NASA Technical Reports Server (NTRS)
1973-01-01
An analysis of cryogenic fluid cooling in the environmental control system of the space shuttle was conducted. The technique for treating the cryogenic fluid storage and supply tanks and subsystems as integrated systems was developed. It was concluded that a basic incompatibility exists between the heat generated and the cryogen usage rate and cryogens cannot be used to absorb the generated heat. The use of radiators and accumulators to provide additional cooling capability is recommended.
Cooling of superconducting devices by liquid storage and refrigeration unit
Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene
2013-08-20
A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.
Use of PROFIBUS for cryogenic instrumentation at XFEL
NASA Astrophysics Data System (ADS)
Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.
2017-12-01
The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.
Cryogenic Technology Development for Exploration Missions
NASA Technical Reports Server (NTRS)
Chato, David J.
2007-01-01
This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.
NASA Technical Reports Server (NTRS)
1973-01-01
The evaluation of candidate cryogenic fuel systems for space shuttle vehicles is discussed. A set of guidelines was used to establish a matrix of possible combinations for the integration of potential cryogenic systems. The various concepts and combinations which resulted from the integration efforts are described. The parameters which were considered in developing the matrix are: (1) storage of cryogenic materials, (2) fuel lines, (3) tank pressure control, (4) thermal control, (5) fluid control, and (6) fluid conditioning. Block diagrams and drawings of the candidate systems are provided. Performance predictions for the systems are outlined in tables of data.
Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam
2012-01-01
A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.
Shuttle: Reaction control system. Cryogenic liquid distribution system: Study
NASA Technical Reports Server (NTRS)
Akkerman, J. W.
1972-01-01
A cryogenic liquid distribution system suitable for the reaction control system on space shuttles is described. The system thermodynamics, operation, performance and weight analysis are discussed along with the design, maintenance and integration concepts.
NASA Astrophysics Data System (ADS)
Aoki, K.; Ohuchi, N.; Zong, Z.; Arimoto, Y.; Wang, X.; Yamaoka, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Hirose, M.; Endou, T.; Iwasaki, M.; Nakamura, T.
2017-12-01
A remote monitoring system was developed based on the software infrastructure of the Experimental Physics and Industrial Control System (EPICS) for the cryogenic system of superconducting magnets in the interaction region of the SuperKEKB accelerator. The SuperKEKB has been constructed to conduct high-energy physics experiments at KEK. These superconducting magnets consist of three apparatuses, the Belle II detector solenoid, and QCSL and QCSR accelerator magnets. They are each contained in three cryostats cooled by dedicated helium cryogenic systems. The monitoring system was developed to read data of the EX-8000, which is an integrated instrumentation system to control all cryogenic components. The monitoring system uses the I/O control tools of EPICS software for TCP/IP, archiving techniques using a relational database, and easy human-computer interface. Using this monitoring system, it is possible to remotely monitor all real-time data of the superconducting magnets and cryogenic systems. It is also convenient to share data among multiple groups.
Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project
NASA Technical Reports Server (NTRS)
Harp, Janice Leshay
2014-01-01
This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.
1985-01-01
The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).
Renewal of the Control System and Reliable Long Term Operation of the LHD Cryogenic System
NASA Astrophysics Data System (ADS)
Mito, T.; Iwamoto, A.; Oba, K.; Takami, S.; Moriuchi, S.; Imagawa, S.; Takahata, K.; Yamada, S.; Yanagi, N.; Hamaguchi, S.; Kishida, F.; Nakashima, T.
The Large Helical Device (LHD) is a heliotron-type fusion plasma experimental machine which consists of a fully superconducting magnet system cooled by a helium refrigerator having a total equivalent cooling capacity of 9.2 kW@4.4 K. Seventeenplasma experimental campaigns have been performed successfully since1997 with high reliability of 99%. However, sixteen years have passed from the beginning of the system operation. Improvements are being implementedto prevent serious failures and to pursue further reliability.The LHD cryogenic control system was designed and developed as an open system utilizing latest control equipment of VME controllers and UNIX workstations at the construction time. Howeverthe generation change of control equipment has been advanced. Down-sizing of control deviceshas beenplanned from VME controllers to compact PCI controllers in order to simplify the system configuration and to improve the system reliability. The new system is composed of compact PCI controller and remote I/O connected with EtherNet/IP. Making the system redundant becomes possible by doubling CPU, LAN, and remote I/O respectively. The smooth renewal of the LHD cryogenic controlsystem and the further improvement of the cryogenic system reliability are reported.
New Process Controls for the Hera Cryogenic Plant
NASA Astrophysics Data System (ADS)
Böckmann, T.; Clausen, M.; Gerke, Chr.; Prüß, K.; Schoeneburg, B.; Urbschat, P.
2010-04-01
The cryogenic plant built for the HERA accelerator at DESY in Hamburg (Germany) is now in operation for more than two decades. The commercial process control system for the cryogenic plant is in operation for the same time period. Ever since the operator stations, the control network and the CPU boards in the process controllers went through several upgrade stages. Only the centralized Input/Output system was kept unchanged. Many components have been running beyond the expected lifetime. The control system for one at the three parts of the cryogenic plant has been replaced recently by a distributed I/O system. The I/O nodes are connected to several Profibus-DP field busses. Profibus provides the infrastructure to attach intelligent sensors and actuators directly to the process controllers which run the open source process control software EPICS. This paper describes the modification process on all levels from cabling through I/O configuration, the process control software up to the operator displays.
Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.
1996-01-01
A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.
Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI)
NASA Technical Reports Server (NTRS)
Swenson, Charles; Hunter, Roger C.; Baker, Christopher E.
2018-01-01
The Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI) project will demonstrate an advanced thermal control system for CubeSats and enable the use of cryogenic electro-optical instrumentation on small satellite platforms. Specifically, the project focuses on the development of a deployable solar tracking radiator, a rotationally flexible rotary union fluid joint, and a thermal/vibrational isolation system for miniature cryogenic detectors. This technology will represent a significant improvement over the current state of the art for CubeSat thermal control, which generally relies on simple passive and conductive methods.
Lessons learned: design, start-up, and operation of cryogenic systems
NASA Astrophysics Data System (ADS)
Bell, W. M.; Bagley, R. E.; Motew, S.; Young, P.-W.
2014-11-01
Cryogenic systems involving a pumped cryogenic fluid, such as liquid nitrogen (LN2), require careful design since the cryogen is close to its boiling point and cold. At 1 atmosphere, LN2 boils at 77.4 K (-320.4 F). These systems, typically, are designed to transport the cryogen, use it for process heat removal, or for generation of gas (GN2) for process use. As the design progresses, it is important to consider all aspects of the design including, cryogen storage, pressure control and safety relief systems, thermodynamic conditions, equipment and instrument selection, materials, insulation, cooldown, pump start-up, maximum design and minimum flow rates, two phase flow conditions, heat flow, process control to meet and maintain operating conditions, piping integrity, piping loads on served equipment, warm-up, venting, and shut-down. "Cutting corners" in the design process can result in stalled start-ups, field rework, schedule hits, or operational restrictions. Some of these "lessoned learned" are described in this paper.
Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.
2017-01-01
Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.
NASA Technical Reports Server (NTRS)
1973-01-01
A computer programmer's manual for a digital computer which will permit rapid and accurate parametric analysis of current and advanced attitude control propulsion systems is presented. The concept is for a cold helium pressurized, subcritical cryogen fluid supplied, bipropellant gas-fed attitude control propulsion system. The cryogen fluids are stored as liquids under low pressure and temperature conditions. The mathematical model provides a generalized form for the procedural technique employed in setting up the analysis program.
G2 Autonomous Control for Cryogenic Delivery Systems
NASA Technical Reports Server (NTRS)
Dito, Scott J.
2014-01-01
The Independent System Health Management-Autonomous Control (ISHM-AC) application development for cryogenic delivery systems is intended to create an expert system that will require minimal operator involvement and ultimately allow for complete autonomy when fueling a space vehicle in the time prior to launch. The G2-Autonomous Control project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to a rocket for testing purposes. To develop this application, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through training classes and subsequent application development, and are now in the process of building the application that will soon be used to test on cryogenic loading equipment here at the Kennedy Space Center Cryogenics Test Laboratory (CTL). The G2 ISHM-AC application will bring with it a safer and more efficient propellant loading system for the future launches at Kennedy Space Center and eventually mobile launches from all over the world.
Automated Cryocooler Monitor and Control System Software
NASA Technical Reports Server (NTRS)
Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad
2011-01-01
This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.
Cryogenic Controls for Fermilab's Srf Cavities and Test Facility
NASA Astrophysics Data System (ADS)
Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.
2008-03-01
A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.
Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems
NASA Technical Reports Server (NTRS)
Walker, M.; Figueroa, F.
2015-01-01
The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.
Cryogenics and the Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)
1997-01-01
Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management technology as it applies to the current human Mars mission scenarios.
Shuttle cryogenic supply system optimization study. Volume 1: Management supply, sections 1 - 3
NASA Technical Reports Server (NTRS)
1973-01-01
An analysis of the cryogenic supply system for use on space shuttle vehicles was conducted. The major outputs of the analysis are: (1) evaluations of subsystem and integrated system concepts, (2) selection of representative designs, (3) parametric data and sensitivity studies, (4) evaluation of cryogenic cooling in environmental control subsystems, and (5) development of mathematical model.
Feasibility study for the Cryogenic Orbital Nitrogen Experiment (CONE)
NASA Technical Reports Server (NTRS)
Bell, R. S.; Crouch, M. A.; Hanna, G. J.; Cady, E. C.; Meserole, J. S.
1991-01-01
An improved understanding of low gravity subcritical cryogenic fluid behavior is critical for the continued development of space based systems. Although early experimental programs provided some fundamental understanding of zero gravity cryogenic fluid behavior, more extensive flight data are required to design space based cryogenic liquid storage and transfer systems with confidence. As NASA's mission concepts evolve, the demand for optimized in-space cryogenic systems is increasing. Cryogenic Orbital Nitrogen Experiment (CONE) is an attached shuttle payload experiment designed to address major technological issues associated with on-orbit storage and supply of cryogenic liquids. During its 7 day mission, CONE will conduct experiments and technology demonstrations in active and passive pressure control, stratification and mixing, liquid delivery and expulsion efficiency, and pressurant bottle recharge. These experiments, conducted with liquid nitrogen as the test fluid, will substantially extend the existing low gravity fluid data base and will provide future system designers with vital performance data from an orbital environment.
Commissioning of cryogenic system for China Spallation Neutron Source
NASA Astrophysics Data System (ADS)
Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun
2017-12-01
China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.
Automatic control of a liquid nitrogen cooled, closed-circuit, cryogenic pressure tunnel
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Goglia, G. L.
1980-01-01
The control system design, performance analysis, microprocesser based controller software development, and specifications for the Transonic Cryogenic Tunnel (TCT) are discussed. The control laws for the single-input single-output controllers were tested on the TCT simulator, and successfully demonstrated on the TCT.
NASA Astrophysics Data System (ADS)
Dutt, R. N.; Meena, D. K.; Kar, S.; Soni, V.; Nadaf, A.; Das, A.; Singh, F.; Datta, T. S.
2017-02-01
A system for carrying out automatic experimental measurements of various electrical transport characteristics and their relation to magnetic fields for samples mounted on the sample holder on a Variable Temperature Insert (VTI) of the Cryogen Free Superconducting Magnet System (CFMS) has been developed. The control and characterization system is capable of monitoring, online plotting and history logging in real-time of cryogenic temperatures with the Silicon (Si) Diode and Zirconium Oxy-Nitride sensors installed inside the magnet facility. Electrical transport property measurements have been automated with implementation of current reversal resistance measurements and automatic temperature set-point ramping with the parameters of interest available in real-time as well as for later analysis. The Graphical User Interface (GUI) based system is user friendly to facilitate operations. An ingenious electronics for reading Zirconium Oxy-Nitride temperature sensors has been used. Price to performance ratio has been optimized by using in house developed measurement techniques mixed with specialized commercial cryogenic measurement / control equipment.
Cryogenic Liquid Sample Acquisition System for Remote Space Applications
NASA Technical Reports Server (NTRS)
Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John
2013-01-01
There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.
NASA Astrophysics Data System (ADS)
Chen, G. B.; Zhong, Y. K.; Zheng, X. L.; Li, Q. F.; Xie, X. M.; Gan, Z. H.; Huang, Y. H.; Tang, K.; Kong, B.; Qiu, L. M.
2003-12-01
A novel gas-phase inlet configuration in the natural circulation system instead of the liquid-phase inlet is introduced to cool down a cryogenic pump system from room temperature to cryogenic temperatures, effectively. The experimental apparatus is illustrated and test process is described. Heat transfer and pressure drop data during the cool-down process are recorded and portrayed. By contrast with liquid-phase inlet configuration, experimental results demonstrate that the natural circulation with the gas-phase inlet configuration is an easier and more controllable way to cool down the pump system and maintain it at cryogenic temperatures.
NASA's Cryogenic Fluid Management Technology Project
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Motil, Susan M.
2008-01-01
The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.
Use of thermal sieve to allow optical testing of cryogenic optical systems.
Kim, Dae Wook; Cai, Wenrui; Burge, James H
2012-05-21
Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.
NASA Technical Reports Server (NTRS)
Plachta, David W.; Tucker, Stephen; Hoffman, David J.
1993-01-01
This paper analyzes, defines, and sizes cryogenic storage thermal control systems that meet the requirements of future NASA Mars human exploration missions. The design issues of this system include the projection of the existing Multilayer Insulation data base for cryogenic storage to much thicker (10 cm or more) insulation systems, the unknown heat leak from mechanical interfaces, and the thermal and structural performance effects of the large tank sizes required for a Mars mission. Acknowledging these unknown effects, heat loss projections are made based on extrapolation of the existing data base. The results indicate that hydrogen, methane, and oxygen are feasible propellants, and that the best suited thermal control sytems are 'thick' MLI, thermodynamic vent sytems, cryocoolers, and vacuum jackets.
Integrated Ground Operations Demonstration Units Testing Plans and Status
NASA Technical Reports Server (NTRS)
Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.
2012-01-01
Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control
TankSIM: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.
2015-01-01
Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1982-01-01
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar.
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.
1984-01-01
The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.
The US National Transonic Facility, NTF
NASA Technical Reports Server (NTRS)
Bruce, Walter E., Jr.; Gloss, Blair B.
1989-01-01
The construction of the National Transonic Facility was completed in September 1982 and the start-up and checkout of tunnel systems were performed over the next two years. In August 1984, the Operational Readiness Review (ORR) was conducted and the facility was declared operational for final checkout of cryogenic instrumentation and control systems, and for the aerodynamic calibration and testing to commence. Also, the model access system for the cryogenic mode of operation would be placed into operation along with tunnel testing. Since the ORR, a host of operating problems resulting from the cryogenic environment were identified and solved. These range from making mechanical and electrical systems functional to eliminating temperature induced model vibration to coping with the outgassing of moisture from the thermal insulation. Additionally, a series of aerodynamic tests have demonstrated data quality and provided research data on several configurations. Some of the more significant efforts are reviewed since the ORR and the NTF status concerning hardware, instrumentation and process controls systems, operating constraints imposed by the cryogenic environment, and data quality are summarized.
Antony, Joby; Mathuria, D S; Datta, T S; Maity, Tanmoy
2015-12-01
The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW(®). This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.
NASA Astrophysics Data System (ADS)
Antony, Joby; Mathuria, D. S.; Datta, T. S.; Maity, Tanmoy
2015-12-01
The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW®. This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antony, Joby; Mathuria, D. S.; Datta, T. S.
The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similarmore » control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as “CADS,” which stands for “Complete Automation of Distribution System.” CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW{sup ®}. This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.« less
Large-Scale Cryogen Systems and Test Facilities
NASA Technical Reports Server (NTRS)
Johnson, R. G.; Sass, J. P.; Hatfield, W. H.
2007-01-01
NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.
Shuttle cryogenic supply system optimization study. Volume 6: Appendixes
NASA Technical Reports Server (NTRS)
1973-01-01
The optimization of the cryogenic supply system for space shuttles is discussed. The subjects considered are: (1) auxiliary power unit parametric data, (2) propellant acquisition, (3) thermal protection and thermodynamic properties, (4) instrumentation and controls, and (5) initial component redundancy evaluations. Diagrams of the systems are provided. Graphs of the performance capabilities are included.
NASA Technical Reports Server (NTRS)
Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.
1998-01-01
As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.
NASA Astrophysics Data System (ADS)
Fast, R. W.
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250
Active Control of Cryogenic Propellants in Space
NASA Technical Reports Server (NTRS)
Notardonato, William
2011-01-01
A new era of space exploration is being planned. Exploration architectures under consideration require the long term storage of cryogenic propellants in space. This requires development of active control systems to mitigate the effect of heat leak. This work summarizes current state of the art, proposes operational design strategies and presents options for future architectures. Scaling and integration of active systems will be estimated. Ideal long range spacecraft systems will be proposed with Exploration architecture benefits considered.
Large scale cryogenic fluid systems testing
NASA Technical Reports Server (NTRS)
1992-01-01
NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.
Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Theilacker, J.; Klebaner, A.
2015-11-05
The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05more » PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.« less
Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.
2017-01-01
To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.
Design manual: Oxygen Thermal Test Article (OTTA)
NASA Technical Reports Server (NTRS)
Chronic, W. L.; Baese, C. L.; Conder, R. L.
1974-01-01
The characteristics of a cryogenic tank for storing liquid hydrogen, nitrogen, oxygen, methane, or helium for an extended period of time with minimum losses are discussed. A description of the tank and control module, assembly drawings and details of major subassemblies, specific requirements controlling development of the system, thermal concept considerations, thermal analysis methods, and a record of test results are provided. The oxygen thermal test article thermal protection system has proven that the insulation system for cryogenic vessels is effective.
Wall mounted heat exchanger characterization. [cryogenic propellant tanks
NASA Technical Reports Server (NTRS)
Bullard, B. R.
1975-01-01
Analytical models are presented for describing the heat and mass transfer and the energy distribution in the contents of a cryogenic propellant tank, under varying gravity levels. These models are used to analytically evaluate the effectiveness of a wall heat exchanger as a means of controlling the pressure in the tank during flight and during fill operations. Pressure and temperature histories are presented for tanks varying in size from 4 to 22.5 feet in diameter and gravity levels from 0-1. Results from the subscale test program, utilizing both non-cryogenic and cryogenic fluid, designed to evaluate a tank wall heat exchanger are described and compared with the analytical models. Both the model and test results indicate that a passive tank wall heat exchanger can effectively control tank pressure. However, the weight of such a system is considerably higher than that of an active mixer system.
Helium refrigeration system for hydrogen liquefaction applications
NASA Astrophysics Data System (ADS)
Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.
2017-02-01
Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.
Operational present status and reliability analysis of the upgraded EAST cryogenic system
NASA Astrophysics Data System (ADS)
Zhou, Z. W.; Y Zhang, Q.; Lu, X. F.; Hu, L. B.; Zhu, P.
2017-12-01
Since the first commissioning in 2005, the cryogenic system for EAST (Experimental Advanced Superconducting Tokamak) has been cooled down and warmed up for thirteen experimental campaigns. In order to promote the refrigeration efficiencies and reliability, the EAST cryogenic system was upgraded gradually with new helium screw compressors and new dynamic gas bearing helium turbine expanders with eddy current brake to improve the original poor mechanical and operational performance from 2012 to 2015. Then the totally upgraded cryogenic system was put into operation in the eleventh cool-down experiment, and has been operated for the latest several experimental campaigns. The upgraded system has successfully coped with various normal operational modes during cool-down and 4.5 K steady-state operation under pulsed heat load from the tokamak as well as the abnormal fault modes including turbines protection stop. In this paper, the upgraded EAST cryogenic system including its functional analysis and new cryogenic control networks will be presented in detail. Also, its operational present status in the latest cool-down experiments will be presented and the system reliability will be analyzed, which shows a high reliability and low fault rate after upgrade. In the end, some future necessary work to meet the higher reliability requirement for future uninterrupted long-term experimental operation will also be proposed.
Subcooling for Long Duration In-Space Cryogenic Propellant Storage
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff
2010-01-01
Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.
Ground operations demonstration unit for liquid hydrogen initial test results
NASA Astrophysics Data System (ADS)
Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.
2015-12-01
NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.
Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.
2015-01-01
NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.
System and method of active vibration control for an electro-mechanically cooled device
Lavietes, Anthony D.; Mauger, Joseph; Anderson, Eric H.
2000-01-01
A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.
NASA Technical Reports Server (NTRS)
Regalado Reyes, Bjorn Constant
2015-01-01
1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.
Mars transit vehicle thermal protection system: Issues, options, and trades
NASA Technical Reports Server (NTRS)
Brown, Norman
1986-01-01
A Mars mission is characterized by different mission phases. The thermal control of cryogenic propellant in a propulsive vehicle must withstand the different mission environments. Long term cryogenic storage may be achieved by passive or active systems. Passive cryo boiloff management features will include multilayer insulation, vapor cooled shield, and low conductance structural supports and penetrations. Active boiloff management incorporates the use of a refrigeration system. Key system trade areas include active verses passive system boiloff management (with respect to safety, reliability, and cost) and propellant tank insulation optimizations. Technology requirements include refrigeration technology advancements, insulation performance during long exposure, and cryogenic fluid transfer system for mission vehicle propellant tanking during vehicle buildip in LEO.
Cryogenic and radiation hard ASIC design for large format NIR/SWIR detector
NASA Astrophysics Data System (ADS)
Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses
2014-10-01
An ASIC is developed to control and data quantization for large format NIR/SWIR detector arrays. Both cryogenic and space radiation environment issue are considered during the design. Therefore it can be integrated in the cryogenic chamber, which reduces significantly the vast amount of long wires going in and out the cryogenic chamber, i.e. benefits EMI and noise concerns, as well as the power consumption of cooling system and interfacing circuits. In this paper, we will describe the development of this prototype ASIC for image sensor driving and signal processing as well as the testing in both room and cryogenic temperature.
NASA Technical Reports Server (NTRS)
Morse, S. F.; Roper, A. T.
1975-01-01
The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 8: Thermal control panel
NASA Technical Reports Server (NTRS)
1975-01-01
Technology deficiencies in the area of thermal control for future space missions are identified with emphasis on large space structures and cold controlled environments. Thermal control surfaces, heat pipes, and contamination are considered along with cryogenics, insulation, and design techniques. Major directions forecast for thermal control technology development and space experiments are: (1) extend the useful lifetime of cryogenic systems for space, (2) reduce temperature gradients, and (3) improve temperature stability.
Subcooling Cryogenic Propellants for Long Duration Space Exploration
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Canavan, Edgar; Johnson, Wesley; Kutter, Bernard; Shull, Jeff
2009-01-01
The use of cryogenic propellants such as hydrogen and oxygen is crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles with the flexibility to remain in orbit or travel in space for months, necessitating long-term storage of these cryogens. One powerful technique for easing the challenge of cryogenic fluid storage is to remove energy from tlie cryogenic propellant by isobaricly subcooling them below their normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced. After launch, even with the use of the best insulation systems, heat will leak into the cold cryogenic propellant tank. However, the large heat capacity available in highly subcooled cryogenic propellants allows them to absorb the energy that leaks into the tank until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be no loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot many months with minimal mass penalty. Subcooling technologies for cryogenic propellants would thus provide the Exploration Systems Mission Directorate with an enhanced level of mission flexibility. However, there are a few challenges associated with subcooling cryogenic propellants since compact subcooling ground support equipment has not been demonstrated. This paper explores the beneficial impact of subcooling cryogenic propellants on the launch pad for long-term cryogenic propellant storage in space and proposes a novel method for implementing subcooling of cryogenic propellants for spacecraft such as the Ares V Earth Departure Stage (EDS). Analysis indicates that with a careful strategy to handle the subcooled cryogen it would be possible to store cryogenic propellants in space for many months without venting. A concept for subcooling the cryogenic propellant relatively quickly and inexpensively on the launch pad - the thermodynamic cryogen subcooler (TCS) - will be presented. Important components of the TCS and an associated subcooled cryogen tank (SCT) will be discussed in this paper. Results from a preliminary thermodynamic model of the performance of a TCS for an EDS sized hydrogen tank will also be presented.
Steering and positioning targets for HWIL IR testing at cryogenic conditions
NASA Astrophysics Data System (ADS)
Perkes, D. W.; Jensen, G. L.; Higham, D. L.; Lowry, H. S.; Simpson, W. R.
2006-05-01
In order to increase the fidelity of hardware-in-the-loop ground-truth testing, it is desirable to create a dynamic scene of multiple, independently controlled IR point sources. ATK-Mission Research has developed and supplied the steering mirror systems for the 7V and 10V Space Simulation Test Chambers at the Arnold Engineering Development Center (AEDC), Air Force Materiel Command (AFMC). A portion of the 10V system incorporates multiple target sources beam-combined at the focal point of a 20K cryogenic collimator. Each IR source consists of a precision blackbody with cryogenic aperture and filter wheels mounted on a cryogenic two-axis translation stage. This point source target scene is steered by a high-speed steering mirror to produce further complex motion. The scene changes dynamically in order to simulate an actual operational scene as viewed by the System Under Test (SUT) as it executes various dynamic look-direction changes during its flight to a target. Synchronization and real-time hardware-in-the-loop control is accomplished using reflective memory for each subsystem control and feedback loop. This paper focuses on the steering mirror system and the required tradeoffs of optical performance, precision, repeatability and high-speed motion as well as the complications of encoder feedback calibration and operation at 20K.
NASA Technical Reports Server (NTRS)
Rybak, S. C.; Willen, G. S.; Follett, W. H.; Hanna, G. J.; Cady, E. C.; Distefano, E.; Meserole, J. S.
1990-01-01
This feasibility study presents the conceptual design of a spacecraft for performing a series of cryogenic fluid management flight experiments. This spacecraft, the Cryogenic On-Orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite, will use liquid hydrogen as the test fluid, be launched on a Delta expendable launch vehicle, and conduct a series of experiments over a two to three month period. These experiments will investigate the physics of subcritical cryogens in the low gravity space environment to characterize their behavior and to correlate the data with analytical and numerical models of in-space cryogenic fluid management systems. Primary technologies addressed by COLD-SAT are: (1) pressure control; (2) chilldown; (3) no-vent fill; (4) liquid acquisition device fill; (5) pressurization; (6) low-g fill and drain; (7) liquid acquisition device expulsion; (8) line chilldown; (9) thermodynamic state control; and (10) fluid dumping.
Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander
NASA Astrophysics Data System (ADS)
Joshi, D. M.; Patel, H. K.; Shah, D. K.
2015-04-01
Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the efficient performance of cryogenic turboexpander (Radial Inflow type) to ensure that the control systems meet the technical conditions and constraints more accurately and ensure the equipment safety.
Commissioning results of CERN HIE-ISOLDE and INFN ALPI cryogenic control systems
NASA Astrophysics Data System (ADS)
Inglese, V.; Pezzetti, M.; Calore, A.; Modanese, P.; Pengo, R.
2017-02-01
The cryogenic systems of both accelerators, namely HIE ISOLDE (High Intensity and Energy Isotope Separator On Line DEvice) at CERN and ALPI (Acceleratore Lineare Per Ioni) at LNL, have been refurbished. HIE ISOLDE is a major upgrade of the existing ISOLDE facilities, which required the construction of a superconducting linear accelerator consisting of six cryomodules, each containing five superconductive RF cavities and superconducting solenoids. The ALPI linear accelerator, similar to HIE ISOLDE, is located at Legnaro National Laboratories (LNL) and became operational in the early 90’s. It is composed of 74 superconducting RF cavities, assembled inside 22 cryostats. The new control systems are equipped with PLC, developed on the CERN UNICOS framework, which include Schneider and Siemens PLCs and various fieldbuses (Profibus DP and PA, WorldFIP). The control systems were developed in synergy between CERN and LNL in order to build, effectively and with an optimized use of resources, control systems allowing to enhance ease of operation, maintainability, and long-term availability. This paper describes (i) the cryogenic systems, with special focus on the design of the control systems hardware and software, (ii) the strategy adopted in order to achieve a synergic approach, and (iii) the commissioning results after the cool-down to 4.5 K of the cryomodules.
Cryogenic Fluid Management Technology Development Roadmaps
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Johnson, W. L.
2017-01-01
Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.
Focal Plane Array Shutter Mechanism of the JWST NIRSpec Detector System
NASA Technical Reports Server (NTRS)
Hale, Kathleen; Sharma, Rajeev
2006-01-01
This viewgraph presentation reviews the requirements, chamber location, shutter system design, stepper motor specifications, dry lubrication, control system, the environmental cryogenic function testing and the test results of the Focal Plane Array Shutter mechanism for the James Webb Space Telescope Near Infrared Spectrum Detector system. Included are design views of the location for the Shutter Mechanism, lubricant (lubricated with Molybdenum Di Sulfide) thickness, and information gained from the cryogenic testing.
Testing the equipment for the cryogenic optical test of the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Whitman, Tony L.; Dziak, K. J.; Huguet, Jesse; Knight, J. Scott; Reis, Carl; Wilson, Erin
2014-08-01
After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the JWST optics are tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. Tens of trucks full of custom test equipment are being delivered to the JSC, in addition to the large pieces built at the Center, and the renovation of the chamber itself. The facility is tested for the thermal stability control for optical measurements and contamination control during temperature transitions. The support for the OTIS is also tested for thermal stability control, load tested in the cryogenic environment, and tested for isolation of the background vibration for the optical measurements. The Center of Curvature Optical Assembly (COCOA) is tested for the phasing and wavefront error (WFE) measurement of an 18 segment mirror and for cryogenic operation. A photogrammetry system is tested for metrology performance and cryogenic operation. Test mirrors for auto-collimation measurements are tested for optical performance and cryogenic operation. An assembly of optical test sources are calibrated and tested in a cryogenic environment. A Pathfinder telescope is used as a surrogate telescope for cryogenic testing of the OTIS optical test configuration. A Beam Image Analyzer (BIA) is used as a surrogate ISIM with the Pathfinder in this test. After briefly describing the OTIS optical test configuration, the paper will overview the list and configuration of significant tests of the equipment leading up to the OTIS test.
Passive cryogenic cooling of electrooptics with a heat pipe/radiator.
Nelson, B E; Goldstein, G A
1974-09-01
The current status of the heat pipe is discussed with particular emphasis on applications to cryogenic thermal control. The competitive nature of the passive heat pipe/radiator system is demonstrated through a comparative study with other candidate systems for a 1-yr mission. The mission involves cooling a spaceborne experiment to 100 K while it dissipates 10 W.
Correction of Dynamic Characteristics of SAR Cryogenic GTE on Consumption of Gasified Fuel
NASA Astrophysics Data System (ADS)
Bukin, V. A.; Gimadiev, A. G.; Gangisetty, G.
2018-01-01
When the gas turbine engines (GTE) NK-88 were developed for liquid hydrogen and NK-89 for liquefied natural gas, performance of the systems with a turbo-pump unitary was improved and its proved without direct regulation of the flow of a cryogenic fuel, which was supplied by a centrifugal pump of the turbo-pump unit (TPU) Command from the “kerosene” system. Such type of the automatic control system (SAR) has the property of partial “neutralization” of the delay caused by gasification of the fuel. This does not require any measurements in the cryogenic medium, and the failure of the centrifugal cryogenic pump does not lead to engine failure. On the other hand, the system without direct regulation of the flow of cryogenic fuel has complex internal dynamic connections, their properties are determined by the characteristics of the incoming units and assemblies, and it is difficult to maintain accurate the maximum boundary level and minimum fuel consumption due to the influence of a booster pressure change. Direct regulation of the consumption of cryogenic fuel (prior to its gasification) is the preferred solution, since for using traditional liquid and gaseous fuels this is the main and proven method. The scheme of correction of dynamic characteristics of a single-loop SAR GTE for the consumption of a liquefied cryogenic fuel with a flow rate correction in its gasified state, which ensures the dynamic properties of the system is not worse than for NK-88 and NK-89 engines.
Process Modeling and Dynamic Simulation for EAST Helium Refrigerator
NASA Astrophysics Data System (ADS)
Lu, Xiaofei; Fu, Peng; Zhuang, Ming; Qiu, Lilong; Hu, Liangbing
2016-06-01
In this paper, the process modeling and dynamic simulation for the EAST helium refrigerator has been completed. The cryogenic process model is described and the main components are customized in detail. The process model is controlled by the PLC simulator, and the realtime communication between the process model and the controllers is achieved by a customized interface. Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K. Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge. The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future. supported by National Natural Science Foundation of China (No. 51306195) and Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, CAS (No. CRYO201408)
Analysis and Design of the NASA Langley Cryogenic Pressure Box
NASA Technical Reports Server (NTRS)
Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.
1999-01-01
A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.
NASA Technical Reports Server (NTRS)
Swenson, Charles
2016-01-01
The Active CryoCubeSat project will demonstrate an advanced thermal control system for a 6-Unit (6U) CubeSat platform. A miniature, active thermal control system, in which a fluid is circulated in a closed loop from thermal loads to radiators, will be developed. A miniature cryogenic cooler will be integrated with this system to form a two-stage thermal control system. Key components will be miniaturized by using advanced additive manufacturing techniques resulting in a thermal testbed for proving out these technologies. Previous CubeSat missions have not tackled the problem of active thermal control systems nor have any past or current CubeSat missions included cryogenic instrumentation. This Active CryoCubeSat development effort will provide completely new capacities for CubeSats and constitutes a major advancement over the state-of-the-art in CubeSat thermal control.
Electromechanical actuation for cryogenic valve control
NASA Technical Reports Server (NTRS)
Lister, M. J.; Reichmuth, D. M.
1993-01-01
The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Klebaner, A.; Theilacker, J.
2011-06-01
The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.
Liu, Jiemin; Jiang, Guibin; Zhou, Qunfang; Liu, Jingfu; Wen, Meijuan
2003-10-01
A laboratory-made micro-cryogenic chromatographic oven was mainly improved in size, which was controlled at 6 x 6 x 2.5 cm. A thermoelectric system was used to cool the capillary column instead of the traditional liquid cryogen. A cold block connected to the cryogenic module was directly solidified at room temperature with thermally conductive adhesive so that the uniformity of transferring heat was greatly improved, and the size of the system was reduced. Moreover, this system was inexpensive and convenient for both operation and control. The newly developed device coupled with headspace solid-phase microextraction (SPME) was successfully applied to the determination of methyl tert-butyl ether (MTBE) and its degradation products. During the analysis procedure, a 65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used to extract MTBE and its degradation products. The extraction was controlled at 50 degrees C for 30 min and the NaCl content in the sample was maintained at 35%. The limits of detection (LODs) ranged from 0.006 microg mL(-1) (for MTBE) to 0.206 microg mL(-1) (for methyl acetate) and the relative standard deviations (RSD%) were below 4%. The spiked recoveries for the developed method were evaluated using various water samples as a matrix.
Modeling, simulation and control for a cryogenic fluid management facility, preliminary report
NASA Technical Reports Server (NTRS)
Turner, Max A.; Vanbuskirk, P. D.
1986-01-01
The synthesis of a control system for a cryogenic fluid management facility was studied. The severe demand for reliability as well as instrumentation and control unique to the Space Station environment are prime considerations. Realizing that the effective control system depends heavily on quantitative description of the facility dynamics, a methodology for process identification and parameter estimation is postulated. A block diagram of the associated control system is also produced. Finally, an on-line adaptive control strategy is developed utilizing optimization of the velocity form control parameters (proportional gains, integration and derivative time constants) in appropriate difference equations for direct digital control. Of special concern are the communications, software and hardware supporting interaction between the ground and orbital systems. It is visualized that specialist in the OSI/ISO utilizing the Ada programming language will influence further development, testing and validation of the simplistic models presented here for adaptation to the actual flight environment.
Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2012-01-01
The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.
Cryogenic Control System Migration and Developments towards the UNICOS CERN Standard at INFN
NASA Astrophysics Data System (ADS)
Modanese, Paolo; Calore, Andrea; Contran, Tiziano; Friso, Alessandro; Pengo, Marco; Canella, Stefania; Burioli, Sergio; Gallese, Benedetto; Inglese, Vitaliano; Pezzetti, Marco; Pengo, Ruggero
The cryogenic control systems at Laboratori Nazionali di Legnaro (LNL) are undergoing an important and radical modernization, allowing all the plants controls and supervision systems to be renewed in a homogeneous way towards the CERN-UNICOS standard. Before the UNICOS migration project started there were as many as 7 different types of PLC and 7 different types of SCADA, each one requiring its own particular programming language. In these conditions, even a simple modification and/or integration on the program or on the supervision, required the intervention of a system integrator company, specialized in its specific control system. Furthermore it implied that the operators have to be trained to learn the different types of control systems. The CERN-UNICOS invented for LHC [1] has been chosen due to its reliability and planned to run and be maintained for decades on. The complete migration is part of an agreement between CERN and INFN.
Power control electronics for cryogenic instrumentation
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.
NASA Astrophysics Data System (ADS)
Beliakov, V. P.
Recent developments and trends in cryogenic engineering are reviewed, with emphasis on the role of cryogenics in power generation, machine building, chemistry, and metallurgy. Several cryogenic systems are described, including air-separation apparatus, cryogenic storage systems, cryothermovacuum devices, and the cryogenic systems of superconducting devices. The theoretical principles underlying the design of cryogenic systems are examined, along with the theory for the processes involved.
NASA Technical Reports Server (NTRS)
Kramer, Edward (Editor)
1998-01-01
The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.
Cryogenic Boil-Off Reduction System
NASA Astrophysics Data System (ADS)
Plachta, David W.; Guzik, Monica C.
2014-03-01
A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.
Main improvements of LHC Cryogenics Operation during Run 2 (2015-2018)
NASA Astrophysics Data System (ADS)
Delprat, L.; Bradu, B.; Brodzinski, K.; Ferlin, G.; Hafi, K.; Herblin, L.; Rogez, E.; Suraci, A.
2017-12-01
After the successful Run 1 (2010-2012), the LHC entered its first Long Shutdown period (LS1, 2013-2014). During LS1 the LHC cryogenic system went under a complete maintenance and consolidation program. The LHC resumed operation in 2015 with an increased beam energy from 4 TeV to 6.5 TeV. Prior to the new physics Run 2 (2015-2018), the LHC was progressively cooled down from ambient to the 1.9 K operation temperature. The LHC has resumed operation with beams in April 2015. Operational margins on the cryogenic capacity were reduced compared to Run 1, mainly due to the observed higher than expected electron-cloud heat load coming from increased beam energy and intensity. Maintaining and improving the cryogenic availability level required the implementation of a series of actions in order to deal with the observed heat loads. This paper describes the results from the process optimization and update of the control system, thus allowing the adjustment of the non-isothermal heat load at 4.5 - 20 K and the optimized dynamic behaviour of the cryogenic system versus the electron-cloud thermal load. Effects from the new regulation settings applied for operation on the electrical distribution feed-boxes and inner triplets will be discussed. The efficiency of the preventive and corrective maintenance, as well as the benefits and issues of the present cryogenic system configuration for Run 2 operational scenario will be described. Finally, the overall availability results and helium management of the LHC cryogenic system during the 2015-2016 operational period will be presented.
Compact drilling and sample system
NASA Technical Reports Server (NTRS)
Gillis-Smith, Greg R.; Petercsak, Doug
1998-01-01
The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.
Development of a Ground Operations Demonstration Unit for Liquid Hydrogen at Kennedy Space Center
NASA Astrophysics Data System (ADS)
Notardonato, W. U.
NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project will design, assemble, and test a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives and will culminate with an operational demonstration of the loading of a simulated flight tank with densified propellants. The system will be unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. The integrated refrigerator is the critical feature enabling the testing of the following three functions: zero-loss storage and transfer, propellant densification/conditioning, and on-site liquefaction. This paper will discuss the test objectives, the design of the system, and the current status of the installation.
2012-07-09
CAPE CANAVERAL, Fla. – Near the Hypergolic Maintenance Facility at NASA’s Kennedy Space Center in Florida, a groundbreaking ceremony was held to mark the location of the Ground Operations Demonstration Unit Liquid Hydrogen, or GODU LH2, test site. From left, are Johnny Nguyen, Fluids Test and Technology Development branch chief Emily Watkins, engineering intern Jeff Walls, Engineering Services Contract, or ESC, Cryogenics Test Lab engineer Kelly Currin, systems engineer Stephen Huff and Rudy Werlink partially hidden, cryogenics engineers Angela Krenn, systems engineer Doug Hammond, command and control engineer in the electrical division William Notardonato, GODU LH2 project manager and Kevin Jumper, ESC Cryogenics Test Lab manager. The GODU LH2 test site is one of the projects in NASA’s Advanced Exploration Systems Program. The site will be used to demonstrate advanced liquid hydrogen systems that are cost and energy efficient ways to store and transfer liquid hydrogen during process, loading, launch and spaceflight. The main components of the site will be a storage tank and a cryogenic refrigerator. Photo credit: NASA/Dimitri Gerondidakis
2012-07-09
CAPE CANAVERAL, Fla. – Near the Hypergolic Maintenance Facility at NASA’s Kennedy Space Center in Florida, a groundbreaking ceremony was held to mark the location of the Ground Operations Demonstration Unit Liquid Hydrogen, or GODU LH2, test site. From left, are Johnny Nguyen, Fluids Test and Technology Development branch chief Emily Watkins, engineering intern Jeff Walls, Engineering Services Contract, or ESC, Cryogenics Test Lab engineer Kelly Currin, systems engineer Stephen Huff and Rudy Werlink partially hidden, cryogenics engineers Angela Krenn, systems engineer Doug Hammond, command and control engineer in the electrical division William Notardonato, GODU LH2 project manager and Kevin Jumper, ESC Cryogenics Test Lab manager. The GODU LH2 test site is one of the projects in NASA’s Advanced Exploration Systems Program. The site will be used to demonstrate advanced liquid hydrogen systems that are cost and energy efficient ways to store and transfer liquid hydrogen during process, loading, launch and spaceflight. The main components of the site will be a storage tank and a cryogenic refrigerator. Photo credit: NASA/Dimitri Gerondidakis
Physics Based Model for Cryogenic Chilldown and Loading. Part I: Algorithm
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Smelyanskiy, Vadim N.; Brown, Barbara
2014-01-01
We report the progress in the development of the physics based model for cryogenic chilldown and loading. The chilldown and loading is model as fully separated non-equilibrium two-phase flow of cryogenic fluid thermally coupled to the pipe walls. The solution follow closely nearly-implicit and semi-implicit algorithms developed for autonomous control of thermal-hydraulic systems developed by Idaho National Laboratory. A special attention is paid to the treatment of instabilities. The model is applied to the analysis of chilldown in rapid loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The numerical predictions are in reasonable agreement with the experimental time traces. The obtained results pave the way to the development of autonomous loading operation on the ground and space.
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Tomsik, Thomas M.
2011-01-01
As focus shifts towards long-duration space exploration missions, an increased interest in active thermal control of cryogenic propellants to achieve zero boil-off of cryogens has emerged. An active thermal control concept of considerable merit is the integration of a broad area cooling system for a cryogenic propellant tank with a combined cryocooler and circulator system that can be used to reduce or even eliminate liquid cryogen boil-off. One prospective cryocooler and circulator combination is the reverse turbo-Brayton cycle cryocooler. This system is unique in that it has the ability to both cool and circulate the coolant gas efficiently in the same loop as the broad area cooling lines, allowing for a single cooling gas loop, with the primary heat rejection occurring by way of a radiator and/or aftercooler. Currently few modeling tools exist that can size and characterize an integrated reverse turbo-Brayton cycle cryocooler in combination with a broad area cooling design. This paper addresses efforts to create such a tool to assist in gaining a broader understanding of these systems, and investigate their performance in potential space missions. The model uses conventional engineering and thermodynamic relationships to predict the preliminary design parameters, including input power requirements, pressure drops, flow rate, cycle performance, cooling lift, broad area cooler line sizing, and component operating temperatures and pressures given the cooling load operating temperature, heat rejection temperature, compressor inlet pressure, compressor rotational speed, and cryogenic tank geometry. In addition, the model allows for the preliminary design analysis of the broad area cooling tubing, to determine the effect of tube sizing on the reverse turbo-Brayton cycle system performance. At the time this paper was written, the model was verified to match existing theoretical documentation within a reasonable margin. While further experimental data is needed for full validation, this tool has already made significant steps towards giving a clearer understanding of the performance of a reverse turbo-Brayton cycle cryocooler integrated with broad area cooling technology for zero boil-off active thermal control.
A cryogenic waveplate rotator for polarimetry at mm and submm wavelengths
NASA Astrophysics Data System (ADS)
Salatino, M.; de Bernardis, P.; Masi, S.
2011-04-01
Context. Polarimetry at mm and submm wavelengths is the new frontier of research in cosmic microwave background and interstellar dust studies. Polarimeters working in the IR to MM range need to be operated at cryogenic temperatures to limit the systematic effects related to the emission of the polarization analyzer. Aims: We study the effect of the temperature of the different components of a waveplate polarimeter and describe a system able to rotate a birefringent crystal at 4 K in a completely automated way. Methods: We simulate the main systematic effects related to the temperature and non-ideality of the optical components in a Stokes polarimeter. To limit these effects, a cryogenic implementation of the polarimeter is mandatory. In our system, the rotation produced by a step motor running at room temperature is transmitted down to cryogenic temperatures by means of a long shaft and gears running on custom cryogenic bearings. Results: Our system is able to rotate a birefringent crystal at 4 K in a completely automated way and dissipates only a few mW in the cold environment. A readout system based on optical fibers allows us to control the rotation of the crystal to better than 0.1°. Conclusions: This device fulfills the stringent requirements for operations in cryogenic space experiments, such as the forthcoming PILOT, BOOMERanG and LSPE.
Optical Design of the Developmental Cryogenic Active Telescope Testbed (DCATT)
NASA Technical Reports Server (NTRS)
Davila, Pam; Wilson, Mark; Young, Eric W.; Lowman, Andrew E.; Redding, David C.
1997-01-01
In the summer of 1996, three Study teams developed conceptual designs and mission architectures for the Next Generation Space Telescope (NGST). Each group highlighted areas of technology development that need to be further advanced to meet the goals of the NGST mission. The most important areas for future study included: deployable structures, lightweight optics, cryogenic optics and mechanisms, passive cooling, and on-orbit closed loop wavefront sensing and control. NASA and industry are currently planning to develop a series of ground testbeds and validation flights to demonstrate many of these technologies. The Deployed Cryogenic Active Telescope Testbed (DCATT) is a system level testbed to be developed at Goddard Space Flight Center in three phases over an extended period of time. This testbed will combine an actively controlled telescope with the hardware and software elements of a closed loop wavefront sensing and control system to achieve diffraction limited imaging at 2 microns. We will present an overview of the system level requirements, a discussion of the optical design, and results of performance analyses for the Phase 1 ambient concept for DCATT,
Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Taylor, Brian; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert
2015-01-01
The purpose of this paper is to investigate, facilitate a discussion and determine a path forward for technology development of cryogenic fluid management technology that is necessary for long duration deep space missions utilizing nuclear thermal propulsion systems. There are a number of challenges in managing cryogenic liquids that must be addressed before long durations missions into deep space, such as a trip to Mars can be successful. The leakage rate of hydrogen from pressure vessels, seals, lines and valves is a critical factor that must be controlled and minimized. For long duration missions, hydrogen leakage amounts to large increases in hydrogen and therefore vehicle mass. The size of a deep space vehicle, such as a mars transfer vehicle, must be kept small to control cost and the logistics of a multi launch, assembled in orbit vehicle. The boil off control of the cryogenic fluid is an additional obstacle to long duration missions. The boil off caused by heat absorption results in the growth of the propellant needs of the vehicle and therefore vehicle mass. This is a significant problem for a vehicle using nuclear (fission) propulsion systems. Radiation from the engines deposits large quantities of heat into the cryogenic fluid, greatly increasing boil off beyond that caused by environmental heat leakage. Addressing and resolving these challenges is critical to successful long duration space exploration. This paper discusses the state of the technology needed to address these challenges and discuss the path forward needed in technology development.
NASA Astrophysics Data System (ADS)
Bonne, F.; Bonnay, P.; Hoa, C.; Mahoudeau, G.; Rousset, B.
2017-02-01
This papers deals with the Japan Torus-60 Super Advanced fusion experiment JT-60SA cryogenic system. A presentation of the JT-60SA cryogenic system model, from 300K to 4.4K -using the Matlab/Simulink/Simscape Simcryogenics library- will be given. As a first validation of our modelling strategy, the obtained operating point will be compared with the one obtained from HYSYS simulations. In the JT60-SA tokamak, pulsed heat loads are expected to be coming from the plasma and must be handled properly, using both appropriate refrigerator architecture and appropriate control model, to smooth the heat load. This paper presents model-based designed PID control schemes to control the helium mass inside the phase separator. The helium mass inside the phase separator as been chosen to be the variable of interest in the phase separator since it is independent of the pressure which can vary from 1 bar to 1.8 bar during load smoothing. Dynamics simulations will be shown to assess the legitimacy of the proposed strategy. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takayama, Yuki; Nakasako, Masayoshi; RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148
2012-05-15
Coherent x-ray diffraction microscopy (CXDM) has the potential to visualize the structures of micro- to sub-micrometer-sized biological particles, such as cells and organelles, at high resolution. Toward advancing structural studies on the functional states of such particles, here, we developed a system for the preparation of frozen-hydrated biological samples for cryogenic CXDM experiments. The system, which comprised a moist air generator, microscope, micro-injector mounted on a micromanipulator, custom-made sample preparation chamber, and flash-cooling device, allowed for the manipulation of sample particles in the relative humidity range of 20%-94%rh at 293 K to maintain their hydrated and functional states. Here, wemore » report the details of the system and the operation procedure, including its application to the preparation of a frozen-hydrated chloroplast sample. Sample quality was evaluated through a cryogenic CXDM experiment conducted at BL29XUL of SPring-8. Taking the performance of the system and the quality of the sample, the system was suitable to prepare frozen-hydrated biological samples for cryogenic CXDM experiments.« less
Experimental Results of Integrated Refrigeration and Storage System Testing
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Johnson, W. L.; Jumper, K.
2009-01-01
Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage
Spacecraft cryogenic gas storage systems
NASA Technical Reports Server (NTRS)
Rysavy, G.
1971-01-01
Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.
Cryogenic system for COMET experiment at J-PARC
NASA Astrophysics Data System (ADS)
Ki, Taekyung; Yoshida, Makoto; Yang, Ye; Ogitsu, Toru; Iio, Masami; Makida, Yasuhiro; Okamura, Takahiro; Mihara, Satoshi; Nakamoto, Tatsushi; Sugano, Michinaka; Sasaki, Ken-ichi
2016-07-01
Superconducting conductors and cryogenic refrigeration are key factors in the accelerator science because they enable the production of magnets needed to control and detect the particles under study. In Japan, a system for COMET (Coherent Muon to Electron Transition), which will produce muon beam lines, is under the construction at J-PARC (Japan Proton Accelerator Research Complex). The system consists of three superconducting magnets; the first is a pion-capture solenoid, the second is a muon-transport solenoid, and the third is a detector solenoid. It is necessary to cool down the magnets efficiently using two-phase helium and maintain them securely at 4.5 K. For stable cryogenic refrigeration of the magnets, a suitable cooling method, structures, and the irradiation effect on materials should be investigated. In this paper, we focus on the development of an overall cryogenic system for cooling the capture and transport solenoids. A conduction-cooling method is considered for cooling the capture and transport solenoids because of the advantages such as the reduction of total heat load, fewer components, and simplified structure. To supply cryogenic fluids (4.5 K liquid helium and 58 K gas helium) and currents to the conduction-cooled magnets subjected to high irradiation, cryogenic components (cooling paths in the magnets, transfer tubes, and a current lead box) are developed. Based on the environment of high irradiation, the conditions (temperature and pressure) of helium in cooling paths are estimated, as well as the temperature of the capture magnet. We develop a dynamic model for quench simulation and estimate the maximum pressure in the cooling pipe when the capture magnet quenches. We conclude with a discussion of the next steps and estimated challenges for the cryogenic system.
Design and development of a direct injection system for cryogenic engines
NASA Astrophysics Data System (ADS)
Mutumba, Angela; Cheeseman, Kevin; Clarke, Henry; Wen, Dongsheng
2018-04-01
The cryogenic engine has received increasing attention due to its promising potential as a zero-emission engine. In this study, a new robust liquid nitrogen injection system was commissioned and set up to perform high-pressure injections into an open vessel. The system is used for quasi-steady flow tests used for the characterisation of the direct injection process for cryogenic engines. An electro-hydraulic valve actuator provides intricate control of the valve lift, with a minimum cycle time of 3 ms and a frequency of up to 20 Hz. With additional sub-cooling, liquid phase injections from 14 to 94 bar were achieved. Results showed an increase in the injected mass with the increase in pressure, and decrease in temperature. The injected mass was also observed to increases linearly with the valve lift. Better control of the injection process, minimises the number of variables, providing more comparable and repeatable sets of data. Implications of the results on the engine performance were also discussed.
Method of measuring heat influx of a cryogenic transfer system
Niemann, Ralph C.; Zelipsky, Steven A.; Rezmer, Ronald R.; Smelser, Peter
1981-01-01
A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.
Medium Fidelity Simulation of Oxygen Tank Venting
NASA Technical Reports Server (NTRS)
Sweet, Adam; Kurien, James; Lau, Sonie (Technical Monitor)
2001-01-01
The item to he cleared is a medium-fidelity software simulation model of a vented cryogenic tank. Such tanks are commonly used to transport cryogenic liquids such as liquid oxygen via truck, and have appeared on liquid-fueled rockets for decades. This simulation model works with the HCC simulation system that was developed by Xerox PARC and NASA Ames Research Center. HCC has been previously cleared for distribution. When used with the HCC software, the model generates simulated readings for the tank pressure and temperature as the simulated cryogenic liquid boils off and is vented. Failures (such as a broken vent valve) can be injected into the simulation to produce readings corresponding to the failure. Release of this simulation will allow researchers to test their software diagnosis systems by attempting to diagnose the simulated failure from the simulated readings. This model does not contain any encryption software nor can it perform any control tasks that might be export controlled.
NASA Technical Reports Server (NTRS)
Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.
1989-01-01
The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.
Requirements for maintaining cryogenic propellants during planetary surface stays
NASA Technical Reports Server (NTRS)
Riccio, Joseph R.; Schoenberg, Richard J.
1991-01-01
Potential impacts on the planetary surface system infrastructure resulting from the use of liquid hydrogen and oxygen propellants for a stage and half lander are discussed. Particular attention is given to techniques which can be incorporated into the surface infrastructure and/or the vehicle to minimize the impact resulting from the use of these cryogens. Methods offered for reducing cryogenic propellant boiloff include modification of the lander to accommodate boiloff, incorporation of passive thermal control devices to the lander, addition of active propellant management, and use of alternative propellants.
Large format array controller (aLFA-C): tests and characterisation at ESA
NASA Astrophysics Data System (ADS)
Lemmel, Frédéric; ter Haar, Jörg; van der Biezen, John; Duvet, Ludovic; Nelms, Nick; Blommaert, Sander; Butler, Bart; van der Luijt, Cornelis; Heijnen, Jerko; Smit, Hans; Visser, Ivo
2016-08-01
For future near infrared astronomy missions, ESA is developing a complete detection and conversion chain (photon to SpaceWire chain system): Large Format Array (aLFA-N) based on MCT type detectors. aLFA-C (Astronomy Large Format Array Controller): a versatile cryogenic detector controller. An aLFA-C prototype was developed by Caeleste (Belgium) under ESA contract (400106260400). To validate independently the performances of the aLFA-C prototype and consolidate the definition of the follow-on activity, a dedicated test bench has been designed and developed in ESTEC/ESA within the Payload Technology Validation group. This paper presents the test setup and the performance validation of the first prototype of this controller at room and cryogenic temperature. Test setup and software needed to test the HAWAII-2RG and aLFA-N detectors with the aLFA-C prototype at cryogenic temperature will be also presented.
Mobile refrigeration system for precool and warm up of superconducting magnets
NASA Astrophysics Data System (ADS)
Gandla, S. K.; Longsworth, R. C.
2017-12-01
Conservation of helium has become more important in recent years due to global shortages in supply. Magnetic resonance imaging (MRI) superconducting magnets use approximately 20% of the world’s helium reserves in liquid form to cool down and maintain operating temperatures at 4 K. This paper describes a mobile cryogenic refrigeration system, which has been developed by Sumitomo (SHI) Cryogenics of America, Inc. to conserve helium by shipping MRI magnets warm and cooling them down or servicing them on site at a medical facility. The system can cool a typical magnet from room temperature to below 40K in less than a week. The system consists of four single stage Displex®-type Gifford-McMahon (GM) expanders in a cryostat with heat exchangers integrated on the cold ends that cool the helium gas, which is circulated in a closed-loop system through the magnet by a cryogenic fan. The system is configured with heaters on the heat exchangers to effectively warm up a magnet. The system includes a scroll vacuum pump, which is used to evacuate the helium circuit with or without the magnet and turbo pump to evacuate the cryostat. Vacuum-jacketed transfer lines connect the cryostat to the magnet. The system is designed with its own controller for continuous operation of precool, warm up and evacuation processes with automatic and manual controls. The cryostat, pumps and gas controls are mounted on a dewar cart. One compressor and the system controller are mounted on a compressor and control cart, and the other three compressors are mounted on separate carts.
2016-08-03
Inside a control building at NASA's Kennedy Space Center in Florida, Adam Swinger, cryogenic research engineer in the Exploration Research and Technology Directorate, communicates with team members during a test of the Ground Operations Demo Unit for liquid hydrogen. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.
Method of measuring heat influx of a cryogenic transfer system. [Patent application
Niemann, R.C.; Zelipsky, S.A.; Rezmer, R.R.; Smelser, P.
1980-10-29
A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.
The nuMOIRCS project: detector upgrade overview and early commissioning results
NASA Astrophysics Data System (ADS)
Walawender, Josh; Wung, Matthew; Fabricius, Maximilian; Tanaka, Ichi; Arimoto, Nobuo; Cook, David; Elms, Brian; Hashiba, Yasuhito; Hu, Yen-Sang; Iwata, Ikuru; Nishimura, Tetsuo; Omata, Koji; Takato, Naruhisa; Wang, Shiang-Yu; Weber, Mark
2016-08-01
In 2014 and 2015 the Multi-Object InfraRed Camera and Spectrograph (MOIRCS) instrument at the Subaru Telescope on Maunakea is underwent a significant modernization and upgrade project. We upgraded the two Hawaii2 detectors to Hawaii2-RG models, modernized the cryogenic temperature control system, and rewrote much of the instrument control software. The detector upgrade replaced the Hawaii2 detectors which use the Tohoku University Focal Plane Array Controller (TUFPAC) electronics with Hawaii2-RG detectors using SIDECAR ASIC (a fully integrated FPA controller system-on-a-chip) and a SAM interface card. We achieved an improvement in read noise by a factor of about 2 with this detector and electronics upgrade. The cryogenic temperature control upgrade focused on modernizing the components and making the procedures for warm up and cool down of the instrument safer. We have moved PID control loops out of the instrument control software and into Lakeshore model 336 cryogenic temperature controllers and have added interlocks on the warming systems to prevent overheating of the instrument. Much of the instrument control software has also been re-written. This was necessitated by the different interface to the detector electronics (ASIC and SAM vs. TUFPAC) and by the desire to modernize the interface to the telescope control software which has been updated to Subaru's "Gen2" system since the time of MOIRCS construction and first light. The new software is also designed to increase reliability of operation of the instrument, decrease overheads, and be easier for night time operators and support astronomers to use.
Multi-Element Unstructured Analyses of Complex Valve Systems
NASA Technical Reports Server (NTRS)
Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy
2004-01-01
The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.
Development of the Circulation Control Flow Scheme Used in the NTF Semi-Span FAST-MAC Model
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Allan, Brian G.; Goodliff, Scott L.; Melton, Latunia P.; Anders, Scott G.; Carter, Melissa B.; Capone, Francis J.
2013-01-01
The application of a circulation control system for high Reynolds numbers was experimentally validated with the Fundamental Aerodynamic Subsonic Transonic Modular Active Control semi-span model in the NASA Langley National Transonic Facility. This model utilized four independent flow paths to modify the lift and thrust performance of a representative advanced transport type of wing. The design of the internal flow paths highlights the challenges associated with high Reynolds number testing in a cryogenic pressurized wind tunnel. Weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions ranging from 0.1 to 10 lbm/sec. Results from the test verified system performance and identified solutions associated with the weight-flow metering system that are linked to internal perforated plates used to achieve flow uniformity at the jet exit.
NASA Technical Reports Server (NTRS)
Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian
2016-01-01
The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.
NASA Astrophysics Data System (ADS)
Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng
2017-03-01
The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.
Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks
NASA Technical Reports Server (NTRS)
Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.; Heyadat, Ali
2007-01-01
A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in normal gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-31) software. Quantitative model validation is ,provided by engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage_ Technology Demonstrator (STUSTD) program. The engineering checkout tests provide cryogenic tank self-pressurization test data at various heat leaks and tank fill levels. The predicted self-pressurization rates, ullage and liquid temperatures at discrete locations within the STUSTD tank are in good agreement with test data. The work presented here advances current CFD modeling capabilities for cryogenic pressure control and helps develop a low cost CFD-based design process for space hardware.
Validation and performance of the LHC cryogenic system through commissioning of the first sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serio, L.; Bouillot, A.; Casas-Cubillos, J.
2007-12-01
The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was establishedmore » and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.« less
Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.
2007-01-01
In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.
Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.
2017-01-01
In support of a facility characterization test, the Integrated Cryogenic Propulsion Test Article (ICPTA) was hotfire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). The ICPTA utilizes liquid oxygen and liquid methane propellants for its main engine and four reaction control engines, and uses a cold helium system for tank pressurization. The hotfire test series included high altitude, high vacuum, ambient temperature, and deep cryogenic environments, and several hundred sensors on the vehicle collected a range of system level data useful to characterize the operation of an integrated LOX/Methane spacecraft in the space environment - a unique data set for this propellant combination.
A Practical Cryogen-Free CO2 Purification and Freezing Technique for Stable Isotope Analysis.
Sakai, Saburo; Matsuda, Shinichi
2017-04-18
Since isotopic analysis by mass spectrometry began in the early 1900s, sample gas for light-element isotopic measurements has been purified by the use of cryogens and vacuum-line systems. However, this conventional purification technique can achieve only certain temperatures that depend on the cryogens and can be sustained only as long as there is a continuous cryogen supply. Here, we demonstrate a practical cryogen-free CO 2 purification technique using an electrical operated cryocooler for stable isotope analysis. This approach is based on portable free-piston Stirling cooling technology and controls the temperature to an accuracy of 0.1 °C in a range from room temperature to -196 °C (liquid-nitrogen temperature). The lowest temperature can be achieved in as little as 10 min. We successfully purified CO 2 gas generated by carbonates and phosphoric acid reaction and found its sublimation point to be -155.6 °C at 0.1 Torr in the vacuum line. This means that the temperature required for CO 2 trapping is much higher than the liquid-nitrogen temperature. Our portable cooling system offers the ability to be free from the inconvenience of cryogen use for stable isotope analysis. It also offers a new cooling method applicable to a number of fields that use gas measurements.
Cryogenic and thermal design for the Space Infrared Telescope Facility (SIRTF)
NASA Technical Reports Server (NTRS)
Lee, J. H.; Brooks, W. F.
1984-01-01
The 1-meter class cryogenically cooled Space Infrared Telescope Facility (SIRTF) planned by NASA, is scheduled for a 1992 launch. SIRTF would be deployed from the Shuttle, and placed into a sun synchronous polar orbit of 700 km. The facility has been defined for a mission with a minimum initial lifetime of one year in orbit with mission extension that could be made possible through in-orbit servicing of the superfluid helium cryogenic system, and use of a thermal control system. The superfluid dewar would use an orbital disconnect system for the tank supports, and vapor cooling of the barrel baffle. The transient analysis of the design shows that the superfluid helium tank with no active feedback comes within temperature requirements for the nominal orbital aperture heat load, quiescent instrument, and chopper conditions.
NASA Astrophysics Data System (ADS)
Antony, Joby; Mathuria, D. S.; Chaudhary, Anup; Datta, T. S.; Maity, T.
2017-02-01
Cryogenic network for linear accelerator operations demand a large number of Cryogenic sensors, associated instruments and other control-instrumentation to measure, monitor and control different cryogenic parameters remotely. Here we describe an alternate approach of six types of newly designed integrated intelligent cryogenic instruments called device-servers which has the complete circuitry for various sensor-front-end analog instrumentation and the common digital back-end http-server built together, to make crateless PLC-free model of controls and data acquisition. These identified instruments each sensor-specific viz. LHe server, LN2 Server, Control output server, Pressure server, Vacuum server and Temperature server are completely deployed over LAN for the cryogenic operations of IUAC linac (Inter University Accelerator Centre linear Accelerator), New Delhi. This indigenous design gives certain salient features like global connectivity, low cost due to crateless model, easy signal processing due to integrated design, less cabling and device-interconnectivity etc.
PIP-II Cryogenic System and the Evolution of Superfluid Helium Cryogenic Plant Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy
2017-01-01
PIP-II cryogenic system: Superfluid Helium Cryogenic Plant (SHCP) and Cryogenic Distribution System (CDS) connecting the SHCP and the SC Linac (25 cryomodules) PIP-II Cryogenic System Static and dynamic heat loads for the SC Linac and static load of CDS listed out Simulation study carried out to compute SHe flow requirements for each cryomodule Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation presented From computed heat load and pressure drop values, SHCP basic specifications evolved.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.
2012-01-01
The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.
Automatic control of cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Balakrishna, S.
1989-01-01
Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with fixed Mach number control is demonstrated.
Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism (PSM)
NASA Technical Reports Server (NTRS)
Mitchell, Alissa L.; Capon, Thomas L.; Hakun, Claef; Haney, Paul; Koca, Corina; Guzek, Jeffrey
2014-01-01
Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.
Design Factors for Applying Cryogen Storage and Delivery Technology to Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Millis, Marc G.
1996-01-01
Thermodynamic Vent System (TVS) and Multilayer Insulation (MLI) technology, originally developed for long term storage of cryogen propellants in microgravity, is ideally suited for propellant storage and delivery systems for solar thermal propulsion. With this technology the heat-induced pressure rise in the tank provides the propellant delivery pressure without the need for an auxiliary pressurant system, and propellant delivery is used to remove the excess heat to control tank pressure. The factors to consider in designing such a balanced system, are presented. An example of a minimum system design is presented along with examples of laboratory-tested hardware.
Infrared detectors and test technology of cryogenic camera
NASA Astrophysics Data System (ADS)
Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long
2016-10-01
Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.
Effect of cryogenic treatment on nickel-titanium endodontic instruments
Kim, J. W.; Griggs, J. A.; Regan, J. D.; Ellis, R. A.; Cai, Z.
2005-01-01
Aim To investigate the effects of cryogenic treatment on nickel-titanium endodontic instruments. The null hypothesis was that cryogenic treatment would result in no changes in composition, microhardness or cutting efficiency of nickel-titanium instruments. Methodology Microhardness was measured on 30 nickel-titanium K-files (ISO size 25) using a Vicker’s indenter. Elemental composition was measured on two instruments using X-ray spectroscopy. A nickel-titanium bulk specimen was analysed for crystalline phase composition using X-ray diffraction. Half of the specimens to be used for each analysis were subjected to a cryogenic treatment in liquid nitrogen (−196 °C) for either 3 s (microhardness specimens) or 10 min (other specimens). Cutting efficiency was assessed by recording operator choice using 80 nickel-titanium rotary instruments (ProFile® 20, .06) half of which had been cryogenically treated and had been distributed amongst 14 clinicians. After conditioning by preparing four corresponding canals, each pair of instruments were evaluated for cutting efficiency by a clinician during preparation of one canal system in vitro. A Student’s t-test was used to analyse the microhardness data, and a binomial test was used to analyse the observer choice data. Composition data were analysed qualitatively. Results Cryogenically treated specimens had a significantly higher microhardness than the controls (P < 0.001; β > 0.999). Observers showed a preference for cryogenically treated instruments (61%), but this was not significant (P = 0.21). Both treated and control specimens were composed of 56% Ni, 44% Ti, 0% N (by weight) with a majority in the austenite phase. Conclusions Cryogenic treatment resulted in increased microhardness, but this increase was not detected clinically. There was no measurable change in elemental or crystalline phase composition. PMID:15910471
Study and development of a cryogenic heat exchanger for life support systems
NASA Technical Reports Server (NTRS)
Soliman, M. M.
1973-01-01
A prototype cryogenic heat exchanger for removal of waste heat from a spacecraft environmental control life support system was developed. The heat exchanger uses the heat sink capabilities of the cryogenic propellants and, hence, can operate over all mission phases from prelaunch to orbit, to post landing, with quiescent periods during orbit. A survey of candidate warm fluids resulted in the selection of E-2, a fluorocarbon compound, because of its low freezing point and high boiling point. The final design and testing of the heat exchanger was carried out, however, using Freon-21, which is similar to E-2 except for its low boiling point. This change was motivated by the desire for cost effectiveness of the experimental program. The transient performance of the heat exchanger was demonstrated by an analog simulation of the heat sink system. Under the realistic transient heat load conditions (20 sec ramp from minimum to maximum Freon-21 inlet temperature), the control system was able to maintain the warm fluid outlet temperature within + or - 3 F. For a 20-sec ramp from 0 F to -400 F in the hydrogen inlet temperature, at maximum heat load, the warm fluid outlet temperature was maintained within + or - 7 F.
Development of a motorized cryovalve for the control of superfluid liquid helium
NASA Technical Reports Server (NTRS)
Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Frank, D. J.
1988-01-01
Recent advances in the technology of infrared detectors have made possible a wide range of scientific measurements and investigations. One of the requirements for the use of sensitive IR detectors is that the entire instrument be cooled to temperatures approaching absolute zero. The cryogenic cooling system for these instruments is commonly designed as a large dewar containing liquid helium which completely surrounds the apparatus. Thus, there is a need for a remotely controlled, motorized cryovalve that is simple, reliable, and compact and can operate over extended periods of time in cryo-vac conditions. The design, development, and test of a motorized cryovalve with application to a variety of cryogenic systems currently under development is described.
Commissioning the cryogenic system of the first LHC sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millet, F.; Claudet, S.; Ferlin, G.
2007-12-01
The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioningmore » is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.« less
Digital control of magnetic bearings in a cryogenic cooler
NASA Technical Reports Server (NTRS)
Feeley, J.; Law, A.; Lind, F.
1990-01-01
This paper describes the design of a digital control system for control of magnetic bearings used in a spaceborne cryogenic cooler. The cooler was developed by Philips Laboratories for the NASA Goddard Space Flight Center. Six magnetic bearing assemblies are used to levitate the piston, displacer, and counter-balance of the cooler. The piston and displacer are driven by linear motors in accordance with Stirling cycle thermodynamic principles to produce the desired cooling effect. The counter-balance is driven by a third linear motor to cancel motion induced forces that would otherwise be transmitted to the spacecraft. An analog control system is currently used for bearing control. The purpose of this project is to investigate the possibilities for improved performance using digital control. Areas for potential improvement include transient and steady state control characteristics, robustness, reliability, adaptability, alternate control modes, size, weight, and cost. The present control system is targeted for the Intel 80196 microcontroller family. The eventual introduction of application specific integrated circuit (ASIC) technology to this problem may produce a unique and elegant solution both here and in related industrial problems.
Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems
NASA Astrophysics Data System (ADS)
Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana
2017-12-01
At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.
A transient thermal model of a neutral buoyancy cryogenic fluid delivery system
NASA Astrophysics Data System (ADS)
Bue, Grant C.; Conger, Bruce S.
A thermal-performance model is presently used to evaluate a preliminary Neutral Buoyancy Cryogenic fluid-delivery system for underwater EVA training. Attention is given to the modeling of positional transients generated from the moving of internal components, including the control of cycling artifacts, as well as to the convection and boiling characteristics of the cryofluid, 250-psi N2/O2 gas, and water contained in the tank. Two piston designs are considered according to performance criteria; temperature and heat-transfer rate profiles are presented.
Study of low gravity propellant transfer
NASA Technical Reports Server (NTRS)
1972-01-01
The results are presented of a program to perform an analytical assessment of potential methods for replenishing the auxiliary propulsion, fuel cell and life support cryogens which may be aboard an orbiting space station. The fluids involved are cryogenic H2, O2, and N2. A complete transfer system was taken to consist of supply storage, transfer, and receiver tank fluid conditioning (pressure and temperature control). In terms of supply storage, the basic systems considered were high pressure (greater than critical), intermediate pressure (less than critical), and modular (transfer of the tanks). Significant findings are included.
NASA Astrophysics Data System (ADS)
Shaffer, James; Dunmire, Howard; Samuels, Raemon; Trively, Martin
1989-12-01
The U.S. Army CECOM Center for Night Vision and Electro-Optics (C2NVEO) is responsible for developing cryogenic coolers for all infrared imaging systems for the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers in fielded Army weapon systems such as: M60A3 and M1 Tanks, Bradley Fighting Vehicle (BFV) System, tube-launched, optically tracked, wire-guided (TOW) Missile System, and Army Attack Helicopters. Currently, there are over 30,000 coolers in fielded systems and several thousand more are added each year. C2NVEO conducts development programs and monitors contractor internal research and development efforts to improve cooler performance such as reliability, audio noise, power consumption, and output vibration. The HD-1045 1/4-Watt Split Stirling Cooler was originally designed and developed by the C2NVEO in the early 1970s as a replacement for the gas bottle/cryostat used on the Manportable Common Thermal Night Sights. To date, however, the HD-1045 cooler has been used in the field in the Integrated Sight Unit (ISU) of the BFV System and is currently being used in the Driver Thermal Viewer (DTV) full scale development program. This document describes and reports the results of reliability testing done on Hughes Temperature Controlled 1/4 Watt split Cycle Cryogenic Coolers (HD-1045 (V)/UA), referred to herein as the coolers.
Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity
NASA Technical Reports Server (NTRS)
Hedayat, Ali; Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.
2008-01-01
A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in low gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-3D software and simulates low gravity extrapolations of engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage Technology Demonstrator (STUSTD) program. Model results illustrate that stable low gravity liquid-gas interfaces are maintained during all phases of the pressure control cycle. Steady and relatively smooth ullage pressurization rates are predicted. This work advances current low gravity CFD modeling capabilities for cryogenic pressure control and aids the development of a low cost CFD-based design process for space hardware.
NASA Astrophysics Data System (ADS)
Song, Jung-Bin; Lee, Haigun
2012-12-01
A cooling system employing a solid cryogen (SC), such as solid nitrogen (SN2), was recently reported for high-temperature superconducting (HTS) applications. However, thermal contact between the SC and the HTS can be degraded by repeated overcurrent runs, resulting in 'thermal dry-out'. Novel cryogens, SC with small amounts of liquid cryogen, have been suggested to overcome this problem. Such cooling systems rely on the small amount of liquid cryogen to facilitate heat exchange so as to fully exploit the heat capacity of the solid cryogen. This paper presents a description and summary of recent activities at Korea University related to cooling systems employing mixed cryogens of solid-liquid nitrogen, solid argon-liquid nitrogen, and solid nitrogen-liquid neon.
Cryogenic wind tunnels: Unique capabilities for the aerodynamicist
NASA Technical Reports Server (NTRS)
Hall, R. M.
1976-01-01
The cryogenic wind-tunnel concept as a practical means for improving ground simulation of transonic flight conditions. The Langley 1/3-meter transonic cryogenic tunnel is operational, and the design of a cryogenic National Transonic Facility is undertaken. A review of some of the unique capabilities of cryogenic wind tunnels is presented. In particular, the advantages of having independent control of tunnel Mach number, total pressure, and total temperature are highlighted. This separate control over the three tunnel parameters will open new frontiers in Mach number, Reynolds number, aeroelastic, and model-tunnel interaction studies.
Engineering changes to the 0.1m cryogenic wind tunnel at Southampton University
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1984-01-01
The more important changes to the 0.1 m cryogenic wind tunnel since its completion in 1977 are outlined. These include detailed improvements in the fan drive to allow higher speeds, and the provision of a test section leg suitable for use with a magnetic suspension and balance system. The instrumentation, data logging, data reduction and tunnel controls were also improved and modernized. A tunnel performance summary is given.
Cryogen-free operation of the Soft X-ray Spectrometer instrument
NASA Astrophysics Data System (ADS)
Sneiderman, Gary A.; Shirron, Peter J.; Fujimoto, Ryuichi; Bialas, Thomas G.; Boyce, Kevin R.; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Hartz, Leslie; Ishisaki, Yoshitaka; Kelley, Richard L.; Kilbourne, Caroline A.; Masters, Candace; McCammon, Dan; Mitsuda, Kazuhisa; Noda, Hirofumi; Porter, Frederick S.; Szymkowiak, Andrew E.; Takei, Yoh; Tsujimoto, Masahiro; Yoshida, Seiji
2016-07-01
The Soft X-ray Spectrometer (SXS) is the first space-based instrument to implement redundancy in the operation of a sub-Kelvin refrigerator. The SXS cryogenic system consists of a superfluid helium tank and a combination of Stirling and Joule-Thompson (JT) cryocoolers that support the operation of a 3-stage adiabatic demagnetization refrigerator (ADR). When liquid helium is present, the x-ray microcalorimeter detectors are cooled to their 50 mK operating temperature by two ADR stages, which reject their heat directly to the liquid at 1.1 K. When the helium is depleted, all three ADR stages are used to accomplish detector cooling while rejecting heat to the JT cooler operating at 4.5 K. Compared to the simpler helium mode operation, the cryogen-free mode achieves the same instrument performance by controlling the active cooling devices within the cooling system differently. These include the three ADR stages and four active heat switches, provided by NASA, and five cryocoolers, provided by JAXA. Development and verification details of this capability are presented within this paper and offer valuable insights into the challenges, successes, and lessons that can benefit other missions, particularly those employing cryogen-free cooling systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, George
2017-06-13
Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.
Propulsion Technology Needs for Exploration
NASA Technical Reports Server (NTRS)
Brown, Thomas
2007-01-01
The objectives of currently planned exploration efforts, as well as those further in the future, require significant advancements in propulsion technologies. The current Lunar exploration architecture has set goals and mission objectives that necessitate the use of new systems and the extension of existing technologies beyond present applications. In the near term, the majority of these technologies are the result of a need to apply high performing cryogenic propulsion systems to long duration in-space applications. Advancement of cryogenic propulsion to these applications is crucial to provide higher performing propulsion systems that reduce the vehicle masses; enhance the safety of vehicle systems and ground operations; and provide a path for In-situ Resource Utilization (ISRU).Use of a LOX/LH2 main propulsion system for Lunar Lander Descent is a top priority because more conventional storable propellants are far from meeting the performance needs of the current architecture. While LOX/LH2 pump feed engines have been used in flight applications for many years, these engines have limited throttle capabilities. Engines that are capable of much greater throttling while still meeting high performance goals are a necessity to achieving exploration goals. Applications of LOX/CH4 propulsion to Lander ascent propulsion systems and reaction control systems are also if interest because of desirable performance and operations improvements over conventional storable systems while being more suitable for use of in-situ produced propellants. Within the current lunar architecture, use of cryogenic propulsion for the Earth Departure Stage and Lunar Lander elements also necessitate the need for advanced Cryogenic Fluid Management technologies. These technologies include long duration propellant storage/distribution, low-gravity propellant management, cryogenic couplings and disconnects, light weight composite tanks and support structure, and subsystem integration. In addition to the propulsive and fluid management system technologies described, many component level technologies are also required to enable to the success if the integrated systems. The components include, but are not limited to, variable/throttling valves, variable position actuators, leak detectors, light weight cryogenic fluid pumps, sensor technology and others. NASA, partnering with the Aerospace Industry must endeavor to develop these, and other promising propulsion technologies, to enable the implements of the country's goals in exploration of the Moon, Mars and beyond.
Development of dual solid cryogens for high reliability refrigeration system
NASA Technical Reports Server (NTRS)
Caren, R. P.; Coston, R. M.
1967-01-01
High reliability solid cryogen refrigeration system consists of a container initially filled with a solid cryogen which is coupled thermally to an infrared detector by means of a link of high thermal conductivity extending from a heat exchanger within the cryogen container.
Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell
1998-01-01
Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.
Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.
2005-01-01
Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.
Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, Barry; Bremer, Johan; Chalifour, Michel
2017-01-01
The Short-Baseline Neutrino (SBN) physics program will involve three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. The Program will be composed of an existing and operational detector known as Micro Boone (170 ton LAr mass) plus two new experiments known as the SBN Near Detector (SBND, ~ 260more » ton) and the SBN Far Detector (SBN-FD, ~ 600 tons). Fermilab is now building two new facilities to house the experiments and incorporate all cryogenic and process systems to operate these detectors beginning in the 2018-2019 time frame. The SBN cryogenics are a collaborative effort between Fermilab and CERN. The SBN cryogenic systems for both detectors are composed of several sub-systems: External/Infrastructure (or LN2), Proximity (or LAr), and internal cryogenics. For each detector the External/Infrastructure cryogenics includes the equipment used to store and the cryogenic fluids needed for the operation of the Proximity cryogenics, including the LN2 and LAr storage facilities. The Proximity cryogenics consists of all the systems that take the cryogenic fluids from the external/infrastructure cryogenics and deliver them to the internal at the required pressure, temperature, purity and mass flow rate. It includes the condensers, the LAr and GAr purification systems, the LN2 and LAr phase separators, and the interconnecting piping. The Internal cryogenics is comprised of all the cryogenic equipment located within the cryostats themselves, including the GAr and LAr distribution piping and the piping required to cool down the cryostats and the detectors. These cryogenic systems will be engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution presents the performance, the functional requirements and the modes of operation of the SBN cryogenics, and details the current status of the design, present and future needs.« less
The integration of liquid cryogen cooling and cryocoolers withsuperconducting electronic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.
2003-07-09
The need for cryogenic cooling has been a critical issuethat has kept superconducting electronic devices from reaching the marketplace. Even though the performance of many of the superconductingcircuits is superior to silicon electronics, the requirement forcryogenic cooling has put the superconducting devices at a seriousdisadvantage. This report discusses the process of refrigeratingsuperconducting devices with cryogenic liquids and small cryocoolers.Three types of cryocoolers are compared for vibration, efficiency, andreliability. The connection of a cryocooler to the load is discussed. Acomparison of using flexible copper straps to carry the heat load andusing heat pipe is shown. The type of instrumentation needed formonitoringmore » and controlling the cooling is discussed.« less
Hybrid Direct-Current Circuit Breaker
NASA Technical Reports Server (NTRS)
Wang, Ruxi (Inventor); Premerlani, William James (Inventor); Caiafa, Antonio (Inventor); Pan, Yan (Inventor)
2017-01-01
A circuit breaking system includes a first branch including at least one solid-state snubber; a second branch coupled in parallel to the first branch and including a superconductor and a cryogenic contactor coupled in series; and a controller operatively coupled to the at least one solid-state snubber and the cryogenic contactor and programmed to, when a fault occurs in the load circuit, activate the at least one solid-state snubber for migrating flow of the electrical current from the second branch to the first branch, and, when the fault is cleared in the load circuit, activate the cryogenic contactor for migrating the flow of the electrical current from the first branch to the second branch.
NASA Technical Reports Server (NTRS)
Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina
2014-01-01
Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.
NASA Technical Reports Server (NTRS)
Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina
2014-01-01
Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.
The Redundant Compressor System for the Helium Cryogenic Plant at TPS
NASA Astrophysics Data System (ADS)
Li, H. C.; Tsai, H. H.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Hsiao, F. Z.; Liao, W. R.; Chuang, P. S. D.
2017-02-01
Recommissioning the 700-W helium cryogenic system was completed in 2014 and it entered service in 2015. The main target of this system is a stable supply of liquid helium to the superconducting RF cavities at Taiwan Photo Source. The annual maintenance of the compressor of the plant causes operation of the system to be suspended at least two weeks. To avoid such a long suspension for the cryogenic plant, we installed a redundant compressor system for the cryogenic plant in 2015. We can switch to this redundant compressor system and restart the cryogenic system in a few minutes. In this paper we present the configuration, local testing and long-term operation of this redundant compressor system.
Verification of the predictive capabilities of the 4C code cryogenic circuit model
NASA Astrophysics Data System (ADS)
Zanino, R.; Bonifetto, R.; Hoa, C.; Richard, L. Savoldi
2014-01-01
The 4C code was developed to model thermal-hydraulics in superconducting magnet systems and related cryogenic circuits. It consists of three coupled modules: a quasi-3D thermal-hydraulic model of the winding; a quasi-3D model of heat conduction in the magnet structures; an object-oriented a-causal model of the cryogenic circuit. In the last couple of years the code and its different modules have undergone a series of validation exercises against experimental data, including also data coming from the supercritical He loop HELIOS at CEA Grenoble. However, all this analysis work was done each time after the experiments had been performed. In this paper a first demonstration is given of the predictive capabilities of the 4C code cryogenic circuit module. To do that, a set of ad-hoc experimental scenarios have been designed, including different heating and control strategies. Simulations with the cryogenic circuit module of 4C have then been performed before the experiment. The comparison presented here between the code predictions and the results of the HELIOS measurements gives the first proof of the excellent predictive capability of the 4C code cryogenic circuit module.
Application of programmable logic controllers to space simulation
NASA Technical Reports Server (NTRS)
Sushon, Janet
1992-01-01
Incorporating a state-of-the-art process control and instrumentation system into a complex system for thermal vacuum testing is discussed. The challenge was to connect several independent control systems provided by various vendors to a supervisory computer. This combination will sequentially control and monitor the process, collect the data, and transmit it to color a graphic system for subsequent manipulation. The vacuum system upgrade included: replacement of seventeen diffusion pumps with eight cryogenic pumps and one turbomolecular pump, replacing a relay based control system, replacing vacuum instrumentation, and upgrading the data acquisition system.
An Overview of NASA's In-Space Cryogenic Propellant Management Technologies
NASA Technical Reports Server (NTRS)
Tucker, Stephen; Hastings, Leon; Haynes, Davy (Technical Monitor)
2001-01-01
Future mission planning within NASA continues to include cryogenic propellants for in space transportation, with mission durations ranging from days to years. Between 1995 and the present, NASA has pursued a diversified program of ground-based testing to prepare the various technologies associated with in-space cryogenic fluid management (CFM) for implementation. CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. NASA CFM technologies are planned, coordinated, and implemented through the Cryogenic Technology Working Group which is comprised of representatives from the various NASA Centers as well as the National Institute of Standards and Technologies (NIST) and, on selected occasions, the Air Force. An overview of the NASA program and Marshall Space Flight Center (MSFC) roles, accomplishments, and near-term activities are presented herein. Basic CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. Recent MSFC accomplishments include: the large scale demonstration of a high performance variable density multilayer insulation (MLI) that reduced the boiloff by about half that of standard MLI; utilization of a foam substrate under MLI to eliminate the need for a helium purge bag system; demonstrations of both spray-bar and axial-jet mixer concepts for zero gravity pressure control; and sub-scale testing that verified an optical sensor concept for measuring liquid hydrogen mass in zero gravity. In response to missions requiring cryogenic propellant storage durations on the order of years, a cooperative effort by NASA's Ames Research Center, Glenn Research Center, and MSFC has been implemented to develop and demonstrate zero boiloff concepts for in-space storage of cryogenic propellants. An MSFC contribution to this cooperative effort is a large-scale demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Testing is expected during the Summer of 2001.
Development of a camera casing suited for cryogenic and vacuum applications
NASA Astrophysics Data System (ADS)
Delaquis, S. C.; Gornea, R.; Janos, S.; Lüthi, M.; von Rohr, Ch Rudolf; Schenk, M.; Vuilleumier, J.-L.
2013-12-01
We report on the design, construction, and operation of a PID temperature controlled and vacuum tight camera casing. The camera casing contains a commercial digital camera and a lighting system. The design of the camera casing and its components are discussed in detail. Pictures taken by this cryo-camera while immersed in argon vapour and liquid nitrogen are presented. The cryo-camera can provide a live view inside cryogenic set-ups and allows to record video.
Absolute pressure transducers for space shuttle and orbiter propulsion and control systems
NASA Technical Reports Server (NTRS)
Bolta, J. J.
1974-01-01
A preliminary design was completed, reviewing of such subjects as: the trade studies for media isolation and one sensor vs. two sensors for two bridges; compensation resistors; unit design; hydrogen embrittlement; sealing techniques and test station design. A design substantiation phase was finished, consisting of testing of a prototype unit and fabrication technique studies. A cryogenic test station was implemented and prototype sensor cells were fabricated, sensors assembled, and cryogenic tests performed.
Interim Cryogenic Propulsion Stage (ICPS) Handover Signing
2017-10-26
Meeting in the Launch Control Center of NASA's Kennedy Space Center in Florida, officials of the agency's Spacecraft/Payload Integration and Evolution (SPIE) organization formally turn over processing of the Space Launch System (SLS) rocket's Interim Cryogenic Propulsion Stage (ICPS) to the center's Ground Systems Development and Operations (GSDO) directorate. The ICPS is the first integrated piece of flight hardware to arrive in preparation for the uncrewed Exploration Mission-1. With the Orion attached, the ICPS sits atop the SLS rocket and will provide the spacecraft with the additional thrust needed to travel tens of thousands of miles beyond the Moon.
Friction-Stir Welding of Large Scale Cryogenic Fuel Tanks for Aerospace Applications
NASA Technical Reports Server (NTRS)
Jones, Clyde S., III; Venable, Richard A.
1998-01-01
The Marshall Space Flight Center has established a facility for the joining of large-scale aluminum-lithium alloy 2195 cryogenic fuel tanks using the friction-stir welding process. Longitudinal welds, approximately five meters in length, were made possible by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and the spindle travel system will be described in this paper. Process controls and real-time data acquisition will also be described, and were critical elements contributing to successful weld operation.
Modeling a Transient Pressurization with Active Cooling Sizing Tool
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Plachta, David W.; Elchert, Justin P.
2011-01-01
As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank pressure recovery with ZBO of a liquid oxygen propellant tank.
NASA Technical Reports Server (NTRS)
1989-01-01
Trade studies plans for a number of elements in the Liquid Rocket Booster (LRB) component of the Space Transportation System (STS) are given in viewgraph form. Some of the elements covered include: avionics/flight control; avionics architecture; thrust vector control studies; engine control electronics; liquid rocket propellants; propellant pressurization systems; recoverable spacecraft; cryogenic tanks; and spacecraft construction materials.
Auxiliary Propulsion Activities in Support of NASA's Exploration Initiative
NASA Technical Reports Server (NTRS)
Best, Philip J.; Unger, Ronald J.; Waits, David A.
2005-01-01
The Space Launch Initiative (SLI) procurement mechanism NRA8-30 initiated the Auxiliary Propulsion System/Main Propulsion System (APS/MPS) Project in 2001 to address technology gaps and development risks for non-toxic and cryogenic propellants for auxiliary propulsion applications. These applications include reaction control and orbital maneuvering engines, and storage, pressure control, and transfer technologies associated with on-orbit maintenance of cryogens. The project has successfully evolved over several years in response to changing requirements for re-usable launch vehicle technologies, general launch technology improvements, and, most recently, exploration technologies. Lessons learned based on actual hardware performance have also played a part in the project evolution to focus now on those technologies deemed specifically relevant to the Exploration Initiative. Formal relevance reviews held in the spring of 2004 resulted in authority for continuation of the Auxiliary Propulsion Project through Fiscal Year 2005 (FY05), and provided for a direct reporting path to the Exploration Systems Mission Directorate. The tasks determined to be relevant under the project were: continuation of the development, fabrication, and delivery of three 870 lbf thrust prototype LOX/ethanol reaction control engines; the fabrication, assembly, engine integration and testing of the Auxiliary Propulsion Test Bed at White Sands Test Facility; and the completion of FY04 cryogenic fluid management component and subsystem development tasks (mass gauging, pressure control, and liquid acquisition elements). This paper presents an overview of those tasks, their scope, expectations, and results to-date as carried forward into the Exploration Initiative.
Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2010-01-01
DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.
Pressure and temperature fluctuation simulation of J-PARC cryogenic hydrogen system
NASA Astrophysics Data System (ADS)
Tatsumoto, H.; Ohtsu, K.; Aso, T.; Kawakami, Y.
2015-12-01
The J-PARC cryogenic hydrogen system provides supercritical cryogenic hydrogen to the moderators at a pressure of 1.5 MPa and temperature of 18 K and removes 3.8 kW of nuclear heat from the 1 MW proton beam operation. We prepared a heater for thermal compensation and an accumulator, with a bellows structure for volume control, to mitigate the pressure fluctuation caused by switching the proton beam on and off. In this study, a 1-D simulation code named DiSC-SH2 was developed to understand the propagation of pressure and temperature propagations through the hydrogen loop due to on and off switching of the proton beam. We confirmed that the simulated dynamic behaviors in the hydrogen loop for 300-kW and 500-kW proton beam operations agree well with the experimental data under the same conditions.
Cryogenic target system for hydrogen layering
Parham, T.; Kozioziemski, B.; Atkinson, D.; ...
2015-11-24
Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highlymore » constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.« less
Schlegel, R; Hänke, T; Baumann, D; Kaiser, M; Nag, P K; Voigtländer, R; Lindackers, D; Büchner, B; Hess, C
2014-01-01
We present the design, setup, and operation of a new dip-stick scanning tunneling microscope. Its special design allows measurements in the temperature range from 4.7 K up to room temperature, where cryogenic vacuum conditions are maintained during the measurement. The system fits into every (4)He vessel with a bore of 50 mm, e.g., a transport dewar or a magnet bath cryostat. The microscope is equipped with a cleaving mechanism for cleaving single crystals in the whole temperature range and under cryogenic vacuum conditions. For the tip approach, a capacitive automated coarse approach is implemented. We present test measurements on the charge density wave system 2H-NbSe2 and the superconductor LiFeAs which demonstrate scanning tunneling microscopy and spectroscopy data acquisition with high stability, high spatial resolution at variable temperatures and in high magnetic fields.
Supplemental multilayer insulation research facility
NASA Technical Reports Server (NTRS)
Dempsey, P. J.; Stochl, R. J.
1995-01-01
The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3 x 10(exp -4) Newton/sq meter (1 x 10(exp -6) torr). Warm side boundary temperatures can be maintained constant between 111 K (200 R) and 361 K (650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 cu meter (120 gallon) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH2 and LN2 ground storage dewars.
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Goglia, G. L.
1979-01-01
The details of the efforts to synthesize a control-compatible multivariable model of a liquid nitrogen cooled, gaseous nitrogen operated, closed circuit, cryogenic pressure tunnel are presented. The synthesized model was transformed into a real-time cryogenic tunnel simulator, and this model is validated by comparing the model responses to the actual tunnel responses of the 0.3 m transonic cryogenic tunnel, using the quasi-steady-state and the transient responses of the model and the tunnel. The global nature of the simple, explicit, lumped multivariable model of a closed circuit cryogenic tunnel is demonstrated.
NASA Technical Reports Server (NTRS)
1980-01-01
Different engineering problems associated with the design of mechanisms and systems to operate in a cryogenic environment are discussed. The focal point for the entire engineering effort was the design of the National Transonic Facility, which is a closed-circuit cryogenic wind tunnel. The papers covered a variety of mechanical, structural, and systems design subjects including thermal structures insulation systems, noise, seals, and materials.
NASA Astrophysics Data System (ADS)
Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.
2017-12-01
Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.
Performance of High-Speed PWM Control Chips at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard; Overton, Eric
2001-01-01
The operation of power electronic systems at cryogenic temperatures is anticipated in many NASA space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. As part of the NASA Glenn Low Temperature Electronics Program, several commercial high-speed Pulse Width Modulation (PWM) chips have been characterized in terms of their performance as a function of temperature in the range of 25 to -196 C (liquid nitrogen). These chips ranged in their electrical characteristics, modes of control, packaging options, and applications. The experimental procedures along with the experimental data obtained on the investigated chips are presented and discussed.
A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion
NASA Technical Reports Server (NTRS)
Choi, Benjamin; Siebert, Mark
2008-01-01
The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hance, R.; /Fermilab
1998-08-26
This procedure is used when it is necessary to operate the solenoid energization, controls, interlocks and quench detection system. Note that a separate procedure exists for operating the solenoid 'cryogenic' systems. Only D0 Control Room Operators or the Project Electrical Engineer are qualified to execute these procedures or operate the solenoid system. This procedure assumes that the operator is familiar with using the Distributed Manufacturing Automation and Control Software (DMACS).
Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard
2003-01-01
DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.
NASA Technical Reports Server (NTRS)
Gemin, Paul; Kupiszewski, Tom; Radun, Arthur; Pan, Yan; Lai, Rixin; Zhang, Di; Wang, Ruxi; Wu, Xinhui; Jiang, Yan; Galioto, Steve;
2015-01-01
The purpose of this effort was to advance the selection, characterization, and modeling of a propulsion electric grid for a Turboelectric Distributed Propulsion (TeDP) system for transport aircraft. The TeDP aircraft would constitute a miniature electric grid with 50 MW or more of total power, two or more generators, redundant transmission lines, and multiple electric motors driving propulsion fans. The study proposed power system architectures, investigated electromechanical and solid state circuit breakers, estimated the impact of the system voltage on system mass, and recommended DC bus voltage range. The study assumed an all cryogenic power system. Detailed assumptions within the study include hybrid circuit breakers, a two cryogen system, and supercritical cyrogens. A dynamic model was developed to investigate control and parameter selection.
Liquid Acquisition Strategies for Exploration Missions: Current Status 2010
NASA Technical Reports Server (NTRS)
Chato, David J.
2010-01-01
NASA is currently developing the propulsion system concepts for human exploration missions to the lunar surface. The propulsion concepts being investigated are considering the use of cryogenic propellants for the low gravity portion of the mission, that is, the lunar transit, lunar orbit insertion, lunar descent and the rendezvous in lunar orbit with a service module after ascent from the lunar surface. These propulsion concepts will require the vapor free delivery of the cryogenic propellants stored in the propulsion tanks to the exploration vehicles main propulsion system (MPS) engines and reaction control system (RCS) engines. Propellant management devices (PMD s) such as screen channel capillary liquid acquisition devices (LAD s), vanes and sponges currently are used for earth storable propellants in the Space Shuttle Orbiter OMS and RCS applications and spacecraft propulsion applications but only very limited propellant management capability exists for cryogenic propellants. NASA has begun a technology program to develop LAD cryogenic fluid management (CFM) technology through a government in-house ground test program of accurately measuring the bubble point delta-pressure for typical screen samples using LO2, LN2, LH2 and LCH4 as test fluids at various fluid temperatures and pressures. This presentation will document the CFM project s progress to date in concept designs, as well ground testing results.
Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission
NASA Astrophysics Data System (ADS)
Mustafi, S.; DeLee, C.; Francis, J.; Li, X.; McGuinness, D.; Nixon, C. A.; Purves, L.; Willis, W.; Riall, S.; Devine, M.; Hedayat, A.
2016-03-01
Liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic propellants can dramatically enhance NASA's ability to explore the solar system due to their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LO2 as propellants, and the resulting spacecraft design was able to achieve a 43% launch mass reduction over a TOPS mission, that utilized a traditional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission that requires the cryogenics propellants to be stored for 8.5 years.
Design Studies for a Far Infrared Absolute Spectrometer for the Cosmic Background Explorer
NASA Technical Reports Server (NTRS)
Johnson, N. J. E.
1980-01-01
Unrelenting symmetry of design is required to assure the thermal balance of a cryogenically cooled, rapid scan interferometer spectrometer to be mounted in vacuum with the Cosmic Background Explorer liquid helium dewar. The instrument receives inputs from Winston cone optical flux collectors, one open to space and a second coupled to a black body reference source. A differential instrument, the spectrometer produces outputs corresponding to the Fourier transform of the spectral radiance difference between the two inputs. The two outputs are sensed by four detectors, two optimized for shorter wavelength response, and two optimized for longer wavelengths. The optical design, detector and signal channel, system sensitivity, mechanics, thermal control and cryogenics, electronics and power systems, command and control, calibration, system test requirements, and the instrument interface are discussed. Recommendations for continued work are indicated for the superconducting reflective horns, the motor bearing and drive, and design detail.
Progress update on cryogenic system for ARIEL E-linac at TRIUMF
NASA Astrophysics Data System (ADS)
Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.
2014-01-01
TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.
Methane Lunar Surface Thermal Control Test
NASA Technical Reports Server (NTRS)
Plachta, David W.; Sutherlin, Steven G.; Johnson, Wesley L.; Feller, Jeffrey R.; Jurns, John M.
2012-01-01
NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages.
Propulsion Risk Reduction Activities for Non-Toxic Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth
2010-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for non-toxic or "green" propellants. The PCAD project focuses on the development of non-toxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of non-toxic propellants for space missions. Implementation of non-toxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that non-toxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.
Propulsion Risk Reduction Activities for Nontoxic Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth L.
2010-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for nontoxic or "green" propellants. The PCAD project focuses on the development of nontoxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of nontoxic propellants for space missions. Implementation of nontoxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that nontoxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.
NASA Technical Reports Server (NTRS)
Cepeda-Rizo, Juan; Krylo, Robert; Fisher, Melanie; Bugby, David C.
2011-01-01
Camera cooling for SIM presents three thermal control challenges; stable operation at 163K (110 C), decontamination heating to +20 C, and a long span from the cameras to the radiator. A novel cryogenic cooling system based on a methane heat pipe meets these challenges. The SIM thermal team, with the help of heat pipe vendor ATK, designed and tested a complete, low temperature, cooling system. The system accommodates the two SIM cameras with a double-ended conduction bar, a single methane heat pipe, independent turn-off devices, and a flight-like radiator. The turn ]off devices consist of a liquid trap, for removing the methane from the pipe, and an electrical heater to raise the methane temperature above the critical point thus preventing two-phase operation. This is the first time a cryogenic heat pipe has been tested at JPL and is also the first heat pipe to incorporate the turn-off features. Operation at 163K with a methane heat pipe is an important new thermal control capability for the lab. In addition, the two turn-off technologies enhance the "bag of tricks" available to the JPL thermal community. The successful test program brings this heat pipe to a high level of technology readiness.
Failure Scenarios and Mitigations for the BABAR Superconducting Solenoid
NASA Astrophysics Data System (ADS)
Thompson, EunJoo; Candia, A.; Craddock, W. W.; Racine, M.; Weisend, J. G.
2006-04-01
The cryogenic department at the Stanford Linear Accelerator Center is responsible for the operation, troubleshooting, and upgrade of the 1.5 Tesla superconducting solenoid detector for the BABAR B-factory experiment. Events that disable the detector are rare but significantly impact the availability of the detector for physics research. As a result, a number of systems and procedures have been developed over time to minimize the downtime of the detector, for example improved control systems, improved and automatic backup systems, and spares for all major components. Together they can prevent or mitigate many of the failures experienced by the utilities, mechanical systems, controls and instrumentation. In this paper we describe various failure scenarios, their effect on the detector, and the modifications made to mitigate the effects of the failure. As a result of these modifications the reliability of the detector has increased significantly with only 3 shutdowns of the detector due to cryogenics systems over the last 2 years.
Sequential cryogen spraying for heat flux control at the skin surface
NASA Astrophysics Data System (ADS)
Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart
2001-05-01
Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.
NASA Technical Reports Server (NTRS)
Johnson, Wesley; Tomsik, Thomas; Moder, Jeff
2014-01-01
Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.
Friction Stir Welding of Large Scale Cryogenic Tanks for Aerospace Applications
NASA Technical Reports Server (NTRS)
Russell, Carolyn; Ding, R. Jeffrey
1998-01-01
The Marshall Space Flight Center (MSFC) has established a facility for the joining of large-scale aluminum cryogenic propellant tanks using the friction stir welding process. Longitudinal welds, approximately five meters in length, have been made by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and travel system will be described in this presentation along with process controls and real-time data acquisition developed for this application. The approach to retrofitting other large welding tools at MSFC with the friction stir welding process will also be discussed.
Cryogenic reactant storage for lunar base regenerative fuel cells
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
1989-01-01
There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.
NASA Astrophysics Data System (ADS)
Smirnov, Alex I.; Smirnova, Tatyana I.; MacArthur, Ryan L.; Good, Jeremy A.; Hall, Renny
2006-03-01
Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν =95-300GHz and this requires magnetic fields of 3.4-10.7T for electronic spins with g ≈2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppm/h over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.
Nelson, J. Stuart; Anvari, Bahman; Tanenbaum, B. Samuel; Milner, Thomas E.
1999-01-01
Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.
The cryogenics design of the SuperCDMS SNOLAB experiment
NASA Astrophysics Data System (ADS)
Hollister, M. I.; Bauer, D. A.; Dhuley, R. C.; Lukens, P.; Martin, L. D.; Ruschman, M. K.; Schmitt, R. L.; Tatkowski, G. L.
2017-12-01
The Super Cryogenic Dark Matter Search (SuperCDMS) experiment is a direct detection dark matter experiment intended for deployment to the SNOLAB underground facility in Ontario, Canada. With a payload of up to 186 germanium and silicon crystal detectors operating below 15 mK, the cryogenic architecture of the experiment is complex. Further, the requirement that the cryostat presents a low radioactive background to the detectors limits the materials and techniques available for construction, and heavily influences the design of the cryogenics system. The resulting thermal architecture is a closed cycle (no liquid cryogen) system, with stages at 50 and 4 K cooled with gas and fluid circulation systems and stages at 1 K, 250 mK and 15 mK cooled by the lower temperature stages of a large, cryogen-free dilution refrigerator. This paper describes the thermal design of the experiment, including details of the cooling systems, mechanical designs and expected performance of the system under operational conditions.
Fastener load tests and retention systems tests for cryogenic wind-tunnel models
NASA Technical Reports Server (NTRS)
Wallace, J. W.
1984-01-01
A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.
Long-Term Cryogenic Propellant Storage for the Titan Orbiter Polar Surveyor (TOPS) Mission
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Francis, John; Li, Xiaoyi; DeLee, Hudson; Purves, Lloyd; Willis, Dewey; Nixon, Conor; Mcguinness, Dan; Riall, Sara; Devine, Matt;
2015-01-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.
Long-Term Cryogenic Propellant Storage for the TOPS Mission
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Francis, John; Li, Xiaoyi; Purves, Lloyd; DeLee, Hudson; Riall, Sara; McGuinness, Dan; Willis, Dewey; Nixon, Conor; Devine Matt;
2015-01-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.
The Zero Boil-Off Tank Experiment Contributions to the Development of Cryogenic Fluid Management
NASA Technical Reports Server (NTRS)
Chato, David J.; Kassemi, Mohammad
2015-01-01
The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale ISS experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the current status of the ZBOT experiment as it approaches its flight to installation on the International Space Station, how its findings can be scaled to larger and more ambitious cryogenic fluid management experiments, as well as ideas for follow-on investigations using ZBOT like hardware to study other aspects of cryogenic fluid management.
NASA Technical Reports Server (NTRS)
Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning
2013-01-01
A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.
On-wafer, cryogenic characterization of ultra-low noise HEMT devices
NASA Technical Reports Server (NTRS)
Bautista, J. J.; Laskar, J.; Szydlik, P.
1995-01-01
Significant advances in the development of high electron-mobility field-effect transistors (HEMT's) have resulted in cryogenic, low-noise amplifiers (LNA's) whose noise temperatures are within an order of magnitude of the quantum noise limit (hf/k). Further advances in HEMT technology at cryogenic temperatures may eventually lead to the replacement of maser and superconducting insulator superconducting front ends in the 1- to 100-GHz frequency band. Key to identification of the best HEMT's and optimization of cryogenic LNA's are accurate and repeatable device measurements at cryogenic temperatures. This article describes the design and operation of a cryogenic coplanar waveguide probe system for the characterization and modeling of advanced semiconductor transistors at cryogenic temperatures. Results on advanced HEMT devices are presented to illustrate the utility of the measurement system.
The University of Florida's next-generation cryogenic infrared focal plane array controller system
NASA Astrophysics Data System (ADS)
Raines, Steven N.; Boreman, Glenn D.; Eikenberry, Stephen S.; Bandyopadhyay, Reba M.; Quijano, Ismael
2008-07-01
The Infrared Instrumentation Group at the University of Florida has substantial experience building IR focal plane array (FPA) controllers and seamlessly integrating them into the instruments that it builds for 8-meter class observatories, including writing device drivers for UNIX-based computer systems. We report on a design study to investigate implementing an ASIC from Teledyne Imaging Systems (TIS) into our IR FPA controller while simultaneously replacing TIS's interface card with one that eliminates the requirement for a Windows-OS computer within the instrument's control system.
Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)
NASA Astrophysics Data System (ADS)
Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.
2017-12-01
Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.
ICPSU Install onto Mobile Launcher
2018-03-16
A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher
2018-03-16
A crane and rigging lines are used to install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up on the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher - Preps for Lift
2018-03-15
Construction workers with JP Donovan assist with preparations to lift and install the Interim Cryogenic Propulsion Stage Umbilical on the tower of the mobile launcher at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher
2018-03-16
Construction workers with JP Donovan install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher
2018-03-16
A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher - Preps for Lift
2018-03-15
The mobile launcher (ML) tower is lit up before early morning sunrise at NASA's Kennedy Space Center in Florida. Preparations are underway to lift and install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level on the tower. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
Shuttle cryogenic supply system optimization study. Volume 5A-1: Users manual for math models
NASA Technical Reports Server (NTRS)
1973-01-01
The Integrated Math Model for Cryogenic Systems is a flexible, broadly applicable systems parametric analysis tool. The program will effectively accommodate systems of considerable complexity involving large numbers of performance dependent variables such as are found in the individual and integrated cryogen systems. Basically, the program logic structure pursues an orderly progression path through any given system in much the same fashion as is employed for manual systems analysis. The system configuration schematic is converted to an alpha-numeric formatted configuration data table input starting with the cryogen consumer and identifying all components, such as lines, fittings, and valves, each in its proper order and ending with the cryogen supply source assembly. Then, for each of the constituent component assemblies, such as gas generators, turbo machinery, heat exchangers, and accumulators, the performance requirements are assembled in input data tabulations. Systems operating constraints and duty cycle definitions are further added as input data coded to the configuration operating sequence.
Magnetically Actuated Propellant Orientation, Controlling Fluids in a Low-Gravity Environment
NASA Technical Reports Server (NTRS)
Martin, James J.; Holt, James B.
2000-01-01
Cryogenic fluid management (CFM) is a technology area common to virtually every space transportation propulsion concept envisioned. Storage, supply, transfer and handling of sub-critical cryogenic fluids are basic capabilities that have long been needed by multiple programs and the need is expected to continue in the future. The use of magnetic fields provides another method, which could replace or augment current/traditional approaches, potentially simplifying vehicle operational constraints. The magnetically actuated propellant orientation (MAPO) program effort focused on the use of magnetic fields to control fluid motion as it relates to positioning (i.e. orientation and acquisition) of a paramagnetic substance such as LO2. Current CFM state- of-the-art systems used to control and acquire propellant in low gravity environments rely on liquid surface tension devices which employ vanes, fine screen mesh channels and baskets. These devices trap and direct propellant to areas where it's needed and have been used routinely with storable (non-cryogenic) propellants. However, almost no data exists r,egarding their operation in cryogenics and the use of such devices confronts designers with a multitude of significant technology issues. Typical problems include a sensitivity to screen dry out (due to thermal loads and pressurant gas) and momentary adverse accelerations (generated from either internal or external sources). Any of these problems can potentially cause the acquisition systems to ingest or develop vapor and fail. The use of lightweight high field strength magnets may offer a valuable means of augmenting traditional systems potentially mitigating or at least easing operational requirements. Two potential uses of magnetic fields include: 1) strategically positioning magnets to keep vent ports clear of liquid (enabling low G vented fill operations), and 2) placing magnets in the center or around the walls of the tank to create an insulating vapor pocket (between the liquid and the tank wall) which could effectively lower heat transfer to the liquid (enabling increased storage time).
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Kilgore, W. Allen; Murthy, A. V.
1989-01-01
A performance evaluation of an active sidewall boundary-layer removal system for the Langley 0.3-m Transonic Cryogenic Tunnel (TCT) was evaluated in 1988. This system uses a compressor and two throttling digital valves to control the boundary-layer mass flow removal from the tunnel. The compressor operates near the maximum pressure ratio for all conditions. The system uses a surge prevention and flow recirculation scheme. A microprocessor based controller is used to provide the necessary mass flow and compressor pressure ratio control. Initial tests on the system indicated problems in realizing smooth mass flow control while running the compressor at high speed and high pressure ratios. An alternate method has been conceived to realize boundary-layer mass flow control which avoids the recirculation of the compressor mass flow and operation near the compressor surge point. This scheme is based on varying the speed of the compressor for a sufficient pressure ratio to provide needed mass flow removal. The system has a mass flow removal capability of about 10 percent of test section flow at M = 0.3 and 4 percent at M = 0.8. The system performance has been evaluated in the form of the compressor map, and compressor tunnel interface characteristics covering most of the 0.3-m TCT operational envelope.
NASA Technical Reports Server (NTRS)
Fast, Ronald W. (Editor)
1991-01-01
The present volume on advances in cryogenic engineering discusses heat and mass transfer in helium, heat transfer in cryogenic fluids, thermoacoustic oscillations, and insulation. Attention is given to applications of superconductivity with reference to magnetic stability and coil protection, cryogenic techniques, and refrigeration for electronics and superconducting systems. Topics addressed include compressors, expanders, and pumps for liquid helium, magnetic refrigerators, pulse tube refrigerators, and cryocoolers. Also examined are properties of cryogenic fluids, cryogenic applications in transportion and space science and technology, and cryogenic instrumentation.
Cryogenic insulation development
NASA Technical Reports Server (NTRS)
Leonhard, K. E.
1972-01-01
Multilayer insulations for long term cryogenic storage are described. The development effort resulted in an insulation concept using lightweight radiation shields, separated by low conductive Dacron fiber tufts. The insulation is usually referred to as Superfloc. The fiber tufts are arranged in a triangular pattern and stand about .040 in. above the radiation shield base. Thermal and structural evaluation of Superfloc indicated that this material is a strong candidate for the development of high performance thermal protection systems because of its high strength, purge gas evacuation capability during boost, its density control and easy application to a tank.
Cryogenic fluid management for low-g transfer
NASA Technical Reports Server (NTRS)
Frank, D. J.; Jaekle, D. E., Jr.
1986-01-01
An account is given of design and operations criteria pertaining to low-g environment systems for the collection and delivery of liquid cryogens to a supply tank drain inlet in orbit. Analyses must assess the draining efficiencies of such devices, because the minimization of supply tank residual contents is of the essence. Settling accelerations, passive expulsion, and positive expulsion methods of fluid control have all been successfully demonstrated in orbit. Attention is given to the unique advantages and disadvantages of each method in view of different sets of requirements.
Reusable cryogenic foam insulation for advanced aerospace vehicles
NASA Technical Reports Server (NTRS)
Mcauliffe, Patrick S.; Taylor, Allan H.; Sparks, Larry L.; Dube, William P.
1991-01-01
Future high-speed aircraft and aerospace vehicles using cryogenic propellants will require an advanced reusable insulation system for the propellant tank structure. This cryogenic insulation system must be lightweight, structurally and thermally efficient, and capable of multiple reuse without cracking or degraded performance. This paper presents recent progress in the development of a reusable cryogenic foam insulation system having a maximum service temperature of 400 F. The system consists of preshaped, precut blocks of rigid polymethacrylimide foam insulation, wrapped with a high-temperature Kapton and aluminum foil vapor barrier which is adhesively bonded to the propellant tank wall.
CRYOTE (Cryogenic Orbital Testbed) Concept
NASA Technical Reports Server (NTRS)
Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie
2009-01-01
Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.
Design of hydrogen vent line for the cryogenic hydrogen system in J-PARC
NASA Astrophysics Data System (ADS)
Tatsumoto, Hideki; Aso, Tomokazu; Kato, Takashi; Ohtsu, Kiichi; Hasegawa, Shoichi; Maekawa, Fujio; Futakawa, Masatoshi
2009-02-01
As one of the main experimental facilities in J-PARC, an intense spallation neutron source (JSNS) driven by a 1-MW proton beam selected supercritical hydrogen at a temperature of 20 K and a pressure of 1.5 MPa as a moderator material. Moderators are controlled by a cryogenic hydrogen system that has a hydrogen relief system, which consists of high and low pressure stage of manifolds, a hydrogen vent line and a stack, in order to release hydrogen to the outside safely. The design of the hydrogen vent line should be considered to prevent purge nitrogen gas in the vent line from freezing when releasing the cryogenic hydrogen, to prevent moisture in the stack placed in an outdoor location from freezing, and to inhibit large piping temperature reduction at a building wall penetration. In this work, temperature change behaviors in the hydrogen vent line were analyzed by using a CFD code, STAR-CD. We determined required sizes of the vent line based on the analytical results and its layout in the building.
NASA Technical Reports Server (NTRS)
Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali
2016-01-01
This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.
Jet mixing in low gravity - Results of the Tank Pressure Control Experiment
NASA Technical Reports Server (NTRS)
Bentz, M. D.; Meserole, J. S.; Knoll, R. H.
1992-01-01
The Tank Pressure Control Experiment (TPCE) is discussed with attention given to the results for controlling storage-tank pressures by forced-convective mixing in microgravitational environments. The fluid dynamics of cryogenic fluids in space is simulated with freon-113 during axial-jet-induced mixing. The experimental flow-pattern data are found to confirm previous data as well as existing mixing correlations. Thermal nonuniformities and tank pressure can be reduced by employing low-energy mixing jets which are useful for enhancing heat/mass transfer between phases. It is found that space cryogenic systems based on the principle of active mixing can be more reliable and predictable than other methods, and continuous or periodic mixing can be accomplished with only minor energy addition to the fluid.
Self-contained cryogenic gas sampling apparatus and method
McManus, G.J.; Motes, B.G.; Bird, S.K.; Kotter, D.K.
1996-03-26
Apparatus for obtaining a whole gas sample, is composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method is described for obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant. 3 figs.
Self-contained cryogenic gas sampling apparatus and method
McManus, Gary J.; Motes, Billy G.; Bird, Susan K.; Kotter, Dale K.
1996-01-01
Apparatus for obtaining a whole gas sample, composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method of obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant.
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Hoa, Christine; Bonnay, Patrick; Bon-Mardion, Michel; Monteiro, Lionel
2015-12-01
In this article, we present a new Simulink library of cryogenics components (such as valve, phase separator, mixer, heat exchanger...) to assemble to generate model-based control schemes. Every component is described by its algebraic or differential equation and can be assembled with others to build the dynamical model of a complete refrigerator or the model of a subpart of it. The obtained model can be used to automatically design advanced model based control scheme. It also can be used to design a model based PI controller. Advanced control schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT- 60SA). The paper gives the example of the generation of the dynamical model of the 400W@1.8K refrigerator and shows how to build a Constrained Model Predictive Control for it. Based on the scheme, experimental results will be given. This work is being supported by the French national research agency (ANR) through the ANR-13-SEED-0005 CRYOGREEN program.
Shuttle cryogenic supply system optimization study. Volume 2: Technical report, sections 4 through 9
NASA Technical Reports Server (NTRS)
1973-01-01
The design and development of cryogenic supply systems for space shuttle vehicles are discussed. The weights, component counts, and statements of advantages and disadvantages of the systems considered are presented. Performance characteristics of the systems are analyzed in the form of graphs. Block diagrams and engineering drawings of the candidate systems are provided. Special consideration is given to flow rates and thermodynamic properties of the cryogenic systems.
NASA Technical Reports Server (NTRS)
Bronson, J. C.
1970-01-01
Insulating qualities of frost and mechanisms for using frost in specific applications in controlled experiments are discussed. With available supply of moist air, frost possesses inherent advantage of easy insulation of cryogenic lines and improvement of overall system efficiency.
Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC
NASA Technical Reports Server (NTRS)
2005-01-01
This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.
Continuous-Reading Cryogen Level Sensor
NASA Technical Reports Server (NTRS)
Barone, F. E.; Fox, E.; Macumber, S.
1984-01-01
Two pressure transducers used in system for measuring amount of cryogenic liquid in tank. System provides continuous measurements accurate within 0.03 percent. Sensors determine pressure in liquid and vapor in tank. Microprocessor uses pressure difference to compute mass of cryogenic liquid in tank. New system allows continuous sensing; unaffected by localized variations in composition and density as are capacitance-sensing schemes.
NASA Technical Reports Server (NTRS)
1990-01-01
A brief but comprehensive review is given of the technical accomplishments of the NASA Lewis Research Center during the past year. Topics covered include instrumentation and controls technology; internal fluid dynamics; aerospace materials, structures, propulsion, and electronics; space flight systems; cryogenic fluids; Space Station Freedom systems engineering, photovoltaic power module, electrical systems, and operations; and engineering and computational support.
Gas gap heat switch for a cryogen-free magnet system
NASA Astrophysics Data System (ADS)
Barreto, J.; Borges de Sousa, P.; Martins, D.; Kar, S.; Bonfait, G.; Catarino, I.
2015-12-01
Cryogen-free superconducting magnet systems (CFMS) have become popular over the last two decades for the simple reason that the use of liquid helium is rather cumbersome and that helium is a scarce resource. Some available CFMS use a mechanical cryocooler as the magnet's cold source. However, the variable temperature insert (VTI) for some existing CFMS are not strictly cryogen-free as they are still based on helium gas circulation through the sample space. We designed a prototype of a gas gap heat switch (GGHS) that allows a thermal management of a completely cryogen-free magnet system, with no helium losses. The idea relies on a parallel cooling path to a variable temperature insert (VTI) of a magnetic properties measurement system under development at Inter-University Accelerator Centre. A Gifford-McMahon cryocooler (1.5 W @ 4.2 K) would serve primarily as the cold source of the superconducting magnet, dedicating 1 W to this cooling, under quite conservative safety factors. The remaining cooling power (0.5 W) is to be diverted towards a VTI through a controlled GGHS that was designed and built with a 80 μm gap width. The built GGHS thermal performance was measured at 4 K, using helium as the exchange gas, and its conductance is compared both with a previously developed analytical model and a finite element method. Lessons learned lead to a new and more functional prototype yet to be reported.
Space Propulsion Technology Program Overview
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1991-01-01
The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1988-01-01
Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.
A magnetically suspended linearly driven cryogenic refrigerator
NASA Technical Reports Server (NTRS)
Stolfi, F.; Goldowsky, M.; Ricciardelli, J.; Shapiro, P.
1983-01-01
This paper described a novel Stirling cycle cryogenic refrigerator which was designed, fabricated and successfully tested at Philips Laboratories. The prominent features of the machine are an electro-magnetic bearing system, a pair of moving magnet linear motors, and clearance seals with a 25 mu m radial gap. The all-metal and ceramic construction eliminates long-term organic contamination of the helium working fluid. The axial positions of the piston and displacer are electronically controlled, permitting independent adjustment of the amplitude of each and their relative phase relationship during operation. A simple passive counterbalance reduces axial vibrations. The design of the refrigerator system components is discussed and a comparison is made between performance estimates and measured results.
Physics Based Model for Online Fault Detection in Autonomous Cryogenic Loading System
NASA Technical Reports Server (NTRS)
Kashani, Ali; Devine, Ekaterina Viktorovna P; Luchinsky, Dmitry Georgievich; Smelyanskiy, Vadim; Sass, Jared P.; Brown, Barbara L.; Patterson-Hine, Ann
2013-01-01
We report the progress in the development of the chilldown model for rapid cryogenic loading system developed at KSC. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The two-phase flow model of the chilldown is approximated as one-dimensional homogeneous fluid flow with no slip condition for the interphase velocity. The model is built using commercial SINDAFLUINT software. The results of numerical predictions are in good agreement with the experimental time traces. The obtained results pave the way to the application of the SINDAFLUINT model as a verification tool for the design and algorithm development required for autonomous loading operation.
Status of the LBNF Cryogenic System
Montanari, D.; Adamowski, M.; Bremer, J.; ...
2017-12-30
We present that the Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An internationalmore » engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. Lastly, the expected performance, the functional requirements and the status of the design are also highlighted.« less
Status of the LBNF Cryogenic System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanari, D.; Adamowski, M.; Bremer, J.
We present that the Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An internationalmore » engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. Lastly, the expected performance, the functional requirements and the status of the design are also highlighted.« less
Status of the LBNF Cryogenic System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanari, D.; Adamowski, M.; Bremer, J.
2017-01-01
The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 ton of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team willmore » design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the models of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.« less
NASA Technical Reports Server (NTRS)
Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.
1999-01-01
The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.
Status of the LBNF Cryogenic System
NASA Astrophysics Data System (ADS)
Montanari, D.; Adamowski, M.; Bremer, J.; Delaney, M.; Diaz, A.; Doubnik, R.; Haaf, K.; Hentschel, S.; Norris, B.; Voirin, E.
2017-12-01
The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.
Development of magnetostrictive active members for control of space structures
NASA Technical Reports Server (NTRS)
Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.
1992-01-01
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.
Development of magnetostrictive active members for control of space structures
NASA Astrophysics Data System (ADS)
Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.
1992-08-01
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.
NASA Technical Reports Server (NTRS)
Davis, Randall C. (Inventor); Taylor, Allan H. (Inventor); Jackson, L. Robert (Inventor); Mcauliffe, Patrick S. (Inventor)
1988-01-01
This invention relates to reusable, low density, high temperature cryogenic foam insulation systems and the process for their manufacture. A pacing technology for liquid hydrogen fueled, high speed aircraft is the development of a fully reusable, flight weight cryogenic insulation system for propellant tank structures. In the invention cryogenic foam insulation is adhesively bonded to the outer wall of the fuel tank structure. The cryogenic insulation consists of square sheets fabricated from an array of abutting square blocks. Each block consists of a sheet of glass cloth adhesively bonded between two layers of polymethacrylimide foam. Each block is wrapped in a vapor impermeable membrane, such as Kapton(R) aluminum Kapton(R), to provide a vapor barrier. Very beneficial results can be obtained by employing the present invention in conjunction with fibrous insulation and an outer aeroshell, a hot fuselage structure with an internal thermal protection system.
Kodak AMSD Cryogenic Test Plans
NASA Technical Reports Server (NTRS)
Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)
2002-01-01
NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.
NASA Technical Reports Server (NTRS)
Merino, F.; Oneill, R. F.
1980-01-01
The Cryogenic Fluid Management Experiment (CFME) was analyzed to assess the feasibility and advisability of deleting the vapor cooled shield (VCS) from the baseline CFME insulation and pressure control system. Two alternate concepts of CFME insulation and pressure control, neither of which incorporated the VCS, were investigated. The first concept employed a thermodynamic vent system (TVS) to throttle the flow through an internal wall mounted heat exchanger (HX) within the pressure vessel to decrease boiloff and pressure rise rate, while the second concept utilized a TVS without an internal heat exchanger. Only the first concept was viable. Its performance was assessed for a seven day mission and found to be satisfactory. It was also concluded that VCS development costs would be greater than for an internal HX installation. Based upon the above comparisons, the HX was recommended as a replacement for the VCS.
NASA Astrophysics Data System (ADS)
Berryhill, A. B.; Coffey, D. M.; McGhee, R. W.; Burkhardt, E. E.
2008-03-01
Cryomagnetics' new "C-Mag Optical" Magneto-Optic Property Measurement System is a versatile materials and device characterization system that allows the researcher to simultaneously control the applied magnetic field and temperature of a sample while studying its electrical and optic properties. The system integrates a totally liquid cryogen-free 6T superconducting split-pair magnet with a variable temperature sample space, both cooled using a single 4.2K pulse tube refrigerator. To avoid warming the magnet when operating a sample at elevated temperatures, a novel heat switch was developed. The heat switch allows the sample temperature to be varied from 10K to 300K while maintaining the magnet at 4.2K or below. In this paper, the design and performance of the overall magnet system and the heat switch will be presented. New concepts for the next generation system will also be discussed.
Conceptual design of the cryogenic system and estimation of the recirculated power for CFETR
NASA Astrophysics Data System (ADS)
Liu, Xiaogang; Qiu, Lilong; Li, Junjun; Wang, Zhaoliang; Ren, Yong; Wang, Xianwei; Li, Guoqiang; Gao, Xiang; Bi, Yanfang
2017-01-01
The China Fusion Engineering Test Reactor (CFETR) is the next tokamak in China’s roadmap for realizing commercial fusion energy. The CFETR cryogenic system is crucial to creating and maintaining operational conditions for its superconducting magnet system and thermal shields. The preliminary conceptual design of the CFETR cryogenic system has been carried out with reference to that of ITER. It will provide an average capacity of 75 to 80 kW at 4.5 K and a peak capacity of 1300 kW at 80 K. The electric power consumption of the cryogenic system is estimated to be 24 MW, and the gross building area is about 7000 m2. The relationships among the auxiliary power consumed by the cryogenic system, the fusion power gain and the recirculated power of CFETR are discussed, with the suggestion that about 52% of the electric power produced by CFETR in phase II must be recirculated to run the fusion test reactor.
Method and apparatus of cryogenic cooling for high temperature superconductor devices
Yuan, Xing; Mine, Susumu
2005-02-15
A method and apparatus for providing cryogenic cooling to HTS devices, in particular those that are used in high-voltage electric power applications. The method involves pressurizing liquid cryogen to above one atmospheric pressure to improve its dielectric strength, while sub-cooling the liquid cryogen to below its saturation temperature in order to improve the performance of the HTS components of the device. An apparatus utilizing such a cooling method consists of a vessel that contains a pressurized gaseous cryogen region and a sub-cooled liquid cryogen bath, a liquid cryogen heating coupled with a gaseous cryogen venting scheme to maintain the pressure of the cryogen to a value in a range that corresponds to optimum dielectric strength of the liquid cryogen, and a cooling system that maintains the liquid cryogen at a temperature below its boiling point to improve the performance of HTS materials used in the device.
Cryogenic temperature control by means of energy storage materials. [for long space voyages
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Picklesimer, E. A.; Connor, L. E.
1977-01-01
An investigation was conducted to study the concept of thermal control by means of physical or chemical reaction heats for applications involving the storage of cryogens during long-term space voyages. The investigation included some preliminary experimental tests of energy storage material (ESM) effectiveness. The materials considered can store and liberate large amounts of thermal energy by means of mechanisms such as sensible heat, heat of fusion, and physical or chemical reaction heat. A differential thermal analysis was utilized in the laboratory tests. Attention is given to the evaluation of cryogenic ESM thermal control concepts, the experimental determination of phase change materials characteristics, and adsorption ESMs. It is found that an ESM shield surrounded by multiple layer insulation provides the best protection for a cryogen store.
Reduced Boil-Off System Sizing
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Plachta, David W.; Feller, Jeffrey R.
2015-01-01
NASA is currently developing cryogenic propellant storage and transfer systems for future space exploration and scientific discovery missions by addressing the need to raise the technology readiness level of cryogenic fluid management technologies. Cryogenic propellants are baselined in many propulsion systems due to their inherently high specific impulse; however, their low boiling points can cause substantial boil-off losses over time. Recent efforts such as the Reduced Boil-off Testing and the Active Thermal Control Scaling Study provide important information on the benefit of an active cooling system applied to LH2 propellant storage. Findings show that zero-boil off technologies can reduce overall mass in LH2 storage systems when low Earth orbit loiter periods extend beyond two months. A significant part of this mass reduction is realized by integrating two stages of cooling: a 20 K stage to intercept heat at the tank surface, and a 90 K stage to reduce the heat entering the less efficient 20 K stage. A missing element in previous studies, which is addressed in this paper, is the development of a direct method for sizing the 90 K cooling stage. Such a method requires calculation of the heat entering both the 90 K and 20 K stages as compared to the overall system masses, and is reliant upon the temperature distribution, performance, and unique design characteristics of the system in question. By utilizing the known conductance of a system without active thermal control, the heat being intercepted by a 90 K stage can be calculated to find the resultant lift and mass of each active thermal control stage. Integral to this is the thermal conductance of the cooling straps and the broad area cooling shield, key parts of the 90 K stage. Additionally, a trade study is performed to show the ability of the 90 K cooling stage to reduce the lift on the 20 K cryocooler stage, which is considerably less developed and efficient than 90 K cryocoolers.
ICPSU Install onto Mobile Launcher
2018-03-16
The mobile launcher (ML) is reflected in the sunglasses of a construction worker with JP Donovan at NASA's Kennedy Space Center in Florida. A crane is lifting the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the ML. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher - Preps for Lift
2018-03-15
A construction worker with JP Donovan helps prepare the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) for installation high up on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will be located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher - Preps for Lift
2018-03-15
Construction workers with JP Donovan attach a heavy-lift crane to the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) to prepare for lifting and installation on the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will be located at about the 240-foot-level of the ML and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
Satellite Testbed for Evaluating Cryogenic-Liquid Behavior in Microgravity
NASA Technical Reports Server (NTRS)
Putman, Philip Travis (Inventor)
2017-01-01
Provided is a testbed for conducting an experiment on a substance in a cryogenic liquid state in a microgravity environment. The testbed includes a frame with rectangular nominal dimensions, and a source section including a supply of the substance to be evaluated in the cryogenic liquid state. An experiment section includes an experiment vessel in fluid communication with the storage section to receive the substance from the storage section and condense the substance into the cryogenic liquid state. A sensor is adapted to sense a property of the substance in the cryogenic liquid state in the experiment vessel as part of the experiment. A bus section includes a controller configured to control delivery of the substance from the storage section to the experiment vessel, and receive property data indicative of the property sensed by the sensor for subsequent evaluation on Earth.
Cost effective use of liquid nitrogen in cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Mcintosh, Glen E.; Lombard, David S.; Martindale, David L.; Dunn, Robert P.
1987-01-01
A method of reliquefying from 12 to 19% of the nitrogen exhaust gas from a cryogenic wind tunnel has been developed. Technical feasibility and cost effectiveness of the system depends on performance of an innovative positive displacement expander which requires scale model testing to confirm design studies. The existing cryogenic system at the 0.3-m transonic cryogenic tunnel has been surveyed and extensive upgrades proposed. Upgrades are generally cost effective and may be implemented immediately since they are based on established technology.
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Beard, Shawn J.; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike
2008-10-01
A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment.
Cryogenic Boil-Off Reduction System Testing
NASA Technical Reports Server (NTRS)
Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery
2014-01-01
The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.
Superconducting Meissner Effect Bearings for Cryogenic Turbomachines
1993-05-01
Maximum 200 words) This report describes the second year efforts to develop a Meissner bearing system for miniature cryogenic turboexpanders used in... Turboexpander ....................................................................... 6 4.3. Task 7-Management and Reporting...The program is aimed at the development of a Meissner bearing system for miniature cryogenic turboexpanders used in Brayton cycle cryocoolers. "TIM
Cryogenics and its application with reference to spice grinding: a review.
Balasubramanian, S; Gupta, Manoj Kumar; Singh, K K
2012-01-01
Cryogenics is the study of very low temperature and its application on different materials including biological products. Cryogenics has numerous applications in space science, electronics, automobiles, the manufacturing industry, sports and musical instruments, biological science and agriculture, etc. Cryogenic freezing finds pivotal application in food, that is, spices and condiments. Although there is a wide range of cryogens to produce the desired low temperature, generally liquid nitrogen (LN₂) is used in food grinding. The application of low temperature shows a promising pathway to produce higher quality end product with higher flavor and volatile oil retention. Cryogenic grinders generally consist of precoolers and grinder with the cryogen distribution system. In such grinding systems, cryogens subject the raw material up to or lower than glass transition temperature before it is ground, thus eliminating much of the material and quality hassles of traditional grinding. At present, the capital investment including cryogen and handling costs escalate the final cost of the product. Thus, for large-scale production, a proper design to optimize and make it feasible is the need of the hour and understanding the behavior of different food materials at these low temperature conditions. This article reviews the scenario and application of cryogenics in different sectors, especially to spice grinding.
Long-term cryogenic space storage system
NASA Technical Reports Server (NTRS)
Hopkins, R. A.; Chronic, W. L.
1973-01-01
Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.
Advanced long term cryogenic storage systems
NASA Technical Reports Server (NTRS)
Brown, Norman S.
1987-01-01
Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.
NASA Technical Reports Server (NTRS)
Dye, Scott A.
2015-01-01
New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/sq m, or 27 percent of the heat leak of conventional MLI (26.7 W/sq m). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.
NASA Technical Reports Server (NTRS)
Dye, Scott A.
2015-01-01
New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.
Automatic control of NASA Langley's 0.3-meter cryogenic test facility
NASA Technical Reports Server (NTRS)
Thibodeaux, J. J.; Balakrishna, S.
1980-01-01
Experience during the past 6 years of operation of the 0.3-meter transonic cryogenic tunnel at the NASA Langley Research Center has shown that there are problems associated with efficient operation and control of cryogenic tunnels using manual control schemes. This is due to the high degree of process crosscoupling between the independent control variables (temperature, pressure, and fan drive speed) and the desired test condition (Mach number and Reynolds number). One problem has been the inability to maintain long-term accurate control of the test parameters. Additionally, the time required to change from one test condition to another has proven to be excessively long and much less efficient than desirable in terms of liquid nitrogen and electrical power usage. For these reasons, studies have been undertaken to: (1) develop and validate a mathematical model of the 0.3-meter cryogenic tunnel process, (2) utilize this model in a hybrid computer simulation to design temperature and pressure feedback control laws, and (3) evaluate the adequacy of these control schemes by analysis of closed-loop experimental data. This paper will present the results of these studies.
Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures
NASA Technical Reports Server (NTRS)
Fesmire, James; Sass, Jared; Johnson, Wesley
2010-01-01
With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).
Zero Boil-OFF Tank Hardware Setup
2017-09-19
iss053e027051 (Sept. 19, 2017) --- Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. ZBOT uses an experimental fluid to test active heat removal and forced jet mixing as alternative means for controlling tank pressure for volatile fluids. Rocket fuel, spacecraft heating and cooling systems, and sensitive scientific instruments rely on very cold cryogenic fluids. Heat from the environment around cryogenic tanks can cause their pressures to rise, which requires dumping or "boiling off" fluid to release the excess pressure, or actively cooling the tanks in some way.
Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing
NASA Technical Reports Server (NTRS)
Moore, J. D.; Otto, J. M.; Cody, J. C.; Hastings, L. J.; Bryant, C. B.; Gautney, T. T.
2015-01-01
High-energy cryogenic propellant is an essential element in future space exploration programs. Therefore, NASA and its industrial partners are committed to an advanced development/technology program that will broaden the experience base for the entire cryogenic fluid management community. Furthermore, the high cost of microgravity experiments has motivated NASA to establish government/aerospace industry teams to aggressively explore combinations of ground testing and analytical modeling to the greatest extent possible, thereby benefitting both industry and government entities. One such team consisting of ManTech SRS, Inc., Edwards Air Force Base, and Marshall Space Flight Center (MSFC) was formed to pursue a technology project designed to demonstrate technology readiness for an SRS liquid hydrogen (LH2) in-space propellant management concept. The subject testing was cooperatively performed June 21-30, 2000, through a partially reimbursable Space Act Agreement between SRS, MSFC, and the Air Force Research Laboratory. The joint statement of work used to guide the technical activity is presented in appendix A. The key elements of the SRS concept consisted of an LH2 storage and supply system that used all of the vented H2 for solar engine thrusting, accommodated pressure control without a thermodynamic vent system (TVS), and minimized or eliminated the need for a capillary liquid acquisition device (LAD). The strategy was to balance the LH2 storage tank pressure control requirements with the engine thrusting requirements to selectively provide either liquid or vapor H2 at a controlled rate to a solar thermal engine in the low-gravity environment of space operations. The overall test objective was to verify that the proposed concept could enable simultaneous control of LH2 tank pressure and feed system flow to the thruster without necessitating a TVS and a capillary LAD. The primary program objectives were designed to demonstrate technology readiness of the SRS concept at a system level as a first step toward actual flight vehicle demonstrations. More specific objectives included testing the pressure and feed control system concept hardware for functionality, operability, and performance. Valuable LH2 thermodynamic and fluid dynamics data were obtained for application to both the SRS concept and to future missions requiring space-based cryogen propellant management.
Mixing-induced fluid destratification and ullage condensation
NASA Technical Reports Server (NTRS)
Meserole, Jere S.; Jones, Ogden S.; Fortini, Anthony F.
1987-01-01
In many applications, on-orbit storage and transfer of cryogens will require forced mixing to control tank pressure without direct venting to space. During a no-vent transfer or during operation of a thermodynamic vent system in a cryogen storage tank, pressure control is achieved by circulating cool liquid to the liquid-vapor interface to condense some of the ullage vapor. To measure the pressure and temperature response rates in mixing-induced condensation, an experiment has been developed using Freon 11 to simulate the two-phase behavior of a cryogen. A thin layer at the liquid surface is heated to raise the tank pressure, and then a jet mixer is turned on to circulate the liquid, cool the surface, and reduce the pressure. Many nozzle configurations and flow rates are used. Tank pressure and the temperature profiles in the ullage and the liquid are measured. Initial data from this ground test are shown correlated with normal-gravity and drop-tower dye-mixing data. Pressure collapse times are comparable to the dye-mixing times, whereas the times needed for complete thermal mixing are much longer than the dye-mixing times.
A physicochemical environmental control/life support system for the Mars transit vehicle
NASA Technical Reports Server (NTRS)
Sedej, Melaine M.
1986-01-01
The environmental control/life support system (ECLSS) must be small and maintenance free as possible to allow maximum mission flexibility. A physiocochemical ECLSS concept similar in many ways to several of the partially closed ECLSS concepts proposed for the space station is discussed. However, this concept elmininates several of the space station ECLSS subsystems and potentially eliminates the use of cryogenics and high-pressure gaseous storage.
Low-cost measurement and monitoring system for cryogenic applications
NASA Astrophysics Data System (ADS)
Tubío Araújo, Óscar; Hernández Suárez, Elvio; Gracia Temich, Félix
2016-07-01
Cryostats are closed chambers that hinder the monitoring of materials, structures or systems installed therein. This paper presents a webcam-based measurement and monitoring system, which can operate under vacuum and cryogenic conditions to be mainly used in astrophysical applications. The system can be configured in two different assemblies: wide field that can be used for mechanism monitoring and narrow field, especially useful in cryogenic precision measurements with a resolution up to 4 microns/pixel.
NASA Technical Reports Server (NTRS)
Symons, Pat
1991-01-01
The topics presented are covered in viewgraph form. The concluded remarks are: (1) advanced cryogenic fluid systems technology is enhancing or enabling to all known transportation scenarios for space exploration; (2) an integrated/coordinated program involving LeRC/MSFC has been formulated to address all known CFM needs - new needs should they develop, can be accommodated within available skills/facilities; (3) all required/experienced personnel and facilities are finally in place - data from initial ground-based experiments is being collected and analyzed - small scale STS experiments are nearing flight - program is beginning to yield significant results; (4) future proposed funding to primarily come from two sources; and (5) cryogenic fluid experimentation is essential to provide required technology and assure implementation in future NASA missions.
Hydrogen-methane fuel control systems for turbojet engines
NASA Technical Reports Server (NTRS)
Goldsmith, J. S.; Bennett, G. W.
1973-01-01
Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel.
Low-G fluid transfer technology study
NASA Technical Reports Server (NTRS)
Stark, J. A.
1976-01-01
Technology gaps and system characteristics critical to cryogenic and noncryogenic in-orbit fluid transfer were identified. Four different supply systems were conceptually designed as space shuttle payloads. These were; (1) space tug supply - LH2, LO2, N2H4, He - linear acceleration for liquid acquisition with supply module and tug separated from shuttle, (2) tug supply using orbiter drag, (3) orbiter supply - N2O4,MMH,He, H2,O2 - surface tension screens, (4) multiple receivers supply 0 solar electric propulsion stage, Hg, diaphragm - HEAO B, HEe, paddle fluid rotation-satellite control section, N2H4, screens. It was found that screens had the best overall potential for low weight and simplicity, however, thermal problems with cryogenics still need final resolution.
Physics based model for online fault detection in autonomous cryogenic loading system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashani, Ali; Ponizhovskaya, Ekaterina; Luchinsky, Dmitry
2014-01-29
We report the progress in the development of the chilldown model for a rapid cryogenic loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The two-phase flow model of the chilldown is approximated as one-dimensional homogeneous fluid flow with no slip condition for the interphase velocity. The model is built using commercial SINDA/FLUINT software. The results of numerical predictions are in good agreement with the experimental time traces. The obtained results pave the way to the application of the SINDA/FLUINT model as a verification tool formore » the design and algorithm development required for autonomous loading operation.« less
Cryogenics maintenance strategy
NASA Astrophysics Data System (ADS)
Cruzat, Fabiola
2012-09-01
ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.
PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy
2017-07-06
The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes ofmore » operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.« less
Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks
NASA Technical Reports Server (NTRS)
Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.
2011-01-01
Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the different methods is provided. Recent advancements and applications of SOFI systems on future launch vehicles and spacecraft are also addressed.
Effects of Active Sting Damping on Common Research Model Data Quality
NASA Technical Reports Server (NTRS)
Acheson, Michael J.; Balakrishna, S.
2011-01-01
Recent tests using the Common Research Model (CRM) at the Langley National Transonic Facility (NTF) and the Ames 11-foot Transonic Wind Tunnel (11' TWT) produced large sets of data that have been used to examine the effects of active damping on transonic tunnel aerodynamic data quality. In particular, large statistically significant sets of repeat data demonstrate that the active damping system had no apparent effect on drag, lift and pitching moment repeatability during warm testing conditions, while simultaneously enabling aerodynamic data to be obtained post stall. A small set of cryogenic (high Reynolds number) repeat data was obtained at the NTF and again showed a negligible effect on data repeatability. However, due to a degradation of control power in the active damping system cryogenically, the ability to obtain test data post-stall was not achieved during cryogenic testing. Additionally, comparisons of data repeatability between NTF and 11-ft TWT CRM data led to further (warm) testing at the NTF which demonstrated that for a modest increase in data sampling time, a 2-3 factor improvement in drag, and pitching moment repeatability was readily achieved not related with the active damping system.
Comprehensive Evaluation of Power Supplies at Cryogenic Temperatures for Deep Space Applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Gerber, Scott; Hammoud, Ahmad; Elbuluk, Malik E.; Lyons, Valerie (Technical Monitor)
2002-01-01
The operation of power electronic systems at cryogenic temperatures is anticipated in many future space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environments, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. DC/DC converters are widely used in space power systems in the areas of power management, conditioning, and control. As part of the on-going Low Temperature Electronics Program at NASA, several commercial-off-the-shelf (COTS) DC/DC converters, with specifications that might fit the requirements of specific future space missions have been selected for investigation at cryogenic temperatures. The converters have been characterized in terms of their performance as a function of temperature in the range of 20 C to - 180 C. These converters ranged in electrical power from 8 W to 13 W, input voltage from 9 V to 72 V and an output voltage of 3.3 V. The experimental set-up and procedures along with the results obtained on the converters' steady state and dynamic characteristics are presented and discussed.
Cryogenic gear technology for an orbital transfer vehicle engine and tester design
NASA Technical Reports Server (NTRS)
Calandra, M.; Duncan, G.
1986-01-01
Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.
Autonomous Operations System: Development and Application
NASA Technical Reports Server (NTRS)
Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.
2016-01-01
Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.
NASA Technical Reports Server (NTRS)
1975-01-01
A cryogenic H2-O2 auxiliary power unit (APU) was developed and successfully demonstrated. It has potential application as a minimum weight alternate to the space shuttle baseline APU because of its (1) low specific propellant consumption and (2) heat sink capabilities that reduce the amount of expendable evaporants. A reference system was designed with the necessary heat exchangers, combustor, turbine-gearbox, valves, and electronic controls to provide 400 shp to two aircraft hydraulic pumps. Development testing was carried out first on the combustor and control valves. This was followed by development of the control subsystem including the controller, the hydrogen and oxygen control valves, the combustor, and a turbine simulator. The complete APU system was hot tested for 10 hr with ambient and cryogenic propellants. Demonstrated at 95 percent of design power was 2.25 lb/hp-hr. At 10 percent design power, specific propellant consumption was 4 lb/hp-hr with space simulated exhaust and 5.2 lb/hp-hr with ambient exhaust. A 10 percent specific propellant consumption improvement is possible with some seal modifications. It was demonstrated that APU power levels could be changed by several hundred horsepower in less than 100 msec without exceeding allowable turbine inlet temperatures or turbine speed.
Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment
NASA Astrophysics Data System (ADS)
Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.
2014-01-01
We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.
NASA Technical Reports Server (NTRS)
Klem, Mark D.; Smith, Timothy D.
2008-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project in the Exploration Technology Development Program is developing technologies as risk mitigation for Orion and the Lunar Lander. An integrated main and reaction control propulsion system has been identified as a candidate for the Lunar Lander Ascent Module. The propellants used in this integrated system are Liquid Oxygen (LOX)/Liquid Methane (LCH4) propellants. A deep throttle pump fed Liquid Oxygen (LOX)/Liquid Hydrogen (LH2) engine system has been identified for the Lunar Lander Descent Vehicle. The propellant combination and architecture of these propulsion systems are novel and would require risk reduction prior to detailed design and development. The PCAD Project addresses the technology requirements to obtain relevant and necessary test data to further the technology maturity of propulsion hardware utilizing these propellants. This plan and achievements to date will be presented.
Conceptual design and analysis of orbital cryogenic liquid storage and supply systems
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Cunnington, G. R.; Johns, W. A.
1981-01-01
A wide variety of orbital cryogenic liquid storage and supply systems are defined in NASA and DOD long-range plans. These systems include small cooling applications, large chemical and electrical orbit transfer vehicles and supply tankers. All have the common requirements of low-g fluid management to accomplish gas-free liquid expulsion and efficient thermal control to manage heat leak and tank pressure. A preliminary design study was performed to evaluate tanks ranging from 0.6 to 37.4 cu m (22 to 1320 cu ft). Liquids of interest were hydrogen, oxygen, methane, argon and helium. Conceptual designs were generated for each tank system and fluid dynamic, thermal and structural analyses were performed for Shuttle compatible operations. Design trades considered the paradox of conservative support structure and minimum thermal input. Orbital performance and weight data were developed, and a technology evaluation was completed.
Cryogenic Orbital Nitrogen Experiment (CONE): Phase A/B design study
NASA Technical Reports Server (NTRS)
Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.
1991-01-01
Subcritical cryogenic fluid management (CFM) has long been recognized as an enabling technology for future space missions. Subcritical liquid storage and supply are two of the five CFM technology areas that need to be studied in the low gravity on-orbit environment. The Cryogenic Orbital Nitrogen Experiment (CONE) is a LN2 cryogenic storage and supply system demonstration placed in orbit by the National Space Transportation System (NSTS) Orbiter and operated as an in-bay payload. In-space demonstration of CFM using LN2 with a few well defined areas of focus would provide the confidence level required to implement subcritical cryogen use and is the first step towards the more far reaching issue of cryogen transfer and tankage resupply. A conceptual approach for CONE was developed and an overview of the program is described including the following: (1) a description of the background and scope of the technology objectives; (2) a description of the payload design and operation; and (3) the justification for CONE relating to potential near term benefits and risk mitigation for future systems. Data and criteria is provided to correlate in-space performance with analytical and numerical modeling of CFM systems.
Inferential Framework for Autonomous Cryogenic Loading Operations
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara
2017-01-01
We address problem of autonomous cryogenic management of loading operations on the ground and in space. As a step towards solution of this problem we develop a probabilistic framework for inferring correlations parameters of two-fluid cryogenic flow. The simulation of two-phase cryogenic flow is performed using nearly-implicit scheme. A concise set of cryogenic correlations is introduced. The proposed approach is applied to an analysis of the cryogenic flow in experimental Propellant Loading System built at NASA KSC. An efficient simultaneous optimization of a large number of model parameters is demonstrated and a good agreement with the experimental data is obtained.
Design progress of cryogenic hydrogen system for China Spallation Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G. P.; Zhang, Y.; Xiao, J.
2014-01-29
China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat loadmore » from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.« less
NASA Technical Reports Server (NTRS)
Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.
1979-01-01
The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanari, David; Adamowski, Mark; Bremer, Johan
2017-03-09
The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will bemore » engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. As a result, it also details the status of the design, present and future needs.« less
Cryogenics Testbed Laboratory Flange Baseline Configuration
NASA Technical Reports Server (NTRS)
Acuna, Marie Lei Ysabel D.
2013-01-01
As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.
Cryogenic Fluid Management Technology for Moon and Mars Missions
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.
2010-01-01
In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.
Tank Pressure Control Experiment on the Space Shuttle
NASA Technical Reports Server (NTRS)
1989-01-01
The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.
Tokamak experimental power reactor conceptual design. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-08-01
Volume II contains the following appendices: (1) summary of EPR design parameters, (2) impurity control, (3) plasma computational models, (4) structural support system, (5) materials considerations for the primary energy conversion system, (6) magnetics, (7) neutronics penetration analysis, (8) first wall stress analysis, (9) enrichment of isotopes of hydrogen by cryogenic distillation, and (10) noncircular plasma considerations. (MOW)
Lee, Inkyu; Park, Jinwoo; Moon, Il
2017-12-01
This paper describes data of an integrated process, cryogenic energy storage system combined with liquefied natural gas (LNG) regasification process. The data in this paper is associated with the article entitled "Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration" (Lee et al., 2017) [1]. The data includes the sensitivity case study dataset of the air flow rate and the heat exchanging feasibility data by composite curves. The data is expected to be helpful to the cryogenic energy process development.
Structural damping studies at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Buehrle, Ralph D.
1994-01-01
Results of an engineering study to measure changes in structural damping properties of two cryogenic wind tunnel model systems and two metallic test specimens at cryogenic temperatures are presented. Data are presented which indicate overall, a trend toward reduced structural damping at cryogenic temperatures (-250 degrees F) when compared with room temperature damping properties. The study was focused on structures and materials used for model systems tested in the National Transonic Facility (NTF). The study suggests that the significant reductions in damping at extremely cold temperatures are most likely associated with changes in mechanical joint compliance damping rather than changes in material (solid) damping.
NASA Astrophysics Data System (ADS)
Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Wang, P.; Liu, L. Q.
2014-01-01
An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Xiong, L. Y.; Peng, N.
2014-01-29
An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemensmore » S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.« less
NASA Astrophysics Data System (ADS)
Ho, Son H.; Rahman, Muhammad M.
2008-01-01
This paper presents a study on fluid flow and heat transfer of liquid hydrogen in a zero boil-off cryogenic storage tank in a microgravity environment. The storage tank is equipped with an active cooling system consisting of a heat pipe and a pump-nozzle unit. The pump collects cryogen at its inlet and discharges it through its nozzle onto the evaporator section of the heat pipe in order to prevent the cryogen from boiling off due to the heat leaking through the tank wall from the surroundings. A three-dimensional (3-D) finite element model is employed in a set of numerical simulations to solve for velocity and temperature fields of liquid hydrogen in steady state. Complex structures of 3-D velocity and temperature distributions determined from the model are presented. Simulations with an axisymmetric model were also performed for comparison. Parametric study results from both models predict that as the speed of the cryogenic fluid discharged from the nozzle increases, the mean or bulk cryogenic fluid speed increases linearly and the maximum temperature within the cryogenic fluid decreases.
Experimental Thermal Performance Testing of Cryogenic Tank Systems and Materials
NASA Technical Reports Server (NTRS)
Myers, Wesley C.; Fesmire, J. E.
2018-01-01
A comparative study was conducted to collect and analyze thermal conductivity data on a wide variety of low density materials, as well as thermal performance data on a number of vacuum-jacketed cryogenic tank systems. Although a vast number of these types of materials and cryogenic tank systems exist, the thermal conductivity of insulation materials and the thermal performance of cryogenic tank systems is often difficult to compare because many industrial methods and experimental conditions are available and utilized. The availability of a new thermal conductivity measurement device, the Macroflash Cup Cryostat, which is applicable for assessing a variety of materials, is accessible at NASA's Cryogenic Test Laboratory (CTL) at the Kennedy Space Center (KSC). The convenience of this device has resulted in the ability to rapidly measure the thermal conductivity properties of these materials by using a flat-plate liquid nitrogen (LN2) boiloff technique that employs a guarded heat flow test methodology in order to determine the effective thermal conductivity (ke) of a test specimen. As the thermal conductivities are measured at cryogenic temperatures, materials suitable for both future space missions and cryogenic tank systems can be identified and experimentally analyzed. Also recognizable are materials which may help increase energy efficiency by limiting the thermal losses encountered under various environmental conditions. The overall focus of this work consisted of two parts. One part, was to produce and analyze thermal conductivity data on a wide variety of materials with suitable properties conducive to those needed to aid in the production of a calibration curve for the "low end" of the Macroflash instrument. (Low end meaning materials with a thermal conductivity rating below 100 milliwatts per meter-Kelvin). The second part was to collect and analyze heat transfer data for a variety of small vacuum-jacketed vessels (cryogenic tank systems) in order to compare the thermal performance between them.
NASA Astrophysics Data System (ADS)
Fast, R. W.
The book presents a review of literature on superfluid helium, together with papers under the topics on heat and mass transfer in He II; applications of He II for cooling superconducting devices in space; heat transfer to liquid helium and liquid nitrogen; multilayer insulation; applications of superconductivity, including topics on magnets and other devices, magnet stability and coil protection, and cryogenic techniques; and refrigeration for electronics. Other topics discussed include refrigeration of superconducting systems; the expanders, cold compressors, and pumps for liquid helium; dilution refrigerators; magnetic refrigerators; pulse tube refrigerators; cryocoolers for space applications; properties of cryogenic fluids; cryogenic instrumentation; hyperconducting devices (cryogenic magnets); cryogenic applications in space science and technology and in transportation; and miscellaneous cryogenic techniques and applications.
Robust Multilayer Insulation for Cryogenic Systems
NASA Technical Reports Server (NTRS)
Fesmire, J. E.; Scholtens, B. F.; Augustynowicz, S. D.
2007-01-01
New requirements for thermal insulation include robust Multilayer insulation (MU) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.
EVA Roadmap: New Space Suit for the 21st Century
NASA Technical Reports Server (NTRS)
Yowell, Robert
1998-01-01
New spacesuit design considerations for the extra vehicular activity (EVA) of a manned Martian exploration mission are discussed. Considerations of the design includes:(1) regenerable CO2 removal, (2) a portable life support system (PLSS) which would include cryogenic oxygen produced from in-situ manufacture, (3) a power supply for the EVA, (4) the thermal control systems, (5) systems engineering, (5) space suit systems (materials, and mobility), (6) human considerations, such as improved biomedical sensors and astronaut comfort, (7) displays and controls, and robotic interfaces, such as rovers, and telerobotic commands.
In-Space Propellant Production Using Water
NASA Technical Reports Server (NTRS)
Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William
2012-01-01
A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.
Conceptual Design and Analysis of Orbital Cryogenic Liquid Storage and Supply Systems.
1981-05-01
MCR -79-561, Martin Marietta Corporation, June 1979. 5. Tegart, J. R.: Hydrodynamic Analysis Report - Cryogenic Fluid Management...Experiment, MCR -79-563, Martin Marietta Corporation, June 1979, (Contract NAS3-2 1591). 6. Gille, J. P.: Thermal Analysis Report - Cryogenic Fluid Management...Analysis Report - Cryogenic Fluid Management Experiment, MCR -79-567, Martin Marietta Corporation, June 1979, (Contract NAS3-21591). 8. "Low
Low-Heat-Leak Electrical Leads For Cryogenic Systems
NASA Technical Reports Server (NTRS)
Wise, Stephanie A.; Hooker, Matthew W.
1994-01-01
Electrical leads offering high electrical conductivity and low thermal conductivity developed for use in connecting electronic devices inside cryogenic systems to power supplies, signal-processing circuits, and other circuitry located in nearby warmer surroundings. Strip of superconductive leads on ceramic substrate, similar to ribbon cable, connects infrared detectors at temperature of liquid helium with warmer circuitry. Electrical leads bridging thermal gradient at boundary of cryogenic system designed both to minimize conduction of heat from surroundings through leads into system and to minimize resistive heating caused by electrical currents flowing in leads.
Konz, Ioana; Fernández, Beatriz; Fernández, M Luisa; Pereiro, Rosario; Sanz-Medel, Alfredo
2014-01-27
A new custom-built Peltier-cooled laser ablation cell is described. The proposed cryogenic cell combines a small internal volume (20 cm(3)) with a unique and reliable on-sample temperature control. The use of a flexible temperature sensor, directly located on the sample surface, ensures a rigorous sample temperature control throughout the entire analysis time and allows instant response to any possible fluctuation. In this way sample integrity and, therefore, reproducibility can be guaranteed during the ablation. The refrigeration of the proposed cryogenic cell combines an internal refrigeration system, controlled by a sensitive thermocouple, with an external refrigeration system. Cooling of the sample is directly carried out by 8 small (1 cm×1 cm) Peltier elements placed in a circular arrangement in the base of the cell. These Peltier elements are located below a copper plate where the sample is placed. Due to the small size of the cooling electronics and their circular allocation it was possible to maintain a peephole under the sample for illumination allowing a much better visualization of the sample, a factor especially important when working with structurally complex tissue sections. The analytical performance of the cryogenic cell was studied using a glass reference material (SRM NIST 612) at room temperature and at -20°C. The proposed cell design shows a reasonable signal washout (signal decay within less than 10 s to background level), high sensitivity and good signal stability (in the range 6.6-11.7%). Furthermore, high precision (0.4-2.6%) and accuracy (0.3-3.9%) in the isotope ratio measurements were also observed operating the cell both at room temperature and at -20°C. Finally, experimental results obtained for the cell application to qualitative elemental imaging of structurally complex tissue samples (e.g. eye sections from a native frozen porcine eye and fresh flower leaves) demonstrate that working in cryogenic conditions is critical in such type of direct sample analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Heat switch technology for cryogenic thermal management
NASA Astrophysics Data System (ADS)
Shu, Q. S.; Demko, J. A.; E Fesmire, J.
2017-12-01
Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.
Status of the JWST Science Instrument Payload
NASA Technical Reports Server (NTRS)
Greenhouse, Matt
2016-01-01
The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) system consists of five sensors (4 science): Mid-Infrared Instrument (MIRI), Near Infrared Imager and Slitless Spectrograph (NIRISS), Fine Guidance Sensor (FGS), Near InfraRed Camera (NIRCam), Near InfraRed Spectrograph (NIRSpec); and nine instrument support systems: Optical metering structure system, Electrical Harness System; Harness Radiator System, ISIM Electronics Compartment, ISIM Remote Services Unit, Cryogenic Thermal Control System, Command and Data Handling System, Flight Software System, Operations Scripts System.
Pumping and Depressurizing of Insulation Materials
NASA Technical Reports Server (NTRS)
Porter, Amber
2010-01-01
The Fluids Testing and Technology Branch is a group that researches and tests efficient ways to use various Cryogenic Fluids, such as Liquid Nitrogen or Liquid Helium, in ground and space systems. Their main goal is to develop new technologies involving Cryogenic temperatures as well as making sure the existing technologies are understood. During my time here a lot of insulation testing has been done which is where insulation systems are tested for cryogenic systems that are in space for long durations.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.
2014-01-01
In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.
NASA Technical Reports Server (NTRS)
Frey, Bradley J.; Leviton, Douglas B.
2004-01-01
The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.
Gauging Systems Monitor Cryogenic Liquids
NASA Technical Reports Server (NTRS)
2009-01-01
Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsedmore » heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick; Bradu, Benjamin
2014-01-01
In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
Operational and troubleshooting experiences in the SST-1 cryogenic system
NASA Astrophysics Data System (ADS)
Mahesuria, G.; Panchal, P.; Panchal, R.; Patel, R.; Sonara, D.; Gupta, N. C.; Srikanth, G. L. N.; Christian, D.; Garg, A.; Bairagi, N.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Tank, J.; Tanna, V. L.; Pradhan, S.
2014-01-01
Recently, the cooldown and current charging campaign have been carried out towards the demonstration of the first successful plasma discharge in the steady state superconducting Tokomak (SST-1). The SST-1 machine consists of cable-in-conduit wound superconducting toroidal as well as poloidal coils, cooled using 1.3 kW at 4.5 K helium refrigerator -cum- liquefier (HRL) system. The cryo system provides the two-phase helium at 0.13 MPa at 4.5 K as well as forced-flow pressurized helium at 0.4 MPa and in addition to 7 g-s-1 liquefaction capacity required for the current leads and other cold mass at 4.5 K. The entire integrated cold masses having different thermo hydraulic resistances cooled with the SST-1 HRL in optimised process parameters. In order to maintain different levels of temperatures and to facilitate smooth and reliable cooldown, warm-up, normal operations as well as to handle abnormal events such as, quench or utilities failures etc., exergy efficient process are adopted for the helium refrigerator-cum-liquefier (HRL) with an installed equivalent capacity of 1.3 kW at 4.5 K. Using the HRL, the cold mass of about 40 tons is being routinely cooled down from ambient temperature to 4.5 K with an average cooldown rate of 0.75 - 1 K-h-1. Long-term cryogenic stable conditions were obtained within 15 days in the superconducting coils and their connecting feeders. Afterwards, all of the cold mass is warmed-up in a controlled manner to ambient temperature. In this paper, we report the recent operational results of the cryogenic system during the first plasma discharge in SST-1 as well as the troubleshooting experiences of the cryogenic plant related hardware.
Controlled environment vitrification system for preparation of liquids
Bellare, Jayesh R.; Davis, Howard T.; Scriven, II, L. Edward; Talmon, Yeshayahu
1988-01-01
A system for preparing specimens in a controlled environment to insure that a liquid or partially liquid specimen is maintained in its original state while it is being prepared, and once prepared the specimen is vitrified or solidified with minimal alteration of its microstructure. The controlled environment is provided within a chamber where humidity and temperature can be controlled precisely while the specimen is prepared. The specimen is mounted on a plunger and a shutter controlled opening is opened substantially simultaneously with release of the plunger so the specimen is propelled through the shutter into an adjacent cryogenic bath.
Controlled environment vitrification system for preparation of liquids
Bellare, J.R.; Davis, H.T.; Scriven, L.E. II; Talmon, Y.
1988-06-28
A system is described for preparing specimens in a controlled environment to insure that a liquid or partially liquid specimen is maintained in its original state while it is being prepared, and once prepared the specimen is vitrified or solidified with minimal alteration of its microstructure. The controlled environment is provided within a chamber where humidity and temperature can be controlled precisely while the specimen is prepared. The specimen is mounted on a plunger and a shutter controlled opening is opened substantially simultaneously with release of the plunger so the specimen is propelled through the shutter into an adjacent cryogenic bath. 7 figs.
Miniature Cryogenic Valves for a Titan Lake Sampling System
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Zimmerman, Wayne; Takano, Nobuyuki; Avellar, Louisa
2014-01-01
The Cassini mission has revealed Titan to be one of the most Earthlike worlds in the Solar System complete with many of the same surface features including lakes, river channels, basins, and dunes. But unlike Earth, the materials and fluids on Titan are composed of cryogenic organic compounds with lakes of liquid methane and ethane. One of the potential mission concepts to explore Titan is to land a floating platform on one of the Titan Lakes and determine the local lake chemistry. In order to accomplish this within the expected mass volume and power budgets there is a need to pursue the development for a low power lightweight cryogenic valves which can be used along with vacuum lines to sample lake liquid and to distribute to various instruments aboard the Lander. To meet this need we have initiated the development of low power cryogenic valves and actuators based on a single crystal piezoelectric flextensional stacks produced by TRS Ceramics Inc. Since the origin of such high electromechanical properties of Relaxor-PT single crystals is due to the polarization rotation effect, (i.e., intrinsic contributions), the strain per volt decrease at cryogenic temperatures is much lower than in standard Lead Zirconate Titanate (PZT) ceramics. This makes them promising candidates for cryogenic actuators with regards to the stroke for a given voltage. This paper will present our Titan Lake Sampling and Sample Handling system design and the development of small cryogenic piezoelectric valves developed to meet the system specifications.
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.
1988-01-01
The Wall Adjustment Strategy (WAS) software provides successful on-line control of the 2-D flexible walled test section of the Langley 0.3-m Transonic Cryogenic Tunnel. This software package allows the level of operator intervention to be regulated as necessary for research and production type 2-D testing using and Adaptive Wall Test Section (AWTS). The software is designed to accept modification for future requirements, such as 3-D testing, with a minimum of complexity. The WAS software described is an attempt to provide a user friendly package which could be used to control any flexible walled AWTS. Control system constraints influence the details of data transfer, not the data type. Then this entire software package could be used in different control systems, if suitable interface software is available. A complete overview of the software highlights the data flow paths, the modular architecture of the software and the various operating and analysis modes available. A detailed description of the software modules includes listings of the code. A user's manual is provided to explain task generation, operating environment, user options and what to expect at execution.
A preliminary investigation of cryogenic CO2 capture utilizing a reverse Brayton Cycle
NASA Astrophysics Data System (ADS)
Yuan, L. C.; Pfotenhauer, J. M.; Qiu, L. M.
2014-01-01
Utilizing CO2 capture and storage (CCS) technologies is a significant way to reduce carbon emissions from coal fired power plants. Cryogenic CO2 capture (CCC) is an innovative and promising CO2 capture technology, which has an apparent energy and environmental advantage compared to alternatives. A process of capturing CO2 from the flue gas of a coal-fired electrical power plant by cryogenically desublimating CO2 has been discussed and demonstrated theoretically. However, pressurizing the inlet flue gas to reduce the energy penalty for the cryogenic process will lead to a more complex system. In this paper, a modified CCC system utilizing a reverse Brayton Cycle is proposed, and the energy penalty of these two systems are compared theoretically.
Low Thermal Loss Cryogenic Transfer Line with Magnetic Suspension
NASA Astrophysics Data System (ADS)
Shu, Quan-Sheng; Cheng, Guangfeng; Yu, Kun; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.
2004-06-01
An energy efficient, cost effective cryogenic distribution system (up to several miles) is crucial for spaceport and in-space cryogenic systems. The conduction heat loss from the supports that connect the cold inner lines to the warm support structure is ultimately the most serious heat leak after thermal radiation has been minimized. The use of magnetic levitation by permanent magnets and high temperature superconductors provides support without mechanical contact and thus, the conduction part of the heat leak can be reduced to zero. A stop structure is carefully designed to hold the center tube when the system is warm. The novel design will provide the potential of extending many missions by saving cryogens, or reducing the overall launch mass.
Orbital storage and supply of subcritical liquid nitrogen
NASA Technical Reports Server (NTRS)
Aydelott, John C.
1990-01-01
Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.
Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable
NASA Astrophysics Data System (ADS)
Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John
2014-01-01
The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.
Long-term performance of the passive thermal control systems of the IRAS spacecraft
NASA Technical Reports Server (NTRS)
Mason, P. V.
1988-01-01
Degradation of passive thermal control systems in space is a matter of serious concern and has been observed in many missions. The performance of the passive thermal control systems of the Infrared Astronomical Satellite (IRAS) over a period of three years is reported here. An exterior temperature of 200 K and a sunshade temperature of approximately 100 K were maintained over this period without significant degradation. The temperature of the telescope contained in the IRAS cryostat was also observed for two years after expenditure of the helium cryogen. It remained at 100 K with no degradation.
NASA Astrophysics Data System (ADS)
Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun
2018-01-01
In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.
The development of a cryogenic integrated system with the working temperature of 100K
NASA Astrophysics Data System (ADS)
Liu, En'guang; Wu, Yi'nong; Wang, Yueming; Wen, Jiajia; Lv, Gang; Li, Chunlai; Hou, Jia; Yuan, Liyin
2016-05-01
In the infrared system, cooling down the optic components' temperature is a better choice to decrease the background radiation and maximize the sensitivity. This paper presented a 100K cryogenic optical system, for which an integrated designation of mechanical cooler, flexible thermal link and optical bench was developed. The whole infrared optic components which were assembled in a vacuum box were cooled down to 100K by two mechanical coolers. Low thermal conductivity supports and low emissivity multi-layers were used to reduce the cryogenic optical system's heat loss. The experiment results showed that in about eight hours, the temperature of the optical components reached 100K from room temperature, and the vibration from the mechanical coolers nearly have no affection to the imaging process by using of thermal links. Some experimental results of this cryogenic system will be discussed in this paper.
Investigation of cryogenic rupture disc design
NASA Technical Reports Server (NTRS)
Keough, J. B.; Oldland, A. H.
1973-01-01
Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.
Some General Principles in Cryogenic Design, Implementation, and Testing
NASA Technical Reports Server (NTRS)
Dipirro, Michael James
2015-01-01
Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.
Performance of the e2v 1.2 GPix cryogenic camera for the J-PAS 2.5m survey telescope
NASA Astrophysics Data System (ADS)
Robbins, M. S.; Bastable, M.; Bates, A.; Dryer, M.; Eames, S.; Fenemore-Jones, G.; Haddow, G.; Jorden, P. R.; Lane, B.; Marin-Franch, A.; Mortimer, J.; Palmer, I.; Puttay, N.; Renshaw, R.; Smith, M.; Taylor, K.; Tearle, J.; Weston, P.; Wheeler, P.; Worley, J.
2016-08-01
The J-PAS project will perform a five-year survey of the northern sky from a new 2.5m telescope in Teruel, Spain. In this paper the build and factory testing of the commercially supplied cryogenic camera is described. The 1.2 Giga-pixel focal plane is contained within a novel liquid-nitrogen cooled vacuum cryostat, which maintains the flatness for the cooled, 0.45m diameter focal plane to better than 27 μm peak to valley. The cooling system controls the focal plane to a temperature of -100°C with a variation across the focal plane of better than 2.5oC and a stability of better than +/- 0.5 °C over the long periods of operation required. The proximity drive electronics achieves total system level noise performance better than 5 e- from the 224-channel CCD system.
Process simulations for the LCLS-II cryogenic systems
NASA Astrophysics Data System (ADS)
Ravindranath, V.; Bai, H.; Heloin, V.; Fauve, E.; Pflueckhahn, D.; Peterson, T.; Arenius, D.; Bevins, M.; Scanlon, C.; Than, R.; Hays, G.; Ross, M.
2017-12-01
Linac Coherent Light Source II (LCLS-II), a 4 GeV continuous-wave (CW) superconducting electron linear accelerator, is to be constructed in the existing two mile Linac facility at the SLAC National Accelerator Laboratory. The first light from the new facility is scheduled to be in 2020. The LCLS-II Linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting cryomodules. The Linac cryomodules require cryogenic cooling for the super-conducting niobium cavities at 2.0 K, low temperature thermal intercept at 5.5-7.5 K, and a thermal shield at 35-55 K. The equivalent 4.5 K refrigeration capacity needed for the Linac operations range from a minimum of 11 kW to a maximum of 24 kW. Two cryogenic plants with 18 kW of equivalent 4.5 K refrigeration capacity will be used for supporting the Linac cryogenic cooling requirements. The cryogenic plants are based on the Jefferson Lab’s CHL-II cryogenic plant design which uses the “Floating Pressure” design to support a wide variation in the cooling load. In this paper, the cryogenic process for the integrated LCLS-II cryogenic system and the process simulation for a 4.5 K cryoplant in combination with a 2 K cold compressor box, and the Linac cryomodules are described.
Cryogenic line insulation made from prefabricated polyurethane shells
NASA Technical Reports Server (NTRS)
Lerma, G.
1975-01-01
Prefabricated polyurethane foam insulation is inexpensive and easily installed on cryogenic lines. Insulation sections are semicircular half shells. Pair of half shells is placed to surround cryogenic line. Cylindrically-shaped knit sock is pulled over insulation then covered with polyurethane resin to seal system.
Aerogel Blanket Insulation Materials for Cryogenic Applications
NASA Technical Reports Server (NTRS)
Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.
2009-01-01
Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off
Spiral 2 Cryogenic System for The Superconducting LINAC
NASA Astrophysics Data System (ADS)
Ghribi, A.; Bernaudin, P.-E.; Bert, Y.; Commeaux, C.; Houeto, M.; Lescalié, G.
2017-02-01
SPIRAL 21 is a rare isotope accelerator dedicated to the production of high intensity beams (E = 40 MeV, I = 5 mA). The driver is a linear accelerator (LINAC) that uses bulk Niobium made quarter wave RF cavities. 19 cryomodules inclose one or two cavities respectively for the low and the high energy sections. To supply the 1300 W at 4.2 K required to cool down the LINAC, a cryogenic system has been set up. The heart of the latter is a 3 turbines geared HELIAL®LF (ALAT2) cold box that delivers both the liquid helium for the cavities and the 60 K Helium gaz for the thermal screens. 19 valve-boxes insure cryogenic fluid distribution and management. Key issues like cool down speed or cavity RF frequency stability are closely linked to the cryogenic system management. To overcome these issues, modelling and simulation efforts are being undertaken prior to the first cool down trials. In this paper, we present a status update of the Spiral 2 cryogenic system and the cool down strategy considered for its commissioning.
Performance of the JT-60SA cryogenic system under pulsed heat loads during acceptance tests
NASA Astrophysics Data System (ADS)
Hoa, C.; Bonne, F.; Roussel, P.; Lamaison, V.; Girard, S.; Fejoz, P.; Goncalves, R.; Vallet, J. C.; Legrand, J.; Fabre, Y.; Pudys, V.; Wanner, M.; Cardella, A.; Di Pietro, E.; Kamiya, K.; Natsume, K.; Ohtsu, K.; Oishi, M.; Honda, A.; Kashiwa, Y.; Kizu, K.
2017-12-01
The JT-60SA cryogenic system a superconducting tokamak currently under assembly at Naka, Japan. After one year of commissioning, the acceptance tests were successfully completed in October 2016 in close collaboration with Air Liquide Advanced Technologies (ALaT), the French atomic and alternative energies commission (CEA), Fusion for Energy (F4E) and the Quantum Radiological Science and Technology (QST). The cryogenic system has several cryogenic users at various temperatures: the superconducting magnets at 4.4 K, the current leads at 50 K, the thermal shields at 80 K and the divertor cryo-pumps at 3.7 K. The cryogenic system has an equivalent refrigeration power of about 9.5 kW at 4.5 K, with peak loads caused by the nuclear heating, the eddy currents in the structures and the AC losses in the magnets during cyclic plasma operation. The main results of the acceptance tests will be reported, with emphasis on the management of the challenging pulsed load operation using a liquid helium volume of 7 m3 as a thermal damper.
Cryogenic thermal control technology summaries
NASA Technical Reports Server (NTRS)
Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.
1974-01-01
A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.
Energy management and recovery
NASA Technical Reports Server (NTRS)
Lawing, Pierce L.
1989-01-01
Energy management is treated by first exploring the energy requirements for a cryogenic tunnel. The requirement is defined as a function of Mach number, Reynolds number, temperature, and tunnel size. A simple program and correlation is described which allow calculation of the energy required. Usage of energy is also addressed in terms of tunnel control and research operation. The potential of a new wet expander is outlined in terms of cost saved by reliquefying a portion of the exhaust. The expander is described as a potentially more efficient way of recovering a fraction of the cold nitrogen gas normally exhausted to the atmosphere from a cryogenic tunnel. The role of tunnel insulation systems is explored in terms of requirements, safety, cost, maintenance, and efficiency. A detailed description of two external insulation systems is given. One is a rigid foam with a fiber glass and epoxy shell. The other is composed of glass fiber mats with a flexible outer vapor barrier; this system is nitrogen purged. The two systems are compared with the purged system being judged superior.
Thermodynamic Analyses of the LCLS-II Cryogenic Distribution System
Dalesandro, Andrew; Kaluzny, Joshua; Klebaner, Arkadiy
2016-12-29
The Linac Coherent Light Source (LCLS) at Stanford Linear Accelerator Center (SLAC) is in the process of being upgraded to a superconducting radio frequency (SRF) accelerator and renamed LCLS-II. This upgrade requires thirty-five 1.3 GHz SRF cryomodules (CM) and two 3.9 GHz CM. A cryogenic distribution system (CDS) is in development by Fermi National Accelerator Laboratory to interconnect the CM Linac with the cryogenic plant (CP). The CDS design utilizes cryogenic helium to support the CM operations with a high temperature thermal shield around 55 K, a low temperature thermal intercepts around 5 K, and a SRF cavity liquid heliummore » supply and sub-atmospheric vapor return both around 2 K. Additionally the design must accommodate a Linac consisting of two parallel cryogenic strings, supported by two independent CP utilizing CDS components such as distribution boxes, transfer lines, feed caps and endcaps. In this paper, we describe the overall layout of the cryogenic distribution system and the major thermodynamic factors which influence the CDS design including heat loads, pressure drops, temperature profiles, and pressure relieving requirements. In addition the paper describes how the models are created to perform the analyses.« less
Comparison of cryogenic low-pass filters.
Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T
2017-11-01
Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.
Comparison of cryogenic low-pass filters
NASA Astrophysics Data System (ADS)
Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.
2017-11-01
Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.
NASA Astrophysics Data System (ADS)
Hedayat, A.; Cartagena, W.; Majumdar, A. K.; LeClair, A. C.
2016-03-01
NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center, is a cryogenic fluid management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article comprises a flight-like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen (LH2) in a test-like vacuum environment. A series of tests, with LH2 as a testing fluid, was conducted at Test Stand 300 at MSFC during the summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. The Generalized Fluid System Simulation Program, an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the LH2 supply source, feed system, EDU tank, and vent system. The test setup, modeling description, and comparison of model predictions with the test data are presented.
SR&DB Cryogenic Research & Development for Space Applications
NASA Astrophysics Data System (ADS)
Bondarenko, S. I.; Arkhipov, V. T.; Logvinenko, S. P.; Solodovnik, L. L.; Rusanov, K. V.; Shcherbakova, N. S.
The Special Research and Development Bureau (SR&DB) for Cryogenic Technology of the B. Verkin Institute for Low Temperature Physics & Engineering was founded in 1971 and is located in Kharkov, Ukraine. Its primary focus has been in the area of applied r&d in the field of cryogenic technology for space applications. Within this field SR&DB has had many successful accomplishments, especially in the development of satellite based cryogenic cooling systems, mass spectrometer measurement devices, resistence thermometers, and cryogenically cooled optical systems. We have developed very advanced technology in the fields of fluids, heat transfer and hydrodynamics under micro-gravity conditions. Many of the SR&DB cryogenic products have been successfully implemented for former Soviet space applications, both near-earth and deep space. The SR&DB unique experience in many R&D areas can be and are being used for a new generation of space applications which have a requirement for planetary and deep-space missions. Systems we have developed have been proven to have a 5-year life in orbit. Recently we have focused much of our attention, as well, to the requirement low-weight and low-power systems which are mandatory requirements for outerspace missions. The funtionality of the exterior surfaces of a spacecraft are mainly dependent on the composition of its internally generated local atmosphere. In order to continually assess the content and concentration of components of this atmosphere we have developed space based mass spectrometric measuring devices. Devices which require such continual measurement are optical devices, emission receivers, solar cells, etc. A significant technology advance in the field of cryogenics is the application of cryoagents in systems of life support and spacecraft engine operation. We have studied and have an in-depth comprehension of unique phase-transition for these cryoagents such as oxygen, hydrogen, et al. under microgravity conditions. Currently SR&DB under contract to the National Space Agency of Ukraine has been developing an experimental apparatus for studying the continuous boiling off of cryogenic fluids under micro-gravity conditions.
Automatic cryogenic liquid level controller is safe for use near combustible substances
NASA Technical Reports Server (NTRS)
Krejsa, M.
1966-01-01
Automatic mechanical liquid level controller that is independent of any external power sources is used with safety in the presence of combustibles. A gas filled capillary tube which leads from a pressurized chamber, is inserted into the cryogenic liquid reservoir and becomes a liquid level sensing element or probe.
System Administration Support/SWORDS G2
NASA Technical Reports Server (NTRS)
Dito, Scott Joseph
2014-01-01
The Soldier-Warfighter Operationally Responsive Deployer for Space (SWORDS) rocket is a dedicated small satellite launcher that will minimize danger and complexity in order to allow soldiers in the field to put payloads of up to 25kg into orbit from the field. The SWORDSG2 project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to the SWORDS rocket for testing purposes. To accomplish this, the project is using the programming language environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. In addition, observation of the current cryogenic fluid delivery system in the Kennedy Space Center Cry Lab has allowed me to gain valuable experience of fluid systems and propelant delivery that is valuable to our team when developing amd modeling our own system.The ultimate goal of having a test-ready application to show to the heads of the project, and demonstrating G2's capabilities, by late 2014 will require hard work and intense study and understanding of not only the programming aspect but also the physical phenomena we want to model, observe, and control.
Below-Ambient and Cryogenic Thermal Testing
NASA Technical Reports Server (NTRS)
Fesmire, James E.
2016-01-01
Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.
Operational Experience of the Upgraded Cryogenic Systems at the Nscl
NASA Astrophysics Data System (ADS)
McCartney, A. H.; Laumer, H. L.; Jones, S. A.
2010-04-01
The National Superconducting Cyclotron Laboratory (NSCL) is a NSF-supported facility, with additional support from Michigan State University (MSU) for conducting research in nuclear and accelerator science. The facility consists of two superconducting cyclotrons and over fifty individual cryostats, each containing several superconducting magnets that are used in the beam transport system. Beginning in 1999 a major facility upgrade was started. New, larger magnets were added, increasing the total 4.5 K loads, necessitating an increase of the cryogenic capacity. A helium plant (nominal 1750-Watt at 4.5 K) was acquired from the United States Bureau of Mines where it had been operating as a pure liquefier since the early 1980's. It was refurbished for the NSCL with extensive support from the cryogenics group at Thomas Jefferson National Laboratory. The new cryogenic system came online early in 2001. The cold-mass is relatively high in relation to the installed capacity, presenting challenges during cool downs. Reliability over the last five years has been greater than 99%. An overview of the last seven years of operations of our cryogenic systems is presented that includes normal operations, testing of new equipment, noteworthy breakdowns, routine maintenance, and system reliability.
Terrestrial Planet Finder cryogenic delay line development
NASA Technical Reports Server (NTRS)
Smythe, Robert F.; Swain, Mark R.; Alvarez-Salazar, Oscar; Moore, James D.
2004-01-01
Delay lines provide the path-length compensation that makes the measurement of interference fringes possible. When used for nulling interferometry, the delay line must control path-lengths so that the null is stable and controlled throughout the measurement. We report on a low noise, low disturbance, and high bandwidth optical delay line capable of meeting the TPF interferometer optical path length control requirements at cryogenic temperatures.
Value for controlling flow of cryogenic fluid
Knapp, Philip A.
1996-01-01
A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.
Adjustable expandable cryogenic piston and ring
Mazur, Peter O.; Pallaver, Carl B.
1980-01-01
The operation of a reciprocating expansion engine for cryogenic refrigeration is improved by changing the pistons and rings so that the piston can be operated from outside the engine to vary the groove in which the piston ring is located. This causes the ring, which is of a flexible material, to be squeezed so that its contact with the wall is subject to external control. This control may be made manually or it may be made automatically in response to instruments that sense the amount of blow-by of the cryogenic fluid and adjust for an optimum blow-by.
Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies
NASA Technical Reports Server (NTRS)
Burge, G. W.; Blackmon, J. B.
1973-01-01
An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.
The COLD-SAT Experiment for Cryogenic Fluid Management Technology
NASA Technical Reports Server (NTRS)
Schuster, J. R.; Wachter, J. P.; Vento, D. M.
1990-01-01
Future national space transportation missions will depend on the use of cryogenic fluid management technology development needs for these missions. In-space testing will be conducted in order to show low gravity cryogenic fluid management concepts and to acquire a technical data base. Liquid H2 is the preferred test fluid due to its propellant use. The design of COLD-SAT (Cryogenic On-orbit Liquid Depot Storage, Acquisition, and Transfer Satellite), an Expendable Launch Vehicle (ELV) launched orbital spacecraft that will perform subcritical liquid H2 storage and transfer experiments under low gravity conditions is studied. An Atlas launch vehicle will place COLD-SAT into a circular orbit, and the 3-axis controlled spacecraft bus will provide electric power, experiment control, and data management, attitude control, and propulsive accelerations for the experiments. Low levels of acceleration will provide data on the effects that low gravity might have on the heat and mass transfer processes used. The experiment module will contain 3 liquid H2 tanks; fluid transfer, pressurization and venting equipment; and instrumentation.
Gas-Surface Interactions in Cryogenic Whole Air Sampling.
1981-05-01
analysis using electron paramagnetic resonance (EPR) for the cryofrost in the solid phase, and gas chromatography for samples desorbed to the gas...e.g. cryogenic-fraction (used on occasion), and/or controlled vaporization, followed by analysis using NO xchemiluminescence, gas chromatography , and...CS202 closed cycle cryogenic refrigerator, which employs helium as the working fluid . This refrigerator is comprised of two basic sections - an
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duzhev, V.E.; Zhulkin, V.F.; Ugrovatov, A.E.
1996-12-31
The T-15 cryogenics system has been designed for cooling down, cryostatting, warming up of superconducting, cryoresistive and cryogenics T-15 objects. Maintenance of the cryogenics system has been on going since 1988. For the mentioned period, in the cryogenics T-15 system. The capacity of screw compressor was increased from 0.181 kg/s to 0.236 kg/s (third stage compressors with increased capacity were developed and manufactured), their reliability was also enhanced. The capacity of liquefiers was increased from 0.0833 - 0.0972 L/s (300-350 L/h) to 0.222 L/s (800 L/h) due to replacement of turboexpanders by more effective ones and due to introduction ofmore » an end-stage turboexpander into maintenance. The heat influxes to the cryogenics pipelines were reduced by 50%. For the same period some technological regimes of cryogenics system have been developed to produce the maximal output of cold. The cooling down from 110 K to 15 K is done, when one or two liquefiers are in operation under refrigerating conditions with the reverse flow splitting. The further cooling is performed under joint operation of two liquefiers; one of them operates in the liquefying mode, another, in the refrigerating one with excess reverse flow. A change in the operating conditions was necessary because of the impossibility of regulating the distribution of the reverse helium flow between two liquefiers at the temperature below 15K. The main regime at the level of 4.5 K is a two-loop operating diagram, when one liquefier and a passive refrigerator with excessive reverse flow are in operation, the refrigerating capacity is about 3 kW.« less
Cryogenically Cooled Field Effect Transistors for Low-Noise Systems
NASA Technical Reports Server (NTRS)
Wollack, Edward J.
2002-01-01
Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.
System and method for cooling a super-conducting device
Bray, James William [Niskayuna, NY; Steinbach, Albert Eugene [Schenectady, NY; Dawson, Richard Nils [Voorheesville, NY; Laskaris, Evangelos Trifon [Schenectady, NY; Huang, Xianrul [Clifton Park, NY
2008-01-08
A system and method for cooling a superconductive rotor coil. The system comprises a rotatable shaft coupled to the superconductive rotor coil. The rotatable shaft may comprise an axial passageway extending through the rotatable shaft and a first passageway extending through a wall of the rotatable shaft to the axial passageway. The axial passageway and the first passageway are operable to convey a cryogenic fluid to the superconductive rotor coil through the wall of the rotatable shaft. A cryogenic transfer coupling may be provided to supply cryogenic fluid to the first passageway.
NASA Technical Reports Server (NTRS)
Hansen, R. G.
1983-01-01
Various cryogenic techniques were used to evaluate state of the art electro-optic devices. As research, development, and production demands require more sensitive testing techniques, faster test results, and higher production throughput, the emphasis on supporting cryogenic systems increases. The three traditional methods currently utilized in electro-optic device testing are discussed: (1) liquid contaiment dewars; (2) liquid transfer systems; and (3) closed cycle refrigeration systems. Advantages, disadvantages, and the current state of the art of each of these cryogenic techniques is discussed.
Cryogenic piping material selection for the Component Test Facility (CTF)
NASA Technical Reports Server (NTRS)
St. Cyr, William W.
1991-01-01
The anticipated high cost of the 8500 psi cryogenic and 15,000 psi gas piping systems used in the CTF at NASA's John C. Stennis Space Center led to the consideration of high-strength materials for these piping systems. Based on years of satisfactory service using austenitic stainless steels in cryogenic applications, particularly for hydrogen service, consideration was limited to the austenitic stainless steels. Attention was focused on alternatives to the 304/304L grades of stainless steel traditionally used in these applications. This paper discusses the various considerations that resulted in the decision to continue using 304/304L for the cryogenic piping and the selection of the nitrogen-strengthened 21Cr-6Ni-9Mn alloy (UNS S21903) for the high-pressure gas systems at the CTF.
Cryogenic Propellant Feed System Analytical Tool Development
NASA Technical Reports Server (NTRS)
Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.
2011-01-01
The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Phil; Feinberg, Lee
2006-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Feinberg, Lee
2007-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Temperature-Dependent Refractive Index of Cleartran® ZnS to Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Leviton, Doug; Frey, Brad
2013-01-01
First, let's talk about the CHARMS facility at NASA's Goddard Space Flight Center: Cryogenic, High-Accuracy Refraction Measuring System (CHARMS); design features for highest accuracy and precision; technologies we rely on; data products and examples; optical materials for which we've measured cryogenic refractive index.
Cryogenic insulation standard data and methodologies
NASA Astrophysics Data System (ADS)
Demko, J. A.; Fesmire, J. E.; Johnson, W. L.; Swanger, A. M.
2014-01-01
Although some standards exist for thermal insulation, few address the sub-ambient temperature range and cold-side temperatures below 100 K. Standards for cryogenic insulation systems require cryostat testing and data analysis that will allow the development of the tools needed by design engineers and thermal analysts for the design of practical cryogenic systems. Thus, this critically important information can provide reliable data and methodologies for industrial efficiency and energy conservation. Two Task Groups have been established in the area of cryogenic insulation systems Under ASTM International's Committee C16 on Thermal Insulation. These are WK29609 - New Standard for Thermal Performance Testing of Cryogenic Insulation Systems and WK29608 - Standard Practice for Multilayer Insulation in Cryogenic Service. The Cryogenics Test Laboratory of NASA Kennedy Space Center and the Thermal Energy Laboratory of LeTourneau University are conducting Inter-Laboratory Study (ILS) of selected insulation materials. Each lab carries out the measurements of thermal properties of these materials using identical flat-plate boil-off calorimeter instruments. Parallel testing will provide the comparisons necessary to validate the measurements and methodologies. Here we discuss test methods, some initial data in relation to the experimental approach, and the manner reporting the thermal performance data. This initial study of insulation materials for sub-ambient temperature applications is aimed at paving the way for further ILS comparative efforts that will produce standard data sets for several commercial materials. Discrepancies found between measurements will be used to improve the testing and data reduction techniques being developed as part of the future ASTM International standards.
Study on the Dynamic Performance of the Helium Turboexpander for EAST Subsystems
NASA Astrophysics Data System (ADS)
Chen, Shuangtao; Yang, Shanju; Fu, Bao; Zhang, Qiyong; Hou, Yu
2015-06-01
An increase of the cooling capacities in the liquid helium temperature area is required by Experimental Advanced Superconducting Tokamak (EAST) due to the extension of its subsystems in the near future. Limited by the heat exchangers, cryogenic pipes, and cryogenic valves, it is difficult to enlarge the present EAST helium system. 102 W@4.5 K level helium cryogenic systems are needed in view of feasibility and economy. A turboexpander is the key component of a helium cryogenic system. In this article, a hydrostatic gas lubricated cryogenic helium turboexpander for a 900 W@4.5 K cryogenic helium system was developed for the EAST updated subsystem by the Institute of Plasma Physics, Chinese Academy of Sciences and the Institute of Cryogenic and Refrigeration of Xi'an Jiaotong University. The main components, such as gas bearings, expansion wheel, shaft, and brake wheel, were briefly presented. The dynamic performance of the journal and thrust gas bearings was investigated numerically. The rotordynamic performance of the developed turboexpander was studied experimentally. The results show that the axial and radial load capacities supplied by the journal gas bearing and thrust gas bearing are enough to balance the axial force and radial force of the rotor. A 43% overspeed operation was achieved, which validated the reasonable design of the turboexpander. supported by Joint Funds of the National Natural Science Foundation of China (No. 11176023), National Natural Science Foundation of China (No. 51306135), and partially supported by the China Postdoctoral Science Foundation (No. 2013M532040) and Special Financial Grant of China Postdoctoral Science Foundation (No. 2014T70917)
Advanced Ground Systems Maintenance Physics Models for Diagnostics Project
NASA Technical Reports Server (NTRS)
Harp, Janicce Leshay
2014-01-01
The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.
Coherent Control of Diamond Defects for Quantum Information Science and Quantum Sensing
2014-04-18
beam steering in micromirror systems [192]. Furthermore, by eliminating require- ments for cryogenic temperatures, our blueprint aims to make the...Isenhower, A. T. Gill, F. P. Lu, M. Saffman, and J. Kim. Independent individual addressing of multiple neutral atom qubits with a micromirror -based
Fluid Distribution for In-space Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Lear, William
2005-01-01
The ultimate goal of this task is to enable the use of a single supply of cryogenic propellants for three distinct spacecraft propulsion missions: main propulsion, orbital maneuvering, and attitude control. A fluid distribution system is sought which allows large propellant flows during the first two missions while still allowing control of small propellant flows during attitude control. Existing research has identified the probable benefits of a combined thermal management/power/fluid distribution system based on the Solar Integrated Thermal Management and Power (SITMAP) cycle. Both a numerical model and an experimental model are constructed in order to predict the performance of such an integrated thermal management/propulsion system. This research task provides a numerical model and an experimental apparatus which will simulate an integrated thermal/power/fluid management system based on the SITMAP cycle, and assess its feasibility for various space missions. Various modifications are done to the cycle, such as the addition of a regeneration process that allows heat to be transferred into the working fluid prior to the solar collector, thereby reducing the collector size and weight. Fabri choking analysis was also accounted for. Finally the cycle is to be optimized for various space missions based on a mass based figure of merit, namely the System Mass Ratio (SMR). -. 1 he theoretical and experimental results from these models are be used to develop a design code (JETSIT code) which is able to provide design parameters for such a system, over a range of cooling loads, power generation, and attitude control thrust levels. The performance gains and mass savings will be compared to those of existing spacecraft systems.
Cryogenic fluid management experiment
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.
1981-01-01
The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.
Engineering and fabrication cost considerations for cryogenic wind tunnel models
NASA Technical Reports Server (NTRS)
Boykin, R. M., Jr.; Davenport, J. B., Jr.
1983-01-01
Design and fabrication cost drivers for cryogenic transonic wind tunnel models are defined. The major cost factors for wind tunnel models are model complexity, tolerances, surface finishes, materials, material validation, and model inspection. The cryogenic temperatures require the use of materials with relatively high fracture toughness but at the same time high strength. Some of these materials are very difficult to machine, requiring extensive machine hours which can add significantly to the manufacturing costs. Some additional engineering costs are incurred to certify the materials through mechanical tests and nondestructive evaluation techniques, which are not normally required with conventional models. When instrumentation such as accelerometers and electronically scanned pressure modules is required, temperature control of these devices needs to be incorporated into the design, which requires added effort. Additional thermal analyses and subsystem tests may be necessary, which also adds to the design costs. The largest driver to the design costs is potentially the additional static and dynamic analyses required to insure structural integrity of the model and support system.
Cryogenic system options for a superconducting aircraft propulsion system
NASA Astrophysics Data System (ADS)
Berg, F.; Palmer, J.; Bertola, L.; Miller, Paul; Dodds, Graham
2015-12-01
There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution.
A compact 3 T all HTS cryogen-free MRI system
NASA Astrophysics Data System (ADS)
Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.
2017-12-01
We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.
Advanced Ground Systems Maintenance Physics Models For Diagnostics Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2015-01-01
The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.
Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballard, Joshua T.; Biallas, George H.; Brown, G.
2015-06-01
JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete themore » system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.« less
NASA Technical Reports Server (NTRS)
Kilgore, W. Allen; Balakrishna, S.
1991-01-01
The 0.3 m Transonic Cryogenic Tunnel (TCT) microcomputer based controller has been operating for several thousand hours in a safe and efficient manner. A complete listing is provided of the source codes for the tunnel controller and tunnel simulator. Included also is a listing of all the variables used in these programs. Several changes made to the controller are described. These changes are to improve the controller ease of use and safety.
Cryogenic Cooling for Myriad Applications-A STAR Is Born
NASA Technical Reports Server (NTRS)
2006-01-01
Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems, a reversion to old-style liquid propellants. In the late 1980s, NASA wanted a compact linear alternator/motor with reduced size and mass, as well as high efficiency, that had unlimited service life for use in a thermally driven power generator for space power applications. Prior development work with free-piston Stirling converters (a Stirling engine integrated with a linear actuator that produces electrical power output) had shown the promise of that technology for high-power space applications. A dual use for terrestrial applications exists for compact Stirling converters for onsite combined heat and power units. The Stirling cycle is also usable in reverse as a refrigeration cycle suitable for cryogenic cooling, so this Stirling converter work promised double benefits as well as dual uses. The uses for cryogenic coolers within NASA abound; commercial applications are similarly wide-ranging, from cooling liquid oxygen and nitrogen, to cryobiology and bio-storage, cryosurgery, instrument and detector cooling, semiconductor manufacturing, and support service for cooled superconducting power systems.
Liquefied Natural Gas Transfer
NASA Technical Reports Server (NTRS)
1980-01-01
Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.
TankSIM: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.
2015-01-01
Developed for predicting the behavior of cryogenic liquids inside propellant tanks under various environmental and operating conditions. Provides a multi-node analysis of pressurization, ullage venting and thermodynamic venting systems (TVS) pressure control using axial jet or spray bar TVS. Allows user to combine several different phases for predicting the liquid behavior for the entire flight mission timeline or part of it. Is a NASA in-house code, based on FORTRAN 90-95 and Intel Visual FORTRAN compiler, but can be used on any other platform (Unix-Linux, Compaq Visual FORTRAN, etc.). The last Version 7, released on December 2014, included detailed User's Manual. Includes the use of several RefPROP subroutines for calculating fluid properties.
The cryogenic wind tunnel for high Reynolds number testing. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kilgore, R. A.
1974-01-01
Experiments performed at the NASA Langley Research Center in a cryogenic low-speed continuous-flow tunnel and in a cryogenic transonic continuous-flow pressure tunnel have demonstrated the predicted changes in Reynolds number, drive power, and fan speed with temperature, while operating with nitrogen as the test gas. The experiments have also demonstrated that cooling to cryogenic temperatures by spraying liquid nitrogen directly into the tunnel circuit is practical and that tunnel temperature can be controlled within very close limits. Whereas most types of wind tunnel could operate with advantage at cryogenic temperatures, the continuous-flow fan-driven tunnel is particularly well suited to take full advantage of operating at these temperatures. A continuous-flow fan-driven cryogenic tunnel to satisfy current requirements for test Reynolds number can be constructed and operated using existing techniques. Both capital and operating costs appear acceptable.
A highly reliable cryogenic mixing pump with no mechanical moving parts
NASA Astrophysics Data System (ADS)
Chen, W.; Niblick, A. L.
2017-12-01
This paper presents the design and preliminary test results of a novel cryogenic mixing pump based on magnetocaloric effect. The mixing pump is developed to enable long-term cryogenic propellant storage in space by preventing thermal stratification of cryogens in storage tanks. The mixing pump uses an innovative thermodynamic process to generate fluid jets to promote fluid mixing, eliminating the need for mechanical pumps. Its innovative mechanism uses a solid magnetocaloric material to alternately vaporize and condense the cryogen in the pumping chamber, and thus control the volume of the fluid inside the pumping chamber to produce pumping action. The pump is capable of self-priming and can generate a high-pressure rise. This paper discusses operating mechanism and design consideration of the pump, introduces the configuration of a brassboard cryogenic pump, and presents the preliminary test results of the pump with liquid nitrogen.
NASA Tech Briefs, November 2005
NASA Technical Reports Server (NTRS)
2005-01-01
Topics covered include: Laser System for Precise, Unambiguous Range Measurements; Flexible Cryogenic Temperature and Liquid-Level Probes; Precision Cryogenic Dilatometer; Stroboscopic Interferometer for Measuring Mirror Vibrations; Some Improvements in H-PDLCs; Multiple-Bit Differential Detection of OQPSK; Absolute Position Encoders With Vertical Image Binning; Flexible, Carbon-Based Ohmic Contacts for Organic Transistors; GaAs QWIP Array Containing More Than a Million Pixels; AutoChem; Virtual Machine Language; Two-Dimensional Ffowcs Williams/Hawkings Equation Solver; Full Multigrid Flow Solver; Doclet To Synthesize UML; Computing Thermal Effects of Cavitation in Cryogenic Liquids; GUI for Computational Simulation of a Propellant Mixer; Control Program for an Optical-Calibration Robot; SQL-RAMS; Distributing Data from Desktop to Hand-Held Computers; Best-Fit Conic Approximation of Spacecraft Trajectory; Improved Charge-Transfer Fluorescent Dyes; Stability-Augmentation Devices for Miniature Aircraft; Tool Measures Depths of Defects on a Case Tang Joint; Two Heat-Transfer Improvements for Gas Liquefiers; Controlling Force and Depth in Friction Stir Welding; Spill-Resistant Alkali-Metal-Vapor Dispenser; A Methodology for Quantifying Certain Design Requirements During the Design Phase; Measuring Two Key Parameters of H3 Color Centers in Diamond; Improved Compression of Wavelet-Transformed Images; NASA Interactive Forms Type Interface - NIFTI; Predicting Numbers of Problems in Development of Software; Hot-Electron Photon Counters for Detecting Terahertz Photons; Magnetic Variations Associated With Solar Flares; and Artificial Intelligence for Controlling Robotic Aircraft.
NASA Technical Reports Server (NTRS)
Dor, J. B.; Mignosi, A.; Plazanet, M.
1984-01-01
This report presents part of the tests for verification of the T2 transonic induction wind tunnel in cryogenic operation. The first part of the results presented concerns fluctuations in pressure and temperature at ambient temperature and in cryogenic regulation. The second part presents the condensation phenomena which could be observed in the cryogenic flow by means of an optical particle detection system in the test section.
A high-resolution x-ray spectrometer for a kaon mass measurement
NASA Astrophysics Data System (ADS)
Phelan, Kevin; Suzuki, Ken; Zmeskal, Johann; Tortorella, Daniele; Bühler, Matthias; Hertrich, Theo
2017-02-01
The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.
An FPGA-based instrumentation platform for use at deep cryogenic temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway Lamb, I. D.; Colless, J. I.; Hornibrook, J. M.
2016-01-15
We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.
CERN experience and strategy for the maintenance of cryogenic plants and distribution systems
NASA Astrophysics Data System (ADS)
Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Pezzetti, M.; Pirotte, O.; Tavian, L.; Wagner, U.
2015-12-01
CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. After several years of exploitation of a wide range of cryogenic installations and in particular following the last two years major shutdown to maintain and consolidate the LHC machine, we have analysed and reviewed the maintenance activities to implement an efficient and reliable exploitation of the installations. We report the results, statistics and lessons learned on the maintenance activities performed and in particular the required consolidations and major overhauling, the organization, management and methodologies implemented.
2015-02-01
Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent by Frank Kellogg , Clara Hofmeister...Process Control Agent Frank Kellogg Bowhead Science and Technology Clara Hofmeister Advanced Materials Processing and Analysis Center...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Frank Kellogg , Clara Hofmeister, Anit Giri, and Kyu Cho 5d. PROJECT NUMBER 5e
Aspects regarding at 13C isotope separation column control using Petri nets system
NASA Astrophysics Data System (ADS)
Boca, M. L.; Ciortea, M. E.
2015-11-01
This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.
A temperature and pressure controlled calibration system for pressure sensors
NASA Technical Reports Server (NTRS)
Chapman, John J.; Kahng, Seun K.
1989-01-01
A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.
2004-06-17
KENNEDY SPACE CENTER, FLA. - James E. Fesmire (right), NASA lead engineer for the KSC Cryogenics Testbed, works on Cryostat-1, the Methods of Testing Thermal Insulation and Association Test Apparatus, which he developed. At left is co-inventor Dr. Stan Augustynowicz, chief scientist with Sierra Lobo Inc. in Milan, Ohio. Cryostat-1 provides absolute thermal performance values of cryogenic insulation systems under real-world conditions. Cryogenic liquid is supplied to a test chamber and two guard chambers, and temperatures are sensed within the vacuum chamber to test aerogels, foams or other materials. The Cryostat-1 machine can detect the absolute heat leakage rates through materials under the full range of vacuum conditions. Fesmire recently acquired three patents for testing thermal insulation materials for cryogenic systems. The research team of the Cryogenics Testbed offers testing and support for a number of programs and initiatives for NASA and commercial customers.
2004-06-17
KENNEDY SPACE CENTER, FLA. - James E. Fesmire (right), NASA lead engineer for the KSC Cryogenics Testbed, works on Cryostat-1, the Methods of Testing Thermal Insulation and Association Test Apparatus, which he developed. At left is co-inventor Dr. Stan Augustynowicz, chief scientist with Sierra Lobo Inc. in Milan, Ohio. Cryostat-1 provides absolute thermal performance values of cryogenic insulation systems under real-world conditions. Cryogenic liquid is supplied to a test chamber and two guard chambers, and temperatures are sensed within the vacuum chamber to test aerogels, foams or other materials. The Cryostat-1 machine can detect the absolute heat leakage rates through materials under the full range of vacuum conditions. Fesmire recently acquired three patents for testing thermal insulation materials for cryogenic systems. The research team of the Cryogenics Testbed offers testing and support for a number of programs and initiatives for NASA and commercial customers.
High Performance COPVs for In-Space Storage of High Pressure Cryogenic Fuels
NASA Technical Reports Server (NTRS)
Schneider, Judy; Dyess, Mark; Hastings, Chad; Wang, Jun
2008-01-01
Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. As part of this study, material tests of candidate fiber and resin systems were used as the basis for the selection of the material combinations for evaluation in a COPV at cryogenic conditions. This comprehensive approach has also been expanded to address issues with impact damage tolerance and material degradation due to environmental factors. KEY WORDS: Cryogenic testing, evaluation and applications for pressure vessels, COPVs, tanks, or storage vessels.
Apparatus for supporting a cryogenic fluid containment system within an enclosure
Zhang, Burt X.; Ganni, Venkatarao; Stifle, Kirk E.
1995-01-01
An apparatus for supporting at least one inner cryogenic fluid containment system within an outer isolating enclosure to retard heat transfer into the inner containment system comprising a plurality of supports serially interconnected and laterally spaced by lateral connections to extend the heat conduction path into the inner containment system.
Cryogenic Two-Phase Flight Experiment: Results overview
NASA Technical Reports Server (NTRS)
Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.
1995-01-01
This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.
Development of a cryogenic capillary pumped loop
NASA Astrophysics Data System (ADS)
Kroliczek, Edward J.; Cullimore, Brent
1996-03-01
This paper describes the initial development of a promising new cryogenic technology. Room temperature capillary pumped loops (CPLs), a derivative of heat pipe technology, have been under development for almost two decades and are emerging as a design solution for many spacecraft thermal control problems. While cryogenic capillary pumped loops have application to passive spacecraft radiators and to long term storage of cryogenic propellants and open-cycle coolants, their application to the integration of spacecraft cryocoolers has generated the most excitement. Without moving parts or complex controls, they are able to thermally connect redundant cryocoolers to a single remote load, eliminating thermal switches and providing mechanical isolation at the same time. Development of a cryogenic CPL (CCPL) presented some unique challenges including start-up from a super-critical state, the management of parasitic heat leaks and pressure containment at ambient temperatures. These challenges have been overcome with a novel design that requires no additional devices or preconditioning for start-up. This paper describes the design concept and development and results conducted under SBIR Phase I and Phase II.
Postflight Analysis of the Apollo 14 Cryogenic Oxygen System
NASA Technical Reports Server (NTRS)
Rule, D. D.
1972-01-01
A postflight analysis of the Apollo 14 cryogenic oxygen system is presented. The subjects discussed are: (1) methods of analysis, (2) stratification and heat transfer, (3) flight analysis, (4) postflight analysis, and (5) determination of model parameters.
Cryogenic probe station for use in automated microwave and noise figure measurements
NASA Technical Reports Server (NTRS)
Taub, Susan R.; Alterovitz, Samuel A.; Young, Paul G.; Ebihara, Ben T.; Romanofsky, Robert R.
1994-01-01
A cryogenic measurement system capable of performing on-wafer RF testing of semiconductor devices and circuits has been developed. This 'CryoProbe Station' can wafer-probe devices and circuits at cryogenic temperatures, thus eliminating the need for wire bonds. The system operates under vacuum created by a sorption pump. It uses an open cycle cooling system that can be cooled with either liquid nitrogen or liquid helium. Presently, it can reach temperatures, as low as 80 K and 37 K for each of the coolants, respectively. The temperature can be raised using a heater and it is stabilized to within 0.2 K by use of a temperature controller. The CryoProbe Station features a 1 by 2 inch stage that can hold large circuits and calibration standards simultaneously. The system is used with a Hewlett Packard 8510C Automatic Network Analyzer (ANA) to obtain S-parameter data over the frequency range 0.045-26.5 GHz. S-parameter data on HEMT (high electron mobility transistors) devices has been obtained with this station. With the use of DEEMBED software from NIST, detailed transmission line studies have been performed. Although the CryoProbe Station is designed for frequencies up to 26.5 GHz, useful transmission line data has been obtained for frequencies as high as 40 GHz. The CryoProbe station has also been used with the ATN noise figure measurement system to perform automatic, temperature dependent noise figure measurements.
Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility
NASA Astrophysics Data System (ADS)
Xavier, M.; Raj, R. Edwin; Narayanan, V.
2017-02-01
Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.
Optical Detection Of Cryogenic Leaks
NASA Technical Reports Server (NTRS)
Wyett, Lynn M.
1988-01-01
Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.
NASA Astrophysics Data System (ADS)
Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Ferrand, F.; Pezzetti, M.; Pirotte, O.
2017-12-01
CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing but well maintained installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. A study was conducted and a methodology proposed to outsource to industry the operation and maintenance of the whole cryogenic infrastructure. The cryogenic installations coupled to non LHC-detectors, test facilities and general services infrastructure have been fully outsourced for operation and maintenance on the basis of performance obligations. The contractor is responsible for the operational performance of the installations based on a yearly operation schedule provided by CERN. The maintenance of the cryogenic system serving the LHC machine and its detectors has been outsourced on the basis of tasks oriented obligations, monitored by key performance indicators. CERN operation team, with the support of the contractor operation team, remains responsible for the operational strategy and performances. We report the analysis, strategy, definition of the requirements and technical specifications as well as the achieved technical and economic performances after one year of operation.
Thermal architecture for the SPIDER flight cryostat
NASA Astrophysics Data System (ADS)
Gudmundsson, J. E.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bonetti, J. A.; Bryan, S. A.; Burger, B.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Doré, O.; Farhang, M.; Filippini, J.; Fissel, L. M.; Gandilo, N. N.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Montroy, T. E.; Morford, T. A.; Netterfield, C. B.; O'Dea, D. T.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Schenker, M. A.; Shariff, J. A.; Soler, J. D.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.
2010-07-01
We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle 3He adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.
Development of cryogenic thermal control heat pipes. [of stainless steels
NASA Technical Reports Server (NTRS)
1978-01-01
The development of thermal control heat pipes that are applicable to the low temperature to cryogenic range was investigated. A previous effort demonstrated that stainless steel axially grooved tubing which met performance requirements could be fabricated. Three heat pipe designs utilizing stainless steel axially grooved tubing were fabricated and tested. One is a liquid trap diode heat pipe which conforms to the configuration and performance requirements of the Heat Pipe Experiment Package (HEPP). The HEPP is scheduled for flight aboard the Long Duration Flight Exposure Facility (LDEF). Another is a thermal switch heat pipe which is designed to permit energy transfer at the cooler of the two identical legs. The third thermal component is a hybrid variable conductance heat pipe (VCHP). The design incorporates both a conventional VCHP system and a liquid trap diode. The design, fabrication and thermal testing of these heat pipes is described. The demonstrated heat pipe behavior including start-up, forward mode transport, recovery after evaporator dry-out, diode performance and variable conductance control are discussed.
Active Costorage of Cryogenic Propellants for Exploration
NASA Technical Reports Server (NTRS)
Canavan, Edgar R.; Boyle, Rob; Mustafi, Shuvo
2008-01-01
Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used cryogens to cool instruments. In many cases, the lifetime of the primary cryogen tank has been extended by intercepting much of the heat incident on the tank at an intermediate-temperature shield cooled either by a second cryogen tank or a mechanical cryocooler. For an LH2/LO2 propellant system, a combination of these ideas can be used, in which the shield around the LO2 tank is attached to, and at the same temperature as, the LO2 tank, but is actively cooled so as to remove all heat impinging on the tank and shield. This configuration eliminates liquid oxygen boil-off and cuts the liquid hydrogen boil-off to a small fraction of the unshielded rate. This paper studies the concept of active costorage as a means of long-term cryogenic propellant storage. The paper describes the design impact of an active costorage system for the Crew Exploration Vehicle (CEV). This paper also compares the spacecraft level impact of the active costorage concept with a passive storage option in relation to two different scales of spacecraft that will be used for the lunar exploration effort, the CEV and the Earth Departure Stage (EDS). Spacecraft level studies are performed to investigate the impact of scaling of the costorage technologies for the different components of the Lunar Architecture and for different mission durations.
Liquid helium free cryogenic mechanical property test system with optical windows
NASA Astrophysics Data System (ADS)
Zhang, H. C.; Huang, C. J.; Huang, R. J.; Li, L. F.
2017-12-01
Digital image correlation (DIC) is a non-contact optical method for the in-plane displacement and strain measurement, which has been widely accepted and applied in mechanical property analysis owing to its simple experimental steps, high accuracy and large range of measurement. However, it has been rarely used in cryogenic mechanical test since the opaque design of cryostats and the interaction of optics with liquid coolants (liquid nitrogen or liquid helium). In the present work, a liquid helium free cryogenic mechanical property test system cooled by G-M cryocoolers, with a continuous, tunable environmental temperature from room temperature down to around 20 K, was developed and tested. Quartz optical windows, which are compatible with 2D DIC technology, were designed and manufactured on both inner and outer vacuum chambers. The cryogenic test system with optical windows satisfies well for mechanical tests of materials and takes advantage of both being compatible with DIC technology and getting rid of the use of expensive liquid helium. Surface displacement and strain field of Ti6Al4V under uniaxial tension were studied at 20 K by using this system. The results obtained by DIC method agree well with those obtained by extensometers at cryogenic temperatures.
Thermal acoustic oscillations, volume 2. [cryogenic fluid storage
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Sims, W. H.; Fan, C.
1975-01-01
A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions.
Sorption cryogenic refrigeration - Status and future
NASA Technical Reports Server (NTRS)
Jones, Jack A.
1988-01-01
The operation principles of sorption cryogenic refrigeration are discussed. Sorption refrigerators have virtually no wear-related moving parts, have negligible vibration, and offer extremely long life (at least ten years), making it possible to obtain efficient, long life and low vibration cooling to as low as 7 K for cryogenic sensors. The physisorption and chemisorption systems recommended for various cooling ranges down to 7 K are described in detail. For long-life cooling at 4-5 K temperatures, a hybrid chemisorption-mechanical refrigeration system is recommended.
Review and test of chilldown methods for space-based cryogenic tanks
NASA Astrophysics Data System (ADS)
Chato, David J.; Sanabria, Rafael
The literature for tank chilldown methods applicable to cryogenic tankage in the zero gravity environment of earth orbit is reviewed. One method is selected for demonstration in a ground based test. The method selected for investigation was the charge-hold-vent method which uses repeated injection of liquid slugs, followed by a hold to allow complete vaporization of the liquid and a vent of the tank to space vacuum to cool tankage to the desired temperature. The test was conducted on a 175 cubic foot, 2219 aluminum walled tank weighing 329 pounds, which was previously outfitted with spray systems to test nonvented fill technologies. To minimize hardware changes, a simple control-by-pressure scheme was implemented to control injected liquid quantities. The tank cooled from 440 R sufficiently in six charge-hold-vent cycles to allow a complete nonvented fill of the test tank. Liquid hydrogen consumed in the process is estimated at 32 pounds.
Review and test of chilldown methods for space-based cryogenic tanks
NASA Technical Reports Server (NTRS)
Chato, David J.; Sanabria, Rafael
1991-01-01
The literature for tank chilldown methods applicable to cryogenic tankage in the zero gravity environment of earth orbit is reviewed. One method is selected for demonstration in a ground based test. The method selected for investigation was the charge-hold-vent method which uses repeated injection of liquid slugs, followed by a hold to allow complete vaporization of the liquid and a vent of the tank to space vacuum to cool tankage to the desired temperature. The test was conducted on a 175 cubic foot, 2219 aluminum walled tank weighing 329 pounds, which was previously outfitted with spray systems to test nonvented fill technologies. To minimize hardware changes, a simple control-by-pressure scheme was implemented to control injected liquid quantities. The tank cooled from 440 R sufficiently in six charge-hold-vent cycles to allow a complete nonvented fill of the test tank. Liquid hydrogen consumed in the process is estimated at 32 pounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, K. X.; Wang, J. J.; Yuan, Z.
The effect of cryogenic treatment on the plastic property of Ti-6Al-4V plate was studied in the present work. After cryogenic treatment, the low temperature temper at 180 ▭ was conducted in one of the groups and the results were compared with that of the untreated and cryotreated ones. The SLX series program controlled cryogenic equipment was used for the cryogenic treatment. The tensile tests were conducted by universal tensile testing machine and parameters of elongation and area reduction were used to evaluate plastic property. The scanning electron microscope was used to study the morphology of microstructure and fracture surface. Themore » results show that after cryogenic treatment alone the elongation increased 10.6% and the area reduction increased 13.5% while the strength reduced to a small extent. Cryogenic treatment followed with low temperature temper increased the elongation and area reduction just by the extent of 4.7% and 9.5%. It means that the additional low temperature temper after cryogenic is not beneficial to the tensile properties of Ti-6Al-4V alloy. The examination of microstructure by scanning electron microscopy revealed that cryogenic treatment reduced the content of β phase particles which is the main reason for the improvement in plasticity.« less
NASA Astrophysics Data System (ADS)
Pal, Sandip; Kar, Ranjan; Mandal, Anupam; Das, Ananda; Saha, Subrata
2017-05-01
A prototype of a variable temperature insert has been developed in-house as a cryogenic thermometer calibration facility. It was commissioned in fulfilment of the very stringent requirements of the temperature control of the cryogenic system. The calibration facility is designed for calibrating industrial cryogenic thermometers that include a temperature sensor and the wires heat-intercept in the 2.2 K-325 K temperature range. The isothermal section of the calibration block onto which the thermometers are mounted is weakly linked with the temperature control zone mounted with cooling capillary coil and cryogenic heater. The connecting wires of the thermometer are thermally anchored with the support of the temperature insert. The calibration procedure begins once the temperature of the support is stabilized. Homogeneity of the calibration block’s temperature is established both by simulation and by cross-comparison of two calibrated sensors. The absolute uncertainty present in temperature measurement is calculated and found comparable with the measured uncertainty at different temperature points. Measured data is presented in comparison to the standard thermometers at fixed points and it is possible to infer that the absolute accuracy achieved is better than ±0.5% of the reading in comparison to the fixed point temperature. The design and development of simpler, low cost equipment, and approach to analysis of the calibration results are discussed further in this paper, so that it can be easily devised by other researchers.
Technique for Configuring an Actively Cooled Thermal Shield in a Flight System
NASA Technical Reports Server (NTRS)
Barkfknecht, Peter; Mustafi, Shuvo
2011-01-01
Broad area cooling shields are a mass-efficient alternative to conductively cooled thermal radiation shielding. The shield would actively intercept a large portion of incident thermal radiation and transport the heat away using cryogenic helium gas. The design concept consists of a conductive and conformable surface that maximizes heat transfer and formability. Broad Area Cooled (BAC) shields could potentially provide considerable mass savings for spaceflight applications by eliminating the need for a rigid thermal radiation shield for cryogen tanks. The BAC consists of a network of capillary tubes that are thermally connected to a conductive shield material. Chilled helium gas is circulated through the network and transports unwanted heat away from the cryogen tanks. The cryogenic helium gas is pumped and chilled simultaneously using a specialized pulse-tube cryocooler, which further improves the mass efficiency of the system. By reducing the thermal environment temperature from 300 to 100 K, the radiative heat load on a cryogen tank could be reduced by an order of magnitude. For a cryogenic liquid propellant scenario of oxygen and hydrogen, the boiloff of hydrogen would be significantly reduced and completely eliminated for oxygen. A major challenge in implementing this technology on large tanks is that the BAC system must be easily scalable from lab demonstrations to full-scale missions. Also, the BAC shield must be conformable to complex shapes like spheres without losing the ability to maintain constant temperature throughout. The initial design maximizes thermal conductivity between the capillary tube and the conductive radiation shielding by using thin, corrugated aluminum foil with the tube running transverse to the folds. This configuration has the added benefit of enabling the foil to stretch and contract longitudinally. This allows the BAC to conform to the complex curvature of a cryogen tank, which is key to its success. To demonstrate a BAC shield system with minimal impact to current cryogen tank designs, the shielding must be applied after the final assembly of the tank and supporting structure. One method is to pre-fabricate the shield in long strips. A spool of corrugated aluminum foil with a thermally sunk aluminum capillary running through the center could then be simply wound around the cryogen tanks and encapsulated within the multi-layer insulation (MLI) blanket. Then, on orbit, the BAC would intercept thermal radiation coming in through the MLI and transport it away from the cryogen tanks. An optimization of the design could be done to take into account mass savings from thinner MLI blankets, eliminating solid thermal shields, and ultimately, a reduction in the required cryogen tank size.
NASA Technical Reports Server (NTRS)
1973-01-01
The manufacturing tasks for the program included the fabrication and assembly of an epoxy fiberglass purge bag to encapsulate an insulated cryogenic propellant tank. Purge, repressurization and venting hardware were procured and installed on the purge bag assembly in preparation for performance testing. The fabrication and installation of the superfloc multilayer insulation (MLI) on the cryogenic tank was accomplished as part of a continuing program. An abstraction of the results of the MLI fabrication task is included to describe the complete fabrication requirements for a reusable cryogenic propellant space storage system.
The Future with Cryogenic Fluid Dynamics
NASA Astrophysics Data System (ADS)
Scurlock, R. G.
The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his many contributions to Cryogenics. As long ago as 1992, he first proposed in his "History and Origins of Cryogenics" that the temperature range for Cryogenics should be extended up to the ice-point at 273K. This paper expands on this proposal with the implicit assumption that Cryogenic Fluid Dynamics can provide a universal basis for modelling heat transfer and convective fluid behaviour of all fluids, at all temperatures, below the ice-point at 273K; or below 250K if you wish to exclude refrigeration engineering."
Preliminary Thermal Design of Cryogenic Radiation Shielding
NASA Technical Reports Server (NTRS)
Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin
2015-01-01
Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.
In-orbit performance of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H
NASA Astrophysics Data System (ADS)
Yoshida, Seiji; Miyaoka, Mikio; Kanao, Ken'ichi; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Narasaki, Katsuhiro; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuichi; Ezoe, Yuichiro; Sato, Yoichi; Okamoto, Atsushi; Noda, Hirofumi; DiPirro, Michael; Shirron, Peter
2018-04-01
ASTRO-H was an X-ray astronomy satellite that the Japan Aerospace Exploration Agency (JAXA) developed to study the evolution of the universe and physical phenomena yet to be discovered. The primary scientific instrument of ASTRO-H was the Soft X-ray Spectrometer (SXS). Its detectors were to be cooled to 50 m K using a complex cryogenic system with a multistage adiabatic demagnetization refrigerator (ADR) developed by the National Aeronautics and Space Administration (NASA), and a cryogenic system developed by Sumitomo Heavy Industries, Ltd. (SHI). SHI's cryogenic system was required to cool the ADR's heatsink to 1.3 K or less in orbit for three years or longer. To meet these requirements, SHI developed a hybrid cryogenic system consisting of a liquid helium tank, a 4 K Joule-Thomson cooler, and two two-stage Stirling coolers. ASTRO-H was launched from Tanegashima Space Center on February 17, 2016. The initial operation of the SXS cryogenic system in orbit was completed successfully. The cooling performance was as expected and could have exceeded the lifetime requirement of three years. This paper describes results of ground tests, results of top-off filling of superfluid liquid helium just before launch, and cooling performance in orbit.
NASA Astrophysics Data System (ADS)
Bonne, F.; Alamir, M.; Bonnay, P.
2017-02-01
This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
Linam Ranch cryogenic gas plant: A design and operating retrospective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harwell, L.J.; Kuscinski, J.
1999-07-01
GPM Gas Corporation's Linam Ranch Gas Plant is the processing hub of their southeastern New Mexico gathering system, producing a y-grade NGL product which is pipelined primarily to the Phillips petrochemical complex at Sweeney, Texas, GPM acquired the facility near Hobbs, N.M. late in 1994 when it was still operating as a refrigerated lean oil plant, renamed it, and commenced an upgrade project culminating in its conversion to a high recovery cryogenic facility in early 1996 with a processing capacity of 150 MMscfd. Facilities that were upgraded included inlet liquids receiving and handling, the amine system, mol sieve dehydration, themore » sulfur recovery unit, inlet compression, and the propane refrigeration system. A Foxboro I/A DCS was also placed into operation. The lean oil system was replaced with a high recovery turboexpander unit supplied by KTI Fish based on their Flash Vapor Reflux (FVR) process. Resulting ethane recovery was greater than 95% for the new facilities. New residue compression units were installed including steam generators on the turbine exhausts, which complemented the existing plant steam system. During the three years since conversion to cryogenic operation, GPM has steadily improved plant operations. Expansion of the mol sieve dehydration system and retrofit of evaporation combustion air cooling on gas turbines have expanded nameplate capacity to 170 MMscfd while maintaining ethane recovery at 95%. Future expansion to 200 MMscfd with high recovery is achievable. In addition, creative use of the Foxboro DCS has been employed to implement advanced control schemes for handling inlet liquid slugs, gas and amine balancing for parallel amine contactors, improved sulfur recovery unit (SRU) trim air control, and constraint-based process optimization to maximize horsepower utilization and ethane recovery. Some challenges remain, leaving room for additional improvements. However, GPM's progress so far has resulted in a current ethane recovery level in excess of 97% when processing gas at the original design throughput of 150 MMscfd.« less
Apparatus for supporting a cryogenic fluid containment system within an enclosure
Zhang, B.X.; Ganni, V.; Stifle, K.E.
1995-01-31
An apparatus is disclosed for supporting at least one inner cryogenic fluid containment system within an outer isolating enclosure to retard heat transfer into the inner containment system comprising a plurality of supports serially interconnected and laterally spaced by lateral connections to extend the heat conduction path into the inner containment system. 8 figs.
Study on mitigation of pulsed heat load for ITER cryogenic system
NASA Astrophysics Data System (ADS)
Peng, N.; Xiong, L. Y.; Jiang, Y. C.; Tang, J. C.; Liu, L. Q.
2015-03-01
One of the key requirements for ITER cryogenic system is the mitigation of the pulsed heat load deposited in the magnet system due to magnetic field variation and pulsed DT neutron production. As one of the control strategies, bypass valves of Toroidal Field (TF) case helium loop would be adjusted to mitigate the pulsed heat load to the LHe plant. A quasi-3D time-dependent thermal-hydraulic analysis of the TF winding packs and TF case has been performed to study the behaviors of TF magnets during the reference plasma scenario with the pulses of 400 s burn and repetition time of 1800 s. The model is based on a 1D helium flow and quasi-3D solid heat conduction model. The whole TF magnet is simulated taking into account thermal conduction between winding pack and case which are cooled separately. The heat loads are given as input information, which include AC losses in the conductor, eddy current losses in the structure, thermal radiation, thermal conduction and nuclear heating. The simulation results indicate that the temperature variation of TF magnet stays within the allowable range when the smooth control strategy is active.
CryoTran user's manual, version 1.0
NASA Technical Reports Server (NTRS)
Cowgill, Glenn R.; Chato, David J.; Saad, Ehab
1989-01-01
The development of cryogenic fluid management systems for space operation is a major portion of the efforts of the Cryogenic Fluids Technology Office (CFTO) at the NASA Lewis Research Center. Analytical models are a necessary part of experimental programs which are used to verify the results of experiments and are also used as a predictor for parametric studies. The CryoTran computer program is a bridge to obtain analytical results. The object of CryoTran is to coordinate these separate analyses into an integrated framework with a user-friendly interface and a common cryogenic property database. CryoTran is an integrated software system designed to help solve a diverse set of problems involving cryogenic fluid storage and transfer in both ground and low-g environments.
The high Beta cryo-modules and the associated cryogenic system for the HIE-ISOLDE upgrade at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delruelle, N.; Leclercq, Y.; Pirotte, O.
2014-01-29
The major upgrade of the energy and intensity of the existing ISOLDE and REX-ISOLDE radioactive ion beam facilities at CERN requires the replacement of most of the existing ISOLDE post-acceleration equipment by a superconducting linac based on quarter-wave resonators housed together with superconducting solenoids in a series of four high-β and two low-β cryo-modules. As well as providing optimum conditions for physics, the cryo-modules need to function under stringent vacuum and cryogenic conditions. We present the detail design and expected cryogenic performance of the high- β cryo-module together with the cryogenic supply and distribution system destined to service the completemore » superconducting linac.« less
Mechanical testing of large cryogenic structures
NASA Technical Reports Server (NTRS)
Newkirk, Roger; Burriesci, Larry
1990-01-01
The mechanical testing performed on the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument installed on the Upper Atmosphere Research Satellite is discussed. The CLAES determines temperatures and concentrations of stratospheric minor species as a function of altitude by measuring the atmospheric infrared emission spectra. CLAES is based on a telescope optical system and infrared spectrometer which are cooled with cryogens.
Recent Ground Hold and Rapid Depressurization Testing of Multilayer Systems
NASA Technical Reports Server (NTRS)
Johnson, Wesley L.
2014-01-01
In the development of flight insulation systems for large cryogenic orbital storage (spray on foam and multilayer insulation), testing need include all environments that are experienced during flight. While large efforts have been expended on studying, bounding, and modeling the orbital performance of the insulation systems, little effort has been expended on the ground hold and ascent phases of a mission. Historical cryogenic in-space systems that have flown have been able to ignore these phases of flight due to the insulation system being within a vacuum jacket. In the development phase of the Nuclear Mars Vehicle and the Shuttle Nuclear Vehicle, several insulation systems were evaluated for the full mission cycle. Since that time there had been minimal work on these phases of flight until the Constellation program began investigating cryogenic service modules and long duration upper stages. With the inception of the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, a specific need was seen for the data and as such, several tests were added to the Cryogenic Boil-off Reduction System liquid hydrogen test matrix to provide more data on a insulation system. Testing was attempted with both gaseous nitrogen (GN2) and gaseous helium (GHe) backfills. The initial tests with nitrogen backfill were not successfully completed due to nitrogen liquefaction and solidification preventing the rapid pumpdown of the vacuum chamber. Subsequent helium backfill tests were successful and showed minimal degradation. The results are compared to the historical data.
Electromagnetic Smart Valves for Cryogenic Applications
NASA Astrophysics Data System (ADS)
Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.
2004-06-01
Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.
Fault-tolerant Control of a Cyber-physical System
NASA Astrophysics Data System (ADS)
Roxana, Rusu-Both; Eva-Henrietta, Dulf
2017-10-01
Cyber-physical systems represent a new emerging field in automatic control. The fault system is a key component, because modern, large scale processes must meet high standards of performance, reliability and safety. Fault propagation in large scale chemical processes can lead to loss of production, energy, raw materials and even environmental hazard. The present paper develops a multi-agent fault-tolerant control architecture using robust fractional order controllers for a (13C) cryogenic separation column cascade. The JADE (Java Agent DEvelopment Framework) platform was used to implement the multi-agent fault tolerant control system while the operational model of the process was implemented in Matlab/SIMULINK environment. MACSimJX (Multiagent Control Using Simulink with Jade Extension) toolbox was used to link the control system and the process model. In order to verify the performance and to prove the feasibility of the proposed control architecture several fault simulation scenarios were performed.
Cryogenic Insulation Standard Data and Methodologies Project
NASA Technical Reports Server (NTRS)
Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam
2015-01-01
Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system for applications at sub-ambient to cryogenic temperatures. A growing need for energy efficiency and cryogenic applications is creating a worldwide demand for improved thermal insulation systems for low temperatures. The need for thermal characterization of these systems and materials raises a corresponding need for insulation test standards and thermal data targeted for cryogenic-vacuum applications. Such standards have a strong correlation to energy, transportation, and environment and the advancement of new materials technologies in these areas. In conjunction with this project, two new standards on cryogenic insulation were recently published by ASTM International: C1774 and C740. Following the requirements of NPR 7120.10, Technical Standards for NASA Programs and Projects, the appropriate information in this report can be provided to the NASA Chief Engineer as input for NASA's annual report to NIST, as required by OMB Circular No. A-119, describing NASA's use of voluntary consensus standards and participation in the development of voluntary consensus standards and bodies.
NASA Astrophysics Data System (ADS)
Ghasemi Nanesa, Hadi
Cryogenic treatment, known as treating materials at sub-zero temperatures, has been added to conventional heat treatment cycle of high alloyed steels where martensitic transformation is incomplete after quenching to room temperature. Incomplete martensitic transformation occurs due to the effect of high content of alloying elements on pushing down martensite start and finish temperatures to very low values, specifically, on tool steels. In spite of obtaining significant improvements in mechanical and wear properties after cryogenic treatment, there is no cohesive picture about what exactly modifies the microstructure of tool steels during cryogenic treatment and therefore divergent opinions on the influence of process parameters are still reported. For example, the suggested time length for cryogenic treatment starts from few seconds to several days indicating the lack of understanding about micromechanisms responsible for microstructural evolution while holding at cryogenic temperatures. In this regard, the main objective of this project is to develop a better understanding on the fundamental micromechanisms operating during cryogenic treatment. To attain this objective, the following milestones are pursued. - To study the conventional cryogenic treatment and finding challenges. - To identify and characterize the optimum starting microstructure before cryogenic treatment. - To determine the important processing parameters those control the evolution of microstructure and hardness. - To investigate the interaction between carbide precipitation and martensitic transformation in the AISI D2 steel. - To propose an optimal cryogenic treatment for AISI D2 steel.
NASA Astrophysics Data System (ADS)
Harigel, Gert G.
2000-10-01
Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-Foot Bubble Chamber at the Fermi National Accelerator Laboratory (FNAL), during a physics run in a high energy neutrino beam. The innovative system combined the reference beam with the object beam, irradiating a conical volume of approx1.5m3. Bubble tracks from neutrino interactions with a width of approx 120 micrometers have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the beam branching ratio (BBR). We obtained in our experiment an exceedingly small minimum- observable ration of BBR = (0.54 divided by 0.21) x 107. The technology has the potential for a wide range of applications. This paper describes the various difficulties in achieving the success. It required the development of laser pulse stretching via enhanced closed loop control with slow Q- switching, to overcome excessive heating of the cryogenic liquid by the powerful laser beam. A sophisticated system of light-absorbing baffles had to be installed to avoid stray light reaching the holographic film. Optical decoupling of classical and holographic illumination systems was required. Real and virtual image replay machines for holograms were built, tailored to our illumination technique.
NASA Astrophysics Data System (ADS)
Nelson, Andrew Oakleigh; Dee, Richard; Gudipati, Murthy S.; Horányi, Mihály; James, David; Kempf, Sascha; Munsat, Tobin; Sternovsky, Zoltán; Ulibarri, Zach
2016-02-01
Ice is prevalent throughout the solar system and beyond. Though the evolution of many of these icy surfaces is highly dependent on associated micrometeoroid impact phenomena, experimental investigation of these impacts has been extremely limited, especially at the impactor speeds encountered in space. The dust accelerator facility at the Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) of NASA's Solar System Exploration Research Virtual Institute has developed a novel cryogenic system that will facilitate future study of hypervelocity impacts into ice and icy regolith. The target consists of a copper block, cooled by liquid nitrogen, upon which layers of vapor-deposited ice, pre-frozen ice, or icy regolith can be built in a controlled and quantifiable environment. This ice can be grown from a variety of materials, including H2O, CH3OH, NH3, and slurries containing nanophase iron. Ice temperatures can be varied between 96 K and 150 K and ice thickness greater than 150 nm can be accurately measured. Importantly, the composition of ion plumes created during micrometeoroid impacts onto these icy layers can be measured even in trace amounts by in situ time-of-flight mass spectroscopy. In this paper, we present the fundamental design components of the cryogenic target chamber at IMPACT and proof-of-concept results from target development and from first impacts into thick layers of water ice.
Insulation Progress since the Mid-1950s
NASA Astrophysics Data System (ADS)
Timmerhaus, K. D.
Storage vessel and cryostat design for modern cryogenic systems has become rather routine as the result of the wide use of and application of cryogenic fluids. Such vessels for these fluids range in size from 1 L flasks used in the laboratory for liquid nitrogen to the more than 200,000 m3 double-walled tanks used for temporary storage of liquefied natural gas before being transported overseas to their final destination. These storage vessels for cryogenic fluids range in type from low-performance containers insulated with rigid foam or fibrous insulation to high-performance containers insulated with evacuated multilayer insulations. The overriding factors in the type of container selected normally are of economics and safety. This paper will consider various insulation concepts used in such cryogenic storage systems and will review the progress that has been made over the past 50 years in these insulation systems.
Performance of Power Converters at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.
2001-01-01
Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.
Apparatus and Method for Low-Temperature Training of Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Swanger, A. M.; Fesmire, J. E.; Trigwell, S.; Gibson, T. L.; Williams, M. K.; Benafan, O.
2015-01-01
An apparatus and method for the low-temperature thermo-mechanical training of shape memory alloys (SMA) has been developed. The experimental SMA materials are being evaluated as prototypes for applicability in novel thermal management systems for future cryogenic applications. Alloys providing two-way actuation at cryogenic temperatures are the chief target. The mechanical training regimen was focused on the controlled movement of rectangular strips, with S-bend configurations, at temperatures as low as 30 K. The custom holding fixture included temperature sensors and a low heat-leak linear actuator with a magnetic coupling. The fixture was mounted to a Gifford-McMahon cryocooler providing up to 25 W of cooling power at 20 K and housed within a custom vacuum chamber. Operations included both training cycles and verification of shape memory movement. The system design and operation are discussed. Results of the training for select prototype alloys are presented.
Apparatus and method for low-temperature training of shape memory alloys
NASA Astrophysics Data System (ADS)
Swanger, A. M.; Fesmire, J. E.; Trigwell, S.; Gibson, T. L.; Williams, M. K.; Benafan, O.
2015-12-01
An apparatus and method for the low-temperature thermo-mechanical training of shape memory alloys (SMA) has been developed. The experimental SMA materials are being evaluated as prototypes for applicability in novel thermal management systems for future cryogenic applications. Alloys providing two-way actuation at cryogenic temperatures are the chief target. The mechanical training regimen was focused on the controlled movement of rectangular strips, with S-bend configurations, at temperatures as low as 30 K. The custom holding fixture included temperature sensors and a low heat-leak linear actuator with a magnetic coupling. The fixture was mounted to a Gifford-McMahon cryocooler providing up to 25 W of cooling power at 20 K and housed within a custom vacuum chamber. Operations included both training cycles and verification of shape memory movement. The system design and operation are discussed. Results of the training for select prototype alloys are presented.
NASA Technical Reports Server (NTRS)
1973-01-01
A computer program for rapid parametric evaluation of various types of cryogenics spacecraft systems is presented. The mathematical techniques of the program provide the capability for in-depth analysis combined with rapid problem solution for the production of a large quantity of soundly based trade-study data. The program requires a large data bank capable of providing characteristics performance data for a wide variety of component assemblies used in cryogenic systems. The program data requirements are divided into: (1) the semipermanent data tables and source data for performance characteristics and (2) the variable input data which contains input parameters which may be perturbated for parametric system studies.
An Overview of NASA Efforts on Zero Boiloff Storage of Cryogenic Propellants
NASA Technical Reports Server (NTRS)
Hastings, Leon J.; Plachta, D. W.; Salerno, L.; Kittel, P.; Haynes, Davy (Technical Monitor)
2001-01-01
Future mission planning within NASA has increasingly motivated consideration of cryogenic propellant storage durations on the order of years as opposed to a few weeks or months. Furthermore, the advancement of cryocooler and passive insulation technologies in recent years has substantially improved the prospects for zero boiloff storage of cryogenics. Accordingly, a cooperative effort by NASA's Ames Research Center (ARC), Glenn Research Center (GRC), and Marshall Space Flight Center (MSFC) has been implemented to develop and demonstrate "zero boiloff" concepts for in-space storage of cryogenic propellants, particularly liquid hydrogen and oxygen. ARC is leading the development of flight-type cryocoolers, GRC the subsystem development and small scale testing, and MSFC the large scale and integrated system level testing. Thermal and fluid modeling involves a combined effort by the three Centers. Recent accomplishments include: 1) development of "zero boiloff" analytical modeling techniques for sizing the storage tankage, passive insulation, cryocooler, power source mass, and radiators; 2) an early subscale demonstration with liquid hydrogen 3) procurement of a flight-type 10 watt, 95 K pulse tube cryocooler for liquid oxygen storage and 4) assembly of a large-scale test article for an early demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Near term plans include the large-scale integrated system demonstration testing this summer, subsystem testing of the flight-type pulse-tube cryocooler with liquid nitrogen (oxygen simulant), and continued development of a flight-type liquid hydrogen pulse tube cryocooler.
Numerical Modeling of Thermofluid Transients During Chilldown of Cryogenic Transfer Lines
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Steadman, Todd
2003-01-01
The chilldown of fluid transfer lines is an important part of using cryogenic systems such as those found in both ground and space based applications. The chilldown process is a complex combination of both thermal and fluid transient phenomena. A cryogenic liquid flows through a transfer line that is initially at a much higher temperature than the cryogen. Transient heat transfer processes between the liquid and transfer line cause vaporization of the liquid, and this phase change can cause transient pressure and flow surges in the liquid. As the transfer line is cooled, these effects diminish until the liquid reaches a steady flow condition in the chilled transfer line. If these transient phenomena are not properly accounted for in the design process of a cryogenic system, it can lead to damage or failure of system components during operation. For such cases, analytical modeling is desirable for ensuring that a cryogenic system transfer line design is adequate for handling the effects of a chilldown process. The purpose of this paper is to present the results of a numerical model developed using Generalized Fluid System Simulation Program (GFSSP)'s new fluid transient capability in combination with its previously developed thermal transient capability to predict pressure and flow surge in cryogenic transfer lines during a chilldown process. An experiment performed by the National Bureau of Standards (NBS) in 1966 has been chosen as the baseline comparison case for this work. NBS s experimental set-up consisted of a 10.59 cubic foot supply dewar, an inlet valve, and a 200 foot long, in Outside Diameter (OD) vacuum jacketed copper transfer line that exhausted to atmosphere. Three different inlet valves, an in-port ball valve, a 1-in-port globe valve and a 1-in-port gate valve, were used in NBS's experiments. Experiments were performed using both liquid hydrogen and liquid nitrogen as the fluids. The proposed paper will include detailed comparisons of GFSSP's predictions with NBS's experimental results.
Large-Scale Cryogenic Testing of Launch Vehicle Ground Systems at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Ernst, E. W.; Sass, J. P.; Lobemeyer, D. A.; Sojourner, S. J.; Hatfield, W. H.; Rewinkel, D. A.
2007-01-01
The development of a new launch vehicle to support NASA's future exploration plans requires significant redesign and upgrade of Kennedy Space Center's (KSC) launch pad and ground support equipment systems. In many cases, specialized test equipment and systems will be required to certify the function of the new system designs under simulated operational conditions, including propellant loading. This paper provides an overview of the cryogenic test infrastructure that is in place at KSC to conduct development and qualification testing that ranges from the component level to the integrated-system level. An overview of the major cryogenic test facilities will be provided, along with a detailed explanation of the technology focus area for each facility
Study of Cryogenic Complex Plasma
2010-08-17
inner diameter of 9.6 cm and the height of 80 cm. The Dewar bottle is filled with liquid helium or liquid nitrogen and is inserted in a liquid ...gas in the glass tube is controlled by the cryogenic liquid , liquid helium or liquid nitrogen , contained in the inner Dewar bottle. The outer Dewar...bottle contains liquid nitrogen to maintain the inner cryogenic temperature. An rf helium plasma with a neutral gas pressure P = 0.1 ~ 100 Pa is
Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators
NASA Technical Reports Server (NTRS)
Dick, G. John; Wang, Rabi
2006-01-01
Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.
Safety Aspects of Big Cryogenic Systems Design
NASA Astrophysics Data System (ADS)
Chorowski, M.; Fydrych, J.; Poliński, J.
2010-04-01
Superconductivity and helium cryogenics are key technologies in the construction of large scientific instruments, like accelerators, fusion reactors or free electron lasers. Such cryogenic systems may contain more than hundred tons of helium, mostly in cold and high-density phases. In spite of the high reliability of the systems, accidental loss of the insulation vacuum, pipe rupture or rapid energy dissipation in the cold helium can not be overlooked. To avoid the danger of over-design pressure rise in the cryostats, they need to be equipped with a helium relief system. Such a system is comprised of safety valves, bursting disks and optionally cold or warm quench lines, collectors and storage tanks. Proper design of the helium safety relief system requires a good understanding of worst case scenarios. Such scenarios will be discussed, taking into account different possible failures of the cryogenic system. In any case it is necessary to estimate heat transfer through degraded vacuum superinsulation and mass flow through the valves and safety disks. Even if the design of the helium relief system does not foresee direct helium venting into the environment, an occasional emergency helium spill may happen. Helium propagation in the atmosphere and the origins of oxygen-deficiency hazards will be discussed.
Integrated Launch Operations Applications Remote Display Developer
NASA Technical Reports Server (NTRS)
Flemming, Cedric M., II
2014-01-01
This internship provides the opportunity to support the creation and use of Firing Room Displays and Firing Room Applications that use an abstraction layer called the Application Control Language (ACL). Required training included video watching, reading assignments, face-to-face instruction and job shadowing other Firing Room software developers as they completed their daily duties. During the training period various computer and access rights needed for creating the applications were obtained. The specific ground subsystems supported are the Cryogenics Subsystems, Liquid Hydrogen (LH2) and Liquid Oxygen (LO2). The cryogenics team is given the task of finding the best way to handle these very volatile liquids that are used to fuel the Space Launch System (SLS) and the Orion flight vehicles safely.
Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Ray, E. J.; Ladson, C. L.; Adcock, J. B.; Lawing, P. L.; Hall, R. M.
1979-01-01
The past 6 years of operation with the NASA Langley 0.3 m transonic cryogenic tunnel (TCT) show that there are no insurmountable problems associated with cryogenic testing with gaseous nitrogen at transonic Mach numbers. The fundamentals of the concept were validated both analytically and experimentally and the 0.3 m TCT, with its unique Reynolds number capability, was used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects were developed and cryogenic tunnel conditions can be set and maintained accurately. Cryogenic cooling by injecting liquid nitrogen directly into the tunnel circuit imposes no problems with temperature distribution or dynamic response characteristics. Experience with the 0.3 m TCT, indicates that there is a significant learning process associated with cryogenic, high Reynolds number testing. Many of the questions have already been answered; however, factors such as tunnel control, run logic, economics, instrumentation, and model technology present many new and challenging problems.
Maritime Detection of Radiological/Nuclear Threats with Hybrid Imaging System
2014-01-01
localization system. Each subsystem is housed in a separate 20-ft refrigerated ISO container that provides humidity and temperature control, and...externally via laptop or remotely via wireless communication. A detailed description of each individual subsystem follows. A. Detection...LN2. Each dewar has a cryogenic solenoid valve and a temperature sensor on the exhaust to monitor when the dewar is full. The valves and sensors are
Space environmental considerations for a long-term cryogenic storage vessel
NASA Technical Reports Server (NTRS)
Nakanishi, Shigeo
1987-01-01
Information is given on the kind of protection that is needed against impact and perforation of a long-term cryogenic storage vessel in space by meteoroids and space debris. The long-term effects of the space environment on thermal control surfaces and coatings, and the question of whether the insulation and thermal control surfaces should be encased in a vacuum jacket shell are discussed.
Experimental Results Obtained with Air Liquide Cold Compression System: CERN LHC and SNS Projects
NASA Astrophysics Data System (ADS)
Delcayre, F.; Courty, J.-C.; Hamber, F.; Hilbert, B.; Monneret, E.; Toia, J.-L.
2006-04-01
Large scale collider facilities will make intensive use of superconducting magnets, operating below 2.0 K. This dictates high-capacity refrigeration systems operating below 2.0 K. These systems, making use of cryogenic centrifugal compressors in a series arrangement with room temperature screw compressors will be coupled to a refrigerator, providing a certain power at 4.5 K. A first Air Liquide Cold Compression System (CCS) unit was built and delivered to CERN in 2001. Installed at the beginning of 2002, it was commissioned and tested successfully during year 2002. A series of four sets of identical CCS were then tested in 2004. Another set of four cryogenic centrifugal compressors (CCC) has been delivered to Thomas Jefferson National Accelerator Facility (JLAB) for the Spallation Neutron Source (SNS) in 2002. These compressors were tested and commissioned from December 2004 to July 2005. The experimental results obtained with these systems will be presented and discussed: the characteristics of the CCC will be detailed. The principles of control for the CCC in series will be detailed.
NASA Technical Reports Server (NTRS)
Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.
1993-01-01
The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.
Developments in advanced and energy saving thermal isolations for cryogenic applications
NASA Astrophysics Data System (ADS)
Shu, Q. S.; Demko, J. A.; Fesmire, J. E.
2015-12-01
The cooling power consumption in large scale superconducting systems is huge and cryogenic devices used in space applications often require an extremely long cryogen holding time. To economically maintain the device at its operating temperature and minimize the refrigeration losses, high performance of thermal isolation is essential. The radiation from warm surrounding surfaces and conducting heat leaks through supports and penetrations are the dominant heat loads to the cold mass under vacuum condition. The advanced developments in various cryogenic applications to successfully reduce the heat loads through radiation and conduction are briefly and systematically discussed and evaluated in this review paper. These include: (1) thermal Insulation for different applications (foams, perlites, glass bubbles, aerogel and MLI), (2) sophisticated low-heat-leak support (cryogenic tension straps, trolley bars and posts with dedicated thermal intercepts), and (3) novel cryogenic heat switches.
NASA Technical Reports Server (NTRS)
Armstrong, Michael; Ross, Christine; Phillips, Danny; Blackwelder, Mark
2013-01-01
This document contains the deliverables for the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) regarding the stability, transient response, control, and safety study for a high power cryogenic turboelectric distributed propulsion (TeDP) system. The objective of this research effort is to enumerate, characterize, and evaluate the critical issues facing the development of the N3-X concept aircraft. This includes the proposal of electrical grid architecture concepts and an evaluation of any needs for energy storage.
Results of an Advanced Development Zero Boil-Off Cryogenic Propellant Storage Test
NASA Technical Reports Server (NTRS)
Plachta, David
2004-01-01
A zero boil-off (ZBO) cryogenic propellant storage concept was recently tested in a thermally relevant low-earth orbit environment, an important development in the effort to apply this concept to flight projects. Previous efforts documented the benefits of ZBO for launch vehicle upper stages in a low-earth orbit (LEO). Central to that analysis is a ZBO Cryogenic Analysis Tool that estimates the performance of each component and the ZBO system. This test is essential to the validation of that tool, and was the first flight representative configuration tested in a thermally representative environment. The test article was comprised of a spherical 1.4 m diameter insulated propellant tank, with a submerged mixer, a cryogenic heat pipe, flight design cryocooler, and a radiator. All were enclosed in a thermal shroud and inserted into and tested in a vacuum chamber that simulated an LEO thermal environment. Thermal and pressure control tests were performed at sub-critical LN2 temperatures and approximately 2 atmospheres pressure. The cold side of the ZBO system performed well. In particular, the heat pipe performed better than expected, which suggests that the cryocooler could be located further from the tank than anticipated, i.e. on a spacecraft bus, while maintaining the desired efficiency. Also, the mixer added less heat than expected. The tank heating rate through the insulation was higher than expected; also the temperatures on the cryocooler hot side were higher than planned. This precluded the cryocooler from eliminating the boil-off. The results show the cryocooler was successful at removing 6.8 W of heat at approximately 75 K and 150 W of input power, with a heat rejection temperature of 311 K. The data generated on the ZBO components is essential for the upgrade of the ZBO Cryogenic Analysis Tool to more accurately apply the concept to future missions.
Dynamic simulations for preparing the acceptance test of JT-60SA cryogenic system
NASA Astrophysics Data System (ADS)
Cirillo, R.; Hoa, C.; Michel, F.; Poncet, J. M.; Rousset, B.
2016-12-01
Power generation in the future could be provided by thermo-nuclear fusion reactors like tokamaks. There inside, the fusion reaction takes place thanks to the generation of plasmas at hundreds of millions of degrees that must be confined magnetically with superconductive coils, cooled down to around 4.5 K. Within this frame, an experimental tokamak device, JT-60SA is currently under construction in Naka (Japan). The plasma works cyclically and the coil system is subject to pulsed heat loads. In order to size the refrigerator close to the average power and hence optimizing investment and operational costs, measures have to be taken to smooth the heat load. Here we present a dynamic model of the JT-60SA's Auxiliary Cold box (ACB) for preparing the acceptance tests of the refrigeration system planned in 2016 in Naka. The aim of this study is to simulate the pulsed load scenarios using different process controls. All the simulations have been performed with EcosimPro® and the associated cryogenic library: CRYOLIB.
Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.
2015-01-01
Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.
Development of COPVS for High pressure, In-Space, Cryogenic Fuel Storage
NASA Technical Reports Server (NTRS)
DeLay, Tom; Schneider, Judy; Dyess, Mark; Hastings, Chad; Noorda, Ryan; Noorda, Jared; Patterson, James
2008-01-01
Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. To evaluate the ultimate performance, various polymeric COPV's have been statically burst tested at cryogenic conditions before and after exposure to irradiation. Materials selected for these COPVs were based on the measured mechanical properties of candidate resin systems and fibers that were also tested at cryogenic conditions before and after exposure to irradiation. The correlation of COPV burst pressures with the constituent material properties has proven to be a valuable screening method for selection of suitable candidate materials with resistance to material degradation due to exposure to temperature and radiation.
A sub-Kelvin cryogen-free EPR system.
Melhuish, Simon J; Stott, Chloe; Ariciu, Ana-Maria; Martinis, Lorenzo; McCulloch, Mark; Piccirillo, Lucio; Collison, David; Tuna, Floriana; Winpenny, Richard
2017-09-01
We present an EPR instrument built for operation at Q band below 1K. Our cryogen-free Dewar integrates with a commercial electro-magnet and bridge. A description of the cryogenic and RF systems is given, along with the adaptations to the standard EPR experiment for operation at sub-Kelvin temperatures. As a first experiment, the EPR spectra of powdered Cr 12 O 9 (OH) 3 [Formula: see text] were measured. The sub-Kelvin EPR spectra agree well with predictions, and the performance of the sub-Kelvin system at 5K is compared to that of a commercial spectrometer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal
2016-01-01
The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.
Conceptual design of ACB-CP for ITER cryogenic system
NASA Astrophysics Data System (ADS)
Jiang, Yongcheng; Xiong, Lianyou; Peng, Nan; Tang, Jiancheng; Liu, Liqiang; Zhang, Liang
2012-06-01
ACB-CP (Auxiliary Cold Box for Cryopumps) is used to supply the cryopumps system with necessary cryogen in ITER (International Thermonuclear Experimental Reactor) cryogenic distribution system. The conceptual design of ACB-CP contains thermo-hydraulic analysis, 3D structure design and strength checking. Through the thermohydraulic analysis, the main specifications of process valves, pressure safety valves, pipes, heat exchangers can be decided. During the 3D structure design process, vacuum requirement, adiabatic requirement, assembly constraints and maintenance requirement have been considered to arrange the pipes, valves and other components. The strength checking has been performed to crosscheck if the 3D design meets the strength requirements for the ACB-CP.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a NASA SBIR (Small Business Innovative Research) contract with Johnson Space Center, Aspen Systems developed aerogel-based superinsulation. This super-insulation is an innovative, flexible cryogenic insulation with extremely low thermal conductivity. Potential commercial uses include cryogenic applications in the transportation, storage and transfer of cryogens; near room-temperature applications such as refrigerator insulation; and elevated temperature applications such as insulations for high- temperature industrial processes and furnaces.
NASA Astrophysics Data System (ADS)
Baranov, G. D.; Koresheva, E. R.; Listratov, V. I.; Merkul'ev, Yu A.; Mineev, G. V.; Nikitenko, A. I.; Osipov, I. E.; Rogachev, A. V.; Tolokonnikov, S. M.; Chumanov, A. N.
1989-08-01
It is suggested that cryogenic targets be delivered to the focus of a laser fusion chamber by a "cryogenic gun" system based on the principle of electromagnetic acceleration of a special ferromagnetic plunger carrying a target. The performance of the acceleration unit of the cryogenic gun is considered. Experimental results are reported.
Resistance of Metallic Screens in a Cryogenic Flow
NASA Astrophysics Data System (ADS)
Fischer, Alexander; Stief, Malte
The propellant behaviour in cryogenic upper stages tanks imposes challenging requirements on the design, especially for future upper stages designed for multiple restarts and long ballistic flight phases. The main challenge is the supply of the propellants to the feed system prior to the engine reignition. During the entire mission the engine requires a gaseous and bubble free liquid supply of propellant at the required thermodynamic conditions. The current research focus is to prepare the initial steps for the maturation of the Propellant Management Device (PMD) technology for cryogenic tank systems. Main components of such a PMD are metallic screens. The metallic screens are used as barrier for any gas bubbles within the fluid stream approaching the space craft engines. The screen characteristics are of fundamental importance for the PMD and feed system design. The paper presents a summary on available experimental screen data with regard to the flow resistance and gives a comparison with theoretical and empirical predictions found in literature. The lack on comparable data with regard to space craft applications and the need on further research with cryogenic flows is demonstrated. The DLR Institute of Space Systems is preparing various cryogenic tests to collect the desired information about the flow properties of such metallic screens. The planned test setup and the foreseen experiments will be presented.
Issues of Long-Term Cryogenic Propellant Storage in Microgravity
NASA Technical Reports Server (NTRS)
Muratov, C. B.; Osipov, Viatcheslav V.; Smelyanskiy, Vadim N.
2011-01-01
Modern multi-layer insulation (MLI) allows to sharply reduce the heat leak into cryogenic propellant storage tanks through the tank surface and, as a consequence, significantly extend the storage duration. In this situation the MLI penetrations, such as support struts, feed lines, etc., become one of the most significant challenges of the tanks heat management. This problem is especially acute for liquid hydrogen (LH2) storage, since currently no efficient cryocoolers exist that operate at very low LH2 temperatures (20K). Even small heat leaks under microgravity conditions and over the period of many months give rise to a complex slowly-developing, large-scale spatiotemporal physical phenomena in a multi-phase liquid-vapor mixture. These phenomena are not well-understood nor can be easily controlled. They can be of a potentially hazardous nature for long-term on-orbital cryogenic torage, propellant loading, tank chilldown, engine restart, and other in-space cryogenic fluid management operations. To support the engineering design solutions that would mitigate these effects a detailed physics-based analysis of heat transfer, vapor bubble formation, growth, motion, coalescence and collapse is required in the presence of stirring jets of different configurations and passive cooling devices such as MLI, thermodynamic vent system, and vapor-cooled shield. To develop physics-based models and correlations reliable for microgravity conditions and long-time scales there is a need for new fundamental data to be collected from on-orbit cryogenic storage experiments. Our report discusses some of these physical phenomena and the design requirements and future studies necessary for their mitigation. Special attention is payed to the phenomena occurring near MLI penetrations.
Apollo experience report: The cryogenic storage system
NASA Technical Reports Server (NTRS)
Chandler, W. A.; Rice, R. R.; Allgeier, R. K., Jr.
1973-01-01
A review of the design, development, and flight history of the Apollo cryogenic storage system and of selected components within the system is presented. Discussions are presented on the development history of the pressure vessels, heaters, insulation, and selected components. Flight experience and operational difficulties are reported in detail to provide definition of the problems and applicable corrective actions.
Recent Advances and Applications in Cryogenic Propellant Densification Technology
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
2000-01-01
This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.
Cryogenics for the MuCool Test Area (MTA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darve, Christine; Norris, Barry; Pei, Liu-Jin
2005-09-01
MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R&D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH{sub 2}) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN{sub 2} and LH{sub 2}. The latter dictates stringent system design for hazardous locations.more » The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R&D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.« less
Cryogenics for the MuCool Test Area (MTA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darve, Christine; Norris, Barry; Pei, Liujin
2006-03-20
MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. Themore » cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.« less
Status Of Sorption Cryogenic Refrigeration
NASA Technical Reports Server (NTRS)
Jones, Jack A.
1988-01-01
Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.
NASA Technical Reports Server (NTRS)
Lobmeyer, Dennis A.; Meneghelli, Barry J.
2001-01-01
The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit and escape the bonds of Earth's gravity. In the future there may be other means available; however, currently few of these alternatives can compare to the speed or the ease of use provided by cryogenic chemical propulsion agents. Cryogenics, the science and art of producing cold operating conditions, has become increasingly important to our ability to travel within our solar system. The production and transport of cryogenic fuels as well as the long-term storage of these fluids are necessary for mankind to travel within our solar system. It is with great care and at a significant cost that gaseous compounds such as hydrogen and oxygen are liquified and become dense enough to use for rocket fuel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a complete round-trip. The cost and the size of any expedition to another celestial body are extreme. If we are constrained by the need to take everything necessary (fuel, life support, etc.) for our survival and return, we greatly increase the risk of being able to go. As with the early explorers on Earth, we will need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy sources is paramount to success. Due to the current propulsion system designs, the in-situ processes will require liquefaction and the application of cryogenics. The challenge we face for the near future is to increase our understanding of cryogenic long-term storage and off-world production of cryogenic fluids. We must do this all within the boundaries of very restricted size, weight, and robustness parameters so that we may launch these apparatus from Earth and utilize them elsewhere. Miniaturization, efficiency, and physically robust systems will all play a part in making space exploration possible; however, it is cryogenics that will enable all of this to occur.
Physics Based Model for Cryogenic Chilldown and Loading. Part IV: Code Structure
NASA Technical Reports Server (NTRS)
Luchinsky, D. G.; Smelyanskiy, V. N.; Brown, B.
2014-01-01
This is the fourth report in a series of technical reports that describe separated two-phase flow model application to the cryogenic loading operation. In this report we present the structure of the code. The code consists of five major modules: (1) geometry module; (2) solver; (3) material properties; (4) correlations; and finally (5) stability control module. The two key modules - solver and correlations - are further divided into a number of submodules. Most of the physics and knowledge databases related to the properties of cryogenic two-phase flow are included into the cryogenic correlations module. The functional form of those correlations is not well established and is a subject of extensive research. Multiple parametric forms for various correlations are currently available. Some of them are included into correlations module as will be described in details in a separate technical report. Here we describe the overall structure of the code and focus on the details of the solver and stability control modules.
Cryogenic fluid management in space
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1988-01-01
Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.
Reliability Testing on the CTI-Cryogenic 1 Watt Integral Cooler (HD- 1033C/UA)
1989-09-01
SUBJECT TERMS (Continue on reverse if necessary and identify by block numbe) FIELD GROUP SUB- GROUP Cryocooler, Stirling Cycle, Cryogenics 19, ABSTRCT...the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers... controlled high/low temperature chamber. * A microprocessor which was programmed to automatically cycle the temperature in the chamber in accordance
Research of the cold shield in cryogenic liquid storage
NASA Astrophysics Data System (ADS)
Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.
2017-12-01
To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.
The 26th Space Cryogenic Workshop: Overview, Description of Presentations, and List of Abstracts
NASA Technical Reports Server (NTRS)
Hartwig, Jason; Plachta, David; Shirron, Peter; Huget, Laurie
2016-01-01
This is a summary of the 2015 Space Cryogenics Workshop that was held in Phoenix, Arizona, June 24 to 26, 2015. The workshop was organized by David Plachta and Jason Hartwig of the Cryogenics and Fluid Systems Branch at NASA Glenn Research Center, and continued the tradition of bringing together specialists in the field of space cryogenics to discuss upcoming and potential space missions, and the development of technologies that support or-more often-are enabling for the science and exploration goals of the world's space agencies. The workshop consisted of two days of talks and poster sessions, and provided ample opportunity for more informal discussions that foster collaborations and cooperation in the space cryogenics community. Selected papers from the workshop are published in a special issue of Cryogenics, which is expected to be published by the end of 2015.
Cryogenic system configuration for the International Linear Collider (ILC) at mountainous site
NASA Astrophysics Data System (ADS)
Nakai, H.; Okamura, T.; Delikaris, D.; Peterson, T.; Yamamoto, A.
2017-02-01
The International Linear Collider (ILC) plans to make use of ten cryoplants for its main linacs, each providing 19 kW at 4.5 K equivalent and among of it 3.6 kW at 2 K. Each cryoplant will consist of various cryogenic components such as a 4.5 K refrigerator cold box, a 2 K refrigerator cold box, and helium compressors and so on. In the technical design report (TDR) of the ILC, due to the mountainous topology, almost all cryogenic components would be installed in underground cryogenic caverns next to the main linac tunnels and only cooling towers on surface area. However, we would like to find a more effective and sophisticated configuration of the cryoplant components (cryogenic configuration). Under several constraints of technical, geographical, and environmental points of view, the cryogenic configuration should be considered carefully to satisfy such various conditions. After discussions on this topic conducted at various workshops and conferences, an updated cryogenic configuration is suggested. The proposed updated configuration may affect the total construction cost of the ILC and the entire structure of the ILC conventional facilities. The updated cryogenic configuration is presented and the on-going discussions with the conventional facilities and siting (CFS) colleagues for further improvement of the cryogenic configuration is introduced.
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Kilgore, W. Allen
1992-01-01
The NASA Langley 0.3-m Transonic Cryogenic Tunnel is to be modified to operate with sulfur hexafluoride gas while retaining its present capability to operate with nitrogen. The modified tunnel will provide high Reynolds number flow on aerodynamic models with two different test gases. The document details a study of the SF6 tunnel performance boundaries, thermodynamic modeling of the tunnel process, nonlinear dynamical simulation of math model to yield tunnel responses, the closed loop control requirements, control laws, and mechanization of the control laws on the microprocessor based controller.
Nanotribological behavior of deep cryogenically treated martensitic stainless steel
Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban
2017-01-01
Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally. PMID:28904837
Nanotribological behavior of deep cryogenically treated martensitic stainless steel.
Prieto, Germán; Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban
2017-01-01
Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic-plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geynisman, M.; Bremer, J.; Chalifour, M.
The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements formore » the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.« less
ARIEL E-linac Cryogenic System: Commissioning and First Operational Experience
NASA Astrophysics Data System (ADS)
Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Kishi, D.; Laxdal, R.; Ma, Y.; Nagimov, R.; Yosifov, D.
2015-12-01
The Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Isotope Separator and Accelerator (ISAC) facility at TRIUMF. A key part of the ARIEL project is a 10 mA 50 MeV continuous-wave superconducting radiofrequency (SRF) electron linear accelerator (e-linac). The 1.3 GHz SRF cavities are operated at 2 K. HELIAL LL helium liquefier by Air Liquide Advanced Technologies (ALAT) with a tuneable liquid helium (LHe) production was installed and commissioned in Q4’2013 [1]. It provides 4 K liquid helium to one injector and one accelerator cryomodules that were installed and tested in 2014. The 4 K to 2 K liquid helium transition is achieved on-board of each cryomodule. The cryoplant, LHe and LN2 distributions, sub-atmospheric (S/A) system and cryomodules were successfully commissioned and integrated into the e-linac cryogenic system. Required pressure regulation for both 4 K cryoplant in the Dewar and 2 K with the S/A system was achieved under simulated load. Final integration tests confirmed overall stable performance of the cryogenic system with two cryomodules installed. The paper presents details of the cryogenic system commissioning tests as well as highlights of the initial operational experience.
NASA Astrophysics Data System (ADS)
Geynisman, M.; Bremer, J.; Chalifour, M.; Delaney, M.; Dinnon, M.; Doubnik, R.; Hentschel, S.; Kim, M. J.; Montanari, C.; Montanari, D.; Nichols, T.; Norris, B.; Sarychev, M.; Schwartz, F.; Tillman, J.; Zuckerbrot, M.
2017-12-01
The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ∼260 tons) and SBN’s Far Detector (SBN-FD, ∼760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Naylor, Guy R.; Haskell, William D.; Breznik, Greg S.; Mizell, Carolyn A.; Helms, William R.; Voska, N. (Technical Monitor)
2002-01-01
An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.
CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis
NASA Technical Reports Server (NTRS)
Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark
2012-01-01
The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.
Technologies for Refueling Spacecraft On-Orbit
NASA Technical Reports Server (NTRS)
Chato, David J.
2000-01-01
This paper discusses the current technologies for on-orbit refueling of spacecraft. The findings of 55 references are reviewed and summarized. Highlights include: (1) the Russian Progress system used by the International Space Station; (2) a flight demonstration of superfluid helium transfer; and (3) ground tests of large cryogenic systems. Key technologies discussed include vapor free liquid outflow, control of fluid inflow to prevent liquid venting, and quick disconnects for on-orbit mating of transfer lines.
NASA Astrophysics Data System (ADS)
Reby Roy, K. E.; Mohammed, Jesna; Abhiroop, V. M.; Thekkethil, S. R.
2017-02-01
Cryogenic fluids have many applications in space, medicine, preservation etc. The chill-down of cryogenic fluid transfer line is a complicated phenomenon occurring in most of the cryogenic systems. The cryogenic fluid transfer line, which is initially at room temperature, has to be cooled to the temperature of the cryogen as fast as possible. When the cryogenic fluid at liquid state passes along the line, transient heat transfer between the cryogen and the transfer line causes voracious evaporation of the liquid. This paper makes a contribution to the two-phase flow along a rectangular flow passage consisting of an array of elliptically shaped matrix elements. A simplified 2D model is considered and the problem is solved using ANSYS FLUENT. The present analysis aims to study the influence of the slenderness ratio of matrix elements on the heat transfer rate and chill down time. For a comparative study, matrix elements of slenderness ratios 5 and 10 are considered. Liquid nitrogen at 74K flows through the matrix. The material of the transfer line is assumed to be aluminium which is initially at room temperature. The influence of Reynolds numbers from 800 to 3000 on chill-down is also investigated.
Cryogenic Fluid Transfer for Exploration
NASA Technical Reports Server (NTRS)
Chato, David J.
2007-01-01
This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost effective approaches to the required on-orbit demonstration are suggested.
Cryogenic Fluid Transfer for Exploration
NASA Technical Reports Server (NTRS)
Chato, David J.
2008-01-01
This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost-effective approaches to the required on-orbit demonstration are suggested.
Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.
1988-01-01
A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.
Cryogenic System for the Cryomodule Test Stand at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Michael J.; Hansen, Benjamin; Klebaner, Arkadiy
This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description ofmore » the heat load measurement plan.« less
Reusable Cryogenic Tank VHM Using Fiber Optic Distributed Sensing Technology
NASA Technical Reports Server (NTRS)
Bodan-Sanders, Patricia; Bouvier, Carl
1998-01-01
The reusable oxygen and hydrogen tanks are key systems for both the X-33 (sub-scale, sub-orbital technology demonstrator) and the commercial Reusable Launch Vehicle (RLV). The backbone of the X-33 Reusable Cryogenic Tank Vehicle Health Management (VHM) system lies in the optical network of distributed strain temperature and hydrogen sensors. This network of fiber sensors will create a global strain and temperature map for monitoring the health of the tank structure, cryogenic insulation, and Thermal Protection System. Lockheed Martin (Sanders and LMMSS) and NASA Langley have developed this sensor technology for the X-33 and have addressed several technical issues such as fiber bonding and laser performance in this harsh environment.
Performance tests of a cryogenic hybrid magnetic bearing for turbopumps
NASA Technical Reports Server (NTRS)
Dirusso, Eliseo; Brown, Gerald V.
1992-01-01
Experiments were performed on a Hybrid Magnetic Bearing designed for cryogenic applications such as turbopumps. This bearing is considerably smaller and lighter than conventional magnetic bearings and is more efficient because it uses a permanent magnet to provide a bias flux. The tests were performed in a test rig that used liquid nitrogen to simulate cryogenic turbopump temperatures. The bearing was tested at room temperature and at liquid nitrogen temperature (-320 F). The maximum speed for the test rig was 14000 rpm. For a magnetic bearing stiffness of 20000 lb/in, the flexible rotor had two critical speeds. A static (nonrotating) bearing stiffness of 85000 lb/in was achieved. Magnetic bearing stiffness, permanent magnet stiffness, actuator gain, and actuator force interaction between two axes were evaluated, and controller/power amplifier characteristics were determined. The tests revealed that it is feasible to use this bearing in the cryogenic environment and to control the rotor dynamics of flexible rotors when passing through bending critical speeds. The tests also revealed that more effort should be placed on enhancing the controller to achieve higher bearing stiffness and on developing displacement sensors that reduce drift caused by temperature and reduce sensor electrical noise.
Continued Development of a Precision Cryogenic Dilatometer for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Karlmann, Paul B.; Dudik, Matthew J.; Halverson, Peter G.; Levine, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart; VanBuren, David
2004-01-01
As part of the James Webb Space Telescope (JWST) materials working group, a novel cryogenic dilatometer was designed and built at NASA Jet Propulsion Laboratory to help address stringent coefficient of thermal expansion (CTE) knowledge requirements. Previously reported results and error analysis have estimated a CTE measurement accuracy for ULE of 1.7 ppb/K with a 20K thermal load and 0.1 ppb/K with a 280K thermal load. Presented here is a further discussion of the cryogenic dilatometer system and a description of recent work including system modifications and investigations.
Inexpensive cryogenic insulation replaces vacuum jacketed line
NASA Technical Reports Server (NTRS)
Fuchs, C. E.
1967-01-01
Commercially available aluminized Mylar, cork and fiber glass form a multilayered sealed system and provide rugged and economical field installed insulation for cryogenic /liquid nitrogen or oxygen/ pipe lines in an exposed environment.
NASA Technical Reports Server (NTRS)
Shideler, J. L.; Swegle, A. R.; Fields, R. A.
1982-01-01
The status of the structural development of an integral cryogenic-tankage/hot-fuselage concept for future space transportation systems is reviewed. The concept comprises a honeycomb sandwich structure that serves the combined functions of containing the cryogenic fuel, supporting the vehicle loads, and protecting the spacecraft from entry heating. The inner face sheet is exposed to cryogenic temperature of -423 F during boost; the outer face sheet, which is slotted to reduce thermal stress, is exposed to a maximum temperature of 1400 F during a high-altitude gliding entry. Attention is given to the development of a fabrication process for a Rene 41 honeycomb sandwich panel with a core density of less than 1 percent that is consistent with desirable heat treatment processes for high strength.
NASA Technical Reports Server (NTRS)
Shideler, J. J.; Swegle, A. R.; Fields, R. A.
1982-01-01
The status of the structural development of an integral cryogenic-tankage/hot-fuselage concept for future space transportation systems (STS) is discussed. The concept consists of a honeycomb sandwich structure which serves the combined functions of containment of cryogenic fuel, support of vehicle loads, and thermal protection from an entry heating environment. The inner face sheet is exposed to a cryogenic (LH2) temperature of -423 F during boost; and the outer face sheet, which is slotted to reduce thermal stress, is exposed to a maximum temperature of 1400 F during a high altitude, gliding entry. A fabrication process for a Rene' 41 honeycomb sandwich panel with a core density less than 1 percent was developed which is consistent with desirable heat treatment processes for high strength.
NASA Astrophysics Data System (ADS)
Lees, A.; Koettig, T.; Fernandes, M.; Tan, J.
2017-02-01
The Cryogenic Current Comparator (CCC) is installed in the low-energy Antiproton Decelerator (AD) at CERN to make an absolute measurement of the beam intensity. Operating below 4.2 K, it is based on a superconducting quantum interference device (SQUID) and employs a superconducting niobium shield to supress magnetic field components not linked to the beam current. The AD contains no permanent cryogenic infrastructure so the local continuous liquefaction of helium using a pulse-tube is required; limiting the available cooling power to 0.69 W at 4.2K. Due to the sensitivity of the SQUID to variations in magnetic fields, the CCC is highly sensitive to mechanical vibration which is limited to a minimum by the support systems of the cryostat. This article presents the cooling system of the cryostat and discusses the design challenges overcome to minimise the transmission of vibration to the CCC while operating within the cryogenic limits imposed by the cooling system.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Taylor, William J.; Ginty, Carol A.; Melis, Matthew E.
2014-01-01
This presentation provides an overview of the Cryogenic Propellant Storage and Transfer (CPST) Mission from formulation through Systems Requirements Review and into preparation for Preliminary Design Review. Accomplishments of the technology maturation phase of the project are included. The presentation then summarizes the transition, due to Agency budget constraints, of CPST from a flight project into a ground project titled evolvable Cryogenics (eCryo).
Problems associated with operations and measurement in cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Blanchard, A.; Delcourt, V.; Plazanet, M.
1986-01-01
Cryogenic wind tunnel T'3 under continuous blower operation has been the object of improvements and the installation of auxiliary equipment, dealing in particular with the enlargement of the liquid nitrogen injection reservoir and the hook-up to a fast data acquisition system. Following a brief description of the installation and its functioning, we present the main experimental techniques and the instrumentation used in the cryogenic environment.
Harding, D. R.; Ulreich, J.; Wittman, M. D.; ...
2017-12-06
Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less
Advanced Devices for Cryogenic Thermal Management
NASA Astrophysics Data System (ADS)
Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.
2006-04-01
This paper describes six advanced cryogenic thermal management devices/subsystems developed by Swales Aerospace for ground/space-based applications of interest to NASA, DoD, and the commercial sector. The devices/subsystems described herein include the following: (a) a differential thermal expansion cryogenic thermal switch (DTE-CTSW) constructed with high purity aluminum end-pieces and an Ultem support rod for the 6 K Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) (b) a quad-redundant DTE-CTSW assembly for the 35 K science instruments (NIRCam, NIRSpec, and FGS) mounted on the JWST Integrated Science Instrument Module (ISIM) (c) a cryogenic diode heat pipe (CDHP) thermal switching system using methane as the working fluid for the 100 K CRISM hyperspectral mapping instrument on the Mars Reconnaissance Orbiter (MRO) and (d) three additional devices/subsystems developed during the AFRL-sponsored CRYOTOOL program, which include a dual DTE-CTSW/dual cryocooler test bed, a miniaturized neon cryogenic loop heat pipe (mini-CLHP), and an across gimbal cryogenic thermal transport system (GCTTS). For the first three devices/subsystems mentioned above, this paper describes key aspects of the development efforts including concept definition, design, fabrication, and testing. For the latter three, this paper provides brief overview descriptions as key details are provided in a related paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, D. R.; Ulreich, J.; Wittman, M. D.
Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less
Development of a distributed-parameter mathematical model for simulation of cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Tripp, J. S.
1983-01-01
A one-dimensional distributed-parameter dynamic model of a cryogenic wind tunnel was developed which accounts for internal and external heat transfer, viscous momentum losses, and slotted-test-section dynamics. Boundary conditions imposed by liquid-nitrogen injection, gas venting, and the tunnel fan were included. A time-dependent numerical solution to the resultant set of partial differential equations was obtained on a CDC CYBER 203 vector-processing digital computer at a usable computational rate. Preliminary computational studies were performed by using parameters of the Langley 0.3-Meter Transonic Cryogenic Tunnel. Studies were performed by using parameters from the National Transonic Facility (NTF). The NTF wind-tunnel model was used in the design of control loops for Mach number, total temperature, and total pressure and for determining interactions between the control loops. It was employed in the application of optimal linear-regulator theory and eigenvalue-placement techniques to develop Mach number control laws.
Thermodynamic Vent System Test in a Low Earth Orbit Simulation
NASA Technical Reports Server (NTRS)
VanOverbeke, Thomas J.
2004-01-01
A thermodynamic vent system for a cryogenic nitrogen tank was tested in a vacuum chamber simulating oxygen storage in low earth orbit. The nitrogen tank was surrounded by a cryo-shroud at -40 F. The tank was insulated with two layers of multi-layer insulation. Heat transfer into cryogenic tanks causes phase change and increases tank pressure which must be controlled. A thermodynamic vent system was used to control pressure as the location of vapor is unknown in low gravity and direct venting would be wasteful. The thermodynamic vent system consists of a Joule-Thomson valve and heat exchanger installed on the inlet side of the tank mixer-pump. The combination is used to extract thermal energy from the tank fluid, reducing temperature and ullage pressure. The system was sized so that the tank mixer-pump operated a small fraction of the time to limit motor heating. Initially the mixer used sub-cooled liquid to cool the liquid-vapor interface inducing condensation and pressure reduction. Later, the thermodynamic vent system was used. Pressure cycles were performed until steady-state operation was demonstrated. Three test runs were conducted at tank fills of 97, 80, and 63 percent. Each test was begun with a boil-off test to determine heat transfer into the tank. The lower tank fills had time averaged vent rates very close to steady-state boil-off rates showing the thermodynamic vent system was nearly as efficient as direct venting in normal gravity.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Valenzuela, Juan; LeClair, Andre; Moder, Jeff
2015-01-01
This paper presents a numerical model of a system-level test bed - the multipurpose hydrogen test bed (MHTB) using Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a fully integrated space transportation vehicle liquid hydrogen (LH2) propellant tank and was tested at Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume based network flow analysis software developed at MSFC and used for thermo-fluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger, and a mixing pump and spray to extract thermal energy from the tank without significant loss of liquid propellant. Two GFSSP models (Self-Pressurization & TVS) were separately developed and tested and then integrated to simulate the entire system. Self-Pressurization model consists of multiple ullage nodes, propellant node and solid nodes; it computes the heat transfer through Multi-Layer Insulation blankets and calculates heat and mass transfer between ullage and liquid propellant and ullage and tank wall. TVS model calculates the flow through J-T valve, heat exchanger and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. The integrated models results have been compared with MHTB test data of 50% fill level. Satisfactory comparison was observed between test and numerical predictions.
High-Areal-Density Fuel Assembly in Direct-Drive Cryogenic Implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangster, T.C.; Goncharov, V.N.; Radha, P.B.
The first observation of ignition-relevant areal-density deuterium from implosions of capsules with cryogenic fuel layers at ignition-relevant adiabats is reported. The experiments were performed on the 60-beam, 30-kJUV OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Neutron-averaged areal densities of 202+-7 mg/cm^2 and 182+-7 mg/cm^2 (corresponding to estimated peak fuel densities in excess of 100 g/cm^3) were inferred using an 18-kJ direct-drive pulse designed to put the converging fuel on an adiabat of 2.5. These areal densities are in good agreement with the predictions of hydrodynamic simulations indicating that the fuel adiabat can be accuratelymore » controlled under ignition-relevant conditions.« less
Integration Of Launch Vehicle Simulation/Analysis Tools And Lunar Cargo Lander Design. Part 2/2
NASA Technical Reports Server (NTRS)
DeJean, George Brian; Shiue, Yeu-Sheng Paul; King, Jeffrey
2005-01-01
Part 2, which will be discussed in this report, will discuss the development of a Lunar Cargo Lander (unmanned launch vehicle) that will transport usable payload from Trans- Lunar Injection to the moon. The Delta IV-Heavy was originally used to transport the Lunar Cargo Lander to TLI, but other launch vehicles have been studied. In order to uncover how much payload is possible to land on the moon, research was needed in order to design the sub-systems of the spacecraft. The report will discuss and compare the use of a hypergolic and cryogenic system for its main propulsion system. The guidance, navigation, control, telecommunications, thermal, propulsion, structure, mechanisms, landing gear, command, data handling, and electrical power sub-systems were designed by scaling off other flown orbiters and moon landers. Once all data was collected, an excel spreadsheet was created to accurately calculate the usable payload that will land on the moon along with detailed mass and volume estimating relations. As designed, The Lunar Cargo Lander can plant 5,400 lbm of usable payload on the moon using a hypergolic system and 7,400 lbm of usable payload on the moon using a cryogenic system.
Superconductor Digital-RF Receiver Systems
NASA Astrophysics Data System (ADS)
Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan
Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.
Centaur Test Bed (CTB) for Cryogenic Fluid Management
NASA Technical Reports Server (NTRS)
Sakla, Steven; Kutter, Bernard; Wall, John
2006-01-01
Future missions such as NASA s space exploration vision and DOD satellite servicing will require significant increases in the understanding and knowledge of space based cryogenic fluid management (CFM), including the transfer and storage of cryogenic fluids. Existing CFM capabilities are based on flight of upper stage cryogenic vehicles, scientific dewars, a few dedicated flight demonstrations and ground testing. This current capability is inadequate to support development of the CEV cryogenic propulsion system, other aspects of robust space exploration or the refueling of satellite cryo propulsion systems with reasonable risk. In addition, these technologies can provide significant performance increases for missions beyond low-earth orbit to enable manned missions to the Moon and beyond. The Centaur upper-stage vehicle can provide a low cost test platform for performing numerous flight demonstrations of the full breadth of required CFM technologies to support CEV development. These flight demonstrations can be performed as secondary mission objectives using excess LH2 and/or LO2 from the main vehicle propellant tanks following primary spacecraft separation at minimal cost and risk.
Refrigeration and Cryogenics Specialist. J3ABR54530
ERIC Educational Resources Information Center
Air Force Training Command, Sheppard AFB, TX.
This document package contains an Air Force course used to train refrigeration and cryogenics specialists. The course is organized in six blocks designed for group instruction. The blocks cover the following topics: electrical principles; fundamentals of tubing and piping; metering devices, motor controls, domestic and commercial refrigeration;…
Worwetz, H.A.
1975-09-02
This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)
Silva Elipe, Maria Victoria; Donovan, Neil; Krull, Robert; Pooke, Donald; Colson, Kimberly L
2018-04-17
After years towards higher field strength magnets, nuclear magnetic resonance (NMR) technology in commercial instruments in the past decade has expanded at low and high magnetic fields to take advantage of new opportunities. At lower field strengths, permanent magnets are well established, whereas for midrange and high field, developments utilize superconducting magnets cooled with cryogenic liquids. Recently, the desire to locate NMR spectrometers in nontypical NMR laboratories has created interest in the development of cryogen-free magnets. These magnets require no cryogenic maintenance, eliminating routine filling and large cryogen dewars in the facility. Risks of spontaneous quenches and safety concerns when working with cryogenic liquids are eliminated. The highest field commercially available cryogen-free NMR magnet previously reported was at 4.7 T in 2013. Here we tested a prototype cryogen-free 9.4-T power-driven high-temperature-superconducting (HTS) magnet mated to commercial NMR spectrometer electronics. We chose cinacalcet HCl, a typical active pharmaceutical ingredient, to evaluate its performance towards structure elucidation. Satisfactory standard 1D and 2D homonuclear and heteronuclear NMR results were obtained and compared with those from a standard 9.4-T cryogenically cooled superconducting NMR instrument. The results were similar between both systems with minor differences. Further comparison with different shims and probes in the HTS magnet system confirmed that the magnet homogeneity profile could be matched with commercially available NMR equipment for optimal results. We conclude that HTS magnet technology works well providing results comparable with those of standard instruments, leading us to investigate additional applications for this magnet technology outside a traditional NMR facility. Copyright © 2018 John Wiley & Sons, Ltd.
Carbon fiber composites for cryogenic filament-wound vessels
NASA Technical Reports Server (NTRS)
Larsen, J. V.; Simon, R. A.
1972-01-01
Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.
NASA Technical Reports Server (NTRS)
Augustynowicz, S. D.; Fesmire, James E.; Steinrock, T. (Technical Monitor)
2001-01-01
A unique research program, including a comprehensive study of thermal performance at cryogenic vacuum insulation systems, was performed at the NASA Kennedy Space Center. The main goal was to develop a new soft vacuum system (from 1 torr to 10 torr) that provides an intermediate level of performance (k-value below 4.8 mW/m-K). Liquid nitrogen boil-off methods were used to test conventional materials, novel materials, and certain combinations. The test articles included combinations of aluminum foil, fiberglass paper, polyester fabric, silica aerogel composite blanket, fumed silica, silica aerogel powder, and syntactic foam. A new LCI system was developed at the Cryogenics Test Laboratory. This system performs exceptionally well at soft vacuum levels and nearly as good as an MLI at high vacuum levels. Apparent thermal conductivities for the LCI range from 2 mW/m-K at soft vacuum to 0.1 mW/m-K at high vacuum. Several cryostats were designed, constructed, and calibrated by the Cryogenics Test Laboratory at KSC NASA as part of this research program. The cryostat test apparatus is a liquid nitrogen boil-off calorimeter system for direct measurement of the apparent thermal conductivity at a fixed vacuum level between 5 x 10(exp -5) and 760 torr. The apparatus is also used for transient measurements of temperature profiles. The development of efficient, robust cryogenic insulation systems has been a targeted area of research for a number of years. Improved methods of characterization, testing, and evaluation of complex biological substance systems for cryosurgery and cryobiology are the focus of this paper.
High-resolution x-ray spectroscopy with the EBIT Calorimeter Spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, F. Scott; Adams, Joseph S.; Kelley, Richard L.
The EBIT Calorimeter Spectrometer (ECS) is a production-class 36 pixel x-ray calorimeter spectrometer that has been continuously operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory for almost 2 years. The ECS was designed to be a long-lifetime, turn-key spectrometer that couples high performance with ease of operation and minimal operator intervention. To this end, a variant of the Suzaku/XRS spaceflight detector system has been coupled to a low-maintenance cryogenic system consisting of a long-lifetime liquid He cryostat, and a closed cycle, {sup 3}He pre-cooled adiabatic demagnetization refrigerator. The ECS operates for almost 3 weeksmore » between cryogenic servicing and the ADR operates at 0.05 K for more than 60 hours between automatic recycles under software control. Half of the ECS semiconductor detector array is populated with mid-band pixels that have a resolution of 4.5 eV FWHM, a bandpass from 0.05-12 keV, and a quantum efficiency of 95% at 6 keV. The other half of the array has thick HgTe absorbers that have a bandpass from 0.3 to over 100 keV, an energy resolution of 33 eV FWHM, and a quantum efficiency of 32% at 60 keV. In addition, the ECS uses a real-time, autonomous, data collection and analysis system developed for the Suzaku/XRS instrument and implemented in off-the-shelf hardware for the ECS. Here we will discuss the performance of the ECS instrument and its implementation as a turnkey cryogenic detector system.« less