns fabricated with digital impression and manufacturing (DD), digital impression and traditional pressed manufacturing (DP), and traditional impression and manufacturing (TP). Tooth #15 was prepared for all-ceramic crowns on an ivorine typodont. There were 45 LD crowns fabricated using three techniques: DD, DP, and TP. Microcomputed tomography (micro-CT) was used to assess the 2D and 3D marginal fit of crowns in all three groups. The 2D vertical marginal gap (MG) measurements were done at 20 systematically selected points/crown, while the 3D measurements represented the 3D volume of the gap measured circumferentially at the crown margin. Frequencies of different marginal discrepancies were also recorded, including overextension (OE), underextension (UE), and marginal chipping. Crowns with vertical MG > 120 μm at more than five points were considered unacceptable and were rejected. The results were analyzed by one-way ANOVA with Scheffe post hoc test (α = 0.05). DD crowns demonstrated significantly smaller mean vertical MG (33.3 ± 19.99 μm) compared to DP (54.08 ± 32.34 μm) and TP (51.88 ± 35.34 μm) crowns. Similarly, MG volume was significantly lower in the DD group (3.32 ± 0.58 mm 3 ) compared to TP group (4.16 ± 0.59 mm 3 ). The mean MG volume for the DP group (3.55 ± 0.78 mm 3 ) was not significantly different from the other groups. The occurrence of underextension error was higher in DP (6.25%) and TP (5.4%) than in DD (0.33%) group, while overextension was more frequent in DD (37.67%) than in TP (28.85%) and DP (18.75%) groups. Overall, 4 out of 45 crowns fabricated were deemed unacceptable based on the vertical MG measurements (three in TP group and one in DP group; all crowns in DD group were deemed acceptable). The results suggested that digital impression and CAD/CAM technology is a suitable, better alternative to traditional impression and manufacturing. © 2017 by the American College of Prosthodontists.

  2. Apical bud toughness tests and tree sway movements to examine crown abrasion: preliminary results

    Treesearch

    Tyler Brannon; Wayne Clatterbuck

    2012-01-01

    Apical bud toughness differences were examined for several species to determine if crown abrasion affects shoot growth of determinate and indeterminate species during stand development. Determinate buds will set and harden after initial shoot elongation in the spring, while the indeterminate shoots form leaves from the apical meristem continuously based on the...

  3. Comparison of Field Methods and Models to Estimate Mean Crown Diameter

    Treesearch

    William A. Bechtold; Manfred E. Mielke; Stanley J. Zarnoch

    2002-01-01

    The direct measurement of crown diameters with logger's tapes adds significantly to the cost of extensive forest inventories. We undertook a study of 100 trees to compare this measurement method to four alternatives-two field instruments, ocular estimates, and regression models. Using the taping method as the standard of comparison, accuracy of the tested...

  4. Temperature, Moisture, and Fungicide Effects in Managing Rhizoctonia Root and Crown Rot of Sugar Beet

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani AG-2-2 is the causal agent of Rhizoctonia root and crown rot in sugar beet. To assess the capacity at which other anastomosis groups (AGs) are able to infect sugar beet, 15 AGs and subgroups were tested for pathogenicity on resistant (FC708 CMS) and susceptible (Monohikari) seedl...

  5. Validation of the self-reporting questionnaire (SRQ 20) in British Pakistani and White European population in the United Kingdom.

    PubMed

    Husain, Nusrat; Chaudhry, Nasim; Rhouma, Abdulhakim; Sumra, Altaf; Tomenson, Barbara; Waheed, Waquas

    2016-01-01

    The incidence of depression is difficult to determine because of low clinical depression detection rates in the primary care setting. This low level of detection is a significantly greater problem in people from ethnic minority communities. The availability of culturally validated screening questionnaires might help to improve the detection and treatment of depression. The aim of the study was to assess the validity of the self-reporting questionnaire SRQ 20, (English and Urdu versions) in white Europeans and British Pakistanis and to determine the optimum cut-off scores for detecting depression. Validation of the English and Urdu versions of the SRQ was conducted with a sample of white Europeans and British Pakistani participants. The semi-structured Schedule for Clinical Assessment in Neuropsychiatry (SCAN) was used as the gold standard diagnostic interview, and receiver operating characteristic analysis was used to evaluate SRQ test performance. The SRQ was completed by 1856 participants out of whom 651 completed the SCAN interview. The SRQ sensitivity, specificity, and predictive values versus SCAN indicated a cut-off score of 7 as optimum for white Europeans and a cut-off score of 6 for British Pakistanis. This study focused on depression alone and did not take into consideration comorbid conditions such as anxiety which might have affected the way respondents answered the questions and contributed to comparatively lower optimum cut-off scores in British Pakistanis. The findings of this validation study provide evidence for high sensitivity and specificity of SRQ amongst both white Europeans and British Pakistanis. The SRQ can be used as a routine screening questionnaire for depression in English and Urdu speaking populations in the UK. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  6. Influence of different adhesive systems on the pull-out bond strength of glass fiber posts.

    PubMed

    da Silva, Luciana Mendonça; Andrade, Andréa Mello de; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C; Veronezi, Maria Cecília

    2008-01-01

    This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus - 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost - Angelus) + four #1 accessory posts (Reforpin - Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37 degrees C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 +/- 7.123; G2- 37.752 +/-13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (p<0.05) between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.

  7. High Efficiency push-pull class E amplifiers for fusion rocket engines

    NASA Astrophysics Data System (ADS)

    Gaitan, Gabriel; Ham, Eric; Cohen, S. A.; Swanson, Charles; Chen, Minjie; Brunkhorst, Christopher

    2017-10-01

    In a Field Reversed Configuration fusion reactor, ions in the plasma are heated by an antenna operating at RF frequencies. This paper presents how push-pull class E amplifiers can be used to efficiently drive this antenna in the MHz range, from 0.5MHz to 4 MHz, while maintaining low harmonic content in the output signal. We offer four different configurations that present a trade-off between efficiency and low harmonic content. The paper presents theoretical values and breadboard results from these configurations, which operate at a power of around 100W. For a practical design, multiple amplifiers would be linked in parallel and would power the RF antenna at around 1MW. These designs provide multiple different options for reactor systems that could be used in a variety of applications, from power plants on the ground to rocket engines in space. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466 and Princeton Environmental Institute.

  8. A microelectromechanical systems (MEMS) force-displacement transducer for sub-5 nm nanoindentation and adhesion measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Youfeng; Oh, Yunje; Stauffer, Douglas; Polycarpou, Andreas A.

    2018-04-01

    We present a highly sensitive force-displacement transducer capable of performing ultra-shallow nanoindentation and adhesion measurements. The transducer utilizes electrostatic actuation and capacitive sensing combined with microelectromechanical fabrication technologies. Air indentation experiments report a root-mean-square (RMS) force resolution of 1.8 nN and an RMS displacement resolution of 0.019 nm. Nanoindentation experiments on a standard fused quartz sample report a practical RMS force resolution of 5 nN and an RMS displacement resolution of 0.05 nm at sub-10 nm indentation depths, indicating that the system has a very low system noise for indentation experiments. The high sensitivity and low noise enables the transducer to obtain high-resolution nanoindentation data at sub-5 nm contact depths. The sensitive force transducer is used to successfully perform nanoindentation measurements on a 14 nm thin film. Adhesion measurements were also performed, clearly capturing the pull-on and pull-off forces during approach and separation of two contacting surfaces.

  9. Photoconductive method for measuring light transmission to the root of metal-ceramic and all-ceramic restorations.

    PubMed

    Hsieh, Yun-Lin; Lai, Yu-Lin; Chen, Hui-Lin; Hung, Cheng-Yuan; Chen, Xiu-Ling; Lee, Shyh-Yuan

    2008-09-01

    In this study, the authors attempted to develop a photoconductive method for measuring light transmission through a crown restoration to the root dentin; metal-ceramic crowns with four coping designs (metal collar, and metal framework ending 0, 1, and 2mm coronal to the axiogingival line angle) and two all-ceramic crowns (Empress II and In-Ceram Alumina) were compared. According to pre-registered templates, 36 crowns were fabricated for an extracted central incisor. A cadmium sulfide (CdS) photoconductive cell was secured onto the root of a tooth, which was fixed in a light box. The validity and reliability of the experimental design were verified, and the impedance of the cell was recorded when the crowns were placed on the prepared tooth with or without try-in pastes under a constant luminance. A significant correlation (r= -0.99, p<0.001) was found between the light intensity and impedance of the CdS cell, and a 1.15% coefficient of variation between repeated measurements was observed. In this study, Empress II crowns had the smallest impedance, indicating that they provided the best light transmission. Conventional metal-ceramic crowns had the least light transmission, which was significantly improved by reducing the metal collar (p<0.05). The framework of metal-ceramic crowns which ended 2mm coronal to the axiogingival line angle showed as much light transmission as the In-Ceram crowns. The impedance increased when try-in pastes were employed in all test groups. The photoconductive method was proven to be a reliable technique for measuring the light transmitted through restorations into the adjacent tissue.

  10. Effect of electric arc, gas oxygen torch and induction melting techniques on the marginal accuracy of cast base-metal and noble metal-ceramic crowns.

    PubMed

    Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús

    2013-09-01

    The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effects of coronal substrates and water storage on the microhardness of a resin cement used for luting ceramic crowns

    PubMed Central

    de MENDONÇA, Luana Menezes; PEGORARO, Luiz Fernando; LANZA, Marcos Daniel Septímio; PEGORARO, Thiago Amadei; de CARVALHO, Ricardo Marins

    2014-01-01

    Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. Objectives To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein), used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin), after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Material and Methods Thirty molars were distributed in three groups (N=10) according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal) and R (resin)- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein) and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5) were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Results Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231). Two-way ANOVA showed significant effect of substrates (p<0.001) and the Tukey test revealed that microhardness was significantly lower when crowns were cemented on resin cores and tested after 7 days of water storage (p=0.007). Conclusion The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the cement properties. PMID:25141200

  12. Introduction of steered molecular dynamics into UNRES coarse-grained simulations package.

    PubMed

    Sieradzan, Adam K; Jakubowski, Rafał

    2017-03-30

    In this article, an implementation of steered molecular dynamics (SMD) in coarse-grain UNited RESidue (UNRES) simulations package is presented. Two variants of SMD have been implemented: with a constant force and a constant velocity. The huge advantage of SMD implementation in the UNRES force field is that it allows to pull with the speed significantly lower than the accessible pulling speed in simulations with all-atom representation of a system, with respect to a reasonable computational time. Therefore, obtaining pulling speed closer to those which appear in the atomic force spectroscopy is possible. The newly implemented method has been tested for behavior in a microcanonical run to verify the influence of introduction of artificial constrains on keeping total energy of the system. Moreover, as time dependent artificial force was introduced, the thermostat behavior was tested. The new method was also tested via unfolding of the Fn3 domain of human contactin 1 protein and the I27 titin domain. Obtained results were compared with Gø-like force field, all-atom force field, and experimental results. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Strength tests for elite rowers: low- or high-repetition?

    PubMed

    Lawton, Trent W; Cronin, John B; McGuigan, Michael R

    2014-01-01

    The purpose of this project was to evaluate the utility of low- and high-repetition maximum (RM) strength tests used to assess rowers. Twenty elite heavyweight males (age 23.7 ± 4.0 years) performed four tests (5 RM, 30 RM, 60 RM and 120 RM) using leg press and seated arm pulling exercise on a dynamometer. Each test was repeated on two further occasions; 3 and 7 days from the initial trial. Per cent typical error (within-participant variation) and intraclass correlation coefficients (ICCs) were calculated using log-transformed repeated-measures data. High-repetition tests (30 RM, 60 RM and 120 RM), involving seated arm pulling exercise are not recommended to be included in an assessment battery, as they had unsatisfactory measurement precision (per cent typical error > 5% or ICC < 0.9). Conversely, low-repetition tests (5 RM) involving leg press and seated arm pulling exercises could be used to assess elite rowers (per cent typical error ≤ 5% and ICC ≥ 0.9); however, only 5 RM leg pressing met criteria (per cent typical error = 2.7%, ICC = 0.98) for research involving small samples (n = 20). In summary, low-repetition 5 RM strength testing offers greater utility as assessments of rowers, as they can be used to measure upper- and lower-body strength; however, only the leg press exercise is recommended for research involving small squads of elite rowers.

  14. Crown-level tree species classification from AISA hyperspectral imagery using an innovative pixel-weighting approach

    NASA Astrophysics Data System (ADS)

    Liu, Haijian; Wu, Changshan

    2018-06-01

    Crown-level tree species classification is a challenging task due to the spectral similarity among different tree species. Shadow, underlying objects, and other materials within a crown may decrease the purity of extracted crown spectra and further reduce classification accuracy. To address this problem, an innovative pixel-weighting approach was developed for tree species classification at the crown level. The method utilized high density discrete LiDAR data for individual tree delineation and Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for pure crown-scale spectra extraction. Specifically, three steps were included: 1) individual tree identification using LiDAR data, 2) pixel-weighted representative crown spectra calculation using hyperspectral imagery, with which pixel-based illuminated-leaf fractions estimated using a linear spectral mixture analysis (LSMA) were employed as weighted factors, and 3) representative spectra based tree species classification was performed through applying a support vector machine (SVM) approach. Analysis of results suggests that the developed pixel-weighting approach (OA = 82.12%, Kc = 0.74) performed better than treetop-based (OA = 70.86%, Kc = 0.58) and pixel-majority methods (OA = 72.26, Kc = 0.62) in terms of classification accuracy. McNemar tests indicated the differences in accuracy between pixel-weighting and treetop-based approaches as well as that between pixel-weighting and pixel-majority approaches were statistically significant.

  15. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns.

    PubMed

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-02-01

    The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃-55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

  16. Crown and crown-root fractures: an evaluation of the treatment plans for management proposed by 154 specialists in restorative dentistry.

    PubMed

    de Castro, Mara Antonio Monteiro; Poi, Wilson Roberto; de Castro, José Carlos Monteiro; Panzarini, Sônia Regina; Sonoda, Celso Koogi; Trevisan, Carolina Lunardelli; Luvizuto, Eloá Rodrigues

    2010-06-01

    Traumatic tooth injuries involve function and aesthetics and cause damage that range from minimal enamel loss to complex fractures involving the pulp tissue and even loss of the tooth crown. Technical knowledge and clinical experience are essential to establish an accurate diagnosis and provide a rational treatment. The purpose of this study was to evaluate the knowledge of Restorative Dentistry specialists about the management of crown and crown-root fractures based on treatment plans proposed by these professionals for these cases. A descriptive questionnaire was mailed to 245 Restorative Dentistry specialists with questions referring to their professional profile and the treatment plans they would propose for the management of crown and crow-root fractures resulting from dental trauma. One hundred and fifty-four questionnaires were returned properly filled. The data were subjected to descriptive statistics and the chi-square test was used to determine the frequency and the level of the significance among the variables. The analysis of data showed that in spite of having a specialist title, all interviewees had great difficulty in planning the treatments. As much as 42.8% of the participants were unable to treat all types of dental trauma. Complicated and uncomplicated crown-root fractures posed the greatest difficulties for the dentists to establish adequate treatment plans because these fractures require multidisciplinary knowledge and approach for a correct case planning and prognosis.

  17. A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Im, Jungho; Quackenbush, Lindi J.

    2015-12-01

    This study provides a novel approach to individual tree crown delineation (ITCD) using airborne Light Detection and Ranging (LiDAR) data in dense natural forests using two main steps: crown boundary refinement based on a proposed Fishing Net Dragging (FiND) method, and segment merging based on boundary classification. FiND starts with approximate tree crown boundaries derived using a traditional watershed method with Gaussian filtering and refines these boundaries using an algorithm that mimics how a fisherman drags a fishing net. Random forest machine learning is then used to classify boundary segments into two classes: boundaries between trees and boundaries between branches that belong to a single tree. Three groups of LiDAR-derived features-two from the pseudo waveform generated along with crown boundaries and one from a canopy height model (CHM)-were used in the classification. The proposed ITCD approach was tested using LiDAR data collected over a mountainous region in the Adirondack Park, NY, USA. Overall accuracy of boundary classification was 82.4%. Features derived from the CHM were generally more important in the classification than the features extracted from the pseudo waveform. A comprehensive accuracy assessment scheme for ITCD was also introduced by considering both area of crown overlap and crown centroids. Accuracy assessment using this new scheme shows the proposed ITCD achieved 74% and 78% as overall accuracy, respectively, for deciduous and mixed forest.

  18. China hones plans for ambitious x-ray probe

    NASA Astrophysics Data System (ADS)

    Normile, Dennis

    2018-03-01

    China is raising the stakes in its bid to become a major player in space science. At a kick-off meeting in Beijing last week, China's National Space Science Center began detailed design studies for a satellite that would round out an array of orbiting platforms for probing x-rays from the most violent corners of the cosmos. The enhanced X-Ray Timing and Polarimetry (eXTP) mission would be China's most ambitious space science satellite yet—and its most expensive, with an estimated price tag of $473 million. To pull it off, China is assembling a collaboration involving more than 200 scientists so far from dozens of institutions in 20 countries. If the eXTP mission passes a final review next year, it would launch around 2025.

  19. Marginal fit of all-ceramic crowns fabricated using two extraoral CAD/CAM systems in comparison with the conventional technique.

    PubMed

    Alqahtani, Fawaz

    2017-01-01

    The purpose of this study was to determine the effect of two extraoral computer-aided design (CAD) and computer-aided manufacturing (CAM) systems, in comparison with conventional techniques, on the marginal fit of monolithic CAD/CAM lithium disilicate ceramic crowns. This is an in vitro interventional study. The study was carried out at the Department of Prosthodontics, School of Dentistry, Prince Sattam Bin Abdul-Aziz University, Saudi Arabia, from December 2015 to April 2016. A marginal gap of 60 lithium disilicate crowns was evaluated by scanning electron microscopy. In total, 20 pressable lithium disilicate (IPS e.max Press [Ivoclar Vivadent]) ceramic crowns were fabricated using the conventional lost-wax technique as a control group. The experimental all-ceramic crowns were produced based on a scan stone model and milled using two extraoral CAD/CAM systems: the Cerec group was fabricated using the Cerec CAD/CAM system, and the Trios group was fabricated using Trios CAD and milled using Wieland Zenotec CAM. One-way analysis of variance (ANOVA) and the Scheffe post hoc test were used for statistical comparison of the groups (α=0.05). The mean (±standard deviation) of the marginal gap of each group was as follows: the Control group was 91.15 (±15.35) µm, the Cerec group was 111.07 (±6.33) µm, and the Trios group was 60.17 (±11.09) µm. One-way ANOVA and the Scheffe post hoc test showed a statistically significant difference in the marginal gap between all groups. It can be concluded from the current study that all-ceramic crowns, fabricated using the CAD/CAM system, show a marginal accuracy that is acceptable in clinical environments. The Trios CAD group displayed the smallest marginal gap.

  20. Peri-implant soft tissue colour around titanium and zirconia abutments: a prospective randomized controlled clinical study.

    PubMed

    Cosgarea, Raluca; Gasparik, Cristina; Dudea, Diana; Culic, Bogdan; Dannewitz, Bettina; Sculean, Anton

    2015-05-01

    To objectively determine the difference in colour between the peri-implant soft tissue at titanium and zirconia abutments. Eleven patients, each with two contralaterally inserted osteointegrated dental implants, were included in this study. The implants were restored either with titanium abutments and porcelain-fused-to-metal crowns, or with zirconia abutments and ceramic crowns. Prior and after crown cementation, multi-spectral images of the peri-implant soft tissues and the gingiva of the neighbouring teeth were taken with a colorimeter. The colour parameters L*, a*, b*, c* and the colour differences ΔE were calculated. Descriptive statistics, including non-parametric tests and correlation coefficients, were used for statistical analyses of the data. Compared to the gingiva of the neighbouring teeth, the peri-implant soft tissue around titanium and zirconia (test group), showed distinguishable ΔE both before and after crown cementation. Colour differences around titanium were statistically significant different (P = 0.01) only at 1 mm prior to crown cementation compared to zirconia. Compared to the gingiva of the neighbouring teeth, statistically significant (P < 0.01) differences were found for all colour parameter, either before or after crown cementation for both abutments; more significant differences were registered for titanium abutments. Tissue thickness correlated positively with c*-values for titanium at 1 mm and 2 mm from the gingival margin. Within their limits, the present data indicate that: (i) The peri-implant soft tissue around titanium and zirconia showed colour differences when compared to the soft tissue around natural teeth, and (ii) the peri-implant soft tissue around zirconia demonstrated a better colour match to the soft tissue at natural teeth than titanium. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Exploring the biomechanics of taurodontism.

    PubMed

    Benazzi, Stefano; Nguyen, Huynh N; Kullmer, Ottmar; Hublin, Jean-Jacques

    2015-02-01

    Taurodontism (i.e. enlarged pulp chamber with concomitant apical displacement of the root bi/trifurcation) is considered a dental anomaly with relatively low incidence in contemporary societies, but it represents a typical trait frequently found in Neandertal teeth. Four hypotheses can be envisioned to explain the high frequency in Neandertals: adaptation to a specific occlusal loading regime (biomechanical advantage), adaptation to a high attrition diet, pleiotropic or genetic drift effects. In this contribution we used finite element analysis (FEA) and advanced loading concepts based on macrowear information to evaluate whether taurodontism supplies some dental biomechanical advantages. Loads were applied to the digital model of the lower right first molar (RM1 ) of the Neandertal specimen Le Moustier 1, as well as to the digital models of both a shortened and a hyper-taurodontic version of Le Moustier RM1 . Moreover, we simulated a scenario where an object is held between teeth and pulled in different directions to investigate whether taurodontism might be useful for para-masticatory activities. Our results do not show any meaningful difference among all the simulations, pointing out that taurodontism does not improve the functional biomechanics of the tooth and does not favour para-masticatory pulling activities. Therefore, taurodontism should be considered either an adaptation to a high attrition diet or most likely the result of pleiotropic or genetic drift effects. Finally, our results have important implications for modern dentistry during endodontic treatments, as we observed that filling the pulp chamber with dentine-like material increases tooth stiffness, and ultimately tensile stresses in the crown, thus favouring tooth failure. © 2014 Anatomical Society.

  2. Fracture resistance of five pin-retained core build-up materials on teeth with and without extracoronal preparation.

    PubMed

    Burke, F J; Shaglouf, A G; Combe, E C; Wilson, N H

    2000-01-01

    Core build-ups should provide satisfactory strength and resistance to fracture both before and after crown preparation. This paper examines the resistance to fracture of core build-ups in different materials and the fracture resistance of core build-ups when these have been reduced for full crown preparation. Standardized core build-ups were made on groups of extracted molar teeth of similar size, with 10 teeth per group. Three resin-composite (prisma APH: Dentsply, Weybridge, UK; Ti-Core, Essential Dental Systems, NJ, US and Coradent, Vivadent, Liechtenstein), one cermet (Ketac-Silver, ESPE GmbH, Seefeld, Germany) and one amalgam material (Duralloy, Degussa Ltd, Cheshire, UK). These specimens were subjected to compressive force on a universal testing machine and the force at fracture noted. Standardized full crown preparations were made on a further five groups of core build-up specimens using the same materials as above. These prepared specimens were subjected to compressive force on a universal testing machine and the force to fracture noted. The results indicated that amalgam core build-ups demonstrated higher fracture resistance than the other materials examined. There was a general decrease in the fracture strength of the specimens following crown preparation, with the teeth restored with the amalgam core build-ups showing a greater percentage reduction in fracture strength than the other materials tested. Prepared core build-ups in a hybrid composite material provided the highest fracture resistance. The cermet material used provided the lowest resistance to fracture in both the core build-up and crown preparation specimens. In terms of fracture resistance, no advantage was apparent in using the two composite materials designated as being specifically appropriate for core build-ups.

  3. Fracture resistance of glazed, full-contour ZLS incisor crowns.

    PubMed

    Schwindling, Franz Sebastian; Rues, Stefan; Schmitter, Marc

    2017-07-01

    To compare the failure behaviour of zirconia-reinforced lithium silicate (Celtra Duo, DeguDent) with that of lithium disilicate (IPS e.max CAD, Ivoclar Vivadent) and feldspar (Mark II, VITA) ceramics. Three groups of sixteen glazed maxillary incisor crowns were produced. The inner surfaces of the crowns were etched, then luted to metal dies with self-adhesive cement. Single load-to-failure tests were performed before and after thermo-mechanical ageing. To simulate clinical conditions, the specimens were thermocycled (10,000 cycles between 6.5°C and 60°C) and underwent chewing simulation (1,200,000 cycles, F max =86N). Statistical analyses were performed by use of non-parametric Kruskal-Wallis and Mann-Whitney U-tests. Before ageing, all the monolithic incisor crowns fractured at test forces >285N. Mean fracture loads were highest for zirconia-reinforced lithium silicate (725N, SD 162N), slightly lower for lithium disilicate (701N, SD 276N), and lowest for feldspar (554N, SD 190N). The differences between the results were not statistically significant. After ageing, fracture resistance decreased for all materials except zirconia-reinforced lithium silicate. Mean fracture loads were highest for zirconia-reinforced lithium silicate (766N, SD 98N) and significantly lower for both lithium disilicate (485N, SD 64N) and feldspar (372N, SD 116N). Monolithic restorations fabricated from zirconia-reinforced lithium silicate retain high fracture resistance after extensive thermo-mechanical ageing. This preclinical study suggests that cohesive failures of monolithic anterior crowns produced of these ceramics will not be a major problem in dental practice. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. Measuring the Strength of the Horned Passalus Beetle, Odontotaenius disjunctus: Revisiting an Old Topic with Modern Technology

    PubMed Central

    Davis, Andrew K.; Attarha, Barrett; Piefke, Taylor J.

    2013-01-01

    Over a century ago, a pioneering researcher cleverly devised a means to measure how much weight the horned passalus beetle, Odontotaenius disjunctus (Illiger) (Coleoptera: Passalidae), could pull using a series of springs, pulleys, and careful observation. The technology available in modern times now allows for more rigorous data collection on this topic, which could have a number of uses in scientific investigations. In this study, an apparatus was constructed using a dynamometer and a data logger in an effort to ascertain the pulling strength of this species. By allowing beetles to pull for 10 min, each beetle's mean and maximum pulling force (in Newtons) were obtained for analyses, and whether these measures are related was determined. Then, whether factors such as body length, thorax size, horn size, or gender affect either measure of strength was investigated. Basic body measurements, including horn size, of males versus females were compared. The measurements of 38 beetles (20 females, 18 males) showed there was no difference in overall body length between sexes, but females had greater girth (thorax width) than males, which could translate into larger muscle mass. A total of 21 beetles (10 females, 11 males) were tested for pulling strength. The grand mean pulling force was 0.14 N, and the grand mean maximum was 0.78 N. Despite the fact that beetles tended to pull at 20% of their maximum capacity most of the time, and that maximum force was over 5 times larger than the mean force, the 2 measures were highly correlated, suggesting they may be interchangeable for research purposes. Females had twice the pulling strength (both maximum and mean force) as males in this species overall, but when the larger thorax size of females was considered, the effect of gender was not significant. Beetle length was not a significant predictor of pulling force, but horn size was associated with maximum force. The best predictor of both measures of strength appeared to be thorax size. There are a multitude of interesting scientific questions that could be addressed using data on beetle pulling strength, and this project serves as a starting point for such work. PMID:24735074

  5. A study of crown development mechanisms using a shoot-based tree model and segmented terrestrial laser scanning data.

    PubMed

    Sievänen, Risto; Raumonen, Pasi; Perttunen, Jari; Nikinmaa, Eero; Kaitaniemi, Pekka

    2018-05-24

    Functional-structural plant models (FSPMs) allow simulation of tree crown development as the sum of modular (e.g. shoot-level) responses triggered by the local environmental conditions. The actual process of space filling by the crowns can be studied. Although the FSPM simulations are at organ scale, the data for their validation have usually been at more aggregated levels (whole-crown or whole-tree). Measurements made by terrestrial laser scanning (TLS) that have been segmented into elementary units (internodes) offer a phenotyping tool to validate the FSPM predictions at levels comparable with their detail. We demonstrate the testing of different formulations of crown development of Scots pine trees in the LIGNUM model using segmented TLS data. We made TLS measurements from four sample trees growing in a forest on a relatively poor soil from sapling size to mature stage. The TLS data were segmented into internodes. The segmentation also produced information on whether needles were present in the internode. We applied different formulations of crown development (flushing of buds and length of growth of new internodes) in LIGNUM. We optimized the parameter values of each formulation using genetic algorithms to observe the best fit of LIGNUM simulations to the measured trees. The fitness function in the estimation combined both tree-level characteristics (e.g. tree height and crown length) and measures of crown shape (e.g. spatial distribution of needle area). Comparison of different formulations against the data indicates that the Extended Borchert-Honda model for shoot elongation works best within LIGNUM. Control of growth by local density in the crown was important for all shoot elongation formulations. Modifying the number of lateral buds as a function of local density in the crown was the best way to accomplish density control. It was demonstrated how segmented TLS data can be used in the context of a shoot-based model to select model components.

  6. Influence of the veneer-framework interface on the mechanical behavior of ceramic veneers: a nonlinear finite element analysis.

    PubMed

    Lazari, Priscilla Cardoso; Sotto-Maior, Bruno Salles; Rocha, Eduardo Passos; de Villa Camargos, Germana; Del Bel Cury, Altair Antoninha

    2014-10-01

    The chipping of ceramic veneers is a common problem for zirconia-based restorations and is due to the weak interface between both structures. The purpose of this study was to evaluate the mechanical behavior of ceramic veneers on zirconia and metal frameworks under 2 different bond-integrity conditions. The groups were created to simulate framework-veneer bond integrity with the crowns partially debonded (frictional coefficient, 0.3) or completely bonded as follows: crown with a silver-palladium framework cemented onto a natural tooth, ceramic crown with a zirconia framework cemented onto a natural tooth, crown with a silver-palladium framework cemented onto a Morse taper implant, and ceramic crown with a zirconia framework cemented onto a Morse taper implant. The test loads were 49 N applied to the palatal surface at 45 degrees to the long axis of the crown and 25.5 N applied perpendicular to the incisal edge of the crown. The maximum principal stress, shear stress, and deformation values were calculated for the ceramic veneer; and the von Mises stress was determined for the framework. Veneers with partial debonding to the framework (frictional coefficient, 0.3) had greater stress concentrations in all structures compared with the completely bonded veneers. The metal ceramic crowns experienced lower stress values than ceramic crowns in models that simulate a perfect bond between the ceramic and the framework. Frameworks cemented to a tooth exhibited greater stress values than frameworks cemented to implants, regardless of the material used. Incomplete bonding between the ceramic veneer and the prosthetic framework affects the mechanical performance of the ceramic veneer, which makes it susceptible to failure, independent of the framework material or complete crown support. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Associations between Carabelli trait and cusp areas in human permanent maxillary first molars.

    PubMed

    Kondo, Shintaro; Townsend, Grant C

    2006-02-01

    Few dental anthropological studies have investigated the associations between tooth crown size and crown traits in humans using quantitative methods. We tested several hypotheses about overall crown size, individual cusp areas, and expression of Carabelli cusps in human permanent first molars by obtaining data from standardized occlusal photographs of 308 Australians of European descent (171 males and 137 females). Specifically, we aimed to calculate the areas of the four main molar cusps, and also Carabelli cusp, and to compare the relative variability of cusp areas in relation to timing of development. We also aimed to compare cusp areas between males and females and to describe how Carabelli cusp interacted with other molar cusps. Measurements included maximum crown diameters (mesiodistal and buccolingual crown diameters), the areas of the four main cusps, and the area of Carabelli cusp. The pattern of relative variability in absolute areas of molar cusps corresponded with their order of formation, the first-forming paracone displaying the least variation, and the last-forming Carabelli cusp showing the greatest. Overall crown size and areas of individual cusps all showed sexual dimorphism, with values in males exceeding those in females. Sexual dimorphism was smallest for paracone area and greatest for Carabelli cusp area. Overall crown size and cusp areas were larger in individuals displaying a Carabelli cusp, especially the hypocone area. Although the combined area of the protocone and a Carabelli cusp was greater in cuspal forms than noncuspal forms, protocone area alone was significantly smaller in the former. Our findings lead us to propose that, in individuals with the genotype for Carabelli trait expression, larger molar crowns are more likely to display Carabelli cusps, whereas molars with smaller crowns are more likely to display reduced forms of expression of the trait. We suggest that the pattern of folding of the internal enamel epithelium in developing molar crowns, particularly in the protocone region, can be modified by a developing Carabelli cusp.

  8. Containerless glass fiber processing

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Naumann, R. J.

    1986-01-01

    An acoustic levitation furnace system is described that was developed for testing the feasibility of containerless fiber pulling experiments. It is possible to levitate very dense materials such as platinum at room temperature. Levitation at elevated temperatures is much more difficult. Samples of dense heavy metal fluoride glass were levitated at 300 C. It is therefore possible that containerless fiber pulling experiments could be performed. Fiber pulling from the melt at 650 C is not possible at unit gravity but could be possible at reduced gravities. The Acoustic Levitation Furnace is described, including engineering parameters and processing information. It is illustrated that a shaped reflector greatly increases the levitation force aiding the levitation of more dense materials.

  9. To Evaluate & Compare Retention of Complete Cast Crown in Natural Teeth Using Different Auxiliary Retentive Features with Two Different Crown Heights - An In Vitro Study.

    PubMed

    Vinaya, Kundapur; Rakshith, Hegde; Prasad D, Krishna; Manoj, Shetty; Sunil, Mankar; Naresh, Shetty

    2015-06-01

    To evaluate the retention of complete cast crowns in teeth with adequate and inadequate crown height and to evaluate the effects of auxiliary retentive features on retention form complete cast crowns. Sixty freshly extracted human premolars. They were divided into 2 major groups depending upon the height of the teeth after the preparation. Group1 (H1): prepared teeth with constant height of 3.5 mm and Group 2 (H2): prepared teeth with constant height of 2.5 mm. Each group is further subdivided into 3 subgroups, depending upon the retentive features incorporated. First sub group were prepared conventionally, second sub group with proximal grooves and third subgroups with proximal boxes preparation. Castings produced in Nickel chromium alloy were cemented with glass ionomer cement and the cemented castings were subjected to tensional forces required to dislodge each cemented casting from its preparation and used for comparison of retentive quality. The data obtained were statistically analyzed using Oneway ANOVA test. The results showed there was statistically significant difference between adequate (H1) and inadequate (H2) group and increase in retention when there was incorporation of retentive features compared to conventional preparations. Incorporation of retentive grooves was statistically significant compared to retention obtained by boxes. Results also showed there was no statistically significant difference between long conventional and short groove. Complete cast crowns on teeth with adequate crown height exhibited greater retention than with inadequate crown height. Proximal grooves provided greater amount of retention when compared with proximal boxes.

  10. High Temperature Mechanical Testing of a Cylindrical Weave Carbon-Carbon Composite.

    DTIC Science & Technology

    1985-07-01

    umentation. 11. Photograph of the Calcination Furnace 46 and Automatic Controller/"Recorder. 12. Shear-Lao Specimen for both Axial 47 and Radial Fiber...Pull-out.S 13. Photograph of Displacement Frame Used to 48 Load Both the Pull-out Specimens and Axial Rupture Specimens. 14. Graph i te Loadi ng B1...tested in creep at 1800 C the spec imen shoted no el onga t i on w i th an ao a: I stre=ss of 11.4 ksi for 20 min. This was not surp r is i rg si nce Lu an

  11. Influence of CAD/CAM systems and cement selection on marginal discrepancy of zirconia-based ceramic crowns.

    PubMed

    Martínez-Rus, Francisco; Suárez, María J; Rivera, Begoña; Pradíes, Guillermo

    2012-04-01

    To analyze the effect of ceramic manufacturing technique and luting cement selection on the marginal adaptation of zirconium oxide-based all-ceramic crowns. An extracted mandibular first premolar was prepared for a complete coverage restoration and subsequently duplicated 40 times in a liquid crystal polymer (LCP). All-ceramic crowns (n = 10) were fabricated on LCP models using the following systems: glass-infiltrated zirconia-toughened alumina (In-Ceram Zirconia) and yttrium cation-doped tetragonal zirconia polycrystals (In-Ceram YZ, Cercon, and Procera Zirconia). The restorations (n = 5) were cemented on their respective dies with glass-ionomer cement (Ketac Cem Aplicap) and resin cement (Panavia 21). The absolute marginal discrepancy of the crowns was measured before and after cementation by scanning electronic microscopy at 160 points along the circumferential margin. The data were analyzed using one-way ANOVA for repeated measures and for independent samples, Scheffé's multiple range post hoc test, and Student's t-test (alpha = 0.05). There were statistical differences in the mean marginal openings among the four all-ceramic systems before and after luting (P < 0.0001). The Procera restorations had the lowest pre- and post-cementation values (P < 0.0001). A significant increase in the marginal gap size caused by luting media occurred in all tested groups (P < 0.0001). Resin cement resulted in larger marginal discrepancies than glass-ionomer cement (P < 0.0001).

  12. Cacodylic acid for precommercial thinning in mixed-conifer stands shows erratic results.

    Treesearch

    William W. Oliver

    1970-01-01

    In a small-scale test, a silvicide consisting of cacodylic acid was injected during the growing season at dosages recommended by the manufacturer. The treatment did not thin adequately two of three mixed-conifer stands. Ponderosa pine and lower crown classes seemed more susceptible to the silvicide than Douglas-fir and upper crown classes. No flashback was recognized....

  13. An improved tree height measurement technique tested on mature southern pines

    Treesearch

    Don C. Bragg

    2008-01-01

    Virtually all techniques for tree height determination follow one of two principles: similar triangles or the tangent method. Most people apply the latter approach, which uses the tangents of the angles to the top and bottom and a true horizontal distance to the subject tree. However, few adjust this method for ground slope, tree lean, crown shape, and crown...

  14. Development of 3D woven cellular structures for adaptive composites based on thermoplastic hybrid yarns

    NASA Astrophysics Data System (ADS)

    Sennewald, C.; Vorhof, M.; Schegner, P.; Hoffmann, G.; Cherif, C.; Boblenz, J.; Sinapius, M.; Hühne, C.

    2018-05-01

    Flexible cellular 3D structures with structure-inherent compliance made of fiber-reinforced composites have repeatedly aroused the interest of international research groups. Such structures offer the possibility to meet the increasing demand for flexible and adaptive structures. The aim of this paper is the development of cellular 3D structures based on weaving technology. Considering the desired geometry of the 3D structure, algorithms are developed for the formation of geometry through tissue sub-areas. Subsequently, these sub-areas are unwound into the weaving level and appropriate weave patterns are developed. A particular challenge is the realization of compliant mechanisms in the woven fabric. This can be achieved either by combining different materials or, in particular, by implementing large stiffness gradients by means of varying the woven fabrics thickness, whereas differences in wall thickness have to be realized with a factor of 1:10. A manufacturing technology based on the weaving process is developed for the realization of the developed 3D cellular structures. To this end, solutions for the processing of hybrid thermoplastic materials (e.g. tapes), solutions for the integration of inlays in the weaving process (thickening of partial areas), and solutions for tissue retraction, as well as for the fabric pull-off (linear pull-off system) are being developed. In this way, woven cellular 3D structures with woven outer layers and woven joint areas (compliance) can be realized in a single process step and are subsequently characterized.

  15. Fiber pulling apparatus modification

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Workman, Gary L.

    1992-01-01

    A reduced gravity fiber pulling apparatus (FPA) was constructed in order to study the effects of gravity on glass fiber formation. The apparatus was specifically designed and built for use on NASA's KC-135 aircraft. Four flights have been completed to date during which E-glass fiber was successfully produced in simulated zero, high, and lunar gravity environments. In addition simulated lunar soil samples were tested for their fiber producing properties using the FPA.

  16. Shipboard Coatings Developments, and Emerging Surface Technologies

    DTIC Science & Technology

    2009-09-01

    ALGAE GROWTH. Other pulls not recorded, no complaints to NAVSEA about speed. April 2008 Pulled for engine work, cleaned well, may have been over-coated...BATELLE TEST SITE, 58 MONTH, FULL IMMERSION RESULTS PRESSURE WASH, ALGAE EASILY REMOVED, POLISHING APPARENT. SOME HARD FOULING ON WELDS, NOT A...by ~500 mV • Protection potential increased by ~1000mV * Short-term EOC does not take into account seawater biofilm corrosion potential ennoblement

  17. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.

    PubMed

    Hu, Zhenkai; Yoon, Chae-Hyun; Park, Samuel Byeongjun; Jo, Yung-Ho

    2016-07-01

    We propose a portable haptic device providing grasp (kinesthetic) and push-pull (cutaneous) sensations for optical-motion-capture master interfaces. Although optical-motion-capture master interfaces for surgical robot systems can overcome the stiffness, friction, and coupling problems of mechanical master interfaces, it is difficult to add haptic feedback to an optical-motion-capture master interface without constraining the free motion of the operator's hands. Therefore, we utilized a Bowden cable-driven mechanism to provide the grasp and push-pull sensation while retaining the free hand motion of the optical-motion capture master interface. To evaluate the haptic device, we construct a 2-DOF force sensing/force feedback system. We compare the sensed force and the reproduced force of the haptic device. Finally, a needle insertion test was done to evaluate the performance of the haptic interface in the master-slave system. The results demonstrate that both the grasp force feedback and the push-pull force feedback provided by the haptic interface closely matched with the sensed forces of the slave robot. We successfully apply our haptic interface in the optical-motion-capture master-slave system. The results of the needle insertion test showed that our haptic feedback can provide more safety than merely visual observation. We develop a suitable haptic device to produce both kinesthetic grasp force feedback and cutaneous push-pull force feedback. Our future research will include further objective performance evaluations of the optical-motion-capture master-slave robot system with our haptic interface in surgical scenarios.

  18. Mechanism of oil-pulling therapy - in vitro study.

    PubMed

    Asokan, Sharath; Rathinasamy, T K; Inbamani, N; Menon, Thangam; Kumar, S Senthil; Emmadi, Pamela; Raghuraman, R

    2011-01-01

    Oil pulling has been used extensively as a traditional Indian folk remedy without scientific proof for many years for strengthening teeth, gums and jaws and to prevent decay, oral malodor, bleeding gums and dryness of throat and cracked lips. The aim of this study was to evaluate the antibacterial activity of sesame oil and lignans isolated from sesame oil on oral microorganisms and to check whether saponification or emulsification occurs during oil-pulling therapy. The in vitro study was carried out in three different phases: (1) Antibacterial activity of the lignans and sesame oil were tested by minimum inhibitory concentration assay by agar dilution method and agar well diffusion method, respectively. (2) Increase in free fatty acid level of oil and the quantity of sodium hydroxide (NaOH) used up in the titration are good indicators of saponification process. This was assessed using analytical tests for vegetable oils. (3) Swished oil was observed under light microscope to assess the status of the oil, presence of microorganisms, oral debris and foreign bodies. Sesamin and sesamolin isolated from sesame oil did not have any antibacterial effect against oral microorganisms like Streptococcus mutans, Streptococcus mitis and Streptococcus viridans. Emulsification of sesame oil occurs during oil-pulling therapy. Increased consumption of NaOH in titration is a definite indication of a possible saponification process. The myth that the effect of oil-pulling therapy on oral health was just a placebo effect has been broken and there are clear indications of possible saponification and emulsification process, which enhances its mechanical cleaning action.

  19. Efficacy of a cosmetic phyto-caffeine shampoo in female androgenetic alopecia.

    PubMed

    Bussoletti, Carolina; Tolaini, Maria V; Celleno, Leonardo

    2018-03-06

    Androgenetic alopecia (AGA) is the most common type of hair loss in both males as well as females, occurring in up to 57% of women by the age of 80 years. Androgenetic alopecia is associated with a high psychological burden and often results in substantially reduced quality of life, poor body image and low self-esteem, particularly in women. Caffeine-based products have shown promise, both in vitro and in vivo, as potential treatments for AGA. This study was performed to determine the efficacy of a phyto-caffeine- containing shampoo used over a 6-month period in female subjects with AGA. This was a single-centre, double-blind parallel trial in which female subjects with AGA were randomized to either a phyto-caffeine-containing shampoo or a control shampoo. The primary endpoint was the change from baseline in the number of hairs pulled in a hair pull test at 6 months. Hair loss intensity, hair strength, subject satisfaction and tolerability were also assessed. Subjects using the phyto-caffeine-containing shampoo had significantly fewer hairs pulled in a hair pull test at 6 months, compared with subjects using the control shampoo (-3.1 vs -0.5 hairs; p<0.001). The majority of pre-specified secondary endpoints were also significantly improved for subjects using the phyto-caffeine- containing shampoo, compared with controls. Both products were very well tolerated. Compared with a control shampoo, a phyto-caffeine-containing shampoo was more efficacious, with respect to the number of hairs being pulled out at 6 months, hair loss intensity and hair strength in subjects with AGA.

  20. Effect of coconut oil in plaque related gingivitis - A preliminary report.

    PubMed

    Peedikayil, Faizal C; Sreenivasan, Prathima; Narayanan, Arun

    2015-01-01

    Oil pulling or oil swishing therapy is a traditional procedure in which the practitioners rinse or swish oil in their mouth. It is supposed to cure oral and systemic diseases but the evidence is minimal. Oil pulling with sesame oil and sunflower oil was found to reduce plaque related gingivitis. Coconut oil is an easily available edible oil. It is unique because it contains predominantly medium chain fatty acids of which 45-50 percent is lauric acid. Lauric acid has proven anti inflammatory and antimicrobial effects. No studies have been done on the benefits of oil pulling using coconut oil to date. So a pilot study was planned to assess the effect of coconut oil pulling on plaque induced gingivitis. The aim of the study was to evaluate the effect of coconut oil pulling/oil swishing on plaque formation and plaque induced gingivitis. A prospective interventional study was carried out. 60 age matched adolescent boys and girls in the age-group of 16-18 years with plaque induced gingivitis were included in the study and oil pulling was included in their oral hygiene routine. The study period was 30 days. Plaque and gingival indices of the subjects were assessed at baseline days 1,7,15 and 30. The data was analyzed using paired t test. A statistically significant decrease in the plaque and gingival indices was noticed from day 7 and the scores continued to decrease during the period of study. Oil pulling using coconut oil could be an effective adjuvant procedure in decreasing plaque formation and plaque induced gingivitis.

  1. Robotics research at Canadian Space Agency

    NASA Technical Reports Server (NTRS)

    Hui, Raymond

    1994-01-01

    In addition to major crown projects such as the Mobile Servicing System for Space Station, the Canadian Space Agency is also engaged in internal, industrial and academic research and development activities in robotics and other space-related areas of science and technology. These activities support current and future space projects, and lead to technology development which can be spun off to terrestrial applications, thus satisfying the Agency's objective of providing economic benefits to the public at large through its space-related work.

  2. Microleakage of composite crowns luted on CAD/CAM-milled human molars: a new method for standardized in vitro tests.

    PubMed

    Schlenz, Maximiliane Amelie; Schmidt, Alexander; Rehmann, Peter; Niem, Thomas; Wöstmann, Bernd

    2018-04-24

    To investigate debonding of full crowns made of CAD/CAM composites, CAD/CAM technology was applied to manufacture standardized test abutments to increase the reproducibility of human teeth used in in vitro studies. A virtual test abutment and the corresponding virtual crown were designed and two STL data sets were generated. Sixty-four human third molars and CAD/CAM blocks were milled using a CNC machine. Crowns of four different composite blocks (Lava Ultimate (LU), Brilliant Crios (BC), Cerasmart (CS), Experimental (EX)) were adhesively bonded with their corresponding luting system (LU: Scotchbond Universal/RelyX Ultimate; BC: One Coat 7 Universal/DuoCem; CS: G-PremioBond/G-Cem LinkForce; EX: Experimental-Bond/Experimental-Luting-Cement). Half of the specimens were chemical-cured (CC) and the others were light-cured (LC). Afterwards, specimens were artificially aged in a chewing simulator (WL-tec, 1 million cycles, 50-500 N, 2 Hz, 37 °C). Finally, a dye penetration test was used to detect debonding. For inspection, the specimens were sliced, and penetration depth was measured with a digital microscope. Data were analyzed with the Mann-Whitney U test. No cases of total debonding were observed after cyclic loading. However, the LC specimens showed a significantly lower amount of leakage than the CC ones (p < 0.05). Furthermore, the CC specimens exhibited broad scattering. Only the LC-EX blocks showed no debonding. The CC-CS blocks showed the highest leakage and scattering of all tested specimens. Natural human teeth can be manufactured by CAD/CAM technology in highly standardized test abutments for in vitro testing. For CAD/CAM composites, light curing should be performed. The success of a restoration depends on the long-term sealing ability of the luting materials, which avoids debonding along with microleakage. For CAD/CAM composites, separate light curing of the adhesive and luting composite is highly recommended.

  3. [A comparative study of marginal microleakage using different cements in porcelain-fused-to-metal crown].

    PubMed

    Jiang, Ming-Xin; Huang, Ke-Qiang; Li, Zhi-Gang; Gao, Xiu-Qiu; Li, Chun-Shan

    2011-04-01

    To evaluate the marginal microleakage of porcelain-fused-to-metal crown using four different cements. Sixteen porcelain-fused-to-metal crowns were built and randomly divided into 4 group, luted onto standard prepared human forward molars using four different cements (glass ionomer cement, resin-modified glass ionomer cement, PanaviaF, Super-Bond C&B adhesive luting system). After temperature cycling test, all the crowns were then submerged in 2% fuchsin for 24 h. The marginal microleakage at tooth cement interfaces was observed using light stereomicroscopy and evaluated in classification index. The marginal microleakage grade of 4 groups were analyzed by SPSS 13.0. The PanaviaF demonstrated the least marginal microleakage, Super-Bond C&B adhesive luting system, resin-modified glass ionomer cement showed an intermediate level of marginal microleakage, glass ionomer cement was associated with severe marginal microleakage (total, Chi2 = 157.60, P < 0.01; among the different groups, P<0.05). Adhesive resin luting system which is the first selection in clinical is better than glass ionomer cement and is good at porcelain-fused-to-metal crown.

  4. CAN UPPER EXTREMITY FUNCTIONAL TESTS PREDICT THE SOFTBALL THROW FOR DISTANCE: A PREDICTIVE VALIDITY INVESTIGATION

    PubMed Central

    Hanney, William J.; Kolber, Morey J.; Davies, George J.; Riemann, Bryan

    2011-01-01

    Introduction: Understanding the relationships between performance tests and sport activity is important to the rehabilitation specialist. The purpose of this study was two- fold: 1) To identify if relationships exist between tests of upper body strength and power (Single Arm Seated Shot Put, Timed Push-Up, Timed Modified Pull-Up, and The Davies Closed Kinetic Chain Upper Extremity Stability Test, and the softball throw for distance), 2) To determine which variable or group of variables best predicts the performance of a sport specific task (the softball throw for distance). Methods: One hundred eighty subjects (111 females and 69 males, aged 18-45 years) performed the 5 upper extremity tests. The Pearson product moment correlation and a stepwise regression were used to determine whether relationships existed between performance on the tests and which upper extremity test result best explained the performance on the softball throw for distance. Results: There were significant correlations (r=.33 to r=.70, p=0.001) between performance on all of the tests. The modified pull-up test was the best predictor of the performance on the softball throw for distance (r2= 48.7), explaining 48.7% of variation in performance. When weight, height, and age were added to the regression equation the r2 values increased to 64.5, 66.2, and 67.5 respectively. Conclusion: The results of this study indicate that several upper extremity tests demonstrate significant relationships with one another and with the softball throw for distance. The modified pull up test was the best predictor of performance on the softball throw for distance. PMID:21712942

  5. Chairside Computer-Aided Design/Computer-Aided Manufacture All-Ceramic Crown and Endocrown Restorations: A 7-Year Survival Rate Study.

    PubMed

    Fages, Michel; Raynal, Jacques; Tramini, Paul; Cuisinier, Frédéric Jg; Durand, Jean-Cédric

    The objective of the present study was to analyze the clinical outcomes of 447 monoblock ceramic chairside computer-aided design/computer-aided manufacture (CAD/CAM) reconstructions over a 7-year functional period. Of these reconstructions, 212 were peripheral crowns and 235 were endocrowns. The restorations were placed between 2003 and 2008 in a total of 323 patients. They were created using a chairside CAD/CAM method and the same materials in all cases. All of the crowns were manufactured and glued during the same clinical session by the same practitioner. Data were descriptively analyzed and survival probabilities were calculated using Kaplan-Meier statistics. Of the 447 restorations, only 6 failures occurred, resulting in a success rate of 98.66%. All of the failures were the result of a partial ceramic fracture. Of the six ceramic fractures, five appeared on peripheral crowns and one on an endocrown. All fractures appeared in the first 24 months, including two in the first month. Log-rank test comparing incidence rates between crowns and endocrowns showed no significant differences (P = .08). This survival rate study reinforced the use of CAD/CAM full ceramic crowns and endocrowns on molars, showing a much more favorable survival rate for endocrowns.

  6. Effects of ultraviolet irradiation on the bond strength of a composite resin adhered to stainless steel crowns.

    PubMed

    Baeza-Robleto, Selene J; Villa-Negrete, Dulce M; García-Contreras, René; Scougall-Vílchis, Rogelio J; Guadarrama-Quiroz, Luis J; Robles-Bermeo, Norma L

    2013-01-01

    A technique whereby the practitioner could improve the esthetic appearance of anterior stainless steel crowns (SSC) could provide a cost-effective alternative to more expensive commercially available preveneered SSCs, which may not be uniformly available. The purpose of this study was to evaluate the effects of ultraviolet (UV) irradiation of the metal crown surface on the shear bond strength of composite resin adhered to stainless steel crowns. Seventy extracted anterior bovine teeth randomly divided into 2 groups (n=35/group), were restored with primary maxillary left central incisor SSCs. Surface roughening with a green stone was performed on the labial surfaces, and the crowns of the experimental group were exposed to UV irradiation for 80 minutes. All samples were treated with metal-composite adhesive, followed by composite opaquer. Standardized composite blocks were bonded on the treated surfaces, and the shear bond strength was tested at 1 mm/minute. The values were recorded in MPa and statistically analyzed. The mean value of shear bond strength was significantly higher for the experimental group (19.7 ± 4.3 MPa) than the control group (16.3 ± 4.5 MPa). Ultraviolet irradiation of primary tooth stainless steel crowns significantly increased the shear bond strength of composite resin adhered to the facial surface.

  7. Comparison of the fit of cast gold crowns fabricated from the digital and the conventional impression techniques

    PubMed Central

    Jeon, Young-Chan; Jeong, Chang-Mo

    2017-01-01

    PURPOSE The purpose of this study was to compare the fit of cast gold crowns fabricated from the conventional and the digital impression technique. MATERIALS AND METHODS Artificial tooth in a master model and abutment teeth in ten patients were restored with cast gold crowns fabricated from the digital and the conventional impression technique. The forty silicone replicas were cut in three sections; each section was evaluated in nine points. The measurement was carried out by using a measuring microscope and I-Soultion. Data from the silicone replica were analyzed and all tests were performed with α-level of 0.05. RESULTS 1. The average gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. 2. In marginal and internal axial gap of cast gold crowns, no statistical differences were found between the two impression techniques. 3. The internal occlusal gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. CONCLUSION Both prostheses presented clinically acceptable results with comparing the fit. The prostheses fabricated from the digital impression technique showed more gaps, in respect of occlusal surface. PMID:28243386

  8. The effect of a slack-pulling device in reducing operator physiological workload during log winching operations.

    PubMed

    Spinelli, Raffaele; Aalmo, Giovanna Ottaviani; Magagnotti, Natascia

    2015-01-01

    The authors conducted a comparative test to determine whether the introduction of a hydraulic slack puller allowed reducing the physiological workload of operators assigned to log winching tasks. The tests were conducted in northern Italy, on the mountains near Como. The study involved five volunteer subjects, considered representatives of the regional logging workforce. Physiological workload was determined by measuring the operators' heart rate upon completion of specific tasks. The slack puller improved the efficiency of downhill winching, since it allowed a single operator to pull out the cable on his own, without requiring the assistance of a colleague. However, introduction of the slack puller did not result in any reductions of operator physiological workload. The main stressor when working on a steep slope is moving up and down the slope: pulling a cable is only a secondary stressor. Any measures targeting secondary stressors are unlikely to produce dramatic reductions of operator workload.

  9. [Establishment of database with standard 3D tooth crowns based on 3DS MAX].

    PubMed

    Cheng, Xiaosheng; An, Tao; Liao, Wenhe; Dai, Ning; Yu, Qing; Lu, Peijun

    2009-08-01

    The database with standard 3D tooth crowns has laid the groundwork for dental CAD/CAM system. In this paper, we design the standard tooth crowns in 3DS MAX 9.0 and create a database with these models successfully. Firstly, some key lines are collected from standard tooth pictures. Then we use 3DS MAX 9.0 to design the digital tooth model based on these lines. During the design process, it is important to refer to the standard plaster tooth model. After some tests, the standard tooth models designed with this method are accurate and adaptable; furthermore, it is very easy to perform some operations on the models such as deforming and translating. This method provides a new idea to build the database with standard 3D tooth crowns and a basis for dental CAD/CAM system.

  10. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    PubMed

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  11. Host-guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals

    NASA Astrophysics Data System (ADS)

    Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.

    2015-12-01

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.

  12. Applications of vitamin B6 cofactor pyridoxal 5‧-phosphate and pyridoxal 5‧-phosphate crowned gold nanoparticles for optical sensing of metal ions

    NASA Astrophysics Data System (ADS)

    Bothra, Shilpa; Upadhyay, Yachana; Kumar, Rajender; Sahoo, Suban K.

    2017-03-01

    Vitamin B6 cofactor pyridoxal 5‧-phosphate (PLP) and PLP crowned gold nanoparticles (PLP-AuNPs) was applied for the optical chemosensing of metal ions in aqueous medium. PLP showed a visually detectable colour change from colourless to yellow and 'turn-off' fluorescence in the presence of Fe3 +. The fluorescence intensity of PLP at 433 nm was also blue-shifted and enhanced at 395 nm upon addition of Al3 +. When the PLP was functionalized over AuNPs surface, the wine red colour of PLP-AuNPs was turned to purplish-blue and the SPR band at 525 nm was red-shifted upon addition of Al3 +, Cd2 + and Pb2 + due to the complexation-induced aggregation of nanoparticles. The developed sensing systems exhibited good selectivity and specificity for the detected analytes (Fe3 +, Al3 +, Cd2 + and Pb2 +).

  13. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

    PubMed Central

    Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-01-01

    PURPOSE The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃–55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns. PMID:26949485

  14. Evaluation of marginal and internal gaps of metal ceramic crowns obtained from conventional impressions and casting techniques with those obtained from digital techniques.

    PubMed

    Rai, Rathika; Kumar, S Arun; Prabhu, R; Govindan, Ranjani Thillai; Tanveer, Faiz Mohamed

    2017-01-01

    Accuracy in fit of cast metal restoration has always remained as one of the primary factors in determining the success of the restoration. A well-fitting restoration needs to be accurate both along its margin and with regard to its internal surface. The aim of the study is to evaluate the marginal fit of metal ceramic crowns obtained by conventional inlay casting wax pattern using conventional impression with the metal ceramic crowns obtained by computer-aided design and computer-aided manufacturing (CAD/CAM) technique using direct and indirect optical scanning. This in vitro study on preformed custom-made stainless steel models with former assembly that resembles prepared tooth surfaces of standardized dimensions comprised three groups: the first group included ten samples of metal ceramic crowns fabricated with conventional technique, the second group included CAD/CAM-milled direct metal laser sintering (DMLS) crowns using indirect scanning, and the third group included DMLS crowns fabricated by direct scanning of the stainless steel model. The vertical marginal gap and the internal gap were evaluated with the stereomicroscope (Zoomstar 4); post hoc Turkey's test was used for statistical analysis. One-way analysis of variance method was used to compare the mean values. Metal ceramic crowns obtained from direct optical scanning showed the least marginal and internal gap when compared to the castings obtained from inlay casting wax and indirect optical scanning. Indirect and direct optical scanning had yielded results within clinically acceptable range.

  15. Blunt Trauma Performance of Fabric Systems Utilizing Natural Rubber Coated High Strength Fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, M. R.; Ahmad, W. Y. W.; Samsuri, A.

    2010-03-11

    The blunt trauma performance of fabric systems against 9 mm bullets is reported. Three shots were fired at each fabric system with impact velocity of 367+-9 m/s and the depth of indentation on the modeling clay backing was measured. The results showed that 18-layer and 21-layer all-neat fabric systems failed the blunt trauma test. However, fabric systems with natural rubber (NR) latex coated fabric layers gave lower blunt trauma of between 25-32 mm indentation depths. Deformations on the neat fabrics upon impact were identified as broken yarns, yarn stretching and yarn pull-out. Deflections of the neat fabrics were more localised.more » For the NR latex coated fabric layers, no significant deformation can be observed except for peeled-off regions of the NR latex film at the back surface of the last layer. From the study, it can be said that the NR latex coated fabric layers were effective in reducing the blunt trauma of fabric systems.« less

  16. Silviculture of varietal loblolly pine plantations: second year impacts of spacing and silvicultural treatments on varieties with differing crown ideotypes

    Treesearch

    Lance A. Vickers; Thomas R. Fox; Jose L. Stape; Timothy J. Albaugh

    2012-01-01

    A long-term study has been established to address the following objectives: 1) Evaluate the crown ideotype approach to clonal testing in loblolly pine; 2) Determine impacts of increasing genetic uniformity on growth and uniformity of loblolly pine plantations; 3) Compare growth response, carbon allocation patterns (above and below ground), and ecophysiological...

  17. Ten-year effects from row thinnings in loblolly pine plantations of eastern Maryland

    Treesearch

    Silas Little; John J. Mohr; Paul V. Mook

    1967-01-01

    Four degrees of row thinning were tested in 17-year-old loblolly pine plantations of eastern Maryland. In the following 10 years diameter and basal-area growth of tagged trees increased in relation to intensity of thinning. The heavier thinnings also had the most effect in increasing live-crown lengths and ratios and in favoring crown-class position. Volume growth was...

  18. "Should I stay or should I go?" Coming off methadone and buprenorphine treatment.

    PubMed

    Winstock, Adam R; Lintzeris, Nicholas; Lea, Toby

    2011-01-01

    This study aimed to investigate patient perspectives regarding coming off maintenance opioid substitution treatment (OST). The study explored previous experiences, current interest and concerns about stopping treatment, and perceptions of how and when coming off treatment should be supported. A cross-sectional survey was used. Participants were 145 patients receiving OST at public opioid treatment clinics in Sydney, Australia. Sixty-two percent reported high interest in coming off treatment in the next 6 months. High interest was associated with having discussed coming off treatment with a greater number of categories of people (OR=1.72), not citing concern about heroin relapse (OR=3.18), and shorter duration of current treatment episode (OR=0.99). Seventy-one percent reported previous withdrawal attempts and 23% had achieved opioid abstinence for ≥3 months following a previous withdrawal attempt. Attempts most commonly involved jumping off (59%), and doctor-controlled (52%) or self-controlled (48%) gradual reduction. For future attempts respondents were most interested in doctor-controlled (68%) or self-controlled (41%) gradual reduction. Concerns regarding coming off treatment included withdrawal discomfort (68%), increased pain (50%), and relapse to heroin use (48%). While some patients may require lifetime maintenance, the issue of coming off treatment is important to many patients and should be discussed regularly throughout treatment and where appropriate supported by a menu of clinical options. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  19. Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording

    PubMed Central

    Liu, Bao-hua; Li, Pingyang; Li, Ya-tang; Sun, Yujiao J.; Yanagawa, Yuchio; Obata, Kunihiko; Zhang, Li I.; Tao, Huizhong W.

    2009-01-01

    Synaptic inhibition plays an important role in shaping receptive field (RF) properties in the visual cortex. However, the underlying mechanisms remain not well understood, partly due to difficulties in systematically studying functional properties of cortical inhibitory neurons in vivo. Here, we established two-photon imaging guided cell-attached recordings from genetically labelled inhibitory neurons and nearby “shadowed” excitatory neurons in the primary visual cortex of adult mice. Our results revealed that in layer 2/3, the majority of excitatory neurons exhibited both On and Off spike subfields, with their spatial arrangement varying from being completely segregated to overlapped. On the other hand, most layer 4 excitatory neurons exhibited only one discernable subfield. Interestingly, no RF structure with significantly segregated On and Off subfields was observed for layer 2/3 inhibitory neurons of either the fast-spike or regular-spike type. They predominantly possessed overlapped On and Off subfields with a significantly larger size than the excitatory neurons, and exhibited much weaker orientation tuning. These results from the mouse visual cortex suggest that different from the push-pull model proposed for simple cells, layer 2/3 simple-type neurons with segregated spike On and Off subfields likely receive spatially overlapped inhibitory On and Off inputs. We propose that the phase-insensitive inhibition can enhance the spatial distinctiveness of On and Off subfields through a gain control mechanism. PMID:19710305

  20. Mechanical and histological analysis of bone-pedicle screw interface in vivo: titanium versus stainless steel.

    PubMed

    Sun, C; Huang, G; Christensen, F B; Dalstra, M; Overgaard, S; Bünger, C

    1999-05-01

    To investigate the differences in bone interface between titanium and stainless steel pedicle screws in the lumbar spine. Eighteen adult mini-pigs that underwent total laminectomy, posterolateral spinal fusion (L4-L5) were randomly selected to receive stainless steel (9) or titanium pedicle screw devices (9). In both groups, the devices were CCD (Sofamore Danek) type with the same size and shape. The postoperative observation time was 3 months. Screws from L4 were harvested along their long axis of pedicle for histomorphometric study. Bone-screw interface and bone volume from thread were examined using linear intercept techniques. Mechanical testing (torsional test and pull-out test) was performed on the screws from L5. The titanium screw group had a significantly higher maximum torque (P < 0.05) and angle related stiffness (P < 0.05) measured by torsional test. In the pull-out tests, no differences were found between the two groups in relation to the maximum load, stiffness and energy to failure. Direct bone contact with the screw in percentage was 29.4% for stainless steel and 43.8% for titanium (P < 0.05). No differences in the bone purchase between the vertebral body part and pedicle part were found. Pedicle screws made of titanium have a better bone-screw interface binding than screws made of stainless steel. Torsional tests are more informative for bone-screw interface study. Pull-out tests seem less valuable when comparing bone purchase of screws made from different materials.

  1. Fabrication of crown restoration retrofitting to existing clasps using CAD/CAM: fitness accuracy and retentive force.

    PubMed

    Ozawa, Daisuke; Suzuki, Yasunori; Kawamura, Noboru; Ohkubo, Chikahiro

    2015-04-01

    A crown restoration engaged by a clasp as an abutment tooth for a removable partial denture (RPD) occasionally might be removed and eliminated due to secondary caries or apical lesions. However, if the RPD is clinically acceptable without any problems and refabricating the RPD is not recommended, the new crown must be made to retrofit to the existing clasp of the RPD. This in vitro study evaluated the conventional and CAD/CAM procedures for retrofitting crown restorations to the existing clasps by measuring the fitness accuracy and the retentive forces. The crown restoration on #44 was fabricated with CP titanium and zirconium on the plaster model with #45 and #46 teeth missing to retrofit to the existing clasp using conventional thin coping and CAD/CAM procedures. The gap distance between the clasp (tip, shoulder, and rest regions) and the fabricated crown was measured using silicone impression material. The retentive force of the clasp was also measured, using an autograph at a crosshead speed of 50mm/min. The obtained data were analyzed by one-way ANOVA/Tukey's multiple comparison test (α=0.05). The CAD/CAM procedure caused significantly smaller gap distances in all of the clasp regions, as compared to the conventional procedure (p<0.05). The retentive force of the CAD/CAM crown was significantly higher than for the conventional one (p<0.05). When a crown restoration must be remade to retrofit an existing clasp, CAD/CAM fabrication can be recommended so that both appropriate fitness and retentive force are obtained. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  2. Influence of surface finishing on fracture load and failure mode of glass ceramic crowns.

    PubMed

    Mores, Rafael Tagliari; Borba, Márcia; Corazza, Pedro Henrique; Della Bona, Álvaro; Benetti, Paula

    2017-10-01

    Ceramic restorations often require adjustments using diamond rotary instruments, which damage the glazed surface. The effect of these adjustments on the fracture behavior of these restorations is unclear. The purpose of this in vitro study was to evaluate the influence of induced surface defects on the fracture load and mode of failure of lithium disilicate-based (LDS) glass ceramic restorations. Premolar crowns were obtained from LDS computer-aided design and computer-aided manufacturing blocks (n=60) and glazed. The crowns were bonded to dentin analog dies and divided into 5 groups (n=12), as follows: glaze; abrasion (diamond rotary instrument 2135); abrasion and reglaze; abrasion and polishing (diamond rotary instrument 2135F, 2135 FF, and polishing devices); and polishing. The topography of the crowns was examined by scanning electron microscopy, and roughness was measured. A compressive load (0.5 mm/min) was applied by a piston to the center of the lingual cusp until fracture. The fracture load was recorded and data were statistically analyzed by ANOVA and the Tukey HSD test (α=.05). Fractured crowns were examined to determine the fracture origin. Polishing and/or reglazing resulted in lower roughness than for the abraded group (P<.05), which did not affect the fracture loads (P=.696). Catastrophic fracture with origin at the intaglio surface was the mode of failure for all the crowns. The experiment design successfully submitted the crowns to a clinical stress state, resulting in a clinically relevant failure. Reglazing or polishing were effective in reducing surface defects. Surface treatments had no effect on the immediate catastrophic failure of LDS crowns. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Dentist Material Selection for Single-Unit Crowns: Findings from The National Dental Practice-Based Research Network

    PubMed Central

    Makhija, Sonia K.; Lawson, Nathaniel C.; Gilbert, Gregg H.; Litaker, Mark S.; McClelland, Jocelyn A.; Louis, David R.; Gordan, Valeria V.; Pihlstrom, Daniel J.; Meyerowitz, Cyril; Mungia, Rahma; McCracken, Michael S.

    2016-01-01

    Objectives Dentists enrolled in the National Dental Practice-Based Research Network completed a study questionnaire about techniques and materials used for single-unit crowns and an enrollment questionnaire about dentist/practice characteristics. The objectives were to quantify dentists’ material recommendations and test the hypothesis that dentist’s and practice’s characteristics are significantly associated with these recommendations. Methods Surveyed dentists responded to a contextual scenario asking what material they would use for a single-unit crown on an anterior and posterior tooth. Material choices included: full metal, porcelain-fused-to-metal (PFM), all-zirconia, layered zirconia, lithium disilicate, leucite-reinforced ceramic, or other. Results 1,777 of 2,132 eligible dentists responded (83%). The top 3 choices for anterior crowns were lithium disilicate (54%), layered zirconia (17%), and leucite-reinforced glass ceramic (13%). There were significant differences (p<0.05) by dentist’s gender, race, years since graduation, practice type, region, practice busyness, hours worked/week, and location type. The top 3 choices for posterior crowns were all-zirconia (32%), PFM (31%), and lithium disilicate (21%). There were significant differences (p<0.05) by dentist’s gender, practice type, region, practice busyness, insurance coverage, hours worked/week, and location type. Conclusions Network dentists use a broad range of materials for single-unit crowns for anterior and posterior teeth, adopting newer materials into their practices as they become available. Material choices are significantly associated with dentist’s and practice’s characteristics. Clinical Significance Decisions for crown material may be influenced by factors unrelated to tooth and patient variables. Dentists should be cognizant of this when developing an evidence-based approach to selecting crown material. PMID:27693778

  4. Dentist material selection for single-unit crowns: Findings from the National Dental Practice-Based Research Network.

    PubMed

    Makhija, Sonia K; Lawson, Nathaniel C; Gilbert, Gregg H; Litaker, Mark S; McClelland, Jocelyn A; Louis, David R; Gordan, Valeria V; Pihlstrom, Daniel J; Meyerowitz, Cyril; Mungia, Rahma; McCracken, Michael S

    2016-12-01

    Dentists enrolled in the National Dental Practice-Based Research Network completed a study questionnaire about techniques and materials used for single-unit crowns and an enrollment questionnaire about dentist/practice characteristics. The objectives were to quantify dentists' material recommendations and test the hypothesis that dentist's and practice's characteristics are significantly associated with these recommendations. Surveyed dentists responded to a contextual scenario asking what material they would use for a single-unit crown on an anterior and posterior tooth. Material choices included: full metal, porcelain-fused-to-metal (PFM), all-zirconia, layered zirconia, lithium disilicate, leucite-reinforced ceramic, or other. 1777 of 2132 eligible dentists responded (83%). The top 3 choices for anterior crowns were lithium disilicate (54%), layered zirconia (17%), and leucite-reinforced glass ceramic (13%). There were significant differences (p<0.05) by dentist's gender, race, years since graduation, practice type, region, practice busyness, hours worked/week, and location type. The top 3 choices for posterior crowns were all-zirconia (32%), PFM (31%), and lithium disilicate (21%). There were significant differences (p<0.05) by dentist's gender, practice type, region, practice busyness, insurance coverage, hours worked/week, and location type. Network dentists use a broad range of materials for single-unit crowns for anterior and posterior teeth, adopting newer materials into their practices as they become available. Material choices are significantly associated with dentist's and practice's characteristics. Decisions for crown material may be influenced by factors unrelated to tooth and patient variables. Dentists should be cognizant of this when developing an evidence-based approach to selecting crown material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fungicidal activity of essential oils of Cinnamomum zeylanicum (L.) and Syzygium aromaticum (L.) Merr et L.M. Perry against crown rot and anthracnose pathogens isolated from banana.

    PubMed

    Ranasinghe, L; Jayawardena, B; Abeywickrama, K

    2002-01-01

    To develop a post-harvest treatment system against post-harvest fungal pathogens of banana using natural products. Colletotrichum musae was isolated and identified as the causative agent responsible for anthracnose peel blemishes while three fungi, namely Lasiodiplodia theobromae, C. musae and Fusarium proliferatum, were identified as causative agents responsible for crown rot. During the liquid bioassay, cinnamon [Cinnamomum zeylanicum (L.)] leaf, bark and clove [Syzygium aromaticum (L.)] oils were tested against the anthracnose and crown rot pathogens. The test oils were fungistatic and fungicidal against the test pathogens within a range of 0.03-0.11% (v/v). Cinnamon and clove essential oils could be used as antifungal agents to manage post harvest fungal diseases of banana. Cinnamon and clove essential oil could be used as alternative post-harvest treatments on banana. Banana treated with essential oil is chemically safe and acceptable to consumers. Benomyl (Benlate), which is currently used to manage fungal pathogens, can cause adverse health effects and could be replaced with volatile essential oils.

  6. Damage Tolerance Assessment of Friction Pull Plug Welds

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  7. Stage fright in singers: three reaction types.

    PubMed

    Berghs, Geert

    2008-01-01

    Drawing on both my own personal experience and that of many colleagues and pupils, I shall describe three kinds of reactions to stage fright. The first is the primarily mental reaction of derealization, which involves feeling cut off from fear and decreasing body awareness. The second and third reactions to stage fright involve (a) increased and (b) decreased muscle tonus and their associated breathing patterns. Furthermore, I shall indicate how singers manage to pull themselves together through the very act of producing their first tones. Copyright 2008 S. Karger AG, Basel.

  8. Investigation of Materials for Waterproofing Leaky Corrugated Galvanized Steel-Arch Magazines from the Inside.

    DTIC Science & Technology

    1982-03-01

    Center St. Louis 63101 ATTM: AFKC-EN Ottawa, Ontario. Canada KIA UM8 ATTN: Chief. ED-D Kansas City 64106 7th US Army 09407 Bldg Research Advisory Board...Added 20% of total (Carboline) Not for vertical applications wt-Silica Flour 33(c) 131/5228 Good Spotty adhesion Pulled off Added 45% of total...Carboline) at 20 lb wt-Silica Flour , used primer CE 33(d) 131/522 Good Good Good With 45% of total (Carboline) wt-Silica Flour , Primers 1037 and CE 34 132

  9. Apparatus for tensile testing plate-type ceramic specimens

    DOEpatents

    Liu, Kenneth C.

    1993-01-01

    Apparatus for tensile testing plate-type ceramic specimens having dogbone- or T-shaped end sections without introducing bending stresses in the specimens during the application of a dynamic tensile loading on the specimens is described. A pair of elongated pull rods disposed in a side-by-side relationship are used to grip the shoulders on each T-shaped end section. The pull rods are pivotally attached to a piston-displaceable, disk-shaped member so as to be longitudinally movable with respect to one another effecting the self-alignment thereof with the shoulders on the T-shaped end sections of the specimen to compensate for shoulders being located in different longitudinal positions.

  10. Evaluation of effectiveness of cement removal from implant-retained crowns using a proposed circular crisscross flossing technique.

    PubMed

    Ferreira, Cimara Fortes; Shafter, Mohamed Amer; Jain, Vinay; Wicks, Russel Anthony; Linder, Erno; Ledo, Carlos Alberto da Silva

    2018-02-13

    Extruded cement during dental implant crown cementation may cause peri-implant diseases if not removed adequately. Evaluate the efficiency of removal of cement after cementation of implant crowns using an experimental "circular crisscross flossing technique (CCCFT) flossing technique, compared to the conventional "C" shape flossing technique (CSFT). Twenty-four patients rendered 29 experimental and 29 control crowns. Prefabricated abutments were secured to the implant with the margins at least 1 mm subgingivally. The abutments were scanned using CADCAM technology and Emax crowns were fabricated in duplicates. Each crown was cemented separately and excess cement was removed using the CSFT and the CCFT techniques. After completion of cementation was completed, the screw access holes were accessed and the crown was unscrewed along with the abutment. The samples were disinfected using 70% ethanol for 10 minutes. Crowns were divided into 4 parts using a marker in order to facilitate measurement data collection. Vertical and horizontal measurements were made for extruded cement for each control and experimental groups by means of a digital microscope. One-hundred and seventeen measurements were made for each group. Mann-Whitney test was applied to verify statistical significance between the groups. The CCFT showed a highly statistically significant result (104.8 ± 13.66, p<0.0001) for cement removal compared with the CSFT (291.8 ± 21.96, p<0.0001). The vertical lengths of the extruded cement showed a median of 231.1 µm (IQR = 112.79 -398.39) and 43.62 µm (IQR = 0 - 180.21) for the control and the experimental flossing techniques, respectively. The horizontal length of the extruded cement showed a median of 987.1 µm (IQR = 476.7 - 1,933.58) and 139.2 µm (IQR = 0 - 858.28) for the control and the experimental flossing techniques, respectively. The CCFT showed highly statistically significant less cement after implant crowns cementation when compared with the CSFT.

  11. The effect of multicolored machinable ceramics on the esthetics of all-ceramic crowns.

    PubMed

    Reich, Sven; Hornberger, Helga

    2002-07-01

    Computer-aided design/computer-assisted machining systems offer the possibility of fabricating restorations from one machinable ceramic block. Whether multishaded blocks improve esthetic results and are a viable alternative to individually stained ceramics has not been fully determined. The aim of this investigation was to examine the effect of multishaded blocks on the esthetic appearance of all-ceramic CEREC crowns and compare these crowns with single-shade and stained restorations. Ten subjects were included in this study. For each subject, 6 different crowns were milled with the use of a CEREC machine. One crown was milled from each of the following machinable ceramic materials: CEREC Vitablocs Mark II in classic colors; Vitablocs Mark II in 3D-Master colors; Vitablocs Mark II in either classic or 3D-Master colors, with additional staining; Megadenta Bloxx multishaded; Mark II experimental multilayer; and an experimental multilayer leucite ceramic. Three independent examiners assessed the esthetic appearance of crowns fabricated to match each subject's anterior tooth shade. A scale of 1 to 6 was used to score the shade match and esthetic adaptation of each crown, with 1 representing excellent characteristics and 3.5 serving as the threshold for clinical acceptability. The examiners' scores were averaged, and the mean values were analyzed with the Wilcoxon signed rank test (P

  12. Effect of coconut oil in plaque related gingivitis — A preliminary report

    PubMed Central

    Peedikayil, Faizal C.; Sreenivasan, Prathima; Narayanan, Arun

    2015-01-01

    Background: Oil pulling or oil swishing therapy is a traditional procedure in which the practitioners rinse or swish oil in their mouth. It is supposed to cure oral and systemic diseases but the evidence is minimal. Oil pulling with sesame oil and sunflower oil was found to reduce plaque related gingivitis. Coconut oil is an easily available edible oil. It is unique because it contains predominantly medium chain fatty acids of which 45-50 percent is lauric acid. Lauric acid has proven anti inflammatory and antimicrobial effects. No studies have been done on the benefits of oil pulling using coconut oil to date. So a pilot study was planned to assess the effect of coconut oil pulling on plaque induced gingivitis. Materials and Methods: The aim of the study was to evaluate the effect of coconut oil pulling/oil swishing on plaque formation and plaque induced gingivitis. A prospective interventional study was carried out. 60 age matched adolescent boys and girls in the age-group of 16-18 years with plaque induced gingivitis were included in the study and oil pulling was included in their oral hygiene routine. The study period was 30 days. Plaque and gingival indices of the subjects were assessed at baseline days 1,7,15 and 30. The data was analyzed using paired t test. Results: A statistically significant decrease in the plaque and gingival indices was noticed from day 7 and the scores continued to decrease during the period of study. Conclusion: Oil pulling using coconut oil could be an effective adjuvant procedure in decreasing plaque formation and plaque induced gingivitis. PMID:25838632

  13. A pull out test to compare two riparian species, Phyllanthus sellowianus and Sebastiania schottiana in terms of root anchorage ability

    NASA Astrophysics Data System (ADS)

    Hörbinger, Stephan; Sutili, Fabricio J.; Rauch, Hans Peter

    2013-04-01

    Soil bioengineering has become manifold applied in large parts of Brazil in recent years. The first projects were realized in the region of Rio Grande do Sul within river stabilization works to protect agricultural land of small regional farmers. As result of research work the species Sebastiania schottiana and Phyllanthus sellowianus showed very adequate morpho-physiological properties and seem to be appropriate for the use in soil bioengineering. The aim of the present study was to examine a still unknown but crucial factor, the resistance of the above mentioned species against being pulled out. The pull out resistance is an indicator for the stability of the soil-root matrix and expresses the stabilizing effects of plants on soil. Furthermore it is an applicable index to compare the qualification of the species to be used in soil bioengineering works. Another objective was to investigate plant characteristics, which correlate to the pull out resistance of the investigated species, to be able to draft up efficient plant strategies for future restoration works on eroded river embankments. For the experiment a special apparatus was designed, which enables to implement a pull out process with a constant rate and generate a graph of the plants resistance force versus its displacement. P. sellowianus showed a significant higher resistance against being pulled out than S. schottiana. The analyses of root and shoot properties of P. sellowianus showed more favorable morpho-physiological properties in terms of pull out resistance, a bigger amount of biomass, both above and below ground and also a higher amount of anchorage. The Cross-Sectional-Areas (CSA) of the shoots showed in both species the strongest correlation of the investigated shoot and root properties with the maximum resistance against being pulled out. Thus it can be concluded that the CSA can be used as a value to assess the stabilization effects of the plants. The experiments showed that some root and shoot properties do have a great impact on the pullout strength and that P. sellowianus can be preferred for slope stabilization works as it exhibits outstanding resistance against being pulled out.

  14. A brief description of the biomechanics and physiology of a strongman event: the tire flip.

    PubMed

    Keogh, Justin W L; Payne, Amenda L; Anderson, Brad B; Atkins, Paul J

    2010-05-01

    The purpose of this study was to (a) characterize the temporal aspects of a popular strongman event, the tire flip; (b) gain some insight into the temporal factors that could distinguish the slowest and fastest flips; and (c) obtain preliminary data on the physiological stress of this exercise. Five resistance-trained subjects with experience in performing the tire flip gave informed consent to participate in this study. Each subject performed 2 sets of 6 tire flips with a 232-kg tire with 3 minutes of rest between sets. Temporal variables were obtained from video cameras positioned 10 m from the tire, perpendicular to the intended direction of the tire flip. Using the "stopwatch" function in Silicon Coach, the duration of each tire flip and that of the first pull, second pull, transition, and push phases were recorded. Physiological stress was estimated via heart rate and finger-prick blood lactate response. Independent T-tests revealed that the 2 faster subjects (0.38 +/- 0.17 s) had significantly (p < 0.001) shorter second pull durations than the 3 slower subjects (1.49 +/- 0.92 s). Paired T-tests revealed that the duration of the second pull for each subject's fastest 3 trials (0.55 +/- 0.35 s) were significantly (p = 0.007) less than their 3 slowest trials (1.69 +/- 1.35 s). Relatively high heart rate (179 +/- 8 bpm) and blood lactate (10.4 +/- 1.3 mmol/L(-1)) values were found at the conclusion of the second set. Overall, the results of this study suggest that the duration of the second pull is a key determinant of tire flip performance and that this exercise provides relatively high degrees of physiological stress.

  15. Marginal and internal adaptation of ceramic crown restorations fabricated with CAD/CAM technology and the heat-press technique.

    PubMed

    Mously, Hisham A; Finkelman, Matthew; Zandparsa, Roya; Hirayama, Hiroshi

    2014-08-01

    The accuracy of chairside computer-aided design and computer-aided manufacturing (CAD/CAM) restorations is questionable, and the effect of the die spacer settings is not well stated in the literature. The purpose of the study was to evaluate the marginal and internal adaptation of E4D crowns fabricated with different spacer thicknesses and to compare these crowns with those fabricated with the heat-press technique. The E4D system was used to fabricate 30 crowns for the first 3 groups, with different spacer thickness settings: 30 μm, 60 μm, and 100 μm. In the fourth group, 10 lithium disilicate crowns were fabricated with the heat-press technique. The occlusal gap, axial gap, vertical marginal gap, and absolute marginal discrepancy were evaluated by x-ray microtomography. Statistical significance was assessed with the Kruskal-Wallis test (α=.05). For post hoc analyses, the Mann-Whitney U test was used alongside the Bonferroni correction for multiple comparisons (α=.008). Within the CAD/CAM groups, the 30-μm spacer thickness resulted in the lowest median axial gap (90.04 μm), whereas the 60-μm spacer thickness resulted in the lowest median occlusal gap (152.39 μm). The median marginal gap values of the CAD/CAM-60 group (49.35 μm) and CAD/CAM-100 group (46.65 μm) were lower than those of the CAD/CAM-30 group (55.18 μm). No significant differences among the CAD/CAM groups were observed for absolute marginal discrepancy. The heat-press group had significantly different values than those of the CAD/CAM groups. The spacer thickness and fabrication technique affected the adaptation of ceramic crowns. The heat-press group yielded the best marginal and internal crown adaptation results. The 30- or 60-μm spacer settings are recommended for the E4D CAD/CAM system. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Blister Test for Measurements of Adhesion and Adhesion Degradation of Organic Polymers on AA2024-T3

    NASA Astrophysics Data System (ADS)

    Rincon Troconis, Brendy Carolina

    A key parameter for the performance of corrosion protective coatings applied to metals is adhesion. Surface preparation prior to coating application is known to be critical, but there is a lack of understanding of what controls adhesion. Numerous techniques have been developed in the last decades to measure the adhesion strength of coatings to metals. Nonetheless, they are generally non-quantitative, non-reproducible, performed in dry conditions, or overestimate adhesion. In this study, a quantitative and reproducible technique, the Blister Test (BT), is used. The BT offers the ability to study the effects of a range of parameters, including the presence or absence of a wetting liquid, and simulates the stress situation in the coating/substrate interface. The effects of roughness and surface topography were studied by the BT and Optical Profilometry, using AA2024-T3 substrates coated with polyvinyl butyral (PVB). Random abrasion generated a surface with lower average roughness than aligned abrasion due to the continual cross abrasion of the grooves. The BT could discern the effects of different mechanical treatments. An adhesion strength indicator was defined and found to be a useful parameter. The effectiveness of standard adhesion techniques such as ASTM D4541 (Pull-off Test) and ASTM D3359 (Tape Test) was compared to the BT. Also, different attempts to measure adhesion and adhesion degradation of organic polymers to AA2024-T3 were tested. The pull-off test does not produce adhesive failure across the entire interface, while the tape test is a very qualitative technique and does not discern between the effects of different coating systems on the adhesion performance. The BT produces adhesive failure of the primer studied, is very reproducible, and is able to rank different coating systems. Therefore, it was found to be superior to the others. The approaches tested for adhesion degradation were not aggressive enough to have a measurable effect. The effects of cleaning/desmutting and conversion coating (CC) on the adhesion strength of acetoacetate to AA2024-T3 and the effects of improper water rinse temperature after cleaner were assessed using the BT. The results showed that pretreatments improve the adhesion strength of acetoacetate primer on AA2024-T3, but the comparative behavior depends on the specific treatment. Process control is of paramount importance for the performance of acetoacetate coated systems applied on AA2024-T3. The lack of thermal activity in the water rinse after cleaning step produces deleterious effects on the adhesion and blistering resistance of CC. Finally, a test sample incorporating a coated and scribed Al alloy panel and uncoated through-hole fasteners (Ti, SS316, AA2024-T3) was designed to provide accelerated response during atmospheric corrosion testing in the field (long-term beach exposure) or in laboratory chambers (ASTM B117). The results after only three weeks of exposure to ASTM B117 correlated well with long-term beach exposure, allowing rapid ranking of different coating systems. Of the fastener materials studied, visual observation and volume lost determination indicated that the worst attack occurred near SS316 fasteners its effect was explained by Scanning Kelvin Probe measurements and the available cathodic current measured in chloride solution.

  17. An alternate and reversible method for flight restraint of cranes.

    PubMed

    Zhang, Sen Lin; Yang, Shu Hui; Li, Bing; Xu, Yan Chun; Ma, Jian Hua; Xu, Jian Feng; Zhang, Xian Guang

    2011-01-01

    Flight restraint is important for zoos, safaris, and breeding centers for large birds. Currently used techniques for flight restraint include both surgical and non-surgical approaches. Surgical approaches usually cause permanent change to or removal of tendon, patagial membrane, or wing bones, and can cause pain and inflammation. Non-surgical approaches such as clipping or trimming feathers often alter the bird's appearance, and can damage growing blood feathers in fledglings or cause joint stiffness. We observed microstructure of primary feathers of the red-crowned crane (Grus japonensis) and found that the width of barbs is a determinative factor influencing vane stiffness and geometric parameters. We hypothesized that partial longitudinal excision of barbs on the ventral surface of the primary feathers would reduce the stiffness of the vane and render the feathers unable to support the crane's body weight during flight. Furthermore, we hypothesized that this modification of barbs would also change the aerodynamic performance of feathers such that they could not generate sufficient lift and thrust during flapping to enable the bird to fly. We tested this hypothesis on a red-crowned crane that had normal flight capability by excising the ventral margin of barbs on all 10 primaries on the left wing. The bird was unable to take off until the modified feathers were replaced by new ones. Removal of barbs proved to be a simple, non-invasive, low-cost and reversible method for flight restraint. It is potentially applicable to other large birds with similar structural characteristics of primary feathers. © 2010 Wiley-Liss, Inc.

  18. Practice makes perfect: Performance optimisation in 'arboreal' parkour athletes illuminates the evolutionary ecology of great ape anatomy.

    PubMed

    Halsey, Lewis G; Coward, Samuel R L; Crompton, Robin H; Thorpe, Susannah K S

    2017-02-01

    An animal's size is central to its ecology, yet remarkably little is known about the selective pressures that drive this trait. A particularly compelling example is how ancestral apes evolved large body mass in such a physically and energetically challenging environment as the forest canopy, where weight-bearing branches and lianas are flexible, irregular and discontinuous, and the majority of preferred foods are situated on the most flexible branches at the periphery of tree crowns. To date the issue has been intractable due to a lack of relevant fossil material, the limited capacity of the fossil record to reconstruct an animal's behavioural ecology and the inability to measure energy consumption in freely moving apes. We studied the oxygen consumption of parkour athletes while they traversed an arboreal-like course as an elite model ape, to test the ecomorphological and behavioural mechanisms by which a large-bodied ape could optimize its energetic performance during tree-based locomotion. Our results show that familiarity with the arboreal-like course allowed the athletes to substantially reduce their energy expenditure. Furthermore, athletes with larger arm spans and shorter legs were particularly adept at finding energetic savings. Our results flesh out the scanty fossil record to offer evidence that long, strong arms, broad chests and a strong axial system, combined with the frequent use of uniform branch-to-branch arboreal pathways, were critical to off-setting the mechanical and energetic demands of large mass in ancestral apes. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Comparison of Marginal Circumference of Two Different Pre-Crimped Stainless Steel Crowns for Primary Molars After Re-Crimping.

    PubMed

    Afshar, Hossein; Ghandehari, Mehdi; Soleimani, Banafsheh

    2015-12-01

    It is not clear what type of pre-crimped crown is more successful in achieving greater marginal adaptation following re-crimping. This study aimed to assess the changes in the circumference of 3M ESPE and MIB pre-crimped stainless steel crowns (SSCs) for the primary maxillary and mandibular first and second molars following re-crimping. This was an in-vitro, experimental study. Initial photographs were obtained from the margins of 3M and MIB SSCs for the upper and lower primary molars using a digital camera. Crown margins were crimped by applying 0.2N force using 114 and 137 pliers. Post-crimping photographs were also obtained and the changes in crown circumference after crimping were calculated using AutoCad software. The percentage of reduction in the circumference of crowns for each tooth was statistically analyzed based on the type of crown using student t-test. The effect of crown design and the associated teeth on the decreased circumference percentage was statistically analyzed by two-sided ANOVA. The percentage of reduction in lower E SSC circumference was 3.71±0.39% in MIB and 6.29±0.62% in 3M crowns. These values were 3.55±0.55% and 7.15±1.13% for the lower Ds, and 3.95±0.43 and 6.24±0.85% for the upper Ds, respectively. For the upper Es, these values were found to be 3.12±0.65% and 5.14±0.94%, respectively. For each tooth, a significant difference was found between MIB and 3M SSCs in terms of the percentage of reduction in crown circumference following crimping. The magnitude of this reduction was smaller in MIB compared to 3M SSCs (P<0.001). Considering the significant reduction in the marginal circumference of precrimped SSCs following re-crimping, it appears that this manipulation must be necessarily performed for MIB and 3M pre-crimped SSCs. By using 3M SSCs, higher marginal adaptation can be achieved following crimping.

  20. Comparison of Marginal Circumference of Two Different Pre-Crimped Stainless Steel Crowns for Primary Molars After Re-Crimping

    PubMed Central

    Afshar, Hossein; Ghandehari, Mehdi; Soleimani, Banafsheh

    2015-01-01

    Objectives: It is not clear what type of pre-crimped crown is more successful in achieving greater marginal adaptation following re-crimping. This study aimed to assess the changes in the circumference of 3M ESPE and MIB pre-crimped stainless steel crowns (SSCs) for the primary maxillary and mandibular first and second molars following re-crimping. Materials and Methods: This was an in-vitro, experimental study. Initial photographs were obtained from the margins of 3M and MIB SSCs for the upper and lower primary molars using a digital camera. Crown margins were crimped by applying 0.2N force using 114 and 137 pliers. Post-crimping photographs were also obtained and the changes in crown circumference after crimping were calculated using AutoCad software. The percentage of reduction in the circumference of crowns for each tooth was statistically analyzed based on the type of crown using student t-test. The effect of crown design and the associated teeth on the decreased circumference percentage was statistically analyzed by two-sided ANOVA. Results: The percentage of reduction in lower E SSC circumference was 3.71±0.39% in MIB and 6.29±0.62% in 3M crowns. These values were 3.55±0.55% and 7.15±1.13% for the lower Ds, and 3.95±0.43 and 6.24±0.85% for the upper Ds, respectively. For the upper Es, these values were found to be 3.12±0.65% and 5.14±0.94%, respectively. For each tooth, a significant difference was found between MIB and 3M SSCs in terms of the percentage of reduction in crown circumference following crimping. The magnitude of this reduction was smaller in MIB compared to 3M SSCs (P<0.001). Conclusion: Considering the significant reduction in the marginal circumference of precrimped SSCs following re-crimping, it appears that this manipulation must be necessarily performed for MIB and 3M pre-crimped SSCs. By using 3M SSCs, higher marginal adaptation can be achieved following crimping. PMID:27559353

  1. Directional preference in dogs: Laterality and "pull of the north"

    PubMed Central

    Adámková, Jana; Svoboda, Jan; Benediktová, Kateřina; Martini, Sabine; Nováková, Petra; Tůma, David; Kučerová, Michaela; Divišová, Michaela; Begall, Sabine; Hart, Vlastimil

    2017-01-01

    Laterality is a well described phenomenon in domestic dogs. It was shown that dogs, under calm Earth's magnetic field conditions, when marking their home ranges, tend to head about north- or southwards and display thus magnetic alignment. The question arises whether magnetic alignment might be affected or even compromised by laterality and vice versa. We tested the preference of dogs to choose between two dishes with snacks that were placed left and right, in different compass directions (north and east, east and south, south and west or west and north) in front of them. Some dogs were right-lateral, some left-lateral but most of them were ambilateral. There was a preference for the dish placed north compared to the one placed east of the dog ("pull of the north"). This effect was highly significant in small and medium-sized breeds but not in larger breeds, highly significant in females, in older dogs, in lateralized dogs but less significant or not significant in males, younger dogs, or ambilateral dogs. Laterality and “pull of the north” are phenomena which should be considered in diverse tasks and behavioral tests with which dogs or other animals might be confronted. The interaction and possible conflict between lateralization and "pull of the north" might be also considered as a reason for shifted magnetic alignment observed in different animal species in different contexts. PMID:28945773

  2. Directional preference in dogs: Laterality and "pull of the north".

    PubMed

    Adámková, Jana; Svoboda, Jan; Benediktová, Kateřina; Martini, Sabine; Nováková, Petra; Tůma, David; Kučerová, Michaela; Divišová, Michaela; Begall, Sabine; Hart, Vlastimil; Burda, Hynek

    2017-01-01

    Laterality is a well described phenomenon in domestic dogs. It was shown that dogs, under calm Earth's magnetic field conditions, when marking their home ranges, tend to head about north- or southwards and display thus magnetic alignment. The question arises whether magnetic alignment might be affected or even compromised by laterality and vice versa. We tested the preference of dogs to choose between two dishes with snacks that were placed left and right, in different compass directions (north and east, east and south, south and west or west and north) in front of them. Some dogs were right-lateral, some left-lateral but most of them were ambilateral. There was a preference for the dish placed north compared to the one placed east of the dog ("pull of the north"). This effect was highly significant in small and medium-sized breeds but not in larger breeds, highly significant in females, in older dogs, in lateralized dogs but less significant or not significant in males, younger dogs, or ambilateral dogs. Laterality and "pull of the north" are phenomena which should be considered in diverse tasks and behavioral tests with which dogs or other animals might be confronted. The interaction and possible conflict between lateralization and "pull of the north" might be also considered as a reason for shifted magnetic alignment observed in different animal species in different contexts.

  3. Fracture Strength of Titanium based Lithium Disilicate and Zirconia Abutment Crowns

    DTIC Science & Technology

    2017-06-12

    to assisting you in your future publication/presentation efforts. LINDA STEEL -GOODWIN, Col, USAF, BSC Director, Clinical Investigations & Research...The specimens were cemented to a titanium-base implant system, subjected to thermocycling and cyclic loading, and fractured in a material testing...being lost. No complications were noted with respect to the abutments and only three crowns had complications (i.e., 2 debonded, 1 excess cement

  4. "Leaching or not leaching": an alternative approach to antimicrobial materials via copolymers containing crown ethers as active groups.

    PubMed

    De Rosa, M; Vigliotta, G; Soriente, A; Capaccio, V; Gorrasi, G; Adami, R; Reverchon, E; Mella, M; Izzo, L

    2017-03-28

    In this work, new copolymers containing either MMA and 18C6 crown-ether pendants, or PEG, MMA and 18C6 crown-ether pendants were synthesized to test the idea that sequestering structural alkali-earth ions from the bacterial outer membrane (OM) may lead to bacterial death. The copolymers were obtained either via uncontrolled radical polymerization or ATRP; the latter approached allowed us to produce not only linear copolymers but also branched Y-like structures. After checking for the capability of complexing magnesium and calcium ions, the antimicrobial activity of all copolymers was tested placing their casted plaques in contact with pure water E. coli suspensions. All plaques adsorbed alkali-earth ions and killed bacteria, albeit with different antimicrobial efficiencies. Differences in the latter characteristic were attributed to different plaque roughness. The role of the 18C6 crown-ether pendants was elucidated by pre-saturating plaques with Mg/Ca ions, the marked reduction in antimicrobial efficiency indicating that losing the latter from OM due to surface complexation does play an important role in killing bacteria at short (<5 h) contact times. At longer times, the mode of action is instead related to the poly-cationic nature acquired by the plaques due to ion sequestering.

  5. Bone anchors or interference screws? A biomechanical evaluation for autograft ankle stabilization.

    PubMed

    Jeys, Lee; Korrosis, Sotiris; Stewart, Todd; Harris, Nicholas J

    2004-01-01

    Autograft stabilization uses free semitendinosus tendon grafts to anatomically reconstruct the anterior talofibular ligament. Study aims were to evaluate the biomechanical properties of Mitek GII anchors compared with the Arthrex Bio-Tenodesis Screw for free tendon reconstruction of the anterior talofibular ligament. There are no differences in load to failure and percentage specimen elongation at failure between the 2 methods. Controlled laboratory study using porcine models. Sixty porcine tendon constructs were failure tested. Re-creating the pull of the anterior talofibular ligament, loads were applied at 70 degrees to the bones. Thirty-six tendons were fixed to porcine tali and tested using a single pull to failure; 10 were secured with anchors and No. 2 Ethibond, 10 with anchors and FiberWire, 10 with screws and Fiberwire, and 6 with partially gripped screws. Cyclic preloading was conducted on 6 tendons fixed by anchors and on 6 tendons fixed by screws before failure testing. Two groups of 6 components fixed to the fibula were also tested. The talus single-pull anchor group produced a mean load of 114 N and elongation of 37% at failure. The talus single-pull screw group produced a mean load of 227 N and elongation of 22% at failure (P <.05). Cyclic preloading at 65% failure load before failure testing produced increases in load and decreases in elongation at failure. Partially gripped screws produced a load of 133 N and elongation of 30% at failure. The fibula model produced significant increases in load to failure for both. The human anterior talofibular ligament has loads of 139 N at failure with instability occurring at 20% elongation. Interference screw fixation produced significantly greater failure strength and less elongation at failure than bone anchors. The improved biomechanics of interference screws suggests that these may be more suited to in vivo reconstruction of the anterior talofibular ligament than are bone anchors.

  6. Fracture resistance of pulpless teeth restored with post-cores and crowns.

    PubMed

    Hayashi, Mikako; Takahashi, Yutaka; Imazato, Satoshi; Ebisu, Shigeyuki

    2006-05-01

    The present study was designed to test the null hypothesis that there is no difference in the fracture resistance of pulpless teeth restored with different types of post-core systems and full coverage crowns. Extracted human upper premolars were restored with a fiber post, prefabricated metallic post or cast metallic post-core. Teeth with full crown preparations without post-core restorations served as a control. All teeth were restored with full coverage crowns. A 90-degree vertical or 45-degree oblique load was applied to the restored teeth with a crosshead speed of 0.5 mm/min, and the fracture loads and mode of fracture were recorded. Under the condition of vertical loading, the fracture load of teeth restored with the cast metallic post-cores was greatest among the groups (two-factor factorial ANOVA and Scheffe's F test, P<0.05). All fractures in teeth restored with all types of post-core systems propagated in the middle portions of roots, including the apices of the posts. Under the condition of oblique loading, the fracture load of teeth restored with pre-fabricated metallic posts was significantly smaller than that in other groups. Two-thirds of fractures in the fiber post group propagated within the cervical area, while most fractures in other groups extended beyond the middle of the roots. From the results of the present investigations, it was concluded that under the conditions of vertical and oblique loadings, the combination of a fiber post and composite resin core with a full cast crown is most protective of the remaining tooth structure.

  7. Assessment of Anaerobic Metabolic Activity and Microbial Diversity in a Petroleum-Contaminated Aquifer Using Push-Pull Tests in Combination With Molecular Tools and Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Kleikemper, J.; Pombo, S. A.; Zeyer, J.

    2002-12-01

    In the past, studies on microbial communities in natural environments have typically focused on either their structure or on their metabolic function. However, linking structure and function is important for understanding microbial community dynamics, in particular in contaminated environments. We will present results of a novel combination of a hydrogeological field method (push-pull tests) with molecular tools and stable isotope analysis, which was employed to quantify anaerobic activities and associated microbial diversity in a petroleum-contaminated aquifer in Studen, Switzerland. Push-pull tests consisted of the injection of test solution containing a conservative tracer and reactants (electron acceptors, 13C-labeled carbon sources) into the aquifer anoxic zone. Following an incubation period, the test solution/groundwater mixture was extracted from the same location. Metabolic activities were computed from solute concentrations measured during extraction. Simultaneously, microbial diversity in sediment and groundwater was characterized by using fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), as well as phospholipids fatty acid (PLFA) analysis in combination with 13C isotopic measurements. Results from DGGE analyses provided information on the general community structure before, during and after the tests, while FISH yielded information on active populations. Moreover, using 13C-labeling of microbial PLFA we were able to directly link carbon source assimilation in an aquifer to indigenous microorganisms while providing quantitative information on respective carbon source consumption.

  8. Association between anthropometry and upper-body strength qualities with sprint paddling performance in competitive wave surfers.

    PubMed

    Sheppard, Jeremy M; McNamara, Phil; Osborne, Mark; Andrews, Mark; Oliveira Borges, Thiago; Walshe, Phil; Chapman, Dale W

    2012-12-01

    This study aimed to evaluate the potential association with anthropometry and upper-body pulling strength with sprint kinematics of competitive surfers. Ten competitive male surfers (23.9 ± 6.8 years, 177.0 ± 6.5 cm, 72.2 ± 2.4 kg) were assessed for stature, mass, arm span, ∑ 7 site skinfold thickness, pronated pull-up strength, and sprint paddling performance from a stationary start to 15 m. Pearson correlation analysis, and independent t-tests were used to compare potential differences between the slower and faster group of sprint paddlers. Strong associations were found between relative (total kilograms lifted per athlete mass) upper-body pulling strength and sprint paddling time to 5, 10, and 15 m, and peak sprint paddling velocity (r = 0.94, 0.93, 0.88, 0.66, respectively, p < 0.05) and relative upper-body pulling strength was found to be superior (p < 0.05) in the faster group, with large effect (d = 1.88). The results of this study demonstrate a strong association between relative upper-body pulling strength and sprint paddling ability in surfers. Strength and conditioning coaches working with competitive surfers should implement strength training with surfers, including an emphasis on developing relative strength, because this may have a strong influence on sprint paddling performance.

  9. New flux based dose-response relationships for ozone for European forest tree species.

    PubMed

    Büker, P; Feng, Z; Uddling, J; Briolat, A; Alonso, R; Braun, S; Elvira, S; Gerosa, G; Karlsson, P E; Le Thiec, D; Marzuoli, R; Mills, G; Oksanen, E; Wieser, G; Wilkinson, M; Emberson, L D

    2015-11-01

    To derive O3 dose-response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Which is the preferred revision technique for loosened iliac screw? A novel technique of boring cement injection from the outer cortical shell.

    PubMed

    Yu, Bin-Sheng; Yang, Zhan-Kun; Li, Ze-Min; Zeng, Li-Wen; Wang, Li-Bing; Lu, William Weijia

    2011-08-01

    An in vitro biomechanical cadaver study. To evaluate the pull-out strength after 5000 cyclic loading among 4 revision techniques for the loosened iliac screw using corticocancellous bone, longer screw, traditional cement augmentation, and boring cement augmentation. Iliac screw loosening is still a clinical problem for lumbo-iliac fusion. Although many revision techniques using corticocancellous bone, larger screw, and polymethylmethacrylate (PMMA) augmentation were applied in repairing pedicle screw loosening, their biomechanical effects on the loosened iliac screw remain undetermined. Eight fresh human cadaver pelvises with the bone mineral density values ranging from 0.83 to 0.97 g/cm were adopted in this study. After testing the primary screw of 7.5 mm diameter and 70 mm length, 4 revision techniques were sequentially established and tested on the same pelvis as follows: corticocancellous bone, longer screw with 100 mm length, traditional PMMA augmentation, and boring PMMA augmentation. The difference of the boring technique from traditional PMMA augmentation is that PMMA was injected into the screw tract through 3 boring holes of outer cortical shell without removing the screw. On an MTS machine, after 5000 cyclic compressive loading of -200∼-500 N to the screw head, axial maximum pull-out strengths of the 5 screws were measured and analyzed. The pull-out strengths of the primary screw and 4 revised screws with corticocancellous bone, longer screw and traditional and boring PMMA augmentation were 1167 N, 361 N, 854 N, 1954 N, and 1820 N, respectively. Although longer screw method obtained significantly higher pull-out strength than corticocancellous bone (P<0.05), the revised screws using these 2 techniques exhibited notably lower pull-out strength than the primary screw and 2 PMMA-augmented screws (P<0.05). Either traditional or boring PMMA screw showed obviously higher pull-out strength than the primary screw (P<0.05); however, no significant difference of pull-out strength was detected between the 2 PMMA screws (P>0.05). Wadding corticocancellous bone and increasing screw length failed to provide sufficient anchoring strength for a loosened iliac screw; however, both traditional and boring PMMA-augmented techniques could effectively increase the fixation strength. On the basis of the viewpoint of minimal invasion, the boring PMMA augmentation may serve as a suitable salvage technique for iliac screw loosening.

  11. Influence of Manufacturing Methods of Implant-Supported Crowns on External and Internal Marginal Fit: A Micro-CT Analysis.

    PubMed

    Moris, Izabela C M; Monteiro, Silas Borges; Martins, Raíssa; Ribeiro, Ricardo Faria; Gomes, Erica A

    2018-01-01

    To evaluate the influence of different manufacturing methods of single implant-supported metallic crowns on the internal and external marginal fit through computed microtomography. Forty external hexagon implants were divided into 4 groups ( n = 8), according to the manufacturing method: GC, conventional casting; GI, induction casting; GP, plasma casting; and GCAD, CAD/CAM machining. The crowns were attached to the implants with insertion torque of 30 N·cm. The external (vertical and horizontal) marginal fit and internal fit were assessed through computed microtomography. Internal and external marginal fit data ( μ m) were submitted to a one-way ANOVA and Tukey's test ( α = .05). Qualitative evaluation of the images was conducted by using micro-CT. The statistical analysis revealed no significant difference between the groups for vertical misfit ( P = 0.721). There was no significant difference ( P > 0.05) for the internal and horizontal marginal misfit in the groups GC, GI, and GP, but it was found for the group GCAD ( P ≤ 0.05). Qualitative analysis revealed that most of the samples of cast groups exhibited crowns underextension while the group GCAD showed overextension. The manufacturing method of the crowns influenced the accuracy of marginal fit between the prosthesis and implant. The best results were found for the crowns fabricated through CAD/CAM machining.

  12. Comparative evaluation of the effect of different crown ferrule designs on the fracture resistance of endodontically treated mandibular premolars restored with fiber posts, composite cores, and crowns: An ex-vivo study

    PubMed Central

    Dua, Nikita; Kumar, Bhupendra; Arunagiri, D.; Iqbal, Mohammad; Pushpa, S.; Hussain, Juhi

    2016-01-01

    Introduction: In cases of severe hard tissue loss, 2 mm circumferential ferrule is difficult to achieve which leads to incorporation of different ferrule designs. Aim: To compare and evaluate the effect of different crown ferrule designs on the fracture resistance of mandibular premolars restored with fiber posts, composite cores, and crowns. Materials and Methods: Fifty freshly extracted mandibular premolars were endodontically treated and divided into five groups: Group I - 2 mm circumferential ferrule above the cementoenamel junction (CEJ); Group II - 2 mm ferrule on the facial aspect above CEJ; Group III - 2 mm ferrule on the lingual aspect above CEJ; Group IV - 2 mm ferrule on the facial and lingual aspects above CEJ with interproximal concavities, and Group V - no ferrule (control group) and were later restored with fiber posts, composite cores, and crowns. Specimens were mounted on a universal testing machine, and compressive load was applied at a crosshead speed of 1 mm/min until fracture occurred. Results: The results showed that circumferential ferrule produced the highest mean fracture resistance and the least fracture resistance was found in the control group. Conclusion: Circumferential ferrule increases the fracture resistance of endodontically treated teeth restored with bonded post, core, and crown. PMID:27217642

  13. Could LogP be a principal determinant of biological activity in 18-crown-6 ethers? Synthesis of biologically active adamantane-substituted diaza-crowns.

    PubMed

    Supek, Fran; Ramljak, Tatjana Šumanovac; Marjanović, Marko; Buljubašić, Maja; Kragol, Goran; Ilić, Nataša; Smuc, Tomislav; Zahradka, Davor; Mlinarić-Majerski, Kata; Kralj, Marijeta

    2011-08-01

    18-crown-6 ethers are known to exert their biological activity by transporting K(+) ions across cell membranes. Using non-linear Support Vector Machines regression, we searched for structural features that influence antiproliferative activity in a diverse set of 19 known oxa-, monoaza- and diaza-18-crown-6 ethers. Here, we show that the logP of the molecule is the most important molecular descriptor, among ∼1300 tested descriptors, in determining biological potency (R(2)(cv) = 0.704). The optimal logP was at 5.5 (Ghose-Crippen ALOGP estimate) while both higher and lower values were detrimental to biological potency. After controlling for logP, we found that the antiproliferative activity of the molecule was generally not affected by side chain length, molecular symmetry, or presence of side chain amide links. To validate this QSAR model, we synthesized six novel, highly lipophilic diaza-18-crown-6 derivatives with adamantane moieties attached to the side arms. These compounds have near-optimal logP values and consequently exhibit strong growth inhibition in various human cancer cell lines and a bacterial system. The bioactivities of different diaza-18-crown-6 analogs in Bacillus subtilis and cancer cells were correlated, suggesting conserved molecular features may be mediating the cytotoxic response. We conclude that relying primarily on the logP is a sensible strategy in preparing future 18-crown-6 analogs with optimized biological activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Fit of lithium disilicate crowns fabricated from conventional and digital impressions assessed with micro-CT.

    PubMed

    Kim, Jae-Hyun; Jeong, Ji-Hye; Lee, Jin-Han; Cho, Hye-Won

    2016-10-01

    Although the number of lithium disilicate crowns fabricated with computer-aided design and computer-aided manufacturing (CAD-CAM) technology has increased, the accuracy of the prostheses produced by using digital pathways remains unknown. The purpose of this in vitro study was to compare marginal and internal discrepancies of lithium disilicate crowns fabricated from digital and conventional impressions. A typodont mandibular first molar was prepared for a lithium disilicate crown, and 20 duplicate dies were fabricated by milling poly(methyl methacrylate) resin blocks from laboratory scans. Four groups of 5 lithium disilicate crowns each were created by using a CS3500 (Carestream Dental) intraoral digital impression; Trios (3shape) intraoral digital impression; Ceramill Map400 (Amann Girrbach) extraoral digital impression; and a heat-press technique as a control group. All of the IPS e.max CAD (Ivoclar Vivadent AG) crowns were produced using a 5-axis milling engine (Ceramill Motion2). The lithium disilicate crowns were cemented with zinc phosphate cement under finger pressure. Marginal and internal discrepancies were measured using micro-computed tomography (SkyScan1172). One-way ANOVAs with the Tukey honest significant differences test were used for statistical analysis of the data (α=.05). The mean marginal discrepancies of CS3500 lithium disilicate crowns were 129.6 μm, 200.9 μm for Ceramill Map400, and 207.8 μm 176.1 μm for the heat-press technique; and the internal discrepancy volumes for CS3500 were 25.3 mm 3 , 40.7 mm 3 for Trios, 29.1 mm 3 for Ceramill Map400, and 29.1 and 31.4 mm 3 for the heat-press technique. The CS3500 group showed a significantly better marginal discrepancy than the other 3 groups and a smaller internal discrepancy volume than the Trios group (P<.05). Significant differences were found between IPS e.max CAD crowns produced using 2 intraoral digital impressions, whereas no differences were found between IPS e.max CAD crowns produced from an extraoral digital impression and IPS e.max Press crowns produced using a heat-press technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. The anomaly in a breakthrough curve of a single well "push-pull" tracer test: A density driven effect?

    NASA Astrophysics Data System (ADS)

    Zeilfelder, Sarah; Hebig, Klaus; Ito, Narimitsu; Machida, Isao; Scheytt, Traugott; Marui, Atsunao

    2013-04-01

    What method is appropriate to investigate an aquifer when there is only one well available? A single well "push-pull" tracer test (PP Test) may be a suitable method in order to characterize an aquifer and to obtain information about the hydraulic and chemical properties when only one well is available for the investigations. In a PP test, a test solution that contains a known amount of solutes and a conservative tracer is injected into the aquifer ("push") and extracted afterwards ("pull"). Optionally, the test solution is flushed out of the well and the casing with untreated test solution with a so called "chaser" before being extracted. Also between the injection and the extraction phase a drifting time may be included. The breakthrough of the tracer during the extraction phase is measured and used for analyses and interpretation. In the last three years, several PP Test campaigns were conducted at two different test sites in Japan (Hebig et al. 2011, Zeilfelder et al. 2012). The aim was to investigate the applicability of the PP Test method in different geological settings and in different types of aquifers. The latest field campaign thus focussed on the question how variations of the setup are influencing the breakthrough curve of the PP Test in order to develop and enhance this method. Also the standardization of the PP Test was an aim of this study. During the campaign, a total of seven PP Tests were performed, while only single aspects of the setup were varied from test to test. The tests differed in injection and extraction rate, in the salinity of the injected test solution and in the use of a chaser solution. The general shapes of the breakthrough curves were similar and conclusions about the repeatability of the PP Test could be drawn. However, a sharp anomaly was observed in the breakthrough curve of one specific setup type. By repeating this PP test under the same boundary conditions, we were able to recreate the anomaly and could exclude any technical aspects as a source. In this version of the PP test higher salinized test solution was injected into the aquifer. There are several hypotheses that could explain the behavior of the breakthrough curves of the tracer in this test design. Of all the possibilities (like sorption processes, unexpected tracer reactions, inhomogeneities in the aquifer, influence of the well design), we assume that ion exchange processes and density driven flow are the main reasons for the repeatedly observed anomaly. References: Hebig, K.H., Ito, N., Scheytt, T.J. & Marui, A. (2011). Hydraulic and hydrochemical characterization of deep coastal sedimentary basins by single-well Push-Pull tests. GSA Annual Meeting, 9-12 October 2011, Minneapolis, USA. Zeilfelder, S., Ito, N., Marui, A., Hebig, K. & Scheytt, T. (2012). Push-Pull-Test und Tracer-Test in einem tiefen Grundwasserleiter in Kameoka, Japan. Kurzfassung in: Liedl, R., Burghardt, D., Simon, E., Reimann, T. & Kaufmann-Knoke (Hg.). Grundwasserschutz und Grundwassernutzung. Tagung der Fachsektion Hydrogeologie in der DGG (FH-DGG). 16. - 20. Mai 2012, Dresden. Kurfassungen der Vorträge und Poster. Schriftenreihe der DGG, Heft 78, S. 192.

  16. Future Food Production System Development Pulling From Space Biology Crop Growth Testing in Veggie

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Romeyn, Matt; Fritsche, Ralph

    2017-01-01

    Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics lessons, as we learn about growing at different scales and move toward developing systems that require less launch mass. Veggie will be used as a test bed for novel food production technologies. Veggie is a relatively simple precursor food production system but the knowledge gained from space biology validation tests in Veggie will have far reaching repercussions on future exploration food production. This work is supported by NASA.

  17. Future Food Production System Development Pulling from Space Biology Crop Growth Testing in Veggie

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Romeyn, M. W.; Fritsche, R. F.

    2017-01-01

    Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics lessons, as we learn about growing at different scales and move toward developing systems that require less launch mass. Veggie will be used as a test bed for novel food production technologies. Veggie is a relatively simple precursor food production system but the knowledge gained from space biology validation tests in Veggie will have far reaching repercussions on future exploration food production.

  18. Effect of the Crystallization Process on the Marginal and Internal Gaps of Lithium Disilicate CAD/CAM Crowns.

    PubMed

    Kim, Jae-Hong; Oh, Seunghan; Uhm, Soo-Hyuk

    2016-01-01

    The aim of this study is to quantify the effect of the crystallization process on lithium disilicate ceramic crowns fabricated using a computer-aided design/computer-aided manufacturing (CAD/CAM) system and to determine whether the effect of crystallization is clinically acceptable by comparing values of fit before and after the crystallization process. The mandibular right first molar was selected as the abutment for the experiments. Fifteen working models were prepared. Lithium disilicate crowns appropriate for each abutment were prepared using a commercial CAD/CAM system. Gaps in the marginal area and 4 internal areas of each crown were measured twice-before and after crystallization-using the silicone replica technique. The mean values of fit before and after crystallization were analyzed using a paired t-test to examine whether the conversion that occurred during crystallization affected marginal and internal gaps (α = 0.05). Gaps increased in the marginal area and decreased in the internal areas after crystallization. There were statistically significant differences in all of the investigated areas (P < 0.05). None of the values for marginal and internal fit of lithium disilicate CAD/CAM crowns after crystallization exceeded 120 μm, which is the clinically acceptable threshold.

  19. Enhancing fatigue life of cylinder-crown integrated structure by optimizing dimension

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Wang, Xiaosong; Wang, Zhongren; Yuan, Shijian

    2015-03-01

    Cylinder-crown integrated hydraulic press (CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown, which has lower weight and higher section modulus compared with the conventional hydraulic cylinder and press crown. As a result, the material strength capacity is better utilized. During the engineering design of cylinder-crown integrated structure, in order to increase the fatigue life, structural optimization on the basis of the adaptive macro genetic algorithms (AMGA) is first conducted to both reduce weight and decrease peak stress. It is shown that the magnitude of the maximum principal stress is decreased by 28.6%, and simultaneously the total weight is reduced by 4.4%. Subsequently, strain-controlled fatigue test is carried out, and the stress-strain hysteresis loops and cyclic hardening curve are obtained. Based on linear fit, the fatigue properties are calculated and used for the fatigue life prediction. It is shown that the predicted fatigue life is significantly increased from 157000 to 1070000 cycles after structural optimization. Finally, according to the optimization design, a 6300 kN CCIHP has been manufactured, and priority application has been also suggested.

  20. UrbanCrowns: an assessment and monitoring tool for urban trees

    Treesearch

    Matthew F. Winn; Philip A. Araman; Sang-Mook Lee

    2011-01-01

    UrbanCrowns is a Windows®-based computer program used to assess the crown characteristics of urban trees. The software analyzes side-view digital photographs of trees to compute several crown metrics, including crown height, crown diameter, live crown ratio, crown volume, crown density, and crown transparency. Potential uses of the UrbanCrowns program include...

Top