Science.gov

Sample records for cruciferous vegetables shows

  1. Cruciferous Vegetables and Cancer Prevention

    MedlinePlus

    ... cruciferous vegetables? Cruciferous vegetables are part of the Brassica genus of plants. They include the following vegetables, ... others: Arugula Bok choy Broccoli Brussels sprouts Cabbage Cauliflower Collard greens Horseradish Kale Radishes Rutabaga Turnips Watercress ...

  2. Behavior of glucosinolates in pickling cruciferous vegetables.

    PubMed

    Suzuki, Chise; Ohnishi-Kameyama, Mayumi; Sasaki, Keisuke; Murata, Takashi; Yoshida, Mitsuru

    2006-12-13

    Crucifer species, which include widely consumed vegetables, contain glucosinolates as secondary metabolites. Cruciferous vegetables are consumed in Japan in salt-preserved or pickled form as well as cooked and raw fresh vegetables. In this study, changes in contents of glucosinolates during the pickling process were investigated. 4-Methylthio-3-butenyl glucosinolate, a major glucosinolate in the root of Japanese radish, daikon (Raphanus sativus L.), was detected in pickled products with a short maturation period but not in those with a long maturation period. As a model pickling experiment, fresh watercress (Nasturtium officinale) and blanched watercress were soaked in 3% NaCl solution for 7 days. The results showed that the ratio of indole glucosinolates to total glucosinolates increased during the pickling process, whereas total glucosinolates decreased. Myrosinase digestion of glucosinolates in nozawana (Brassica rapa L.) indicated that indole glucosinolates, especially 4-methoxyglucobrassicin, were relatively resistant to the enzyme. The effect of pickling on glucosinolate content and the possible mechanism are discussed in view of degradation by myrosinase and synthetic reaction in response to salt stress or compression during the pickling process.

  3. PROP taster status not related to reported cruciferous vegetable intake among ethnically diverse children

    PubMed Central

    Baranowski, Tom; Baranowski, Janice C; Watson, Kathleen B; Jago, Russell; Islam, Noemi; Beltran, Alicia; Martin, Shelby J; Nguyen, Nga; Tepper, Beverly J

    2011-01-01

    Sensitivity to the taste of 6-n-propylthiouracil (PROP) (a bitter tasting chemical related to the phenylthiocarbamide found in cruciferous vegetables) has been related to dietary intake or preferences of cruciferous vegetables among adults and young children, but not middle aged children or adolescents. We hypothesized that PROP taste sensitivity is related to lower reported dietary intake of cruciferous vegetables, primarily among younger children (i.e. a moderating effect of child age). This study examined the relationship of PROP sensitivity to reported dietary intake across three days in two age groups of youth (9–10 years and 17–18 year), while statistically controlling for physical activity, social desirability and reporting bias. Cross sectional design was employed with a multi-ethnic (White, African American, Hispanic, and Other) sample of 843 males and females. Children were recruited from and data were collected in local elementary and high schools that had at least 30% ethnic minority enrollment. Children providing nonplausible reports of dietary intake were deleted from the analyses. BMI was calculated and expressed in z-scores. Energy intake and physical activity were measured by three telephone conducted 24-hour dietary recalls with the Nutrient Data System for Research (NDSR) and 5 days of Actigraph activity monitor. The primary analyses included 347 students. PROP sensitivity was not related to intake of cruciferous vegetables. Intakes of the cruciferous vegetables were low, which may explain the lack of relationship. PMID:21925344

  4. 6-n-propylthiouracil taster status not related to reported cruciferous vegetable intake among ethnically diverse children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensitivity to the taste of 6-n-propylthiouracil (PROP) (a bitter chemical related to the phenylthiocarbamide found in cruciferous vegetables) has been related to dietary intake or preferences of cruciferous vegetables among adults and young children but not middle-aged children or adolescents. We h...

  5. Extraction from soil of apterous Pemphigus populitransversus (Hemiptera: Pemphigidae) feeding on cruciferous vegetable roots.

    PubMed

    Liu, Tong-Xian; Zhang, Yongmei; Yue, Bisong

    2011-06-01

    The poplar petiolegall aphid, Pemphigus populitransversus Riley (Hemiptera: Pemphigidae), is a gall-forming aphid attacking leaf petioles of Populus spp., its primary hosts. Its secondary hosts are the roots of cruciferous (Brassicaceae) plants, where it is also commonly known as the "cabbage root aphid." The apterous forms are destructive pests of cruciferous vegetables in many parts of the world. In our experiments, the root-feeding apterous forms were extracted from the soil using a Berlese funnel, which drives the aphids downward by using light and heat. The results show that a majority of apterous aphids (96.9%) were extracted from the soil in 2 h by using a 15-W light bulb in the Berlese funnels, whereas only 18.2% of aphids were extracted using a 25-W light bulb in a similar time period. The 25-W light bulb in the funnel generated too much heat (40-44 degrees C), which dried the soil too fast so that the aphids were unable to crawl downward to the collecting jars or killed the aphids directly. The advantages of using a Berlese funnel equipped with a 15-W light bulb as the light and heat source for sampling and extraction of the root feeding aphids include a uniform handling of each sample, less time spent, extraction of many samples at the same time, and storage of the aphids in containers for later counting in the laboratory. This technique seems to also be useful for extracting other mobile, small soil-dwelling arthropods.

  6. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality1234

    PubMed Central

    Shu, Xiao-Ou; Xiang, Yong-Bing; Yang, Gong; Li, Honglan; Gao, Jing; Cai, Hui; Gao, Yu-Tang; Zheng, Wei

    2011-01-01

    Background: Asian populations habitually consume a large amount of cruciferous vegetables and other plant-based foods. Few epidemiologic investigations have evaluated the potential health effects of these foods in Asian populations. Objective: We aimed to examine the associations of cruciferous vegetables, noncruciferous vegetables, total vegetables, and total fruit intake with risk of all-cause and cause-specific mortality. Design: The analysis included 134,796 Chinese adults who participated in 2 population-based, prospective cohort studies: the Shanghai Women's Health Study and the Shanghai Men's Health Study. Dietary intakes were assessed at baseline through in-person interviews by using validated food-frequency questionnaires. Deaths were ascertained by biennial home visits and linkage with vital statistics registries. Results: We identified 3442 deaths among women during a mean follow-up of 10.2 y and 1951 deaths among men during a mean follow-up of 4.6 y. Overall, fruit and vegetable intake was inversely associated with risk of total mortality in both women and men, and a dose-response pattern was particularly evident for cruciferous vegetable intake. The pooled multivariate hazard ratios (95% CIs) for total mortality across increasing quintiles of intake were 1 (reference), 0.91 (0.84, 0.98), 0.88 (0.77, 1.00), 0.85 (0.76, 0.96), and 0.78 (0.71, 0.85) for cruciferous vegetables (P < 0.0001 for trend) and 0.88 (0.79, 0.97), 0.88 (0.79, 0.98), 0.76 (0.62, 0.92), and 0.84 (0.69, 1.00) for total vegetables (P = 0.03 for trend). The inverse associations were primarily related to cardiovascular disease mortality but not to cancer mortality. Conclusion: Our findings support recommendations to increase consumption of vegetables, particularly cruciferous vegetables, and fruit to promote cardiovascular health and overall longevity. PMID:21593509

  7. Pre-diagnostic cruciferous vegetables intake and lung cancer survival among Chinese women

    PubMed Central

    Wu, Qi-Jun; Yang, Gong; Zheng, Wei; Li, Hong-Lan; Gao, Jing; Wang, Jing; Gao, Yu-Tang; Shu, Xiao-Ou; Xiang, Yong-Bing

    2015-01-01

    No study to date has prospectively evaluated the association between pre-diagnostic cruciferous vegetables intake and lung cancer survival among women. This analysis included 547 incident lung cancer cases identified from the Shanghai Women’s Health Study (SWHS) during the follow-up period of 1997-2011. Dietary intake was assessed for all SWHS participants at enrollment and reassessed 2-3 years later. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) with adjustment for potential confounders. Of the 547 lung cancer patients, 412 patients died during the follow-up. A total of 393 (95.4%) deaths from lung cancer were documented with median survival time of 10.3 months (interquartile range, 3.6-21.1 months). High cruciferous vegetables intake was significantly associated with improved lung cancer-specific survival after adjusting for all nonclinical prognostic factors (n = 547, HR = 0.69; 95%CI = 0.49-0.95; P trend = 0.02) for the highest versus lowest quartile. A slightly stronger association of cruciferous vegetables intake with lung cancer-specific survival was observed in analyses restricted to patients with known clinical prognostic factors (n = 331, HR = 0.63; 95%CI = 0.41-0.97; P trend = 0.03) or never smokers (n = 308, HR = 0.58; 95%CI = 0.37-0.91; P trend = 0.02). In conclusion, pre-diagnostic cruciferous vegetables intake is associated with better survival of lung cancer in Chinese women. PMID:25988580

  8. Post-diagnosis Cruciferous Vegetable Consumption and Breast Cancer Outcomes: a Report from the After Breast Cancer Pooling Project

    PubMed Central

    Nechuta, Sarah; Caan, Bette J.; Chen, Wendy Y.; Kwan, Marilyn L.; Lu, Wei; Cai, Hui; Poole, Elizabeth M.; Flatt, Shirley W.; Zheng, Wei; Pierce, John P.; Shu, Xiao Ou

    2013-01-01

    Cruciferous vegetables are a major source of glucosinolate-derived bioactive compounds such as isothiocyanates, which have been shown in animal and in vitro studies to inhibit cancer growth and progression. Few studies have investigated cruciferous vegetable intake after diagnosis and breast cancer outcomes. Using data from the After Breast Cancer Pooling Project, which includes prospective data from US and Chinese breast cancer survivors, we evaluated the association of cruciferous vegetables with breast cancer outcomes. Analyses included 11,390 women diagnosed with stage I–III invasive breast cancer (1990–2006) from four cohorts. Cruciferous vegetable intake (g/day) was assessed using food frequency questionnaires (mean of 22 months post-diagnosis). Study heterogeneity was evaluated by the Q statistic; hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using delayed-entry Cox regression models stratified by study. After a median follow-up of 9.0 years, 1,725 deaths and 1,421 recurrences were documented. In pooled analyses using study-specific quartiles, cruciferous vegetable intake was not associated with breast cancer outcomes, adjusting for known clinical prognostic factors and selected lifestyle factors. HRs (95%CIs) by increasing quartiles (reference=lowest quartile) were 1.08 (0.93–1.25), 1.01 (0.87–1.18), and 1.10 (0.95–1.28) for recurrence (Ptrend=0.34) and 1.01 (0.88–1.15), 0.97 (0.84–1.11), and 0.99 (0.86–1.13) for total mortality (Ptrend=0.84). No associations were observed for subgroups defined by ER status, stage, or tamoxifen therapy. Cruciferous vegetable intake at approximately two years after diagnosis was not associated with recurrence or mortality. Our results do not support an association between post-diagnosis cruciferous vegetable intake and breast cancer outcomes. PMID:23765086

  9. Cruciferous vegetables intake and the risk of colorectal cancer: a meta-analysis of observational studies

    PubMed Central

    Wu, Q. J.; Yang, Y.; Vogtmann, E.; Wang, J.; Han, L. H.; Li, H. L.; Xiang, Y. B.

    2013-01-01

    Background Epidemiological studies have reported inconsistent associations between cruciferous vegetable (CV) intake and colorectal cancer (CRC) risk. To our knowledge, a comprehensive and quantitative assessment of the association between CV intake and CRC has not been reported. Methods Relevant articles were identified by searching MEDLINE. We pooled the relative risks (RR) from individual studies using a random-effect model and carried out heterogeneity and publication bias analyses. Results Twenty-four case–control and 11 prospective studies were included in our analysis. When all studies were pooled, we yielded a significantly inverse association between CV (RR: 0.82; 95% confidence interval 0.75–0.90) intake and CRC risk. Specific analysis for cabbage and broccoli yielded similar result. When separately analyzed, case–control studies of CV intake yield similar results, and the results from the prospective studies showed borderline statistical significance. Moreover, significant inverse associations were also observed in colon cancer and its distal subsite both among prospective and case–control studies. Conclusions Findings from this meta-analysis provide evidence that high intake of CV was inversely associated with the risk of CRC and colon cancer in humans. Further analysis on other specific CV, food preparation methods, stratified results by anatomic cancer site, and subsite of colon cancer should be extended in future study. PMID:23211939

  10. 6-n-propylthiouracil taster status not related to reported cruciferous vegetable intake among ethnically diverse children.

    PubMed

    Baranowski, Tom; Baranowski, Janice C; Watson, Kathleen B; Jago, Russell; Islam, Noemi; Beltran, Alicia; Martin, Shelby J; Nguyen, Nga; Tepper, Beverly J

    2011-08-01

    Sensitivity to the taste of 6-n-propylthiouracil (PROP) (a bitter chemical related to the phenylthiocarbamide found in cruciferous vegetables) has been related to dietary intake or preferences of cruciferous vegetables among adults and young children but not middle-aged children or adolescents. We hypothesized that PROP taste sensitivity is related to lower reported dietary intake of cruciferous vegetables, primarily among younger children (ie, a moderating effect of child age). This study examined the relationship of PROP sensitivity to reported dietary intake across 3 days in 2 age groups of youth (9-10 and 17-18 years) while statistically controlling for physical activity, social desirability, and reporting bias. Cross-sectional design was used with a multiethnic (white, African American, Hispanic, etc) sample of 843 men and women. Children were recruited from and data were collected in local elementary and high schools that had at least 30% ethnic minority enrollment. Children providing nonplausible reports of dietary intake were deleted from the analyses. Body mass index was calculated and expressed in z scores. Energy intake and physical activity were measured by 3 telephone-conducted 24-hour dietary recalls with the Nutrient Data System for Research and 5 days of Actigraph (ActiGraph, Shalimar, Florida) activity monitor. The primary analyses included 347 students. 6-n-Propylthiouracil sensitivity was not related to intake of cruciferous vegetables. Intakes of the cruciferous vegetables were low, which may explain the lack of relationship.

  11. Biological Profile of Erucin: A New Promising Anticancer Agent from Cruciferous Vegetables

    PubMed Central

    Melchini, Antonietta; Traka, Maria H.

    2010-01-01

    Consumption of cruciferous vegetables has been associated with a reduced risk in the development of various types of cancer. This has been attributed to the bioactive hydrolysis products that are derived from these vegetables, namely isothiocyanates. Erucin is one such product derived from rocket salads, which is structurally related to sulforaphane, a well-studied broccoli-derived isothiocyanate. In this review, we present current knowledge on mechanisms of action of erucin in chemoprevention obtained from cell and animal models and relate it to other isothiocyanates. These mechanisms include modulation of phase I, II and III detoxification, regulation of cell growth by induction of apoptosis and cell cycle arrest, induction of ROS-mechanisms and regulation androgen receptor pathways. PMID:22069601

  12. Biological profile of erucin: a new promising anticancer agent from cruciferous vegetables.

    PubMed

    Melchini, Antonietta; Traka, Maria H

    2010-04-01

    Consumption of cruciferous vegetables has been associated with a reduced risk in the development of various types of cancer. This has been attributed to the bioactive hydrolysis products that are derived from these vegetables, namely isothiocyanates. Erucin is one such product derived from rocket salads, which is structurally related to sulforaphane, a well-studied broccoli-derived isothiocyanate. In this review, we present current knowledge on mechanisms of action of erucin in chemoprevention obtained from cell and animal models and relate it to other isothiocyanates. These mechanisms include modulation of phase I, II and III detoxification, regulation of cell growth by induction of apoptosis and cell cycle arrest, induction of ROS-mechanisms and regulation androgen receptor pathways.

  13. Correlates of self-reported dietary cruciferous vegetable intake and urinary isothiocyanate from two cohorts in China

    PubMed Central

    Vogtmann, Emily; Yang, Gong; Li, Hong-Lan; Wang, Jing; Han, Li-Hua; Wu, Qi-Jun; Xie, Li; Cai, Quiyin; Li, Guo-Liang; Waterbor, John W.; Levitan, Emily B.; Zhang, Bin; Gao, Yu-Tang; Zheng, Wei; Xiang, Yong-Bing; Shu, Xiao-Ou

    2015-01-01

    Objective To assess correlations between cruciferous vegetable intake and urinary ITC level, in addition to glutathione S-transferase (GST) genotypes and other individual factors. Design This study included cohort participants whose urinary ITC levels had been previously ascertained. Urinary ITC was assessed using high-performance liquid chromatography. Usual dietary intake of cruciferous vegetables was assessed using a validated food frequency questionnaire and total dietary ITC was calculated. Recent cruciferous vegetable intake was determined. GST genotypes were assessed using duplex real-time quantitative polymerase chain reaction assays. Spearman correlations were calculated between the covariates and urinary ITC levels and linear regression analyses were used to calculate the mean urinary ITC according to GST genotype. Setting Urban city in China Subjects This study included 3,589 women and 1,015 men from the Shanghai Women’s and Men’s Health Studies. Results Median urinary ITC level was 1.61 nmol/mg creatinine. Self-reported usual cruciferous vegetable intake was weakly correlated with urinary ITC level (rs = 0.1149; p < 0.0001), while self-reported recent intake was more strongly correlated with urinary ITC (rs = 0.2591; p < 0.0001). Overall, the GST genotypes were not associated with urinary ITC level, but significant differences according to genotype were observed among current smokers and participants who provided an afternoon urine sample. Other factors, including previous gastrectomy or gastritis, were also related to urinary ITC level. Conclusions This study suggests that urinary secretion of ITC may provide additional information on cruciferous vegetable intake and that GST genotypes are related to urinary ITC level only in some subgroups. PMID:25098275

  14. Role of dietary iodine and cruciferous vegetables in thyroid cancer: a countrywide case-control study in New Caledonia

    PubMed Central

    Truong, Thérèse; Baron-Dubourdieu, Dominique; Rougier, Yannick; Guénel, Pascal

    2010-01-01

    Exceptionally high incidence rates of thyroid cancer have been reported in New Caledonia, particularly in Melanesian women. To clarify the reasons of this elevated incidence, we conducted a countrywide population-based case-control study in the multiethnic population of Caledonian women. The study included 293 cases of thyroid cancer and 354 population controls. Based on a food frequency questionnaire, we investigated the role in thyroid cancer of food items rich in iodine – such as seafood – and of vegetables containing goitrogens – such as cruciferous vegetables. A measure of total daily iodine intake based on a food composition table was also used. Our findings provided little support for an association between thyroid cancer and consumption of fish and seafood. We found that high consumption of cruciferous vegetables was associated with thyroid cancer among women with low iodine intake (OR=1.86; 95% CI: 1.01–3.43 for iodine intake < 96 μg/day). The high consumption of cruciferous vegetables among Melanesian women, a group with mild iodine deficiency, may contribute to explain the exceptionally high incidence of thyroid cancer in this group. PMID:20361352

  15. Cruciferous vegetables, glutathione S-transferase polymorphisms and the risk of colorectal cancer among Chinese men

    PubMed Central

    Vogtmann, Emily; Xiang, Yong-Bing; Li, Hong-Lan; Cai, Quiyin; Wu, Qi-Jun; Xie, Li; Li, Guo-Liang; Yang, Gong; Waterbor, John W.; Levitan, Emily B.; Zhang, Bin; Zheng, Wei; Shu, Xiao-Ou

    2013-01-01

    Purpose To assess the associations between cruciferous vegetable (CV) intake, GST gene polymorphisms and colorectal cancer (CRC) in a population of Chinese men. Methods Using incidence density sampling, CRC cases (N = 340) diagnosed prior to December 31, 2010 within the Shanghai Men’s Health Study were matched to non-cases (N = 673). CV intake was assessed from a food frequency questionnaire and by isothiocyanate (ITC) levels from spot urine samples. GSTM1 and GSTT1 were categorized as null (0 copies) versus non-null (1 or 2 copies). Conditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs) for the association between CV intake and GST gene variants with CRC and statistical interactions were evaluated. Results CRC risk was not associated with CV intake, whether measured by self-report or by urinary ITC, nor with GST gene variants. No statistical interactions were detected between CV intake and GST gene variants on the odds of CRC. Stratifying by timing of urine sample collection and excluding CRC cases diagnosed in the first two years did not materially alter the results. Conclusions This study provides no evidence supporting the involvement of CV intake in the development of CRC in Chinese men. PMID:24238877

  16. Interaction between plants and bacteria: glucosinolates and phyllospheric colonization of cruciferous vegetables by Enterobacter radicincitans DSM 16656.

    PubMed

    Schreiner, Monika; Krumbein, Angelika; Ruppel, Silke

    2009-01-01

    For determining interactive plant-bacterial effects between glucosinolates and phyllospheric colonization by a plant growth-promoting strain, Enterobacter radicincitans DSM 16656, in cruciferous vegetables, the extent of bacterial colonization was assessed in 5 cruciferous vegetables (Brassica juncea, Brassica campestris, Brassica oleracea var. capitata, Brassica rapa var. alboglabra, Nasturtium officinale) using a species-specific TaqMan probe and quantitative real-time PCR. Colonization ability of inoculated E. radicincitans in the phyllosphere of these species varied from inability to colonize B. rapa up to a very good colonization rate of B. campestris. In addition to morphological factors and other plant compounds, the colonization rate was affected by different individual aromatic and aliphatic glucosinolates and their concentration, revealing that both plant pathogens and plant growth-promoting bacteria were affected by glucosinolates in their colonization behavior. In contrast, after E. radicincitans inoculation neither the total nor the individual glucosinolate concentrations in the phyllosphere of the 5 cruciferous species were affected, indicating that the nonpathogenic E. radicincitans might cause only poor cell damage by metabolizing plant cell components and does not induce a plant defense response and thus subsequently an increased glucosinolate concentration in the phyllosphere. Moreover, E. radicincitans induced no stimulation of indole glucosinolate biosynthesis by additional bacterial auxin supply.

  17. Cruciferous Vegetables Have Variable Effects on Biomarkers of Systemic Inflammation in a Randomized Controlled Trial in Healthy Young Adults12

    PubMed Central

    Navarro, Sandi L.; Schwarz, Yvonne; Song, Xiaoling; Wang, Ching-Yun; Chen, Chu; Trudo, Sabrina P.; Kristal, Alan R.; Kratz, Mario; Eaton, David L.; Lampe, Johanna W.

    2014-01-01

    Background: Isothiocyanates in cruciferous vegetables modulate signaling pathways critical to carcinogenesis, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a central regulator of inflammation. Glutathione S-transferase (GST) M1 and GSTT1 metabolize isothiocyanates; genetic variants may result in differences in biologic response. Objective: The objective of this study was to test whether consumption of cruciferous or cruciferous plus apiaceous vegetables altered serum concentrations of interleukin (IL)-6, IL-8, C-reactive protein (CRP), tumor necrosis factor (TNF) α, and soluble TNF receptor (sTNFR) I and II, and whether this response was GSTM1/GSTT1 genotype dependent. Methods: In a randomized crossover trial, healthy men (n = 32) and women (n = 31) aged 20–40 y consumed 4 14-d controlled diets: basal (vegetable-free), single-dose cruciferous (1xC) [7 g vegetables/kg body weight (BW)], double-dose cruciferous (2xC) (14 g/kg BW), and cruciferous plus apiaceous (carrot family) (1xC+A) vegetables (7 and 4 g/kg BW, respectively), with a 21-d washout period between each intervention. Urinary isothiocyanate excretion was also evaluated as a marker of systemic isothiocyanate exposure. Fasting morning blood and urine samples were collected on days 0 and 14 and analyzed. Results: IL-6 concentrations were significantly lower on day 14 of the 2xC and 1xC+A diets than with the basal diet [−19% (95% CI: −30%, −0.1%) and −20% (95% CI: −31%, -0.7%), respectively]. IL-8 concentrations were higher after the 1xC+A diet (+16%; 95% CI: 4.2%, 35.2%) than after the basal diet. There were no effects of diet on CRP, TNF-α, or sTNFRI or II. There were significant differences between GSTM1-null/GSTT1+ individuals for several biomarkers in response to 1xC+A compared with basal diets (CRP: −37.8%; 95% CI: −58.0%, −7.4%; IL-6: −48.6%; 95% CI: −49.6%, −12.0%; IL-8: 16.3%; 95% CI: 6.7%, 57.7%) and with the 2xC diet compared with the

  18. The effect of green leafy and cruciferous vegetable intake on the incidence of cardiovascular disease: A meta-analysis

    PubMed Central

    2016-01-01

    Does the consumption of green leafy vegetables including cruciferous vegetables significantly reduce the incidence of cardiovascular disease? This research question was answered via employing the statistical methods of meta-analysis by synthesizing relevant worldwide studies that address the association between the consumption of green leafy vegetables and risk of incidence of said diseases. All meta-analysis calculations included determination of effect sizes of relative risk, and their respective 95% confidence intervals, heterogeneity of the studies, relative weights for each study, and significance (p) for each study. Eight studies met the inclusion criteria, which investigated the relationship between the incidences of total cardiovascular disease with the intake of green leafy vegetables. The overall effect size (random effect model) was: RR = 0.842 (95% CI = 0.753 to 0.941), p = 0.002, which indicates a significant 15.8% reduced incidence of cardiovascular disease. PMID:27540481

  19. Strategy for dual production of bioethanol and d-psicose as value-added products from cruciferous vegetable residue.

    PubMed

    Song, Younho; Nguyen, Quynh Anh; Wi, Seung Gon; Yang, Jianming; Bae, Hyeun-Jong

    2017-01-01

    In this study, fermentable sugars and d-fructose were produced from cruciferous vegetable residue by enzymatic method without the use of either chemical or mechanical mechanisms. Production of d-psicose was effectively converted from hydrolyzed d-fructose in cabbage residue by d-psicose-3 epimerase; the presence of the borate increased the conversion rate by about two fold, and ethanol production yield was 85.7% of the theoretical yield. Both products, bioethanol and d-psicose, were successfully separated and purified by pervaporation and cation exchange chromatography, and their recovery yields were approximately 87% and 86.2%, respectively.

  20. Cruciferous vegetable phytochemical sulforaphane affects phase II enzyme expression and activity in rat cardiomyocytes through modulation of Akt signaling pathway.

    PubMed

    Leoncini, Emanuela; Malaguti, Marco; Angeloni, Cristina; Motori, Elisa; Fabbri, Daniele; Hrelia, Silvana

    2011-09-01

    The isothiocyanate sulforaphane (SF), abundant in Cruciferous vegetables, is known to induce antioxidant/detoxification enzymes in many cancer cell lines, but studies focused on its cytoprotective action in nontransformed cells are just at the beginning. Since we previously demonstrated that SF elicits cardioprotection through an indirect antioxidative mechanism, the aim of this study was to analyze the signaling pathways through which SF exerts its protective effects. Using cultured rat cardiomyocytes, we investigated the ability of SF to activate Akt/protein kinase B (PKB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathways, which are implicated in cardiac cell survival, and to increase the phosphorylation of Nuclear factor E2-related factor 2 (Nrf2) and its binding to the antioxidant response element. By means of specific inhibitors, we demonstrated that the Phosphatidylinositol 3-kinase (PI3K)/Akt pathway represents a mechanism through which SF influences both expression and activity of glutathione reductase, glutathione-S-transferase, thioredoxin reductase, and NAD(P)H:quinone oxidoreductase-1, analyzed by western immunoblotting and spectrophotometric assay, respectively, and modulates Nrf2 binding and phosphorylation resulting in a cytoprotective action against oxidative damage. Results of this study confirm the importance of phase II enzymes modulation as cytoprotective mechanism and support the nutritional assumption of Cruciferous vegetables as source of nutraceutical cardioprotective agents.

  1. Cruciferous Vegetable Intake Is Inversely Associated with Lung Cancer Risk among Current Nonsmoking Men in the Japan Public Health Center Study.

    PubMed

    Mori, Nagisa; Shimazu, Taichi; Sasazuki, Shizuka; Nozue, Miho; Mutoh, Michihiro; Sawada, Norie; Iwasaki, Motoki; Yamaji, Taiki; Inoue, Manami; Takachi, Ribeka; Sunami, Ayaka; Ishihara, Junko; Sobue, Tomotaka; Tsugane, Shoichiro

    2017-04-05

    Background: Cruciferous vegetables, a rich source of isothiocyanates, have been reported to lower the risk of several types of cancer, including lung cancer. However, evidence from prospective observations of populations with a relatively high intake of cruciferous vegetables is sparse.Objective: We investigated the association between cruciferous vegetable intake and lung cancer risk in a large-scale population-based prospective study in Japan.Methods: We studied 82,330 participants (38,663 men; 43,667 women) aged 45-74 y without a past history of cancer. Participants were asked to respond to a validated questionnaire that included 138 food items. The association between cruciferous vegetable intake and lung cancer incidence was assessed with the use of Cox proportional hazard regression analysis to estimate HRs and 95% CIs (with adjustments for potential confounding factors).Results: After 14.9 y of follow-up, a total of 1499 participants (1087 men; 412 women) were diagnosed with lung cancer. After deleting early-diagnosed cancer and adjusting for confounding factors, we observed a nonsignificant inverse trend between cruciferous vegetable intake and lung cancer risk in men in the highest compared with the lowest quartiles (multivariate HR: 0.85; 95% CI: 0.69, 1.06; P-trend = 0.13). Stratified analysis by smoking status revealed a significant inverse association between cruciferous vegetable intake and lung cancer risk among those who were never smokers and those who were past smokers after deleting lung cancer cases in the first 3 y of follow-up [multivariate HR for never smokers: 0.49 (95% CI: 0.27, 0.87; P-trend = 0.04); multivariate HR for past smokers: 0.59 (95% CI: 0.35, 0.99; P-trend = 0.10)]. No association was noted in men who were current smokers and women who were never smokers.Conclusion: This study suggests that cruciferous vegetable intake may be associated with a reduction in lung cancer risk among men who are currently nonsmokers.

  2. Berteroin Present in Cruciferous Vegetables Exerts Potent Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin

    PubMed Central

    Jung, Yoo Jin; Jung, Jae In; Cho, Han Jin; Choi, Myung-Sook; Sung, Mi-Kyung; Yu, Rina; Kang, Young-Hee; Park, Jung Han Yoon

    2014-01-01

    Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα) and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent. PMID:25393510

  3. Transfer of radiocesium to four cruciferous vegetables as influenced by organic amendment under different field conditions in Fukushima Prefecture.

    PubMed

    Aung, Han Phyo; Djedidi, Salem; Yokoyama, Tadashi; Suzuki, Sohzoh; Bellingrath-Kimura, Sonoko Dorothea

    2015-02-01

    Soil-to-plant transfer of radiocesium ((137)Cs) in four cruciferous vegetables as influenced by cattle manure-based compost amendment was investigated. Komatsuna, mustard, radish and turnip were cultivated in three different (137)Cs-contaminated fields at Nihonmatsu City in Fukushima Prefecture from June to August 2012. Results revealed that organic compost amendments stimulated plant biomass production and tended to induce higher (137)Cs concentration in the cruciferous vegetables in most cases. Among the studied sites, Takanishi soil possessing low exchangeable potassium (0.10 cmolc kg(-1)) was associated with an increased concentration of (137)Cs in plants. Radiocesium transfer factor (TF) values of the vegetables ranged from 0.025 to 0.119. The increase in (137)Cs TFs was dependent on larger plant biomass production, high organic matter content, and high sand content in the studied soils. Average (137)Cs TF values for all study sites and compost treatments were higher in Komatsuna (0.072) and radish (0.059), which exhibited a higher biomass production compared to mustard and turnip. The transferability of (137)Cs to vegetables from soils was in the order Komatsuna > radish > mustard > turnip. The highest (137)Cs TF value (0.071) of all vegetables was recorded for a field where the soil had high organic matter content and a high clay proportion of 470 g kg(-1) consisting of Al-vermiculite clay mineral.

  4. Cruciferous Vegetables Intake Is Associated with Lower Risk of Renal Cell Carcinoma: Evidence from a Meta-Analysis of Observational Studies

    PubMed Central

    Zhao, Jun; Zhao, Long

    2013-01-01

    Background Epidemiologic studies have evaluated the association between cruciferous vegetables(CV) intake and the risk of renal cell carcinoma(RCC); however, the existing results are controversial. The aim of this meta-analysis was to investigate the association between CV intake and RCC risk. Methods A literature search was carried out using PUBMED and EMBASE database between January 1966 and March 2013. Fixed-effect and random-effect models were used to estimate summary relative risks (RR) and the corresponding 95% confidence intervals (CIs). Potential sources of heterogeneity were detected by meta-regression. Subgroup analyses, sensitivity analysis and cumulative meta-analysis were also performed. Results A total of 12 studies (six cohorts, six case–control) contributed to the analysis, involving 1,228,518 participants and 5,773 RCC cases. When all studies were pooled, we observed a significantly inverse association between CV intake and RCC risk (RR = 0.81, 95% CI [0.72, 0.91]). This association was also significant when analyses were restricted to six high-quality studies (RR = 0.89, 95% CI [0.82, 0.98]). In subgroup analyses, CV intake was significantly associated with reduced RCC risk among studies conducted in America (RR = 0.77, 95%CI [0.70, 0.86]); however, CV intake had no significant association with RCC risk among studies conducted in Europe (RR = 0.87, 95%CI [0.71, 1.07]). Furthermore, sensitivity analysis confirmed the stability of results. Conclusions The findings of this meta-analysis suggested that high intake of CV was inversely associated with RCC risk among Americans. More studies, especially high quality cohort studies with larger sample size, well controlled confounding factors are warranted to confirm this association. PMID:24204579

  5. FRONT, STREETSIDE ELEVATION OF RESIDENCE SHOWING LUSH VEGETATION AND LANDSCAPING. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT, STREET-SIDE ELEVATION OF RESIDENCE SHOWING LUSH VEGETATION AND LANDSCAPING. SIDEWALK SHOWN IN FOREGROUND. VIEW FACING SOUTHWEST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 9, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  6. Host finding and acceptance preference of the yellowmargined leaf beetle, Microtheca ochroloma (Coleoptera: Chrysomelidae), on cruciferous crops.

    PubMed

    Balusu, Rammohan R; Fadamiro, Henry Y

    2011-12-01

    The yellowmargined leaf beetle, Microtheca ochroloma Stål (Coleoptera: Chrysomelidae), is an introduced pest of cruciferous crops in the southern United States, and arguably the most damaging pest of organic crucifer vegetable production in the region. Studies were conducted in the greenhouse and laboratory to investigate host finding and acceptance preference of M. ochroloma on four commonly grown cruciferous crops: cabbage (Brassica oleracea L. variety capitata), collards (B. oleracea L. variety acephala), napa cabbage [B. pekinensis (Lour.)], and turnip (B. rapa L.) First, adult beetles were allowed to choose among the four plants in a multiple-choice greenhouse cage experiment and host preference was evaluated by using three parameters: number of beetles on each plant, number of larvae on each plant, and plant damage ratings. The results showed that M. ochroloma adults actively discriminated among the four host plants, with significantly higher numbers recorded on turnip and napa cabbage than on cabbage or collards. Significantly higher numbers of larvae also were recorded on turnip and napa cabbage starting on day 10. Similarly, higher damage ratings were recorded on turnip and napa cabbage than on the remaining two hosts. Results of four-choice olfactometer experiments, which compared attraction of M. ochroloma to headspace volatiles of the four host plants, demonstrated that host preference is mediated primarily by plant volatiles. Both sexes were significantly more attracted to napa cabbage than to the remaining treatments, with turnip being the second most attractive plant. These results confirm that turnip and napa cabbage are two preferred host plants of M. ochroloma, and may support the development of a trap crop system and attractant-based strategies for managing M. ochroloma in crucifer production.

  7. Map showing vegetation distribution in the central part of the East Tintic Mountains, Utah

    USGS Publications Warehouse

    Milton, Nancy; Madura, Daryl P.

    1981-01-01

    This study in part of a broader program to determine the usefulness of multispectral scanner aircraft and satellite images for mapping lithologic units and vegetation communities (Rowan and others, 1974; 1977; Abrams and others, 1997; Rowan and Abrams, 1978a; 1978b; Kahle and Rowan, 1979, written commun.).

  8. Tenualexin, other phytoalexins and indole glucosinolates from wild cruciferous species.

    PubMed

    Pedras, M Soledade C; Yaya, Estifanos E

    2014-06-01

    In general, the chemodiversity of phytoalexins, elicited metabolites involved in plant defense mechanisms against microbial pathogens, correlates with the biodiversity of their sources. In this work, the phytoalexins produced by four wild cruciferous species (Brassica tournefortii, Crambe abyssinica (crambe), Diplotaxis tenuifolia (sand rocket), and Diplotaxis tenuisiliqua (wall rocket)) were identified and quantified by HPLC with photodioarray and electrospray mass detectors. In addition, the production of indole glucosinolates, biosynthetic precursors of cruciferous phytoalexins, was evaluated. Tenualexin, (=2-(1,4-dimethoxy-1H-indol-3-yl)acetonitrile), the first cruciferous phytoalexin containing two MeO substituents in the indole ring, was isolated from D. tenuisiliqua, synthesized, and evaluated for antifungal activity. The phytoalexins cyclobrassinin and spirobrassinin were detected in B. tournefortii and C. abyssinica, whereas rutalexin and 4-methoxybrassinin were only found in B. tournefortii. D. tenuifolia, and D. tenuisiliqua produced 2-(1H-indol-3-yl)acetonitriles as phytoalexins. Because tenualexin appears to be one of the broad-range antifungals occurring in crucifers, it is suggested that D. tenuisiliqua may have disease resistance traits important to be incorporated in commercial breeding programs.

  9. Impacts of tourism hotspots on vegetation communities show a higher potential for self-propagation along roads than hiking trails.

    PubMed

    Wolf, Isabelle D; Croft, David B

    2014-10-01

    Vegetation communities along recreational tracks may suffer from substantial edge-effects through the impacts of trampling, modified environmental conditions and competition with species that benefit from disturbance. We assessed impacts on trackside vegetation by comparing high and low usage tourism sites at a 1-10 m distance from recreational tracks in a popular arid-lands tourism destination in South Australia. The central aim was quantification of the strengths and spatial extent of tourism impacts along recreational tracks with a qualitative comparison of roads and trails. Track-distance gradients were most prevalent at high usage sites. There, species community composition was altered, total plant cover decreased, non-native species cover increased, plant diversity increased or decreased (depending on the distance) and soil compaction increased towards recreational tracks. Roadside effects were greater and more pervasive than trailside effects. Further, plant diversity did not continuously increase towards the road verge as it did along trails but dropped sharply in the immediate road shoulder which indicated high disturbance conditions that few species were able to tolerate. To our knowledge, we are the first to demonstrate that the access mode to a recreation site influences the potential of certain impacts, such as the increase of non-native species, to self-perpetuate from their points of introduction to disjointed sites with a predisposition to disturbance. Due to this propulsion of impacts, the overall spatial extent of roadside impacts was far greater than initially apparent from assessments at the road verge. We discuss possible means of mitigating these impacts.

  10. Use of reverse micelles for the simultaneous extraction of oil, proteins, and glucosinolates from cruciferous oilseeds.

    PubMed

    Ugolini, Luisa; De Nicola, Gina; Palmieri, Sandro

    2008-03-12

    Cruciferous oilseeds are important sources of oil, proteins, and glucosinolates (GLs), potentially available when biorefinery processes are used. The proposed extraction technology is based on the use of reverse micelles (RMs) made with cetyltrimethylammonium bromide (CTAB) dispersed in organic solvent. The physicochemical properties of this extraction system and the good water solubility of many high value compounds, such as GLs and some proteins, permit the simultaneous extraction of oil, and these products from cruciferous oilseed meals. This procedure is based on three main steps: (i) seed conditioning; (ii) solid-liquid extraction by RM solution; and (iii) back-transfer of the RM solution for recovery of the extracted compounds. The method makes it possible to simultaneously extract almost the same amount of oil as with pure organic solvents used in the current extraction plants and more than 90% of soluble proteins and GLs. It is a promising biorefinery technology alternative to traditional oil extraction processes.

  11. The mitochondrial genome of Raphanus sativus and gene evolution of cruciferous mitochondrial types.

    PubMed

    Chang, Shengxin; Chen, Jianmei; Wang, Yankun; Gu, Bingchao; He, Jianbo; Chu, Pu; Guan, Rongzhan

    2013-03-20

    To explore the mitochondrial genes of the Cruciferae family, the mitochondrial genome of Raphanus sativus (sat) was sequenced and annotated. The circular mitochondrial genome of sat is 239,723 bp and includes 33 protein-coding genes, three rRNA genes and 17 tRNA genes. The mitochondrial genome also contains a pair of large repeat sequences 5.9 kb in length, which may mediate genome reorganization into two sub-genomic circles, with predicted sizes of 124.8 kb and 115.0 kb, respectively. Furthermore, gene evolution of mitochondrial genomes within the Cruciferae family was analyzed using sat mitochondrial type (mitotype), together with six other reported mitotypes. The cruciferous mitochondrial genomes have maintained almost the same set of functional genes. Compared with Cycas taitungensis (a representative gymnosperm), the mitochondrial genomes of the Cruciferae have lost nine protein-coding genes and seven mitochondrial-like tRNA genes, but acquired six chloroplast-like tRNAs. Among the Cruciferae, to maintain the same set of genes that are necessary for mitochondrial function, the exons of the genes have changed at the lowest rates, as indicated by the numbers of single nucleotide polymorphisms. The open reading frames (ORFs) of unknown function in the cruciferous genomes are not conserved. Evolutionary events, such as mutations, genome reorganizations and sequence insertions or deletions (indels), have resulted in the non-conserved ORFs in the cruciferous mitochondrial genomes, which is becoming significantly different among mitotypes. This work represents the first phylogenic explanation of the evolution of genes of known function in the Cruciferae family. It revealed significant variation in ORFs and the causes of such variation.

  12. Impact of a Community-Based Intervention on Serving and Intake of Vegetables among Low-Income, Rural Appalachian Families

    ERIC Educational Resources Information Center

    Wenrich, Tionni R.; Brown, J. Lynne; Wilson, Robin Taylor; Lengerich, Eugene J.

    2012-01-01

    Objective: To evaluate the effectiveness of a community-based intervention promoting the serving and eating of deep-orange, cruciferous, and dark-green leafy vegetables. Design: Randomized, parallel-group, community-based intervention with a baseline/postintervention/3-month follow-up design. Setting and Participants: Low-income food preparers (n…

  13. Anti-Inflammatory and Antioxidant Effects of Repeated Exposure to Cruciferous Allyl Nitrile in Sensitizer-Induced Ear Edema in Mice

    PubMed Central

    Tanii, Hideji; Sugitani, Kayo; Saijoh, Kiyofumi

    2016-01-01

    Background Skin sensitizers induce allergic reactions through the induction of reactive oxygen species. Allyl nitrile from cruciferous vegetables has been reported to induce antioxidants and phase II detoxification enzymes in various tissues. We assessed the effects of repeated exposure to allyl nitrile on sensitizer-induced allergic reactions. Material/Methods Mice were dosed with allyl nitrile (0–200 μmol/kg), and then received a dermal application of 1 of 3 sensitizers on the left ear or 1 of 2 vehicles on the right ear. Quantitative assessment of edema was carried out by measuring the difference in weight between the portions taken from the right and left ears. We tested enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) in ears. Results Repeated exposure to allyl nitrile reduced edemas induced by glutaraldehyde and by 2, 4-dinitrochlorobenzene (DNCB), but not by formaldehyde. The repeated exposure decreased levels of TBARS, a marker of oxidative stress, induced by glutaraldehyde and by DNCB, but not by formaldehyde. Allyl nitrile elevated SOD levels for the 3 sensitizers, and CAT levels for formaldehyde and DNCB. Allyl nitrile also increased GPx levels for formaldehyde and DNCB, but not for glutaraldehyde. The reduced edemas were associated with changes in oxidative stress levels and antioxidant enzymes. Conclusions Repeated exposure to allyl nitrile reduced allergic reactions induced by glutaraldehyde and by DNCB, but not by formaldehyde. This reduction was associated with changes in ROS levels and antioxidant enzyme activities. PMID:26932717

  14. Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus x domestica Borkh.).

    PubMed

    Mimida, Naozumi; Kotoda, Nobuhiro; Ueda, Takanori; Igarashi, Megumi; Hatsuyama, Yoshimichi; Iwanami, Hiroshi; Moriya, Shigeki; Abe, Kazuyuki

    2009-02-01

    Recent molecular analyses in several plant species revealed that TERMINAL FLOWER1 (TFL1) and CENTRORADIALIS (CEN) homologs are involved in regulating the flowering time and/or maintaining the inflorescence meristem. In apple (Malusxdomestica Borkh.), four TFL1/CEN-like genes, MdTFL1, MdTFL1a, MdCENa and MdCENb, were found and mapped by a similar position on putatively homoeologous linkage groups. Apple TFL1/CEN-like genes functioned equivalently to TFL1 when expressed constitutively in transgenic Arabidopsis plants, suggesting that they have a potential to complement the TFL1 function. Because MdTFL1 and MdTFL1a were expressed in the vegetative tissues in both the adult and juvenile phases, they could function redundantly as a flowering repressor and a regulator of vegetative meristem identity. On the other hand, MdCENa was mainly expressed in fruit receptacles, cultured tissues and roots, suggesting that it is involved in the development of proliferating tissues but not in the control of the transition from the juvenile to the adult phase. In contrast, MdCENb was silenced in most organs probably due to gene duplication by the polyploid origin of apple. The expression patterns of MdTFL1 and MdCENa in apple were also supported by the heterologous expression of beta-glucuronidase fused with their promoter regions in transgenic Arabidopsis. Our results suggest that functional divergence of the roles in the regulation of vegetative meristem identity may have occurred among four TFL1/CEN-like genes during evolution in apple.

  15. Applying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of Cruciferous Weeds in Winter Crops

    PubMed Central

    de Castro, Ana-Isabel; Jurado-Expósito, Montserrat; Gómez-Casero, María-Teresa; López-Granados, Francisca

    2012-01-01

    In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops. PMID:22629171

  16. Applying neural networks to hyperspectral and multispectral field data for discrimination of cruciferous weeds in winter crops.

    PubMed

    de Castro, Ana-Isabel; Jurado-Expósito, Montserrat; Gómez-Casero, María-Teresa; López-Granados, Francisca

    2012-01-01

    In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops.

  17. An 8000-yr Record of Vegetation and Sedimentation Change from Kaau Crater, Hawaii Shows Mid-Holocene Climate Variability in the Pacific

    NASA Astrophysics Data System (ADS)

    Schubert, O.; Beilman, D.

    2014-12-01

    Kaau Crater is located on Oahu, Hawaii, and was formed about 1 million years ago. The crater is a wetland about 450 m in diameter, which has been accumulating sediment since at least 25,866 cal yr BP. Sediment accumulation environments suitable for stratigraphic paleoscience studies in tropical mountaintop locations, relatively unaffected by humans, are scarce. This research aims to provide a comprehensive multi-millennial record of environmental change over time, including a reconstruction of precipitation and temperature. A continuous 450 cm organic sediment core was raised from Kaau Crater and analyzed for bulk density, organic matter (OM), stable isotopes of carbon and nitrogen, and sediment accumulation rate as well as fossil pollen. Thirteen radiocarbon measurements show that the profile represents 14,087 years of sedimentation, and continuous sedimentation since ~8000 cal yr BP. Bulk density was typically about 0.17 g cm-3, but is particularly high (0.56 g cm-3) in sediments deposited between 5800 and 4400 cal yr BP. High variability during this time period is also seen in OM, stable isotopes of carbon and nitrogen, and sediment accumulation rate. The OM content varies greatly throughout the core, from 12 to 94%. The 13C and 15N range -28.3 to -26.1‰ and 0.7 to 5.7‰. Maximum sedimentation and organic matter accumulation is between 6810-3942 cal yr BP, during which time, the organic C accumulation rate is 46.1 g m-2 yr-1. The C:N ratio is most variable during the mid-Holocene and the maximum is at 6326 cal yr BP. Thirty-eight pollen types were identified representing a mixture of dry- to wet-tolerant taxa. A reconstruction of annual precipitation suggests substantial variation on multi-centennial and shorter scales, particularly during the mid-Holocene (-643.4-5654 mm anomaly), but a lack of Holocene-scale wetting or drying. A reconstruction of mean annual temperature shows an overall multi-millennial cooling trend at the crater more pronounced after 5400

  18. Degradation of acephate by Enterobacter asburiae, Bacillus cereus and Pantoea agglomerans isolated from diamondback moth Plutella xylostella (L), a pest of cruciferous crops.

    PubMed

    Ramya, Shanivarsanthe Leelesh; Venkatesan, Thiruvengadam; Murthy, Kottilingam Srinivasa; Jalali, Sushil Kumar; Varghese, Abraham

    2016-07-01

    Acephate-degrading bacterial isolates were isolated from the larval gut of diamondback moth Plutella xylostella, a notorious pest of cruciferous crops worldwide that has developed resistance to insecticides. Partial 16S rRNA gene sequencing identified the isolates as Bacillus cereus (PX-B.C.Or), Enterobacter asburiae (PXE), and Pantoae agglomerans (PX-Pt.ag.Jor). All isolates grew on minimal media (MM) in the presence of acephate at 100 and 200 ppm, with maximum growth at 200 ppm. LC-MS analyses of spent medium showed that E. asburiae degraded acephate to methamidophos and O, O-dimethyl phosporamidate and B. cereus O,S-dimethyl to phosphorothioate but P. agglomerans to an unnamed compound. All three isolates used acephate as a source of carbon and energy for growth; however, P. agglomerans used it also as source of sulphur. Strong evidence revealed that the bacterial communities present in the gut of diamondback moth might aid in acephate degradation and play a role in the development of insecticide resistance.

  19. Non-indolyl cruciferous phytoalexins: Nasturlexins and tridentatols, a striking convergent evolution of defenses in terrestrial plants and marine animals?

    PubMed

    Pedras, M Soledade C; To, Q Huy

    2015-05-01

    Highly specialized chemical defense pathways are a particularly noteworthy metabolic characteristic of sessile organisms, whether terrestrial or marine, providing protection against pests and diseases. For this reason, knowledge of the metabolites involved in these processes is crucial to producing ecologically fit crops. Toward this end, the elicited chemical defenses of the crucifer watercress (Nasturtium officinale R. Br.), i.e. phytoalexins, were investigated and are reported. Almost three decades after publication of cruciferous phytoalexins derived from (S)-Trp, phytoalexins derived from other aromatic amino acids were isolated; their chemical structures were determined by analyses of their spectroscopic data and confirmed by synthesis. Nasturlexin A, nasturlexin B, and tridentatol C are hitherto unknown phenyl containing cruciferous phytoalexins produced by watercress under abiotic stress; tridentatol C is also produced by a marine animal (Tridentata marginata), where it functions in chemical defense against predators. The biosynthesis of these metabolites in both a terrestrial plant and a marine animal suggests a convergent evolution of unique metabolic pathways recruited for defense.

  20. Erucin, a new promising cancer chemopreventive agent from rocket salads, shows anti-proliferative activity on human lung carcinoma A549 cells.

    PubMed

    Melchini, A; Costa, C; Traka, M; Miceli, N; Mithen, R; De Pasquale, R; Trovato, A

    2009-07-01

    Erucin (ER) is a dietary isothiocyanate present in cruciferous vegetables, such as rocket salads (Erucasativa Mill., Diplotaxis sp.), that has been recently considered a promising cancer chemopreventive phytochemical. Biological activity of ER was investigated on human lung adenocarcinoma A549 cells, analyzing its effects on molecular pathways involved in apoptosis and cell cycle arrest, such as PARP-1 cleavage, p53 and p21 protein expression. Our results show that ER affects the A549 cell proliferation, enhancing significantly p53 and p21 protein expression in a dose-dependent manner (p<0.001). PARP-1 cleavage occurs only after exposure to high concentrations of ER (50 microM), in accordance to previous studies showing similar bioactivity of other isothiocyanates (ITCs). Our study reports for the first time that the induction of p53, p21 and PARP-1 cleavage may participate in the anti-proliferative activity of ER in human lung adenocarcinoma A549 cells. Comparison of data with those obtained with the isothiocyanate sulforaphane (SF), structurally related to ER, underlines the strong relationship between structural analogy of ITCs and their biological activity. The ability of dietary compounds to modulate molecular mechanisms that affect cancer cell proliferation is certainly a key point of the cancer prevention potential by functional foods.

  1. Mobile Technology for Vegetable Consumption: A Randomized Controlled Pilot Study in Overweight Adults

    PubMed Central

    Mathur, Maya; King, Abby C

    2016-01-01

    consumption of green leafy vegetables, cruciferous vegetables, and dark yellow vegetables (adjusted mean difference: 2.6, 1.6, and 0.8 servings; 95% CI 0.1-5.0, 0.1-3.2, and 0.3-1.4; P=.04, P=.04, and P=.004, respectively). Participants reported positive experiences with the app, including strong agreement with the statements “I have found Vegethon easy to use” and “I would recommend Vegethon to a friend” (mean 4.6 (SD 0.6) and 4.2 (SD 0.8), respectively, (on a 5-point scale). Conclusions Vegethon demonstrated initial efficacy and user acceptability. A mobile app intervention may be useful for increasing vegetable consumption among overweight adults. The small sample size prevented precise estimates of effect sizes. Given the improved health outcomes associated with increases in vegetable consumption, these findings indicate the need for larger, longer-term evaluations of Vegethon and similar technologies among overweight adults and other suitable target groups. Trial Registration ClinicalTrials.gov NCT01826591; https://clinicaltrials.gov/ct2/show/NCT01826591 (Archived by WebCite at http://www.webcitation.org/6hYDw2AOB) PMID:27193036

  2. "The Show"

    ERIC Educational Resources Information Center

    Gehring, John

    2004-01-01

    For the past 16 years, the blue-collar city of Huntington, West Virginia, has rolled out the red carpet to welcome young wrestlers and their families as old friends. They have come to town chasing the same dream for a spot in what many of them call "The Show". For three days, under the lights of an arena packed with 5,000 fans, the…

  3. The selective cytotoxicity of the alkenyl glucosinolate hydrolysis products and their presence in Brassica vegetables.

    PubMed

    Kadir, Nurul H A; David, Rhiannon; Rossiter, John T; Gooderham, Nigel J

    2015-08-06

    Cruciferous vegetable consumption correlates with reduced risk of cancer. This chemopreventative activity may involve glucosinolates and their hydrolysis products. Glucosinolate-derived isothiocyanates have been studied for their toxicity and chemopreventative properties, but other hydrolysis products (epithionitriles and nitriles) have not been thoroughly examined. We report that these hydrolysis products differ in their cytotoxicity to human cells, with toxicity most strongly associated with isothiocyanates rather than epithionitriles and nitriles. We explored mechanisms of this differential cytotoxicity by examining the role of oxidative metabolism, oxidative stress, mitochondrial permeability, reduced glutathione levels, cell cycle arrest and apoptosis. 2-Propenylisothiocyanate and 3-butenylisothiocyanate both inhibited cytochome P450 1A (CYP1A) enzyme activity in CYP expressing MCL-5 cells at high cytotoxic doses. Incubation of MCL-5 cells with non-cytotoxic doses of 2-propenylisothiocyanate for 24h resulted in a dose-dependent inhibition of ethoxyresorufin O-deethylase, yet failed to affect CYP1A1 mRNA expression indicating interference with enzyme activity rather than inhibition of transcription. Increased reactive oxygen species (ROS) production was observed only for 2-propenylisothiocyanate treatment. 2-Propenylisothiocyanate treatment lowered reduced glutathione levels whereas no changes were noted with 3,4-epithiobutylnitrile. Cell cycle analysis showed that 2-propenylisothiocyanate induced a G2/M block whereas other hydrolysis products showed only marginal effects. We found that 2-propenylisothiocyanate and 3-butenylisothiocyanate induced cell death predominantly via necrosis whereas, 3,4-epithiobutylnitrile promoted both necrosis and apoptosis. Thus the activity of glucosinolate hydrolysis products includes cytotoxicity that is compound-class specific and may contribute to their putative chemoprotection properties.

  4. Vegetation and soils

    USGS Publications Warehouse

    Burke, M.K.; King, S.L.; Eisenbies, M.H.; Gartner, D.

    2000-01-01

    Intro paragraph: Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in hypothesis generation about factors influencing community variation, and helps refine models of community structure. Hierarchical classification of communities is particularly useful for showing relationships among samples (Gauche 1982).

  5. The beneficial effects of Brassica vegetables on human health.

    PubMed

    Kapusta-Duch, Joanna; Kopeć, Aneta; Piatkowska, Ewa; Borczak, Barbara; Leszczyńska, Teresa

    2012-01-01

    The products of plant origin are a rich source of biologically active substances, both nutritive and referred as anti-nutritive. A large group of these compounds are substances with antioxidant activity that fights against free radicals. In the family of Brassicaceae vegetables, Brassica, is the largest and most widely consumed a group of plants in Europe and all over the world. They are characterized by different levels of nutrients. However because of their large and frequent consumption, they may become a significant source of nutrients and bioactive compounds in the daily diet. The beneficial effects of Brassica vegetables on human health have been somewhat linked to phytochemicals. They prevent oxidative stress, induce detoxification enzymes, stimulate immune system, decrease the risk of cancers, inhibit malignant transformation and carcinogenic mutations, as well as, reduce proliferation of cancer cells. Brassica vegetables contain a lot of valuable metabolites, which are effective in chemoprevention of cancer, what has been already documented by numerous studies. Due to the presence of vitamins C and E, carotenoids and antioxidant enzymes such as catalase, superoxide dismutase (SOD) and peroxidase, these vegetables are considerable source ofantioxidants, and due to the presence of polyphenols and the sulfur-organic compounds exert also antimutagenic action. Moreover, these vegetables are also rich in glucosinolates, which are unstable compounds and undergo degradation into biologically active indoles and isothiocyanates under the influence of enzyme presented in plant tissues- myrosynase. These substances through the induction of enzymatic systems I and II phase of xenobiotics metabolism may affect the elimination or neutralization of carcinogenic and mutagenic factors, and consequently inhibit DNA methylation and cancer development. Despite many healthy benefits upon eating of cruciferous vegetables, it has been also seen a negative impact of their certain

  6. Global Enhanced Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona

  7. The use of new index for surface roughness of vegetation

    NASA Astrophysics Data System (ADS)

    Konda, Asako; Yamamoto, Hirokazu; Kajiwara, Koji; Honda, Yoshiaki

    2005-01-01

    Propose of a new Vegetation Index is purposes. Ordinal vegetation Index can show intensity of vegetation on the ground. It can not show structure of vegetation surface or texture. Proposed vegetation index utilizes BRF property. It is generated from data from 2 orbit of satellite and be able to show structure of vegetation surface or texture. Principles of this index is coming from field observation using RC helicopter. Each vegetation canopy has different texture and roughness. New index, named BSI (Bi-directional reflectance Structure Index) shows difference of vegetation canopy. It is calculated by using the data of NOAA/AVHRR, ADEOS OCTS. ADEOS-II GLI can derive BSI.

  8. Genetic polymorphisms in nitric oxide synthase genes modify the relationship between vegetable and fruit intake and risk of non-Hodgkin lymphoma.

    PubMed

    Han, Xuesong; Zheng, Tongzhang; Lan, Qing; Zhang, Yaqun; Kilfoy, Briseis A; Qin, Qin; Rothman, Nathaniel; Zahm, Shelia H; Holford, Theodore R; Leaderer, Brian; Zhang, Yawei

    2009-05-01

    Oxidative damage caused by reactive oxygen species and other free radicals is involved in carcinogenesis. It has been suggested that high vegetable and fruit intake may reduce the risk of non-Hodgkin lymphoma (NHL) as vegetables and fruit are rich in antioxidants. The aim of this study is to evaluate the interaction of vegetable and fruit intake with genetic polymorphisms in oxidative stress pathway genes and NHL risk. This hypothesis was investigated in a population-based case-control study of NHL and NHL histologic subtypes in women from Connecticut, including 513 histologically confirmed incident cases and 591 randomly selected controls. Gene-vegetable/fruit joint effects were estimated using unconditional logistic regression model. The false discovery rate method was applied to adjust for multiple comparisons. Significant interactions with vegetable and fruit intake were mainly found for genetic polymorphisms on nitric oxide synthase (NOS) genes among those with diffuse large B-cell lymphoma and follicular lymphoma. Two single nucleotide polymorphisms in the NOS1 gene were found to significantly modify the association between total vegetable and fruit intake and risk of NHL overall, as well as the risk of follicular lymphoma. When vegetables, bean vegetables, cruciferous vegetables, green leafy vegetables, red vegetables, yellow/orange vegetables, fruit, and citrus fruits were examined separately, strong interaction effects were narrowed to vegetable intake among patients with diffuse large B-cell lymphoma. Our results suggest that genetic polymorphisms in oxidative stress pathway genes, especially in the NOS genes, modify the association between vegetable and fruit intake and risk of NHL.

  9. Vegetation spatial variability and its effect on vegetation indices

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.; Choudhury, B. J.; Owe, M.

    1987-01-01

    Landsat MSS data were used to simulate low resolution satellite data, such as NOAA AVHRR, to quantify the fractional vegetation cover within a pixel and relate the fractional cover to the normalized difference vegetation index (NDVI) and the simple ratio (SR). The MSS data were converted to radiances from which the NDVI and SR values for the simulated pixels were determined. Each simulated pixel was divided into clusters using an unsupervised classification program. Spatial and spectral analysis provided a means of combining clusters representing similar surface characteristics into vegetated and non-vegetated areas. Analysis showed an average error of 12.7 per cent in determining these areas. NDVI values less than 0.3 represented fractional vegetated areas of 5 per cent or less, while a value of 0.7 or higher represented fractional vegetated areas greater than 80 per cent. Regression analysis showed a strong linear relation between fractional vegetation area and the NDVI and SR values; correlation values were 0.89 and 0.95 respectively. The range of NDVI values calculated from the MSS data agrees well with field studies.

  10. DNA-based identification of Brassica vegetable species for the juice industry.

    PubMed

    Etoh, Kazumi; Niijima, Noritaka; Yokoshita, Masahiko; Fukuoka, Shin-Ichi

    2003-10-01

    Since kale (Brassica oleracea var. acephala), a cruciferous vegetable with a high level of vitamins and functional compounds beneficial to health and wellness, has become widely used in the juice industry, a precise method for quality control of vegetable species is necessary. We describe here a DNA-based identification method to distinguish kale from cabbage (Brassica oleracea var. capitata), a closely related species, which can be inadvertently mixed with kale during the manufacturing process. Using genomic DNA from these vegetables and combinatory sets of nucleotide primers, we screened for random amplified polymorphic DNA (RAPD) fragments and found three cabbage-specific fragments. These RAPD fragments, with lengths of 1.4, 0.5, and 1.5 kb, were purified, subcloned, and sequenced. Based on sequence-tagged sites (STS), we designed sets of primers to detect cabbage-specific identification (CAI) DNA markers. Utilizing the CAI markers, we successfully distinguished more than 10 different local cabbage accessions from 20 kale accessions, and identified kale juices experimentally spiked with different amounts of cabbage.

  11. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food.

    PubMed

    Park, Kun-Young; Jeong, Ji-Kang; Lee, Young-Eun; Daily, James W

    2014-01-01

    Kimchi is a traditional Korean food manufactured by fermenting vegetables with probiotic lactic acid bacteria (LAB). Many bacteria are involved in the fermentation of kimchi, but LAB become dominant while the putrefactive bacteria are suppressed during salting of baechu cabbage and the fermentation. The addition of other subingredients and formation of fermentation byproducts of LAB promote the fermentation process of LAB to eventually lead to eradication of putrefactive- and pathogenic bacteria, and also increase the functionalities of kimchi. Accordingly, kimchi can be considered a vegetable probiotic food that contributes health benefits in a similar manner as yogurt as a dairy probiotic food. Further, the major ingredients of kimchi are cruciferous vegetables; and other healthy functional foods such as garlic, ginger, red pepper powder, and so on are added to kimchi as subingredients. As all of these ingredients undergo fermentation by LAB, kimchi is regarded as a source of LAB; and the fermentative byproducts from the functional ingredients significantly boost its functionality. Because kimchi is both tasty and highly functional, it is typically served with steamed rice at every Korean meal. Health functionality of kimchi, based upon our research and that of other, includes anticancer, antiobesity, anticonstipation, colorectal health promotion, probiotic properties, cholesterol reduction, fibrolytic effect, antioxidative and antiaging properties, brain health promotion, immune promotion, and skin health promotion. In this review we describe the method of kimchi manufacture, fermentation, health functionalities of kimchi and the probiotic properties of its LAB.

  12. Nonlinearities in vegetation functioning

    NASA Astrophysics Data System (ADS)

    Ceballos-Núñez, Verónika; Müller, Markus; Metzler, Holger; Sierra, Carlos

    2016-04-01

    Given the current drastic changes in climate and atmospheric CO2 concentrations, and the role of vegetation in the global carbon cycle, there is increasing attention to the carbon allocation component in biosphere terrestrial models. Improving the representation of C allocation in models could be the key to having better predictions of the fate of C once it enters the vegetation and is partitioned to C pools of different residence times. C allocation has often been modeled using systems of ordinary differential equations, and it has been hypothesized that most models can be generalized with a specific form of a linear dynamical system. However, several studies have highlighted discrepancies between empirical observations and model predictions, attributing these differences to problems with model structure. Although efforts have been made to compare different models, the outcome of these qualitative assessments has been a conceptual categorization of them. In this contribution, we introduce a new effort to identify the main properties of groups of models by studying their mathematical structure. For this purpose, we performed a literature research of the relevant models of carbon allocation in vegetation and developed a database with their representation in symbolic mathematics. We used the Python package SymPy for symbolic mathematics as a common language and manipulated the models to calculate their Jacobian matrix at fixed points and their eigenvalues, among other mathematical analyses. Our preliminary results show a tendency of inverse proportionality between model complexity and size of time/space scale; complex interactions between the variables controlling carbon allocation in vegetation tend to operate at shorter time/space scales, and vice-versa. Most importantly, we found that although the linear structure is common, other structures with non-linearities have been also proposed. We, therefore, propose a new General Model that can accommodate these

  13. Emergence of river dynamics through changing vegetation patterns

    NASA Astrophysics Data System (ADS)

    van Oorschot, Mijke; Kleinhans, Maarten; Middelkoop, Hans; Geerling, Gertjan

    2016-04-01

    Riparian vegetation interacts with morphodynamic processes in rivers to create distinct habitat mosaics supporting a large biodiversity. The aim of our work is to quantitatively investigate the emergent patterns in vegetation and river morphology at the river reach scale by dynamically modelling the processes and their interactions. Here, we coupled an advanced morphodynamic model to a novel dynamic riparian vegetation model to study the interaction between vegetation and morphodynamics. Vegetation colonizes bare substrate within the seed dispersal window, passes several growth stages with different properties and can die through flooding, desiccation, uprooting, scour or burial. We have compared river morphology and vegetation patterns of scenarios without vegetation, with static vegetation that does not grow or die and several dynamic vegetation scenarios with a range of vegetation strategies and eco-engineering properties. Results show that dynamic vegetation has a decreased lateral migration of meander bends and maintains its active meandering behavior as opposed to the scenarios without vegetation and with static vegetation. Also the patterns in vegetation and fluvial morphology and the vegetation age distribution mostly resemble the natural situation when compared to aerial photos of the study area. We find that river dynamics, specifically sinuosity and sediment transport, are very sensitive to vegetation properties that determine vegetation density, settlement location and survival. Future work will include the effects of invasive species, addition of silt and the effect of various river management strategies.

  14. Fruits and vegetables (image)

    MedlinePlus

    A healthy diet includes adding vegetables and fruit every day. Vegetables like broccoli, green beans, leafy greens, zucchini, cauliflower, cabbage, carrots, and tomatoes are low in calories and high in fiber, ...

  15. Vegetable oil fuel standards

    SciTech Connect

    Pryde, E.H.

    1982-01-01

    Suggested standards for vegetable oils and ester fuels, as well as ASTM specifications for No. 2 diesel oil are given. The following physical properties were discussed: cetane number, cloud point, distillation temperatures, flash point, pour point, turbidity, viscosity, free fatty acids, iodine value, phosphorus, and wax. It was apparent that vegetable oils and their esters cannot meet ASTM specifications D975 for No. 2 diesel oil for use in the diesel engine. Vegetable oil modification or engine design modification may make it possible eventually for vegetable oils to become suitable alternative fuels. Vegetable oils must be recognized as experimental fuels until modifications have been tested thoroughly and generally accepted. 1 table. (DP)

  16. [Estimation of vegetation water content from Landsat 8 OLI data].

    PubMed

    Zheng, Xing-ming; Ding, Yan-ling; Zhao, Kai; Jiang, Tao; Li, Xiao-feng; Zhang, Shi-yi; Li, Yang-yang; Wu, Li-li; Sun, Jian; Ren, Jian-hua; Zhang, Xuan-xuan

    2014-12-01

    The present paper aims to analyze the capabilities and limitations for retrieving vegetation water content from Landsat8 OLI (Operational Land Imager) sensor-new generation of earth observation program. First, the effect of soil background on canopy reflectance and the sensitive band to vegetation water content were analyzed based on simulated dataset from ProSail model. Then, based on vegetation water indices from Landsat8 OLI and field vegetation water content during June 1 2013 to August 14 2013, the best vegetation water index for estimating vegetation water content was found through comparing 12 different indices. The results show that: (1) red, near infrared and two shortwave infrared bands of OLI sensor are sensitive to the change in vegetation water content, and near infrared band is the most sensitive one; (2) At low vegetation coverage, solar radiation reflected by soil background will reach to spectral sensor and influence the relationship between vegetation water index and vegetation water content, and simulation results from ProSail model also show that soil background reflectance has a significant impact on vegetation canopy reflectance in both wet and dry soil conditions, so the optimized soil adjusted vegetation index (OSAVI) was used in this paper to remove the effect of soil background on vegetation water index and improve its relationship with vegetation water content; (3) for the 12 vegetation water indices, the relationship between MSI2 and vegetation water content is the best with the R-square of 0.948 and the average error of vegetation water content is 0.52 kg · m(-2); (4) it is difficult to estimate vegetation water content from vegetation water indices when vegetation water content is larger than 2 kg · m(-2) due to spectral saturation of these indices.

  17. Airphoto assessment of changes in aquatic vegetation

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Philipson, W. R.; Russel, A. E.

    1977-01-01

    Large scale, multiyear, color and color infrared aerial photographs were used to evaluate changes in aquatic vegetation that have accompanied a reduction in phosphorus inputs to a phosphorus-limited, eutrophic lake in New York State. The study showed that the distribution of emergent, floating and submersed vegetation could be determined with little or no concurrent ground data; that various emergent and floating types could be separated and, with limited field checks, identified; and that different submersed types are generally not separable. Major vegetative types are characterized by spectral and nonspectral features, and a classification is developed for compiling time-sequential vegetation maps.

  18. The vegetative index number and crop identification

    NASA Technical Reports Server (NTRS)

    Ashburn, P. (Principal Investigator)

    1979-01-01

    A vegetative index number of numerical value was calculated from the digital values of the LANDSAT system to provide some measure of green growing vegetation. The usefulness of the green numbers for schemes in crop identification and acreage estimation is investigated and the Ashburn vegetation index (AVI) is compared with the Kauth-Thomas vegetation index (KVI) for crop identification schemes. Results of wheat acreage estimation using LACIE Procedure 1 and the AVI for eight sample segments are given. Tables show comparisons between the AVI and the KVI as well as visual results of the AVI.

  19. Television Quiz Show Simulation

    ERIC Educational Resources Information Center

    Hill, Jonnie Lynn

    2007-01-01

    This article explores the simulation of four television quiz shows for students in China studying English as a foreign language (EFL). It discusses the adaptation and implementation of television quiz shows and how the students reacted to them.

  20. Thermal modification of vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article reviews some literature, both old and recent, involving the hypothesis that the Diels-Alder reaction is operative in the thermal polymerization of vegetable oil. Both triacylglycerol oils and methyl esters are used to show that this mechanism is unlikely to be a significant contributor ...

  1. Riparian vegetation controls on braided stream dynamics

    NASA Astrophysics Data System (ADS)

    Gran, Karen; Paola, Chris

    2001-12-01

    Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. To examine the effects of riparian vegetation on gravel bed braided streams, we conducted a series of physical experiments at the St. Anthony Falls Laboratory with varying densities of bar and bank vegetation. Water discharge, sediment discharge, and grain size were held constant between runs. For each run, we allowed a braided system to develop, then seeded the flume with alfalfa (Medicago sativa), allowed the seeds to grow, and then continued the run. We collected data on water depth, surface velocity, and bed elevation throughout each run using image-based techniques designed to collect data over a large spatial area with minimal disturbance to the flow. Our results show that the influence of vegetation on overall river patterns varied systematically with the spatial density of plant stems. Vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and increased channel relief. These effects increased with vegetation density. Vegetation influenced flow dynamics, increasing the variance of flow direction in vegetated runs and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision also provides a new mechanism for producing secondary flows. We found it to be more important than the classical curvature-driven mechanism in vegetated runs.

  2. Fruits and vegetables dehydration

    NASA Astrophysics Data System (ADS)

    de Ita, A.; Flores, G.; Franco, F.

    2015-01-01

    Dehydration diagrams were determined by means of Differential Thermal Analysis, DTA, and Thermo Gravimetric Analysis, TGA, curves of several simultaneous fruits and vegetables, all under the same conditions. The greater mass loss is associated with water containing in the structure of the investigated materials at low temperature. In poblano chile water is lost in a single step. The banana shows a very sharply two stages, while jicama can be observed although with a little difficulty three stages. The major mass loss occurs in the poblano chile and the lower in banana. The velocity and temperature of dehydration vary within a small range for most materials investigated, except for banana and cactus how are very different.

  3. Masking Vegetable Bitterness to Improve Palatability Depends on Vegetable Type and Taste Phenotype

    PubMed Central

    2013-01-01

    Consumption of dark green vegetables falls short of recommendations, in part, because of unpleasant bitterness. A laboratory-based study of 37 adults was used to determine bitter and hedonic responses to vegetables (asparagus, Brussels sprouts, kale) with bitter masking agents (1.33 M sodium acetate, 10 and 32 mM sodium chloride, and 3.2 mM aspartame) and then characterized by taste phenotype and vegetable liking. In repeated-measures ANOVA, aspartame was most effective at suppressing bitterness and improving hedonic responses for all sampled vegetables. Among the sodium salts, 32 mM sodium chloride decreased bitterness for kale and sodium acetate reduced bitterness across all vegetables with a tendency to increase liking for Brussels sprouts, as release from mixture suppression increased perceived sweetness. Participants were nearly equally divided into three 6-n-propylthiouracil (PROP) phenotype groups. Those tasting the least PROP bitterness (non-tasters) reported least vegetable bitterness, and the additives produced little change in vegetable liking. Aspartame persisted as the most effective bitter blocker for the PROP tasters (medium, supertasters), improving vegetable liking for the medium tasters but too much sweetness for supertasters. The sodium salts showed some bitter blocking for PROP tasters, particularly sodium acetate, without significant gains in vegetable liking. Via a survey, adults characterized as low vegetable likers reported greater increase in vegetable liking with the maskers than did vegetable likers. These results suggest that bitter masking agents (mainly sweeteners) can suppress bitterness to increase acceptance if they are matched to perceived vegetable bitterness or to self-reported vegetable disliking. PMID:23682306

  4. Showing What They Know

    ERIC Educational Resources Information Center

    Cech, Scott J.

    2008-01-01

    Having students show their skills in three dimensions, known as performance-based assessment, dates back at least to Socrates. Individual schools such as Barrington High School--located just outside of Providence--have been requiring students to actively demonstrate their knowledge for years. The Rhode Island's high school graduating class became…

  5. The Ozone Show.

    ERIC Educational Resources Information Center

    Mathieu, Aaron

    2000-01-01

    Uses a talk show activity for a final assessment tool for students to debate about the ozone hole. Students are assessed on five areas: (1) cooperative learning; (2) the written component; (3) content; (4) self-evaluation; and (5) peer evaluation. (SAH)

  6. What Do Maps Show?

    ERIC Educational Resources Information Center

    Geological Survey (Dept. of Interior), Reston, VA.

    This curriculum packet, appropriate for grades 4-8, features a teaching poster which shows different types of maps (different views of Salt Lake City, Utah), as well as three reproducible maps and reproducible activity sheets which complement the maps. The poster provides teacher background, including step-by-step lesson plans for four geography…

  7. Show Me the Way

    ERIC Educational Resources Information Center

    Dicks, Matthew J.

    2005-01-01

    Because today's students have grown up steeped in video games and the Internet, most of them expect feedback, and usually gratification, very soon after they expend effort on a task. Teachers can get quick feedback to students by showing them videotapes of their learning performances. The author, a 3rd grade teacher describes how the seemingly…

  8. Chemistry Game Shows

    NASA Astrophysics Data System (ADS)

    Campbell, Susan; Muzyka, Jennifer

    2002-04-01

    We present a technological improvement to the use of game shows to help students review for tests. Our approach uses HTML files interpreted with a browser on a computer attached to an LCD projector. The HTML files can be easily modified for use of the game in a variety of courses.

  9. Honored Teacher Shows Commitment.

    ERIC Educational Resources Information Center

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  10. Talk Show Science.

    ERIC Educational Resources Information Center

    Moore, Mitzi Ruth

    1992-01-01

    Proposes having students perform skits in which they play the roles of the science concepts they are trying to understand. Provides the dialog for a skit in which hot and cold gas molecules are interviewed on a talk show to study how these properties affect wind, rain, and other weather phenomena. (MDH)

  11. Stage a Water Show

    ERIC Educational Resources Information Center

    Frasier, Debra

    2008-01-01

    In the author's book titled "The Incredible Water Show," the characters from "Miss Alaineus: A Vocabulary Disaster" used an ocean of information to stage an inventive performance about the water cycle. In this article, the author relates how she turned the story into hands-on science teaching for real-life fifth-grade students. The author also…

  12. Vegetation Identification With LIDAR

    DTIC Science & Technology

    2005-09-01

    Quercus agrifolia ).....27 3. Eucalyptus Tree (Eucalyptus Globus).........28 E. IDENTIFYING LOCATIONS WITHOUT VEGETATION.........30 F. IDENTIFYING...Relative First Return 25 ( Quercus dumosa), and the California Live Oak ( Quercus agrifolia ). These three species of trees are very abundant in this...ELEVATION OF TERRAIN...23 D. TYPES OF VEGETATION..............................26 1. California Scrub Oak ( Quercus dumosa).......26 2. California Live Oak

  13. Soil and vegetation surveillance

    SciTech Connect

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  14. Not a "reality" show.

    PubMed

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show.

  15. Modelling vegetated dune landscapes

    NASA Astrophysics Data System (ADS)

    Baas, A. C. W.; Nield, J. M.

    2007-03-01

    This letter presents a self-organising cellular automaton model capable of simulating the evolution of vegetated dunes with multiple types of plant response in the environment. It can successfully replicate hairpin, or long-walled, parabolic dunes with trailing ridges as well as nebkha dunes with distinctive deposition tails. Quantification of simulated landscapes with eco-geomorphic state variables and subsequent cluster analysis and PCA yields a phase diagram of different types of coastal dunes developing from blow-outs as a function of vegetation vitality. This diagram indicates the potential sensitivity of dormant dune fields to reactivation under declining vegetation vitality, e.g. due to climatic changes. Nebkha simulations with different grid resolutions demonstrate that the interaction between the (abiotic) geomorphic processes and the biological vegetation component (life) introduces a characteristic length scale on the resultant landforms that breaks the typical self-similar scaling of (un-vegetated) bare-sand dunes.

  16. Public medical shows.

    PubMed

    Walusinski, Olivier

    2014-01-01

    In the second half of the 19th century, Jean-Martin Charcot (1825-1893) became famous for the quality of his teaching and his innovative neurological discoveries, bringing many French and foreign students to Paris. A hunger for recognition, together with progressive and anticlerical ideals, led Charcot to invite writers, journalists, and politicians to his lessons, during which he presented the results of his work on hysteria. These events became public performances, for which physicians and patients were transformed into actors. Major newspapers ran accounts of these consultations, more like theatrical shows in some respects. The resultant enthusiasm prompted other physicians in Paris and throughout France to try and imitate them. We will compare the form and substance of Charcot's lessons with those given by Jules-Bernard Luys (1828-1897), Victor Dumontpallier (1826-1899), Ambroise-Auguste Liébault (1823-1904), Hippolyte Bernheim (1840-1919), Joseph Grasset (1849-1918), and Albert Pitres (1848-1928). We will also note their impact on contemporary cinema and theatre.

  17. The Great Cometary Show

    NASA Astrophysics Data System (ADS)

    2007-01-01

    its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars. ESO PR Photo 06c/07 ESO PR Photo 06c/07 RS Ophiuchi in Outburst Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide. The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave

  18. 4. Building 11 north elevation oblique, showing detail of concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Building 11 north elevation oblique, showing detail of concrete landings, window treatments. Very obscured by unremovable vegetation. View looking west. - John & James Dobson Carpet Mill (West Parcel), Building No. 11, 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  19. Stretched View Showing 'Victoria'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Stretched View Showing 'Victoria'

    This pair of images from the panoramic camera on NASA's Mars Exploration Rover Opportunity served as initial confirmation that the two-year-old rover is within sight of 'Victoria Crater,' which it has been approaching for more than a year. Engineers on the rover team were unsure whether Opportunity would make it as far as Victoria, but scientists hoped for the chance to study such a large crater with their roving geologist. Victoria Crater is 800 meters (nearly half a mile) in diameter, about six times wider than 'Endurance Crater,' where Opportunity spent several months in 2004 examining rock layers affected by ancient water.

    When scientists using orbital data calculated that they should be able to detect Victoria's rim in rover images, they scrutinized frames taken in the direction of the crater by the panoramic camera. To positively characterize the subtle horizon profile of the crater and some of the features leading up to it, researchers created a vertically-stretched image (top) from a mosaic of regular frames from the panoramic camera (bottom), taken on Opportunity's 804th Martian day (April 29, 2006).

    The stretched image makes mild nearby dunes look like more threatening peaks, but that is only a result of the exaggerated vertical dimension. This vertical stretch technique was first applied to Viking Lander 2 panoramas by Philip Stooke, of the University of Western Ontario, Canada, to help locate the lander with respect to orbiter images. Vertically stretching the image allows features to be more readily identified by the Mars Exploration Rover science team.

    The bright white dot near the horizon to the right of center (barely visible without labeling or zoom-in) is thought to be a light-toned outcrop on the far wall of the crater, suggesting that the rover can see over the low rim of Victoria. In figure 1, the northeast and southeast rims are labeled

  20. Turbulent flow statistics of vegetative channel with seepage

    NASA Astrophysics Data System (ADS)

    Devi, Thokchom Bebina; Kumar, Bimlesh

    2015-12-01

    The present study is carried out for studying the impact of submerged, flexible vegetation in a channel where downward seepage occurs. Laboratory experiments on artificial vegetation of two different heights, 8 cm and 6 cm, were conducted for no-seepage, 10% seepage and 15% seepage cases. Vegetation height is an important parameter in influencing the flow characteristics in a vegetated channel, where velocity is reduced near the top of the vegetation. Results show that velocity measured at upstream vegetation section is always higher than the downstream section even with the application of downward seepage. The maximum value of Reynolds stress occurs near the top of the vegetation. When the flow enters the vegetation section, the local effect of the presence of vegetation on sediment transport is more at the upstream vegetation section and then decreases which is shown by higher Reynolds stress at the upstream as compared to downstream vegetation section highlighting the importance of vegetation in providing as an erosion control. The maximum Reynolds stress at no seepage is increased by a percentage of 17% for 10% seepage and average of 30.5% for 15% seepage. The turbulence intensities at no seepage are increased by an average value of 15% for 10% seepage and 25% for 15% seepage. The reduction of Reynolds stress and turbulent intensities along the longitudinal direction implies the importance of using vegetation as a river restoration measure providing considerable stability to channels. Third order moments highlight that downward seepage increases the streamwise flux and decreases the upward flux.

  1. Vegetable Production System (Veggie)

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Smith, Trent M.

    2016-01-01

    The Vegetable Production System (Veggie) was developed by Orbital Technologies Corp. to be a simple, easily stowed, and high growth volume yet low resource facility capable of producing fresh vegetables on the International Space Station (ISS). In addition to growing vegetables in space, Veggie can support a variety of experiments designed to determine how plants respond to microgravity, provide real-time psychological benefits for the crew, and conduct outreach activities. Currently, Veggie provides the largest volume available for plant growth on the ISS.

  2. Vegetation against dune mobility.

    PubMed

    Durán, Orencio; Herrmann, Hans J

    2006-11-03

    Vegetation is the most common and most reliable stabilizer of loose soil or sand. This ancient technique is for the first time cast into a set of equations of motion describing the competition between aeolian sand transport and vegetation growth. Our set of equations is then applied to study quantitatively the transition between barchans and parabolic dunes driven by the dimensionless fixation index theta which is the ratio between the dune characteristic erosion rate and vegetation growth velocity. We find a fixation index theta(c) below which the dunes are stabilized, characterized by scaling laws.

  3. Dynamics of self-organized vegetation patterns

    NASA Astrophysics Data System (ADS)

    Foti, R.; Ramirez, J. A.

    2011-12-01

    Vegetation patterns are a common and well-defined characteristic of many arid and semi-arid landscapes. In this study we explore some of the physical mechanisms responsible for the establishment of self-organized, non-random vegetation patterns that arise at the hillslope scale in many areas of the world, especially in arid and semi-arid regions. In doing so we use a water and energy balance model and provide a fundamental mechanistic understanding of the dynamics of vegetation pattern formation and development. Within the modeling, reciprocal effects of vegetation on the hillslope energy balance, runoff production and run-on infiltration, root density, surface albedo and soil moisture content are analyzed. In particular, we: 1) present a physically based mechanistic description of the processes leading to vegetation pattern formation; 2) Compare simulated vegetation coverage at the hillslope scale with observations; 3) quantify the relative impact of pattern-inducing dynamics on pattern formation; and 4) describe the relationships between vegetation patterns and the climatic, hydraulic and topographic characteristic of the system. The model is validated by comparing hillslope-scale simulations with available observations for the areas of Niger near Niamey and Somalia near Garoowe, where respectively tiger bushes and banded vegetation patterns are present. The model validation includes comparison of simulated and observed vegetation coverage as well as simulated and measured water fluxes, showing both qualitative and quantitative agreement between simulations and observations. The analysis of the system suggests that the main driver of pattern establishment is climate, in terms of average annual precipitation and incoming solar radiation. In particular, decreasing precipitation or, conversely, increasing incoming radiation are responsible for the system departure from fully vegetated with indistinguishable vegetation structures to sparsely vegetated with (self

  4. Predicting vegetation-stabilized dune morphology

    NASA Astrophysics Data System (ADS)

    Barchyn, T.; Hugenholtz, C.

    2012-04-01

    The morphology of vegetation-stabilized dune fields on the North American Great Plains mostly comprises parabolic dunes; stabilized barchan and transverse dunes are rare. One notable exception is the Nebraska Sand Hills (NSH), where massive grass-covered barchan and transverse dunes bear proof of former desert-like conditions. We present a hypothesis from a numerical dune field model to explain the vegetation-stabilized morphology of dunes. The model incorporates a growth curve that preferentially grows vegetation in regions of sediment deposition with a sharp drop in growth at the peak depositional tolerance of vegetation, qualitatively matching biological response to erosion and deposition. Simulations on a range of pre-stabilization dune morphologies, from large closely-spaced transverse dunes to small dispersed barchans, indicate that the stabilized morphology is largely determined by the ratio of slipface deposition rate to peak depositional tolerance of vegetation. Conceptually, slipface deposition rate is related to dune height and celerity. By keeping depositional tolerance constant (representing a constant vegetation type and climate) the model shows that large slow-moving dunes have low slipface deposition rates and essentially 'freeze' in place once vegetation is introduced, retaining their pre-vegetation morphology. Small fast-moving dunes have higher slipface deposition rates and evolve into parabolic dunes. We hypothesize that, when barchan and transverse dunes are subjected to a stabilizing climate shift that increases vegetation growth rate, they retain their pre-stabilization morphology if deposition rates are below the depositional tolerance of stabilizing vegetation, otherwise they become parabolic dunes. This could explain why NSH dunes are stabilized in barchan and transverse morphologies while elsewhere on the Great Plains dune fields are dominated by smaller parabolic dunes.

  5. Remote sensing-based vegetation indices for monitoring vegetation change in the semi-arid region of Sudan

    NASA Astrophysics Data System (ADS)

    R. A., Majdaldin; Osunmadewa, B. A.; Csaplovics, E.; Aralova, D.

    2016-10-01

    Land degradation, a phenomenon referring to (drought) in arid, semi-arid and dry sub-humid regions as a result of climatic variations and anthropogenic activities most especially in the semi-arid lands of Sudan, where vast majority of the rural population depend solely on agriculture and pasture for their daily livelihood, the ecological pattern had been greatly influenced thereby leading to loss of vegetation cover coupled with climatic variability and replacement of the natural tree composition with invasive mesquite species. The principal aim of this study is to quantitatively examine the vigour of vegetation in Sudan through different vegetation indices. The assessment was done based on indicators such as soil adjusted vegetation index (SAVI). Cloud free multi-spectral remotely sensed data from LANDSAT imagery for the dry season periods of 1984 and 2009 were used in this study. Results of this study shows conversion of vegetation to other land use type. In general, an increase in area covered by vegetation was observed from the NDVI results of 2009 which is a contrast of that of 1984. The results of the vegetation indices for NDVI in 1984 (vegetated area) showed that about 21% was covered by vegetation while 49% of the area were covered with vegetation in 2009. Similar increase in vegetated area were observed from the result of SAVI. The decrease in vegetation observed in 1984 is as a result of extensive drought period which affects vegetation productivity thereby accelerating expansion of bare surfaces and sand accumulation. Although, increase in vegetated area were observed from the result of this study, this increase has a negative impact as the natural vegetation are degraded due to human induced activities which gradually led to the replacement of the natural vegetation with invasive tree species. The results of the study shows that NDVI perform better than by SAVI.

  6. Coma / Vegetative State

    MedlinePlus

    ... Vegetative State Legal Issues Sleeping Problems Anxiety & Stress Concussion / Mild TBI Living with Traumatic Brain Injury Speech & ... Conscious States After Severe Brain Injury Brain Trauma, Concussion, and Coma What Is the Glasgow Coma Scale? ...

  7. Vegetative pyoderma gangrenosum.

    PubMed

    Kim, Randie H; Lewin, Jesse; Hale, Christopher S; Meehan, Shane A; Stein, Jennifer; Ramachandran, Sarika

    2014-12-16

    Vegetative pyoderma gangrenosum is a rare, superficial variant of pyoderma gangrenosum that is more commonly found on the trunk as single or multiple, non-painful lesions. There is typically no associated underlying systemic disease. Compared to classic pyoderma gangrenosum, vegetative lesions are more likely to heal without the use of systemic glucocorticoids, although up to 39% of patients required a short course of prednisone in a review of 46 cases. Treatments for vegetative pyoderma gangrenosum include topical and intralesional glucocorticoids, minocycline or doxycycline, dapsone, colchicine, and, rarely, alternative steroid-sparing immunosuppressants. We present a case of multiple vegetative pyoderma gangrenosum lesions arising in prior surgical sites in a patient found to have IgA monoclonal gammopathy and abnormal urinary protein electrophoresis.

  8. Vegetable Oil-Biorefinery.

    PubMed

    Pudel, Frank; Wiesen, Sebastian

    2017-03-07

    Conventional vegetable oil mills are complex plants, processing oil, fruits, or seeds to vegetable fats and oils of high quality and predefined properties. Nearly all by-products are used. However, most of the high valuable plant substances occurring in oil fruits or seeds besides the oil are used only in low price applications (proteins as animal feeding material) or not at all (e.g., phenolics). This chapter describes the state-of-the-art of extraction and use of oilseed/oil fruit proteins and phyto-nutrients in order to move from a conventional vegetable oil processing plant to a proper vegetable oil-biorefinery producing a wide range of different high value bio-based products.

  9. Monitoring global vegetation

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Houston, A. G.; Heydorn, R. P.; Botkin, D. B.; Estes, J. E.; Strahler, A. H.

    1981-01-01

    An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth.

  10. Vegetable oil fuels

    SciTech Connect

    Not Available

    1982-01-01

    Fifty contributions (presentations) involving more than one hundred people worldwide were given at the International Conference on Plant and Vegetable Oils as Fuels. The proceedings were in Fargo, North Dakota, from August 2-4, 1982. The conference helped to promote renewable fuels, bio-oils, from plant and vegetable oils. Separate abstracts were prepared for 44 items for inclusion in the Energy Data Base.

  11. [Fruits and vegetables].

    PubMed

    Aranceta, Javier

    2004-06-01

    Fruits and vegetables are particularly interesting for health for their content in minerals, antioxidant vitamins, phytochemicals and dietary fiber. All these substances are related to lower risk for the development of health probems, such as certain types of cancer, cardiovascular diseases, type 2 diabetes, obesity, constipation or diverticolsys. The sound basis of scientific evidence led European and American scientific organizations and societies to recommend an intake up to 150-200 g of vegetables every day; ie. 2 or more portions daily and 3 or more portions of fruit; five portions of fruit and vegetables all together. According to the consumer panel from the Spanish Ministry of Agriculture, Fisheries and Food, between the late 80s and the end of the 90s. consumption of fruit and vegetables decreased. However, in late years this trend has slow down and even reversed. Results from food consumption studies based on individual level assessment in Spain estimate an average consumption of fruit and vegetables of 154 g/per person/day in adults aged 25-60 yr. Prevalence of inadequate intake of fruit and vegetables is high among children and young people. In this age group above 70% of the population consume less than 3 portions of fruit every day on average. Reorientation of prevailing food patterns nowadays require investment in measures aimed at increasing the consumption of plant foods and estimulate healthy food habits in families.

  12. Treatment of vegetable oils

    SciTech Connect

    Bessler, T.R.

    1986-05-13

    A process is described for preparing an injectable vegetable oil selected from the group consisting of soybean oil and sunflower oil and mixtures thereof which comprise: (a) first treating the vegetable oil at a temperature of 80/sup 0/C to about 130/sup 0/C with an acid clay; (b) deodorizing the vegetable oil with steam at a temperature of 220/sup 0/C to about 280/sup 0/C and applying a vacuum to remove volatilized components; (c) treating the deodorized vegetable oil, at a temperature of from about 10/sup 0/C to about 60/sup 0/C, with an acid clay to reduce the content of a member selected from the group consisting of diglycerides, tocopherol components, and trilinolenin and mixtures thereof, wherein the acid clay is added in a weight ratio to the deoderized vegetable oil of from about 1:99 to about 1:1; and (d) thereafter conducting a particulate filtration to remove a substantial portion of the acid clay from the vegetable oil, wherein the filtration is accomplished with filters having a pore size of from about 0.1 to 0.45 microns, thereby obtaining the injectable oil.

  13. Vegetation dynamics amplifies precessional forcing

    NASA Astrophysics Data System (ADS)

    Claussen, Martin; Fohlmeister, Jens; Ganopolski, Andrey; Brovkin, Victor

    2006-05-01

    The astronomical theory of climate variations predicts that the climatic precession which changes the seasonal distance between Earth and Sun does not affect the annual mean irradiation at any given latitude. However, previous modeling studies suggest that during interglacials, the interaction between atmosphere, vegetation and ocean can transform the seasonal forcing by precession into an annual mean global signal. Here, we show that this result can be generalized. A distinct precessional signal emerges in a climate system model over many precessional cycles. While neither the atmosphere-ocean nor the atmosphere-vegetation model are able to produce a large amplitude of global temperature in the precessional band, only the mutual amplification of biogeophysical feedback and sea ice- albedo feedback allows a strong amplification of the precessional signal.

  14. Diesel fuels from vegetable oils

    SciTech Connect

    Schwab, A.W.; Bagby, M.O.; Freedman, B.

    1986-03-01

    Vegetable oils have heat contents approximately 90% that of diesel fuel and are potential alternate fuel candidates. A major obstacle deterring their use in the direct-injection diesel engine is their inherent high viscosities which are nearly 10 times that of diesel fuel. Solution to the viscosity problem has been approached in three ways: 1) microemulsification, 2) pyrolysis, and 3) transesterification. Microemulsification with short chain alcohols such as methanol and ethanol yields fuels that are clear, thermodynamically stable liquid systems with viscosities near the ASTM specified range for number2 diesel fuel. These micellar systems may be formulated ionically or nonionically. The alcohols are attractive from an economic as well as a renewable resource viewpoint. Methanol has an economic advantage over ethanol, and it can be derived from a large variety of base stocks. These include biomass, municipal waste, natural gas being flared at refineries and from coal. Pyrolysis of vegetable oils is another approach to lowering their viscosity. Soybean and safflower oils were thermally decomposed in both air and nitrogen to obtain fuels for the diesel engine. Using standard ASTM distillation conditions, yields of pyrolysis products were about 75%. GS-MS analysis of the distillates showed the presence of alkanes, alkenes, aromatics, and carboxylic acids with carbon numbers ranging from 4 to more than 20. Fuel properties of the thermal decomposition products were substantially improved as evaluated by lower viscosities and higher cetane numbers compared to the unpyrrolyzed vegetable oils. Simple esters from transesterification of vegetable oils perform well in engine tests, and thus show good promise as an alternative or emergency fuel for diesel engines.

  15. Vegetation: A mechanism of climate change?

    SciTech Connect

    Dutton, J.F.; Barron, E.J.

    1997-11-01

    Globally averaged surface temperature has decreased over the last 60 million years and has been attributed to continental shifting, decreasing atmospheric CO2, and changing ocean circulations. However, the cooling mechanism has never been fully determined and is most likely a combination of factors. Global climate models (GCMs) of tropical deforestation have shown that vegetation can play a significant role in local, regional and even global climates through changes in surface energy budgets. Other studies have shown significant feedbacks between the Boreal forest and Northern Hemisphere warmth. These studies imply that realistic vegetation distributions in paleoclimate simulations, as opposed to a uniform distribution, may be necessary. A study using the GENESIS GCM shows that differing vegetation distributions can affect the globally averaged surface temperature by up to 1C and regional temperatures by up to 12C. Knowing the above information about globally averaged surface temperature over time, the effect of vegetation on climate, and the sensitivity of the GENESIS global climate model, what could the effect of realistic vegetation character and distribution changes in earth history have been? A model study of the effect of changes in vegetation character and distribution on climate from the early Miocene to the present was conducted. The Miocene time period was chosen because both grasslands and the tundra biome developed during this period. The effect of a reconstructed Miocene vegetation distribution is compared to a present-day vegetation distribution. The globally averaged surface temperature decreased 1.9C between the two simulations. The surface cooling effect is enhanced at high latitudes due to a stronger snow/albedo effect associated with tundra. The study indicates that changes in vegetation distribution and character caused by biological innovation contributed to cooling in the late Cenozoic, and are a mechanism of climate change. 16 refs., 5 figs.

  16. Monitoring East African vegetation using AVHRR data

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Holben, B. N.; Gwynne, M. D.

    1986-01-01

    NOAA Advanced Very High Resolution Radiometer satellite data are applied to regional vegetation monitoring in East Africa. Normalized Difference Vegetation Index (NDVI) data for a one-year period from May 1983 are used to examine the phenology of a range of vegetation types. The integrated NDVI data for the same period are compared with an ecoclimatic zone map of the region and show marked similarities. Particular emphasis is placed on quantifying the phenology of the Acacia Commiphora bushlands. Considerable variation was found in the phenology of the bushlands as determined by the satellite NDVI, and is explained through the high spatial variability in the distribution of rainfall and the resulting green-up of the vegetation. The relationship between rainfall and NDVI is further examined for selected meteorological stations existing within the bushland. A preliminary estimate is made of the length of growing season using an NDVI thresholding technique.

  17. Global vegetation dynamics - Satellite observations over Asia

    NASA Technical Reports Server (NTRS)

    Malingreau, J.-P.

    1986-01-01

    The weekly global vegetation index (GVI) derived from the NOAA AVHRR instrument has been analyzed for the 1982-1985 period over a wide range of vegetation formations of Asia. Temporal development curves of the index are presented for environments ranging from the desert of central Asia to the tropical forest of Borneo. The paper shows that, despite the coarse resolution of the GVI product, a large set of useful information on ecosystem dynamics and cropping practices can be consistently derived from time series of such data. In addition, it is shown that the impact of the 1982-1983 El Nino Southern Oscillation-related drought can be detected in the GVI data through an analysis of anomalies in the development of selected vegetation formations. The relevance of such analysis for global vegetation monitoring and change detection is then underlined.

  18. Comprehensive Understanding for Vegetated Scene Radiance Relationships

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Deering, D. W.

    1984-01-01

    The improvement of our fundamental understanding of the dynamics of directional scattering properties of vegetation canopies through analysis of field data and model simulation data is discussed. Directional reflectance distributions spanning the entire existance hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Some structural and optical measurements were taken. Field data show unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends are proposed based on scattering properties of soil and vegetation. Soil exhibited a strong backscattering peak toward the Sun. Complete vegetation exhibited a bowl distribution with the minimum reflectance near nadir. Incomplete vegetation canopies show shifting of the minimum reflectance off of nadir in the forward scattering direction because both the scattering properties or the vegetation and soil are observed.

  19. Products from vegetable oils

    SciTech Connect

    Bagby, M.O.

    1995-12-01

    Vegetable oils serve various industrial applications such as plasticizers, emulsifiers, surfactants, plastics and resins. Research and development approaches may take advantage of natural properties of the oils. More often it is advantageous to modify those properties for specific applications. One example is the preparation of ink vehicles using vegetable oils in the absence of petroleum. They are cost competitive with petroleum-based inks with similar quality factors. Vegetable oils have potential as renewable sources of fuels for the diesel engine. However, several characteristics can restrict their use. These include poor cold-engine startup, misfire and for selected fuels, high pour point and cloud point temperatures. Other characteristics include incomplete combustion causing carbon buildup, lube oil dilution and degradation, and elevated NO{sub x} emissions. Precombustion and fuel quality data are presented as a tool for understanding and solving these operational and durability problems.

  20. Red and photographic infrared linear combinations for monitoring vegetation

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1979-01-01

    The relationships between various linear combinations of red and photographic infrared radiances and vegetation parameters are investigated. In situ spectrometers are used to measure the relationships between linear combinations of red and IR radiances, their ratios and square roots, and biomass, leaf water content and chlorophyll content of a grass canopy in June, September and October. Regression analysis shows red-IR combinations to be more significant than green-red combinations. The IR/red ratio, the square root of the IR/red ratio, the vegetation index (IR-red difference divided by their sum) and the transformed vegetation index (the square root of the vegetation index + 0.5) are found to be sensitive to the amount of photosynthetically active vegetation. The accumulation of dead vegetation over the year is found to have a linearizing effect on the various vegetation measures.

  1. Vegetation causes channel erosion in a tidal landscape

    NASA Astrophysics Data System (ADS)

    Temmerman, S.; Bouma, T. J.; van de Koppel, J.; van der Wal, D.; de Vries, M. B.; Herman, P. M. J.

    2007-07-01

    Vegetation is traditionally regarded to reduce the erosion of channels in both fluvial and tidal landscapes. We present a coupled hydrodynamic, morphodynamic, and plant growth model that simulates plant colonization and channel formation on an initially bare, flat substrate, and apply this model to a tidal landscape. The simulated landscape evolution is compared with aerial photos. Our results show that reduction of erosion by vegetation is only the local, on-site effect operating within static vegetation. Dynamic vegetation patches, which can expand or shrink, have a contrasting larger scale, off-site effect: they obstruct the flow, leading to flow concentration and channel erosion between laterally expanding vegetation patches. In contrast with traditional insights, our findings imply that in tidal landscapes, which are colonized by denser vegetation, channels are formed with a higher channel drainage density. Hence this study demonstrates that feedbacks between vegetation, flow, and landform have an important control on landscape evolution.

  2. Fruit, vegetables, fibre and micronutrients and risk of US renal cell carcinoma.

    PubMed

    Brock, Kaye E; Ke, Liang; Gridley, Gloria; Chiu, Brian C-H; Ershow, Abby G; Lynch, Charles F; Graubard, Barry I; Cantor, Kenneth P

    2012-09-28

    The association between renal cell cancer (RCC) and intake of fruit, vegetables and nutrients was examined in a population-based case-control study of 323 cases and 1827 controls; dietary intake was obtained using a mailed questionnaire. Cancer risks were estimated by OR and 95 % CI, adjusting for age, sex, smoking, obesity, hypertension, proxy status, alcohol consumption and dietary fat intake and energy. Intake of vegetables was associated with a decreased risk of RCC (OR 0·5; 95 % CI 0·3, 0·7; P trend = 0·002), (top compared to the bottom quartile of intake). When intake of individual nutrients was investigated, vegetable fibre intake was associated with decreased risks (OR 0·4; 95 % CI 0·2, 0·6; P < 0·001), but this was not the case with fruit fibre (OR 0·7; 95 % CI 0·4, 1·1) or grain fibre (OR 1·0; 95 % CI 0·6, 1·5). β-Cryptoxanthin and lycopene were also associated with decreased risks, but when both were included in a mutually adjusted backwards stepwise regression model, only β-cryptoxanthin remained significant (OR 0·5; 95 % CI 0·3, 0·8). When other micronutrients and types of fibre were investigated together, only vegetable fibre and β-cryptoxanthin had significant trends (P < 0·01) (OR 0·6; 95 % CI 0·3, 0·9) (OR 0·5; 95 % CI 0·3, 0·9), respectively. These findings were stronger in those aged over 65 years (P interaction = 0·001). Among non-smokers, low intake of cruciferous vegetables and fruit fibre was also associated with increased risk of RCC (P interaction = 0·03); similar inverse associations were found for β-cryptoxanthin, lycopene and vitamin C. When nutrients were mutually adjusted by backwards regression in these subgroups, only β-cryptoxanthin remained associated with lower RCC risk. These findings deserve further investigation in ongoing prospective studies when sample size becomes sufficient.

  3. [Feasibility of monitoring karst standing conditions with vegetation spectra].

    PubMed

    Yue, Yue-Min; Wang, Ke-Lin; Xiong, Ying

    2012-07-01

    Karst regions are typically ecological fragile zones constrained by geological setting, which resulted in high heterogeneity of vegetation standing conditions. The karst vegetation was featured with stone, dry and high calcium carbonate content growth conditions. Based on vegetation spectral analysis and canonical correspondence analysis (CCA), the present study aimed to examine the feasibility of using vegetation spectra to monitor the heterogeneous karst standing conditions. The results showed that there were significant differences between karst vegetation and non-karst vegetation within the spectral range of 1 300-2 500 nm reflectance and 400 - 680 nm first-derivative spectra. It was found that soil moisture and calcium carbonate contents had the most significant effects on vegetation spectral features in karst regions. Ordination diagrams of CCA could distinguish the differences of karst vegetation and non-karst vegetation. Our study demonstrates that vegetation spectra are highly related to karst standing conditions and it is feasible to monitor karst standing conditions with vegetation spectral features.

  4. Vegetable oil as fuel

    SciTech Connect

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  5. Fermented and Acidified Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetables may be preserved by fermentation, direct acidification, or a combination of these along with pasteurization or refrigeration and selected additives to yield products with an extended shelf life and enhanced safety. Organic acids such as lactic, acetic, sorbic and benzoic acids along with ...

  6. Antioxidant and antiproliferative activities of common vegetables.

    PubMed

    Chu, Yi-Fang; Sun, Jie; Wu, Xianzhong; Liu, Rui Hai

    2002-11-06

    Epidemiological studies have shown that consumption of fruits and vegetables is associated with reduced risk of chronic diseases. Increased consumption of fruits and vegetables containing high levels of phytochemicals has been recommended to prevent chronic diseases related to oxidative stress in the human body. In this study, 10 common vegetables were selected on the basis of consumption per capita data in the United States. A more complete profile of phenolic distributions, including both free and bound phenolics in these vegetables, is reported here using new and modified methods. Broccoli possessed the highest total phenolic content, followed by spinach, yellow onion, red pepper, carrot, cabbage, potato, lettuce, celery, and cucumber. Red pepper had the highest total antioxidant activity, followed by broccoli, carrot, spinach, cabbage, yellow onion, celery, potato, lettuce, and cucumber. The phenolics antioxidant index (PAI) was proposed to evaluate the quality/quantity of phenolic contents in these vegetables and was calculated from the corrected total antioxidant activities by eliminating vitamin C contributions. Antiproliferative activities were also studied in vitro using HepG(2) human liver cancer cells. Spinach showed the highest inhibitory effect, followed by cabbage, red pepper, onion, and broccoli. On the basis of these results, the bioactivity index (BI) for dietary cancer prevention is proposed to provide a simple reference for consumers to choose vegetables in accordance with their beneficial activities. The BI could be a new alternative biomarker for future epidemiological studies in dietary cancer prevention and health promotion.

  7. Experiments of Flow Field Influenced by Vegetation Distribution on Floodplain

    NASA Astrophysics Data System (ADS)

    Li, Jin-Fu; Wang, Shun-Chang; Chen, Su-Chin

    2015-04-01

    The vegetation on floodplain can block river flow, raise flood level, and scour riverbed downstream the vegetation region. However, it can also protect the dike, reduce flood velocity, and increase the stability of channel. This experiment analyzed the relationship between vegetation distribution and flow field. We designed three vegetation arrangement pattern of unilateral vegetation, unilateral interval vegetation and no vegetation, respectively. The unilateral vegetation was defined as a 4.9 m length and 0.5 m width with vegetative area in one side of the experiment flume. The unilateral interval vegetation was defined as the same dimension of vegetative area but inserted 2 gaps with 1 m interval, and the vegetative area was separated into 3 blocks. The model of a single plant was assembled with stem and frond. The stem was a woody cylinder with 10 cm height and 2.2 cm in diameter. The other part was plastic frond with 10 cm in height. The flume was 20 m length, 1 m width and 0.7 m height with 2 kinds of bed slopes in 0.001 and 0.002, and 3 different discharges in 0.2 m3/s, 0.145 m3/s and 0.0855 m3/s. The velocity was measured by 2-D electromagnetic velocimeter (ACM2-R2). In addition, water depth was measured by Vernier calipers. The velocity distribution showed that the current were divided into two parts. In the part of inside vegetation area, water level uplifted when flow entering the vegetation area, and it declined until the current leaving vegetation area. Compared with the current in the other half part of flume, the magnitudes of uplift were about 50% in both case of unilateral vegetation and unilateral interval vegetation. Downstream the vegetation area edge, the water level dropped immediately and violently. The water depth was shallower than that in the other half non-vegetation part, and the decline magnitude were 48% and 39% in cases of unilateral vegetation and unilateral interval vegetation, respectively. To explain this phenomenon, we measured

  8. Estimating the vegetation water content using a radar vegetation index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation water content is an important biophysical parameter. Here, the Radar Vegetation Index (RVI) based on polarimetric backscatter observations was evaluated for estimating vegetation water content. Analysis utilized a data set obtained by a ground-based multi-frequency polarimetric scatterome...

  9. Leaves of Raphanus sativus L. Shows Anti-Inflammatory Activity in LPS-Stimulated Macrophages via Suppression of COX-2 and iNOS Expression

    PubMed Central

    Park, Hye-Jin; Song, Minjung

    2017-01-01

    Raphanus sativus L. (RS) is a cruciferous vegetable that is widely consumed in Korea. The anticancer activity of leaves of RS (RSL) extract has been investigated; however, no studies focused on its anti-inflammatory effects. Therefore, the aim of the current study was to evaluate the anti-inflammatory effects of RSL extract. In brief, RSL powder was fractionated into n-hexane, chloroform, ethyl acetate, n-butanol, and water-soluble fractions. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were treated with each fraction for initial screening. It was found that the chloroform fraction significantly inhibited nitric oxide release in LPS-stimulated RAW264.7 cells with a half maximal inhibitory concentration value of 196 μg/mL. In addition, the mRNA and protein expression levels of inducible nitric oxide synthase, measured using reverse transcriptase-polymerase chain reaction and western blotting, respectively, were reduced in a concentration-dependent manner. Moreover, the inflammatory cyclooxygenase-2 enzyme expression decreased. Furthermore, the expression of nuclear factor-kappa B (NF-κB), the key regulator of the transcriptional activation of the inflammatory cytokine genes, was reduced by the RSL chloroform fraction. Therefore, the results of our study suggest that RSL exhibits anti-inflammatory effects in LPS-stimulated macrophages via NF-κB inactivation.

  10. Diurnal variations of vegetation canopy structure

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Kirchner, J. A.

    1983-01-01

    The significance and magnitude of diurnal variations of vegetation canopy structure are reviewed. Diurnal leaf inclination-azimuth angle distributions of a soybean and cotton canopy were documented using a simple measurement technique. The precision of the measurements was on the order of + or -5 deg for the inclination and + or -14 deg for the azimuth. The experimental results and a review of the literature showed that this distribution can vary significantly on a diurnal basis due to vegetation type, heliotropic leaf movement, environmental conditions, and vegetation stress. The study also showed that it is erroneous to treat two separate distributions of azimuth and inclination angles rather than one three-dimensional distribution of leaf orientation. The latter distribution needs to be routinely collected in studies which document variations of diurnal spectral reflectance with changes in solar zenith angle.

  11. Vegetable oil fuels: A review

    SciTech Connect

    Karaosmanoglu, F.

    1999-04-01

    Using vegetable oils as fuel alternatives has economic, environmental, and energy benefits for Turkey. The present work provides insight to the status of vegetable oil fuels in Turkey. A brief historical background of the issue, as well as an up to date review of the research carried out on vegetable oil fuels, is given and the future of their production and application is discussed.

  12. Wave Dissipation by Vegetation

    DTIC Science & Technology

    2011-09-01

    relative to conditions without vegetation. During Hurricanes Charley and Wilma, water levels recorded in two Florida mangrove ecosystems were...reduced by as much as 9.4 cm per km inland. Although water levels were reduced as the surge moved through the coastal mangroves , the relative contribution...of mangroves was still unclear (Krauss et al. 2009). Numerical simulations by Loder et al. (2009) and ERDC/CHL CHETN-I-82 September 2011 2

  13. Daily polyphenol intake in France from fruit and vegetables.

    PubMed

    Brat, Pierre; Georgé, Stéphane; Bellamy, Annick; Du Chaffaut, Laure; Scalbert, Augustin; Mennen, Louise; Arnault, Nathalie; Amiot, Marie Josèphe

    2006-09-01

    The objective of this study was to create a French database on the polyphenol content of fruit and vegetables as uncooked fruits and vegetables and then to evaluate polyphenol intake through fruit and vegetable consumption in France. To achieve this, we used the Folin-Ciocalteu method adapted to fruit and vegetable polyphenol quantitation (1). Vegetables with the highest polyphenol concentration were artichokes, parsley, and brussels sprouts [>250 mg of gallic acid equivalent (GAE)/100 g fresh edible portion (FEP)]; fruits with the highest concentrations were strawberries, lychees, and grapes (>180 mg of GAE/100 g FEP). Conversely, melons (Cantaloupe cv.) and avocados had the lowest polyphenol concentration for fruits and vegetables, respectively. Based on fruit consumption data, apples and strawberries are the main sources of polyphenols in the French diet, whereas potatoes, lettuces, and onions are the most important vegetable sources. Total polyphenol intake from fruit is about 3 times higher than from vegetables, due to the lower polyphenol concentration in vegetables. The calculation of polyphenol intake, based on both assessment methods used [(Société d'Etudes de la Communication, Distribution et Publicité (SECODIP) and Supplémentation en Vitamines et Minéraux Antioxydants (SUVIMAX)], showed that apples and potatoes provide approximatively half of the total polyphenol intake from fruit and vegetables in the French diet.

  14. Applying new methodologies for quantifying total vegetation cover in arid regions using MODIS data

    NASA Astrophysics Data System (ADS)

    Shreve, C.; Okin, G. S.

    2009-12-01

    Vegetation in arid regions can show physical adaptations to the harsh climate such as waxy cuticles, leaf hairs, and lower chlorophyll content than vegetation in more humid regions, which results in the vegetation in arid environments appearing less green. Satellite measurements of vegetative cover currently rely primarily on a measure of greenness and serve as important inputs for climate models, thus requiring as accurate a portrayal as possible. Remotely derived metrics such as the Normalized Difference Vegetation Index (NDVI), which exploit the “red edge” of vegetation that results primarily from increased chlorophyll concentration during plant growth, may not accurately reflect vegetative cover or be suitable to use in biomass estimations for arid regions. We discuss a method for deriving fractional (subpixel) cover of vegetation from MODIS imagery better suited for both hot and cold arid regions than NDVI because it minimizes soil effects, is more robust in the presence of snow than NDVI and provides a more inclusive measure of total vegetation cover. A case study of spatial and temporal trends of vegetative cover in the Tibetan Plateau is discussed and results show the vegetation dynamics differ markedly than those portrayed by NDVI alone. Applying a cosine fitting method to the timeseries of green and brown vegetation indices allows for additional vegetation metrics to be derived describing the contribution of each index to the total dynamics within a pixel. The amplitude provides information on the total amount of cyclic intraanual variability in a pixel for both green and brown vegetation indices. A simple ratio of the brown vegetation index to total vegetation cover provides the relative contribution of brown vegetation to the total cyclic intraanual variability. Examining the simple ratio and the brown vegetation index results in combination, yields information on the amount of cyclic variability within a pixel that is explained by changes in brown

  15. Bioclimatic distribution of vegetation for general circulation model studies

    NASA Technical Reports Server (NTRS)

    Prentice, Katharine Culbertson

    1990-01-01

    Four global bioclimatic schemes which qualify climates on the basis of the distribution of vegetation, including the Holdridge (1947), Thornthwaite (1948), Koeppen (1936), and Troll and Paffen (1964) schemes, were applied to two global climate data sets to produce maps of global vegetation distribution: the Rand set described by Schutz and Gates (1971, 1973, and 1974) and the Shea (1986) data set. The results show that only 38 to 40 percent of the observed land surface, mapped as 31 vegetation types, could be replicated by applying the four schemes to these data sets. The simulations were significantly improved by further subdividing and regrouping the climates defined by the schemes and by regrouping the observed vegetation types. With these alterations, 77 percent of the predicted vegetative landscape coresponded with the observed distribution of vegetation.

  16. Nutrient composition of selected medicinal leafy vegetables in Western Nigeria.

    PubMed

    Ijarotimi, O Steve; Ekeh, Ogechi; Ajayi, O Philip

    2010-04-01

    The objectives of this study were to evaluate the nutritional composition and consumption patterns of selected local leafy vegetables among families in Akure Township, Western Nigeria. The data collection involved administration of interviewer-structured questionnaires to the mothers. The questionnaire was designed to collect information on the medicinal and consumption pattern of vegetables. The chemical compositions of the vegetables were analyzed using standard methods. The nutrient composition of the vegetables showed that the protein content of Jathropha tanjorenses (40.94%) was significantly higher than the remaining leafy vegetable samples, whereas Curcubita pepo (8.25%) contained the least protein content. The fiber content of Solanum americanum (13.79%) was significantly higher when compared with other leafy vegetable samples. Also, the energy value of Baselia allia (401.68 kcal) was the highest, whereas that of C. pepo (285.10 kcal) was the lowest. Regarding mineral composition, J. tanjorenses had the highest contents of zinc, iron, and Na/K ratio, whereas Vernononia amygdalina and Solanum macrocarpon had the least and highest Na/K and Ca/P ratios, respectively. The consumption patterns of the respondents showed that one-quarter of the respondents consumed the vegetables regularly, whereas the remaining consumed occasionally or never consumed the vegetables. In conclusion, this study established that the leafy vegetables contained appreciable amounts of nutrients that could be of health and nutritional benefits to the consumers.

  17. Investigations in vegetation map rectification, and the remotely sensed detection and measurement of natural vegetation changes

    NASA Astrophysics Data System (ADS)

    Walker, Richard Eugene

    2000-10-01

    As projected climate changes loom, the monitoring of the response of natural vegetation becomes important for both science and management. Successful monitoring requires good baseline information and vegetation change detection techniques. The research reported here involved three main tasks: (1) digital geometric rectification of a detailed historic vegetation map; (2) an analysis of high spatial resolution airborne remote sensing data for tree mortality; and (3) the development of a Landsat Thematic Mapper-based vegetation change detection procedure. These studies focused on the Sierra Nevada of California, and in particular Yosemite National Park. The Vegetation Type Maps (VTMs) (Wieslander 1935) represent some of the finest maps of their kind in the world, and cover more than 40% of California. Yosemite National Park was mapped using these techniques in the late 1930s. Geometric inaccuracies in the 19th century USGS basemaps were mitigated using newly available GIS and remote sensing tools, enabling the rectified VTMs, to be integrated into the National Park's vegetation monitoring work. In 1992, several transects of a four-band high spatial resolution airborne scanner (ADAR) were taken of mid-elevation forests in the southern Sierra Nevada, to evaluate their use for tree mortality monitoring. This analysis highlighted the difficulty of using single-date imagery for monitoring vegetation changes, but showed (1) the best measure of tree mortality (when compared with field data) was found using solely the red wavelength band; and (2) the metric most highly correlated with the field data was relative canopy mortality (%), not absolute area (ha). Lastly, based upon Principal Components Analysis, I developed an algorithm for separating spectral changes resulting from vegetation changes on the ground from other changes present but not of concern to monitoring. Three vectors were derived using 6 of 7 Thematic Mapper bands. Although few published change detection

  18. Micellization in vegetable oils: A structural characterisation.

    PubMed

    Fadel, Ophélie; Girard, Luc; Rodrigues, Donatien Gomes; Bauduin, Pierre; Le Goff, Xavier; Rossignol-Castera, Anne; L'Hermitte, Annabelle; Diat, Olivier

    2017-03-21

    The solubilisation of polar and polyphenol antioxidant in vegetable oils was studied. It was shown that the use of a polyglyceryl-3-diisostearate (PG3DS), a bio-sourced emulsifier well known in cosmetics, increases the yield of solubilisation thanks to some aggregation properties analysed using x-ray scattering technique. We show indeed that PG3DS forms reverse aggregates with a critical concentration that depends on the oil polarity. PG3DS reverse aggregates are elongated with a polar core and cannot be really swollen by addition of water. This supramolecular organisation allows however an efficient solubilisation of polar antioxidants in vegetable oils.

  19. Antibiotic uptake by vegetable crops from manure-applied soils.

    PubMed

    Kang, Dong Hee; Gupta, Satish; Rosen, Carl; Fritz, Vincent; Singh, Ashok; Chander, Yogesh; Murray, Helene; Rohwer, Charlie

    2013-10-23

    This study quantified the uptake of five antibiotics (chlortetracycline, monensin, sulfamethazine, tylosin, and virginiamycin) by 11 vegetable crops in two different soils that were fertilized with raw versus composted turkey and hog manures or inorganic fertilizer. Almost all vegetables showed some uptake of antibiotics from manure treatments. However, statistical testing showed that except for a few isolated treatments the concentrations of all antibiotics in vegetable tissues were generally less than the limits of quantification. Further testing of the significant treatments showed that antibiotic concentrations in vegetables from many of these treatments were not significantly different than the corresponding concentrations from the fertilizer treatment (matrix effect). All five antibiotic concentrations in the studied vegetables were <10 μg kg(-1). On the basis of the standards for maximum residue levels in animal tissues and suggested maximum daily intake based on body weight, this concentration would not pose any health risk unless one is allergic to that particular antibiotic.

  20. 15. Detail showing lower chord pinconnected to vertical member, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail showing lower chord pin-connected to vertical member, showing floor beam riveted to extension of vertical member below pin-connection, and showing brackets supporting cantilevered sidewalk. View to southwest. - Selby Avenue Bridge, Spanning Short Line Railways track at Selby Avenue between Hamline & Snelling Avenues, Saint Paul, Ramsey County, MN

  1. Level area surrounding Facility 314 showing the planted ring that ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Level area surrounding Facility 314 showing the planted ring that contains the radial ground wires, note the ring beneath the antenna circles is cleared of vegetation and covered with gravel, view facing southwest - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  2. Stochastic Evaluation of Riparian Vegetation Dynamics in River Channels

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.; Kimura, R.; Toshimori, N.

    2013-12-01

    Vegetation overgrowth in sand bars and floodplains has been a serious problem for river management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to accurately predict the vegetation dynamics for a long period of time. In this study, we have developed a stochastic model for predicting the dynamics of trees in floodplains with emphasis on the interaction with flood impacts. The model consists of the following four processes in coupling ecohydrology with biogeomorphology: (i) stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with vegetation, (iii) variation of riverbed topography and (iv) vegetation dynamics on the floodplain. In the model, the flood discharge is stochastically simulated using a Poisson process, one of the conventional approaches in hydrological time-series generation. The model for vegetation dynamics includes the effects of tree growth, mortality by flood impacts, and infant tree invasion. To determine the model parameters, vegetation conditions have been observed mainly before and after flood impacts since 2008 at a field site located between 23.2-24.0 km from the river mouth in Kako River, Japan. This site is one of the vegetation overgrowth locations in Kako River floodplains, where the predominant tree species are willows and bamboos. In this presentation, sensitivity of the vegetation overgrowth tendency is investigated in Kako River channels. Through the Monte Carlo simulation for several cross sections in Kako River, responses of the vegetated channels are stochastically evaluated in terms of the changes of discharge magnitude and channel geomorphology. The expectation and standard deviation of vegetation areal ratio are compared in the different channel cross sections for different river discharges and relative floodplain heights. The result shows that the vegetation status changes sensitively in the channels with larger discharge and insensitive in the lower floodplain

  3. Incineration of Low Level Radioactive Vegetation for Waste Volume Reduction

    SciTech Connect

    Malik, N.P.S.; Rucker, G.G.; Looper, M.G.

    1995-03-01

    The DOE changing mission at Savannah River Site (SRS) are to increase activities for Waste Management and Environmental Restoration. There are a number of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) locations that are contaminated with radioactivity and support dense vegetation, and are targeted for remediation. Two such locations have been studied for non-time critical removal actions under the National Contingency Plan (NCP). Both of these sites support about 23 plant species. Surveys of the vegetation show that radiation emanates mainly from vines, shrubs, and trees and range from 20,000 to 200,000 d/m beta gamma. Planning for removal and disposal of low-level radioactive vegetation was done with two principal goals: to process contaminated vegetation for optimum volume reduction and waste minimization, and for the protection of human health and environment. Four alternatives were identified as candidates for vegetation removal and disposal: chipping the vegetation and packing in carbon steel boxes (lined with synthetic commercial liners) and disposal at the Solid Waste Disposal Facility at SRS; composting the vegetation; burning the vegetation in the field; and incinerating the vegetation. One alternative `incineration` was considered viable choice for waste minimization, safe handling, and the protection of the environment and human health. Advantages and disadvantages of all four alternatives considered have been evaluated. For waste minimization and ultimate disposal of radioactive vegetation incineration is the preferred option. Advantages of incineration are that volume reduction is achieved and low-level radioactive waste are stabilized. For incineration and final disposal vegetation will be chipped and packed in card board boxes and discharged to the rotary kiln of the incinerator. The slow rotation and longer resident time in the kiln will ensure complete combustion of the vegetative material.

  4. Vegetated buffer management practice to improve surface water quality

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Zhang, X.; Liu, X.

    2007-12-01

    Vegetated buffer best management practices (BMPs) installed in agricultural landscapes have been suggested as promising candidate tactics to reduce erosion and offsite transportation of agrochemicals. A wide range of vegetated buffer management practices have been installed in many areas to reduce agrochemical loss from applied fields, to filter sediments from tailwaters, and to deter their transportation to water bodies. This presentation will focus on reviewing vegetated buffers and their efficacies in reducing agrochemical offsite movements, with a discussion on the major factors influencing BMP efficacy. Percent removal by various BMPs ranged from 16.7 to 100% for sediments, 29 to 98% for nitrogen, 1 to 100% for phosphorus, and 27 to 100% for pesticides, depending on the setting. Preliminary meta-analyses on the data obtained from the literature review showed that vegetated buffers were mostly effective in removing sediment, followed by pesticides and nutrients. BMP efficacy is mainly influenced by buffer width, buffer slope, rainfall and vegetation. As for sediment reduction, the results based on the limited data showed that buffer width and buffer slope are two major factors influencing mitigation efficacy of vegetated buffers. The results also showed that a design with 10-m width and a 9% slope optimizes the sediment trapping capability of vegetated buffers. The meta-analysis results of this study could provide specific recommendations such as buffer width and slope for future vegetated buffer BMP construction to increase soil and water conservation.

  5. Genetics and bitter taste responses to goitrin, a plant toxin found in vegetables.

    PubMed

    Wooding, Stephen; Gunn, Howard; Ramos, Purita; Thalmann, Sophie; Xing, Chao; Meyerhof, Wolfgang

    2010-10-01

    The perceived bitterness of cruciferous vegetables such as broccoli varies from person to person, but the functional underpinnings of this variation are not known. Some evidence suggests that it arises, in part, from variation in ability to perceive goitrin (5-vinyloxazolidine-2-thione), a potent antithyroid compound found naturally in crucifers. Individuals vary in ability to perceive synthetic compounds similar to goitrin, such as 6-propyl-2-thiouracil (PROP) and phenylthiocarbamide (PTC), as the result of mutations in the TAS2R38 gene, which encodes a bitter taste receptor. This suggests that taste responses to goitrin itself may be mediated by TAS2R38. To test this hypothesis, we examined the relationships between genetic variation in TAS2R38, functional variation in the encoded receptor, and threshold taste responses to goitrin, PROP, and PTC in 50 subjects. We found that threshold responses to goitrin were associated with responses to both PROP (P = 8.9 x 10(-4); r(s) = 0.46) and PTC (P = 7.5 x 10(-4); r(s) = 0.46). However, functional assays revealed that goitrin elicits a weaker response from the sensitive (PAV) allele of TAS2R38 (EC(50) = 65.0 μM) than do either PROP (EC(50) = 2.1 μM) or PTC (EC(50) = 1.1 μM) and no response at all from the insensitive (AVI) allele. Furthermore, goitrin responses were significantly associated with mutations in TAS2R38 (P = 9.3 × 10(-3)), but the same mutations accounted for a smaller proportion of variance in goitrin response (r(2) = 0.16) than for PROP (r(2) = 0.50) and PTC (r(2) = 0.57). These findings suggest that mutations in TAS2R38 play a role in shaping goitrin perception, but the majority of variance must be explained by other factors.

  6. Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China.

    PubMed

    Chen, Yong; Hu, Wenyou; Huang, Biao; Weindorf, David C; Rajan, Nithya; Liu, Xiaoxiao; Niedermann, Silvana

    2013-12-01

    Heavy metal accumulation in vegetables is a growing concern for public health. Limited studies have elucidated the heavy metal accumulation characteristics and health risk of different vegetables produced in different facilities such as greenhouses and open-air fields and under different management modes such as harmless and organic. Given the concern over the aforementioned factors related to heavy metal accumulation, this study selected four typical greenhouse vegetable production bases, short-term harmless greenhouse vegetable base (SHGVB), middle-term harmless greenhouse vegetable base (MHGVB), long-term harmless greenhouse vegetable base (LHGVB), and organic greenhouse vegetable base (OGVB), in Nanjing City, China to study heavy metal accumulation in different vegetables and their associated health risks. Results showed that soils and vegetables from SHGVB and OGVB apparently accumulated fewer certain heavy metals than those from other bases, probably due to fewer planting years and special management, respectively. Greenhouse conditions significantly increased certain soil heavy metal concentrations relative to open-air conditions. However, greenhouse conditions did not significantly increase concentrations of As, Cd, Cu, Hg, and Zn in leaf vegetables. In fact, under greenhouse conditions, Pb accumulation was effectively reduced. The main source of soil heavy metals was the application of large amounts of low-grade fertilizer. There was larger health risk for producers' children to consume vegetables from the three harmless vegetable bases than those of residents' children. The hazard index (HI) over a large area exceeded 1 for these two kinds of children in the MHGVB and LHGVB. There was also a slight risk in the SHGVB for producers' children solely. However, the HI of the whole area of the OGVB for two kinds of children was below 1, suggesting low risk of heavy metal exposure through the food chain. Notably, the contribution rate of Cu and Zn to the HI were

  7. Arizona Vegetation Resource Inventory (AVRI) accuracy assessment

    USGS Publications Warehouse

    Szajgin, John; Pettinger, L.R.; Linden, D.S.; Ohlen, D.O.

    1982-01-01

    A quantitative accuracy assessment was performed for the vegetation classification map produced as part of the Arizona Vegetation Resource Inventory (AVRI) project. This project was a cooperative effort between the Bureau of Land Management (BLM) and the Earth Resources Observation Systems (EROS) Data Center. The objective of the accuracy assessment was to estimate (with a precision of ?10 percent at the 90 percent confidence level) the comission error in each of the eight level II hierarchical vegetation cover types. A stratified two-phase (double) cluster sample was used. Phase I consisted of 160 photointerpreted plots representing clusters of Landsat pixels, and phase II consisted of ground data collection at 80 of the phase I cluster sites. Ground data were used to refine the phase I error estimates by means of a linear regression model. The classified image was stratified by assigning each 15-pixel cluster to the stratum corresponding to the dominant cover type within each cluster. This method is known as stratified plurality sampling. Overall error was estimated to be 36 percent with a standard error of 2 percent. Estimated error for individual vegetation classes ranged from a low of 10 percent ?6 percent for evergreen woodland to 81 percent ?7 percent for cropland and pasture. Total cost of the accuracy assessment was $106,950 for the one-million-hectare study area. The combination of the stratified plurality sampling (SPS) method of sample allocation with double sampling provided the desired estimates within the required precision levels. The overall accuracy results confirmed that highly accurate digital classification of vegetation is difficult to perform in semiarid environments, due largely to the sparse vegetation cover. Nevertheless, these techniques show promise for providing more accurate information than is presently available for many BLM-administered lands.

  8. White vegetables: glycemia and satiety.

    PubMed

    Anderson, G Harvey; Soeandy, Chesarahmia Dojo; Smith, Christopher E

    2013-05-01

    The objective of this review is to discuss the effect of white vegetable consumption on glycemia, satiety, and food intake. White vegetables is a term used to refer to vegetables that are white or near white in color and include potatoes, cauliflowers, turnips, onions, parsnips, white corn, kohlrabi, and mushrooms (technically fungi but generally considered a vegetable). They vary greatly in their contribution to the energy and nutrient content of the diet and glycemia and satiety. As with other foods, the glycemic effect of many white vegetables has been measured. The results illustrate that interpretation of the semiquantitative comparative ratings of white vegetables as derived by the glycemic index must be context dependent. As illustrated by using the potato as an example, the glycemic index of white vegetables can be misleading if not interpreted in the context of the overall contribution that the white vegetable makes to the carbohydrate and nutrient composition of the diet and their functionality in satiety and metabolic control within usual meals. It is concluded that application of the glycemic index in isolation to judge the role of white vegetables in the diet and, specifically in the case of potato as consumed in ad libitum meals, has led to premature and possibly counterproductive dietary guidance.

  9. Dynamic floodplain vegetation model development for the Kootenai River, USA.

    PubMed

    Benjankar, Rohan; Egger, Gregory; Jorde, Klaus; Goodwin, Peter; Glenn, Nancy F

    2011-12-01

    The Kootenai River floodplain in Idaho, USA, is nearly disconnected from its main channel due to levee construction and the operation of Libby Dam since 1972. The decreases in flood frequency and magnitude combined with the river modification have changed the physical processes and the dynamics of floodplain vegetation. This research describes the concept, methodologies and simulated results of the rule-based dynamic floodplain vegetation model "CASiMiR-vegetation" that is used to simulate the effect of hydrological alteration on vegetation dynamics. The vegetation dynamics are simulated based on existing theory but adapted to observed field data on the Kootenai River. The model simulates the changing vegetation patterns on an annual basis from an initial condition based on spatially distributed physical parameters such as shear stress, flood duration and height-over-base flow level. The model was calibrated and the robustness of the model was analyzed. The hydrodynamic (HD) models were used to simulate relevant physical processes representing historic, pre-dam, and post-dam conditions from different representative hydrographs. The general concept of the vegetation model is that a vegetation community will be recycled if the magnitude of a relevant physical parameter is greater than the threshold value for specific vegetation; otherwise, succession will take place toward maturation stage. The overall accuracy and agreement Kappa between simulated and field observed maps were low considering individual vegetation types in both calibration and validation areas. Overall accuracy (42% and 58%) and agreement between maps (0.18 and 0.27) increased notably when individual vegetation types were merged into vegetation phases in both calibration and validation areas, respectively. The area balance approach was used to analyze the proportion of area occupied by different vegetation phases in the simulated and observed map. The result showed the impact of the river

  10. Arabis watsonii (P.H.Davis) F.K.Mey.: An overlooked cruciferous species from eastern Anatolia and its phylogenetic position

    PubMed Central

    Özüdoğru, Barış; Fırat, Mehmet

    2016-01-01

    Abstract Arabis watsonii (P.H.Davis) F.K.Mey. was initially reported as Thlaspi watsonii P.H.Davis in Flora of Turkey. Although F.K.Meyer transferred this species to Arabis L., this species has been overlooked and treated as Thlaspi L. in relevant literature for Flora of Turkey. In this study this species was evaluated using molecular (nuclear ITS and plastidic trnL-F sequences) and morphological data. Results clearly show that Arabis watsonii is sister to the Arabis hirsuta aggregate and its relatives. In conclusion, our results increased the number of known Arabis species in Turkey to 23. Furthermore, detailed description and distribution of the species are given and a new IUCN threat category for Arabis watsonii is proposed. PMID:28127244

  11. Thermal Performance of Vegetative Roofing Systems

    SciTech Connect

    Desjarlais, Andre Omer; Zaltash, Abdolreza; Atchley, Jerald Allen; Ennis, Mike J

    2010-01-01

    Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space. The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be approximately 40

  12. Early Pliocene vegetation distribution in Europe

    NASA Astrophysics Data System (ADS)

    Popescu, S.; Warny, S.; Suc, J.

    2010-12-01

    Picea developed in higher altitude. The Eastern Europe vegetation (zone D) was characterized by coexistent warm-temperate forests and open ecosystems. Some megathermic and mega-mesothermic elements were persisting. Mediterranean xerophytes were indentified in few amounts in the Eastern Europe, showing a slight increase according to the latitudinal gradient. Site 380A (Black Sea) provides relatively high percentages of Artemisia growing in Anatolia, which increased again during the cooler periods. Anatolia probably represents the origin of the repeated steppe expansions which occurred in Europe at each glacial phase. Finally, the Nile region (zone E) documents the presence of savannah (composed mainly by Poaceae and Cyperaceae) including some subdesertic taxa. Nile riparian forests preserved several tropical-subtropical elements.

  13. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012

    NASA Astrophysics Data System (ADS)

    Xu, Hao-jie; Wang, Xin-ping; Zhang, Xiao-xiao

    2016-10-01

    Climate change scenarios predict that Central Asia may experience an increase in the frequency and magnitude of temperature and precipitation extremes by the end of the 21st century, but the response regularity of different types of vegetation to climate extremes is uncertain. Based on remote-sensed vegetation index and in-situ meteorological data for the period of 2000-2012, we examined the diverse responses of vegetation to climate mean/extremes and differentiated climatic and anthropogenic influence on the vegetation in Central Asia. Our results showed that extensive vegetation degradation was related to summer water deficit as a result of the combined effect of decreased precipitation and increased potential evapotranspiration. Water was a primary climatic driver for vegetation changes regionally, and human-induced changes in vegetation confined mainly to local areas. Responses of vegetation to water stress varied in different vegetation types. Grasslands were most responsive to water deficit followed by forests and desert vegetation. Climate extremes caused significant vegetation changes, and different vegetation types had diverse responses to climate extremes. Grasslands represented a symmetric response to wet and dry periods. Desert vegetation was more responsive during wet years than in dry years. Forests responded more strongly to dry than to wet years due to a severe drought occurred in 2008. This study has important implications for predicting how vegetation ecosystems in drylands respond to climate mean/extremes under future scenarios of climate change.

  14. Use of spectral channels and vegetation indices from satellite VEGETATION time series for the Post-Fire vegetation recovery estimation

    NASA Astrophysics Data System (ADS)

    Coluzzi, Rosa; Lasaponara, Rosa; Montesano, Tiziana; Lanorte, Antonio; de Santis, Fortunato

    2010-05-01

    . The DFA is a well-known methodology, which allows the detectin of long-range power-law correlations in signals possibly characterized by non-stationarity, which features most of the observational and experimental signals. We analyzed time variation of both single channels and spectral indices from 1998 to 2005 of fire- affected and fire unaffected areas. In order to eliminate the seasonal and/or phenological fluctuations, for each decadal composition, we focused on the normalized departure: 1) NDVI; 2) NDWId, 3) MSId. Results from our analysis point out that the persistence of vegetation dynamics is significantly increased by the occurrence of fires. In particular, a scaling behavior of two classes of vegetation (burned and unburned) has been best revealed by NDVI. The estimated scaling exponents of both classes suggest a persistent character of the vegetation dynamics. But, the burned sites show much larger exponents than those calculated for the unburned sites. Small variations have been observed between the estimated scaling exponents of both fire-affected and fire-unaffected areas.

  15. Hey Teacher, Your Personality's Showing!

    ERIC Educational Resources Information Center

    Paulsen, James R.

    1977-01-01

    A study of 30 fourth, fifth, and sixth grade teachers and 300 of their students showed that a teacher's age, sex, and years of experience did not relate to students' mathematics achievement, but that more effective teachers showed greater "freedom from defensive behavior" than did less effective teachers. (DT)

  16. Planning a Successful Tech Show

    ERIC Educational Resources Information Center

    Nikirk, Martin

    2011-01-01

    Tech shows are a great way to introduce prospective students, parents, and local business and industry to a technology and engineering or career and technical education program. In addition to showcasing instructional programs, a tech show allows students to demonstrate their professionalism and skills, practice public presentations, and interact…

  17. Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

    PubMed

    He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui

    2017-04-01

    Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr(-1) with a 95% confidence interval of 0.28-0.42 Pg C yr(-1) , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China.

  18. Evolution of vegetated waterways design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1990, the USDA-ARS Hydraulic Engineering Research Unit (HERU) was recognized as a National Historic Landmark by ASABE for its groundbreaking work and development of vegetated waterways design procedures. In 2000, ASABE acknowledged the vegetated waterway design criteria as an Outstanding Achieve...

  19. Grafting effects on vegetable quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States, vegetable grafting is rare and few experiments have been done to determine optimal grafting procedures and production practices for different geographical and climatic regions in America. Grafting vegetables to control soilborne disease is a common practice in Asia, parts of E...

  20. Accumulation and bioavailability of dietary carotenoids in vegetable crops.

    PubMed

    Kopsell, Dean A; Kopsell, David E

    2006-10-01

    Carotenoids are lipid-soluble pigments found in many vegetable crops that are reported to have the health benefits of cancer and eye disease reduction when consumed in the diet. Research shows that environmental and genetic factors can significantly influence carotenoid concentrations in vegetable crops, and that changing cultural management strategies could be advantageous, resulting in increased vegetable carotenoid concentrations. Improvements in vegetable carotenoid levels have been achieved using traditional breeding methods and molecular transformations to stimulate biosynthetic pathways. Postharvest and processing activities can alter carotenoid chemistry, and ultimately affect bioavailability. Bioavailability data emphasize the importance of carotenoid enhancement in vegetable crops and the need to characterize potential changes in carotenoid composition during cultivation, storage and processing before consumer purchase.

  1. Expanding Snow Treatment in CESM Vegetation

    NASA Astrophysics Data System (ADS)

    Perket, J.; Flanner, M.; Lawrence, D. M.

    2013-12-01

    The CESM land model accounts for precipitation interception, throughfall & drip in the canopy hydrology. Portions of falling snow and rain are intercepted by the canopy and maintained in a water storage term. The remainder falls through to the ground, and intercepted water also drips from the canopy. The Community Land Model uses exposed leaf and stem area indices to determine the throughfall flux and drip flux for liquid and frozen water. The interception by vegetation and the water mass storage term does not differentiate between liquid or frozen precipitation based on the justification that a lower evaporation rate roughly negates the difference. Observations show, however, that leaf capacities for water are about double those of snow. Optical parameters are influenced by the canopy storage and area indices through a wetted fraction of vegetation. Different optical properties are assumed when air temperature is below the freezing temperature of water. This is an efficient method to account for snow in vegetation albedo and radiative flux calculations, but doesn't account for the different morphologies and mechanics of snow. Canopy snow can be blown off by wind, or slide off without wind intervention if the branches provide an unstable or slanting support. We fully separated the liquid and solid terms in CLM's hydrology, creating a canopy snow throughfall and canopy snow storage term. Snow in vegetation can convert to meltwater and vapor. Using these new simulation developments, we are able to quantify radiative and hydrological sensitivity to improved model representation.

  2. Vegetative state is a pejorative term.

    PubMed

    Machado, Calixto; Estévez, Mario; Carrick, Frederick R; Rodríguez, Rafael; Pérez-Nellar, Jesús; Chinchilla, Mauricio; Machado, Yanín; Pérez-Hoz, Grisel; Carballo, Maylén; Fleitas, Marcia; Pando, Alejandro

    2012-01-01

    The term persistent vegetative state (PVS) refers to the only circumstance in which an apparent dissociation of both components of consciousness is found, characterized by preservation of wakefulness with an apparent loss of awareness. Several authors have recently demonstrated by functional neuroimaging studies that a small subset of unresponsive "vegetative" patients may show unambiguous signs of consciousness and command following that is inaccessible to clinical examination at the bedside. The term "estado vegetativo" used in Spanish to describe the PVS syndrome by physicians came from the English-Spanish translation. The Spanish term "vegetativo" is related to unconscious vital functions, and "vegetal" is relative to plants. According to our experience, when a physician informs to patients' relatives that his/her family member's diagnosis is a "estado vegetativo", they understand the he/she is no more a human being, that there is no hope of recovery. The European Task Force on Disorders of Consciousness has recently proposed a new term, unresponsive wakefulness syndrome (UWS), to assist society in avoiding the depreciatory term vegetative state. Our group has embraced the use of the new term UWS and might suggest that we change our concept and use of the term MCS to minimally responsive wakefulness state (MRWS), or minimally aware wakefulness state (MAWS). Medical terms must be current and avoid any pejorative description of patients, which will promote our abilities to serve humankind and challenge neuroscientists to offer society new and realistic hopes for neurorehabilitation.

  3. Satellite Animation Shows California Storms

    NASA Video Gallery

    This animation of visible and infrared imagery from NOAA's GOES-West satellite shows a series of moisture-laden storms affecting California from Jan. 6 through Jan. 9, 2017. TRT: 00:36 Credit: NASA...

  4. Satellite Movie Shows Erika Dissipate

    NASA Video Gallery

    This animation of visible and infrared imagery from NOAA's GOES-West satellite from Aug. 27 to 29 shows Tropical Storm Erika move through the Eastern Caribbean Sea and dissipate near eastern Cuba. ...

  5. Modeling Feedbacks Between Water and Vegetation in the Climate System

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Not only is water essential for life on earth, but life itself affects the global hydrologic cycle and consequently the climate of the planet. Whether the global feedbacks between life and the hydrologic cycle tend to stabilize the climate system about some equilibrium level is difficult to assess. We use a global climate model to examine how the presence of vegetation can affect the hydrologic cycle in a particular region. A control for the present climate is compared with a model experiment in which the Sahara Desert is replaced by vegetation in the form of trees and shrubs common to the Sahel region. A second model experiment is designed to identify the separate roles of two different effects of vegetation, namely the modified albedo and the presence of roots that can extract moisture from deeper soil layers. The results show that the presence of vegetation leads to increases in precipitation and soil moisture in western Sahara. In eastern Sahara, the changes are less clear. The increase in soil moisture is greater when the desert albedo is replaced by the vegetation albedo than when both the vegetation albedo and roots are added. The effect of roots is to withdraw water from deeper layers during the dry season. One implication of this study is that the insertion of vegetation into the Sahara modifies the hydrologic cycle so that the vegetation is more likely to persist than initially.

  6. Landscape Level Analyses of Vegetation Cover in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Botting, T.; Hollister, R. D.

    2013-12-01

    Many International Tundra Experiment (ITEX) studies have been conducted to identify vegetation changes due to warming. However, knowledge gaps remain. For example, most of these studies are conducted at the plot level, not the landscape level, potentially masking larger scale impacts of climate change. An Arctic Systems Science (ARCSS) grid was established in Atqasuk, Alaska and Barrow, Alaska in the mid 1990's. In 2010, approximately 100 untreated vegetation plots were implemented at each grid site. These vegetation plots are 1 meter squared, spaced 100 meters apart, and span 1 kilometer squared. Each vegetation plot represents 100 square meters along the grid. This project will focus on how vegetation cover has changed at the landscape level, using the point frame method, from 2010 to 2013. Preliminary data analysis indicates that in Atqasuk, graminoids, deciduous shrubs, and evergreen shrubs show increased cover, while little change has occurred with bryophytes, forbs and lichens. In Barrow, graminoids, lichens and forbs have shown an increase in cover, while little change has occurred with bryophytes and deciduous shrubs. At both sites, graminoids represent the greatest increase in cover of all growth forms analyzed. This study will be the foundation for later work, with the purpose of predicting what ARCSS grid vegetation community compositions will be in the future. These expectations will be based on anticipated warming data from ITEX passively warmed vegetation plots. This will be the first time that ITEX vegetation warming research is applied to landscape level research in Barrow and Atqasuk.

  7. Assessing vegetation change temporally and spatially in southeastern Arizona

    NASA Astrophysics Data System (ADS)

    King, D. M.; Skirvin, S. M.; Holifield Collins, C. D.; Moran, M. S.; Biedenbender, S. H.; Kidwell, M. R.; Weltz, M. A.; Diaz-Gutierrez, A.

    2008-05-01

    Vegetation species cover and photographic data have been collected at multiple grass- and shrub-dominated sites in 1967, 1994, 1999, and 2005 at the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona. This study combines these measurements with meteorological and edaphic information, as well as historic repeat photography from the late 1880s onward and recent satellite imagery to assess vegetation change at WGEW. The results of classification and ordination of repeated transect data showed that WGEW had two main vegetation structural types, shrub dominated and grass dominated. Spatial distribution was closely linked to soil type and variations in annual and August precipitation. Other than the recent appearance of Eragrostis lehmanniana (Lehmann lovegrass) at limited sites in WGEW, little recruitment has taken place in either shrub or grass vegetation types. Effects of recent drought on both vegetation types were apparent in both transect data and enhanced vegetation index data derived from satellite imagery. Historic photos and a better understanding of WGEW geology and geomorphology supported the hypothesis that the shift from grass- to shrub-dominated vegetation occurred substantially before 1967, with considerable spatial variability. This work reaffirmed the value of maintaining long-term data sets for use in assessments of vegetation change.

  8. National Orange Show Photovoltaic Demonstration

    SciTech Connect

    Dan Jimenez Sheri Raborn, CPA; Tom Baker

    2008-03-31

    National Orange Show Photovoltaic Demonstration created a 400KW Photovoltaic self-generation plant at the National Orange Show Events Center (NOS). The NOS owns a 120-acre state fairground where it operates an events center and produces an annual citrus fair known as the Orange Show. The NOS governing board wanted to employ cost-saving programs for annual energy expenses. It is hoped the Photovoltaic program will result in overall savings for the NOS, help reduce the State's energy demands as relating to electrical power consumption, improve quality of life within the affected grid area as well as increase the energy efficiency of buildings at our venue. In addition, the potential to reduce operational expenses would have a tremendous effect on the ability of the NOS to service its community.

  9. Vegetative bioremediation of phenanthrene

    SciTech Connect

    Malathi, A.; Banks, M.K.; Schwab, A.P.

    1994-12-31

    The role of vegetation to stimulate the degradation and detoxification of toxic and recalcitrant organic chemicals at low soil concentrations is brought about by several mechanisms of plant-soil interactions, including improvement of physical and chemical properties of contaminated soils, increase in soil microbial activity and increase in contact between microbes associated with the roots and toxic compounds in a contaminated soil. This represents a potential cost effective and low maintenance alternative for waste management. However, there is not enough information concerning specific application of plants, chemicals and soils either in the form of laboratory or field results. In the research to be presented, different and diverse perennial plant species [grasses (monocot), legumes, and dicots] were collected from the native prairie grasslands and tested for their efficiency in mineralization of phenanthrene. The mineralization of phenanthrene was evaluated by the measurement of {sup 14}CO{sub 2} from the radiolabeled target compound incubated in a rhizosphere soil microcosm. Results from this study will indicate the potential of using different types of plants to enhance degradation of PAHs in contaminated soils.

  10. Carboniferous coal swamp vegetation

    SciTech Connect

    Phillips, T.L.; Peppers, R.A.; DiMichele, W.A.

    1984-01-01

    The Carboniferous Period was one of considerable change on the Earth. The volume explores these changes by using plant morphology and paleoecology to develop the relationship between plant evolution and the derived coal sources. Both are interrelated by the regional and stratigraphic trends in paleoecology and paleoclimatology. The book is divided into three sections dealing with geology, plant morphology including palynology, and paleoecology. In Section I, the paleogeography, geologic settings of major coal basins, coal resources, coal-ball origins and occurrences, and the sources of paleobotanical information are presented with biostratigraphic correlations of Europe and the United States. Section II emphasizes plant morphology as form and structure provide the means of identifying plants and, in turn, establishing development, size, habit, reproductive biology, environmental parameters, and evolutionary change. Quantitative abundances and stratigraphic ranges of plants and spores are compared and summarized. Lastly, Section III integrates coal-ball peats and coal-spore floras as complementary sources for the quantitative analyses of coal-swamp vegetation in relation to climate and coal. The local and regional swamp studies are interfaced and basinal geology and depositional interpretations in a stratigraphic succession.

  11. Phyllodes tumor showing intraductal growth.

    PubMed

    Makidono, Akari; Tsunoda, Hiroko; Mori, Miki; Yagata, Hiroshi; Onoda, Yui; Kikuchi, Mari; Nozaki, Taiki; Saida, Yukihisa; Nakamura, Seigo; Suzuki, Koyu

    2013-07-01

    Phyllodes tumor of the breast is a rare fibroepithelial lesion and particularly uncommon in adolescent girls. It is thought to arise from the periductal rather than intralobular stroma. Usually, it is seen as a well-defined mass. Phyllodes tumor showing intraductal growth is extremely rare. Here we report a girl who has a phyllodes tumor with intraductal growth.

  12. The ecological cultivation system construction of cucurbits and vegetables in Hainan

    NASA Astrophysics Data System (ADS)

    Liu, Ziji; Yang, Yan

    The application amount of fertilizer and pesticide overall showed rising trends in Hainan. The excessive application of chemical fertilizer and pesticide can cause higher production costs and greater pressure on the ecological environment. The sown area of cucurbits and vegetables showed an increasing trend to a certain extent, safety and pollution-free production of cucurbits and vegetables has become one of the principal contradictions restricting the development of cucurbits and vegetables in Hainan. In this study, the ecological cultivation system of cucurbits and vegetables was constructed combining ecology, ecological economics, and vegetable cultivation principles, which had an important significance for maintaining ecological balance and sustainable development of agriculture.

  13. 18 CFR 1304.203 - Vegetation management.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or alternative vegetation management approaches. (b) Vegetation may be cleared to create and maintain... specifically approved in the Vegetative Management Plan. (m) Restricted use herbicides and pesticides shall not... pesticides shall be applied in accordance with label requirements....

  14. 18 CFR 1304.203 - Vegetation management.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or alternative vegetation management approaches. (b) Vegetation may be cleared to create and maintain... specifically approved in the Vegetative Management Plan. (m) Restricted use herbicides and pesticides shall not... pesticides shall be applied in accordance with label requirements....

  15. 18 CFR 1304.203 - Vegetation management.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... or alternative vegetation management approaches. (b) Vegetation may be cleared to create and maintain... specifically approved in the Vegetative Management Plan. (m) Restricted use herbicides and pesticides shall not... pesticides shall be applied in accordance with label requirements....

  16. 18 CFR 1304.203 - Vegetation management.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... or alternative vegetation management approaches. (b) Vegetation may be cleared to create and maintain... specifically approved in the Vegetative Management Plan. (m) Restricted use herbicides and pesticides shall not... pesticides shall be applied in accordance with label requirements....

  17. 18 CFR 1304.203 - Vegetation management.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or alternative vegetation management approaches. (b) Vegetation may be cleared to create and maintain... specifically approved in the Vegetative Management Plan. (m) Restricted use herbicides and pesticides shall not... pesticides shall be applied in accordance with label requirements....

  18. Indicators: Lakeshore Habitat/Riparian Vegetative Cover

    EPA Pesticide Factsheets

    Riparian and lakeshore vegetative cover consist of the vegetation corridor alongside streams, rivers, and lakes. Vegetative cover refers to overhanging or submerged tree limbs, shrubs, and other plants growing along the shore of the waterbody.

  19. Dielectric properties of marsh vegetation

    NASA Astrophysics Data System (ADS)

    Kochetkova, Tatiana D.; Suslyaev, Valentin I.; Shcheglova, Anna S.

    2015-10-01

    The present work is devoted to the measurement of the dielectric properties of mosses and lichens in the frequency range from 500 MHz to 18 GHz. Subjects of this research were three species of march vegetation - moss (Dicranum polysetum Michx), groundcedar (Diphasiastrum complanatum (L.) Holub) and lichen (Cladonia stellaris). Samples of vegetation were collected in Tomsk region, Western Siberia, Russia. Complex dielectric permittivity was measured in coaxial section by Agilent Technologies vector network analyzer E8363B. Green samples was measured for some moisture contents from 100% to 3-5 % during a natural drying. The measurements were performed at room temperature, which remained within 21 ÷ 23 ° C. The frequency dependence of the dielectric constant for the three species of marsh vegetation differ markedly. Different parts of the complex permittivity dependency on moisture were fitted by line for all frequency points. Two break point were observed corresponding to the transition of water in the vegetation in various phase states. The complex permittivity spectra of water in the vegetation allow determining the most likely corresponding dielectric model of water in the vegetation by the method of hypothesis testing. It is the Debye's model. Parameters of Debye's model were obtained by numerical methods for all of three states of water. This enables to calculate the dielectric constant of water at any frequency range from 500 MHz to 18 GHz and to find the parameters of the dielectric model of the vegetation.

  20. Monitoring vegetation phenology using MODIS

    USGS Publications Warehouse

    Zhang, Xiayong; Friedl, Mark A.; Schaaf, Crystal B.; Strahler, Alan H.; Hodges, John C.F.; Gao, Feng; Reed, Bradley C.; Huete, Alfredo

    2003-01-01

    Accurate measurements of regional to global scale vegetation dynamics (phenology) are required to improve models and understanding of inter-annual variability in terrestrial ecosystem carbon exchange and climate–biosphere interactions. Since the mid-1980s, satellite data have been used to study these processes. In this paper, a new methodology to monitor global vegetation phenology from time series of satellite data is presented. The method uses series of piecewise logistic functions, which are fit to remotely sensed vegetation index (VI) data, to represent intra-annual vegetation dynamics. Using this approach, transition dates for vegetation activity within annual time series of VI data can be determined from satellite data. The method allows vegetation dynamics to be monitored at large scales in a fashion that it is ecologically meaningful and does not require pre-smoothing of data or the use of user-defined thresholds. Preliminary results based on an annual time series of Moderate Resolution Imaging Spectroradiometer (MODIS) data for the northeastern United States demonstrate that the method is able to monitor vegetation phenology with good success.

  1. Recovery times of riparian vegetation

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca

    2016-04-01

    Riparian vegetation is a key element in a number of processes that determine the eco-geomorphological features of the river landscape. Depending on the river water stage fluctuations, vegetation biomass randomly switches between growth and decay phases, and its biomass exhibits relevant temporal variations. A full understanding of vegetation dynamics is therefore only possible if the hydrological stochastic forcing is considered. In this vein, we focus on the recovery time of vegetation, namely the typical time taken by vegetation to recover a health state starting from a low biomass value (induced, for instance, by an intense flood). The minimalistic stochastic modeling approach is used for describing vegetation dynamics (i.e., the noise-driven alternation of growth and decay phases). The recovery time of biomass is then evaluated according to the theory of the mean first passage time in systems driven by dichotomous noise. The effect of the main hydrological and biological parameters on the vegetation recovery was studied, and the dynamics along the riparian transect was described in details. The effect of climate change and human interventions (e.g., river damming) was also investigated. We found that: (i) the oscillations of the river stage delay the recovery process (up to one order of magnitude, with respect to undisturbed conditions); (ii) hydrological/biological alterations (due to climate change, damming, exotic species invasion) modify the timescales of the recovery. The result provided can be a useful tool for the management of the river. They open the way to the estimation of: (i) the recovery time of vegetation after devastating floods, clear cutting or fires and; (ii) the timescale of the vegetation response to hydrological and biological alterations.

  2. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.; Smith, M. O.; Adams, J. B.

    1993-01-01

    The problem of distinguishing between green vegetation, nonphotosynthetic vegetation (NPV, such as dry grass, leaf litter, and woody material), and soils in imaging-spectrometer data is addressed by analyzing an image taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Jasper Ridge Biological Preserve (California) on September 20, 1989, using spectral mixture analysis. Over 98 percent of the spectral variation could be explained by linear mixtures of three endmembers, green vegetation, shade, and soil. NPV, which could not be distinguished from soil when included as an endmember, was discriminated by residual spectra that contained cellulose and lignin absorptions. Distinct communities of green vegetation were distinguished by (1) nonlinear mixing effect caused by transmission and scattering by green leaves, (2) variations in a derived canopy-shade spectrum, and (3) the fraction of NPV.

  3. Magic Carpet Shows Its Colors

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The upper left image in this display is from the panoramic camera on the Mars Exploration Rover Spirit, showing the 'Magic Carpet' region near the rover at Gusev Crater, Mars, on Sol 7, the seventh martian day of its journey (Jan. 10, 2004). The lower image, also from the panoramic camera, is a monochrome (single filter) image of a rock in the 'Magic Carpet' area. Note that colored portions of the rock correlate with extracted spectra shown in the plot to the side. Four different types of materials are shown: the rock itself, the soil in front of the rock, some brighter soil on top of the rock, and some dust that has collected in small recesses on the rock face ('spots'). Each color on the spectra matches a line on the graph, showing how the panoramic camera's different colored filters are used to broadly assess the varying mineral compositions of martian rocks and soils.

  4. Understanding vegetation changes in northern China and Mongolia with change vector analysis.

    PubMed

    Gu, Xiaohe; Li, Weiguo; Wang, Lei

    2016-01-01

    In recent years, a close link between vegetation change and climate change has been established. Vegetation change can be detected with remotely sensed images, especially with normalized difference vegetation index time series records. We used change vector analysis, especially change vector magnitude (CV magnitude), as an indicator to better understand vegetation change. Twenty-one layers of CV magnitude for each 10-day period from April to October have been acquired. Maxima, range, standard deviation, mean, and minima of CV magnitude were obtained and analyzed, identifying 11 regions with different types of vegetation change during different 10-day periods. In addition, the months of maximum CV magnitude were determined to help predict future vegetation change. The following conclusions were drawn: (a) CV magnitude can serve as an indicator to compare vegetation conditions among different years; (b) 11 typical regions were identified in the study area that show vegetation changes between 1999 and 2006;

  5. The impact of flood variables on riparian vegetation

    NASA Astrophysics Data System (ADS)

    Dzubakova, Katarina; Molnar, Peter

    2016-04-01

    The riparian vegetation of Alpine rivers often grows in temporally dynamic riverine environments which are characterized by pronounced meteorological and hydrological fluctuations and high resource competition. Within these relatively rough conditions, riparian vegetation fulfils essential ecosystem functions such as water retention, biomass production and habitat to endangered species. The identification of relevant flood attributes impacting riparian vegetation is crucial for a better understanding of the vegetation dynamics in the riverine ecosystem. Hence, in this contribution we aim to quantify the ecological effects of flood attributes on riparian vegetation and to analyze the spatial coherence of flood-vegetation interaction patterns. We analyzed a 500 m long and 300-400 m wide study reach located on the Maggia River in southern Switzerland. Altogether five floods between 2008 and 2011 with return periods ranging from 1.4 to 20.1 years were studied. To assess the significance of the flood attributes, we compared post-flood to pre-flood vegetation vigour to flood intensity. Pre- and post-flood vegetation vigour was represented by the Normalized Difference Vegetation Index (NDVI) which was computed from images recorded by high resolution ground-based cameras. Flood intensity was expressed in space in the study reach by six flood attributes (inundation duration, maximum depth, maximum and total velocity, maximum and total shear stress) which were simulated by the 2D hydrodynamic model BASEMENT (VAW, ETH Zurich). We considered three floodplain units separately (main bar, secondary bar, transitional zone). Based on our results, pre-flood vegetation vigour largely determined vegetation reaction to the less intense floods (R = 0.59-0.96). However for larger floods with a strong erosive effect, its contribution was significantly lower (R = 0.59-0.68). Using multivariate regression analysis we show that pre-flood vegetation vigour and maximum velocity proved to be

  6. Influence of cooking methods on antioxidant activity of vegetables.

    PubMed

    Jiménez-Monreal, A M; García-Diz, L; Martínez-Tomé, M; Mariscal, M; Murcia, M A

    2009-04-01

    The influence of home cooking methods (boiling, microwaving, pressure-cooking, griddling, frying, and baking) on the antioxidant activity of vegetables has been evaluated in 20 vegetables, using different antioxidant activity assays (lipoperoxyl and hydroxyl radicals scavenging and TEAC). Artichoke was the only vegetable that kept its very high scavenging-lipoperoxyl radical capacity in all the cooking methods. The highest losses of LOO. scavenging capacity were observed in cauliflower after boiling and microwaving, pea after boiling, and zucchini after boiling and frying. Beetroot, green bean, and garlic kept their antioxidant activity after most cooking treatments. Swiss chard and pepper lost OH. scavenging capacity in all the processes. Celery increased its antioxidant capacity in all the cooking methods, except boiling when it lost 14%. Analysis of the ABTS radical scavenging capacity of the different vegetables showed that the highest losses occurred in garlic with all the methods, except microwaving. Among the vegetables that increased their TEAC values were green bean, celery, and carrot after all cooking methods (except green bean after boiling). These 3 types of vegetables showed a low ABTS radical scavenging capacity. According to the method of analysis chosen, griddling, microwave cooking, and baking alternately produce the lowest losses, while pressure-cooking and boiling lead to the greatest losses; frying occupies an intermediate position. In short, water is not the cook's best friend when it comes to preparing vegetables.

  7. Selecting iodine-enriched vegetables and the residual effect of iodate application to soil.

    PubMed

    Dai, Jiu-Lan; Zhu, Yong-Guan; Zhang, Min; Huang, Yi-Zhong

    2004-12-01

    A greenhouse pot experiment was conducted to select vegetables for iodine uptake. The residual effect of iodate fertilization on the growth of and iodine uptake by spinach plants were also investigated. Six vegetables, including leafy vegetables (pakchoi [Brassica chinensis L.], spinach [Spinacia oleracea L.]), tuber vegetables (onion [Allium cepa L.]), shoot vegetables (water spinach [Ipomoea aquatica Forsk.], celery [Apium graveolens L.]), and root vegetables (carrot [Daucus carota var. sativa DC.]) were examined. Results showed that the concentrations of iodate in soil had significant effect on the biomass of edible parts of pakchoi and spinach (p<0.01), whereas the concentrations of iodate in soil had no significant effect on that of carrots, water spinach, celery, and onion. Iodine concentrations in edible parts of vegetables and the transfer factors (TFedible parts) of soil-to-edible parts of vegetables significantly increased with increasing iodine concentrations in soil (p<0.001), and iodine concentrations in edible parts and TFedible parts of spinach were much higher than those of other vegetables at any treatment. Both transfer coefficients for edible parts (TCedible parts) and for aerial parts (TCaerial parts) of vegetables changed differently with increasing iodine concentrations in the soil, and TCedible parts and TCaerial parts of spinach were higher than those of other vegetables. Therefore, spinach was considered as an efficient vegetable for iodine biofortification. Further experiment showed that there is considerable residual effect of soil fertilization with iodate.

  8. Relationship between vegetation coverage and spring dust storms over northern China

    NASA Astrophysics Data System (ADS)

    Zou, Xukai K.; Zhai, Panmao M.

    2004-02-01

    On the basis of normalized difference vegetation index (NDVI) data from 1982 to 2001 and dust storm observations in China the relationship between vegetation and spring dust storms over northern China is discussed. The results show that poor vegetation coverage in northern China is one important factor for the frequent occurrence of spring dust storms. In addition, vegetation cover plays an important role in interannual variations of dust storms. In general, a negative correlation is noted between vegetation coverage and occurrence of dust storms in northern China for spring during the period 1982-2001. The correlation coefficient between vegetation coverage and areas affected by dust storms is -0.59, which is statistically meaningful at 99% confidence level. The sharp decrease of spring vegetation coverage in recent years is one of the major contributors to frequent spring dust storms over northern China specifically during 2000 and 2001. A negative correlation is especially significant in the eastern part of northern China, mainly in central and eastern Inner Mongolia. When vegetation decreases (increases), the occurrence of dust storms increases (decreases). Furthermore, statistics show that abundant vegetation in previous seasons could help reduce dust storms in the coming spring. The effect of prior summer vegetation on the variation of spring dust storms is particularly evident in the central and eastern part of northern China. Because of the presence of little to no vegetation in the desert areas of northwest China the variation in occurrence of spring dust storms seems unrelated to the vegetation.

  9. Aerial albedos of natural vegetation in South-eastern Australia

    NASA Technical Reports Server (NTRS)

    Howard, J. A.

    1977-01-01

    Black-and-white low-level 70mm photography was used to record the track of the aircraft, which was then plotted on conventional 1:80,000 23 cm photogrammetric photographs and referenced against simultaneous measurements of the beam albedos of vegetation. Using stereoscopic pairs of the 70mm photographs, the vegetation was classified into sub-formations. Marked differences in the 'sub-formation' albedos were observed. A two-way table using stand height and crown cover of the sub-formations clearly showed a very distinctive trend of albedos. This finding may be important in other vegetal studies.

  10. "Medicine show." Alice in Doctorland.

    PubMed

    1987-01-01

    This is an excerpt from the script of a 1939 play provided to the Institute of Social Medicine and Community Health by the Library of Congress Federal Theater Project Collection at George Mason University Library, Fairfax, Virginia, pages 2-1-8 thru 2-1-14. The Federal Theatre Project (FTP) was part of the New Deal program for the arts 1935-1939. Funded by the Works Progress Administration (WPA) its goal was to employ theater professionals from the relief rolls. A number of FTP plays deal with aspects of medicine and public health. Pageants, puppet shows and documentary plays celebrated progress in medical science while examining social controversies in medical services and the public health movement. "Medicine Show" sharply contrasts technological wonders with social backwardness. The play was rehearsed by the FTP but never opened because funding ended. A revised version ran on Broadway in 1940. The preceding comments are adapted from an excellent, well-illustrated review of five of these plays by Barabara Melosh: "The New Deal's Federal Theatre Project," Medical Heritage, Vol. 2, No. 1 (Jan/Feb 1986), pp. 36-47.

  11. "Show me" bioethics and politics.

    PubMed

    Christopher, Myra J

    2007-10-01

    Missouri, the "Show Me State," has become the epicenter of several important national public policy debates, including abortion rights, the right to choose and refuse medical treatment, and, most recently, early stem cell research. In this environment, the Center for Practical Bioethics (formerly, Midwest Bioethics Center) emerged and grew. The Center's role in these "cultural wars" is not to advocate for a particular position but to provide well researched and objective information, perspective, and advocacy for the ethical justification of policy positions; and to serve as a neutral convener and provider of a public forum for discussion. In this article, the Center's work on early stem cell research is a case study through which to argue that not only the Center, but also the field of bioethics has a critical role in the politics of public health policy.

  12. Phoenix Scoop Inverted Showing Rasp

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on Sol 49, or the 49th Martian day of the mission (July 14, 2008), shows the silver colored rasp protruding from NASA's Phoenix Mars Lander's Robotic Arm scoop. The scoop is inverted and the rasp is pointing up.

    Shown with its forks pointing toward the ground is the thermal and electrical conductivity probe, at the lower right. The Robotic Arm Camera is pointed toward the ground.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  14. The Circumpolar Arctic vegetation map

    USGS Publications Warehouse

    Walker, Donald A.; Raynolds, Martha K.; Daniels, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; Moskalenko, N.G.; Talbot, S. S.; Yurtsev, B.A.; Bliss, L.C.; Edlund, S.A.; Zoltai, S.C.; Wilhelm, M.; Bay, C.; Gudjonsson, G.; Ananjeva, G.V.; Drozdov, D.S.; Konchenko, L.A.; Korostelev, Y.V.; Ponomareva, O.E.; Matveyeva, N.V.; Safranova, I.N.; Shelkunova, R.; Polezhaev, A.N.; Johansen, B.E.; Maier, H.A.; Murray, D.F.; Fleming, Michael D.; Trahan, N.G.; Charron, T.M.; Lauritzen, S.M.; Vairin, B.A.

    2005-01-01

    Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 x 106 km 2), about 5.05 ?? 106 km2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy. ?? IAVS; Opulus Press.

  15. Literature Review - Vegetation on Levees

    DTIC Science & Technology

    2010-12-01

    significant dam safety issue in the United States . The purpose of this Technical Manual on the Effects of Tree and Woody Vegetation Root Penetrations on...nationwide inspection of levee systems in 2007, many deficiencies were attributed to woody vegetation located within 15-ft of the levee toe as required...maintenance, operation, or flood-fight activities. International guidance documents and manuals Several countries other than the United States have guidance

  16. Preliminary assessment of soil moisture over vegetation

    NASA Technical Reports Server (NTRS)

    Carlson, T. N.

    1986-01-01

    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments.

  17. Monitoring tropical vegetation succession with LANDSAT data

    NASA Technical Reports Server (NTRS)

    Robinson, V. B. (Principal Investigator)

    1983-01-01

    The shadowing problem, which is endemic to the use of LANDSAT in tropical areas, and the ability to model changes over space and through time are problems to be addressed when monitoring tropical vegetation succession. Application of a trend surface analysis model to major land cover classes in a mountainous region of the Phillipines shows that the spatial modeling of radiance values can provide a useful approach to tropical rain forest succession monitoring. Results indicate shadowing effects may be due primarily to local variations in the spectral responses. These variations can be compensated for through the decomposition of the spatial variation in both elevation and MSS data. Using the model to estimate both elevation and spectral terrain surface as a posteriori inputs in the classification process leads to improved classification accuracy for vegetation of cover of this type. Spatial patterns depicted by the MSS data reflect the measurement of responses to spatial processes acting at several scales.

  18. Casimir experiments showing saturation effects

    SciTech Connect

    Sernelius, Bo E.

    2009-10-15

    We address several different Casimir experiments where theory and experiment disagree. First out is the classical Casimir force measurement between two metal half spaces; here both in the form of the torsion pendulum experiment by Lamoreaux and in the form of the Casimir pressure measurement between a gold sphere and a gold plate as performed by Decca et al.; theory predicts a large negative thermal correction, absent in the high precision experiments. The third experiment is the measurement of the Casimir force between a metal plate and a laser irradiated semiconductor membrane as performed by Chen et al.; the change in force with laser intensity is larger than predicted by theory. The fourth experiment is the measurement of the Casimir force between an atom and a wall in the form of the measurement by Obrecht et al. of the change in oscillation frequency of a {sup 87}Rb Bose-Einstein condensate trapped to a fused silica wall; the change is smaller than predicted by theory. We show that saturation effects can explain the discrepancies between theory and experiment observed in all these cases.

  19. MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y.

    2015-11-01

    The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002-2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002-2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days, respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation and increasing temperature at the early growing period because of global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.

  20. The Determinants of Organic Vegetable Purchasing in Jabodetabek Region, Indonesia

    PubMed Central

    Slamet, Alim Setiawan; Nakayasu, Akira; Bai, Hu

    2016-01-01

    Over the last few years, the global market of organic vegetables has grown. This is due to increased consumer concern regarding environmental and health issues, especially for food products. This study aims to examine factors that influence consumer behavior in purchasing organic vegetables. In this study, data were obtained from household surveys conducted in the Jabodetabek region (Greater Jakarta) from February to March 2015. Descriptive analysis, factor analysis, and a binary logit model were used to analyze the data. Subsequently, the results show that consumers with fewer family members and have a higher income, and are price tolerant, are more likely to purchase organic vegetables. Meanwhile, female consumers are less likely to buy organic vegetables. Another important finding is that positive attitude towards organic products, safety and health, environmental concerns, as well as degree of trust in organic attributes, are the determinants of organic vegetable purchasing among consumers. Therefore, based on the study results, the following recommendations are needed for organic vegetable development in Indonesia: (a) implementing an appropriate pricing strategy; (b) encouraging organic labeling and certification for vegetables; and (c) intensively promoting organic food with respect to consumers’ motives and concerns on health, safety, as well as environmental sustainability. PMID:28231181

  1. Development of a coupled wave-flow-vegetation interaction model

    USGS Publications Warehouse

    Beudin, Alexis; Kalra, Tarandeep; Ganju, Neil Kamal; Warner, John C.

    2017-01-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  2. Biofilm formation enhances Helicobacter pylori survivability in vegetables.

    PubMed

    Ng, Chow Goon; Loke, Mun Fai; Goh, Khean Lee; Vadivelu, Jamuna; Ho, Bow

    2017-04-01

    To date, the exact route and mode of transmission of Helicobacter pylori remains elusive. The detection of H. pylori in food using molecular approaches has led us to postulate that the gastric pathogen may survive in the extragastric environment for an extended period. In this study, we show that H. pylori prolongs its survival by forming biofilm and micro-colonies on vegetables. The biofilm forming capability of H. pylori is both strain and vegetable dependent. H. pylori strains were classified into high and low biofilm formers based on their highest relative biofilm units (BU). High biofilm formers survived longer on vegetables compared to low biofilm formers. The bacteria survived better on cabbage compared to other vegetables tested. In addition, images captured on scanning electron and confocal laser scanning microscopes revealed that the bacteria were able to form biofilm and reside as micro-colonies on vegetable surfaces, strengthening the notion of possible survival of H. pylori on vegetables for an extended period of time. Taken together, the ability of H. pylori to form biofilm on vegetables (a common food source for human) potentially plays an important role in its survival, serving as a mode of transmission of H. pylori in the extragastric environment.

  3. Monitoring vegetation growth and morphodynamic effects after stream restoration

    NASA Astrophysics Data System (ADS)

    Vargas-Luna, Andrés; Crosato, Alessandra; Anders, Niels; Hoitink, Ton; Keesstra, Saskia; Uijttewaal, Wim

    2016-04-01

    Vegetation processes are widely recognized as a key component on the ecological and morphological development of river channels. Moreover, plants reduce flow velocities and bed-shear stresses by increasing the local hydraulic roughness and thus increasing water levels. Therefore, monitoring the vegetation development is an important activity in river management not only for protecting ecological services, but also in flood risk reduction; especially in times of a changing climate. This paper presents the analysis the effects of riparian vegetation growth on the morphology of a lowland restored stream located in The Netherlands, the Lunterse beek. An Unmanned Aerial Vehicle (UAV) was used to obtain aerial imagery at different time steps which was the basis for generating land cover maps with semi-automated image classification. In addition hydrological series and multi-temporal high-resolution bathymetric data allowed analysing river bed morphology and the relevance of seasonality. The UAV campaigns were found a crucial step to ease the vegetation mapping and monitoring. The morphological change observed in this stream, represented by the channel-width adjustment and the cross sectional evolution, is slowed down once vegetation is stablished on the stream. Results of this work show that the vegetation root system assert a strong control on soil stabilization, even during the winter season when the plants biomass is highly reduced. Seasonal variations in plant development appear important only during the first stages of establishment, when vegetation has a low density and, more importantly, a root system that is not fully developed yet.

  4. Association between pollen hypersensitivity and edible vegetable allergy: a review.

    PubMed

    Caballero, T; Martín-Esteban, M

    1998-01-01

    Over the last three decades several authors have described the existence of an association between sensitivity to different pollens and sensitivity to diverse edible vegetables. An association between ragweed pollinosis and hypersensitivity to Cucurbitaceae vegetables (e.g., watermelon, melon, cucumber) and banana has been reported. Other authors have found a relationship between birch pollinosis and sensitization to hazelnut, apple, carrot, potato, kiwi and other vegetables. Additionally, several papers have shown the association between mugwort pollinosis and sensitization to celery, carrot, spices, nuts, mustard and Leguminoseae vegetables. Later, some studies showed association between grass pollinosis and sensitization to tomato, potato, green- pea, peanut, watermelon, melon, apple, orange and kiwi. Finally, an association between sensitization to plantain pollen and melon hypersensitivity was also described. The association between pollinosis and edible vegetable sensitization has been explained by the combination of different hypotheses, such as the following: 1) presence of lectins in edible vegetables; 2) existence of IgE to carbohydrates of the glycoproteins (cross-reactive carbohydrate determinants); and, 3) existence of common allergens between pollens and edible vegetables. Up to now three allergens have been identified as responsible for cross-reactivity in these associations: profilin, a 14 kd protein that regulates actin; Bet v 1, the 18 kd birch pollen allergen; and a 60-69 kd allergen. It is important to study in depth these associated sensitizations and the common allergens responsible for them in order to improve diagnostic methods and treatment of these syndromes.

  5. [Vegetation change in Shenzhen City based on NDVI change classification].

    PubMed

    Li, Yi-Jing; Zeng, Hui; Wel, Jian-Bing

    2008-05-01

    Based on the TM images of 1988 and 2003 as well as the land-use change survey data in 2004, the vegetation change in Shenzhen City was assessed by a NDVI (normalized difference vegetation index) change classification method, and the impacts from natural and social constraining factors were analyzed. The results showed that as a whole, the rapid urbanization in 1988-2003 had less impact on the vegetation cover in the City, but in its plain areas with low altitude, the vegetation cover degraded more obviously. The main causes of the localized ecological degradation were the invasion of built-ups to woods and orchards, land transformation from woods to orchards at the altitude of above 100 m, and low percentage of green land in some built-ups areas. In the future, the protection and construction of vegetation in Shenzhen should focus on strengthening the protection and restoration of remnant woods, trying to avoid the built-ups' expansion to woods and orchards where are better vegetation-covered, rectifying the unreasonable orchard constructions at the altitude of above 100 m, and consolidating the greenbelt construction inside the built-ups. It was considered that the NDVI change classification method could work well in efficiently uncovering the trend of macroscale vegetation change, and avoiding the effect of random noise in data.

  6. Development of a coupled wave-flow-vegetation interaction model

    NASA Astrophysics Data System (ADS)

    Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.

    2017-03-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  7. Heat-resistance of psychrotolerant Bacillus cereus vegetative cells.

    PubMed

    Guérin, Alizée; Dargaignaratz, Claire; Clavel, Thierry; Broussolle, Véronique; Nguyen-The, Christophe

    2017-06-01

    Spores of psychrotolerant strains of the foodborne pathogen Bacillus cereus can multiply during storage of cooked or pasteurized, refrigerated foods and can represent a risk if these cells are not eliminated during reheating of food product before consumption. We determined the heat-resistance of psychrotolerant B. cereus vegetative cells at different heating temperatures in laboratory medium and compared it with that of thermotolerant B. cereus vegetative cells. The z values, based on times for a 3 log10 reduction, of the vegetative cells of the three psychrotolerant phylogenetic groups of B. cereus varied between 3.02 °C and 4.84 °C. The temperature at which a 3 log10 reduction was achieved in 10 min varied between 47.6 °C and 49.2 °C for psychrotolerant vegetative cells and it was around 54.8 °C for thermotolerant vegetative cells. Moreover, 0.4 min at 60 °C would be sufficient for a 6 log10 CFU/ml reduction of the most heat resistant psychrotolerant B. cereus vegetative cells. These data clearly showed that psychrotolerant B. cereus vegetative cells can be rapidly eliminated by a mild heat treatment such as food reheating.

  8. The Determinants of Organic Vegetable Purchasing in Jabodetabek Region, Indonesia.

    PubMed

    Slamet, Alim Setiawan; Nakayasu, Akira; Bai, Hu

    2016-12-07

    Over the last few years, the global market of organic vegetables has grown. This is due to increased consumer concern regarding environmental and health issues, especially for food products. This study aims to examine factors that influence consumer behavior in purchasing organic vegetables. In this study, data were obtained from household surveys conducted in the Jabodetabek region (Greater Jakarta) from February to March 2015. Descriptive analysis, factor analysis, and a binary logit model were used to analyze the data. Subsequently, the results show that consumers with fewer family members and have a higher income, and are price tolerant, are more likely to purchase organic vegetables. Meanwhile, female consumers are less likely to buy organic vegetables. Another important finding is that positive attitude towards organic products, safety and health, environmental concerns, as well as degree of trust in organic attributes, are the determinants of organic vegetable purchasing among consumers. Therefore, based on the study results, the following recommendations are needed for organic vegetable development in Indonesia: (a) implementing an appropriate pricing strategy; (b) encouraging organic labeling and certification for vegetables; and

  9. [Vegetation landscape health assessment in Changshan Archipelago, North Yellow Sea].

    PubMed

    Suo, An-ning; Sun, Yong-guang; Li, Bin-yong; Lin, Yong; Zhang, Yong-hua

    2015-04-01

    Island vegetation is an important component of island ecosystem. Multi-targets of island ecosystem health integrated with landscape ecology theory were employed to construct the index system for island vegetation health assessment in terms of landscape vigor, landscape stressing intensity and landscape stability. The Changshan Archipelago in the North Yellow Sea was chosen as a case to apply the island vegetation health assessment index system. The results showed that the overall vegetation health status in Changshan Archipelago was good and had a big island variation. The vegetation health index for Haiyang Island and Zhangzi Island was above 0.80, belonging to first eco-health level area, whereas that for Dachangshan Island, Xiaochangshan Island and Dawangjia Island ranged from 0.70 to 0.80, which could be categorized as the second eco-health level area. Guanglu Island and Shichen Island could be termed as the third eco-health level area with the vegetation health index below 0.70. The distance of island to mainland, area of island together with industrial structure were the main driving forces for the variation of vegetation landscape heath between different islands.

  10. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. [North America

    NASA Technical Reports Server (NTRS)

    Goward, S. N.; Tucker, C. J.; Dye, D. G.

    1985-01-01

    Spectral vegetation index measurements derived from remotely sensed observations show great promise as a means to improve knowledge of land vegetation patterns. The daily, global observations acquired by the advanced very high resolution radiometer, a sensor on the current series of U.S. National Oceanic and Atmospheric Administration meteorological satellites, may be particularly well suited for global studies of vegetation. Preliminary results from analysis of North American observations, extending from April to November 1982, show that the vegetation index patterns observed correspond to the known seasonality of North American natural and cultivated vegetation. Integration of the observations over the growing season produced measurements that are related to net primary productivity patterns of the major North American natural vegetation formations. Regions of intense cultivation were observed as anomalous areas in the integrated growing season measurements. Significant information on seasonality, annual extent and interannual variability of vegetation photosynthetic activity at continental and global scales can be derived from these satellite observations.

  11. Handling Procedures of Vegetable Crops

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  12. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982-2013.

    PubMed

    Xu, Hao-Jie; Wang, Xin-Ping; Yang, Tai-Bao

    2017-02-01

    Central Eurasian vegetation is critical for the regional ecological security and the global carbon cycle. However, climatic impacts on vegetation growth in Central Eurasia are uncertain. The reason for this uncertainty lies in the fact that the response of vegetation to climate change showed nonlinearity, seasonality and differences among plant functional types. Based on remotely sensed vegetation index and in-situ meteorological data for the years 1982-2013, in conjunction with the latest land cover type product, we analyzed how vegetation growth trend varied across different seasons and evaluated vegetation response to climate variables at regional, biome and pixel scales. We found a persistent increase in the growing season NDVI over Central Eurasia during 1982-1994, whereas this greening trend has stalled since the mid-1990s in response to increased water deficit. The stalled trend in the growing season NDVI was largely attributed by summer and autumn NDVI changes. Enhanced spring vegetation growth after 2002 was caused by rapid spring warming. The response of vegetation to climatic factors varied in different seasons. Precipitation was the main climate driver for the growing season and summer vegetation growth. Changes in temperature and precipitation during winter and spring controlled the spring vegetation growth. Autumn vegetation growth was mainly dependent on the vegetation growth in summer. We found diverse responses of different vegetation types to climate drivers in Central Eurasia. Forests were more responsive to temperature than to precipitation. Grassland and desert vegetation responded more strongly to precipitation than to temperature in summer but more strongly to temperature than to precipitation in spring. In addition, the growth of desert vegetation was more dependent on winter precipitation than that of grasslands. This study has important implications for improving the performance of terrestrial ecosystem models to predict future vegetation

  13. [Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China].

    PubMed

    Zhang, Yuan-Dong; Zhang, Xiao-He; Liu, Shi-Rong

    2011-02-01

    Based on the 1982-2006 NDVI remote sensing data and meteorological data of Southwest China, and by using GIS technology, this paper interpolated and extracted the mean annual temperature, annual precipitation, and drought index in the region, and analyzed the correlations of the annual variation of NDVI in different vegetation types (marsh, shrub, bush, grassland, meadow, coniferous forest, broad-leaved forest, alpine vegetation, and cultural vegetation) with corresponding climatic factors. In 1982-2006, the NDVI, mean annual temperature, and annual precipitation had an overall increasing trend, and the drought index decreased. Particularly, the upward trend of mean annual temperature was statistically significant. Among the nine vegetation types, the NDVI of bush and mash decreased, and the downward trend was significant for bush. The NDVI of the other seven vegetation types increased, and the upward trend was significant for coniferous forest, meadow, and alpine vegetation, and extremely significant for shrub. The mean annual temperature in the areas with all the nine vegetation types increased significantly, while the annual precipitation had no significant change. The drought index in the areas with marsh, bush, and cultural vegetation presented an increasing trend, that in the areas with meadow and alpine vegetation decreased significantly, and this index in the areas with other four vegetation types had an unobvious decreasing trend. The NDVI of shrub and coniferous forest had a significantly positive correlation with mean annual temperature, and that of shrub and meadow had significantly negative correlation with drought index. Under the conditions of the other two climatic factors unchanged, the NDVI of coniferous forest, broad-leaved forest, and alpine vegetation showed the strongest correlation with mean annual temperature, that of grass showed the strongest correlation with annual precipitation, and the NDVI of mash, shrub, grass, meadow, and cultural

  14. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices

    USGS Publications Warehouse

    Ji, Lei; Zhang, Li; Rover, Jennifer R.; Wylie, Bruce K.; Chen, Xuexia

    2014-01-01

    In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.

  15. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices

    NASA Astrophysics Data System (ADS)

    Ji, Lei; Zhang, Li; Rover, Jennifer; Wylie, Bruce K.; Chen, Xuexia

    2014-10-01

    In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.

  16. Quantifying regional vegetation cover variability in North China during the Holocene: implications for climate feedback.

    PubMed

    Liu, Guo; Yin, Yi; Liu, Hongyan; Hao, Qian

    2013-01-01

    Validating model simulations of vegetation-climate feedback needs information not only on changes in past vegetation types as reconstructed by palynologists, but also on other proxies such as vegetation cover. We present here a quantitative regional vegetation cover reconstruction for North China during the Holocene. The reconstruction was based on 15 high-quality lake sediment profiles selected from 55 published sites in North China, along with their modern remote sensing vegetation index. We used the surface soil pollen percentage to build three pollen-vegetation cover transfer models, and used lake surface sediment pollen data to validate their accuracy. Our results showed that vegetation cover in North China increased slightly before its maximum at 6.5 cal ka BP and has since declined significantly. The vegetation decline since 6.5 cal ka BP has likely induced a regional albedo change and aerosol increase. Further comparison with paleoclimate and paleovegetation dynamics in South China reproduced the regional cooling effect of vegetation cover decline in North China modelled in previous work. Our discussion demonstrates that, instead of reconstructing vegetation type from a single site, reconstructing quantitative regional vegetation cover could offer a broader understanding of regional vegetation-climate feedback.

  17. Quantifying Regional Vegetation Cover Variability in North China during the Holocene: Implications for Climate Feedback

    PubMed Central

    Liu, Guo; Yin, Yi; Liu, Hongyan; Hao, Qian

    2013-01-01

    Validating model simulations of vegetation-climate feedback needs information not only on changes in past vegetation types as reconstructed by palynologists, but also on other proxies such as vegetation cover. We present here a quantitative regional vegetation cover reconstruction for North China during the Holocene. The reconstruction was based on 15 high-quality lake sediment profiles selected from 55 published sites in North China, along with their modern remote sensing vegetation index. We used the surface soil pollen percentage to build three pollen-vegetation cover transfer models, and used lake surface sediment pollen data to validate their accuracy. Our results showed that vegetation cover in North China increased slightly before its maximum at 6.5 cal ka BP and has since declined significantly. The vegetation decline since 6.5 cal ka BP has likely induced a regional albedo change and aerosol increase. Further comparison with paleoclimate and paleovegetation dynamics in South China reproduced the regional cooling effect of vegetation cover decline in North China modelled in previous work. Our discussion demonstrates that, instead of reconstructing vegetation type from a single site, reconstructing quantitative regional vegetation cover could offer a broader understanding of regional vegetation-climate feedback. PMID:23977110

  18. Mimas Showing False Colors #1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    False color images of Saturn's moon, Mimas, reveal variation in either the composition or texture across its surface.

    During its approach to Mimas on Aug. 2, 2005, the Cassini spacecraft narrow-angle camera obtained multi-spectral views of the moon from a range of 228,000 kilometers (142,500 miles).

    The image at the left is a narrow angle clear-filter image, which was separately processed to enhance the contrast in brightness and sharpness of visible features. The image at the right is a color composite of narrow-angle ultraviolet, green, infrared and clear filter images, which have been specially processed to accentuate subtle changes in the spectral properties of Mimas' surface materials. To create this view, three color images (ultraviolet, green and infrared) were combined into a single black and white picture that isolates and maps regional color differences. This 'color map' was then superimposed over the clear-filter image at the left.

    The combination of color map and brightness image shows how the color differences across the Mimas surface materials are tied to geological features. Shades of blue and violet in the image at the right are used to identify surface materials that are bluer in color and have a weaker infrared brightness than average Mimas materials, which are represented by green.

    Herschel crater, a 140-kilometer-wide (88-mile) impact feature with a prominent central peak, is visible in the upper right of each image. The unusual bluer materials are seen to broadly surround Herschel crater. However, the bluer material is not uniformly distributed in and around the crater. Instead, it appears to be concentrated on the outside of the crater and more to the west than to the north or south. The origin of the color differences is not yet understood. It may represent ejecta material that was excavated from inside Mimas when the Herschel impact occurred. The bluer color of these materials may be caused by subtle differences in

  19. The Reliability and Validity of Short Online Questionnaires to Measure Fruit and Vegetable Intake in Adults: The Fruit Test and Vegetable Test

    PubMed Central

    De Bourdeaudhuij, Ilse; Crombez, Geert; Steenhuyzen, Saidja; Dejaegere, Liesbet; Vanhauwaert, Erika; Verloigne, Maïté

    2016-01-01

    The first aim of this study was to investigate the stability of the Fruit Test and Vegetable Test over time and whether the Fruit Test and Vegetable Test are capable of measuring fruit and vegetable intake with consistency. Second, the study aimed to examine criterion (concurrent) validity of the Fruit Test and Vegetable Test by testing their agreement with 7-day food diary-derived measures of fruit and vegetable intake. In total 58 adults (31% male, mean age = 30.0±12.09y) completed the Flemish Fruit and Vegetable test by indicating the frequency of days that they ate fruit and vegetables and the number of portions during the past week. Validity was tested by using a 7-day food diary as a golden standard. Adults were asked to register their fruit and vegetable intake daily in a diary during one week. Spearman correlations were measured to compare total intake reported in the Fruit and Vegetable Test and in the 7-day diary. Agreement plots were used to illustrate absolute agreement. Test-retest reliability was evaluated by having participants completing the Fruit Test and Vegetable Test twice. The Fruit Test (ICC = 0.81) and Vegetable Test (ICC = 0.78) showed excellent and substantial reliability. The Fruit Test (ρ = 0.73) and Vegetable Test showed good validity. Agreement plots showed modest variability in differences between vegetable and fruit intake as measured by the Vegetable and Fruit Test and the 7-day food diary. Also a small underestimation of fruit intake in the Fruit test and vegetable intake in the Vegetable test against the 7-day food diary was shown. Based on the results, it is suggested to include portion size pictures and consumption of mixed vegetables to prevent underestimation. To prevent overestimation, it is concluded to add a moderate number of representative fruit and vegetable items, questions on portion size, household sizes with sufficient detail and food items highly tailored to the dietary behaviors and local food items of the

  20. Attribution of trends in global vegetation greenness from 1982 to 2011

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Xu, L.; Bi, J.; Myneni, R.; Knyazikhin, Y.

    2012-12-01

    Time series of remotely sensed vegetation indices data provide evidence of changes in terrestrial vegetation activity over the past decades in the world. However, it is difficult to attribute cause-and-effect to vegetation trends because variations in vegetation productivity are driven by various factors. This study investigated changes in global vegetation productivity first, and then attributed the global natural vegetation with greening trend. Growing season integrated normalized difference vegetation index (GSI NDVI) derived from the new GIMMS NDVI3g dataset (1982-2011was analyzed. A combined time series analysis model, which was developed from simper linear trend model (SLT), autoregressive integrated moving average model (ARIMA) and Vogelsang's t-PST model shows that productivity of all vegetation types except deciduous broadleaf forest predominantly showed increasing trends through the 30-year period. The evolution of changes in productivity in the last decade was also investigated. Area of greening vegetation monotonically increased through the last decade, and both the browning and no change area monotonically decreased. To attribute the predominant increase trend of productivity of global natural vegetation, trends of eight climate time series datasets (three temperature, three precipitation and two radiation datasets) were analyzed. The attribution of trends in global vegetation greenness was summarized as relaxation of climatic constraints, fertilization and other unknown reasons. Result shows that nearly all the productivity increase of global natural vegetation was driven by relaxation of climatic constraints and fertilization, which play equally important role in driving global vegetation greenness.; Area fraction and productivity change fraction of IGBP vegetation land cover classes showing statistically significant (10% level) trend in GSI NDVIt;

  1. Responses of vegetation growth to climate change in china

    NASA Astrophysics Data System (ADS)

    Li, Z.; Zhou, T.

    2015-04-01

    Global warming-related climate changes have significantly impacted the growth of terrestrial vegetation. Quantifying the spatiotemporal characteristic of the vegetation's response to climate is crucial for assessing the potential impacts of climate change on vegetation. In this study, we employed the normalized difference vegetation index (NDVI) and the standardized precipitation evapotranspiration index (SPEI) that was calculated for various time scales (1 to 12 months) from monthly records of mean temperature and precipitation totals using 511 meteorological stations in China to study the response of vegetation types to droughts. We separated the NDVI into 12 time series (one per month) and also used the SPEI of 12 droughts time scales to make the correlation. The results showed that the differences exist in various vegetation types. For needle-leaved forest, broadleaf forest and shrubland, they responded to droughts at long time scales (9 to 12 months). For grassland, meadow and cultivated vegetation, they responded to droughts at short time scales (1 to 5months). The positive correlations were mostly found in arid and sub-arid environments where soil water was a primary constraining factor for plant growth, and the negative correlations always existed in humid environments where temperature and radiation played significant roles in vegetation growth. Further spatial analysis indicated that the positive correlations were primarily found in northern China, especially in northwestern China, which is a region that always has water deficit, and the negative correlations were found in southern China, especially in southeastern China, that is a region has water surplus most of the year. The disclosed patterns of spatiotemporal responses to droughts are important for studying the impact of climate change to vegetation growth.

  2. Response of vegetation to the 2003 European drought was mitigated by height

    NASA Astrophysics Data System (ADS)

    Bevan, S. L.; Los, S. O.; North, P. R. J.

    2014-06-01

    The effects on climate of land-cover change, predominantly from the conversion of forests to crops or grassland, are reasonably well understood for low and high latitudes but are largely unknown for temperate latitudes. The main reason for this gap in our knowledge is that there are compensating effects on the energy and water balance that are related to changes in land-surface albedo, soil evaporation and plant transpiration. We analyse how vegetation height affected the response of vegetation during the 2003 European drought using precipitation data, temperature data, normalized difference vegetation index data and a new vegetation height data set obtained from the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat). At the height of the 2003 drought we find for tall vegetation a significantly smaller decrease in vegetation index and a smaller diurnal temperature (DTR) range, indicating less water stress and drought impacts on tall vegetation. Over Germany for example, 98% of significant correlations showed a smaller anomaly in vegetation index anomaly with greater height, and 95% of significant correlations showed a smaller DTR with greater vegetation height. Over France the equivalent percentages were 94 and 88%, respectively. Vegetation height is likely associated with greater rooting depth, canopy heat capacity or both. Our results suggest that land-surface models can be improved by better estimates of vegetation height and associated with this a more realistic response to drought.

  3. Experimental Study on the Characteristics of Scour Hole around Emergent Vegetation with Single-Density

    NASA Astrophysics Data System (ADS)

    Peng, C. C.

    2015-12-01

    In the natural rivers, woody vegetation commonly grows along the riverbank. When flows run through the woody vegetation zones, the stream processes and bed form are markedly affected. This study aimed to investigate the characteristics of scour hole around vegetation patch with different densities by flume experiments. For corresponding to the natural plant growing condition, the vegetation models were arranged along one side of the flume wall. The vegetation models were made of the steel columns with staggered arrangement. The vegetation densities were set equal to 0.03, 0.04, 0.05, 0.07, 0.09, 0.12, 0.15, 0.22 and 0.3. The experimental flow condition was steady and the vegetation models were emergent. The flow velocity was controlled close to the initiation of sediment motion. The scour patterns around the vegetation zone were measured by the Laser Distance Meter in equilibrium scour conditions. The results show that the scour patterns have similarity in vegetation density ranging from 0.03 to 0.12. The dimensionless scour length (D) is ranging 1.30-1.50. The dimensionless scour width (B) is ranging 1.11-1.48. The dimensionless accumulation width (E) is ranging 1.18-1.67. The dimensionless accumulation length (F) is ranging 0.49-1.81.The results also show that B and E are proportional to the vegetation densities, and the D and F are inversely proportional to the vegetation densities.

  4. Vegetation recovery on closed paths in temperate deciduous forests.

    PubMed

    Roovers, Pieter; Bossuyt, Beatrijs; Gulinck, Hubert; Hermy, Martin

    2005-02-01

    The objective of this study was to evaluate vegetation recovery on footpaths in woodland that have been closed for access for 6 years. A vegetation survey was conducted in four mesophile forests, in transects perpendicular to the trail. Analyses concentrated on the direction and rate of the recovery process. Vegetation on trail sides in these ecosystems recovered substantially. Non-metric multidimensional scaling based upon species composition separated the four sample locations and each cluster contained representatives of the three major trail zones: path centre, transition and undisturbed zones. Analysis of distribution of life forms, plant strategies and seedbank longevity indices showed no differences between trail zones. This indicates that vegetation on the path centre is likely to recover towards the plant composition of the undisturbed zone. Ellenberg values indicate that environmental variation is not related to former path structures, as significant variability was only observed between the forest sites. Furthermore, the analysis concentrated on characteristics of species relevant to the recovery process.

  5. Calcium biofortification and bioaccessibility in soilless "baby leaf" vegetable production.

    PubMed

    D'Imperio, Massimiliano; Renna, Massimiliano; Cardinali, Angela; Buttaro, Donato; Serio, Francesco; Santamaria, Pietro

    2016-12-15

    Calcium is an essential nutrient for human health, because it is a structural component and takes part in a variety of biological processes. The aim of this study was to increase Ca content of baby leaf vegetables (BLV: basil, mizuna, tatsoi and endive), as fresh-cut products. For the production of biofortified BLV, a floating system with two level of Ca (100 and 200mgL(-1)) in the nutrient solution was used. In addition, the assessment of bioaccessibility of Ca, by in vitro digestion process, was performed. In all vegetables, the Ca biofortification (200mgL(-1)) caused a significant Ca enrichment (9.5% on average) without affecting vegetables growth, oxalate contents and marketable quality. Calcium bioaccessibility ranged from 25% (basil) to 40% (endive) but the biofortified vegetables showed more bioaccessible Ca. These results underline the possibility to obtain Ca biofortified BLV by using agronomic approaches.

  6. [Simulation of vegetation indices optimizing under retrieval of vegetation biochemical parameters based on PROSPECT + SAIL model].

    PubMed

    Wu, Ling; Liu, Xiang-Nan; Zhou, Bo-Tian; Liu, Chuan-Hao; Li, Lu-Feng

    2012-12-01

    This study analyzed the sensitivities of three vegetation biochemical parameters [chlorophyll content (Cab), leaf water content (Cw), and leaf area index (LAI)] to the changes of canopy reflectance, with the effects of each parameter on the wavelength regions of canopy reflectance considered, and selected three vegetation indices as the optimization comparison targets of cost function. Then, the Cab, Cw, and LAI were estimated, based on the particle swarm optimization algorithm and PROSPECT + SAIL model. The results showed that retrieval efficiency with vegetation indices as the optimization comparison targets of cost function was better than that with all spectral reflectance. The correlation coefficients (R2) between the measured and estimated values of Cab, Cw, and LAI were 90.8%, 95.7%, and 99.7%, and the root mean square errors of Cab, Cw, and LAI were 4.73 microg x cm(-2), 0.001 g x cm(-2), and 0.08, respectively. It was suggested that to adopt vegetation indices as the optimization comparison targets of cost function could effectively improve the efficiency and precision of the retrieval of biochemical parameters based on PROSPECT + SAIL model.

  7. Soil temperature depressions beneath vegetation

    SciTech Connect

    Starkweather, S.

    1996-10-01

    The results from a summer-long monitoring project were used to determine the effects of vegetative cover on soil temperatures and ground heat fluxes. The measurements were taken over three months in a residential neighborhood adjacent to the University of Colorado campus and correlated with data from a weather station located a mile away. By contrasting the soil temperatures beneath a moderately shaded, vegetated site to those beneath an open site covered with turf grass, the authors were able to quantify an added energy saving benefit of alternative landscapes and tree planting; reduced summer-time ground heat flux. The results from the monitoring project were used to develop a general model for relating local weather data and site-specific vegetative morphologies to site-specific ground heat fluxes. The authors found that the reduced ground heat flux can be largely attributed to the reduced net radiation flux arriving at the soil surface.

  8. Allergies to fruits and vegetables.

    PubMed

    Fernández-Rivas, Montserrat; Benito, Cristina; González-Mancebo, Eloína; de Durana, Dolores Alonso Díaz

    2008-12-01

    Allergic reactions to fruits and vegetables are frequently observed in older children and adolescents. They can result from a primary sensitization to food allergens or from a primary sensitization to inhalant allergens such as pollens or latex. In the case of fruit allergies, the stability of the allergens involved is crucial to the sensitization pathway and in the clinical presentation of the food allergy. Two patients allergic to fruits are presented and discussed in the light of the allergens involved. Patient 1 was a 14 yr-old girl with a grass and olive pollen allergy who developed oropharyngeal symptoms typical of the oral allergy syndrome (OAS) with multiple fruits from taxonomically unrelated families, and who was sensitized to profilin. Patient 2 was an 8 yr-old girl, with no pollen allergies, who developed systemic reactions to peach and apple, and who was sensitized to non-specific lipid transfer proteins (LTP). Profilins are labile allergens present in pollens and foods, and sensitization occurs through the respiratory route to pollen profilin. The cross-reactive IgE antibodies generated can elicit local reactions in the oropharyngeal mucosa (OAS) when exposed to fruit profilins. In contrast, LTPs are a family of stable allergens that resist thermal treatment and enzymatic digestion, and can thus behave as true food allergens inducing primary (non-pollen related) sensitizations and triggering systemic reactions. These two cases represent two distinct patterns of sensitization and clinical expression of fruit allergies that are determined by the panallergens involved (LTPs and profilins) and their intrinsic physicochemical properties. Additionally, these two cases also show the improved diagnostic value of Component Resolved Diagnosis, and strengthen its utility in the routine diagnosis and management of patients.

  9. On the morphodynamic stability of intertidal environments and the role of vegetation

    NASA Astrophysics Data System (ADS)

    Kakeh, Nabil; Coco, Giovanni; Marani, Marco

    2016-07-01

    We describe the coupled biotic and abiotic dynamics in intertidal environments using a point model that includes suspended sediment deposition, wave- and current-driven erosion, biofilm sediment stabilization, and sediment production and stabilization by vegetation. We explore the effects of two widely different types of vegetation: salt-marsh vegetation and mangroves. These two types of vegetation, which colonize distinct geographical areas, are characterized by different biomass productivities and stabilization mechanisms. We show that changing vegetation and biofilm properties result in differing stable states, both in their type and number. The presence of the biofilm exerts a dominant control on the tidal flat (lower intertidal) equilibrium elevation and stability. Vegetation controls the elevation of the marsh platform (i.e., the upper intertidal equilibrium). The two types of vegetation considered lead to similar effects on the stability of the system despite their distinct biophysical interactions.

  10. Relation of Vegetation and Temperature Condition Indices (1981-1999) and Drought conditions in Indian Region

    NASA Astrophysics Data System (ADS)

    Kanwar, R.; Narayan, U.; Kumar, M.

    The Advanced Very High Resolution Radiometer (AVHRR) onboard NOAA series of satellites has been used for regional and global vegetation coverage since 1978 employing the Normalized Difference Vegetation Index (NDVI). Recently, this technique has been improved combining NDVI with one of the thermal channels and converting them into the vegetation condition Index (VCI) and Temperature condition Index (TCI). W e have analysed NDVI, Vegetation and Temperature Condition Indices for the year 1981-1999 to the map the state of vegetation for Indian regions. Further, we have correlated these indices with the crop yield and crop production for different parts of India. The NDVI is also correlated with the scattering index derived form ERS data. The preset study shows that scattering coefficient, the NDVI, vegetation and temperature condition indices can be employed together in monitoring drought conditions and the vegetation vigor of Indian regions.

  11. [Remote sensing estimation of vegetation coverage in guangzhou based on the correction of atmospheric radiation].

    PubMed

    Gong, Jian-Zhou; Xia, Bei-Cheng

    2007-03-01

    Vegetation coverage is a basic parameter in describing landscape ecosystem, and an important index in assessing ecosystem health and security. Based on the four TM images in 1990, 1995, 2000 and 2005, and by using the correction model to deduct atmospheric radiation effect and the spatial operating model for TM image under unsupervised classification, the relationship model between vegetation coverage and normalized vegetation index was established, and the vegetation coverage in different phases in Guangzhou was calculated. The results showed that the vegetation coverage in Guangzhou decreased continuously from 1990 to 2000 but began to increase thereafter, which accorded with the economic development and environmental construction of the city. The model established in this paper could simulate well the dynamics of regional vegetation cover, and have the advantage in describing the dynamics of vegetation coverage more accurately, being available to the assessment of urban eco-environmental quality and its dynamic characters.

  12. Time-lag effects of global vegetation responses to climate change.

    PubMed

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite

  13. Textural signatures for wetland vegetation

    NASA Technical Reports Server (NTRS)

    Whitman, R. I.; Marcellus, K. L.

    1973-01-01

    This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.

  14. Vegetable oils for tractors

    SciTech Connect

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  15. Relationship between tourism development and vegetated landscapes in Luya Mountain Nature Reserve, Shanxi, China.

    PubMed

    Cheng, Zhan-Hong; Zhang, Jin-Tun

    2005-09-01

    The relationship between tourism development and vegetated landscapes is analyzed for the Luya Mountain Nature Reserve (LMNR), Shanxi, China, in this study. Indices such as Sensitive Level (SL), Landscape Importance Value (LIV), information index of biodiversity (H'), Shade-tolerant Species Proportion (SSP), and Tourism Influencing Index (TII) are used to characterize vegetated landscapes, the impact of tourism, and their relationship. Their relationship is studied by Two-Way Indicator Species Analysis (TWINSPAN) and Detrended Correspondence Analysis (DCA). TWINSPAN gives correct and rapid partition to the classification, and DCA ordination shows the changing tendency of all vegetation types based on tourism development. These results reflect the ecological relationship between tourism development and vegetated landscapes. In Luya Mountain Nature Reserve, most plant communities are in good or medium condition, which shows that these vegetated landscapes can support more tourism. However, the occurrence of the bad condition shows that there is a severe contradiction between tourism development and vegetated landscapes.

  16. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest.

    PubMed

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D; Magnusson, William E

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone.

  17. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau

    USGS Publications Warehouse

    Wang, Kun; Zhang, Li; Qiu, Yubao; Ji, Lei; Tian, Feng; Wang, Cuizhen; Wang, Zhiyong

    2013-01-01

    Understanding the relationships between snow and vegetation is important for interpretation of the responses of alpine ecosystems to climate changes. The Qinghai-Tibetan Plateau is regarded as an ideal area due to its undisturbed features with low population and relatively high snow cover. We used 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) datasets during 2001–2010 to examine the snow–vegetation relationships, specifically, (1) the influence of snow melting date on vegetation green-up date and (2) the effects of snow cover duration on vegetation greenness. The results showed that the alpine vegetation responded strongly to snow phenology (i.e., snow melting date and snow cover duration) over large areas of the Qinghai-Tibetan Plateau. Snow melting date and vegetation green-up date were significantly correlated (p < 0.1) in 39.9% of meadow areas (accounting for 26.2% of vegetated areas) and 36.7% of steppe areas (28.1% of vegetated areas). Vegetation growth was influenced by different seasonal snow cover durations (SCDs) in different regions. Generally, the December–February and March–May SCDs played a significantly role in vegetation growth, both positively and negatively, depending on different water source regions. Snow's positive impact on vegetation was larger than the negative impact.

  18. Association between parenting styles and own fruit and vegetable consumption among Portuguese mothers of school children.

    PubMed

    Franchini, Bela; Poínhos, Rui; Klepp, Knut-Inge; de Almeida, Maria Daniel Vaz

    2011-09-01

    The aim of the present study was to evaluate the association between parenting styles and own fruit and vegetable consumption among Portuguese mothers of school children. A cross-sectional study was performed in Portugal as part of the Pro Children cross-sectional European survey. Portuguese mothers (n 1601) of 11-13-year-old school children were included in the present study. A self-administered questionnaire was developed to assess fruit and vegetable consumption as well as the parenting styles. Fruit and vegetable consumption was assessed by a validated FFQ. Parenting styles based on two dimensions - strictness and involvement - were classified into authoritative, authoritarian, indulgent and neglectful. The higher mean intakes of fruit, vegetables and total fruit and vegetables were observed for mothers classified as indulgent, whereas the lower mean intakes were observed for mothers classified as neglectful. Differences in intake among parenting styles were significant for fruit, vegetables and total fruit and vegetables. When partial correlations were calculated between the two dimensions, strictness and involvement (controlled one for the other), and intakes, only involvement was positively associated with fruit, vegetables and total fruit and vegetable intake. Findings from the present study show that fruit and vegetable consumption of Portuguese mothers of school children seems to be related to their own parenting styles, especially with the dimension involvement. Future interventions to promote fruit and vegetable intake should take into account these variables.

  19. Combined use of vegetation and water indices from remotely-sensed AVIRIS and MODIS data to monitor riparian and semiarid vegetation

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jin

    2006-04-01

    The objectives of dissertation were to examine vegetation and water indices from AVIRIS and MODIS data for monitoring semiarid and upland vegetation communities related with moisture condition and their spatial and temporal dependencies in estimating evapotranspiration (ET). The performance of various water indices, including the normalized difference water index (NDWI) and land surface water index (LSWI), with the chlorophyll-based vegetation indices (VIs), the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) was evaluated in (1) investigating sensitivity of vegetation and land surface moisture condition, (2) finding optimal indices in detecting seasonal variations in vegetation water status at the landscape level, and (3) their spatial and temporal scale dependency on estimating ET. The analyses were accomplished through field radiometric measurement, airborne-based and satellite data processing accompanied with water flux data. The results of these studies showed vegetation and landscape moisture condition could be identified in VI--WI scatter-plot. LSWI (2100) showed the biggest sensitivity to variation of vegetation and background soil moisture condition as well. Multi-temporal MODIS data analysis was able to show water use characteristic of riparian vegetation and upland vegetation. Results showed water use characteristics of riparian vegetation are relatively insensitive to summer monsoon pulse, while upland vegetation is highly tied to summer monsoon rain. The relationship between water flux measurement from eddy covariance tower and satellite data has shown that MODIS derived EVI and LSWI (2100) have similar merit to estimate ET rate, but better correlation was observed from the relationship between MODIS EVI and ET. Pixel aggregation results using fine resolution AVIRIS data showed moderate resolution spatial scale 250m or 500m, best predicted ET rates over all study areas. Surface fluxes temporally aggregated to weekly or

  20. Using Long-Term Experimental Warming To Distinguish Vegetation Responses To Warming From Other Environmental Drivers Related To Climate Change

    NASA Astrophysics Data System (ADS)

    Gould, W. A.; Welker, J. M.; Mercado-Díaz, J. A.; Anderson, A.; Menken, M.

    2010-12-01

    Long term studies of vegetation change throughout the tundra biome show increases in the height, canopy extent and dominance of vascular vegetation versus bryophytes and lichens, with mixed responses of the dominant shrub and graminoid growth forms. Increases in vascular vegetation are recorded for sites with and without measurable climatic warming over recent decades, but with other potential drivers, i.e., increased summer precipitation. Experimental warming of tundra vegetation at Toolik Lake, Alaska shows a clear increase in shrub abundance relative to graminoids, with correlated higher NDVI values, increasing canopy heights, and thaw depths. Responses were similar between moist and dry tundra vegetation, with greater responses in moist vegetation. NDVI, with its ability to distinguish shrub from graminoid vegetation, may be a tool to distinguish fine scale differences in the response of tundra vegetation to climatic change, i.e., shifting balances of shrub and graminoid relative abundances that may be related to distinct climatic change drivers.

  1. Literature Review - Vegetation on Levees

    DTIC Science & Technology

    2010-12-01

    lateritic site, absorption of 32P from a lateral distance of 75- and 30-cm depth was much greater than from 150- and 225-cm lateral distance and 60- and...the root activity percentage. Vegetation: Wild jack tree (Artocarpus hirsutus Lamk.) Soil Properties: Lateritic oxisol with a pH of 6.7

  2. GLOBAL ORGANIC EMISSIONS FROM VEGETATION

    EPA Science Inventory

    The book chapter discusses several aspects of biogenic volatile organic compound (BVOC) emissions from vegetation. It begins with a section on emission measurements that includes a brief history of enclosure and above-canopy flux measurements as well as a discussion of existing d...

  3. 'Vegetable' substitutes for diesel fuel

    SciTech Connect

    Not Available

    1981-07-22

    Research programs in the US, Brazil, South Africa and the Philippines on efforts to find a vegetable oil substitute for diesel fuel are reported. A narrowing price gap with diesel fuel and a favourable energy balance improve the prospects for such fuels. Much of the current work is centered on blends, rather than the use of the pure oil.

  4. Vegetable production after heavy rains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is not clear if extraordinary precipitation stored in the soil was able to support vegetable crops planted after rains events returned to normal levels. Cucumber and sweet corn were established from seed and non-pungent jalapeno peppers were established from 8-week old transplants on beds. Half...

  5. Vegetation Change Analysis User's Manual

    SciTech Connect

    D. J. Hansen; W. K. Ostler

    2002-10-01

    Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Diagnostic techniques are needed to identify thresholds of sustainable military use. A cooperative effort among U.S. Department of Energy, U.S. Department of Defense, and selected university scientists was undertaken to focus on developing new techniques for monitoring and mitigating military impacts in arid lands. This manual focuses on the development of new monitoring techniques that have been implemented at Fort Irwin, California. New mitigation techniques are described in a separate companion manual. This User's Manual is designed to address diagnostic capabilities needed to distinguish between various degrees of sustainable and nonsustainable impacts due to military training and testing and habitat-disturbing activities in desert ecosystems. Techniques described here focus on the use of high-resolution imagery and the application of image-processing techniques developed primarily for medical research. A discussion is provided about the measurement of plant biomass and shrub canopy cover in arid. lands using conventional methods. Both semiquantitative methods and quantitative methods are discussed and reference to current literature is provided. A background about the use of digital imagery to measure vegetation is presented.

  6. Vegetable Crop Pests. MEP 311.

    ERIC Educational Resources Information Center

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…

  7. Grafting effects on vegetable quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable grafting began in the 1920s to control soil-borne disease. It is now a common practice in Asia, parts of Europe, and the Middle East. In Japan and Korea most of the cucurbits and tomatoes (Lycopersicon esculentum Mill.) grown are grafted. This practice is rare in the U.S. and there have...

  8. Evaporative cooling over the Tibetan Plateau induced by vegetation growth.

    PubMed

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z X; Li, Yue; Myneni, Ranga B; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-07-28

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.

  9. Urban vegetation and heat-related mortality in Seoul, Korea.

    PubMed

    Son, Ji-Young; Lane, Kevin J; Lee, Jong-Tae; Bell, Michelle L

    2016-11-01

    Urban areas are particularly vulnerable to heat-related health outcomes. Simultaneous trends of climate change and urbanization may increase the urban heat-related health burden. We investigated the effects of urban vegetation on heat-related mortality, and evaluated whether different levels of vegetation and individuals' characteristics affect the temperature-mortality associations within Seoul, Korea 2000-2009. We used Normalized Difference Vegetation Index (NDVI) to assess the urban vegetation within Seoul. We applied an overdispersed Poisson generalized linear model with interaction term between temperature and indicator of NDVI group (categorized in 3 levels) to assess the effect modification of the temperature-mortality association by urban vegetation. We conducted stratified analysis to explore whether associations are affected by individual characteristics of sex and age. The association between total mortality and a 1°C increase in temperature above the 90th percentile (25.1°C) (the "heat effect") was the highest for gus with low NDVI. The heat effect was a 4.1% (95% confidence interval (CI) 2.3, 5.9%), 3.0% (95% CI 0.2, 5.9%), and 2.2% (95% CI -0.5, 5.0%) increase in mortality risk for low, medium, and high NDVI group, respectively. Estimated risks showed similar effects by sex and age. Our findings suggest a higher mortality effect of high temperature in areas with lower vegetation in Seoul, Korea.

  10. Advances in Studies on Natural Preservativesfor Fruits and Vegetables

    NASA Astrophysics Data System (ADS)

    Gao, Haisheng; Shi, Pengbao; Zhao, Yuhua

    The author introduced g eneral research and application situations of natural preservatives for fruits and vegetables all over the world these years, and summarized application of vegetation of Murraya in Rutaceae, Cinnamomum in Lauraceae, Artemisia in Compositae and other families and genera on fruits and vegetables preservation and fresh-keeping. Decoction or extraction of Chinese traditional medicine, such as Alpinia Officinarum, Amarphalus Konjac K., stemona etc, could be used in fresh-keeping for orange, apple, strawberry, edible fungi and so on. Garlic could be used in fresh-keeping for orange. Phytic acid and fresh-keeping agents compounded with Phytic acid could extend storage periods of easily rotting fruits and vegetables, such as strawberry, banana, cantaloup, edible fungi and so on, and better keep original fresh condition. Extraction of Snow Fresh, Semper Fresh, Arthropod shell extraction, and halite also had better effect on preservation and fresh-keeping for fruits and vegetables. Main problems exsited in the application of natural preservatives for fruits and vegetables were showed in this article and the applying prospect were discussed too.

  11. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].

    PubMed

    Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng

    2012-07-01

    A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately.

  12. Woody Vegetation on Levees? - Research Experiences and Design Suggestions

    NASA Astrophysics Data System (ADS)

    Lammeranner, Walter

    2013-04-01

    Recent flood events in Austria have reawakened practical and scientific interest in the stability of levees. One focus amongst others has been taken on the relationship between vegetation and levee stability with special reference to the role of woody plants. The effects of woody plants are undoubtedly manifold: On the one hand they can potentially have a negative influence and endanger levees, which is why many guidelines ban woody vegetation to preserve stability, visual inspection and unhindered flood-fight access. On the other hand woody vegetation can have several positive impacts on soil stability and which effects prevail depends largely on types and characteristics of plants. This shows how controversially woody plants on levees can be discussed and the strong need for further research in this field. In order to obtain new insights and widen horizons for this controversial issue, a research project carried out by the Institute of Soil Bioengineering and Landscape Construction - at the University of Natural Resources and Life Sciences, Vienna - was launched. This project deals with several aspects of effects of woody plants have on levees and focuses particularly on shrubby woody plants. The examined vegetation type is a dense stand of willows - Purple-Willows (Salix purpurea L.) - commonly used for stabilization of river embankments. The proposed contribution discusses the gained results with reference to levee stability and existing levee vegetation guidelines and gives design suggestions for compatible woody vegetation on levees.

  13. Classification of simple vegetation types using POLSAR image data

    NASA Technical Reports Server (NTRS)

    Freeman, A.

    1993-01-01

    Mapping basic vegetation or land cover types is a fairly common problem in remote sensing. Knowledge of the land cover type is a key input to algorithms which estimate geophysical parameters, such as soil moisture, surface roughness, leaf area index or biomass from remotely sensed data. In an earlier paper, an algorithm for fitting a simple three-component scattering model to POLSAR data was presented. The algorithm yielded estimates for surface scatter, double-bounce scatter and volume scatter for each pixel in a POLSAR image data set. In this paper, we show how the relative levels of each of the three components can be used as inputs to simple classifier for vegetation type. Vegetation classes include no vegetation cover (e.g. bare soil or desert), low vegetation cover (e.g. grassland), moderate vegetation cover (e.g. fully developed crops), forest and urban areas. Implementation of the approach requires estimates for the three components from all three frequencies available using the NASA/JPL AIRSAR, i.e. C-, L- and P-bands. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.

  14. Dietary fruits and vegetables and cardiovascular diseases risk.

    PubMed

    Alissa, Eman M; Ferns, Gordon A

    2017-06-13

    Diet is likely to be an important determinant of cardiovascular disease (CVD) risk. In this article, we will review the evidence linking the consumption of fruit and vegetables and CVD risk. The initial evidence that fruit and vegetable consumption has a protective effect against CVD came from observational studies. However, uncertainty remains about the magnitude of the benefit of fruit and vegetable intake on the occurrence of CVD and whether the optimal intake is five portions or greater. Results from randomized controlled trials do not show conclusively that fruit and vegetable intake protects against CVD, in part because the dietary interventions have been of limited intensity to enable optimal analysis of their putative effects. The protective mechanisms of fruit and vegetables may not only include some of the known bioactive nutrient effects dependent on their antioxidant, anti-inflammatory, and electrolyte properties, but also include their functional properties, such as low glycemic load and energy density. Taken together, the totality of the evidence accumulated so far does appear to support the notion that increased intake of fruits and vegetables may reduce cardiovascular risk. It is clear that fruit and vegetables should be eaten as part of a balanced diet, as a source of vitamins, fiber, minerals, and phytochemicals. The evidence now suggests that a complicated set of several nutrients may interact with genetic factors to influence CVD risk. Therefore, it may be more important to focus on whole foods and dietary patterns rather than individual nutrients to successfully impact on CVD risk reduction. A clearer understanding of the relationship between fruit and vegetable intake and cardiovascular risk would provide health professionals with significant information in terms of public health and clinical practice.

  15. Airborne observations of vegetation and implications for biogenic emission characterization.

    PubMed

    Hawes, Amy K; Solomon, Susan; Portmann, Robert W; Daniel, John S; Langford, Andrew O; Miller, H LeRoy; Eubank, Charles S; Goldan, Paul; Wiedinmyer, Christine; Atlas, Elliot; Hansel, Armin; Wisthaler, Armin

    2003-12-01

    Measuring hydrocarbons from aircraft represents one way to infer biogenic emissions at the surface. The focus of this paper is to show that complementary remote sensing information can be provided by optical measurements of a vegetation index, which is readily measured with high temporal coverage using reflectance data. We examine the similarities between the vegetation index and in situ measurements of the chemicals isoprene, methacrolein, and alpha-pinene to estimate whether the temporal behavior of the in situ measurements of these chemicals could be better understood by the addition of the vegetation index. Data were compared for flights conducted around Houston in August and September 2000. The three independent sets of chemical measurements examined correspond reasonably well with the vegetation index curves for the majority of flight days. While low values of the vegetation index always correspond to low values of the in situ chemical measurements, high values of the index correspond to both high and low values of the chemical measurements. In this sense it represents an upper limit when compared with in situ data (assuming the calibration constant is adequately chosen). This result suggests that while the vegetation index cannot represent a purely predictive quantity for the in situ measurements, it represents a complementary measurement that can be useful in understanding comparisons of various in situ observations, particularly when these observations occur with relatively low temporal frequency. In situ isoprene measurements and the vegetation index were also compared to an isoprene emission inventory to provide additional insight on broad issues relating to the use of vegetation indices in emission database development.

  16. Serving vegetables first: A strategy to increase vegetable consumption in elementary school cafeterias.

    PubMed

    Elsbernd, S L; Reicks, M M; Mann, T L; Redden, J P; Mykerezi, E; Vickers, Z M

    2016-01-01

    Vegetable consumption in the United States is low despite the wealth of evidence that vegetables play an important role in reducing risk of various chronic diseases. Because eating patterns developed in childhood continue through adulthood, we need to form healthy eating habits in children. The objective of this study was to determine if offering vegetables before other meal components would increase the overall consumption of vegetables at school lunch. We served kindergarten through fifth-grade students a small portion (26-33 g) of a raw vegetable (red and yellow bell peppers) while they waited in line to receive the rest of their lunch meal. They then had the options to take more of the bell peppers, a different vegetable, or no vegetable from the lunch line. We measured the amount of each vegetable consumed by each child. Serving vegetables first greatly increased the number of students eating vegetables. On intervention days most of the vegetables consumed came from the vegetables-first portions. Total vegetable intake per student eating lunch was low because most students chose to not eat vegetables, but the intervention significantly increased this value. Serving vegetables first is a viable strategy to increase vegetable consumption in elementary schools. Long-term implementation of this strategy may have an important impact on healthy eating habits, vegetable consumption, and the health consequences of vegetable intake.

  17. Intercellular communication in Arabidopsis thaliana pollen discovered via AHG3 transcript movement from the vegetative cell to sperm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show...

  18. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Germination of vegetable seed in containers of more... Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds in containers of more than 1 pound shall be labeled to show the percentage of germination and the percentage...

  19. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Germination of vegetable seed in containers of more... Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds in containers of more than 1 pound shall be labeled to show the percentage of germination and the percentage...

  20. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Germination of vegetable seed in containers of more... Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds in containers of more than 1 pound shall be labeled to show the percentage of germination and the percentage...

  1. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination of vegetable seed in containers of more... Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds in containers of more than 1 pound shall be labeled to show the percentage of germination and the percentage...

  2. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Germination of vegetable seed in containers of more... Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds in containers of more than 1 pound shall be labeled to show the percentage of germination and the percentage...

  3. [Impact of moss soil crust on vegetation indexes interpretation].

    PubMed

    Fang, Shi-bo; Zhang, Xin-shi

    2011-03-01

    Vegetation indexes were the most common and the most important parameters to characterizing large-scale terrestrial ecosystems. It is vital to get precise vegetation indexes for running land surface process models and computation of NPP change, moisture and heat fluxes over surface. Biological soil crusts (BSC) are widely distributed in arid and semi-arid, polar and sub-polar regions. The spectral characteristics of dry and wet BSCs were quite different, which could produce much higher vegetation indexes value for the wet BSC than for the dry BSC as reported. But no research was reported about whether the BSC would impact on regional vegetation indexes and how much dry and wet BSC had impact on regional vegetation indexes. In the present paper, the most common vegetation index NDVI were used to analyze how the moss soil crusts (MSC) dry and wet changes affect regional NDVI values. It was showed that 100% coverage of the wet MSC have a much higher NDVI value (0.657) than the dry MSC NDVI value (0.320), with increased 0.337. Dry and wet MSC NDVI value reached significant difference between the levels of 0.000. In the study area, MSC, which had the average coverage of 12.25%, would have a great contribution to the composition of vegetation index. Linear mixed model was employed to analyze how the NDVI would change in regional scale as wet MSC become dry MSC inversion. The impact of wet moss crust than the dry moss crust in the study area can make the regional NDVI increasing by 0.04 (14.3%). Due to the MSC existence and rainfall variation in arid and semi-arid zones, it was bound to result in NDVI change instability in a short time in the region. For the wet MSC's spectral reflectance curve is similar to those of the higher plants, misinterpretation of the vegetation dynamics could be more severe due to the "maximum value composite" (MVC) technique used to compose the global vegetation maps in the study of vegetation dynamics. The researches would be useful for

  4. Evaluation of mercury methylation and methylmercury demethylation rates in vegetated and non-vegetated saltmarsh sediments from two Portuguese estuaries.

    PubMed

    Cesário, Rute; Hintelmann, Holger; Mendes, Ricardo; Eckey, Kevin; Dimock, Brian; Araújo, Beatriz; Mota, Ana Maria; Canário, João

    2017-04-05

    Neurotoxic methylmercury (MMHg) is formed from inorganic divalent mercury (Hg(2+)). However, it is poorly understood to what extent different mercury (Hg) pools contribute to existent MMHg levels. In this study, ambient concentrations of total Hg (THg) and MMHg as well as rates of methylation and demethylation were measured simultaneously in sediments with and without salt-marsh plant vegetation, which were collected in Guadiana and Tagus estuaries, Portugal. Concurrent processes of Hg methylation and MMHg demethylation were directly monitored and compared by spiking sediments cores with stable isotope tracers of (199)Hg(2+) and CH3(201)Hg(+) followed by gas chromatographic separation and isotope-specific detection using inductively coupled plasma mass spectrometry. Compared to the Guadiana estuary, where concentrations were comparatively low, THg and MMHg levels varied between vegetated and non-vegetated sediments collected at the Rosário site (ROS) of the Tagus estuary. Methylation (KM) and demethylation rates (KD) were also different between estuaries being dependent on the presence of vegetation. In addition, the type of macrophyte species influenced KM and KD values. In fact, the highest KM value was found in Sarcocornia fruticosa vegetated sediments at the Castro Marim site in Guadiana (CM, 0.160 day(-1)) and the lowest KM was observed in non-vegetated sediments at the Alcochete site in Tagus (ALC, 0.009 day(-1)). KD varied by a factor of three among sites with highest rates of demethylation observed in non-vegetated sediments in Guadiana (12 ± 1.3 day(-1), corresponding to a half-life of 1.4 ± 0.2 h). This study clearly shows that the presence of vegetation in sediments favors the formation of MMHg. Moreover, this effect might be site specific and further studies are needed to confirm the findings reported here.

  5. Analysis of the dynamics of African vegetation using the normalized difference vegetation index

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.

    1986-01-01

    Images at a resolution of 8 km are currently being generated for the whole of Africa, displaying the normalized difference vegetation index (NDVI). These images have undergone a process of temporal compositing to reduce the effects of cloud cover and atmospheric variation. When the NDVI is plotted against time, different cover types are shown to have characteristic profiles corresponding closely with their phenology. The resultant pattern of NDVI values displayed on the images is analyzed in terms of the cover types present and local variations in rainfall. Comparison between images for 1983 and 1984 overall showed considerable similarities, but significant differences were observed in the northward extent of the greening wave in the Sahel, the greening up of the Kalahari Desert and East African communities. It is concluded that vegetation monitoring using NDVI images needs to be associated with scene stratification according to cover type.

  6. 30 CFR 779.19 - Vegetation information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., contain a map that delineates existing vegetative types and a description of the plant communities within... information adequate to predict the potential for reestablishing vegetation. (b) When a map or...

  7. Teaching children to like and eat vegetables.

    PubMed

    Wadhera, Devina; Capaldi Phillips, Elizabeth D; Wilkie, Lynn M

    2015-10-01

    Higher vegetable intake has been related to lower risks of diabetes, cardiovascular disease, several cancers and obesity. Yet children consume fewer than the recommended servings of fruits and vegetables set forth by the USDA. Exposure to vegetables has successfully improved children's liking for and consumption of vegetables particularly for children younger than two years. In contrast, associative conditioning seems necessary for older children, especially with bitter vegetables. We review studies using both exposure and associative conditioning to teach children to like vegetables, including flavor-flavor learning and flavor-calorie learning. Recognizing these different processes helps reconcile discrepant literature and may provide techniques for increasing preferences for vegetables in children. Associative conditioning and exposure can be used by parents and others to enhance children's liking for and consumption of vegetables.

  8. Chemical Effects on Vegetation Detectable in Optical Bands 350-2500 nm

    DTIC Science & Technology

    2008-03-31

    analysis of the data using vegetation indices, which focus on key spectral bands associated with chlorophyll, pigments and water content, showed that the...For this analysis we chose a number of commonly used vegetation indices that focus on bands related to pigments and water content of leaves. Table...chlorophyll (A, B), pigments (ß-carotene, pycoerythrin and phycocyanin), cellulose and lignin, and water common to vegetation . Table 7. Spectral

  9. Towards more accurate vegetation mortality predictions

    DOE PAGES

    Sevanto, Sanna Annika; Xu, Chonggang

    2016-09-26

    Predicting the fate of vegetation under changing climate is one of the major challenges of the climate modeling community. Here, terrestrial vegetation dominates the carbon and water cycles over land areas, and dramatic changes in vegetation cover resulting from stressful environmental conditions such as drought feed directly back to local and regional climate, potentially leading to a vicious cycle where vegetation recovery after a disturbance is delayed or impossible.

  10. Introducing tropical lianas in a vegetation model

    NASA Astrophysics Data System (ADS)

    Verbeeck, Hans; De Deurwaerder, Hannes; Brugnera, Manfredo di Procia e.; Krshna Moorthy Paravathi, Sruthi; Pausenberger, Nancy; Roels, Jana; kearsley, elizabeth

    2016-04-01

    Tropical forests are essential components of the earth system and play a critical role for land surface feedbacks to climate change. These forests are currently experiencing large-scale structural changes, including the increase of liana abundance and biomass. This liana proliferation might have large impacts on the carbon cycle of tropical forests. However no single global vegetation model currently accounts for lianas. The TREECLIMBERS project (ERC starting grant) aims to introduce for the first time lianas into a vegetation model. The project attempts to reach this challenging goal by performing a global meta-analysis on liana data and by collecting new data in South American forests. Those new and existing datasets form the basis of a new liana plant functional type (PFT) that will be included in the Ecosystem Demography model (ED2). This presentation will show an overview of the current progress of the TREECLIMBERS project. Liana inventory data collected in French Guiana along a forest disturbance gradient show the relation between liana abundance and disturbance. Xylem water isotope analysis indicates that trees and lianas can rely on different soil water resources. New modelling concepts for liana PFTs will be presented and in-situ leaf gas exchange and sap flow data are used to parameterize water and carbon fluxes for this new PFT. Finally ongoing terrestrial LiDAR observations of liana infested forest will be highlighted.

  11. Radiation preservation and test marketing of fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Zhicheng, Xu; Dong, Cai; Fuying, He; Deyao, Zhao

    1993-07-01

    To develop the technology for radiation preservation of fruits and vegetables, many varieties of fruits and vegetables had been researched. Results showed that the low dose irradiation is useful to preservation of fruits and vegetables. On the besis of research, 1900 tons garlic, 950 tons onion, 500 tons potatoes, 710 tons apples and 1000 kg litchi had been irradiated in commercial scale. The quality control standards of irradiated garlic, onion and potato had been established and used for commercial scale irradiation. In order to collect consumers in store response to irradiated foods, a special counter was set up for selling irradiated apples in Nan Jing Road (W), Shanghai. 634 sheets of consumer in-store respense investigation forms have been returned and analysed. These results showed that when consumer understands the benefit of irradiation preservation such as higher quality, greater safety, longer shelf-live, wide product availability, or good prices for value, consumer would willingly buy irradiated food.

  12. Role of rice PPS in late vegetative and reproductive growth.

    PubMed

    Tanaka, Nobuhiro; Itoh, Jun-Ichi; Nagato, Yasuo

    2012-01-01

    The rice peter pan syndrome-1 (pps-1) mutant shows a prolonged juvenile phase and early flowering. Although the early vegetative phase and flowering time of pps-1 have been closely examined, the phenotypes in the late vegetative and reproductive phases are not yet well understood. In the ninth leaf blade of pps-1, the relative length of the midrib was comparable to the sixth leaf blade of wild-type. Moreover, pps-1 had a small inflorescence meristem and small panicles. These phenotypes indicate that in pps-1 the juvenile phase coexists with the late vegetative phase, resulting in small panicles. Gibberellin is known to promote the juvenile-adult phase transition. d18-k is dwarf and has a prolonged juvenile phase. Double mutant (d18-k pps-1) showed the same phenotype as the pps-1, indicating that PPS is upstream of GA biosynthetic genes.

  13. 49 CFR 213.37 - Vegetation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Vegetation. 213.37 Section 213.37 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Roadbed § 213.37 Vegetation. Vegetation on railroad property which is on...

  14. 49 CFR 213.321 - Vegetation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Vegetation. 213.321 Section 213.321 Transportation... TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.321 Vegetation. Vegetation on railroad property which is on or immediately adjacent to roadbed shall be controlled so that...

  15. 30 CFR 783.19 - Vegetation information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Vegetation information. 783.19 Section 783.19....19 Vegetation information. (a) The permit application shall, if required by the regulatory authority... description shall include information adequate to predict the potential for reestablishing vegetation....

  16. 49 CFR 213.37 - Vegetation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Vegetation. 213.37 Section 213.37 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Roadbed § 213.37 Vegetation. Vegetation on railroad property which is on...

  17. 49 CFR 213.321 - Vegetation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Vegetation. 213.321 Section 213.321 Transportation... TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.321 Vegetation. Vegetation on railroad property which is on or immediately adjacent to roadbed shall be controlled so that...

  18. 30 CFR 779.19 - Vegetation information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Vegetation information. 779.19 Section 779.19....19 Vegetation information. (a) The permit application shall, if required by the regulatory authority... information adequate to predict the potential for reestablishing vegetation. (b) When a map or...

  19. 30 CFR 779.19 - Vegetation information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Vegetation information. 779.19 Section 779.19....19 Vegetation information. (a) The permit application shall, if required by the regulatory authority... information adequate to predict the potential for reestablishing vegetation. (b) When a map or...

  20. 30 CFR 779.19 - Vegetation information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Vegetation information. 779.19 Section 779.19....19 Vegetation information. (a) The permit application shall, if required by the regulatory authority... information adequate to predict the potential for reestablishing vegetation. (b) When a map or...

  1. 49 CFR 213.37 - Vegetation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Vegetation. 213.37 Section 213.37 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Roadbed § 213.37 Vegetation. Vegetation on railroad property which is on...

  2. 49 CFR 213.321 - Vegetation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Vegetation. 213.321 Section 213.321 Transportation... TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.321 Vegetation. Vegetation on railroad property which is on or immediately adjacent to roadbed shall be controlled so that...

  3. 30 CFR 783.19 - Vegetation information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Vegetation information. 783.19 Section 783.19....19 Vegetation information. (a) The permit application shall, if required by the regulatory authority... description shall include information adequate to predict the potential for reestablishing vegetation....

  4. 30 CFR 783.19 - Vegetation information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Vegetation information. 783.19 Section 783.19....19 Vegetation information. (a) The permit application shall, if required by the regulatory authority... description shall include information adequate to predict the potential for reestablishing vegetation....

  5. 49 CFR 213.37 - Vegetation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Vegetation. 213.37 Section 213.37 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Roadbed § 213.37 Vegetation. Vegetation on railroad property which is on...

  6. 30 CFR 783.19 - Vegetation information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Vegetation information. 783.19 Section 783.19....19 Vegetation information. (a) The permit application shall, if required by the regulatory authority... description shall include information adequate to predict the potential for reestablishing vegetation....

  7. 49 CFR 213.321 - Vegetation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Vegetation. 213.321 Section 213.321 Transportation... TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.321 Vegetation. Vegetation on railroad property which is on or immediately adjacent to roadbed shall be controlled so that...

  8. 30 CFR 779.19 - Vegetation information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Vegetation information. 779.19 Section 779.19....19 Vegetation information. (a) The permit application shall, if required by the regulatory authority... information adequate to predict the potential for reestablishing vegetation. (b) When a map or...

  9. 21 CFR 73.260 - Vegetable juice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.260 Vegetable juice. (a) Identity. (1) The color additive..., or by the water infusion of the dried vegetable. The color additive may be concentrated or dried. The definition of vegetable juice in this paragraph is for the purpose of identity as a color additive only,...

  10. 21 CFR 73.260 - Vegetable juice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.260 Vegetable juice. (a) Identity. (1) The color additive..., or by the water infusion of the dried vegetable. The color additive may be concentrated or dried. The definition of vegetable juice in this paragraph is for the purpose of identity as a color additive only,...

  11. Hyperspectral remote sensing of vegetation

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo

    2011-01-01

    Hyperspectral narrow-band (or imaging spectroscopy) spectral data are fast emerging as practical solutions in modeling and mapping vegetation. Recent research has demonstrated the advances in and merit of hyperspectral data in a range of applications including quantifying agricultural crops, modeling forest canopy biochemical properties, detecting crop stress and disease, mapping leaf chlorophyll content as it influences crop production, identifying plants affected by contaminants such as arsenic, demonstrating sensitivity to plant nitrogen content, classifying vegetation species and type, characterizing wetlands, and mapping invasive species. The need for significant improvements in quantifying, modeling, and mapping plant chemical, physical, and water properties is more critical than ever before to reduce uncertainties in our understanding of the Earth and to better sustain it. There is also a need for a synthesis of the vast knowledge spread throughout the literature from more than 40 years of research.

  12. Shortwave infrared detection of vegetation

    NASA Technical Reports Server (NTRS)

    Goward, S. N. (Principal Investigator)

    1985-01-01

    The potential of short wave infrared (SWIR) measurements in vegetation discrimination is further substantiated through a discussion of field studies and an examination of the physical bases which cause SWIR measurements to vary with the vegetation type observed. The research reported herein supported the AGRISTARS program objective to incorporate TM measurements in the analysis of agricultural activity. Field measurements on corn and soybeans in Iowa were conducted, and the mean and variance of canopy reflectance were computed for each observation date. The Suits canopy reflectance model was used to evaluate possible explanations of the observed corn/soybeans reflectance patterns /39/. The SWIR measurements were shown to effectively discriminate corn and soybeans on the basis of leaf absorption properties.

  13. Phenolic compounds in Brassica vegetables.

    PubMed

    Cartea, María Elena; Francisco, Marta; Soengas, Pilar; Velasco, Pablo

    2010-12-30

    Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  14. Vegetable oils: a new alternative

    SciTech Connect

    Romano, S.

    1982-01-01

    This paper relates: (1) the use and production of methyl ester of vegetable oil, M.E.V.O., as fuel in diesel engines and the effect of the catalyst proportion, alcohol and vegetable oil V.O. on the transesterification process; (2) simple control methods during industrial preparation and the behavior of V.O. and M.E.V.O. on accelerated oxidation test to determine the maximum contration of V.O. in M.E.V.O. that do not cause problems on the injectors; and (3) the behavior of M.E.V.O. and V.O. on parafinic and naphtenic lubricants, with high T.B.N. and without organo-metallic compounds, using antioxidants as B.H.T. to reduce the oxidation effect. 9 figures, 7 tables.

  15. Biomechanics of fruits and vegetables.

    PubMed

    Peleg, K

    1985-01-01

    The scope of fruit and vegetable biomechanics is reviewed. Sources of mechanical injury to produce in harvesting, processing, storage, packaging and transportation are briefly described. A survey of produce handling and transportation environments was conducted, whereby an envelope model encompassing composite spectra of trucks, railroad, marine and cargo aircraft is presented. The protective quality, i.e. strength of shipping containers is quantified in static and dynamic loading such as encountered in storage, handling and transportation. Mechanical response of fruits and vegetables in quasistatic and dynamic loading are formulated by a nonlinear rheological model, whereby a time and deformation dependent relaxation modulus is defined. A realistic link is established between the model and real fruits and vegetables by test procedures for determination of the parameters in the governing nonlinear equations. Based on the nonlinear relaxation modulus, mechanical damage of fruits and vegetables is quantified for static compression, transients and vibration loading as well as for combined static and dynamic loading, by equations of contact circle diameter, bruise depth and contact pressure. Distribution of loads over a maximal number of contact points per fruit is linked to geometrical patterns of produce packs. The application of Shock Damage Boundary techniques for produce-package testing is described along with a case study comparing the protective qualities of two types of apple packs. Produce damage quantification by direct fruit inspection in terms of a 'Bruise Index' is described, including a practical example, comparing the protective qualities of three types of apple packs in shipping tests. Indirect methods of mechanical injury evaluation, based on weight loss and CO2 emission differences between bruised and wholesome fruits are also briefly discussed.

  16. Identification and mapping of natural vegetation on a coastal site using a Worldview-2 satellite image.

    PubMed

    Rapinel, Sébastien; Clément, Bernard; Magnanon, Sylvie; Sellin, Vanessa; Hubert-Moy, Laurence

    2014-11-01

    Identification and mapping of natural vegetation are major issues for biodiversity management and conservation. Remotely sensed data with very high spatial resolution are currently used to study vegetation, but most satellite sensors are limited to four spectral bands, which is insufficient to identify some natural vegetation formations. The study objectives are to discriminate natural vegetation and identify natural vegetation formations using a Worldview-2 satellite image. The classification of the Worldview-2 image and ancillary thematic data was performed using a hybrid pixel-based and object-oriented approach. A hierarchical scheme using three levels was implemented, from land cover at a field scale to vegetation formation. This method was applied on a 48 km² site located on the French Atlantic coast which includes a classified NATURA 2000 dune and marsh system. The classification accuracy was very high, the Kappa index varying between 0.90 and 0.74 at land cover and vegetation formation levels respectively. These results show that Wordlview-2 images are suitable to identify natural vegetation. Vegetation maps derived from Worldview-2 images are more detailed than existing ones. They provide a useful medium for environmental management of vulnerable areas. The approach used to map natural vegetation is reproducible for a wider application by environmental managers.

  17. Impact of small-scale vegetation structure on tephra layer preservation.

    PubMed

    Cutler, Nick A; Shears, Olivia M; Streeter, Richard T; Dugmore, Andrew J

    2016-11-15

    The factors that influence tephra layer taphonomy are poorly understood, but vegetation cover is likely to play a role in the preservation of terrestrial tephra deposits. The impact of vegetation on tephra layer preservation is important because: 1) the morphology of tephra layers could record key characteristics of past land surfaces and 2) vegetation-driven variability in tephra thickness could affect attempts to infer eruption and dispersion parameters. We investigated small- (metre-) scale interactions between vegetation and a thin (<10 cm), recent tephra layer. We conducted surveys of vegetation structure and tephra thickness at two locations which received a similar tephra deposit, but had contrasting vegetation cover (moss vs shrub). The tephra layer was thicker and less variable under shrub cover. Vegetation structure and layer thickness were correlated on the moss site but not under shrub cover, where the canopy reduced the influence of understory vegetation on layer morphology. Our results show that vegetation structure can influence tephra layer thickness on both small and medium (site) scales. These findings suggest that some tephra layers may carry a signal of past vegetation cover. They also have implications for the sampling effort required to reliably estimate the parameters of initial deposits.

  18. Estimation of arsenic in agricultural soils using hyperspectral vegetation indices of rice.

    PubMed

    Shi, Tiezhu; Liu, Huizeng; Chen, Yiyun; Wang, Junjie; Wu, Guofeng

    2016-05-05

    This study systematically analyzed the performance of multivariate hyperspectral vegetation indices of rice (Oryza sativa L.) in estimating the arsenic content in agricultural soils. Field canopy reflectance spectra was obtained in the jointing-booting growth stage of rice. Newly developed and published multivariate vegetation indices were initially calculated to estimate soil arsenic content. The well-performing vegetation indices were then selected using successive projections algorithm (SPA), and the SPA selected vegetation indices were adopted to calibrate a multiple linear regression model for estimating soil arsenic content. Results showed that a three-band vegetation index (R716-R568)/(R552-R568) performed best in the newly developed vegetation indices in estimating soil arsenic content. The photochemical reflectance index (PRI) and red edge position (REP) performed well in the published vegetation indices. Moreover, the linear combination of two vegetation indices ((R716-R568)/(R552-R568) and REP) selected using SPA improved the estimation of soil arsenic content. These results indicated that the newly developed three-band vegetation index (R716-R568)/(R552-R568) might be recommended as an indicator for estimating soil arsenic content in the study area. PRI and REP could be used as universal vegetation indices for monitoring soil arsenic contamination.

  19. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro

    PubMed Central

    Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus

    2015-01-01

    In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies. PMID:26406985

  20. The polyphenol content and antioxidant activities of the main edible vegetables in northern Vietnam.

    PubMed

    Thu, Nghiem Nguyet; Sakurai, Chika; Uto, Harumi; Van Chuyen, Nguyen; Lien, Do Thi Kim; Yamamoto, Shigeru; Ohmori, Reiko; Kondo, Kazuo

    2004-06-01

    Oxidized low-density lipoprotein (LDL) is considered a risk factor in atherosclerosis, and polyphenols are the potential agents to inhibit the oxidation of LDL. We determined the polyphenol contents and the antioxidant activities of commonly consumed vegetables in Vietnam and assessed the quantity of the polyphenol intake from vegetables in the current Vietnamese diet. The polyphenol contents in 30 kinds of vegetables was determined by the Folin-Ciocalteu method. The antioxidant activities of vegetables were evaluated by measuring the oxidation of LDL and the reduction of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. In this study, some herbs and edible wild vegetables possessed high contents of polyphenols and antioxidant activities. Among green vegetables, sweet potato leaves showed both a high polyphenol content and antioxidant activity. The mean polyphenol daily intake of the Vietnamese was a 595 mg catechin equivalent. Water spinach, a kind of green vegetable, contributed the highest amount (45%) of the total polyphenol intake, followed by other green vegetables. Neither herbs nor edible wild vegetables contributed significantly to the total polyphenol intake due to their low consumption. Green vegetables are therefore considered very important sources of polyphenol intake for the Vietnamese.

  1. Influence of antioxidant rich fresh vegetable juices on starch induced postprandial hyperglycemia in rats.

    PubMed

    Tiwari, Ashok K; Reddy, K Srikanth; Radhakrishnan, Janani; Kumar, D Anand; Zehra, Amtul; Agawane, Sachin B; Madhusudana, K

    2011-09-01

    This research analyzed the major chemical components and multiple antioxidant activities present in the fresh juice of eight vegetables, and studied their influence on starch induced postprandial glycemia in rats. A SDS-PAGE based protein fingerprint of each vegetable juice was also prepared. The yields of juice, chemical components like total proteins, total polyphenols, total flavonoids, total anthocyanins and free radicals like the ABTS˙(+) cation, DPPH, H(2)O(2), scavenging activities and reducing properties for NBT and FeCl(3) showed wide variations. Vegetable juice from brinjal ranked first in displaying total antioxidant capacity. Pretreatment of rats with vegetable juices moderated starch induced postprandial glycemia. The fresh juice from the vegetables ridge gourd, bottle gourd, ash gourd and chayote significantly mitigated postprandial hyperglycemic excursion. Total polyphenol concentrations present in vegetable juices positively influenced ABTS˙(+) scavenging activity and total antioxidant capacity. However, NBT reducing activity of juices was positively affected by total protein concentration. Contrarily, however, high polyphenol content in vegetable juice was observed to adversely affect the postprandial antihyperglycemic activity of vegetable juices. This is the first report exploring antihyperglycemic activity in these vegetable juices and highlights the possible adverse influence of high polyphenol content on the antihyperglycemic activity of the vegetable juices.

  2. Impact of small-scale vegetation structure on tephra layer preservation

    PubMed Central

    Cutler, Nick A.; Shears, Olivia M.; Streeter, Richard T.; Dugmore, Andrew J.

    2016-01-01

    The factors that influence tephra layer taphonomy are poorly understood, but vegetation cover is likely to play a role in the preservation of terrestrial tephra deposits. The impact of vegetation on tephra layer preservation is important because: 1) the morphology of tephra layers could record key characteristics of past land surfaces and 2) vegetation-driven variability in tephra thickness could affect attempts to infer eruption and dispersion parameters. We investigated small- (metre-) scale interactions between vegetation and a thin (<10 cm), recent tephra layer. We conducted surveys of vegetation structure and tephra thickness at two locations which received a similar tephra deposit, but had contrasting vegetation cover (moss vs shrub). The tephra layer was thicker and less variable under shrub cover. Vegetation structure and layer thickness were correlated on the moss site but not under shrub cover, where the canopy reduced the influence of understory vegetation on layer morphology. Our results show that vegetation structure can influence tephra layer thickness on both small and medium (site) scales. These findings suggest that some tephra layers may carry a signal of past vegetation cover. They also have implications for the sampling effort required to reliably estimate the parameters of initial deposits. PMID:27845415

  3. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro.

    PubMed

    Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus

    2015-01-01

    In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866-4550 m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.

  4. Impact of small-scale vegetation structure on tephra layer preservation

    NASA Astrophysics Data System (ADS)

    Cutler, Nick A.; Shears, Olivia M.; Streeter, Richard T.; Dugmore, Andrew J.

    2016-11-01

    The factors that influence tephra layer taphonomy are poorly understood, but vegetation cover is likely to play a role in the preservation of terrestrial tephra deposits. The impact of vegetation on tephra layer preservation is important because: 1) the morphology of tephra layers could record key characteristics of past land surfaces and 2) vegetation-driven variability in tephra thickness could affect attempts to infer eruption and dispersion parameters. We investigated small- (metre-) scale interactions between vegetation and a thin (<10 cm), recent tephra layer. We conducted surveys of vegetation structure and tephra thickness at two locations which received a similar tephra deposit, but had contrasting vegetation cover (moss vs shrub). The tephra layer was thicker and less variable under shrub cover. Vegetation structure and layer thickness were correlated on the moss site but not under shrub cover, where the canopy reduced the influence of understory vegetation on layer morphology. Our results show that vegetation structure can influence tephra layer thickness on both small and medium (site) scales. These findings suggest that some tephra layers may carry a signal of past vegetation cover. They also have implications for the sampling effort required to reliably estimate the parameters of initial deposits.

  5. Landscape level assessment of critically endangered vegetation of Lakshadweep islands using geo-spatial techniques

    NASA Astrophysics Data System (ADS)

    Reddy, C. Sudhakar; Debnath, Bijan; Krishna, P. Hari; Jha, C. S.

    2013-04-01

    The conservation of biodiversity is essential for human survival and quality of the environment. Lakshadweep islands are vulnerable to global change and the representing remnant natural vegetation. Landscape fragmentation, disturbance regimes and biological richness have been studied using geo-spatial techniques. Littoral vegetation is the only natural vegetation type of Lakshadweep islands. Altogether 59 patches of the littoral vegetation occupying an area of 137.2 ha were identified. 58.06% of the littoral vegetation patches belongs to the patch-size class of <5 ha. The remnant natural vegetation surviving with patches of less than 20 ha size indicates severe anthropogenic pressure. The fragmentation of littoral vegetation habitat into smaller isolated patches poses one of the key threats to biodiversity and coastal environment. Phytosociological observations revealed distinct plant communities and presence of invasive species in littoral vegetation. The high disturbance areas accounted for 59.11% area of the total vegetation. The overall spatial distribution of biological richness (BR) in Lakshadweep shows maximum BR at low level (78%), followed by medium (19%), high (2%) and very high (1%). The study emphasises the importance of conserving the remnant natural vegetation, which is critically endangered.

  6. Multispectral vegetative canopy parameter retrieval

    NASA Astrophysics Data System (ADS)

    Borel, Christoph C.; Bunker, David J.

    2011-11-01

    Precision agriculture, forestry and environmental remote sensing are applications uniquely suited to the 8 bands that DigitalGlobe's WorldView-2 provides. At the fine spatial resolution of 0.5 m (panchromatic) and 2 m (multispectral) individual trees can be readily resolved. Recent research [1] has shown that it is possible for hyper-spectral data to invert plant reflectance spectra and estimate nitrogen content, leaf water content, leaf structure, canopy leaf area index and, for sparse canopies, also soil reflectance. The retrieval is based on inverting the SAIL (Scattering by Arbitrary Inclined Leaves) vegetation radiative transfer model for the canopy structure and the reflectance model PROSPECT4/5 for the leaf reflectance. Working on the paper [1] confirmed that a limited number of adjacent bands covering just the visible and near infrared can retrieve the parameters as well, opening up the possibility that this method can be used to analyze multi-spectral WV-2 data. Thus it seems possible to create WV-2 specific inversions using 8 bands and apply them to imagery of various vegetation covered surfaces of agricultural and environmental interest. The capability of retrieving leaf water content and nitrogen content has important applications in determining the health of vegetation, e.g. plant growth status, disease mapping, quantitative drought assessment, nitrogen deficiency, plant vigor, yield, etc.

  7. Climate change effects on vegetation characteristics and groundwater recharge

    NASA Astrophysics Data System (ADS)

    (Flip) Witte, J. P. M.; (Ruud) Bartholomeus, R. P.; (Gijsbert) Cirkel, D. G.

    2010-05-01

    Climate change is among the most pressing issues of our time. Increase in temperature, a decrease in summer precipitation and increase in reference evapotranspiration might affect the water balance, freshwater availability and the spatial distribution and type of vegetation. Precipitation and evapotranspiration (ET) largely determine groundwater recharge. Therefore, climate change likely affects both the spatial and temporal freshwater availability for nature conservation, agriculture and drinking water supply. Moreover, in the coastal (dune) areas, the groundwater recharge is crucial to the maintenance of the freshwater bell and the dynamics of the fresh - salt interface. Current knowledge, however, is insufficient to estimate reliably the effects of climate change on future freshwater availability. Future groundwater recharge, the driving force of the groundwater system, can only be assessed if we understand how vegetation responds to changing climatic conditions, and how vegetation feedbacks on groundwater recharge through altered actual ET. Although the reference ET (i.e. the ET of a reference vegetation, defined as a short grassland completely covering the soil and optimally provided by water) is predicted to increase, the future actual ET (i.e. the ET of the actual ‘real' vegetation under the ‘real' moisture conditions) is highly unknown. It is the dynamics in the actual ET, however, through which the vegetation feeds back on the groundwater recharge. In an earlier study we showed that increased atmospheric CO2 raises the water use efficiency of plants, thus reducing ET. Here we demonstrate another important vegetation feedback in dune systems: the fraction of bare soil and non-rooting species (lichens and mosses) in the dune vegetation will increase when, according to the expectations, summers become drier. From our calculations it appeared that on south slopes of dunes, which receive more solar radiation and are warmer than north facing surfaces, the

  8. Climate change effects on vegetation characteristics and groundwater recharge

    NASA Astrophysics Data System (ADS)

    Bartholomeus, R.; Voortman, B.; Witte, J.

    2010-12-01

    Climate change is among the most pressing issues of our time. Increase in temperature, a decrease in summer precipitation and increase in reference evapotranspiration might affect the water balance, freshwater availability and the spatial distribution and type of vegetation. Precipitation and evapotranspiration (ET) largely determine groundwater recharge. Therefore, climate change likely affects both the spatial and temporal freshwater availability for nature conservation, agriculture and drinking water supply. Moreover, in the coastal (dune) areas, the groundwater recharge is crucial to the maintenance of the freshwater bell and the dynamics of the fresh - salt interface. Current knowledge, however, is insufficient to estimate reliably the effects of climate change on future freshwater availability. Future groundwater recharge, the driving force of the groundwater system, can only be assessed if we understand how vegetation responds to changing climatic conditions, and how vegetation feedbacks on groundwater recharge through altered actual ET. Although the reference ET (i.e. the ET of a reference vegetation, defined as a short grassland completely covering the soil and optimally provided by water) is predicted to increase, the future actual ET (i.e. the ET of the actual ‘real’ vegetation under the ‘real’ moisture conditions) is highly unknown. It is the dynamics in the actual ET, however, through which the vegetation feeds back on the groundwater recharge. In an earlier study we showed that increased atmospheric CO2 raises the water use efficiency of plants, thus reducing ET. Here we demonstrate another important vegetation feedback in dune systems: the fraction of bare soil and non-rooting species (lichens and mosses) in the dune vegetation will increase when, according to the expectations, summers become drier. From our calculations it appeared that on south slopes of dunes, which receive more solar radiation and are warmer than north facing surfaces

  9. The importance of catchment vegetation for lake sediment mercury records

    NASA Astrophysics Data System (ADS)

    Rydberg, Johan; Rösch, Manfred; Heinz, Emanuel; Biester, Harald

    2014-05-01

    In this study we have used a long, Holocene, sediment profile from a small headwater lake in Southern Germany to determine how changes in the vegetation affected the sediment accumulation in general and the accumulation of mercury in particular. The sediment samples were analyzed for their content of total mercury, organic matter quality/quantity and geochemical composition, and the vegetation development was determined using pollen analysis. Over the course of the Holocene, two major shifts in vegetation occurred, both coincide with changes in mercury accumulation. The period prior to 9000 BP was dominated by non-forest vegetation (e.g., Corylus avellana), and mercury concentrations around 60 ng g-1 (90 μg m-2 yr-1). About 8500 BP there was a shift to forest vegetation (mainly Quercus robur), which coincides with increases in both mercury concentrations and accumulation rates (115 ng g-1 and 140 μg m-2 yr-1, respectively). This vegetation shift also drastically decreased the influx of mineral particles to the lake, likely because the development of a closed forest decreased soil erosion. During the following 3500 years - when the vegetation remained dominated by Quercus robur - mercury concentrations were stable around 115 ng g-1, while mercury accumulation rates decreased to about 110 μg m-2 yr-1 due to a gradual decrease in sediment accumulation during the latter part of this period. Around 5000 BP there is a second shift in the vegetation as Quercus robur is replaced by Fagus sylvatica and Abies alba as the dominant tree species, and again this shift leads to an increase in both mercury concentrations and mercury accumulation rates (200 ng g-1 and 140 μg m-2 yr-1, respectively). This shows that the vegetation - and not only the concentration of mercury in the atmosphere - has an influence on the amount of mercury that is accumulated in a lake's sediment. Firstly, the vegetation will influence the interception of mercury, and other atmospherically derived

  10. Ovarian Cancer: Nutrition

    MedlinePlus

    ... Allium vegetables Garlic, onion, shallots, chives, leek Legumes Soybeans, peas, chickpeas, lima beans, peanut, carob, dried beans ( ... vegetables, mustard, horseradish Phenolic ... cereal grains, cruciferous, umbelliferous, solanaceous, cucurbitaceous vegetables, licorice ...

  11. Relationships between vegetation indices and different burn and vegetation ratios: a multi-scale approach applied in a fire affected area

    NASA Astrophysics Data System (ADS)

    Pleniou, M.; Koutsias, N.

    2013-08-01

    Vegetation indices have been widely used in remote sensing literature for burned land mapping and monitoring. In the present study we used satellite data (IKONOS, LANDSAT, ASTER, MODIS) of multiple spectral (visible, near, shortwave infrared) and spatial (1-500 meters) resolutions, acquired shortly after a very destructive fire occurred in the mountain of Parnitha in Attica, Greece the summer of 2007. The aim of our study is to examine and evaluate the performance of some vegetation indices for burned land mapping and also to characterize the relationships between vegetation indices and the percent of fire-scorched (burned) and non fire-scorched (vegetated) areas. The available satellite images were processed geometrically, radiometrically and atmospherically. The very high resolution IKONOS imagery was served as a base to estimate the percent of cover of burned areas, bare soil and vegetation by applying the maximum likelihood classification algorithm. The percent of cover for each type was then correlated to vegetation indices for all the satellite images, and regression models were fit to characterize those relationships. In total 57 versions of some classical vegetation indices were computed using LANDSAT, ASTER and MODIS data. Most of them were modified by replacing Red with SWIR channel, as the latter has been proved sensitive to burned area discrimination. IPVI and NDVI showed a better performance among the indices tested to estimate the percent of vegetation, while most of the modified versions of the indices showed highest performance to estimate the percent of burned areas.

  12. Pesticide and pathogen contamination of vegetables in Ghana's urban markets.

    PubMed

    Amoah, P; Drechsel, P; Abaidoo, R C; Ntow, W J

    2006-01-01

    The objective of the study was to determine and compare the current level of exposure of the Ghanaian urban population to hazardous pesticide and fecal coliform contamination through the consumption of fresh vegetables produced in intensive urban and periurban smallholder agriculture with informal wastewater irrigation. A total of 180 vegetable samples (lettuce, cabbage, and spring onion) were randomly collected under normal purchase conditions from 9 major markets and 12 specialized selling points in 3 major Ghanaian cities: Accra, Kumasi and Tamale. The samples were analyzed for pesticide residue on lettuce leaves, total and fecal coliforms, and helminth egg counts on all three vegetables. Chlopyrifos (Dursban) was detected on 78% of the lettuce, lindane (Gamalin 20) on 31%, endosulfan (Thiodan) on 36%, lambda-cyhalothrin (Karate) on 11%, and dichloro-diphenyl-trichloroethane on 33%. Most of the residues recorded exceeded the maximum residue limit for consumption. Vegetables from all 3 cities were fecally contaminated and carried fecal coliform populations with geometric mean values ranging from 4.0 x 10(3) to 9.3 x 10(8) g(-1) wet weight and exceeded recommended standards. Lettuce, cabbage, and spring onion also carried an average of 1.1, 0.4, and 2.7 helminth eggs g(-1), respectively. The eggs were identified as those of Ascaris lumbricoides, Ancylostoma duodenale, Schistosoma heamatobium, and Trichuris trichiura. Because many vegetables are consumed fresh or only slightly cooked, the study shows that intensive vegetable production, common in Ghana and its neighboring countries, threatens public health from the microbiologic and pesticide dimensions. Standard recommendations to address this situation (better legislations, law enforcement, or integrated pest management) often do not match the capabilities of farmers and authorities. The most appropriate entry point for risk decrease that also addresses postharvest contamination is washing vegetables before food

  13. Influence of topography on tropical African vegetation coverage

    NASA Astrophysics Data System (ADS)

    Jung, Gerlinde; Prange, Matthias; Schulz, Michael

    2016-04-01

    Hominid evolution in the late Miocene has long been hypothesized to be linked to the retreat of the tropical rainforest in Africa. One cause for the climatic and vegetation change often considered was uplift of Africa, but also uplift of the Himalaya and the Tibetan Plateau was suggested to have impacted rainfall distribution over Africa. Recent proxy data suggest that in East Africa open grassland habitats were available to the common ancestors of hominins and apes long before their divergence and do not find evidence for a closed rainforest in the late Miocene. We used the coupled global general circulation model CCSM3 including an interactively coupled dynamic vegetation module to investigate the impact of topography on African hydro-climate and vegetation. We performed sensitivity experiments altering elevations of the Himalaya and the Tibetan Plateau as well as of East and Southern Africa. The simulations confirm the dominant impact of African topography for climate and vegetation development of the African tropics. Only a weak influence of prescribed Asian uplift on African climate could be detected. The model simulations show that rainforest coverage of Central Africa is strongly determined by the presence of elevated African topography. In East Africa, despite wetter conditions with lowered African topography, the conditions were not favorable enough to maintain a closed rainforest. A discussion of the results with respect to other model studies indicates a minor importance of vegetation-atmosphere or ocean-atmosphere feedbacks and a large dependence of the simulated vegetation response on the land surface/vegetation model.

  14. Effects of heterogeneous wind fields and vegetation composition on modeled estimates of pollen source area

    NASA Astrophysics Data System (ADS)

    Burke, K. D.; Goring, S. J.; Williams, J. W.; Holloway, T.

    2015-12-01

    Fossil pollen records from lakes, bogs, and small hollows offer the main source of information about vegetation responses to climate change and land use over timescales of decades to millennia. Millions of pollen grains are released from individual trees each year, and are transported by wind before settling out of the atmosphere. Reconstructing past vegetation from sedimentary pollen records, however, requires careful modeling of pollen production, transport, and deposition. The atmosphere is turbulent, and regional wind patterns shift from day to day. In accordance with this, it is necessary for pollen transport models to adequately account for variable, non-uniform wind patterns and vegetation heterogeneity. Using a simulation approach, with both simulated vegetation patterns and vegetation gradients, as well as simulated wind fields, we show the inconsistency in pollen loading proportions and local vegetation proportions when non-uniform wind patterns are incorporated. Vegetation upwind from the lake is over-represented due to the increased prevalence of winds transporting pollen from that area. The inclusion of North American Regional Reanalysis (NARR) wind records affirms this finding. Of the lake sites explored in this study, none had uniform wind patterns. The use of a settlement-era gridded vegetation dataset, compiled by the PalEON project and based on Public Land Survey System (PLSS) records allows us to model pollen source area with realistic vegetation heterogeneity. Due to differences in productivity, pollen fall speeds, and neighboring vegetation, there exist patterns of vegetation that may be poorly characterized due to over/under representation of different taxa. Better understanding these differences in representation allows for more accurate reconstruction of historical vegetation, and pollen-vegetation relationships.

  15. Riparian vegetation controls on channels formed in non-cohesive sediment

    NASA Astrophysics Data System (ADS)

    Gran, K.; Tal, M.; Paola, C.

    2002-05-01

    Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. In channels formed in non-cohesive material, vegetation is the main source of bank cohesion and could affect the overall behavior of the river, potentially constraining the flow from a multi-thread channel to a single-thread channel. To examine the effects of riparian vegetation on streams formed in non-cohesive material, we conducted a series of physical experiments at the St. Anthony Falls Laboratory. The first set of experiments examines the effects of varying densities of vegetation on braided stream dynamics. Water discharge, sediment discharge, and grain size were held constant. For each run, we allowed a braided system to develop, then halved the discharge, and seeded the flume with alfalfa (Medicago sativa). After ten to fourteen days of growth, we returned the discharge to its original value and continued the run for 30-36 hours. Our results show that the influence of vegetation on the overall river pattern varied systematically with the spatial density of plant stems. The vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and an increase in channel relief. All these effects increased with vegetation density. Vegetation also influenced flow dynamics, increasing the variance of flow direction in the vegetated runs, and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision provides a new mechanism for producing secondary flows. We found these bank collision driven secondary flows to be more important than the classical curvature-driven mechanism in the vegetated runs. The next set of experiments examines more closely how the channel pattern evolves through time, allowing for both channel migration and successive vegetation growth. In these on-going experiments

  16. Analyzing nonlinear variations in terrestrial vegetation in China during 1982-2012.

    PubMed

    Liu, Yanxu; Liu, Xianfeng; Hu, Yi'na; Li, Shuangshuang; Peng, Jian; Wang, Yanglin

    2015-11-01

    Quantifying the long-term trends of changes in terrestrial vegetation on a large scale is an effective method for detecting the effects of global environmental change. In view of the trend towards overall restoration and local degradation of terrestrial vegetation in China, it is necessary to pay attention to the spatial processes of vegetative restoration or degradation, as well as to clarify the temporal and spatial characteristics of vegetative growth in greater geographical detail. However, traditional linear regression analysis has some drawbacks when describing ecological processes. Combining nonparametric linear regression analysis with high-order nonlinear fitting, the temporal and spatial characteristics of terrestrial vegetative growth in China during 1982-2012 were detected using the third generation of Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset. The results showed that high-order curves could be effective. The region joining Ordos City and Shaanxi Gansu Ningxia on the Loess Plateau may have experienced restoration-degradation-restoration processes of vegetative growth. In the Daloushan Mountains, degradation-restoration processes of vegetative growth may have occurred, and the occurrence of several hidden vegetative growth processes was located in different regions of eastern China. Changes in cultivated vegetation were inconsistent with changes in other vegetation types. In southern China and some high-altitude areas, temperature was the primary driver of vegetative growth on an interannual scale, while in the north, the effect of rainfall was more significant. Nevertheless, the influence of climate on vegetation activity in large urban areas was weak. The trend types of degradation-restoration processes in several regions were inconsistent with the implements of regional land development and protection strategy. Thus, the role of human activity cannot be ignored. In future studies, it will be still necessary to quantify the

  17. The reduction of storm surge by vegetation canopies: Three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Sheng, Y. Peter; Lapetina, Andrew; Ma, Gangfeng

    2012-10-01

    Significant buffering of storm surges by vegetation canopies has been suggested by limited observations and simple numerical studies, particularly following recent Hurricanes Katrina, Rita, and Wilma. Here we simulate storm surge and inundation over idealized topographies using a three-dimensional vegetation-resolving storm surge model coupled to a shallow water wave model and show that a sufficiently wide and tall vegetation canopy reduces inundation on land by 5 to 40 percent, depending upon various storm and canopy parameters. Effectiveness of the vegetation in dissipating storm surge and inundation depends on the intensity and forward speed of the hurricane, as well as the density, height, and width of the vegetation canopy. Reducing the threat to coastal vegetation from development, sea level rise, and other anthropogenic factors would help to protect many coastal regions against storm surges.

  18. Comparison of diesel engine performance and emissions from neat and transesterified vegetable oils

    SciTech Connect

    Geyer, S.M.; Jacobus, M.J.; Lestz, S.S.

    1984-01-01

    A single-cylinder, 0.36 L, D1 diesel engine was operated on a certified No. 2 diesel fuel, cottonseed oil, sunflowerseed oil, methyl ester of cottonseed oil, and methyl ester of sunflowerseed oil. The purpose of this study was to provide a comparison of performance and emission data when operating on net vegetable oils, transesterified vegetable oils, and diesel fuel. Results comparing the various vegetable oil fuels with No. 2 diesel fuel generally show slight improvements in thermal efficiency and higher exhaust gas temperatures when operating on vegetable oils; equal or higher gas-phase emissions with vegetable oils; lower indicated specific revertant emissions with vegetable oils; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde. (Refs. 14).

  19. Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos.

    PubMed Central

    Livingston, B T; Wilt, F H

    1989-01-01

    The mechanism of determination of early embryonic cells has been investigated using sea urchin embryos. An efficacious method of isolating blastomere pairs from the animal or vegetal half of sea urchin embryos was developed. The overt differentiation of separated animal and vegetal blastomere pairs resembles that of separated animal and vegetal hemispheres isolated by manual dissection. Treatment of animal blastomeres with LiCl caused them to display a morphology resembling that of isolated vegetal blastomeres. The effects of separation of animal and vegetal blastomeres and of treatment of animal blastomeres with LiCl were examined at the molecular level using gut alkaline phosphatase and a spicule matrix protein RNA as markers of differentiation. Histochemical staining and in situ hybridization studies showed that these markers are normally only expressed in vegetal blastomeres but that their expression can be evoked in animal blastomeres by treatment with LiCl. Images PMID:2726745

  20. Mapping vegetation types with the multiple spectral feature mapping algorithm in both emission and absorption

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.; Koch, Christopher; Ager, Cathy

    1992-01-01

    Vegetation covers a large portion of the Earth's land surface. Remotely sensing quantitative information from vegetation has proven difficult because in a broad sense, all vegetation is similar from a chemical viewpoint, and most healthy plants are green. Plant species are generally characterized by the leaf and flower or fruit morphology, not by remote sensing spectral signatures. But to the human eye, many plants show varying shades of green, so there is direct evidence for spectral differences between plant types. Quantifying these changes in a predictable manner has not been easy. The Clark spectral features mapping algorithm was applied to mapping spectral features in vegetation species.

  1. Comparison of AVHRR and SMMR data for monitoring vegetation phenology on a continental scale

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Townshend, J. R. G.; Choudhury, B. J.

    1989-01-01

    AVHRR normalized difference vegetation index (NDVI) data for a one-year period were compared with Scanning Multichannel Microwave Radiometer microwave polarization difference temperature (MPDT) data for the study of vegetation phenology. It is shown that the MPDT response differs considerably from the seasonal NDVI pattern. The results do not support the hypothetical relationship between MPDT and leaf water content. It is found that only vegetation types with a substantial seasonal variation in the areal extent of vegetated cover show strong seasonality in MPDT data.

  2. Monitoring vegetation cover on mine dumps with ERTS-1 imagery: Some initial results

    NASA Technical Reports Server (NTRS)

    Gilbertson, B. P.

    1973-01-01

    ERTS-1 imagery is being used in an attempt to differentiate between mine dumps having varying degrees of vegetative cover. At this stage it is clear that the various mine dumps can be located and identified. Differences in vegetative cover can be seen and measured. Patterns of vegetative growth, some characteristic to particular dumps, can also be seen. It is therefore tentatively concluded that mine dumps can be differentiated with respect to their vegetative cover on the imagery received to date. Subsequent imagery showing seasonal variations should facilitate this program.

  3. Exploring the Relationship Between Water Flux and Vegetation Water Status Using Time Series Data of Evapotranspiration and Modis Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Riaño, D.; Ustin, S.

    2012-12-01

    In agricultural practices, evapotranspiration (ET) data obtained from weather stations or flux towers are used to monitor crop water use and schedule irrigation over the growing season. Recent advances in remote sensing have shown that satellite data (e.g., MODIS) can be used to quantify the amount of water held in vegetation canopies. However, the relationship between how much water has been used through the ET process and how much water is maintained in vegetation canopies remains unclear. This study aimed to investigate how vegetation canopy water content is related to ET for almond orchards in the southern San Joaquin Valley of California. MODIS Nadir BRDF-Adjusted Reflectance 8-day 500 m data for the growing season of 2011 (March ~ November of 2011) were used to derive a number of vegetation indices as spectral indicators of canopy water content, including the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Normalized Difference Water Index (NDWI), the Normalized Difference Infrared Index using MODIS Band 6 (NDII) and the Normalized Difference Infrared Index using MODIS Band 7 (NDII7). These times series of MODIS indices were then compared to flux tower-based ET measurements temporally integrated from half-hourly to 8 days for the same time period. Our results showed all vegetation indices could account for more than 70% of variation in the ET data and the two infrared indices (NDII and NDII7) explained more than the other three indices. The relationships between vegetation indices and ET were generally positive and rate of ET change increased while the water content in almond canopies increased. The seasonal trajectory of ET could be fitted by a Gaussian function, with the ET peaking at day of year (DOY) 179. All vegetation indices exhibited broader peaking periods than ET due to insensitivity of spectral signals to fully developed canopies. The Gaussian function fitted to the NDII trajectory had the peaking day closest

  4. Health benefits of fruits and vegetables.

    PubMed

    Slavin, Joanne L; Lloyd, Beate

    2012-07-01

    Fruits and vegetables are universally promoted as healthy. The Dietary Guidelines for Americans 2010 recommend you make one-half of your plate fruits and vegetables. Myplate.gov also supports that one-half the plate should be fruits and vegetables. Fruits and vegetables include a diverse group of plant foods that vary greatly in content of energy and nutrients. Additionally, fruits and vegetables supply dietary fiber, and fiber intake is linked to lower incidence of cardiovascular disease and obesity. Fruits and vegetables also supply vitamins and minerals to the diet and are sources of phytochemicals that function as antioxidants, phytoestrogens, and antiinflammatory agents and through other protective mechanisms. In this review, we describe the existing dietary guidance on intake of fruits and vegetables. We also review attempts to characterize fruits and vegetables into groups based on similar chemical structures and functions. Differences among fruits and vegetables in nutrient composition are detailed. We summarize the epidemiological and clinical studies on the health benefits of fruits and vegetables. Finally, we discuss the role of fiber in fruits and vegetables in disease prevention.

  5. Research in remote sensing of vegetation

    NASA Technical Reports Server (NTRS)

    Schrumpf, Barry J.; Ripple, William J.; Isaacson, Dennis L.

    1988-01-01

    The research topics undertaken were primarily selected to further the understanding of fundamental relationships between electromagnetic energy measured from Earth orbiting satellites and terrestrial features, principally vegetation. Vegetation is an essential component in the soil formation process and the major factor in protecting and holding soil in place. Vegetation plays key roles in hydrological and nutrient cycles. Awareness of improvement or deterioration in the capacity of vegetation and the trends that those changes may indicate are, therefore, critical detections to make. A study of the relationships requires consideration of the various portions of the electromagnetic spectrum; characteristics of detector system; synergism that may be achieved by merging data from two or more detector systems or multiple dates of data; and vegetational characteristics. The vegetation of Oregon is sufficiently diverse as to provide ample opportunity to investigate the relationships suggested above several vegetation types.

  6. Canopy reflectance modelling of semiarid vegetation

    NASA Technical Reports Server (NTRS)

    Franklin, Janet

    1994-01-01

    Three different types of remote sensing algorithms for estimating vegetation amount and other land surface biophysical parameters were tested for semiarid environments. These included statistical linear models, the Li-Strahler geometric-optical canopy model, and linear spectral mixture analysis. The two study areas were the National Science Foundation's Jornada Long Term Ecological Research site near Las Cruces, NM, in the northern Chihuahuan desert, and the HAPEX-Sahel site near Niamey, Niger, in West Africa, comprising semiarid rangeland and subtropical crop land. The statistical approach (simple and multiple regression) resulted in high correlations between SPOT satellite spectral reflectance and shrub and grass cover, although these correlations varied with the spatial scale of aggregation of the measurements. The Li-Strahler model produced estimated of shrub size and density for both study sites with large standard errors. In the Jornada, the estimates were accurate enough to be useful for characterizing structural differences among three shrub strata. In Niger, the range of shrub cover and size in short-fallow shrublands is so low that the necessity of spatially distributed estimation of shrub size and density is questionable. Spectral mixture analysis of multiscale, multitemporal, multispectral radiometer data and imagery for Niger showed a positive relationship between fractions of spectral endmembers and surface parameters of interest including soil cover, vegetation cover, and leaf area index.

  7. Classification of vegetation types in military region

    NASA Astrophysics Data System (ADS)

    Gonçalves, Miguel; Silva, Jose Silvestre; Bioucas-Dias, Jose

    2015-10-01

    In decision-making process regarding planning and execution of military operations, the terrain is a determining factor. Aerial photographs are a source of vital information for the success of an operation in hostile region, namely when the cartographic information behind enemy lines is scarce or non-existent. The objective of present work is the development of a tool capable of processing aerial photos. The methodology implemented starts with feature extraction, followed by the application of an automatic selector of features. The next step, using the k-fold cross validation technique, estimates the input parameters for the following classifiers: Sparse Multinomial Logist Regression (SMLR), K Nearest Neighbor (KNN), Linear Classifier using Principal Component Expansion on the Joint Data (PCLDC) and Multi-Class Support Vector Machine (MSVM). These classifiers were used in two different studies with distinct objectives: discrimination of vegetation's density and identification of vegetation's main components. It was found that the best classifier on the first approach is the Sparse Logistic Multinomial Regression (SMLR). On the second approach, the implemented methodology applied to high resolution images showed that the better performance was achieved by KNN classifier and PCLDC. Comparing the two approaches there is a multiscale issue, in which for different resolutions, the best solution to the problem requires different classifiers and the extraction of different features.

  8. Carotenoid composition of hydroponic leafy vegetables.

    PubMed

    Kimura, Mieko; Rodriguez-Amaya, Delia B

    2003-04-23

    Because hydroponic production of vegetables is becoming more common, the carotenoid composition of hydroponic leafy vegetables commercialized in Campinas, Brazil, was determined. All samples were collected and analyzed in winter. Lactucaxanthin was quantified for the first time and was found to have concentrations similar to that of neoxanthin in the four types of lettuce analyzed. Lutein predominated in cress, chicory, and roquette (75.4 +/- 10.2, 57.0 +/- 10.3, and 52.2 +/- 12.6 microg/g, respectively). In the lactucaxanthin-containing lettuces, beta-carotene and lutein were the principal carotenoids (ranging from 9.9 +/- 1.5 to 24.6 +/- 3.1 microg/g and from 10.2 +/- 1.0 to 22.9 +/- 2.6 microg/g, respectively). Comparison of hydroponic and field-produced curly lettuce, taken from neighboring farms, showed that the hydroponic lettuce had significantly lower lutein, beta-carotene, violaxanthin, and neoxanthin contents than the conventionally produced lettuce. Because the hydroponic farm had a polyethylene covering, less exposure to sunlight and lower temperatures may have decreased carotenogenesis.

  9. Studying interactions between climate variability and vegetation dynamic using a phenology based approach

    NASA Astrophysics Data System (ADS)

    Horion, S.; Cornet, Y.; Erpicum, M.; Tychon, B.

    2013-02-01

    In this paper we investigated if and how a signature of climate control on vegetation growth can be individualized at regional scale using time series of SPOT-VEGETATION NDVI and ECMWF meteorological data. Twelve regions characterized by dominant and stable cropland or grassland covers were selected in Europe and Africa. Our results show that the relationship between NDVI and meteorological parameters is highly complex and significantly vary trough the phenological cycle of the plants. Hence, interactions between vegetation dynamics and climate variability must be studied at a smaller time scale in order to identify properly the limiting factors to vegetation growth. Using NDVI metrics, vegetative phases (from green-up to maximum NDVI) and reproductive phases (from maximum NDVI to maturity) were identified for each region. Cross-correlation analysis revealed that, in most of the cases, the best scores of Pearson's r are obtained when we considered the vegetative phase (from green-up to maximum of NDVI) and the reproductive phase (from maximum of NDVI to maturity) separately. We also showed that climatic constraints identified using yearly proxies of climate and vegetation do not depict correctly or completely the climate control on vegetation development. In that sense the complexity of the climate-vegetation relationship, which is spatially and temporally variable, is well underlined in this study.

  10. An anhinga shows its iridescent plumage

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The greenish iridescence of a male Anhinga nearly blends into the green vegetation behind it on the grounds of the Kennedy Space Center. The mostly black-bodied bird is also known as a 'snakebird' because, when swimming, only its head and long, slender neck are visible above water. The anhinga inhabits freshwater ponds and swamps with thick vegetation and ranges the Atlantic and Gulf coasts from North Carolina to Texas, the Mississippi Valley north to Arkansas and Tennessee, and south to southern South America. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  11. Global vegetation productivity response to climatic oscillations during the satellite era.

    PubMed

    Gonsamo, Alemu; Chen, Jing M; Lombardozzi, Danica

    2016-10-01

    Climate control on global vegetation productivity patterns has intensified in response to recent global warming. Yet, the contributions of the leading internal climatic variations to global vegetation productivity are poorly understood. Here, we use 30 years of global satellite observations to study climatic variations controls on continental and global vegetation productivity patterns. El Niño-Southern Oscillation (ENSO) phases (La Niña, neutral, and El Niño years) appear to be a weaker control on global-scale vegetation productivity than previously thought, although continental-scale responses are substantial. There is also clear evidence that other non-ENSO climatic variations have a strong control on spatial patterns of vegetation productivity mainly through their influence on temperature. Among the eight leading internal climatic variations, the East Atlantic/West Russia Pattern extensively controls the ensuing year vegetation productivity of the most productive tropical and temperate forest ecosystems of the Earth's vegetated surface through directionally consistent influence on vegetation greenness. The Community Climate System Model (CCSM4) simulations do not capture the observed patterns of vegetation productivity responses to internal climatic variations. Our analyses show the ubiquitous control of climatic variations on vegetation productivity and can further guide CCSM and other Earth system models developments to represent vegetation response patterns to unforced variability. Several winter time internal climatic variation indices show strong potentials on predicting growing season vegetation productivity two to six seasons ahead which enables national governments and farmers forecast crop yield to ensure supplies of affordable food, famine early warning, and plan management options to minimize yield losses ahead of time.

  12. Significant contribution of realistic vegetation representation to improved simulation and prediction of climate anomalies over land

    NASA Astrophysics Data System (ADS)

    Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Doblas-Reyes, Francisco; van den Hurk, Bart; Miller, Paul

    2015-04-01

    The EC-Earth earth system model has been recently developed to include the dynamics of vegetation through the coupling with the LPJ-Guess model. In its original formulation, the coupling between atmosphere and vegetation variability is simply operated by the vegetation Leaf Area Index (LAI), which affects climate by only changing the vegetation physiological resistance to evapotranspiration. This coupling with no implied change of the vegetation fractional coverage has been reported to have a weak effect on the surface climate modeled by EC-Earth (e.g.: also Weiss et al. 2012). The effective sub-grid vegetation fractional coverage can vary seasonally and at interannual time-scales as a function of leaf-canopy growth, phenology and senescence, and therefore affect biophysical parameters such as the surface roughness, albedo and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation densitiy to the LAI, based on a Lambert-Beer formulation. By comparing historical 20th century simulations and retrospective forecasts performed applying the new effective fractional-coverage parameterization with the respective reference simulations using the original constant vegetation-fraction, we showed an increased effect of vegetation on the EC-Earth surface climate. The analysis shows considerable sensitivity of EC-Earth surface climate at seasonal to interannual time-scales due to the variability of vegetation effective fractional coverage. Particularly large effects are shown over boreal winter middle-to-high latitudes, where the cooling effect of the new parameterization corrects the warm biases of the control simulations over land. For boreal winter, the realistic representation of vegetation variability leads to a significant improvement of the skill in predicting surface climate over land at seasonal time-scales. A potential predictability experiment extended to longer time-scales also indicates the

  13. Estimation for sparse vegetation information in desertification region based on Tiangong-1 hyperspectral image.

    PubMed

    Wu, Jun-Jun; Gao, Zhi-Hai; Li, Zeng-Yuan; Wang, Hong-Yan; Pang, Yong; Sun, Bin; Li, Chang-Long; Li, Xu-Zhi; Zhang, Jiu-Xing

    2014-03-01

    In order to estimate the sparse vegetation information accurately in desertification region, taking southeast of Sunite Right Banner, Inner Mongolia, as the test site and Tiangong-1 hyperspectral image as the main data, sparse vegetation coverage and biomass were retrieved based on normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI), combined with the field investigation data. Then the advantages and disadvantages between them were compared. Firstly, the correlation between vegetation indexes and vegetation coverage under different bands combination was analyzed, as well as the biomass. Secondly, the best bands combination was determined when the maximum correlation coefficient turned up between vegetation indexes (VI) and vegetation parameters. It showed that the maximum correlation coefficient between vegetation parameters and NDVI could reach as high as 0.7, while that of SAVI could nearly reach 0.8. The center wavelength of red band in the best bands combination for NDVI was 630nm, and that of the near infrared (NIR) band was 910 nm. Whereas, when the center wavelength was 620 and 920 nm respectively, they were the best combination for SAVI. Finally, the linear regression models were established to retrieve vegetation coverage and biomass based on Tiangong-1 VIs. R2 of all models was more than 0.5, while that of the model based on SAVI was higher than that based on NDVI, especially, the R2 of vegetation coverage retrieve model based on SAVI was as high as 0.59. By intersection validation, the standard errors RMSE based on SAVI models were lower than that of the model based on NDVI. The results showed that the abundant spectral information of Tiangong-1 hyperspectral image can reflect the actual vegetaion condition effectively, and SAVI can estimate the sparse vegetation information more accurately than NDVI in desertification region.

  14. Monitoring Phenology of Floodplain Grassland and Herbaceous Vegetation with Uav Imagery

    NASA Astrophysics Data System (ADS)

    van Iersel, W. K.; Straatsma, M. W.; Addink, E. A.; Middelkoop, H.

    2016-06-01

    River restoration projects, which aim at improved flood safety and increased ecological value, have resulted in more heterogeneous vegetation. However, they also resulted in increasing hydraulic roughness, which leads to higher flood water levels during peak discharges. Due to allowance of vegetation development and succession, both ecological and hydraulic characteristics of the floodplain change more rapidly over time. Monitoring of floodplain vegetation has become essential to document and evaluate the changing floodplain characteristics and associated functioning. Extraction of characteristics of low vegetation using single-epoch remote sensing data, however, remains challenging. The aim of this study was to (1) evaluate the performance of multi-temporal, high-spatial-resolution UAV imagery for extracting temporal vegetation height profiles of grassland and herbaceous vegetation in floodplains and (2) to assess the relation between height development and NDVI changes. Vegetation height was measured six times during one year in 28 field plots within a single floodplain. UAV true-colour and false-colour imagery of the floodplain were recorded coincidently with each field survey. We found that: (1) the vertical accuracy of UAV normalized digital surface models (nDSMs) is sufficiently high to obtain temporal height profiles of low vegetation over a growing season, (2) vegetation height can be estimated from the time series of nDSMs, with the highest accuracy found for combined imagery from February and November (RMSE = 29-42 cm), (3) temporal relations between NDVI and observed vegetation height show different hysteresis behaviour for grassland and herbaceous vegetation. These results show the high potential of using UAV imagery for increasing grassland and herbaceous vegetation classification accuracy.

  15. Normalized Difference Vegetation Index for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the Normalized Difference Vegetation Index (NDVI), or "greenness" of the Fanno Creek floodplain study area. Aerial photography was used to isolate areas of vegetation based on comparing different bandwidths within the imagery. In this case, the NDVI is calculated as the quotient of the near infrared band minus the red band divided by the near infared plus the red band. NDVI = (NIR - R)/(NIR + R).

  16. Specularly modified vegetation indices to estimate photosynthetic activity

    NASA Technical Reports Server (NTRS)

    Rondeaux, G.; Vanderbilt, V. C.

    1993-01-01

    The hypothesis tested was that some part of the ecosystem-dependent variability of vegetation indices was attributable to the effects of light specularly reflected by leaves. 'Minus specular' indices were defined excluding effects of specular light which contains no cellular pigment information. Results, both empirical and theoretical, show that the 'minus specular' indices, when compared to the traditional vegetation indices, potentially provide better estimates of the photosynthetic activity within a canopy - and therefore canopy primary production - specifically as a function of sun and view angles.

  17. Evaluation of Landsat Thematic Mapper for vegetated alluvium soils information

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Henderson, K. E.; Houston, A. G.; Pitts, D. E.

    1983-01-01

    Landsat Thematic Mapper data acquired over Mississippi County, Arkansas, on August 22, 1982, were evaluated whether TM provides information that could be used for soil association maps and if soil properties (variability within vegetated fields) can be detected with the new bands on TM. It was found that TM data - especially the mid-IR and thermal bands - show the capability for separating vegetated soil landscapes on a broad basis. Analysis at the field level with a crop growing indicates that TM, with its additional and narrower bands and improved spatial resolution is influenced by within-field variability due to soils.

  18. Salt marsh vegetation promotes efficient tidal channel networks

    NASA Astrophysics Data System (ADS)

    Kearney, W. S.; Fagherazzi, S.

    2014-12-01

    Tidal channel networks mediate the exchange of water, nutrients and sediment between an estuary and marshes and mudflats. Biology feeds back into channel morphodynamics through vegetation's influence on the cohesive strength of channel banks. Understanding the morphology of a tidal channel network is thus essential to understanding both the biological functioning of intertidal ecosystems and the topographic signature of life. A critical measure of the morphology of a channel network is the unchanneled path length, which is characteristic of the efficiency with which a network dissects the marsh platform. However, the processes which control the formation and maintenance of an efficient tidal channel network remain unclear. Here we show that an unvegetated marsh platform (Estero La Ramada, Baja California, Mexico) is dissected by a less efficient channel network than a vegetated one (Barnstable, Massachusetts, United States). The difference in geometric efficiency reflects a difference in the branching and meandering characteristics of the network, characteristics controlled by the density of vegetation on the channel banks. Our results suggest a feedback between network geometry and vegetation, mediated by fluxes of nutrients and salinity through the channel network, maintains the observed network geometries. An efficient network can support a denser vegetation community which stabilizes channel banks, leading to an efficient meandering geometry.

  19. [Antioxidant capacity of fruits and vegetables cultivated in Chile].

    PubMed

    Araya, Héctor; Clavijo, Carolina; Herrera, Claudia

    2006-12-01

    The high prevalence of non transmissible chronic diseases (NCD) related to food consumption had increased the studies conducted to investigate the relationship between diet and health. A smaller incidence of NCD, with food patterns with high consumption of fruits and vegetables has been observed and chemical compounds of these foods have been one of the main subjects of the actual research in the reaqltion between food consumption and health. The effect of vegetable foods has been attributed to various nutrients and bioactive compounds with antioxidant activity. In order to determine the antioxidant capacity of vegetable foods cultivated in Chile, natural fruits and vegetables were analyzed according to the FRAP (ferric reducing activity power) method, reading to the 4 minutes. In vegetables, the values were between 0.002 and 1.91 milimoles of Fe/l00 g for cooked carrot and red pepper respectively. The values of the fruits ranged between 0.02 milimoles of Fe/100 g for the cucumber and 12.32 for maqui, the berries studies showed values between 3.10 for strawberry and 3.55 for wild blackberry. Lemmon and quince with 0.25 and 0.23 respectively are located in the intermediate level and the lowest values within the fruits corresponded to apple (fuji variety) and peaches.

  20. Slow recovery in desert perennial vegetation following prolonged human disturbance

    USGS Publications Warehouse

    Guo, Q.

    2004-01-01

    Questions: How long may it take for desert perennial vegetation to recover from prolonged human disturbance and how do different plant community variables (i.e. diversity, density and cover) change during the recovery process? Location: Sonoran Desert, Arizona, USA. Methods: Since protection from grazing from 1907 onwards, plant diversity, density and cover of perennial species were monitored intermittently on ten 10 m x 10 m permanent plots on Tumamoc Hill, Tucson, Arizona, USA. Results: The study shows an exceptionally slow recovery of perennial vegetation from prolonged heavy grazing and other human impacts. Since protection, overall species richness and habitat heterogeneity at the study site continued to increase until the 1960s when diversity, density and cover had been stabilized. During the same period, overall plant density and cover also increased. Species turnover increased gradually with time but no significant relation between any of the three community variables and precipitation or Palmer Drought Severity Index (PDSI) was detected. Conclusions: It took more than 50 yr for the perennial vegetation to recover from prolonged human disturbance. The increases in plant species richness, density, and cover of the perennial vegetation were mostly due to the increase of herbaceous species, especially palatable species. The lack of a clear relationship between environment (e.g. precipitation) and community variables suggests that site history and plant life history must be taken into account in examining the nature of vegetation recovery processes after disturbance.

  1. Development of the IAP Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaodong; Li, Fang; Song, Xiang

    2014-05-01

    The IAP Dynamic Global Vegetation Model (IAP-DGVM) has been developed to simulate the distribution and structure of global vegetation within the framework of Earth System Models. It incorporates our group's recent developments of major model components such as the shrub sub-model, establishment and competition parameterization schemes, and a process-based fire parameterization of intermediate complexity. The model has 12 plant functional types, including seven tree, two shrub, and three grass types, plus bare soil. Different PFTs are allowed to coexist within a grid cell, and their state variables are updated by various governing equations describing vegetation processes from fine-scale biogeophysics and biogeochemistry, to individual and population dynamics, to large-scale biogeography. Environmental disturbance due to fire not only affects regional vegetation competition, but also influences atmospheric chemistry and aerosol emissions. Simulations under observed atmospheric conditions showed that the model can correctly reproduce the global distribution of trees, shrubs, grasses, and bare soil. The simulated global dominant vegetation types reproduce the transition from forest to grassland (savanna) in the tropical region, and from forest to shrubland in the boreal region, but overestimate the region of temperate forest.

  2. Vegetation plays an important role in mediating future water resources

    NASA Astrophysics Data System (ADS)

    Ukkola, A. M.; Keenan, T. F.; Kelley, D. I.; Prentice, I. C.

    2016-09-01

    Future environmental change is expected to modify the global hydrological cycle, with consequences for the regional distribution of freshwater supplies. Regional precipitation projections, however, differ largely between models, making future water resource projections highly uncertain. Using two representative concentration pathways and nine climate models, we estimate 21st century water resources across Australia, employing both a process-based dynamic vegetation model and a simple hydrological framework commonly used in water resource studies to separate the effects of climate and vegetation on water resources. We show surprisingly robust, pathway-independent regional patterns of change in water resources despite large uncertainties in precipitation projections. Increasing plant water use efficiency (due to the changing atmospheric CO2) and reduced green vegetation cover (due to the changing climate) relieve pressure on water resources for the highly populated, humid coastal regions of eastern Australia. By contrast, in semi-arid regions across Australia, runoff declines are amplified by CO2-induced greening, which leads to increased vegetation water use. These findings highlight the importance of including vegetation dynamics in future water resource projections.

  3. Statistical characteristics of selected elements in vegetables from Kosovo.

    PubMed

    Micic, Ruzica; Mitic, Snezana; Arsic, Biljana; Jokic, Anja; Mitic, Milan; Kostic, Danijela; Pavlovic, Aleksandra; Cekerevac, Milan; Nikolic-Bujanovic, Ljiljana; Spalevic, Zaklina

    2015-06-01

    Zinc, copper, iron, chromium and cobalt are essential elements for human health, showing toxicity only in high concentrations, while lead and cadmium are extremely toxic even as traces. Therefore, it is important to monitor the contents of toxic metals in vegetables. Large number of vegetables is grown and used in nutrition, in Kosovo. The concentrations of selected elements in vegetables (radish, onion, garlic and spinach) from Kosovo were determined using ICP-OES method. Oral intake of metals and health risk index were calculated. Statistical analysis indicated numerous positive correlations between concentrations of selected elements in vegetables. As a result of principal component analysis, 15 new variables were obtained which were characterized by eigenvalues. The sequence of health quotients for the heavy metals followed the decreasing order Zn = Mn > Pb > Cu > Ni > Fe > Cd > Co > Cr. The health quotients for all investigated heavy metals were below 1 (one), which is considered safe. The vegetables from Kosovo are mainly safe for use in everyday diet.

  4. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems.

    PubMed

    Kéfi, Sonia; Rietkerk, Max; Alados, Concepción L; Pueyo, Yolanda; Papanastasis, Vasilios P; Elaich, Ahmed; de Ruiter, Peter C

    2007-09-13

    Humans and climate affect ecosystems and their services, which may involve continuous and discontinuous transitions from one stable state to another. Discontinuous transitions are abrupt, irreversible and among the most catastrophic changes of ecosystems identified. For terrestrial ecosystems, it has been hypothesized that vegetation patchiness could be used as a signature of imminent transitions. Here, we analyse how vegetation patchiness changes in arid ecosystems with different grazing pressures, using both field data and a modelling approach. In the modelling approach, we extrapolated our analysis to even higher grazing pressures to investigate the vegetation patchiness when desertification is imminent. In three arid Mediterranean ecosystems in Spain, Greece and Morocco, we found that the patch-size distribution of the vegetation follows a power law. Using a stochastic cellular automaton model, we show that local positive interactions among plants can explain such power-law distributions. Furthermore, with increasing grazing pressure, the field data revealed consistent deviations from power laws. Increased grazing pressure leads to similar deviations in the model. When grazing was further increased in the model, we found that these deviations always and only occurred close to transition to desert, independent of the type of transition, and regardless of the vegetation cover. Therefore, we propose that patch-size distributions may be a warning signal for the onset of desertification.

  5. Determinants of fruit and vegetable intake among 11-year-old schoolchildren in a country of traditionally low fruit and vegetable consumption

    PubMed Central

    Kristjansdottir, Asa G; Thorsdottir, Inga; De Bourdeaudhuij, Ilse; Due, Pernille; Wind, Marianne; Klepp, Knut-Inge

    2006-01-01

    Background Fruit and vegetable consumption is traditionally low in Iceland. The results of the Pro Children cross-Europe survey showed that the consumption was lowest among children in Iceland. The aim of this study was to identify determinants of fruit and vegetable intake among 11-year-old schoolchildren in Iceland. Methods A cross-sectional survey was performed in Iceland in the autumn of 2003 as a part of the Pro Children cross-Europe survey. The survey was designed to provide information on actual consumption levels of vegetables and fruits by 11-year-old school children and to assess potential determinants of consumption patterns. A total of 1235 Icelandic children (89%) from 32 randomly chosen schools participated. Hierarchical regression analyses were performed to determine the explained variance of the children's fruit and vegetable intake. In these analyses socio-demographic background variables were entered as a first block, perceived physical-environmental variables as a second block, perceived socio-environmental variables as a third block and personal variables as a fourth block. Results 64% of the children ate fruit less than once a day, and 61% ate vegetables less than once a day. Respectively, 31% and 39% of the variance in children's fruit and vegetable intake was explained by the determinants studied. About 7% and 13% of the variance in fruit and vegetable intake was explained by the perceived physical-environmental determinants, mainly by availability at home. About 18% and 16% of the variance in fruit and vegetable intake was explained by the personal determinants. For both fruit and vegetable intake, the significant personal determinants were preferences, liking, knowledge of recommendations and self-efficacy. Conclusion Interventions to increase fruit and vegetable intake among children should aim at both environmental factors such as greater availability of fruit and vegetables, and personal factors as self-efficacy and knowledge levels

  6. Stalking Antibiotic-Resistant Bacteria in Common Vegetables

    ERIC Educational Resources Information Center

    Brock, David; Boeke, Caroline; Josowitz, Rebecca; Loya, Katherine

    2004-01-01

    The study developed a simple experimental protocol for studying antibiotic resistant bacteria that will allow students to determine the proportion of such bacteria found on common fruit and vegetable crops. This protocol can open up the world of environmental science and show how human behavior can dramatically alter ecosystems.

  7. Margarine from organogel of healthy vegetable oils and plant wax

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organogelator that can turn vegetable oil into a gel with a small quantity has drawn a lot of interests as a potential alternative for saturated fats and trans fat-containing solid fats in margarine and spread products. However, it is not practically used in those products yet. This research shows...

  8. Late quaternary zonation of vegetation in the eastern grand canyon.

    PubMed

    Cole, K

    1982-09-17

    Fossil assemblages from 53 packrat middens indicate which plant species were dominant during the last 24,000 years in the eastern Grand Canyon. Past vegetational patterns show associations that cannot be attributed to simple elevational displacement of the modern zones. A model emphasizing a latitudinal shift of climatic values is proposed.

  9. Vegetation Impacts on Maximum and Minimum Temperatures in Northeast Colorado

    DTIC Science & Technology

    2007-11-02

    National Center for Atmospheric Research (NCEP-NCAR) reanalysis, and satellite-derived greenness values, as defined by NDVI (Normalized Difference Vegetation...temperature and NDVI values. The subtraction shows that by including NDVI values in the analysis, the r-squared values, and thus the degree of explanation of

  10. Prediction of vegetation anomalies to improve food security and water management in India

    NASA Astrophysics Data System (ADS)

    Asoka, Akarsh; Mishra, Vimal

    2015-07-01

    Prediction of vegetation anomalies at regional scales is essential for management of food and water resources. Forecast of vegetation anomalies at 1-3 months lead time can help in decision making. Here we show that normalized difference vegetation index (NDVI) along with other hydroclimatic variables (soil moisture and sea surface temperature) can be effectively used to predict vegetation anomalies in India. The spatiotemporal analysis of NDVI showed significant greening over the region during the period of 1982-2013. The root-zone soil moisture showed a positive correlation with NDVI, whereas the El Niño-Southern Oscillation index (Nino 3.4) is negatively correlated in most of the regions. We extended this relationship to develop a model to predict NDVI in 1 to 3 months lead time. The predicted vegetation anomalies compare well with observations, which can be effectively utilized in early warning and better planning in water resources and agricultural sectors in India.

  11. Slow recovery in desert perennial vegetation following prolonged human disturbance

    USGS Publications Warehouse

    Guo, Q.

    2004-01-01

    The study shows an exceptionally long-term recovery of perennial vegetation from prolonged heavy grazing and other human impacts. Since protection in 1906, overall species richness and habitat heterogeneity at the study site continued to increase until the 1960s when diversity, density and cover stabilized. During the same period, overall plant density and cover also increased. Species turnover increased gradually with time but no significant relation between any of the three community variables and precipitation or Palmer Drought Severity Index (PDSI) was detected. The increases in plant species richness, density, and cover of the perennial vegetation were mostly due to the increase of herbaceous species, especially palatable species. The lack of clear relationship between environment (e.g., precipitation) and community variables suggests that site history and plant life history must be taken into account in examining the nature of vegetation recovery process after disturbances.

  12. The footprint of urban climates on vegetation phenology

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyang; Friedl, Mark A.; Schaaf, Crystal B.; Strahler, Alan H.; Schneider, Annemarie

    2004-06-01

    Human activity, through changing land use and other activities, is the most fundamental source of environmental change on the Earth. Urbanization and the resultant ``urban heat islands'' provide a means for evaluating the effect of climate warming on vegetation phenology. Using data from the Moderate Resolution Imaging Spectroradiometer, we analyzed urban-rural differences in vegetation phenological transition dates and land surface temperatures for urban areas larger than 10 km2 in eastern North America. The results show that the effect of urban climates on vegetation phenology decays exponentially with distance from urban areas with substantial influence up to 10 km beyond the edge of urban land cover, and that the ecological ``footprint'' of urban climates is about 2.4 times that of urban land use in eastern North America. The net effect is an increase in the growing season by about 15 days in urban areas relative to adjacent unaffected rural areas.

  13. Phytochemical constituents and antibacterial activity of some green leafy vegetables

    PubMed Central

    Bhat, Ramesa Shafi; Al-Daihan, Sooad

    2014-01-01

    Objective To investigate the antibacterial activity and photochemicals of five green leafy vegetables against a panel of five bacteria strains. Methods Disc diffusion method was used to determine the antibacterial activity, while kanamycin was used as a reference antibiotic. The phytochemical screening of the extracts was performed using standard methods. Results All methanol extracts were found active against all the test bacterial strains. Overall maximum extracts shows antibacterial activity which range from 6 to 15 mm. Proteins and carbohydrates was found in all the green leaves, whereas alkaloid, steroids, saponins, flavonoids, tannins were found in most of the test samples. Conclusions The obtain result suggests that green leafy vegetables have moderate antibacterial activity and contain various pharmacologically active compounds and thus provide the scientific basis for the traditional uses of the studied vegetables in the treatment of bacterial infections. PMID:25182436

  14. Effects of vegetation canopy on the radar backscattering coefficient

    NASA Technical Reports Server (NTRS)

    Mo, T.; Blanchard, B. J.; Schmugge, T. J.

    1983-01-01

    Airborne L- and C-band scatterometer data, taken over both vegetation-covered and bare fields, were systematically analyzed and theoretically reproduced, using a recently developed model for calculating radar backscattering coefficients of rough soil surfaces. The results show that the model can reproduce the observed angular variations of radar backscattering coefficient quite well via a least-squares fit method. Best fits to the data provide estimates of the statistical properties of the surface roughness, which is characterized by two parameters: the standard deviation of surface height, and the surface correlation length. In addition, the processes of vegetation attenuation and volume scattering require two canopy parameters, the canopy optical thickness and a volume scattering factor. Canopy parameter values for individual vegetation types, including alfalfa, milo and corn, were also determined from the best-fit results. The uncertainties in the scatterometer data were also explored.

  15. School Gardens as a Strategy for Increasing Fruit and Vegetable Consumption

    ERIC Educational Resources Information Center

    Oxenham, Erin; King, Amber D.

    2010-01-01

    School gardens as a form of nutrition education have become widespread. It is well known that children fall short of the daily recommended intake of fruit and vegetables. School-garden based programs show promise as a method of hands-on learning that promotes and increases fruit and vegetable consumption among school-aged children. There is little…

  16. Analysis of regional-scale vegetation dynamics of Mexico using stratified AVHRR NDVI data. [Normalized Difference Vegetaion Index

    NASA Technical Reports Server (NTRS)

    Turcotte, Kevin M.; Kramber, William J.; Venugopal, Gopalan; Lulla, Kamlesh

    1989-01-01

    Previous studies have shown that a good relationship exists between AVHRR Normalized Difference Vegetation Index (NDVI) measurements, and both regional-scale patterns of vegetation seasonality and productivity. Most of these studies used known samples of vegetation types. An alternative approach, and the objective was to examine the above relationships by analyzing one year of AVHRR NDVI data that was stratified using a small-scale vegetation map of Mexico. The results show that there is a good relationship between AVHRR NDVI measurements and regional-scale vegetation dynamics of Mexico.

  17. Vegetation fire proneness in Europe

    NASA Astrophysics Data System (ADS)

    Pereira, Mário; Aranha, José; Amraoui, Malik

    2015-04-01

    Fire selectivity has been studied for vegetation classes in terms of fire frequency and fire size in a few European regions. This analysis is often performed along with other landscape variables such as topography, distance to roads and towns. These studies aims to assess the landscape sensitivity to forest fires in peri-urban areas and land cover changes, to define landscape management guidelines and policies based on the relationships between landscape and fires in the Mediterranean region. Therefore, the objectives of this study includes the: (i) analysis of the spatial and temporal variability statistics within Europe; and, (ii) the identification and characterization of the vegetated land cover classes affected by fires; and, (iii) to propose a fire proneness index. The datasets used in the present study comprises: Corine Land Cover (CLC) maps for 2000 and 2006 (CLC2000, CLC2006) and burned area (BA) perimeters, from 2000 to 2013 in Europe, provided by the European Forest Fire Information System (EFFIS). The CLC is a part of the European Commission programme to COoRdinate INformation on the Environment (Corine) and it provides consistent, reliable and comparable information on land cover across Europe. Both the CLC and EFFIS datasets were combined using geostatistics and Geographical Information System (GIS) techniques to access the spatial and temporal evolution of the types of shrubs and forest affected by fires. Obtained results confirms the usefulness and efficiency of the land cover classification scheme and fire proneness index which allows to quantify and to compare the propensity of vegetation classes and countries to fire. As expected, differences between northern and southern Europe are notorious in what concern to land cover distribution, fire incidence and fire proneness of vegetation cover classes. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by

  18. Vegetation management with fire modifies peatland soil thermal regime.

    PubMed

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from <2 to 15 + years post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (<2-4 years) showed higher mean, maximum and range of soil temperatures, and lower minima. Statistical models (generalised least square regression) were developed to predict daily mean and maximum soil temperature in plots burned 15 + years prior to the study. These models were then applied to predict temperatures of plots burned 2, 4 and 7 years previously, with significant deviations from predicted temperatures illustrating the magnitude of burn management effects. Temperatures measured in soil plots burned <2 years previously showed significant statistical disturbances from model predictions, reaching +6.2 °C for daily mean temperatures and +19.6 °C for daily maxima. Soil temperatures in plots burnt 7 years previously were most similar to plots burned 15 + years ago indicating the potential for soil temperatures to recover as vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime

  19. Effects of vegetation cover on landscape denudation rates

    NASA Astrophysics Data System (ADS)

    Torres Acosta, Veronica; Schildgen, Taylor; Clarke, Brian; Scherler, Dirk; Bookhagen, Bodo; Wittmann, Hella; von Blankenburg, Friedhelm; Strecker, Manfred

    2014-05-01

    Increasing slope or relief in a landscape has long been known to correlate with faster denudation rates. Despite a number of studies that have attempted to clarify the additional role of precipitation on denudation, deciphering the complex influence of climate on erosion rates in a landscape with variable slope and relief has remained difficult. The eastern and western branches of the East African Rift System (EARS) constitute first-order tectonic and topographic features in East Africa, which have a profound influence on the distribution and amount of rainfall. The Kenya Rift is an integral part of the eastern branch and is characterized by pronounced differences in morphology, rainfall, and vegetation cover. While paleoclimatic studies in this region reveal general stability of the precipitation and vegetation patterns, short-term changes on timescales of ca. 104 yrs have affected the area multiple times throughout the Pleistocene. We present 20 10Be-derived catchment-wide mean denudation rates from various morphotectonic sectors of the Kenya Rift. The sampling locations include steep rift escarpments, step-faulted composite escarpments, and gently inclined rift-shoulder areas. These different environments also span a rainfall gradient of 0.004 to 4 m/yr, and vegetation covers that range from very sparse to dense. For comparison, 10Be-derived denudation rates are also available from the Rwenzori Mountains in the western branch of the rift system. There, rainfall is high and the vegetation cover is denser than the studied sites in Kenya, but the range of relief and slopes is similar. A first-order comparison of our new denudation rates from Kenya with climatic and topographic characteristics of the catchments show no obvious correlations. However, denudation rates from sparsely vegetated environments in the Kenya Rift define a steep trend in the denudation rate-slope relationship, while denudation rates from the densely vegetated portion of the Kenya Rift and the

  20. Contribution of Chlorophyll Fluorescence to the Apparent Reflectance of Vegetation

    NASA Technical Reports Server (NTRS)

    Campbell, P. K. Entcheva; Middleton, E. M.; Kim, M. S.

    2007-01-01

    Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance (R) measurements, whi ch provide estimates of relative vegetation vigor based primarily on chlorophyll content. Vegetation chlorophyll fluorescence (CF) offers a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, monitoring of vegetation vigor based on CF may allow earlier stress detection and more accurate carbon sequestra tion estimates, than is possible using R data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contrib utions from both the reflected and fluoresced radiation. The aim of t his study is to determine the relative R and CF fractions contributing to Ra from the vegetation in the red to near-infrared region of the spectrum. The practical objectives of the study are to: 1) evaluate t he relationship between CF and R at the foliar level for corn, soybean, maple; and 2) for corn, determine if the relationship established f or healthy (optimal N) vegetation changes under N defiiency. To obtai n generally applicable results, experimental measurements were conducted on unrelated crop and tree species (maple, soybean and corn), unde r controlled conditions and a gradient of inorganic N fertilization l evels. Optical R spectra and actively induced CF emissions were obtained on the same foliar samples, in conjunction with measurements of p hotosynthetic function, pigment levels, and C and N content. The comm on spectral trends or similarities were examined. On average, 10-20% of apparent R at 685 nm was actually due to CF. The spectral trends in steady and maximum F varied significantly, with Fs (especially red) showing higher ability for species and treatment separation. The relative contribution of ChF to R varied significantly among species, with maple emitting much higher F amounts, as

  1. Radiative transfer in shrub savanna sites in Niger: Preliminary results from HAPEX-Sahel. Part 3: Optical dynamics and vegetation index sensitivity to biomass and plant cover

    NASA Technical Reports Server (NTRS)

    vanLeeuwen, W. J. D.; Huete, A. R.; Duncan, J.; Franklin, J.

    1994-01-01

    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (6) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large 6 dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone.

  2. Monitoring vegetation using DOAS satellite observations

    NASA Astrophysics Data System (ADS)

    Eigemeier, E.; Beirle, S.; Marbach, T.; Platt, U.; Wagner, T.

    2009-04-01

    Vegetation-cycles are of general interest for many applications. Be it for harvest-predictions, global monitoring of climate-change or as input to atmospheric models. From novel spectrally resolving UV/vis satellite instruments (like GOME of SCIAMACHY) the spectral signatures of different types of vegetation can be identified and analysed. Although the spatial resolution of GOME and SCIAMACHY observations is much coarser than those of conventional satellite instruments for vegetation monitoring, our data sets on different vegetation types add new and useful information, not obtainable from other sources. Common Vegetation Indices use the fact that the difference between Red and Near Infrared reflection is higher than in any other material on Earth's surface. This gives a very high degree of confidence for vegetation-detection. The spectrally resolving data from GOME and SCIAMACHY provide the chance to concentrate on finer spectral features throughout the Red and Near Infrared spectrum. We look at these using a technique known as Differential Optical Absorption Spectroscopy (DOAS). Although originally developed to retrieve information on trace gases, it can also be used to gain information on vegetation. Another advantage is that this method automatically corrects for changes in the atmosphere. This renders the vegetation-information easily comparable over long time-spans. In addition, high-frequency-structures from vegetation also effect the retrieval of tropospheric trace-gases and aerosols. To optimize vegetation monitoring with DOAS we produce spectrally resolved reference spectra from different vegetation types. We investigate how well we will be able to distinguish vegetation types from space. This will also be valuable for monitoring global vegetation-cycles over long time spans. Preliminary results will be presented here.

  3. Longleaf Pine Ground-Layer Vegetation in Francis Marion National Forest: Reintroduction, Restoration, and Vegetation Assembly

    SciTech Connect

    Glitzenstein, J.; Streng, D.; Wade, D.

    2001-01-01

    Study represents significant progress in understanding of compositional gradients in longleaf pine plant communities of Central South Carolina. Study shows the importance of water table depths as a controlling variable with vegetation patterns in the field and similar effects in a garden experiment. Grass planting study suggests that observed field distributions of dormant pine savannah grasses derive from complex interactive effects of fire history, hydrology and light environments. Use of regional longleaf data set to identify candidate species for introduction also appears to be a pioneering effort.

  4. Effective vegetation optical depth retrieval using microwave vegetation indices from WindSat data for short vegetation

    NASA Astrophysics Data System (ADS)

    Li, Yunqing; Shi, Jiancheng; Zhao, Tianjie

    2015-01-01

    Vegetation optical depth (VOD) and effective vegetation optical depth (EVOD) are key factors for estimating soil moisture and vegetation parameters. Microwave vegetation indices (MVIs, including A and B parameters) have been recently developed for short-vegetation covered surfaces. The MVIs parameter B (MVIs_B) is mainly related to vegetation conditions, which makes it provide a potential way of EVOD retrieval. A theoretical expression deriving EVOD was deduced using MVIs_B from WindSat data. Global patterns of EVOD were analyzed subsequently. It has been shown that EVOD retrieved from MVIs performed a consistent global pattern and seasonal variation with normalized difference vegetation index. Time-series data from the Central Tibetan Plateau Soil Moisture/Temperature Monitoring Network, which is grassland dominated, was selected for temporal analysis. It was found that the temporal EVOD from WindSat MVIs can capture the growth trend of vegetation. Comparisons between EVOD estimations from MVIs and a radiative transfer model were also performed over this network. It was found that EVOD from the two methods exhibited comparable values and similar trends. MVIs_B-derived EVOD can be obtained without any other auxiliary data and has great potential in land-surface parameter retrieval over short-vegetation covered areas.

  5. [Cross comparison of ASTER and Landsat ETM+ multispectral measurements for NDVI and SAVI vegetation indices].

    PubMed

    Xu, Han-qiu; Zhang, Tie-jun

    2011-07-01

    The present paper investigates the quantitative relationship between the NDVI and SAVI vegetation indices of Landsat and ASTER sensors based on three tandem image pairs. The study examines how well ASTER sensor vegetation observations replicate ETM+ vegetation observations, and more importantly, the difference in the vegetation observations between the two sensors. The DN values of the three image pairs were first converted to at-sensor reflectance to reduce radiometric differences between two sensors, images. The NDVI and SAVI vegetation indices of the two sensors were then calculated using the converted reflectance. The quantitative relationship was revealed through regression analysis on the scatter plots of the vegetation index values of the two sensors. The models for the conversion between the two sensors, vegetation indices were also obtained from the regression. The results show that the difference does exist between the two sensors, vegetation indices though they have a very strong positive linear relationship. The study found that the red and near infrared measurements differ between the two sensors, with ASTER generally producing higher reflectance in the red band and lower reflectance in the near infrared band than the ETM+ sensor. This results in the ASTER sensor producing lower spectral vegetation index measurements, for the same target, than ETM+. The relative spectral response function differences in the red and near infrared bands between the two sensors are believed to be the main factor contributing to their differences in vegetation index measurements, because the red and near infrared relative spectral response features of the ASTER sensor overlap the vegetation "red edge" spectral region. The obtained conversion models have high accuracy with a RMSE less than 0.04 for both sensors' inter-conversion between corresponding vegetation indices.

  6. Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore.

    PubMed

    Searle, Kate R; Rice, Mindy B; Anderson, Charles R; Bishop, Chad; Hobbs, N T

    2015-10-01

    Understanding how spatial and temporal heterogeneity influence ecological processes forms a central challenge in ecology. Individual responses to heterogeneity shape population dynamics, therefore understanding these responses is central to sustainable population management. Emerging evidence has shown that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants. We quantified the benefits mule deer (Odocoileus hemionus) accrue from accessing habitats with asynchronous plant phenology in northwest Colorado over 3 years. Our analysis examined both the direct physiological and indirect environmental effects of weather and vegetation phenology on mule deer winter body condition. We identified several important effects of annual weather patterns and topographical variables on vegetation phenology in the home ranges of mule deer. Crucially, temporal patterns of vegetation phenology were linked with differences in body condition, with deer tending to show poorer body condition in areas with less asynchronous vegetation green-up and later vegetation onset. The direct physiological effect of previous winter precipitation on mule deer body condition was much less important than the indirect effect mediated by vegetation phenology. Additionally, the influence of vegetation phenology on body fat was much stronger than that of overall vegetation productivity. In summary, changing annual weather patterns, particularly in relation to seasonal precipitation, have the potential to alter body condition of this important ungulate species during the critical winter period. This finding highlights the importance of maintaining large contiguous areas of spatially and temporally variable resources to allow animals to compensate behaviourally for changing climate-driven resource patterns.

  7. Evaluation of methods for estimating the effects of vegetation change and climate variability on streamflow

    NASA Astrophysics Data System (ADS)

    Zhao, Fangfang; Zhang, Lu; Xu, Zongxue; Scott, David F.

    2010-03-01

    Changes in vegetation cover can significantly affect streamflow. Two common methods for estimating vegetation effects on streamflow are the paired catchment method and the time trend analysis technique. In this study, the performance of these methods is evaluated using data from paired catchments in Australia, New Zealand, and South Africa. Results show that these methods generally yield consistent estimates of the vegetation effect, and most of the observed streamflow changes are attributable to vegetation change. These estimates are realistic and are supported by the vegetation history. The accuracy of the estimates, however, largely depends on the length of calibration periods or pretreatment periods. For catchments with short or no pretreatment periods, we find that statistically identified prechange periods can be used as calibration periods. Because streamflow also responds to climate variability, in assessing streamflow changes it is necessary to consider the effect of climate in addition to the effect of vegetation. Here, the climate effect on streamflow was estimated using a sensitivity-based method that calculates changes in rainfall and potential evaporation. A unifying conceptual framework, based on the assumption that climate and vegetation are the only drivers for streamflow changes, enables comparison of all three methods. It is shown that these methods provide consistent estimates of vegetation and climate effects on streamflow for the catchments considered. An advantage of the time trend analysis and sensitivity-based methods is that they are applicable to nonpaired catchments, making them potentially useful in large catchments undergoing vegetation change.

  8. Effects and Mechanisms of Fruit and Vegetable Juices on Cardiovascular Diseases.

    PubMed

    Zheng, Jie; Zhou, Yue; Li, Sha; Zhang, Pei; Zhou, Tong; Xu, Dong-Ping; Li, Hua-Bin

    2017-03-04

    Many studies have indicated that consumption of vegetables and fruits are positively related to lower incidence of several chronic noncommunicable diseases. Although composition of fruit and vegetable juices is different from that of the edible portion of fruits and vegetables, they contain polyphenols and vitamins from fruits and vegetables. Drinking vegetable and fruit juices is very popular in many countries, and also an efficient way to improve consumption of fruits and vegetables. The studies showed that fruit and vegetable juices affect cardiovascular risk factors, such as lowering blood pressure and improving blood lipid profiles. The main mechanisms of action included antioxidant effects, improvement of the aspects of the cardiovascular system, inhibition of platelet aggregation, anti-inflammatory effects, and prevention of hyperhomocysteinemia. Drinking juices might be a potential way to improve cardiovascular health, especially mixtures of juices because they contain a variety of polyphenols, vitamins, and minerals from different fruits and vegetables. This review summarizes recent studies on the effects of fruit and vegetable juices on indicators of cardiovascular disease, and special attention is paid to the mechanisms of action.

  9. Holocene dynamics of vegetation change in southern and southeastern Brazil is consistent with climate forcing

    NASA Astrophysics Data System (ADS)

    Rodrigues, Jackson Martins; Behling, Hermann; Giesecke, Thomas

    2016-08-01

    At mid to high northern latitudes postglacial vegetation change has often occurred synchronously over large regions triggered mainly by abrupt climate change. Based on 19 pollen diagrams from southern and southeastern Brazil we explore if similar synchronicities in vegetation change were also characteristic for the vegetation dynamics in low latitudes. We used sequence splitting to detect past vegetation change in the pollen diagrams and computed principal curves and rates of change to visually evaluate the changes in composition and dynamics. The results show that vegetation change occurred mostly during the second half of the Holocene with distinct episodes of change. The character of vegetation change is generally consistent with shifts to wetter conditions and agrees with inferred shifts of the South American Monsoon. Speleothems as well as the titanium record from the Cariaco Basin indicate several episodes of rapid shifts in the precipitation regime, which are within the dating uncertainty of the here detected periods of vegetation change (8900, 5900, 2800, 1200 and 550 cal yrs BP). Our results indicate that low latitude vegetation composition follows precession forcing of the hydrology, while change is often triggered and synchronized by rapid climate change much like in high and mid latitudes. Pollen diagrams document changes in the abundance of individual taxa and changes in the amount of woodland cover, while small compositional changes indicate a regional stability of vegetation types during the Holocene.

  10. A novel role for Celf1 in vegetal RNA localization during Xenopus oogenesis.

    PubMed

    Bauermeister, Diana; Claußen, Maike; Pieler, Tomas

    2015-09-15

    The localization of certain mRNAs to the vegetal cortex of Xenopus oocytes is of crucial importance for germ cell development and early embryonic patterning. Vegetal RNA localization is mediated by cis-acting RNA localization elements (LE). Several proteins assemble on the RNA LE and direct transport to the vegetal cortex. Although a number of localization RNP components have been identified, their full composition is unknown. In an RNA affinity purification approach, using the dead end 1 (dnd1) RNA LE, we identified Xenopus Celf1 as a novel component of vegetal localization RNP complexes. Celf1 is part of an RNP complex together with known vegetal localization factors and shows specific interactions with LEs from several but not all vegetally localizing RNAs. Immunostaining experiments reveal co-localization of Celf1 with vegetally localizing RNA and with known localization factors. Inhibition of Celf1 protein binding by localization element mutagenesis as well as Celf1 overexpression interfere with vegetal RNA localization. These results argue for a role of Celf1 in vegetal RNA localization during Xenopus oogenesis.

  11. Effects and Mechanisms of Fruit and Vegetable Juices on Cardiovascular Diseases

    PubMed Central

    Zheng, Jie; Zhou, Yue; Li, Sha; Zhang, Pei; Zhou, Tong; Xu, Dong-Ping; Li, Hua-Bin

    2017-01-01

    Many studies have indicated that consumption of vegetables and fruits are positively related to lower incidence of several chronic noncommunicable diseases. Although composition of fruit and vegetable juices is different from that of the edible portion of fruits and vegetables, they contain polyphenols and vitamins from fruits and vegetables. Drinking vegetable and fruit juices is very popular in many countries, and also an efficient way to improve consumption of fruits and vegetables. The studies showed that fruit and vegetable juices affect cardiovascular risk factors, such as lowering blood pressure and improving blood lipid profiles. The main mechanisms of action included antioxidant effects, improvement of the aspects of the cardiovascular system, inhibition of platelet aggregation, anti-inflammatory effects, and prevention of hyperhomocysteinemia. Drinking juices might be a potential way to improve cardiovascular health, especially mixtures of juices because they contain a variety of polyphenols, vitamins, and minerals from different fruits and vegetables. This review summarizes recent studies on the effects of fruit and vegetable juices on indicators of cardiovascular disease, and special attention is paid to the mechanisms of action. PMID:28273863

  12. Teleconnection between ENSO and Vegetation

    NASA Astrophysics Data System (ADS)

    Kogan, F.

    Since 1980s strong ENSO disturbed weather environment economy and human lives worldwide Total impact of these events on society is estimated in billions of dollars and consequences include famine human health problems loss of life property damage and destruction of the environment Areas sensitive to ENSO have been identified in some world areas from climatic records and recently from 15-year satellite data This presentation examines teleconnection between ENSO and terrestrial ecosystems worldwide using 24-year satellite and in situ data records ENSO events were characterized by monthly sea surface temperature SST anomalies in the tropical Pacific They were collected from the improved SST analysis data set Reynolds and Smith 1994 Average anomalies were calculated for the region 5 r N - 5 r S and 170 r - 120 r E 3 4 area Terrestrial ecosystems were presented by the vegetation health condition indices VHI Kogan 1997 The VHIs derived from AVHRR-based NDVI and 10-11 Phi m thermal radiances were designed to monitor moisture and thermal impacts on vegetation health greenness and vigor Two types of responses were identified In boreal winter ecosystems of northern South America southern Africa and Southeast Asia experienced severe moisture and thermal stress during El Ni n o and favorable conditions during La Ni n a years In central South America and the Horn of Africa regions the response was opposite World ecosystems are less sensitive to SSTs during boreal summer except for the areas in northern Brazil

  13. Simulation of SAR backscatter for forest vegetation

    NASA Astrophysics Data System (ADS)

    Prajapati, Richa; Kumar, Shashi; Agrawal, Shefali

    2016-05-01

    Synthetic Aperture Radar (SAR) is one of the most recent imaging technology to study the forest parameters. The invincible characteristics of microwave acquisition in cloudy regions and night imaging makes it a powerful tool to study dense forest regions. A coherent combination of radar polarimetry and interferometry (PolInSAR) enhances the accuracy of retrieved biophysical parameters. This paper attempts to address the issue of estimation of forest structural information caused due to instability of radar platforms through simulation of SAR image. The Terai Central Forest region situated at Haldwani area in Uttarakhand state of India was chosen as the study area. The system characteristics of PolInSAR dataset of Radarsat-2 SAR sensor was used for simulation process. Geometric and system specifications like platform altitude, center frequency, mean incidence angle, azimuth and range resolution were taken from metadata. From the field data it was observed that average tree height and forest stand density were 25 m and 300 stems/ha respectively. The obtained simulated results were compared with the sensor acquired master and slave intensity images. It was analyzed that for co-polarized horizontal component (HH), the mean values of simulated and real master image had a difference of 0.3645 with standard deviation of 0.63. Cross-polarized (HV) channel showed better results with mean difference of 0.06 and standard deviation of 0.1 while co-polarized vertical component (VV) did not show similar values. In case of HV polarization, mean variation between simulated and real slave images was found to be the least. Since cross-polarized channel is more sensitive to vegetation feature therefore better simulated results were obtained for this channel. Further the simulated images were processed using PolInSAR inversion modelling approach using three different techniques DEM differencing, Coherence Amplitude Inversion and Random Volume over Ground Inversion. DEM differencing

  14. PSA-Based Screening Outcomes, Dietary Heterocyclic Amine Exposure, and Prostate Cancer Risk in African Americans

    DTIC Science & Technology

    2008-01-01

    case for other environmental/dietary factors examined such calcium, cruciferous vegetables, vitamin D, UV from sunlight, lycopene , and body size...environmental/dietary factors examined such calcium, cruciferous vegetables, vitamin D, UV from sunlight, lycopene and body size.60–66 Because cooked

  15. Spatio-temporal correlation of vegetation and temperature patterns

    NASA Astrophysics Data System (ADS)

    Coppola, R.; D'Emilio, M.; Imbrenda, V.; Lanfredi, M.; Macchiato, M.; Simoniello, T.

    2010-05-01

    Temperature is one of the variables largely influencing vegetation species distributions (biogeographical regions) and plant development (phenological cycle). Anomalies in temperature regional patterns and in microclimate conditions induce modifications in vegetation cover phenology; in particular in European regions, the responsiveness of vegetation to temperature increase is greater in warmer Mediterranean countries. In order to assess the spatial arrangement and the temporal variability of vegetation and temperature patterns in a typical Mediterranean environment, we investigated monthly NDVI-AVHRR and temperature time series over Southern Italy, core of Mediterranean Basin. Temperature data, obtained from 35 meteoclimatic stations, were rasterized by adopting a combined deterministic-stochastic procedure we suitably implemented for the investigated region in order to obtain spatial data comparable with NDVI maps. For the period 1996-1998, monthly MVC data were clusterized on annual basis by means of a classification procedure to aggregate areas with similar phenological cycles. The same procedure was adopted to jointly evaluate temperature and vegetation profiles and identify areas having similar phenological and temperature patterns. The comparison of the identified clusters showed that the classification obtained with and without temperature profiles are very similar enhancing the strong role of this variable in vegetation development. Some exceptions in the cluster arrangement are due to local anomalies in vegetation distribution, such as forest fires. In order to spatially analyze such a dependence, we also elaborated a time correlation map for each year and we found that the correlation patterns are persistent on the year basis and generally follow the land cover distributions. The correlation values are very high and positive for the forested mountainous areas (R>0.8), whereas they are negative for plan coastal areas (R<-0.8). Low correlation values (R

  16. Cadmium accumulation in leaves of leafy vegetables.

    PubMed

    Baldantoni, Daniela; Morra, Luigi; Zaccardelli, Massimo; Alfani, Anna

    2016-01-01

    Leafy vegetables have a relatively high potential for Cd uptake and translocation, and are thus considered Cd accumulators. For this reason, leaves and roots of lettuce (Lactuca sativa L.) and endive (Cichorium endivia L.) plants, grown on different agricultural soils in Campania region (southern Italy), subjected to different fertilisation treatments (unfertilisation, compost amendment and mineral fertilisation), were analysed for Cd concentrations. Moreover, to clarify if the highest concentrations found are linked to older and inedible or to younger and edible leaves, external and internal endive leaves were separately analysed. All the leafy vegetables analysed showed on average 2-fold higher Cd concentrations in leaves than in roots. Leaf Cd concentrations in both lettuce and endive plants significantly differed among fertilisation treatments, with values highest in the plants grown on mineral fertilised soils. Apart from the soil fertilisation treatments, however, Cd leaf concentrations were often higher (up to 4-fold) than the threshold deduced by the EU 420/2011 Regulation, although the plants grew on unpolluted soils. Anyway, external leaves of endive plants showed significantly higher concentrations than internal leaves (in some cases the values were 3-fold higher), partly reassuring on the consumption of the younger leaves. Moreover, this study points out two major drawbacks in the Italian and European regulatory frameworks: (1) metal concentration (as total and/or available fraction) limits in agricultural soils are lacking; (2) metal concentration thresholds (currently existing only for Cd and Pb in crops) reported in the EU 420/2011 Regulation, expressed on the fresh weight basis rather than on the dry weight basis, appear not suitable.

  17. An Analytical Model for the Distributions of Velocity and Discharge in Compound Channels with Submerged Vegetation

    PubMed Central

    Jiang, Beihan; Yang, Kejun; Cao, Shuyou

    2015-01-01

    Based on the momentum transfer theory, an analytical model is proposed for the velocity and discharge distributions in compound channels with submerged vegetation on the floodplain. The partially vegetated channel was divided into three sub-regions, i.e. the main channel region, the floodplain region with submerged vegetation and the floodplain region without vegetation. For each region, the force balance relationship was established, and the momentum transfer between different regions was presented. Verification by the experimental data and comparison with the traditional method shows that the proposed method is capable of predicting for the velocity and discharge distributions in compound channels with submerged vegetation and is superior to the conventional method. The results also show that when the momentum transfer between different regions is ignored, the computed discharge will be much lager than the measured data, and the error increases with the discharge, especially in the floodplain region. PMID:26161661

  18. Prevalence and determinants of sufficient fruit and vegetable consumption among primary school children in Nakhon Pathom, Thailand

    PubMed Central

    Piaseu, Noppawan

    2017-01-01

    BACKGROUND/OBJECTIVES Low consumption of fruit and vegetable is frequently viewed as an important contributor to obesity risk. With increasing childhood obesity and relatively low fruit and vegetable consumption among Thai children, there is a need to identify the determinants of the intake to promote fruit and vegetable consumption effectively. SUBJECTS/METHODS This cross-sectional study was conducted at two conveniently selected primary schools in Nakhon Pathom. A total of 609 students (grade 4-6) completed questionnaires on personal and environmental factors. Adequate fruit and vegetable intakes were defined as a minimum of three servings of fruit or vegetable daily, and adequate total intake as at least 6 serves of fruit and vegetable daily. Data were analyzed using descriptive statistics, the chi-square test, and multiple logistic regression. RESULTS The proportion of children with a sufficient fruit and/or vegetable intakes was low. Covariates of child's personal and environmental factors showed significant associations with sufficient intakes of fruit and/or vegetable (P < 0.05). Logistic regression analyses showed that the following factors were positively related to sufficient intake of vegetable; lower grade, a positive attitude toward vegetable, and fruit availability at home; and that greater maternal education, a positive child's attitude toward vegetable, and fruit availability at home were significantly associated with sufficient consumption of fruits and total fruit and vegetable intake. CONCLUSIONS The present study showed that personal factors like attitude toward vegetables and socio-environmental factors, such as, greater availability of fruits were significantly associated with sufficient fruit and vegetable consumption. The importance of environmental and personal factors to successful nutrition highlights the importance of involving parents and schools. PMID:28386386

  19. Monitoring vegetation using DOAS satellite observations

    NASA Astrophysics Data System (ADS)

    Eigemeier, E.; Beirle, S.; Marbach, T.; Platt, U.; Wagner, T.

    2009-12-01

    Vegetation-cycles are of general interest for many applications. Be it for harvest-predictions, global monitoring of climate-change or as input to atmospheric models. From novel spectrally resolving UV/vis satellite instruments (like GOME or SCIAMACHY) the spectral signatures of different types of vegetation can be identified and analysed. Although the spatial resolution of GOME and SCIAMACHY observations is much coarser than those of conventional satellite instruments for vegetation monitoring, our data sets on different vegetation types add new and useful information, not obtainable from other sources. Common vegetation indices are based on the fact that the difference between Red and Near Infrared reflection is higher than in any other material on Earth’s surface. This gives a very high degree of confidence for vegetation-detection. The spectrally resolving data from GOME and SCIAMACHY provide the chance to concentrate on finer spectral features throughout the red and near infrared spectrum. We look at these features using a technique known as Differential Optical Absorption Spectroscopy (DOAS). Although originally developed to retrieve information on trace gases, it can also be used to gain information on vegetation. Another advantage is that this method automatically corrects for atmospheric effects. This renders the vegetation-information easily comparable over long time-spans. In addition, high-frequency-structures from vegetation also effect the retrieval of tropospheric trace-gases and aerosols. To optimize vegetation monitoring with DOAS we produce spectrally resolved reference spectra from different vegetation types using our own instrumentation. We analyze the effect of different Pigments on high-frequency-structures of the DOAS Retrieval. Applying these results we investigate how well we can distinguish vegetation types from space.

  20. Monitoring vegetation using DOAS satellite observations

    NASA Astrophysics Data System (ADS)

    Eigemeier, Ellen; Beirle, Steffen; Marbach, Thierry; Platt, Ulrich; Wagner, Thomas

    2010-05-01

    Vegetation-cycles are of general interest for many applications. Be it for harvest-predictions, global monitoring of climate-change or as input to atmospheric models. From novel spectrally resolving UV/vis satellite instruments (like GOME or SCIAMACHY) the spectral signatures of different types of vegetation can be identified and analysed. Although the spatial resolution of GOME and SCIAMACHY observations is much coarser than those of conventional satellite instruments for vegetation monitoring, our data sets on different vegetation types add new and useful information, not obtainable from other sources. Common vegetation indices are based on the fact that the difference between Red and Near Infrared reflection is higher than in any other material on Earth's surface. This gives a very high degree of confidence for vegetation-detection. The spectrally resolving data from GOME and SCIAMACHY provide the chance to concentrate on finer spectral features throughout the red and near infrared spectrum. We look at these features using a technique known as Differential Optical Absorption Spectroscopy (DOAS). Although originally developed to retrieve information on trace gases, it can also be used to gain information on vegetation. Another advantage is that this method automatically corrects for atmospheric effects. This renders the vegetation-information easily comparable over long time-spans. In addition, high-frequency-structures from vegetation also effect the retrieval of tropospheric trace-gases and aerosols. To optimize vegetation monitoring with DOAS we produce spectrally resolved reference spectra from different vegetation types using our own instrumentation. We analyze the effect of different Pigments on high-frequency-structures of the DOAS Retrieval. Applying these results we investigate how well we can distinguish vegetation types from space.

  1. Fourth international circumpolar arctic vegetation mapping workshop

    USGS Publications Warehouse

    Raynolds, Martha K.; Markon, C.J.

    2002-01-01

    During the week of April 10, 2001, the Fourth International Circumpolar Arctic Vegetation Mapping Workshop was held in Moscow, Russia. The purpose of this meeting was to bring together the vegetation scientists working on the Circumpolar Arctic Vegetation Map (CAVM) to (1) review the progress of current mapping activities, (2) discuss and agree upon a standard set of arctic tundra subzones, (3) plan for the production and dissemination of a draft map, and (4) begin work on a legend for the final map.

  2. Feedbacks between vegetation and soil moisture in mountain grasslands

    NASA Astrophysics Data System (ADS)

    Castelli, M.; Bertoldi, G.; Notarnicola, C.; Brenner, J.; Greifeneder, F.; Niedrist, G.; Tappeiner, U.

    2015-12-01

    Soil moisture content (SMC) is a key variable for water budget and controls both physical processes, as runoff generation, and biological processes, as vegetation development. On the other hand, vegetation and land management influence soil evolution and therefore SMC dynamic. Moreover, in mountain areas complex topography adds an additional control on water fluxes and climate. For those reasons, understanding the controls on the spatio-temporal variability of SMC is essential to predict how perturbations in vegetation and climate affects mountain hydrology. In this contribution we want to analyze the impact of different land management (meadows versus pastures) on the spatial and temporal dynamic of surface and root-zone SMC, and its relationships with climate and topography. We focus on water-limited alpine grasslands in the LTER area Mazia Valley in the European Alps. The infrastructure includes a dense network of more than 20 stations measuring soil moisture, biomass production observations and two eddy-covariance stations over meadow and pasture. Moreover, more than ten high-resolution SAR (Sentinel1 and RADARSAT2) images were acquired, in combination with ground surveys to monitor SMC spatial distribution. In order to understand the different physical controls, SMC has been also modelled using the GEOtop hydrological model, coupled with a dynamic vegetation model. Results show that meadows and pastures have different behaviors. Meadows are in general wetter and in flatter locations. This leads to higher vegetation productivity, development of soils with higher water holding capacity and to a positive feedback on SMC. In contrast, pastures are drier, in steeper locations with lower vegetation density and more compact soils due animal trampling, with a negative feedback on SMC. This co-evolution of land cover and SMC leads to persistent spatial patterns controlled by both topography and management.

  3. High herbivore density associated with vegetation diversity in interglacial ecosystems

    PubMed Central

    Sandom, Christopher J.; Ejrnæs, Rasmus; Hansen, Morten D. D.; Svenning, Jens-Christian

    2014-01-01

    The impact of large herbivores on ecosystems before modern human activities is an open question in ecology and conservation. For Europe, the controversial wood–pasture hypothesis posits that grazing by wild large herbivores supported a dynamic mosaic of vegetation structures at the landscape scale under temperate conditions before agriculture. The contrasting position suggests that European temperate vegetation was primarily closed forest with relatively small open areas, at most impacted locally by large herbivores. Given the role of modern humans in the world-wide decimations of megafauna during the late Quaternary, to resolve this debate it is necessary to understand herbivore–vegetation interactions before these losses. Here, a synthetic analysis of beetle fossils from Great Britain shows that beetles associated with herbivore dung were better represented during the Last Interglacial (132,000–110,000 y B.P., before modern human arrival) than in the early Holocene (10,000–5,000 y B.P.). Furthermore, beetle assemblages indicate closed and partially closed forest in the early Holocene but a greater mixture of semiopen vegetation and forest in the Last Interglacial. Hence, abundant and diverse large herbivores appear to have been associated with high structural diversity of vegetation before the megafauna extinctions at the end of the Pleistocene. After these losses and in the presence of modern humans, large herbivores generally were less abundant, and closed woodland was more prevalent in the early Holocene. Our findings point to the importance of the formerly rich fauna of large herbivores in sustaining structurally diverse vegetation in the temperate forest biome and provide support for recent moves toward rewilding-based conservation management. PMID:24591633

  4. Pesticide and toxicity reduction using an integrated vegetated treatment system.

    PubMed

    Anderson, Brian; Phillips, Bryn; Hunt, John; Largay, Bryan; Shihadeh, Rami; Tjeerdema, Ronald

    2011-05-01

    The California, USA, central coast is one of the most productive agricultural areas in the world, and numerous stakeholders are working there to implement conservation practices to reduce contaminated runoff. Practices include vegetated treatment systems (VTS) designed to promote contaminant reduction and breakdown. The current study evaluated the effectiveness of a vegetated drainage ditch incorporating a sedimentation basin, a vegetated section, and a Landguard organophosphate-A (OP-A) enzyme dosing system. The VTS was constructed on a working farm and was designed to remove organophosphate and pyrethroid pesticides, the primary pesticides causing toxicity in Salinas Valley watersheds. The present study was conducted during five separate irrigation events on tailwater runoff containing mixtures of pesticides and suspended sediments. Water samples were collected at four stations within the system, and these were subjected to chemical analyses and tested for toxicity to Ceriodaphnia dubia. All inflow samples were highly toxic to C. dubia, and this was largely because of diazinon. Treatment of diazinon-contaminated runoff was only partially effective using aquatic vegetation. All diazinon remaining after vegetated treatment was effectively removed after treatment with the Landguard OP-A enzyme. Chemical analysis of the VTS water samples showed that pyrethroid and organochlorine pesticide concentrations in water were greatly reduced in the sedimentation section of the ditch, and these pesticides were further reduced in the vegetated section of the ditch. The overall conclusion from these analyses is that the VTS was effective at reducing the more hydrophobic organochlorine and pyrethroid pesticides from water. The water-soluble pesticide diazinon was not sufficiently removed during the VTS residence times observed in this study; however, residual diazinon was effectively removed using Landguard OP-A.

  5. Evaporative cooling over the Tibetan Plateau induced by vegetation growth

    PubMed Central

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z. X.; Li, Yue; Myneni, Ranga B.; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-01-01

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316

  6. White Vegetables: Glycemia and Satiety12

    PubMed Central

    Anderson, G. Harvey; Soeandy, Chesarahmia Dojo; Smith, Christopher E.

    2013-01-01

    The objective of this review is to discuss the effect of white vegetable consumption on glycemia, satiety, and food intake. White vegetables is a term used to refer to vegetables that are white or near white in color and include potatoes, cauliflowers, turnips, onions, parsnips, white corn, kohlrabi, and mushrooms (technically fungi but generally considered a vegetable). They vary greatly in their contribution to the energy and nutrient content of the diet and glycemia and satiety. As with other foods, the glycemic effect of many white vegetables has been measured. The results illustrate that interpretation of the semiquantitative comparative ratings of white vegetables as derived by the glycemic index must be context dependent. As illustrated by using the potato as an example, the glycemic index of white vegetables can be misleading if not interpreted in the context of the overall contribution that the white vegetable makes to the carbohydrate and nutrient composition of the diet and their functionality in satiety and metabolic control within usual meals. It is concluded that application of the glycemic index in isolation to judge the role of white vegetables in the diet and, specifically in the case of potato as consumed in ad libitum meals, has led to premature and possibly counterproductive dietary guidance. PMID:23674805

  7. Prevalent vegetation growth enhancement in urban environment

    PubMed Central

    Zhao, Shuqing; Liu, Shuguang; Zhou, Decheng

    2016-01-01

    Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued. PMID:27185955

  8. Evaluation of a native vegetation masking technique

    NASA Technical Reports Server (NTRS)

    Kinsler, M. C.

    1984-01-01

    A crop masking technique based on Ashburn's vegetative index (AVI) was used to evaluate native vegetation as an indicator of crop moisture condition. A mask of the range areas (native vegetation) was generated for each of thirteen Great Plains LANDSAT MSS sample segments. These masks were compared to the digitized ground truth and accuracies were computed. An analysis of the types of errors indicates a consistency in errors among the segments. The mask represents a simple quick-look technique for evaluating vegetative cover.

  9. Wetland vegetation establishment in L-Lake

    SciTech Connect

    Kroeger, S.R.

    1990-07-01

    Wetland vegetation was transplanted from PAR Pond to L-Lake between January and August, 1987. Approximately 100,000 individual plants representing over 40 species were transplanted along the southern shoreline. Three zones of vegetation were created: (1) submersed/floating-leaved, (2) emergent, (3) upper emergent/shrub. During the summers of 1987, 1988, 1989, the Savannah River Ecology Laboratory sampled the vegetation in 54 permanent transects located in planted (N=32) and unplanted areas (N=22). The 1989 vegetation data from L-Lake were compared to 1985 data from PAR Pond.

  10. Prevalent vegetation growth enhancement in urban environment.

    PubMed

    Zhao, Shuqing; Liu, Shuguang; Zhou, Decheng

    2016-05-31

    Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued.

  11. Remote sensing/vegetation classification. [California

    NASA Technical Reports Server (NTRS)

    Parker, I. E.

    1981-01-01

    The CALVEG classification system for identification of vegetation is described. This hierarchical system responds to classification requirements and to interpretation of vegetation at various description levels, from site description to broad identification levels. The system's major strength is its flexibility in application of remote sensing technology to assess, describe and communicate data relative to vegetative resources on a state-wide basis. It is concluded that multilevel remote sensing is a cost effective tool for assessment of the natural resource base. The CLAVEG system is found to be an economically efficient tool for both existing and potential vegetation.

  12. Experimental analysis of the effect of vegetation on flow and bed shear stress distribution in high-curvature bends

    NASA Astrophysics Data System (ADS)

    Termini, Donatella

    2016-12-01

    The cross-sectional circulation, which develops in meandering bends, exerts an important role in velocity and the boundary shear stress redistributions. This paper considers the effect of vegetation on cross-sectional flow and bed shear distribution along a high-curvature bend. The analysis is conducted with the aid of data collected in a large-amplitude meandering flume during a reference experiment without vegetation and an experiment with vegetation on the bed. The results show that the presence of vegetation modifies the curvature-induced flow pattern and the directionality of turbulent structures. In fact, in the presence of vegetation, the turbulent structures tend to develop within and between the vegetated elements. The pattern of cross-sectional flow, modified by the presence of vegetation, affects the bed shear stress distribution along the bend so that the core of the highest value of the bed shear stress does not reach the outer bank.

  13. Does consumption of leafy vegetables grown in peri-urban agriculture pose a risk to human health?

    PubMed

    Nabulo, G; Black, C R; Craigon, J; Young, S D

    2012-03-01

    Concentrations of potentially toxic elements were measured in soils and five contrasting tropical leafy vegetables grown in a replicated field trial at five contaminated urban agriculture sites in Kampala City, Uganda. Soil contamination at each site could be tentatively ascribed to known waste disposal practices. There was considerable variation in metal uptake between vegetable types. Washing leafy vegetables reduced chromium and lead concentrations but exogenous contamination of leaves also depended on vegetable type, with Gynandropsis gynandra L. showing a marked tendency to accumulate Pb and Cr. For the worst case scenario of children consuming unwashed vegetables, some metal 'hazard quotient' (HQ) limits (1.0) were violated at four of the five sites studied. For the 25 'site-vegetable' combinations assessed, the HQ for Pb exceeded 1.0 in 36% of cases. A vegetable-specific site screening tool based on soil extraction with 0.01 M CaCl(2) and extrapolation to provide HQ values was assessed.

  14. Vegetation dynamics and rainfall sensitivity of the Amazon

    PubMed Central

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Niño southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million km2) and across 80% of the subtropical grasslands (3.3 million km2). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Niño events, NDVI was reduced about 16.6% across an area of up to 1.6 million km2 compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics. PMID:25349419

  15. Vegetation Dynamics and Rainfall Sensitivity of the Amazon

    NASA Technical Reports Server (NTRS)

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Nino southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million sq km) and across 80% of the subtropical grasslands (3.3 million sq km). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Nino events, NDVI was reduced about 16.6% across an area of up to 1.6 million sq km compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.

  16. Climate-vegetation interaction and amplification of Australian dust variability

    NASA Astrophysics Data System (ADS)

    Evans, Stuart; Ginoux, Paul; Malyshev, Sergey; Shevliakova, Elena

    2016-11-01

    Observations show that Australian dust activity varies by a factor of 4 on decadal timescales. General circulation models, however, typically fail to simulate this variability. Here we introduce a new dust parameterization into the NOAA/Geophysical Fluid Dynamics Laboratory climate model CM3 that represents land surface processes controlling dust sources including soil water and ice, snow cover, vegetation characteristics, and land type. In an additional novel step, we couple this new dust parameterization to the dynamic vegetation model LM3. In Australia, the new parameterization amplifies the magnitude and timescale of dust variability and better simulates the El Niño-Southern Oscillation-dust relationship by more than doubling its strength. We attribute these improvements primarily to the slow response time of vegetation to precipitation anomalies and show that vegetation changes account for approximately 50% of enhanced dust emission during El Niño events. The amplified dust leads to radiative forcing over Australia greater than -1 and -20 W/m2 at top of atmosphere and surface, respectively.

  17. Temporal Trends and Spatial Variability of Vegetation Phenology over the Northern Hemisphere during 1982-2012

    PubMed Central

    Yang, Qichun; Lu, Linlin; Wang, Xiaoyue; Peng, Yaoyao

    2016-01-01

    Satellite-derived vegetation phenology has been recognized as a key indicator for detecting changes in the terrestrial biosphere in response to global climate change. However, multi-decadal changes and spatial variation of vegetation phenology over the Northern Hemisphere and their relationship to climate change have not yet been fully investigated. In this article, we investigated the spatial variability and temporal trends of vegetation phenology over the Northern Hemisphere by calibrating and analyzing time series of the satellite-derived normalized difference vegetation index (NDVI) during 1982–2012, and then further examine how vegetation phenology responds to climate change within different ecological zones. We found that during the period from 1982 to 2012 most of the high latitude areas experienced an increase in growing period largely due to an earlier beginning of vegetation growing season (BGS), but there was no significant trend in the vegetation growing peaks. The spatial pattern of phenology within different eco-zones also experienced a large variation over the past three decades. Comparing the periods of 1982–1992, 1992–2002 with 2002–2012, the spatial pattern of change rate of phenology shift (RPS) shows a more significant trend in advancing of BGS, delaying of EGS (end of growing season) and prolonging of LGS (length of growing season) during 2002–2012, overall shows a trend of accelerating change. Temperature is a major determinant of phenological shifts, and the response of vegetation phenology to temperature varied across different eco-zones. PMID:27276082

  18. Temporal Trends and Spatial Variability of Vegetation Phenology over the Northern Hemisphere during 1982-2012.

    PubMed

    Wang, Siyuan; Yang, Bojuan; Yang, Qichun; Lu, Linlin; Wang, Xiaoyue; Peng, Yaoyao

    2016-01-01

    Satellite-derived vegetation phenology has been recognized as a key indicator for detecting changes in the terrestrial biosphere in response to global climate change. However, multi-decadal changes and spatial variation of vegetation phenology over the Northern Hemisphere and their relationship to climate change have not yet been fully investigated. In this article, we investigated the spatial variability and temporal trends of vegetation phenology over the Northern Hemisphere by calibrating and analyzing time series of the satellite-derived normalized difference vegetation index (NDVI) during 1982-2012, and then further examine how vegetation phenology responds to climate change within different ecological zones. We found that during the period from 1982 to 2012 most of the high latitude areas experienced an increase in growing period largely due to an earlier beginning of vegetation growing season (BGS), but there was no significant trend in the vegetation growing peaks. The spatial pattern of phenology within different eco-zones also experienced a large variation over the past three decades. Comparing the periods of 1982-1992, 1992-2002 with 2002-2012, the spatial pattern of change rate of phenology shift (RPS) shows a more significant trend in advancing of BGS, delaying of EGS (end of growing season) and prolonging of LGS (length of growing season) during 2002-2012, overall shows a trend of accelerating change. Temperature is a major determinant of phenological shifts, and the response of vegetation phenology to temperature varied across different eco-zones.

  19. Chloroacetic acids in European soils and vegetation.

    PubMed

    Peters, Ruud J B

    2003-04-01

    Trichloroacetic acid (TCA) and dichloroacetic acid (DCA) are possible minor atmospheric degradation products of perchloroethylene and trichloroethylene, respectively. These acids may be wet- or dry-deposited from the atmosphere to land surfaces and hence possibly affect plant growth. However, the existing database on TCA levels in soil is limited to a few studies carried out in the late 1980's and the early to mid-1990's and it was concluded that there is a need for further measurements of concentrations of TCA and DCA in soils. In this study soil samples from 10 locations in 5 European countries, as well as vegetation samples, and a limited number of rainwater and air samples were collected and analysed for DCA and TCA to determine the concentrations of these compounds. An isotope dilution method using GC-MS was used for the determination of these acids in the samples. The method was briefly validated and the performance characteristics are presented. The results of the analysis of the soil samples show that the DCA and TCA concentrations in soil from different sites in Europe are more or less comparable, with the exception of Germany, especially Freudenstadt, where significantly higher TCA concentrations (up to 12 microg kg(-1) dw) were found. The average DCA and TCA concentrations in soil in this study were 0.25 +/- 0.12 and 0.64 +/- 1.40 microg kg(-1) dw, respectively. Generally, the concentration in soils from forest areas are about twice those from open-land areas. The DCA and TCA concentrations in vegetation samples ranged from 2.1 to 73 microg kg(-1) dw for DCA and from 4.7 to 17 microg kg(-1) dw for TCA. Thus, the concentrations in vegetation samples are 10-20 times higher than the soil concentrations. DCA and TCA concentrations in wet deposition samples and air samples collected in The Netherlands were 0.14 and 0.15 microg l(-1) for wet deposition samples and <0.5 and 0.7 ng m(-3) for air samples respectively. For these samples taken in The Netherlands

  20. Volatilization of iodine from vegetation

    NASA Astrophysics Data System (ADS)

    Amiro, B. D.; Johnston, F. L.

    Gaseous emissions of iodine were measured from bean plant foliage. A gamma-emitting iodine tracer, Na 125I, was taken up by the plants from a hydroponic growth medium and released to a cuvette atmosphere. The dynamics of the flux were studied using a flow-through gamma detector. The relationship between leaf radioactive tracer activity and growth-medium activity was linear, as was the relationship between the iodine flux and both leaf and growth-medium activity. Iodine flux and leaf conductance to water responded similarly to changes in light levels, suggesting that the stomata may partially control the flux. The flux was inhibited by aeration of the hydroponic growth medium, and we postulate that methylation causes the iodine flux. Iodine emissions from living vegetation probably contribute <0.1 % to the stable iodine concentration in the atmosphere above terrestrial areas. However, this pathway may be a direct route for radioactive iodine transport from contaminated soils to the atmosphere.

  1. Using Vegetation Maps to Provide Information on Soil Distribution

    NASA Astrophysics Data System (ADS)

    José Ibáñez, Juan; Pérez-Gómez, Rufino; Brevik, Eric C.; Cerdà, Artemi

    2016-04-01

    Many different types of maps (geology, hydrology, soil, vegetation, etc.) are created to inventory natural resources. Each of these resources is mapped using a unique set of criteria, including scales and taxonomies. Past research has indicated that comparing the results of different but related maps (e.g., soil and geology maps) may aid in identifying deficiencies in those maps. Therefore, this study was undertaken in the Almería Province (Andalusia, Spain) to (i) compare the underlying map structures of soil and vegetation maps and (ii) to investigate if a vegetation map can provide useful soil information that was not shown on a soil map. To accomplish this soil and vegetation maps were imported into ArcGIS 10.1 for spatial analysis. Results of the spatial analysis were exported to Microsoft Excel worksheets for statistical analyses to evaluate fits to linear and power law regression models. Vegetative units were grouped according to the driving forces that determined their presence or absence (P/A): (i) climatophilous (climate is the only determinant of P/A) (ii); lithologic-climate (climate and parent material determine PNV P/A); and (iii) edaphophylous (soil features determine PNV P/A). The rank abundance plots for both the soil and vegetation maps conformed to Willis or Hollow Curves, meaning the underlying structures of both maps were the same. Edaphophylous map units, which represent 58.5% of the vegetation units in the study area, did not show a good correlation with the soil map. Further investigation revealed that 87% of the edaphohygrophylous units (which demand more soil water than is supplied by other soil types in the surrounding landscape) were found in ramblas, ephemeral riverbeds that are not typically classified and mapped as soils in modern systems, even though they meet the definition of soil given by the most commonly used and most modern soil taxonomic systems. Furthermore, these edaphophylous map units tend to be islands of biodiversity

  2. Wet scrubbing of biomass producer gas tars using vegetable oil

    NASA Astrophysics Data System (ADS)

    Bhoi, Prakashbhai Ramabhai

    The overall aims of this research study were to generate novel design data and to develop an equilibrium stage-based thermodynamic model of a vegetable oil based wet scrubbing system for the removal of model tar compounds (benzene, toluene and ethylbenzene) found in biomass producer gas. The specific objectives were to design, fabricate and evaluate a vegetable oil based wet scrubbing system and to optimize the design and operating variables; i.e., packed bed height, vegetable oil type, solvent temperature, and solvent flow rate. The experimental wet packed bed scrubbing system includes a liquid distributor specifically designed to distribute a high viscous vegetable oil uniformly and a mixing section, which was designed to generate a desired concentration of tar compounds in a simulated air stream. A method and calibration protocol of gas chromatography/mass spectroscopy was developed to quantify tar compounds. Experimental data were analyzed statistically using analysis of variance (ANOVA) procedure. Statistical analysis showed that both soybean and canola oils are potential solvents, providing comparable removal efficiency of tar compounds. The experimental height equivalent to a theoretical plate (HETP) was determined as 0.11 m for vegetable oil based scrubbing system. Packed bed height and solvent temperature had highly significant effect (p0.05) effect on the removal of model tar compounds. The packing specific constants, Ch and CP,0, for the Billet and Schultes pressure drop correlation were determined as 2.52 and 2.93, respectively. The equilibrium stage based thermodynamic model predicted the removal efficiency of model tar compounds in the range of 1-6%, 1-4% and 1-2% of experimental data for benzene, toluene and ethylbenzene, respectively, for the solvent temperature of 30° C. The NRTL-PR property model and UNIFAC for estimating binary interaction parameters are recommended for modeling absorption of tar compounds in vegetable oils. Bench scale

  3. Effects of Wave Nonlinearity on Wave Attenuation by Vegetation

    NASA Astrophysics Data System (ADS)

    Wu, W. C.; Cox, D. T.

    2014-12-01

    The need to explore sustainable approaches to maintain coastal ecological systems has been widely recognized for decades and is increasingly important due to global climate change and patterns in coastal population growth. Submerged aquatic vegetation and emergent vegetation in estuaries and shorelines can provide ecosystem services, including wave-energy reduction and erosion control. Idealized models of wave-vegetation interaction often assume rigid, vertically uniform vegetation under the action of waves described by linear wave theory. A physical model experiment was conducted to investigate the effects of wave nonlinearity on the attenuation of random waves propagating through a stand of uniform, emergent vegetation in constant water depth. The experimental conditions spanned a relative water depth from near shallow to near deep water waves (0.45 < kh <1.49) and wave steepness from linear to nonlinear conditions (0.03 < ak < 0.18). The wave height to water depth ratios were in the range 0.12 < Hs/h < 0.34, and the Ursell parameter was in the range 2 < Ur < 68. Frictional losses from the side wall and friction were measured and removed from the wave attenuation in the vegetated cases to isolate the impact of vegetation. The normalized wave height attenuation decay for each case was fit to the decay equation of Dalrymple et al. (1984) to determine the damping factor, which was then used to calculate the bulk drag coefficients CD. This paper shows that the damping factor is dependent on the wave steepness ak across the range of relative water depths from shallow to deep water and that the damping factor can increase by a factor of two when the value of ak approximately doubles. In turn, this causes the drag coefficient CD to decrease on average by 23%. The drag coefficient can be modeled using the Keulegan-Carpenter number using the horizontal orbital wave velocity estimate from linear wave theory as the characteristic velocity scale. Alternatively, the Ursell

  4. A regional dynamic vegetation-climate model for Central America

    NASA Astrophysics Data System (ADS)

    Snell, R. S.; Cowling, S. A.; Smith, B.

    2009-12-01

    Global vegetation models simulate the distribution of vegetation as a function of climate. Dynamic global vegetation models (DGVMs) are also able to simulate the vegetation shifts in response to climate change, which makes them particularly useful for addressing questions about past and future climate scenarios. However, DGVMs have been criticized for using generic plant functional types (PFTs) and running the models at a coarse grid cell resolution. Regional dynamic vegetation models are able to simulate important landscape variation, since they use a finer resolution and specific PFTs for their region. Regional studies have typically focused on boreal or temperate ecosystems in North America and Europe. We will be presenting the results of applying a dynamic regional vegetation-climate model (LPJ-GUESS) for Central America. Initially, the model was run with the described global PFTs. However, several biomes were very poorly represented. Two PFTs were added: a Tropical Needleleaf Evergreen Tree to improve the simulation of the Mixed Pine-Oak biome, and a Desert Shrub to capture the Xeric Shrublands. The overall distribution of biomes was visually similar, however the Kappa statistic indicated a poor agreement with the potential biome map (overall Kappa = 0.301). The Kappa statistic did improve as we aggregated cell sizes and simplified the biomes (overall Kappa = 0.728). Compared to remote sensing data, the model showed a strong correlation with total LAI (r = 0.75). The poor Kappa statistic is likely due to a combination of factors. The way in which biomes are defined by the author can have a large influence on the level of agreement between simulated and potential vegetation. The Kappa statistic is also limited to comparing individual grid cells and thus, cannot detect overall patterns. Examining those areas which are poorly represented will help to identify future work and improve the representation of vegetation in these ecological models. In particular, the

  5. Quantifying Vegetation Change in Semiarid Environments: Precision and Accuracy of Spectral Mixture Analysis and the Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Elmore, Andrew J.; Mustard, John F.; Manning, Sara J.; Elome, Andrew J.

    2000-01-01

    Because in situ techniques for determining vegetation abundance in semiarid regions are labor intensive, they usually are not feasible for regional analyses. Remotely sensed data provide the large spatial scale necessary, but their precision and accuracy in determining vegetation abundance and its change through time have not been quantitatively determined. In this paper, the precision and accuracy of two techniques, Spectral Mixture Analysis (SMA) and Normalized Difference Vegetation Index (NDVI) applied to Landsat TM data, are assessed quantitatively using high-precision in situ data. In Owens Valley, California we have 6 years of continuous field data (1991-1996) for 33 sites acquired concurrently with six cloudless Landsat TM images. The multitemporal remotely sensed data were coregistered to within 1 pixel, radiometrically intercalibrated using temporally invariante surface features and geolocated to within 30 m. These procedures facilitated the accurate location of field-monitoring sites within the remotely sensed data. Formal uncertainties in the registration, radiometric alignment, and modeling were determined. Results show that SMA absolute percent live cover (%LC) estimates are accurate to within ?4.0%LC and estimates of change in live cover have a precision of +/-3.8%LC. Furthermore, even when applied to areas of low vegetation cover, the SMA approach correctly determined the sense of clump, (i.e., positive or negative) in 87% of the samples. SMA results are superior to NDVI, which, although correlated with live cover, is not a quantitative measure and showed the correct sense of change in only 67%, of the samples.

  6. Case Studies Due to Invasive Plants on the Vegetation Retardation Succession in Landslide Areas of Shimen reservoir

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Cheng; Lin, Shin-Hwei

    2014-05-01

    The steep terrain and the fragile geology in Taiwan have caused large landslides in the reservoir watershed in the season with typhoons and heavy rain. Management, restoration strategies, and vegetation succession mechanism of landslide areas are distinct due to different attributes and locations of landslide areas. Aiming at 50 landslide areas in Shihmen reservoir watershed from 2004 to 2012, because of the Typhoon Aere occurred in 2004, this study clusters with the primary vegetation data and ortho image, and discusses the primary vegetation type in landslide areas. The successive management engineering in the watershed and the case data in Sule and Shaluntzu are analyzed the vegetation development and plant competition to evaluate the plant succession mechanism and the vegetation restoration results for the reference of successive design of vegetation engineering in landslide areas. The result shows that Shaluntzu area used invasive plants Rhodesgrass and Rhodesian kudzu when slope land vegetation restoration and secondary planting seedlings. Rhodesian kudzu has property of binding plant and causes for vegetation death. Currently, cutting down Rhodesian kudzu to reduce its interference is the most effective prevention and management method. Carefully choose the pre-grass species for vegetation in the have to carry out artificial vegetation restoration area, and continue to monitor the status currently. It would increase biodiversity for slope land due to select the indicator species of vegetation restoration and know successional trends of invasive plant species.

  7. 9 CFR 319.311 - Chow mein vegetables with meat, and chop suey vegetables with meat.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... COMPOSITION Canned, Frozen, or Dehydrated Meat Food Products § 319.311 Chow mein vegetables with meat, and... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Chow mein vegetables with meat, and chop suey vegetables with meat. 319.311 Section 319.311 Animals and Animal Products FOOD SAFETY...

  8. The Ionomic Study of Vegetable Crops

    PubMed Central

    Watanabe, Toshihiro; Maejima, Eriko; Yoshimura, Tomoko; Urayama, Masaru; Yamauchi, Aiko; Owadano, Masako; Okada, Ryosuke; Osaki, Mitsuru; Kanayama, Yoshinori; Shinano, Takuro

    2016-01-01

    Soil contains various essential and nonessential elements, all of which can be absorbed by plants. Plant ionomics is the study of the accumulation of these elements (the ionome) in plants. The ionomic profile of a plant is affected by various factors, including species, variety, organ, and environment. In this study, we cultivated various vegetable crop species and cultivars under the same field conditions and analyzed the level of accumulation of each element in the edible and nonedible parts using ionomic techniques. The concentration of each element in the edible parts differed between species, which could be partly explained by differences in the types of edible organs (root, leaf, seed, and fruit). For example, the calcium concentration was lower in seeds and fruit than in other organs because of the higher dependency of calcium accumulation on xylem transfer. The concentration of several essential microelements and nonessential elements in the edible parts also varied greatly between cultivars of the same species, knowledge of which will help in the breeding of vegetables that are biofortified or contain lower concentrations of toxic elements. Comparison of the ionomes of the fruit and leaves of tomato (Solanum lycopersicum) and eggplant (S. melongena) indicated that cadmium and boron had higher levels of accumulation in eggplant fruit, likely because of their effective transport in the phloem. We also found that homologous elements that have been reported to share the same uptake/transport system often showed significant correlation only in a few families and that the slopes of these relationships differed between families. Therefore, these differences in the characteristics of mineral accumulation are likely to affect the ionomic profiles of different families. PMID:27478901

  9. Regional assessment of trends in vegetation change dynamics using principal component analysis

    NASA Astrophysics Data System (ADS)

    Osunmadewa, B. A.; Csaplovics, E.; R. A., Majdaldin; Adeofun, C. O.; Aralova, D.

    2016-10-01

    Vegetation forms the basis for the existence of animal and human. Due to changes in climate and human perturbation, most of the natural vegetation of the world has undergone some form of transformation both in composition and structure. Increased anthropogenic activities over the last decades had pose serious threat on the natural vegetation in Nigeria, many vegetated areas are either transformed to other land use such as deforestation for agricultural purpose or completely lost due to indiscriminate removal of trees for charcoal, fuelwood and timber production. This study therefore aims at examining the rate of change in vegetation cover, the degree of change and the application of Principal Component Analysis (PCA) in the dry sub-humid region of Nigeria using Normalized Difference Vegetation Index (NDVI) data spanning from 1983-2011. The method used for the analysis is the T-mode orientation approach also known as standardized PCA, while trends are examined using ordinary least square, median trend (Theil-Sen) and monotonic trend. The result of the trend analysis shows both positive and negative trend in vegetation change dynamics over the 29 years period examined. Five components were used for the Principal Component Analysis. The results of the first component explains about 98 % of the total variance of the vegetation (NDVI) while components 2-5 have lower variance percentage (< 1%). Two ancillary land use land cover data of 2000 and 2009 from European Space Agency (ESA) were used to further explain changes observed in the Normalized Difference Vegetation Index. The result of the land use data shows changes in land use pattern which can be attributed to anthropogenic activities such as cutting of trees for charcoal production, fuelwood and agricultural practices. The result of this study shows the ability of remote sensing data for monitoring vegetation change in the dry-sub humid region of Nigeria.

  10. The Laser Vegetation Imaging Sensor (LVIS): An Airborne Laser Altimeter for Mapping Vegetation and Topography

    NASA Technical Reports Server (NTRS)

    Bryan, J.; Rabine, David L.

    1998-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne laser altimeter designed to quickly and extensively map surface topography as well as the relative heights of other reflecting surfaces within the laser footprint. Since 1997, this instrument has primarily been used as the airborne simulator for the Vegetation Canopy Lidar (VCL) mission, a spaceborne mission designed to measure tree height, vertical structure and ground topography (including sub-canopy topography). LVIS is capable of operating from 500 m to 10 km above ground level with footprint sizes from 1 to 60 m. Laser footprints can be randomly spaced within the 7 degree telescope field-of-view, constrained only by the operating frequency of the ND:YAG Q-switched laser (500 Hz). A significant innovation of the LVIS altimeter is that all ranging, waveform recording, and range gating are performed using a single digitizer, clock base, and detector. A portion of the outgoing laser pulse is fiber-optically fed into the detector used to collect the return signal and this entire time history of the outgoing and return pulses is digitized at 500 Msamp/sec. The ground return is then located using software digital signal processing, even in the presence of visibly opaque clouds. The surface height distribution of all reflecting surfaces within the laser footprint can be determined, for example, tree height and ground elevation. To date, the LVIS system has been used to monitor topographic change at Long Valley caldera, CA, as part of NASA's Topography and Surface Change program, and to map tree structure and sub-canopy topography at the La Selva Biological Research Station in Costa Rica, as part of the pre-launch calibration activities for the VCL mission. We present results that show the laser altimeter consistently and accurately maps surface topography, including sub-canopy topography, and vegetation height and structure. These results confirm the measurement concept of VCL and highlight the benefits of

  11. Climate change impact on forest cover and vegetation in Betwa Basin, India

    NASA Astrophysics Data System (ADS)

    Palmate, S. S.; Pandey, Ashish; Kumar, Dheeraj; Pandey, R. P.; Mishra, S. K.

    2014-07-01

    This paper evaluates the effect of climate change (described in terms of temperature and rainfall) on forest cover and vegetation (described in terms of Normalized Difference Vegetation Index) in the Betwa river basin, a tributary of River Yamuna in Central India. Temperature and rainfall data of 18 stations, forest cover and vegetation (derived using 5 years data from Landsat images employing ERDAS Imagine and ArcGIS) were used in the analysis. The effect of climate change was studied for both the pre-monsoon and post-monsoon seasons. In this study, the simple regression method was used to evaluate their relationship. In pre-monsoon season, temperature and forest cover analysis shows regression coefficient value of 0.6876 and, temperature and vegetation analysis shows regression coefficient value of 0.5751. Further, in post-monsoon season analysis rainfall and forest cover shows regression coefficient value of 0.8417 and, temperature and vegetation analysis shows regression coefficient value of 0.6854. The study reveals that, in pre-monsoon season temperature was significantly related with forest cover and vegetation. In post-monsoon season rainfall exhibited positive response to forest cover and, temperature exhibited negative response to vegetation in the Betwa river basin.

  12. Synthesized attributes of water use by regional vegetation: a key to cognition of "water pump" viewpoint.

    PubMed

    Huang, Xin-hui; Yu, Fu-ke; Li, Xiao-ying; Zheng, Yuan; Yuan, Hua; Ma, Jian-gang; Wang, Yan-xia; Qi, Dan-hui; Shao, Hong-bo

    2014-01-01

    Recently, the frequent seasonal drought in Southwest China has brought considerable concerns and continuous heated arguments on the "water pump" viewpoint (i.e., the water demand from Hevea spp. and Eucalyptus spp. can be treated as a water pump) once again. However, such viewpoint just focused on water consumption from vegetation transpiration and its ecoenvironment impacts, which had not considered other attributes of vegetation, namely, water saving and drought resistance, and hydrological regulation (water conservation) into consideration. Thus, in this paper, the synthesized attributes of regional vegetation water use had been mainly discussed. The results showed that the study on such aspects as the characters of water consumption from vegetation transpiration, the potential of water saving and drought resistance, and the effects of hydrological regulation in Southwest China lagged far behind, let alone the report on synthesized attributes of water utilization with the organic combination of the three aspects above or the paralleled analysis. Accordingly, in this paper, the study on the synthesized attributes of water use by regional vegetation in Southwest China was suggested, and the objectives of such a special study were clarified, targeting the following aspects: (i) characters of water consumption from transpiration of regional typical artificial vegetation; (ii) potential of water saving and drought resistance of regional typical artificial vegetation; (iii) effects of hydrological regulation of regional typical artificial vegetation; (iv) synthesized attributes of water use by regional typical artificial vegetation. It is expected to provide a new idea for the scientific assessment on the regional vegetation ecoenvironment effects and theoretical guidance for the regional vegetation reconstruction and ecological restoration.

  13. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest

    PubMed Central

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D.; Magnusson, William E.

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone. PMID:26066654

  14. PIXE, 252Cf-PDMS and radiochemistry applied for soil and vegetable analysis

    NASA Astrophysics Data System (ADS)

    Dias da Cunha, K.; Cazicava, J.; Coelho, M. J.; Barros Leite, C. V.

    2006-01-01

    The aim of this work is to identify the elements present in vegetables and soils using PIXE (particle induced X-rays emission) and 252Cf-PDMS (252Cf plasma desorption mass spectrometry) techniques in order to estimate the possible influence of soil and agricultural techniques in the metal absorption by the vegetables. In this work, metal concentrations were evaluated in soil and vegetable samples from several regions, where different agricultural techniques were employed. Si, Zr, Ce, Th, Sc and Pb identified in the soil samples were not biologically available. Ga, Ge, As and Br identified in the tubercles indicate that spray pesticide used on the vegetable leaves was absorbed by them. 232Th and 238U present in the soil were not absorbed by the vegetables. The airborne particles from anthropogenic sources (as CFn, VCn) were absorbed by the vegetables. Compounds from mineral sources present in soil as V+, VCO3, HPO4, Cr+, CrOH+, Mn+, FeH+, Fe(OH)n and in the bioorganic compounds as N+, Ca (CN)n+and CnH+ were identified in vegetables. The metal absorption by the vegetables is not dependent of the metal concentration in soil. Different tubercles cultivated in the same soil show similar metal absorption. The exogenous contributions such as the elements present in water irrigation, pesticides, fertilizers and airborne particles deposited on leaves can be absorbed by vegetables. The absorption by the roots depends on the chemical compound of the elements. The use of pesticide sprays and air pollution can cause more contamination in the vegetables than in soil. The use of this methodology allows the identification of possible sources of metals in soils and in vegetables and the metal speciation.

  15. Powdered hide model for vegetable tanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdered hide samples for this initial study of vegetable tanning were prepared from hides that were dehaired by a typical sulfide or oxidative process, and carried through the delime/bate step of a tanning process. In this study, we report on interactions of the vegetable tannin, quebracho with th...

  16. 49 CFR 213.37 - Vegetation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION TRACK SAFETY STANDARDS Roadbed § 213.37 Vegetation. Vegetation on railroad property which is on or immediately adjacent to roadbed shall be controlled so that it does not— (a) Become a fire hazard to track-carrying structures; (b) Obstruct visibility of railroad signs and signals: (1) Along the right-of-way,...

  17. A Reference Unit on Home Vegetable Gardening.

    ERIC Educational Resources Information Center

    McCully, James S., Comp.; And Others

    Designed to provide practical, up-to-date, basic information on home gardening for vocational agriculture students with only a limited knowledge of vegetable gardening, this reference unit includes step-by-step procedures for planning, planting, cultivating, harvesting, and processing vegetables in a small plot. Topics covered include plot…

  18. Fruit, vegetable, and grain processing wastes

    SciTech Connect

    Andrews, R.M.; Soderquist, M.R.

    1980-06-01

    This is a literature review of fruit, vegetable and grain processing wastes. The factors affecting water usage and methods of conservation were examined. Various processes were investigated which included the pulp recovery from caustic peeled tomato skin, the dewatering of citrus, washing leafy vegetables with recycled process water and the potato processing industry.

  19. 21 CFR 73.260 - Vegetable juice.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., or by the water infusion of the dried vegetable. The color additive may be concentrated or dried. The... shall not be construed as a standard of identity under section 401 of the act. However, where a standard of identity for a particular vegetable juice has been promulgated under section 401 of the act,...

  20. 21 CFR 73.260 - Vegetable juice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., or by the water infusion of the dried vegetable. The color additive may be concentrated or dried. The... shall not be construed as a standard of identity under section 401 of the act. However, where a standard of identity for a particular vegetable juice has been promulgated under section 401 of the act,...

  1. 21 CFR 73.260 - Vegetable juice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., or by the water infusion of the dried vegetable. The color additive may be concentrated or dried. The... shall not be construed as a standard of identity under section 401 of the act. However, where a standard of identity for a particular vegetable juice has been promulgated under section 401 of the act,...

  2. Weed Identification and Control in Vegetable Crops.

    ERIC Educational Resources Information Center

    Ferretti, Peter A., Comp.

    This agriculture extension service publication from Pennsylvania State University examines weed control and identification in vegetable crops. Contents include: (1) Types of weeds; (2) Reducing losses caused by weeds, general control methods and home garden weed control; (3) How herbicides are used; (4) Specific weeds in vegetable plantings; and…

  3. Cover crops in vegetable production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current vegetable production systems require an intensive amount Current vegetable production systems require an intensive amount of work and inputs, and if not properly managed could have detrimental effects on soil and the environment. Practices such as intensive tillage, increased herbicide use, ...

  4. Estimating wheat growth with radar vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we computed the Radar Vegetation Index (RVI) using observations made with a ground based multi-frequency polarimetric scatterometer system over an entire wheat growth period. The temporal variations of the backscattering coefficients for L-, C-, and X-band, RVI, vegetation water conte...

  5. Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs.

    PubMed

    Delgado Sandoval, Silvia del Carmen; Abraham Juárez, María Jazmín; Simpson, June

    2012-03-01

    Agave tequilana is a monocarpic perennial species that flowers after 5-8 years of vegetative growth signaling the end of the plant's life cycle. When fertilization is unsuccessful, vegetative bulbils are induced on the umbels of the inflorescence near the bracteoles from newly formed meristems. Although the regulation of inflorescence and flower development has been described in detail for monocarpic annuals and polycarpic species, little is known at the molecular level for these processes in monocarpic perennials, and few studies have been carried out on bulbils. Histological samples revealed the early induction of umbel meristems soon after the initiation of the vegetative to inflorescence transition in A. tequilana. To identify candidate genes involved in the regulation of floral induction, a search for MADS-box transcription factor ESTs was conducted using an A. tequilana transcriptome database. Seven different MIKC MADS genes classified into 6 different types were identified based on previously characterized A. thaliana and O. sativa MADS genes and sequences from non-grass monocotyledons. Quantitative real-time PCR analysis of the seven candidate MADS genes in vegetative, inflorescence, bulbil and floral tissues uncovered novel patterns of expression for some of the genes in comparison with orthologous genes characterized in other species. In situ hybridization studies using two different genes showed expression in specific tissues of vegetative meristems and floral buds. Distinct MADS gene regulatory patterns in A. tequilana may be related to the specific reproductive strategies employed by this species.

  6. Influence of Global Vegetation on Mid-Tropospheric CO2 Early Results

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Nguyen, Hai; Olsen, Ed

    2012-01-01

    AIRS Mid-Tropospheric CO2 shows a high degree of horizontal variability. Ongoing efforts show AIRS data influenced by global circulation patterns including El Nino Southern Oscillation (ENSO) and Madden Julian Oscillation (MJO) What is the influence of global vegetation cycle on CO2 seasonal behavior? (1) Can we correlate mid-trop CO2 seasonal variability with global vegetation for different regions? (2) For now: First look at zonal averages and Land Vegetation (ocean biomass later) (3) Goal: Sanity Check on AIRS Data Seasonal Cycle, Solicit interest by carbon cycle community

  7. Sensitivity of vegetation indices to different burn and vegetation ratios using LANDSAT-5 satellite data

    NASA Astrophysics Data System (ADS)

    Pleniou, M.; Koutsias, N.

    2013-08-01

    The application of vegetation indices is a very common approach in remote sensing of burned areas to either map the fire scar or estimate burn severity since they minimize the effect of exogenous factors and enhance the correlation with the internal parameters of vegetation. In a recent study we found that the original spectral channels, based on which these indices are estimated, are sensitive to external parameters of the vegetation as for example the spectral reflectance of the background soil. In such cases, the influence of the soil in the reflectance values is different in the various spectral regions depending on its type. These problems are further enhanced by the non-homogeneous pixels, as created from fractions of different types of land cover. Parnitha (Greece), where a wildfire occurred on July 2007, was established as test site. The purpose of this work is to explore the sensitivity of vegetation indices when used to estimate and map different fractions of fire-scorched (burned) and non fire-scorched (vegetated) areas. IKONOS, a very high resolution satellite imagery, was used to create a three-class thematic map to extract the percentages of vegetation, burned surfaces, and bare soil. Using an overlaid fishnet we extracted samples of completely "burned", completely "vegetated" pixels and proportions with different burn/vegetation ratios (45%-55% burned - 45%-55% vegetation, 20%-30% burned - 70%- 80% vegetation, 70%-80% burned - 20%-30% vegetation). Vegetation indices were calculated (NDVI, IPVI, SAVI) and their values were extracted to characterize the mentioned classes. The main findings of our recent research were that vegetation indices are less sensitive to external parameters of the vegetation by minimizing external effects. Thus, the semi-burned classes were spectrally more consistent to their different fractions of scorched and non-scorched vegetation, than the original spectral channels based on which these indices are estimated.

  8. Vegetable oils: Precombustion characteristics and performance as diesel fuels

    SciTech Connect

    Bagby, M.O.

    1986-03-01

    Vegetable oils show technical promise as alternative fuels for diesel engines and have good potential as emergency fuels. Realistically, vegetable oils cause a number of problems when used in direct-injection diesel engines, generally attributable to inefficient combustion. At least partially responsible for poor combustion of neat vegetable oils are their high viscosity and non-volatility. To improve combustion several somewhat empirical approaches involving both chemical and physical modifications have been investigated by endurance tests in a variety of engines. Using the EMA 200 h engine screening test, several fuels show technical promise. These include methyl, ethyl, and butyl esters; high-oleic oils:diesel blend (1:3); diesel:soybean oil:butanol:cetane improver (33:33:33:1); and microemulsion fuels (diesel:soybean oil:190 proff ethanol:butanol, 50:25:5:20) and (soybean oil:methanol:2-octanol:cetane improver, 53:13:33:1). Using a pressure vessel, fuel injection system, and high speed motion picture camera, fuel injection characteristics of vegetable oils, e.g., soybean, sunflower, cottonseed, and peanut, have been observed in a quiescent nitrogen atmosphere at 480/sup 0/C and 4.1MPa. Their injection and atomization characteristics are markedly different from those of petroleum derived diesel fuels. Heating the vegetable oils to lower their viscosities increased spray penetration rate, reduced spray cone angles, and resulted in spray characteristics resembling those of diesel fuel. Significant chemical changes occurred following injection. Samples collected at about 400 microseconds after the injection event consisted of appreciable quantities of C/sub 4/-C/sub 16/ hydrocarbons, and free carboxyl groups were present.

  9. Fractional Vegetation Cover of East African Wetlands Observed on Ground and from Space

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Amler, E.; Guerschmann, J. P.; Scarth, P.; Behn, K.; Thonfeld, F.

    2016-08-01

    Wetlands are important ecosystems providing numerous ecosystem services. They are of particular importance to communities in East Africa where agriculture is the most important economic sector and where food availability to households critical. During an intensive field campaign in the dry season of 2013 were Fractional Vegetation Cover (FVC) measurements, botanical vegetation cover and vegetation structure estimates acquired in three wetland test sites within the East African region. FVC cover data were collated in three strata: ground layer, midstorey and overstorey (woody vegetation greater than 2 m). Fractional cover estimates for the green and no-green vegetative fraction were calculated for Landsat MODIS imagery. These FVC data products were evaluated a) with FVC field data and b) relative to each other for their usability in the East African region. First results show some promise for further studies.

  10. [Evaluation on environmental quality of heavy metals in soils and vegetables based on geostatistics and GIS].

    PubMed

    Xie, Zheng-miao; Li, Jing; Wang, Bi-ling; Chen, Jian-jun

    2006-10-01

    Contents of heavy metals (Pb, Zn, Cd, Cu) in soils and vegetables from Dongguan town in Shangyu city, China were studied using geostatistical analysis and GIS technique to evaluate environmental quality. Based on the evaluation criteria, the distribution of the spatial variability of heavy metals in soil-vegetable system was mapped and analyzed. The results showed that the distribution of soil heavy metals in a large number of soil samples in Dongguan town was asymmetric. The contents of Zn and Cu were lower than those of Cd and Pb. The concentrations distribution of Pb, Zn, Cd and Cu in soils and vegetables were different in spatial variability. There was a close relationship between total and available contents of heavy metals in soil. The contents of Pb and Cd in green vegetables were higher than those of Zn and Cu and exceeded the national sanitation standards for vegetables.

  11. Soils and vegetation of Santa Barbara Island, Channel Islands National Park, California, USA

    NASA Astrophysics Data System (ADS)

    Halvorson, William L.; Fenn, Dennis B.; Allardice, William R.

    1988-01-01

    The multifaceted development of an erosion surface on Santa Barbara Island, Channel Islands National Park, California, has led to this study of the relationship between soils and vegetation. A dry Mediterranean climate and past attempts at farming and introductions of alien species have led to vegetative degradation accompanied by both gully and surface erosion. Soil and vegetation analyses show this erosion to be in a location of transition. The soils are Typic Chromoxererts (Vertisol Order) with high clay, salinity, and sodium contents. The vegetation is ecotonal in nature, grading from a principally alien annual grassland with Avena fatua and Atriplex semibaccata to a shrub community dominated by the native Suaeda californica. Management toward revegetation and stabilization of this island ecosystem will be difficult with high clay, saline-sodic soils and disturbed vegetation.

  12. Vegetation Cover Change in Yosemite National Park (California) Detected using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Landsat image analysis over the past 20+ years showed that consistent increases in the satellite normalized difference vegetation index (NDVI) during relatively dry years were confined to large wildfire areas that burned in the late 1980s and 1990s.

  13. Radar response of vegetation: An overview

    NASA Technical Reports Server (NTRS)

    Ulaby, Fawwaz T.; Dobson, M. Craig

    1993-01-01

    This document contains a number of viewgraphs on surface and vegetation backscattering. A classification of vegetation based on general scattering properties is presented. Radar scattering mechanisms are discussed, and backscattering and reflection coefficients for soil back scattering models are given. Radar response to vegetation is presented, with the objectives to discriminate and classify vegetation; to estimate biomass, leaf area index (LAI), and soil moisture; and to monitor changes, including deforestation and growth. Both theory and observation (laboratory, field, air SAR, and European Remote Sensing Satellite (ERS-1) observations) are used to present backscatter coefficients and other data for various vegetation types. ERS-1 results include class statistics, comparison with theory, and biomass response and seasonal variation (LAI) for deciduous and coniferous forests.

  14. Evaluating the impact of a wide range of vegetation densities on river channel pattern

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Roucou, Ron

    2016-04-01

    Braided rivers are very dynamic systems which have complex controls over their planform and flow dynamics. Vegetation is one variable which influences channel geometry and pattern, through its effect on local flow hydraulics and the process continuum of sediment erosion-transport-deposition. Furthermore, where in the braided floodplain stable vegetation develops depends on the temporal sequencing of the river discharge i.e. floods. Understanding the effect of vegetation in these highly dynamic systems has multiple consequences for human activity and floodplain management. This paper focusses on the specific role of vegetation density in controlling braided river form and processes. Previous research in this field has been contradictory; with Gran and Paola (2001) finding that increasing vegetation density decreased the number of active channels. In contrast, Coulthard (2005] observed that as vegetation become denser there was an increase in the number of channels. This was hypothesized to be caused by flow separation around vegetation and the development of bars immediately downstream of the plant. This paper reports the results from a set of experiments in a 4m by 1m flume, where discharge, slope and sediment size were kept constant. Artificial grass was used to represent vegetation with a density ranging from 50 plants/m2 to 400 plants/m2. Digital photographs, using a GoPro camera with a fish eye lens, were taken from ~1m above the flume at an interval of 30 seconds during the 3 hour experiment. The experiments showed that as the vegetation density increased from 50 to 150 plants/m2, the number of channel bars developing doubled from 12 to 24. At vegetation densities greater than 150 plants/m2 there was a decline in the number of bars created to a minimum of 8 bars for a density of 400 plants/m2. We attribute these patterns to the effect that the vegetation has on flow hydraulics, sediment transport processes and the spatial patterns of erosion and deposition. We

  15. Understanding of the relationship between vegetation change and physical geographic factors based on geographical detector

    NASA Astrophysics Data System (ADS)

    Pang, Jing; Du, Ziqiang; Zhang, Xiaoyu

    2015-12-01

    In order to analyze the effect of physical geographic factors on vegetation change in arid and semi-arid ecosystems, assess the relative role of individual physical geographic factors and the interaction between factors on vegetation changes quantitatively, this study takes the Xinjiang area as an example, uses the GIS spatial analysis technology and Geographical Detector model based on the analysis of variance to analysis the influence of physical geographic factors on the vegetation quantitatively. First of all, the spatial-temporal variations of vegetation in Xinjiang area over the last 30 years were analyzed using 1982-2011 GIMMS NDVI3g data as the indicator of vegetation activity. Secondly, the effects of mean annual precipitation, mean annual temperature, sunshine duration, mean annual wind velocity, DEM, slope and aspect, soil type and vegetation type were selected as potential physical geographic factors. Finally, the influence of physical geographic factors on vegetation change in Xinjiang area was analyzed using the Geographical Detector model. The results show that: (1) the annual coverage of vegetation in Xinjiang area was gradually increasing in 1982-2011 years (linear rate 0.0017/a, P=0.000). (2) the area of vegetation improvement was greater than the area of vegetation degradation. The area of vegetation improvement was mainly distributed in the northern part of the Tianshan Mountains and the Tarim Watershed, the vegetation degradation region was mainly distributed in the southern and Northeast part of Xinjiang. (3) precipitation, soil and vegetation types had the greatest influence on NDVI, followed by temperature, sunshine duration and DEM, and the other factors had little effect. (4) DEM enhanced the effect of soil type on NDVI, and sunshine duration and DEM enhanced all the effect of temperature on NDVI. So, sunshine duration and DEM can be used as the auxiliary indicator in the vegetation growth monitoring. Our results brought new insights on

  16. RAPID SEPARATION OF ACTINIDES AND RADIOSTRONTIUM IN VEGETATION SAMPLES

    SciTech Connect

    Maxwell, S.

    2010-06-01

    A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and {sup 90}Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.

  17. Extraction of urban vegetation with Pleiades multiangular images

    NASA Astrophysics Data System (ADS)

    Lefebvre, Antoine; Nabucet, Jean; Corpetti, Thomas; Courty, Nicolas; Hubert-Moy, Laurence

    2016-10-01

    Vegetation is essential in urban environments since it provides significant services in terms of health, heat, property value, ecology ... As part of the European Union Biodiversity Strategy Plan for 2020, the protection and development of green-infrastructures is strengthened in urban areas. In order to evaluate and monitor the quality of the green infra-structures, this article investigates contributions of Pléiades multi-angular images to extract and characterize low and high urban vegetation. From such images one can extract both spectral and elevation information from optical images. Our method is composed of 3 main steps : (1) the computation of a normalized Digital Surface Model from the multi-angular images ; (2) Extraction of spectral and contextual features ; (3) a classification of vegetation classes (tree and grass) performed with a random forest classifier. Results performed in the city of Rennes in France show the ability of multi-angular images to extract DEM in urban area despite building height. It also highlights its importance and its complementarity with contextual information to extract urban vegetation.

  18. Verification of watershed vegetation restoration policies, arid China

    PubMed Central

    Zhang, Chengqi; Li, Yu

    2016-01-01

    Verification of restoration policies that have been implemented is of significance to simultaneously reduce global environmental risks while also meeting economic development goals. This paper proposed a novel method according to the idea of multiple time scales to verify ecological restoration policies in the Shiyang River drainage basin, arid China. We integrated modern pollen transport characteristics of the entire basin and pollen records from 8 Holocene sedimentary sections, and quantitatively reconstructed the millennial-scale changes of watershed vegetation zones by defining a new pollen-precipitation index. Meanwhile, Empirical Orthogonal Function method was used to quantitatively analyze spatial and temporal variations of Normalized Difference Vegetation Index in summer (June to August) of 2000–2014. By contrasting the vegetation changes that mainly controlled by millennial-scale natural ecological evolution with that under conditions of modern ecological restoration measures, we found that vegetation changes of the entire Shiyang River drainage basin are synchronous in both two time scales, and the current ecological restoration policies met the requirements of long-term restoration objectives and showed promising early results on ecological environmental restoration. Our findings present an innovative method to verify river ecological restoration policies, and also provide the scientific basis to propose future emphasizes of ecological restoration strategies. PMID:27470948

  19. Verification of watershed vegetation restoration policies, arid China

    NASA Astrophysics Data System (ADS)

    Zhang, Chengqi; Li, Yu

    2016-07-01

    Verification of restoration policies that have been implemented is of significance to simultaneously reduce global environmental risks while also meeting economic development goals. This paper proposed a novel method according to the idea of multiple time scales to verify ecological restoration policies in the Shiyang River drainage basin, arid China. We integrated modern pollen transport characteristics of the entire basin and pollen records from 8 Holocene sedimentary sections, and quantitatively reconstructed the millennial-scale changes of watershed vegetation zones by defining a new pollen-precipitation index. Meanwhile, Empirical Orthogonal Function method was used to quantitatively analyze spatial and temporal variations of Normalized Difference Vegetation Index in summer (June to August) of 2000–2014. By contrasting the vegetation changes that mainly controlled by millennial-scale natural ecological evolution with that under conditions of modern ecological restoration measures, we found that vegetation changes of the entire Shiyang River drainage basin are synchronous in both two time scales, and the current ecological restoration policies met the requirements of long-term restoration objectives and showed promising early results on ecological environmental restoration. Our findings present an innovative method to verify river ecological restoration policies, and also provide the scientific basis to propose future emphasizes of ecological restoration strategies.

  20. Fluorescence lidar method for remote monitoring of effects on vegetation

    NASA Astrophysics Data System (ADS)

    Matvienko, Gennady; Timofeev, Valery; Grishin, Anatoly; Fateyeva, Natalia

    2006-09-01

    Plants constantly interact with environment, mainly, by means of photosynthesis and soil nutrition. The state of plant photosynthetic apparatus that reflects the general physiological state of a plant, can be analyzed remotely on a basis of laser-induced fluorescence using a fluorescence lidar. In this respect, a fluorescence lidar can be a technical means of remote sensing of the effects on vegetation including chemical soil pollution. Among a series of applications, of interest is development of a lidar technique for detecting the effects of oil products and mechanical disturbances. This paper is devoted to the application of the fluorescence lidar technique to monitoring mechanical and chemical impacts on the woody vegetation typical of Siberia. A physical basis of this technique is the red fluorescence of chlorophyll of green plants excited by the second harmonic (532 nm) of Nd:YAG laser. Red fluorescence of plants consists of two bands centered at 685 and 740 nm which is conditioned by functioning of two photosystems. As in situ experiments show, the indicated photosystems and, respectively, the fluorescence on these bands respond differently to feeding disturbances and mechanical impacts, making the increase in the fluorescence intensity informative. Time criteria of fluorescence characteristics were obtained at single and multiple effects on the vegetation. The paper describes a lidar system that meets the requirements for detecting the effects on vegetation.

  1. Initial Validation of NDVI time seriesfrom AVHRR, VEGETATION, and MODIS

    NASA Technical Reports Server (NTRS)

    Morisette, Jeffrey T.; Pinzon, Jorge E.; Brown, Molly E.; Tucker, Jim; Justice, Christopher O.

    2004-01-01

    The paper will address Theme 7: Multi-sensor opportunities for VEGETATION. We present analysis of a long-term vegetation record derived from three moderate resolution sensors: AVHRR, VEGETATION, and MODIS. While empirically based manipulation can ensure agreement between the three data sets, there is a need to validate the series. This paper uses atmospherically corrected ETM+ data available over the EOS Land Validation Core Sites as an independent data set with which to compare the time series. We use ETM+ data from 15 globally distributed sites, 7 of which contain repeat coverage in time. These high-resolution data are compared to the values of each sensor by spatially aggregating the ETM+ to each specific sensors' spatial coverage. The aggregated ETM+ value provides a point estimate for a specific site on a specific date. The standard deviation of that point estimate is used to construct a confidence interval for that point estimate. The values from each moderate resolution sensor are then evaluated with respect to that confident interval. Result show that AVHRR, VEGETATION, and MODIS data can be combined to assess temporal uncertainties and address data continuity issues and that the atmospherically corrected ETM+ data provide an independent source with which to compare that record. The final product is a consistent time series climate record that links historical observations to current and future measurements.

  2. Self-Replication of Localized Vegetation Patches in Scarce Environments

    NASA Astrophysics Data System (ADS)

    Bordeu, Ignacio; Clerc, Marcel G.; Couteron, Piere; Lefever, René; Tlidi, Mustapha

    2016-09-01

    Desertification due to climate change and increasing drought periods is a worldwide problem for both ecology and economy. Our ability to understand how vegetation manages to survive and propagate through arid and semiarid ecosystems may be useful in the development of future strategies to prevent desertification, preserve flora—and fauna within—or even make use of scarce resources soils. In this paper, we study a robust phenomena observed in semi-arid ecosystems, by which localized vegetation patches split in a process called self-replication. Localized patches of vegetation are visible in nature at various spatial scales. Even though they have been described in literature, their growth mechanisms remain largely unexplored. Here, we develop an innovative statistical analysis based on real field observations to show that patches may exhibit deformation and splitting. This growth mechanism is opposite to the desertification since it allows to repopulate territories devoid of vegetation. We investigate these aspects by characterizing quantitatively, with a simple mathematical model, a new class of instabilities that lead to the self-replication phenomenon observed.

  3. Monitoring the dynamics of coastal vegetation in southwestern Taiwan.

    PubMed

    Lee, Tsai-Ming

    2005-12-01

    This study analyzes the results of the first 5 years of long-term environmental monitoring of the dynamics of coastal vegetation communities in southwestern Taiwan. Seven permanent plots were established in major vegetation communities, including grassland, windbreak forest, and secondary succession forest. Results showed that species richness decreased yearly in grasslands but fluctuated moderately in the forest plots. A Jaccard similarity coefficient was used to evaluate the similarities of species composition between different monitoring years. Species composition changed rapidly in grassland sites, with the similarity coefficient dropping from 82 to 29% in 5 years. The similarity coefficient of vegetation in the composite hardwood forest dropped from 80 to 50%, indicating that at least half the species were the same as those in the beginning and that the composition of forest communities was more stable than that of grassland communities. Dominant species in the forest community changed gradually during the monitoring period. The original planting of Casuarina equisetifolia in windbreak forests decreased year by year in most of the plots, while Cerbera manghas and Ficus microcarpa became the dominant species. The trend of replacement of dominant species indicates that most of the vegetation communities are still in successional stages.

  4. Growth and decline of vegetation on mine dumps

    NASA Technical Reports Server (NTRS)

    Gilbertson, B. P. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The main objective is to determine the extent to which can be used to differentiate between mine dumps having varying degrees of vegetative cover. At this stage it is clear that the various mine dumps can be located and identified. Differences in vegetative cover can be seen and measured. Patterns of vegetative growth, some characteristic to particular dumps, can also be seen. It is therefore tentatively concluded that mine dumps can be differentiated with respect to their vegetative cover on the imagery received to date, and this is reported as a significant result. Subsequent imagery showing seasonal variations should facilitate this program. In addition to work on the mine dumps, a photogeological project has been initiated on geotectonics of South Africa. Studies of ERTS-1 images has indicated that major structures (faults, folds, and linear features) associated with the three geotectonic environments can be identified. In addition, major as well as relatively minor stratigraphic subdivisions can be recognized by their color tones. Results obtained warrant continuation of this study using color composite prints enlarged to a scale of 1:500,000.

  5. Remotely sensed blue and red fluorescence emission for monitoring vegetation

    NASA Astrophysics Data System (ADS)

    Moya, I.; Guyot, G.; Goulas, Y.

    For monitoring plant canopies, fluorescence signals emitted by plants underlaser or daylight excitation appear to be a promising tool among the various remote sensing techniques available. Chlorophyll fluorenscece is a nature emission exhibiting a broad inverse relation with the photosynthetic carbon assimilation of green plants. Besides this specific red fluorescence, a second emission with a comparable intensity is observed in the blue region of the spectrum, when the vegetation is excited by near-UV radiation. The origin of blue fluorescence is still under discussion, but increasing evidence is found to associate it with non-photosynthetic parts of the plant tissue including cellular wall components or precursors, skin waxes and vacuolar metabolites. Experimental results show that the blue fluorescence signal depends on the type of vegetation and is highly affected by stress. For a better characterization of vegetation, blue and red fluorescence should be considered simultaneously because they contain complementary information and are highly specific to vegetation. Two approaches, which are currently considered feasible for the remote detection of fluorescence signals, are analyzed and discussed: laser induced fluorescence (active remote sensing) and solar stimulated fluorescence (passive remote sensing).

  6. Self-Replication of Localized Vegetation Patches in Scarce Environments

    PubMed Central

    Bordeu, Ignacio; Clerc, Marcel G.; Couteron, Piere; Lefever, René; Tlidi, Mustapha

    2016-01-01

    Desertification due to climate change and increasing drought periods is a worldwide problem for both ecology and economy. Our ability to understand how vegetation manages to survive and propagate through arid and semiarid ecosystems may be useful in the development of future strategies to prevent desertification, preserve flora—and fauna within—or even make use of scarce resources soils. In this paper, we study a robust phenomena observed in semi-arid ecosystems, by which localized vegetation patches split in a process called self-replication. Localized patches of vegetation are visible in nature at various spatial scales. Even though they have been described in literature, their growth mechanisms remain largely unexplored. Here, we develop an innovative statistical analysis based on real field observations to show that patches may exhibit deformation and splitting. This growth mechanism is opposite to the desertification since it allows to repopulate territories devoid of vegetation. We investigate these aspects by characterizing quantitatively, with a simple mathematical model, a new class of instabilities that lead to the self-replication phenomenon observed. PMID:27650430

  7. Self-Replication of Localized Vegetation Patches in Scarce Environments.

    PubMed

    Bordeu, Ignacio; Clerc, Marcel G; Couteron, Piere; Lefever, René; Tlidi, Mustapha

    2016-09-21

    Desertification due to climate change and increasing drought periods is a worldwide problem for both ecology and economy. Our ability to understand how vegetation manages to survive and propagate through arid and semiarid ecosystems may be useful in the development of future strategies to prevent desertification, preserve flora-and fauna within-or even make use of scarce resources soils. In this paper, we study a robust phenomena observed in semi-arid ecosystems, by which localized vegetation patches split in a process called self-replication. Localized patches of vegetation are visible in nature at various spatial scales. Even though they have been described in literature, their growth mechanisms remain largely unexplored. Here, we develop an innovative statistical analysis based on real field observations to show that patches may exhibit deformation and splitting. This growth mechanism is opposite to the desertification since it allows to repopulate territories devoid of vegetation. We investigate these aspects by characterizing quantitatively, with a simple mathematical model, a new class of instabilities that lead to the self-replication phenomenon observed.

  8. Recent pollen spectra and zonal vegetation in the western USSR

    NASA Astrophysics Data System (ADS)

    Peterson, G. M.

    The relationship of modern pollen spectra to present-day vegetation is critical to the reconstruction of vegetation and climate from fossil pollen spectra. This study uses isopoll maps to illustrate the pollen-vegetation relationships in the Soviet Union west of 100°E and presents descriptive statistics for 544 modern samples of arboreal pollen and for 370 samples of herb pollen obtained from the Soviet palynological literature. Data are assembled from this large geographic region and presented in a standardized form on a scale which can be used to relate quantitative pollen data to zonal vegetation and climatic variables and to make comparisons with other regions. In order to show the relationship between pollen types and major ecotones in forested and non-forested areas, the pollen data are presented as percentages of a sum including both arboreal and non-arboreal pollen. Major pollen types which attain values of 10% or more in at least one vegetation zone include Betula (birch), Cyperaceae (sedges), Picea (spruce), Pinus (total pine), Pinus sibirica, Ericaceae (heath family), Gramineae (grasses), Artemisia (sage), and Chenopodiaceae (i.e., saltbush, Russian thistle, pigweed family). Samples from the tundra and forest-tundra have high values of Ericaceae (heath family), birch, alder, and sedge pollen. In the boreal forest, pine, spruce, and birch pollen predominate. In the mixed and deciduous forests, Tilia (linden), Quercus (oak), Ulmus (elm), and Corylus (hazel) pollen attain maximum values. In the forest-steppe and steppe zones, arboreal pollen decreases in importance and is replaced by non-arboreal pollen types. Pollen of Artemisia and Chenopodiaceae predominates in the semi-desert zones. In spite of variation in the pollen spectra arising from the use of different sediment types (soil, peat, and river sediments), and human disturbance of vegetation, the pollen spectra are clearly related to zonal vegetation. Pollen spectra from the western USSR show

  9. Fruit and vegetables and cancer risk.

    PubMed

    Key, T J

    2011-01-04

    The possibility that fruit and vegetables may help to reduce the risk of cancer has been studied for over 30 years, but no protective effects have been firmly established. For cancers of the upper gastrointestinal tract, epidemiological studies have generally observed that people with a relatively high intake of fruit and vegetables have a moderately reduced risk, but these observations must be interpreted cautiously because of potential confounding by smoking and alcohol. For lung cancer, recent large prospective analyses with detailed adjustment for smoking have not shown a convincing association between fruit and vegetable intake and reduced risk. For other common cancers, including colorectal, breast and prostate cancer, epidemiological studies suggest little or no association between total fruit and vegetable consumption and risk. It is still possible that there are benefits to be identified: there could be benefits in populations with low average intakes of fruit and vegetables, such that those eating moderate amounts have a lower cancer risk than those eating very low amounts, and there could also be effects of particular nutrients in certain fruits and vegetables, as fruit and vegetables have very varied composition. Nutritional principles indicate that healthy diets should include at least moderate amounts of fruit and vegetables, but the available data suggest that general increases in fruit and vegetable intake would not have much effect on cancer rates, at least in well-nourished populations. Current advice in relation to diet and cancer should include the recommendation to consume adequate amounts of fruit and vegetables, but should put most emphasis on the well-established adverse effects of obesity and high alcohol intakes.

  10. Boundary Shear Stress Along Vegetated Streambanks

    NASA Astrophysics Data System (ADS)

    Clark, L. A.; Wynn, T.

    2007-12-01

    Sediment, a leading cause of water quality impairment, damages aquatic ecosystems and interferes with recreational uses and water treatment processes. Streambank retreat can contribute as much as 85% of watershed sediment yield. Vegetation is an important component of stream restoration designs used to control streambank retreat, but vegetation effects on streambank boundary shear stress (SBSS) need to be quantified. The overall goal of this experiment is to predict boundary shear stress along vegetated streambanks. This goal will be met by determining a method for measuring boundary shear stress in the field along hydraulically rough streambanks, evaluating the effects of streambank vegetation on boundary shear stress in the field, and developing predictive methods based on measurable vegetative properties. First, three streambank vegetation types (herbaceous, shrubbery, and woody) will be modeled in a flume study to examine both boundary shear stress measurement theory and instruments for field use. An appropriate method (law of the wall, Reynold's stresses, TKE, or average wall shear stress) and field instrument (ADV, propeller, or Pitot tube) will be selected, resulting in a field technique to measure SBSS. Predictive methods for estimating SBSS, based on common vegetation measurements, will be developed in the flume study and validated with field data. This research is intended to improve our understanding of the role of riparian vegetation in stream morphology by evaluating the effects of vegetation on boundary shear stress, providing insight to the type and density of vegetation required for streambank stability. The results will also aide in quantifying sediment inputs from streambanks, providing quantitative information for stream restoration projects and watershed management planning.

  11. Investigation of North American vegetation variability under recent climate: A study using the SSiB4/TRIFFID biophysical/dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengqiu; Xue, Yongkang; MacDonald, Glen; Cox, Peter M.; Collatz, G. James

    2015-02-01

    Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60 years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980

  12. Investigation of North American Vegetation Variability under Recent Climate: A Study Using the SSiB4/TRIFFID Biophysical/Dynamic Vegetation Model

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengqiu; Xue, Yongkang; MacDonald, Glen; Cox, Peter M.; Collatz, George J.

    2015-01-01

    Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60 years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980

  13. Climate- and human-induced woody vegetation changes in Botswana and their implications for human adaptation.

    PubMed

    Ringrose, S; Chipanshi, A C; Matheson, W; Chanda, R; Motoma, L; Magole, I; Jellema, A

    2002-07-01

    For purposes of suggesting adaptive and policy options regarding the sustained use of forestry resources in Botswana, an analysis of the whole countrywide satellite data (showing the mean present distribution of vegetation in terms of species abundance and over all density) and the projection of vegetation cover changes using a simulation approach under different climatic scenarios were undertaken. The analysis revealed that changes in vegetation cover types due to human and natural causes have taken place since the first vegetation map was produced in 1971. In the southwest, the changes appear to be more towards an increasing prevalence of thorn trees; in the eastern part of the country where widespread bush encroachment is taking place, the higher population density suggests more human induced (agrarian-degradation) effects, while in the sparsely settled central Kalahari region, changes from tree savanna to shrubs may be indicative of the possible influence of climate with the associated effects of fires and local adaptations. Projection of future vegetation changes to about 2050 indicates degeneration of the major vegetation types due to the expected drying. Based on the projected changes in vegetation, current adaptive and policy arrangements are not adequate and as such a shift from the traditional adaptive approaches to community-based types is suggested. Defining forestry management units and adopting different management plans for the main vegetation stands that are found in Botswana are the major policy options.

  14. New metrics of affordable nutrition: which vegetables provide most nutrients for least cost?

    PubMed

    Drewnowski, Adam

    2013-09-01

    Measuring food prices per gram, rather than per calorie, is one way to make healthful vegetables appear less expensive. However, a better measure of affordability would take the nutrient content of vegetables into account. This study, based on analyses of US Department of Agriculture datasets, aimed to identify which vegetables, including juices and soups, provided the most nutrients per unit cost. Nutrient density was measured using the Nutrient Rich Foods (NRF) index, based on nine nutrients to encourage: protein; fiber; vitamins A, C, and E; calcium; iron; magnesium; and potassium; and on three nutrients to limit: saturated fat, added sugar, and sodium. Food cost in dollars was calculated per 100 g, per 100 kcal, per serving, and per nutrient content. One-way analyses of variance with post hoc tests were used to determine statistical significance. Results showed that tomato juices and tomato soups, dark green leafy and nonleafy vegetables, and deep yellow vegetables, including sweet potatoes, had the highest NRF scores overall. Highest NRF scores per dollar were obtained for sweet potatoes, white potatoes, tomato juices and tomato soups, carrots, and broccoli. Tomato sauces, raw tomatoes, and potato chips were eaten more frequently than were many other vegetables that were both more affordable and more nutrient-rich. These new measures of affordable nutrition can help foodservice and health professionals identify those vegetables that provide the highest nutrient density per unit cost. Processed vegetables, including soups and juices, can contribute to the quality and the affordability of the diet.

  15. Modeling the effect of wave-vegetation interaction on wave setup

    NASA Astrophysics Data System (ADS)

    van Rooijen, A. A.; McCall, R. T.; van Thiel de Vries, J. S. M.; van Dongeren, A. R.; Reniers, A. J. H. M.; Roelvink, J. A.

    2016-06-01

    Aquatic vegetation in the coastal zone attenuates wave energy and reduces the risk of coastal hazards, e.g., flooding. Besides the attenuation of sea-swell waves, vegetation may also affect infragravity-band (IG) waves and wave setup. To date, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are potentially important parameters for coastal risk assessment. In this study, the storm impact model XBeach is extended with formulations for attenuation of sea-swell and IG waves, and wave setup effects in two modes: the sea-swell wave phase-resolving (nonhydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode, a wave shape model is implemented to capture the effect of nonlinear wave-vegetation interaction processes on wave setup. Both modeling modes are verified using data from two flume experiments with mimic vegetation and show good skill in computing the sea-swell and IG wave transformation, and wave setup. In surfbeat mode, the wave setup prediction greatly improves when using the wave shape model, while in nonhydrostatic mode (nonlinear) intrawave effects are directly accounted for. Subsequently, the model is used for a range of coastal geomorphological configurations by varying bed slope and vegetation extent. The results indicate that the effect of wave-vegetation interaction on wave setup may be relevant for a range of typical coastal geomorphological configurations (e.g., relatively steep to gentle slope coasts fronted by vegetation).

  16. [Effects of green space vegetation canopy pattern on the microclimate in residential quarters of Shenzhen City].

    PubMed

    Li, Ying-Han; Wang, Jun-Jian; Chen, Xue; Sun, Jian-Lin; Zeng, Hui

    2011-02-01

    Based on field survey and landscape pattern analysis, this paper studied the effects of green space vegetation canopy on the microclimate in three typical residential quarters in Shenzhen City. In each of the residential quarters, 22-26 points were chosen for meteorological observation; and around each of the observation points, a 20 m x 20 m quadrat was installed, with each quadrat divided into two different patches, one covered by vegetation canopy and the another no-covered. The patch density index (D(p)) and contagion index (CONTAG) in each quadrat were calculated to analyze the relationships between vegetation canopy pattern index and microclimate in each point. The results showed that the green space vegetation canopy pattern in Shenzhen had significant regulation effect on temperature and humidity. The cooling effect was mainly from the shading effect of vegetation, and also, correlated with vegetation quantity. The increase in the CONTAG of bare surface had obvious negative effects on the regulation effect of vegetation on microclimate. The regulation capability of green space vegetation on the temperature and humidity in residential quarters mainly came from tall arbor species.

  17. Response of Vegetation to Climate Change in the Drylands of East Asia

    NASA Astrophysics Data System (ADS)

    Dai, L.; Zhang, L.; Wang, K.; Wang, R. L.

    2014-03-01

    Over the past 25 years, global climate and environmental changes have caused an unprecedented rate of vegetation change, as exemplified in the drylands of East Asia. In this study, we investigated the spatio-temporal changes of vegetation in this region and analysed their relationship with climate data. Our results show that vegetation productivity significantly increased from 1982 to 2006. This increasing trend was observed for most of the region, particularly for northwest Mongolia and central Inner Mongolia. Grasslands, croplands, forests, and shrublands, all exhibited this trend. The annual growth rate of the grasslands determined using the Normalized Difference Vegetation Index (NDVI) was the largest observed change; reaching 0.07% p.a, followed by shrublands (0.06%), croplands (0.03%), and forests (0.02%). In the different geographic regions, the roles of temperature and precipitation on vegetation growth were shown to be different. Temperature was the dominant factor for the observed NDVI increase in northwest Mongolia and the centre of Inner Mongolia. The combined influences of temperature and precipitation changes have resulted in the promotion of vegetation growth, as seen in eastern GanSu. Temperature change is the primary factor for initiating vegetation growth in spring and autumn because warmer temperatures increase the length of the growing season, and are thus evaluated as an increased NDVI value. Increased precipitation has been shown to play a positive role on vegetation growth during summer.

  18. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation

    NASA Astrophysics Data System (ADS)

    Mod, Heidi K.; Luoto, Miska

    2016-12-01

    Climate change has been observed to expand distributions of woody plants in many areas of arctic and alpine environments—a phenomenon called shrubification. New spatial arrangements of shrubs cause further changes in vegetation via changing dynamics of biotic interactions. However, the mediating influence of shrubification is rarely acknowledged in predictions of tundra vegetation change. Here, we examine possible warming-induced landscape-level vegetation changes in a high-latitude environment using species distribution modelling (SDM), specifically concentrating on the impacts of shrubification on ambient vegetation. First, we produced estimates of current shrub and tree cover and forecasts of their expansion under climate change scenarios to be incorporated to SDMs of 116 vascular plants. Second, the predictions of vegetation change based on the models including only abiotic predictors and the models including abiotic, shrub and tree predictors were compared in a representative test area. Based on our model predictions, abundance of woody plants will expand, thus decreasing predicted species richness, amplifying species turnover and increasing the local extinction risk for ambient vegetation. However, the spatial variation demonstrated in our predictions highlights that tundra vegetation can be expected to show a wide variety of different responses to the combined effects of warming and shrubification, depending on the original plant species pool and environmental conditions. We conclude that realistic forecasts of the future require acknowledging the role of shrubification in warming-induced tundra vegetation change.

  19. Mitigation of drought negative effect on ecosystem productivity by vegetation mixing

    NASA Astrophysics Data System (ADS)

    Van den Hoof, Catherine; Lambert, Fabrice

    2016-10-01

    Vegetation diversity and interaction is thought to have a beneficial effect on ecosystem functioning, particularly improving ecosystem resistance to drought. This is of significant importance in the context of a warmer world, as extreme events such as droughts become more likely. Most of the studies performed so far on vegetation interaction are based on observations. Here we use the land surface model JULES to study the potential of vegetation mixing to mitigate the negative effect of drought events on the land surface through interaction, a mechanism which is difficult to study in situ at large scales. Using a set of simulations with mixed and unmixed vegetation, we show that the carbon, water, and energy fluxes are significantly affected by vegetation competition for water resources. The interaction is in general beneficial for the ecosystem carbon assimilation due to a better use of water resources. This benefit is highest when traits between vegetation types concerning resource competition overlap least. For a tree-grass combination, mixing improves carbon assimilation by 5% to 8% during summer. The benefit of mixing increases further under progressively more resource-limited conditions up to an inflection point with a benefit of 14%, after which it falls back to zero under extremely dry conditions. Mixing also tends to reduce the interannual variability of the ecosystem carbon sink and therefore improves the resistance of the ecosystem. Our results highlight the importance of vegetation interaction in climate simulations and impact studies and the potential of vegetation mixing as a mitigation tool.

  20. Vegetation recovery patterns assessment at landslides caused by catastrophic earthquake: a case study in central Taiwan.

    PubMed

    Chou, Wen-Chieh; Lin, Wen-Tzu; Lin, Chao-Yuan

    2009-05-01

    The catastrophic earthquake, 7.3 on the Richter scale, occurred on September 21, 1999 in Central Taiwan. Much of standing vegetation on slopes was eliminated and massive, scattered landslides were induced at the Jou-Jou Mountain area of the Wu-Chi basin in Nantou County. We evaluated three methods for assessing landslide hazard and vegetation recovery conditions. (1) Self-organizing map (SOM) neural network coupled with fuzzy technique was used to quickly extract the landslide. (2) The NDVI-based vegetation recovery index derived from multi-temporal SPOT satellite images was used to evaluate vegetation recovery rate in the denudation sites. (3) The spatial distribution index (SDI) based on land-cover topographic location was employed to analyze vegetation recovery patterns, including the invading, surviving and mixed patterns at the Jou-Jou Mountain area. On September 27, 1999, there were 849.20 ha of landslide area extracted using the self-organizing map and fuzzy technique combined model. After six years of natural vegetation succession, the landslide has gradually restored, and vegetation recovery rate reached up to 86%. On-site observation shows that many native pioneer plants have invaded onto the denudation sites even if disturbed by several typhoons. Two native surviving plants, Arundo formosana Hack and Pinus taiwanensis Hayata, play a vital role in natural vegetation succession in this area, especially for the sites on ridgeline and steep slopes.

  1. Intercellular communication in Arabidopsis thaliana pollen discovered via AHG3 transcript movement from the vegetative cell to sperm

    PubMed Central

    Jiang, Hua; Yi, Jun; Boavida, Leonor C.; Chen, Yuan; Becker, Jörg D.; Köhler, Claudia; McCormick, Sheila

    2015-01-01

    An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show that ABA-hypersensitive germination3 (AHG3), encoding a protein phosphatase, is specifically transcribed in the vegetative cell but predominantly translated in sperm cells. We used a series of deletion constructs and promoter exchanges to document transport of AHG3 transcripts from the vegetative cell to sperm and showed that their transport requires sequences in both the 5′ UTR and the coding region. Thus, in addition its known role in transporting sperm during pollen tube growth, the vegetative cell also contributes transcripts to the sperm cells. PMID:26466609

  2. Vegetation type classification and vegetation cover percentage estimation in urban green zone using pleiades imagery

    NASA Astrophysics Data System (ADS)

    Trisakti, Bambang

    2017-01-01

    Open green space in the urban area has aims to maintain the availability of land as a water catchment area, creating aspects of urban planning through a balance between the natural environment and the built environment that are useful for the public needs. Local governments have to make the green zone plan map and monitor the green space changes in their territory. Medium and high resolution satellite imageries have been widely utilized to map and monitor the changes of vegetation cover as an indicator of green space area. This paper describes the use of pleaides imagery to classify vegetation types and estimate vegetation cover percentage in the green zone. Vegetation cover was mapped using a combination of NDVI and blue band. Furthermore, vegetation types in the green space were classified using unsupervised and supervised (ISODATA and MLEN) methods. Vegetation types in the study area were divided into sparse vegetation, low-medium vegetation and medium-high vegetation. The classification accuracies were 97.9% and 98.9% for unsupervised and supervised method respectively. The vegetation cover percentage was determined by calculating the ratio between the vegetation type area and the green zone area. These information are useful to support green zone management activities.

  3. Urban Vegetation Cover and Vegetation Change in Accra, Ghana: Connection to Housing Quality.

    PubMed

    Stow, Douglas A; Weeks, John R; Toure, Sory; Coulter, Lloyd L; Lippitt, Christopher D; Ashcroft, Eric

    2013-01-01

    The objectives are to (1) quantify, map, and analyze vegetation cover distributions and changes across Accra, Ghana, for 2002 and 2010; and (2) examine the statistical relationship between vegetation cover and a housing quality index (HQI) for 2000 at the neighborhood level. Pixel-level vegetation cover maps derived using threshold classification of 2002 and 2010 QuickBird normalized difference vegetation index images have very high overall accuracies and yield an estimate of 5.9 percent vegetation cover reduction over the study area between 2002 and 2010. A high degree of variance in vegetation cover for individual dates is explained by HQI at the neighborhood level, although minimal covariability between absolute or relative vegetation cover change and HQI for 2000 was observed.

  4. Urban Vegetation Cover and Vegetation Change in Accra, Ghana: Connection to Housing Quality

    PubMed Central

    Stow, Douglas A.; Weeks, John R.; Toure, Sory; Coulter, Lloyd L.; Lippitt, Christopher D.; Ashcroft, Eric

    2013-01-01

    The objectives are to (1) quantify, map, and analyze vegetation cover distributions and changes across Accra, Ghana, for 2002 and 2010; and (2) examine the statistical relationship between vegetation cover and a housing quality index (HQI) for 2000 at the neighborhood level. Pixel-level vegetation cover maps derived using threshold classification of 2002 and 2010 QuickBird normalized difference vegetation index images have very high overall accuracies and yield an estimate of 5.9 percent vegetation cover reduction over the study area between 2002 and 2010. A high degree of variance in vegetation cover for individual dates is explained by HQI at the neighborhood level, although minimal covariability between absolute or relative vegetation cover change and HQI for 2000 was observed. PMID:24293703

  5. Scaling Vegetation on Experimental Channel Patterns

    NASA Astrophysics Data System (ADS)

    van Breemen, D. M.; van de Lageweg, W. I.; van Dijk, W. M.; Kleinhans, M. G.

    2010-12-01

    There are strong feedbacks between river channels, floodplains and riparian and floodplain vegetation. We study the effect of experimental vegetation on channel pattern. Through linear bar theory it is known that channel width-depth ratio affects bar pattern and relatively narrow channels with strong banks are required for meandering. Riparian vegetation is able to alter the channel width-depth ratio and therefore the channel pattern through strengthening of the banks. Floodplain vegetation adds hydraulic resistance so the flow is more focused into the channels. However, determination of the underlying mechanisms and processes has remained scarce and qualitative and hence these effects are not yet fully understood. The objectives of this study are 1) to develop a controllable and scalable method to reproduce vegetation effect in experimental self-formed channels, and 2) to experimentally determine the effects of riparian vegetation on bank strength, channel pattern and meandering dynamics. Sprouts of three plant species were systematically subjected to different seeding densities and to various growing conditions, including light intensity, submergence and nutrient starvation. Denser seeding reduced sprout growth after about a week. Stronger light increased plant growth and plant strength. Nutrient starvation caused different branching intensity of the root system. Tens of small-scale bank erosion experiments and bank failure experiments (see Kleinhans et al., this conference) were performed to quantify the strength of banks reinforced by plant roots at the experimental scale, demonstrating that bank strength is strongly determined by seeding density, rooting density and depth relative to channel depth. To study pattern evolution and morphodynamics we used a 1.25x7.5 m flume with a constant discharge and sediment feed. The introduction of vegetation in experiments results in narrower and deeper channels. Higher vegetation density leads to static channels with

  6. Dynamic vegetation modeling of tropical biomes during Heinrich events

    NASA Astrophysics Data System (ADS)

    Handiani, Dian Noor; Paul, André; Dupont, Lydie M.

    2010-05-01

    Heinrich events are thought to be associated with a slowdown of the Atlantic Meridional Overturning Circulation (AMOC), which in turn would lead to a cooling of the North Atlantic Ocean and a warming of the South Atlantic Ocean (the "bipolar seesaw" hypothesis). The accompanying abrupt climate changes occurred not only in the ocean but also on the continents. Changes were strongest in the Northern Hemisphere but were registered in the tropics as well. Pollen data from Angola and Brazil showed that climate changes during Heinrich events affected vegetation patterns very differently in eastern South America and western Africa. To understand the differential response in the terrestrial tropics, we studied the vegetation changes during Heinrich events by using a dynamic global vegetation model (TRIFFID) as part of the University of Victoria (UVic) Earth System-Climate Model (ESCM). The model results show a bipolar seesaw pattern in temperature and precipitation during a near-collapse of the AMOC. The succession in plant-functional types (PFTs) showed changes from forest to shrubs to desert, including spreading desert in northwest Africa, retreating broadleaf trees in West Africa and northern South America, but advancing broadleaf trees in Brazil. The pattern is explained by a southward shift of the tropical rainbelt resulting in a strong decrease in precipitation over northwest and West Africa as well as in northern South America, but an increase in precipitation in eastern Brazil. To facilitate the comparison between modeled vegetation results with pollen data, we diagnosed the distribution of biomes from the PFT coverage and the simulated model climate. The biome distribution was computed for Heinrich event 1 and the Last Glacial Maximum as well as for pre-industrial conditions. We used a classification of biomes in terms of "mega-biomes", which were defined following a scheme originally proposed by BIOME 6000 (v 4.2). The biome distribution of the Sahel region

  7. Interactive visualization of vegetation dynamics

    USGS Publications Warehouse

    Reed, B.C.; Swets, D.; Bard, L.; Brown, J.; Rowland, J.

    2001-01-01

    Satellite imagery provides a mechanism for observing seasonal dynamics of the landscape that have implications for near real-time monitoring of agriculture, forest, and range resources. This study illustrates a technique for visualizing timely information on key events during the growing season (e.g., onset, peak, duration, and end of growing season), as well as the status of the current growing season with respect to the recent historical average. Using time-series analysis of normalized difference vegetation index (NDVI) data from the advanced very high resolution radiometer (AVHRR) satellite sensor, seasonal dynamics can be derived. We have developed a set of Java-based visualization and analysis tools to make comparisons between the seasonal dynamics of the current year with those from the past twelve years. In addition, the visualization tools allow the user to query underlying databases such as land cover or administrative boundaries to analyze the seasonal dynamics of areas of their own interest. The Java-based tools (data exploration and visualization analysis or DEVA) use a Web-based client-server model for processing the data. The resulting visualization and analysis, available via the Internet, is of value to those responsible for land management decisions, resource allocation, and at-risk population targeting.

  8. Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions

    NASA Astrophysics Data System (ADS)

    Xie, Qiaoyun; Huang, Wenjiang; Dash, Jadunandan; Song, Xiaoyu; Huang, Linsheng; Zhao, Jinling; Wang, Renhong

    2015-12-01

    Leaf area index (LAI) is an important indicator for monitoring crop growth conditions and forecasting grain yield. Many algorithms have been developed for remote estimation of the leaf area index of vegetation, such as using spectral vegetation indices, inversion of radiative transfer models, and supervised learning techniques. Spectral vegetation indices, mathematical combination of reflectance bands, are widely used for LAI estimation due to their computational simplicity and their applications ranged from the leaf scale to the entire globe. However, in many cases, their applicability is limited to specific vegetation types or local conditions due to species specific nature of the relationship used to transfer the vegetation indices to LAI. The overall objective of this study is to investigate the most suitable vegetation index for estimating winter wheat LAI under eight different types of fertilizer and irrigation conditions. Regression models were used to estimate LAI using hyperspectral reflectance data from the Pushbroom Hyperspectral Imager (PHI) and in-situ measurements. Our results showed that, among six vegetation indices investigated, the modified soil-adjusted vegetation index (MSAVI) and the normalized difference vegetation index (NDVI) exhibited strong and significant relationships with LAI, and thus were sensitive across different nitrogen and water treatments. The modified triangular vegetation index (MTVI2) confirmed its potential on crop LAI estimation, although second to MSAVI and NDVI in our study. The enhanced vegetation index (EVI) showed moderate performance. However, the ratio vegetation index (RVI) and the modified simple ratio index (MSR) predicted the least accurate estimations of LAI, exposing the simple band ratio index's weakness under different treatment conditions. The results support the use of vegetation indices for a quick and effective LAI mapping procedure that is suitable for winter wheat under different management practices.

  9. Preliminary process engineering evaluation of ethanol production from vegetative crops

    NASA Astrophysics Data System (ADS)

    Moreira, A. R.; Linden, J. C.; Smith, D. H.; Villet, R. H.

    1982-12-01

    Vegetative crops show good potential as feedstock for ethanol production via cellulose hydrolysis and yeast fermentation. The low levels of lignin encountered in young plant tissues show an inverse relationship with the high cellulose digestibility during hydrolysis with cellulose enzymes. Ensiled sorghum species and brown midrib mutants of sorghum exhibit high glucose yields after enzyme hydrolysis as well. Vegetative crop materials as candidate feedstocks for ethanol manufacture should continue to be studied. The species studied so far are high value cash crops and result in relatively high costs for the final ethanol product. Unconventional crops, such as pigweed, kochia, and Russian thistle, which can use water efficiently and grow on relatively arid land under conditions not ideal for food production, should be carefully evaluated with regard to their cultivation requirements, photosynthesis rates, and cellulose digestibility. Such crops should result in more favorable process economics for alcohol production.

  10. Comprehensive Understanding for Vegetated Scene Radiance Relationships

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Deering, D. W.

    1984-01-01

    Directional reflectance distributions spanning the entire existent hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using the rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Analysis of field data showed unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends were proposed. A 3-D model was developed and is unique in that it predicts: (1) the directional spectral reflectance factors as a function of the sensor's azimuth and zenith angles and the sensor's position above the canopy; (2) the spectral absorption as a function of location within the scene; and (3) the directional spectral radiance as a function of the sensor's location within the scene. Initial verification of the model as applied to a soybean row crop showed that the simulated directional data corresponded relatively well in gross trends to the measured data. The model was expanded to include the anisotropic scattering properties of leaves as a function of the leaf orientation distribution in both the zenith and azimuth angle modes.

  11. 76 FR 37312 - Fruit and Vegetable Industry Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service Fruit and Vegetable Industry Advisory Committee... Agriculture (USDA) Fruit and Vegetable Industry Advisory Committee and a Request for Nominations. SUMMARY: The USDA intends to reestablish the Fruit and Vegetable Industry Advisory Committee (Committee)....

  12. Why do cervids feed on aquatic vegetation?

    PubMed

    Ceacero, Francisco; Landete-Castillejos, Tomás; Miranda, María; García, Andrés J; Martínez, Alberto; Gallego, Laureano

    2014-03-01

    Consumption of aquatic plants is rare among cervids, despite the common occurrence of this form of vegetation. However, the paucity of literature reporting on this feeding behaviour suggests that Na (but also other minerals), protein, and the ubiquitous availability of aquatic vegetation may play a role in its consumption. We present results quantifying those factors that regulate the consumption of aquatic plants in the Iberian red deer. We focussed our study primarily on two questions: (i) what nutritional values are red deer seeking in the aquatic plants?; and (ii) why do red deer primarily use aquatic plants during the summer? A comparison of the seasonal variations in Na content between terrestrial vs. aquatic vegetation did not fully support the hypothesis that aquatic plants are being consumed more in summer because of any seasonal variation in Na availability. The Na content in the aquatic vegetation was adequate all the year-round; whereas, the Na content in the terrestrial vegetation was consistently deficient. However, a greater summer content of essential minerals and protein in the aquatic vegetation may be the cause for their consumption exclusively during the summer. We suggest that seasonal variations in the consumption of aquatic vegetation by cervids is primarily driven by temporal variations in the nutrient content, combined with seasonal variations in the physiological demands for these nutrients.

  13. FT Duplication Coordinates Reproductive and Vegetative Growth

    SciTech Connect

    Hsu, Chuan-Yu; Adams, Joshua P.; Kim, Hyejin; No, Kyoungok; Ma, Caiping; Strauss, Steven; Drnevich, Jenny; Wickett, Norman; Vandervelde, Lindsay; Ellis, Jeffrey D.; Rice, Brandon; Gunter, Lee E; Tuskan, Gerald A; Brunner, Amy M.; Page, Grier P.; Carlson, John E.; DePamphilis, Claude; Luthe, Dawn S.; Yuceer, Cetin

    2011-01-01

    Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles of vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.

  14. Ras proteins have multiple functions in vegetative cells of Dictyostelium.

    PubMed

    Bolourani, Parvin; Spiegelman, George; Weeks, Gerald

    2010-11-01

    During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG⁻ cells are only partially deficient in chemotaxis, whereas rasC⁻/rasG⁻ cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetative cells by comparing the vegetative cell properties of rasG⁻, rasC⁻, and rasC⁻/rasG⁻ cells. In addition, since RasD, a protein not normally found in vegetative cells, is expressed in vegetative rasG⁻ and rasC⁻/rasG⁻ cells and appears to partially compensate for the absence of RasG, we have also examined the possible functional overlap between RasG and RasD by comparing the properties of rasG⁻ and rasC⁻/rasG⁻ cells with those of the mutant cells expressing higher levels of RasD. The results of these two lines of investigation show that RasD is capable of totally substituting for RasG for cytokinesis and growth in suspension, whereas RasC is without effect. In contrast, for chemotaxis to folate, RasC is capable of partially substituting for RasG, but RasD is totally without effect. Finally, neither RasC nor RasD is able to substitute for the role that RasG plays in regulating actin distribution and random motility. These specificity studies therefore delineate three distinct and none-overlapping functions for RasG in vegetative cells.

  15. Effect of Roadside Vegetation Cutting on Moose Browsing

    PubMed Central

    Tanner, Amy L.; Leroux, Shawn J.

    2015-01-01

    Moose (Alces americanus ) vehicle collisions (MVCs) are an issue throughout the distribution of moose. Many mitigation strategies have been tested and implemented to reduce the number of MVCs, but there have been few empirical analyses of the effectiveness of roadside vegetation cutting. The goal of this study was to determine if roadside vegetation cutting attracted moose into roadside areas to browse on the vegetation regrowth. We hypothesized that moose would be attracted to roadside areas with cut vegetation. Consequently, we predicted that there would be higher levels of browsing in cut areas compared to uncut areas. To determine if moose were browsing more in cut or uncut areas, we measured the number of plants browsed by moose in paired treatment (cut on or after 2008) and control (not cut since at least 2008) sites, along with a suite of potential environmental covariates. Using a model selection approach, we fit generalized linear mixed-effects models to determine the most parsimonious set of environmental variables to explain variation in the proportion of moose browse among sites. In contrast to our hypothesis, our results show that the proportion of moose browse in the uncut control areas was significantly higher than in the cut treatment areas. The results of this study suggest that recently cut roadside areas (7 years or less based on our work) may create a less attractive foraging habitat for moose. The majority of the variance in the proportion of moose browse among sites was explained by treatment type and nested plot number within site identification (34.16%), with additional variance explained by traffic region (5.00%) and moose density (4.35%). Based on our study, we recommend that vegetation cutting be continued in roadside areas in Newfoundland as recently cut areas may be less attractive browsing sites for moose. PMID:26244576

  16. Experimental study of a vertical jet in a vegetated crossflow.

    PubMed

    Ben Meftah, Mouldi; De Serio, Francesca; Malcangio, Daniela; Mossa, Michele; Petrillo, Antonio Felice

    2015-12-01

    Aquatic ecosystems have long been used as receiving environments of wastewater discharges. Effluent discharge in a receiving water body via single jet or multiport diffuser, reflects a number of complex phenomena, affecting the ecosystem services. Discharge systems need to be designed to minimize environmental impacts. Therefore, a good knowledge of the interaction between effluents, discharge systems and receiving environments is required to promote best environmental management practice. This paper reports innovative 3D flow velocity measurements of a jet discharged into an obstructed crossflow, simulating natural vegetated channel flows for which correct environmental management still lacks in literature. In recent years, numerous experimental and numerical studies have been conducted on vegetated channels, on the one hand, and on turbulent jets discharged into unvegetated crossflows, on the other hand. Despite these studies, however, there is a lack of information regarding jets discharged into vegetated crossflow. The present study aims at obtaining a more thorough understanding of the interaction between a turbulent jet and an obstructed crossflow. In order to achieve such an objective, a series of laboratory experiments was carried out in the Department of Civil, Environmental, Building Engineering and Chemistry of the Technical University of Bari - Italy. The physical model consists of a vertical jet discharged into a crossflow, obstructed by an array of vertical, rigid, circular and threaded steel cylinders. Analysis of the measured flow velocities shows that the array of emergent rigid vegetation significantly affects the jet and the ambient flow structures. It reduces the mean channel velocity, allowing the jet to penetrate higher into the crossflow. It significantly increases the transversal flow motion, promoting a major lateral spreading of the jet within the crossflow. Due to the vegetation array effects, the jet undergoes notable variations in its

  17. The Influence of Drought on Spring Vegetation Green-up

    NASA Astrophysics Data System (ADS)

    Brown, J. F.; Ji, L.; Gallant, A.; Kauffman, M.

    2015-12-01

    Herbivore species such as elk and deer depend on the availability of herbaceous plants and deciduous shrubs for forage. These vegetation types are most nutritious for herbivores during the early part of the growing season, so characterizing spring vegetation phenology over decades can provide crucial information towards understanding how shifts in climate could affect animal behavior and health. Many studies have shown that spring vegetation growth is sensitive to temperature, but less research exists on the influence of drought on phenology. We tested hypotheses on the interactions of recent drought and the phenology of forage utilized by herbivores across the state of Wyoming, USA. Phenological indicators, including the start of season time (SOST), the time of maximum change (in greenness response) (MCT), length of the green-up window (GUW: days from SOST to time of peak greenness), and early spring window (ESW: days from the SOST to the MCT) developed from Moderate Resolution Imaging Spectroradiometer satellite imagery at 250-m resolution, provided broad coverage of the temporal and spatial characteristics of green-up cycles. Gridded precipitation data generated with the Precipitation-elevation Regressions on Independent Slopes Model (PRISM) were used to characterize drought conditions at a coarser spatial scale. We found evidence to prove an initial hypothesis that drought advanced spring development. Spring drought conditions were statistically related to advanced vegetation green-up in SOST and MCT variables, especially across higher elevations and in forested land cover, as well as in some shrublands and grasslands. We did not find evidence that drought made green-up occur faster (based on GUW and ESW variables), although the ESW showed slight acceleration across the northern third of Wyoming. We are further investigating whether the phenological signal of vegetation in more arid areas has been too subtle to detect a significant response to drought.

  18. Effect of Roadside Vegetation Cutting on Moose Browsing.

    PubMed

    Tanner, Amy L; Leroux, Shawn J

    2015-01-01

    Moose (Alces americanus ) vehicle collisions (MVCs) are an issue throughout the distribution of moose. Many mitigation strategies have been tested and implemented to reduce the number of MVCs, but there have been few empirical analyses of the effectiveness of roadside vegetation cutting. The goal of this study was to determine if roadside vegetation cutting attracted moose into roadside areas to browse on the vegetation regrowth. We hypothesized that moose would be attracted to roadside areas with cut vegetation. Consequently, we predicted that there would be higher levels of browsing in cut areas compared to uncut areas. To determine if moose were browsing more in cut or uncut areas, we measured the number of plants browsed by moose in paired treatment (cut on or after 2008) and control (not cut since at least 2008) sites, along with a suite of potential environmental covariates. Using a model selection approach, we fit generalized linear mixed-effects models to determine the most parsimonious set of environmental variables to explain variation in the proportion of moose browse among sites. In contrast to our hypothesis, our results show that the proportion of moose browse in the uncut control areas was significantly higher than in the cut treatment areas. The results of this study suggest that recently cut roadside areas (7 years or less based on our work) may create a less attractive foraging habitat for moose. The majority of the variance in the proportion of moose browse among sites was explained by treatment type and nested plot number within site identification (34.16%), with additional variance explained by traffic region (5.00%) and moose density (4.35%). Based on our study, we recommend that vegetation cutting be continued in roadside areas in Newfoundland as recently cut areas may be less attractive browsing sites for moose.

  19. Canadian vegetation response to climate and projected climatic change

    SciTech Connect

    Lenihan, J.M.

    1992-01-01

    The response of Canadian vegetation to climate and climatic change was modeled at three organizational levels of the vegetation mosaic. Snowpack, degree-days, minimum temperature, soil moisture deficit, and actual evapotranspiration are components of climate that physiologically constrain distribution of dominant plant life-forms and species. The rule-based Canadian Climate-Vegetation Model (CCVM) predicts the response of vegetation formations to climate. The CCVM simulation for current climatic conditions is more accurate and detailed than those of other equilibrium models. Ecological response surfaces predict the probability of dominance for eight boreal tree species in Canada with success. Variation in the probability of dominance is related to the species' individualistic response to climatic constraints within different airmass regions. A boreal forest-type classification shows a high degree of geographic correspondence with observed forest-types. Under two doubled-CO[sub 2] climatic scenarios, CCVM predicts a reduction in arctic tundra and subarctic woodland, a northward shift in the distribution of boreal evergreen forest, and an expansion of temperate forest, boreal summergreen woodland, and two prairie formations. The response surfaces predict significant changes in species dominance under both climatic scenarios. Species exhibit an individualistic responses to climatic change. Most of the boreal forest-types derived from future probabilities of dominance are analogous to extant forest-types, but fewer types are distinguished. Geographic correspondence in the simulated boreal forest regions under both the current and projected climates provides a link between the results of the two modelling approaches. Even with constraints, the realism of the vegetation scenarios in this study are arguably the most reliable and comprehensive predictions for Canada.

  20. Evaluation of bispectral LIDAR data for urban vegetation mapping

    NASA Astrophysics Data System (ADS)

    Nabucet, Jean; Hubert-Moy, Laurence; Corpetti, Thomas; Launeau, Patrick; Lague, Dimitri; Michon, Cyril; Quenol, Herve

    2016-10-01

    Because of the large increase of urban population in the last decades, the question of sustainable development in urban areas is crucial. In this context, vegetation plays a significant role in urban planning, environmental protecting, and sustainable development policy making, heating and cooling requirements of buildings, displacement of animals dispersion, concentration of pollutants, and well-being. In numerous cities, vegetation is limited to public areas using GPS surveys or aerial remote sensing data. Recently, very high-resolution sensors as Light Detection and Ranging (LiDAR) data have permitted significant improvements in vegetation mapping in urban areas. This paper presents an evaluation of a new generation of airborne LIDAR bi-spectral discrete point (Optech titan) for mapping and characterizing urban vegetation. The methodology is based on a four-step approach: 1) the analysis of the quality of data in order to estimate noise between the green and near-infrared LIDAR point clouds; 2) this enables to remove the topographic effects and 3) a first classification, devoted to the elimination of the non-vegetation class, is performed based on the intensity value of the two channels; finally, in 4), the tree coverage is classified into seven categories of strata combination. To this end specific descriptors related to the organization of the point clouds are used. These first results show that compared to monospectral LiDAR data, bi-spectral LiDAR enables to improve significantly both the extraction and the characterization of urban objects. This reveals new perspectives for mapping and characterizing urban patterns and other complex structures.

  1. Assessing environmental drivers of vegetation greenness by integrating multiple earth observation data in the LPJmL dynamic global vegetation model

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Carvalhais, Nuno; Schaphoff, Sibyll; von Bloh, Werner; Thurner, Martin; Thonicke, Kirsten

    2014-05-01

    Recently produced satellite datasets of vegetation greenness demonstrate a widespread greening of the earth in the last three decades. These positive trends in vegetation greenness are related to changes in leaf area, vegetation cover and photosynthetic activity. Climatic changes, CO2 fertilization, disturbances and other land cover changes are potential drivers of these greening trends. Nevertheless, different satellite datasets show different magnitudes and trends in vegetation greenness. This fact raises the question about the reliability of these datasets. On the other hand, global vegetation models can be potentially used to assess the effects of environmental drivers on vegetation greenness and thus to explore the environmental reliability of these datasets. Unfortunately, current vegetation models have several weaknesses in reproducing observed temporal dynamics in vegetation greenness. Our aim is to integrate multiple earth observation data sets in a dynamic global vegetation model in order to 1) improve the model's capability to reproduce observed dynamics and spatial patterns of vegetation greenness and 2) to assess the spatial and temporal importance of environmental drivers for the seasonal to decadal variability of vegetation greenness. For this purpose, we developed a data integration system for the LPJmL dynamic global vegetation model (LPJmL-DIS). We implemented a new phenology scheme in LPJmL to better represent observed temporal dynamics of FAPAR (fraction of absorbed photosynthetic active radiation). Model parameters were globally optimized using a genetic optimization algorithm. The model optimization was performed globally against 30 year FAPAR time series (GIMMS3g dataset), against 10 year albedo time series (MODIS) and global patterns of gross primary production as up-scaled from FLUXNET eddy covariance measurements. Additionally, we directly prescribed satellite observations of land and tree cover in LPJmL to better represent global

  2. Special study on vegetative covers. [UMTRA Project

    SciTech Connect

    Not Available

    1988-11-01

    This report describes the findings of a special study on the use of vegetative covers to stabilize tailings piles for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The principal rationale for using plants would be to establish a dynamic system for controlling water balance. Specifically, vegetation would be used to intercept and transpire precipitation to the atmosphere, rather than allowing water to drain into the tailings and mobilize contaminants. This would facilitate compliance with groundwater standards proposed for the UMTRA Project by the Environmental Protection Agency. The goals of the study were to evaluate the feasibility of using vegetative covers on UMTRA Project piles, define the advantages and disadvantages of vegetative covers, and develop general guidelines for their use when such use seems reasonable. The principal method for the study was to analyze and apply to the UMTRA Project the results of research programs on vegetative covers at other US Department of Energy (DOE) waste management facilities. The study also relied upon observations made of existing stabilized piles at UMTRA Project sites where natural vegetation is growing on the rock-covered surfaces. Water balance and erosion models were also used to quantify the long-term performance of vegetative covers planned for the topslopes of stabilized piles at Grand Junction and Durango, Colorado, two UMTRA Project sites where the decision was made during the course of this special study to use vegetative covers. Elements in the design and construction of the vegetative covers at these two sites are discussed in the report, with explanations of the differing features that reflect differing environmental conditions. 28 refs., 18 figs., 9 tabs.

  3. Parallel Vegetation Stripe Formation Through Hydrologic Interactions

    NASA Astrophysics Data System (ADS)

    Cheng, Yiwei; Stieglitz, Marc; Turk, Greg; Engel, Victor

    2010-05-01

    It has long been a challenge to theoretical ecologists to describe vegetation pattern formations such as the "tiger bush" stripes and "leopard bush" spots in Niger, and the regular maze patterns often observed in bogs in North America and Eurasia. To date, most of simulation models focus on reproducing the spot and labyrinthine patterns, and on the vegetation bands which form perpendicular to surface and groundwater flow directions. Various hypotheses have been invoked to explain the formation of vegetation patterns: selective grazing by herbivores, fire, and anisotropic environmental conditions such as slope. Recently, short distance facilitation and long distance competition between vegetation (a.k.a scale dependent feedback) has been proposed as a generic mechanism for vegetation pattern formation. In this paper, we test the generality of this mechanism by employing an existing, spatially explicit, advection-reaction-diffusion type model to describe the formation of regularly spaced vegetation bands, including those that are parallel to flow direction. Such vegetation patterns are, for example, characteristic of the ridge and slough habitat in the Florida Everglades and which are thought to have formed parallel to the prevailing surface water flow direction. To our knowledge, this is the first time that a simple model encompassing a nutrient accumulation mechanism along with biomass development and flow is used to demonstrate the formation of parallel stripes. We also explore the interactive effects of plant transpiration, slope and anisotropic hydraulic conductivity on the resulting vegetation pattern. Our results highlight the ability of the short distance facilitation and long distance competition mechanism to explain the formation of the different vegetation patterns beyond semi-arid regions. Therefore, we propose that the parallel stripes, like the other periodic patterns observed in both isotropic and anisotropic environments, are self-organized and form

  4. Vegetation establishment in convectively accelerated streams

    NASA Astrophysics Data System (ADS)

    Crouzy, B.; McLelland, S. J.; Molnar, P.; Camporeale, C.; Perona, P.

    2013-12-01

    We study the conditions for vegetation establishment within river reaches with converging boundaries. Common to many such rivers worldwide is the existence of a limiting front (e.g., Figure 1a) beyond which all the riverbed vegetation is uprooted by flooding events. There are however exceptions, which leads to an interesting ecomorphodynamic problem (existence and position of the front). We use a theoretical 1-D framework based on morphodynamic equations modified in order to account for the presence of vegetation (Perona et al., submitted), and obtain the link between the position of the vegetated front and river eco-hydraulic variables under steady and unsteady conditions. We apply our framework to a number of flume experiments (unsteady flow) where Avena sativa L. (common oat) seedlings grow subject to periodic flow disturbances within a convergent flume channel (Figure 1b). We find that depending on the outcome of the competition between hydrological and biological processes there is either a limiting spatial front within the convergent section beyond which vegetation cannot survive, or vegetation colonizes the entire riverbed. The existence and the position of the front depend on the ability for vegetation to take root efficiently and withstand uprooting by the flow of the convectively accelerated stream (Crouzy et al., in press). The active role of vegetation and of unit streampower in this particular ecomorphodynamic process are then discussed in relation to the conceptual model of Gurnell and Petts (2006), and under the light of our theoretical and experimental results. REFERENCES - Crouzy, B., K. Edmaier, N. Pasquale and P. Perona (in press). Impact of floods on the statistical distribution of riverbed vegetation. Geomorphology doi:10.1016/j.geomorph.2012.09.013. - Gurnell A., Petts G. (2006). Trees as riparian engineers: The Tagliamento River, Italy. Earth Surface Processes and Landforms, 31: 1558--1574. - Perona, P., B. Crouzy, S. Mc Lelland, P. Molnar

  5. Simulation of wetlands forest vegetation dynamics

    USGS Publications Warehouse

    Phipps, R.L.

    1979-01-01

    A computer program, SWAMP, was designed to simulate the effects of flood frequency and depth to water table on southern wetlands forest vegetation dynamics. By incorporating these hydrologic characteristics into the model, forest vegetation and vegetation dynamics can be simulated. The model, based on data from the White River National Wildlife Refuge near De Witt, Arkansas, "grows" individual trees on a 20 x 20-m plot taking into account effects on the tree growth of flooding, depth to water table, shade tolerance, overtopping and crowding, and probability of death and reproduction. A potential application of the model is illustrated with simulations of tree fruit production following flood-control implementation and lumbering. ?? 1979.

  6. A Forest Vegetation Database for Western Oregon

    USGS Publications Warehouse

    Busing, Richard T.

    2004-01-01

    Data on forest vegetation in western Oregon were assembled for 2323 ecological survey plots. All data were from fixed-radius plots with the standardized design of the Current Vegetation Survey (CVS) initiated in the early 1990s. For each site, the database includes: 1) live tree density and basal area of common tree species, 2) total live tree density, basal area, estimated biomass, and estimated leaf area; 3) age of the oldest overstory tree examined, 4) geographic coordinates, 5) elevation, 6) interpolated climate variables, and 7) other site variables. The data are ideal for ecoregional analyses of existing vegetation.

  7. The Effect of Vegetation on Soil Moisture Retrievals from GPS Signal-to-Noise Ratio Data

    NASA Astrophysics Data System (ADS)

    Chew, C. C.; Small, E. E.; Larson, K. M.; Zavorotny, V.

    2012-12-01

    GPS-Interferometric Reflectometry (GPS-IR) is a method of environmental monitoring that relates changes in ground-reflected (multipath) GPS signals to changes in surface soil moisture and vegetative state for an area of approximately 1000 m2 surrounding a GPS antenna. GPS-IR operates as a bi-static radar: L2C frequency signals transmitted by GPS satellites and subsequent reflections (multipath) are measured by antennas at permanent GPS stations. Changes in multipath signals are seen in signal-to-noise ratio (SNR) interferograms, which are recorded by the GPS receiver. Results from previous field studies have shown that shallow soil moisture can be estimated from SNR phase for bare soil conditions or when vegetation is sparse. Vegetation surrounding a GPS antenna affects the phase shift, amplitude, and frequency/apparent reflector height of SNR oscillations. Therefore, it is necessary to quantify the vegetation conditions, for example vegetation height or water content, that preclude retrieval of soil moisture estimates using GPS-IR. We use both field data and an electrodynamic model that simulates SNR interferograms for variable soil and vegetation conditions to: 1. Determine how changes in vegetation height, biomass, and water content affect GPS phase, amplitude, and apparent reflector height and 2. Quantify the amount of vegetation that obscures the soil moisture signal in SNR data. We report results for rangeland and agricultural sites. At the rangeland sites, vegetation water content only varies between 0 and 0.6 kg/m2. Both observed and simulated SNR data from these sites show that apparent reflector height is nearly constant. Therefore, SNR interferograms are strongly affected by permittivity at the soil surface, and thus soil moisture can be retrieved. Even though reflector height does not change, SNR phase shift and amplitude are affected by fluctuations in rangeland vegetation and must be accounted for in soil moisture retrievals. At several agricultural

  8. Monitoring vegetation responses to drought -- linking Remotely-sensed Drought Indices with Meteorological drought indices

    NASA Astrophysics Data System (ADS)

    Wang, H.; Lin, H.; Liu, D.

    2013-12-01

    Abstract: Effectively monitoring vegetation drought is of great significance in ecological conservation and agriculture irrigation at the regional scale. Combining meteorological drought indices with remotely sensed drought indices can improve tracking vegetation dynamic under the threat of drought. This study analyzes the dynamics of spatially-defined Temperature Vegetation Dryness Index (TVDI) and temporally-defined Vegetation Health Index (VHI) from remotely sensed NDVI and LST datasets in the dry spells in Southwest China. We analyzed the correlation between remotely sensed drought indices and meteorological drought index of different time scales. The results show that TVDI was limited by the spatial variations of LST and NDVI, while VHI was limited by the temporal variations of LST and NDVI. Station-based buffering analysis indicates that the extracted remotely sensed drought indices and Standard Precipitation Index (SPI) could reach stable correlation with buffering radius larger than 35 km. Three factors affect the spatiotemporal relationship between remotely sensed drought indices and SPI: i) different vegetation types; ii) the timescale of SPI; and iii) remote sensing data noise. Vegetation responds differently to meteorological drought at various time scales. The correlation between SPI6 and VHI is more significant than that between SPI6 and TVDI. Spatial consistency between VHI and TVDI varies with drought aggravation. In early drought period from October to December, VHI and TVDI show limited consistency due to the low quality of remotely sensed images. The study helps to improve monitoring vegetation drought using both meteorological drought indices and remotely sensed drought indices.

  9. Probabilistic Evaluation of Anthropogenic Regulations In a Vegetated River Channel Using a Vegetation Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Miyamoto, Hitoshi

    2015-04-01

    Vegetation overgrowth in fluvial floodplains, gravel beds, and sand bars has been a serious engineering problem for riparian management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have developed a stochastic model for predicting the vegetation dynamics in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the vegetation dynamics model, the flood discharge (i) is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The component for vegetation dynamics (iv) includes the effects of tree growth, mortality by floods, and infant tree recruitment. Vegetation condition has been observed mainly before and after floods since 2008 at a field site located between 23-24 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth sites in the Kako River floodplains. The predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. This presentation tries to examine effects of anthropogenic river regulations, i.e., thinning and cutting-down, in the vegetated channel in Kako River by using the vegetation dynamics model. Sensitivity of both the flood water level and the vegetation status in the channel is statistically evaluated in terms of the different cutting

  10. Estimating urban vegetation fraction across 25 cities in pan-Pacific using Landsat time series data

    NASA Astrophysics Data System (ADS)

    Lu, Yuhao; Coops, Nicholas C.; Hermosilla, Txomin

    2017-04-01

    Urbanization globally is consistently reshaping the natural landscape to accommodate the growing human population. Urban vegetation plays a key role in moderating environmental impacts caused by urbanization and is critically important for local economic, social and cultural development. The differing patterns of human population growth, varying urban structures and development stages, results in highly varied spatial and temporal vegetation patterns particularly in the pan-Pacific region which has some of the fastest urbanization rates globally. Yet spatially-explicit temporal information on the amount and change of urban vegetation is rarely documented particularly in less developed nations. Remote sensing offers an exceptional data source and a unique perspective to map urban vegetation and change due to its consistency and ubiquitous nature. In this research, we assess the vegetation fractions of 25 cities across 12 pan-Pacific countries using annual gap-free Landsat surface reflectance products acquired from 1984 to 2012, using sub-pixel, spectral unmixing approaches. Vegetation change trends were then analyzed using Mann-Kendall statistics and Theil-Sen slope estimators. Unmixing results successfully mapped urban vegetation for pixels located in urban parks, forested mountainous regions, as well as agricultural land (correlation coefficient ranging from 0.66 to 0.77). The greatest vegetation loss from 1984 to 2012 was found in Shanghai, Tianjin, and Dalian in China. In contrast, cities including Vancouver (Canada) and Seattle (USA) showed stable vegetation trends through time. Using temporal trend analysis, our results suggest that it is possible to reduce noise and outliers caused by phenological changes particularly in cropland using dense new Landsat time series approaches. We conclude that simple yet effective approaches of unmixing Landsat time series data for assessing spatial and temporal changes of urban vegetation at regional scales can provide

  11. A fully traits-based approach to modeling global vegetation distribution

    PubMed Central

    van Bodegom, Peter M.; Douma, Jacob C.; Verheijen, Lieneke M.

    2014-01-01

    Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs. PMID:25225413

  12. Radiation budget and soil heat fluxes in different Arctic tundra vegetation types

    NASA Astrophysics Data System (ADS)

    Juszak, Inge; Iturrate Garcia, Maitane; Gastellu-Etchegorry, Jean-Philippe; Schaepman, Michael E.; Schaepman-Strub, Gabriela

    2016-04-01

    While solar radiation is one of the primary energy sources for warming and thawing permafrost soil, the amount of shortwave radiation reaching the soil is reduced by vegetation shading. Climate change has led to greening, shrub expansion and encroachment in many Arctic tundra regions and further changes are anticipated. These vegetation changes feed back to the atmosphere and permafrost as they modify the surface energy budget. However, canopy transmittance of solar radiation has rarely been measured or modelled for a variety of tundra vegetation types. We assessed the radiation budget of the most common vegetation types at the Kytalyk field site in North-East Siberia (70.8°N, 147.5°E) with field measurements and 3D radiative transfer modelling and linked it to soil heat fluxes. Our results show that Arctic tundra vegetation types differ in canopy albedo and transmittance as well as in soil heat flux and active layer thickness. Tussock sedges transmitted on average 56% of the incoming light and dwarf shrubs 27%. For wet sedges we found that the litter layer was very important as it reduced the average transmittance to only 6%. Model output indicated that both, albedo and transmittance, also depend on the spatial aggregation of vegetation types. We found that permafrost thaw was more strongly related to soil properties than to canopy shading. The presented radiative transfer model allows quantifying effects of the vegetation layer on the surface radiation budget in permafrost areas. The parametrised model can account for diverse vegetation types and variation of properties within types. Our results highlight small scale radiation budget and permafrost thaw variability which are indicated and partly caused by vegetation. As changes in species composition and biomass increase can influence thaw rates, small scale patterns should be considered in assessments of climate-vegetation-permafrost feedbacks.

  13. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.

    PubMed

    Wu, Zhiwei; He, Hong S; Liang, Yu; Cai, Longyan; Lewis, Bernard J

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  14. [Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China].

    PubMed

    Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen

    2014-05-01

    The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate.

  15. Influence of vegetation on spatial patterns of sediment deposition in deltaic islands during flood

    NASA Astrophysics Data System (ADS)

    Nardin, W.; Edmonds, D. A.; Fagherazzi, S.

    2016-07-01

    River deltas are shaped by the interaction between flow and sediment transport. This morphodynamic interaction is potentially affected by freshwater marsh vegetation (e.g. Sagittaria spp.and Typha spp. in the Mississippi delta, USA) on the exposed surfaces of emergent deltaic islands. The vulnerability of deltaic islands is a result of external forces like large storms, sea level rise, and trapping of sediment in upstream reservoirs. These factors can strongly determine the evolution of the deltaic system by influencing the coupling between vegetation dynamics and morphology. In the last few years, models have been developed to describe the dynamics of salt marsh geomorphology coupled with vegetation growth while the effect of freshwater vegetation on deltaic islands and marshes remains unexplored. Here we use a numerical flow and sediment transport model to determine how vegetation affects the spatial distribution of sediment transport and deposition on deltaic surfaces during flood. Our modeling results show that, for an intermediate value of relative vegetation height and density, sedimentation rate increases at the head of the delta. On the other hand, large values of relative vegetation height and density promote more sedimentation at the delta shoreline. A logical extension of our results is that over time intermediate values of relative vegetation height and density will create a steeper-sloped delta due to sediment trapping at the delta head, whereas relatively taller vegetation will create a larger, but flatter delta due to sediment deposition at the shoreline. This suggests intermediate relative vegetation height and density may create more resilient deltas with higher average elevations.

  16. A fully traits-based approach to modeling global vegetation distribution.

    PubMed

    van Bodegom, Peter M; Douma, Jacob C; Verheijen, Lieneke M

    2014-09-23

    Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.

  17. Examining the influence of vegetation on slope hydrology in Hong Kong using the capacitive resistivity technique

    NASA Astrophysics Data System (ADS)

    Niu, Qifei; Zhao, Kairan; Wang, Yu-Hsing; Wu, Yuxin

    2016-06-01

    Vegetation essentially has both beneficial and detrimental hydrological effects on slope stability, and the balance between these effects changes throughout the year. For engineers considering vegetation as an ecotechnological solution to slope instability, it is therefore necessary to understand how the net hydrological effect varies with local weather conditions. In this study, year-round field monitoring was carried out to examine the influence of a native plant on slope hydrology in Hong Kong using the capacitive resistivity technique and a newly developed line-electrode resistivity array. The measured soil resistivity was used to infer the soil moisture conditions on the slopes. The results show that vegetation generally has a strong influence on soil moisture although this effect varies among seasons. During the summer time, vegetation increases the soil moisture if compared with the bare slope. This is mainly due to the high precipitation, most of which enters the vegetated slope because of the increased permeability and infiltration rate caused by the vegetation. During the autumn time, the influence of vegetation evapotranspiration on slope hydrology becomes noticeable mainly because of the low precipitation (monthly less than 100 mm) and the relatively high potential evapotranspiration (monthly around 100 mm). In dry and cold winter, resistivity measurements suggest that the vegetation helps retain the soil water. In the following spring, difference in the soil moisture in bare and vegetated slopes is gradually wiped out because of the frequent rainfall. When the monthly rainfall reaches ~ 400 mm in early summer, the influence of vegetation on slope hydrology (soil moisture) completely disappears.

  18. IBERIN INDUCES CELL CYCLE ARREST AND APOPTOSIS IN HUMAN NEUROBLASTOMA CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiological studies have indicated that increased consumption of cruciferous vegetables is associated with a statistically significant reduction in the risk for cancers. The major bioactive agent in these vegetables is a class of sulfur-containing glycosides called glucosinolates. Isothiocyana...

  19. Modeling of microwave scattering from vegetated covered terrain

    NASA Technical Reports Server (NTRS)

    Lang, R. H.

    1982-01-01

    General formulation of resonant backscattering from vegetation, mean field and Green's function in three media, and electromagnetic backscattering coefficients from a layer of vegetation are discussed.

  20. The Physics of Equestrian Show Jumping

    ERIC Educational Resources Information Center

    Stinner, Art

    2014-01-01

    This article discusses the kinematics and dynamics of equestrian show jumping. For some time I have attended a series of show jumping events at Spruce Meadows, an international equestrian center near Calgary, Alberta, often referred to as the "Wimbledon of equestrian jumping." I have always had a desire to write an article such as this…

  1. Serving Up Activities for TV Cooking Shows.

    ERIC Educational Resources Information Center

    Katchen, Johanna E.

    This paper documents a presentation given on the use of English-language television cooking shows in English-as-a-Second-Language (ESL) and English-as-a-Foreign-Language (EFL) classrooms in Taiwan. Such shows can be ideal for classroom use, since they have a predictable structure consisting of short segments, are of interest to most students,…

  2. 47 CFR 90.505 - Showing required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MOBILE RADIO SERVICES Developmental Operation § 90.505 Showing required. (a) Except as provided in paragraph (b) of this section, each application for developmental operation shall be accompanied by a showing that: (1) The applicant has an organized plan of development leading to a specific objective;...

  3. The Language of Show Biz: A Dictionary.

    ERIC Educational Resources Information Center

    Sergel, Sherman Louis, Ed.

    This dictionary of the language of show biz provides the layman with definitions and essays on terms and expressions often used in show business. The overall pattern of selection was intended to be more rather than less inclusive, though radio, television, and film terms were deliberately omitted. Lengthy explanations are sometimes used to express…

  4. Uptake of di-(2-ethylhexyl) phthalate of vegetables from plastic film greenhouses.

    PubMed

    Fu, Xiaowei; Du, Qizhen

    2011-11-09

    Uptake of di-(2-ethylhexyl) phthalate (DEHP) of nine vegetables including potherb mustard, bok choy, celery, spinach, cabbage, leaf of tube, lettuce, garlic, and edible amaranth in plastic film greenhouses with different plastic films, film thickness, greenhouse age, and greenhouse height was studied. The results showed that the higher the DEHP content of film, the thicker the film, the lower the height of the greenhouse, and the younger the age of the greenhouse were, the higher the DEHP concentration of vegetables was. The results afford significant information for production of safe vegetables with low level DEHP contamination.

  5. Bonneville - Hood River Vegetation Management Environmental Assessment

    SciTech Connect

    N /A

    1998-08-01

    To maintain the reliability of its electrical system, BPA, in cooperation with the U.S. Forest Service, needs to expand the range of vegetation management options used to clear unwanted vegetation on about 20 miles of BPA transmission line right-of-way between Bonneville Dam and Hood River; Oregon, within the Columbia Gorge National Scenic Area (NSA). We propose to continue controlling undesirable vegetation using a program of Integrated Vegetation Management (IVM) which includes manual, biological and chemical treatment methods. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1257) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  6. Exploring vegetation in the fourth dimension.

    PubMed

    Mitchell, Fraser J G

    2011-01-01

    Much ecological research focuses on changes in vegetation on spatial scales from stands to landscapes; however, capturing data on vegetation change over relevant timescales remains a challenge. Pollen analysis offers unrivalled access to data with global coverage over long timescales. Robust techniques have now been developed that enable pollen data to be converted into vegetation data in terms of individual taxa, plant communities or biomes, with the possibility of deriving from those data a range of plant attributes and ecological indicators. In this review, I discuss how coupling pollen with macrofossil, charcoal and genetic data opens up the extensive pollen databases to investigation of the drivers of vegetation change over time and also provides extensive data sets for testing hypotheses with wide ecological relevance.

  7. 30 CFR 783.19 - Vegetation information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., contain a map that delineates existing vegetative types and a description of the plant communities within...) When a map or aerial photograph is required, sufficient adjacent areas shall be included to...

  8. Ski slope vegetation in central Honshu, Japan

    NASA Astrophysics Data System (ADS)

    Tsuyuzaki, Shiro

    1995-09-01

    To determine the status of the vegetation of ski slopes in northeastern-central Honshu, Japan, 94 plots (2×2 m) were set up on five ski areas (101-520 m elevation) which were established between 1945 and 1985 by forest clear-cutting, land modification, and seeding. Six vegetation types were recognized: five grasslands dominated by Digitaria adscendens, Miscanthus sinensis, Zoysia japonica, Festuca rubra, and Pteridium aquilinum var. latiusculum, respectively, and bare areas of very low to no vegetation cover. Of the dominant species, F. rubra is the only introduced species; it does not, however, appear to persist. After the introduced grassland declines M. sinensis or annual grasslands develop. Native plants, especially woody species, can establish in M. sinensis grassland but do not establish in the other grasslands. It is concluded that the introduction of exotic species is inappropriate to maintain ski slope vegetation, and the development of M. sinensis grassland is desirable to promote natural revegetation.

  9. Terrestrial Laser Scanning for Vegetation Sampling

    PubMed Central

    Richardson, Jeffrey J; Moskal, L. Monika; Bakker, Jonathan D.

    2014-01-01

    We developed new vegetation indices utilizing terrestrial laser scanning (TLS) to quantify the three-dimensional spatial configuration of plant communities. These indices leverage the novelty of TLS data and rely on the spatially biased arrangement of a TLS point cloud. We calculated these indices from TLS data acquired within an existing long term manipulation of forest structure in Central Oregon, USA, and used these data to test for differences in vegetation structure. Results provided quantitative evidence of a significant difference in vegetation density due to thinning and burning, and a marginally significant difference in vegetation patchiness due to grazing. A comparison to traditional field sampling highlighted the novelty of the TLS based method. By creating a linkage between traditional field sampling and landscape ecology, these indices enable field investigations of fine-scale spatial patterns. Applications include experimental assessment, long-term monitoring, and habitat characterization. PMID:25353981

  10. Predicting vegetation-stabilized dune field morphology

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2012-09-01

    The morphology of vegetation-stabilized dune fields on the North American Great Plains (NAGP) mostly comprises parabolic dunes; stabilized barchan and transverse dunes are rare, with the exception of transverse and barchan mega-dunes in the Nebraska Sand Hills. We present a hypothesis from a numerical dune field model explaining the vegetation-stabilized morphology of dunes under unidirectional wind. Simulations with a range of initial dune morphologies (closely-spaced transverse to disperse barchans) indicate that stabilized morphology is determined by the ratio of slipface deposition rate to deposition tolerance of vegetation. Slipface deposition rate is related to dune height, flux, and celerity. With a fixed depositional tolerance, large, slow-moving dunes have low slipface deposition rates and ‘freeze’ in place once vegetation is introduced. Relatively small, fast dunes have high slipface deposition rates and evolve into parabolic dunes, often colliding during stabilization. Our hypothesis could explain differences in stabilized morphology across the NAGP and elsewhere.

  11. Terrestrial laser scanning for vegetation sampling.

    PubMed

    Richardson, Jeffrey J; Moskal, L Monika; Bakker, Jonathan D

    2014-10-28

    We developed new vegetation indices utilizing terrestrial laser scanning (TLS) to quantify the three-dimensional spatial configuration of plant communities. These indices leverage the novelty of TLS data and rely on the spatially biased arrangement of a TLS point cloud. We calculated these indices from TLS data acquired within an existing long term manipulation of forest structure in Central Oregon, USA, and used these data to test for differences in vegetation structure. Results provided quantitative evidence of a significant difference in vegetation density due to thinning and burning, and a marginally significant difference in vegetation patchiness due to grazing. A comparison to traditional field sampling highlighted the novelty of the TLS based method. By creating a linkage between traditional field sampling and landscape ecology, these indices enable field investigations of fine-scale spatial patterns. Applications include experimental assessment, long-term monitoring, and habitat characterization.

  12. Backscattering power spectrum for randomly moving vegetation

    NASA Astrophysics Data System (ADS)

    Jiankang, J.; Zhongzhi, Z.; Zhong, S.

    1986-08-01

    The vegetation backscattering power spectrum in the presence of winds is derived. The physical process of the action of stems and leaves of the vegetation is analyzed. A statistical distribution of the random velocity of stems and leaves is obtained, and the vegetation backscattering power spectral density which is dependent on the wind speed and direction as well as the incident wave parameters is given. In the case of uniform notion of vegetation in the direction of winds, the results provide a good interpretation of Fishbein's empirical model. The determination of the values of the equivalent parameters in the spectrum is discussed, and comparisons are made between the derived spectrum and measured published spectra with satisfactory consistence.

  13. Potential of vegetable oils for lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils offer significant advantages in terms of resource renewability, biodegradability, and comparable performance properties to petroleum-based products. The petroleum-based lubricants render unfavorable impact on the environment. With the growing environmental concerns, seed oils are find...

  14. Capture effeciency of a vegetative environmental buffer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particulate matter emitted from tunnel-ventilated animal feeding operations (AFOs) is known to transport malodorous compounds. As a mitigation strategy, vegetative environmental buffers (VEBs) are often installed surrounding AFOs to capture particulates and induce lofting and dispersion. Currently, ...

  15. Use and applicability of the vegetation component of the national site classification system. [Sumter National Forest, South Carolina

    NASA Technical Reports Server (NTRS)

    Clark, C. A. (Principal Investigator)

    1981-01-01

    Existing vegetation on a site in Sumter National Forest, South Carolina was classified using high altitude aerial optical bar color infrared photography in an effort to determine i