NASA Technical Reports Server (NTRS)
1973-01-01
An analysis of cryogenic fluid cooling in the environmental control system of the space shuttle was conducted. The technique for treating the cryogenic fluid storage and supply tanks and subsystems as integrated systems was developed. It was concluded that a basic incompatibility exists between the heat generated and the cryogen usage rate and cryogens cannot be used to absorb the generated heat. The use of radiators and accumulators to provide additional cooling capability is recommended.
Gas-Surface Interactions in Cryogenic Whole Air Sampling.
1981-05-01
analysis using electron paramagnetic resonance (EPR) for the cryofrost in the solid phase, and gas chromatography for samples desorbed to the gas...e.g. cryogenic-fraction (used on occasion), and/or controlled vaporization, followed by analysis using NO xchemiluminescence, gas chromatography , and...CS202 closed cycle cryogenic refrigerator, which employs helium as the working fluid . This refrigerator is comprised of two basic sections - an
Cryogenic fluid management in space
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1988-01-01
Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.
Temperature Stratification in a Cryogenic Fuel Tank
NASA Technical Reports Server (NTRS)
Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory
2013-01-01
A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.
Study of low gravity propellant transfer
NASA Technical Reports Server (NTRS)
1972-01-01
The results are presented of a program to perform an analytical assessment of potential methods for replenishing the auxiliary propulsion, fuel cell and life support cryogens which may be aboard an orbiting space station. The fluids involved are cryogenic H2, O2, and N2. A complete transfer system was taken to consist of supply storage, transfer, and receiver tank fluid conditioning (pressure and temperature control). In terms of supply storage, the basic systems considered were high pressure (greater than critical), intermediate pressure (less than critical), and modular (transfer of the tanks). Significant findings are included.
PIP-II Cryogenic System and the Evolution of Superfluid Helium Cryogenic Plant Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy
2017-01-01
PIP-II cryogenic system: Superfluid Helium Cryogenic Plant (SHCP) and Cryogenic Distribution System (CDS) connecting the SHCP and the SC Linac (25 cryomodules) PIP-II Cryogenic System Static and dynamic heat loads for the SC Linac and static load of CDS listed out Simulation study carried out to compute SHe flow requirements for each cryomodule Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation presented From computed heat load and pressure drop values, SHCP basic specifications evolved.
Some General Principles in Cryogenic Design, Implementation, and Testing
NASA Technical Reports Server (NTRS)
Dipirro, Michael James
2015-01-01
Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.
The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material
NASA Technical Reports Server (NTRS)
Gamwell, Wayne R.; McGill, Preston B.
2003-01-01
Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.
An Overview of NASA's In-Space Cryogenic Propellant Management Technologies
NASA Technical Reports Server (NTRS)
Tucker, Stephen; Hastings, Leon; Haynes, Davy (Technical Monitor)
2001-01-01
Future mission planning within NASA continues to include cryogenic propellants for in space transportation, with mission durations ranging from days to years. Between 1995 and the present, NASA has pursued a diversified program of ground-based testing to prepare the various technologies associated with in-space cryogenic fluid management (CFM) for implementation. CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. NASA CFM technologies are planned, coordinated, and implemented through the Cryogenic Technology Working Group which is comprised of representatives from the various NASA Centers as well as the National Institute of Standards and Technologies (NIST) and, on selected occasions, the Air Force. An overview of the NASA program and Marshall Space Flight Center (MSFC) roles, accomplishments, and near-term activities are presented herein. Basic CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. Recent MSFC accomplishments include: the large scale demonstration of a high performance variable density multilayer insulation (MLI) that reduced the boiloff by about half that of standard MLI; utilization of a foam substrate under MLI to eliminate the need for a helium purge bag system; demonstrations of both spray-bar and axial-jet mixer concepts for zero gravity pressure control; and sub-scale testing that verified an optical sensor concept for measuring liquid hydrogen mass in zero gravity. In response to missions requiring cryogenic propellant storage durations on the order of years, a cooperative effort by NASA's Ames Research Center, Glenn Research Center, and MSFC has been implemented to develop and demonstrate zero boiloff concepts for in-space storage of cryogenic propellants. An MSFC contribution to this cooperative effort is a large-scale demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Testing is expected during the Summer of 2001.
Automatic control of cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Balakrishna, S.
1989-01-01
Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with fixed Mach number control is demonstrated.
Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell
1998-01-01
Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.
Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.
2005-01-01
Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.
Filament-wound, fiberglass cryogenic tank supports
NASA Technical Reports Server (NTRS)
Carter, J. S.; Timberlake, T. E.
1971-01-01
The design, fabrication, and testing of filament-wound, fiberglass cryogenic tank supports for a LH2 tank, a LF2/FLOX tank and a CH4 tank. These supports consist of filament-wound fiberglass tubes with titanium end fittings. These units were satisfactorily tested at cryogenic temperatures, thereby offering a design that can be reliably and economically produced in large or small quantities. The basic design concept is applicable to any situation where strong, lightweight axial load members are desired.
Preliminary design of the cryogenic cooled limb scanning interferometer radiometer (CLIR)
NASA Technical Reports Server (NTRS)
Sherman, A.
1978-01-01
The preliminary design of the cryogenic cooling system for the Cryogenic Cooled Limb Scanning Interferometer Radiometer (CLIR) instrument to be flown on the Atmospheric Magnetospheric Physics Satellite (AMPS) was studied. The top level trade studies were extensive due to the instrument requirement for cooling at three temperature levels as opposed to the two levels initially described for the instrument. Approximately 12 different combinations of cryogens were investigated. The basic lifetime requirement for the instrument was 30 days. However, studies were also conducted for a follow-up mission requiring a 1 year lifetime. The top level trades led to the selection of a single stage supercritical helium baseline.
Cryogenic target formation using cold gas jets
Hendricks, Charles D.
1981-01-01
A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.
Cryogenic target formation using cold gas jets
Hendricks, Charles D. [Livermore, CA
1980-02-26
A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.
The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy
NASA Technical Reports Server (NTRS)
Gamwell, W. R.
2002-01-01
Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."
NASA Technical Reports Server (NTRS)
Johnson, Wesley; Tomsik, Thomas; Moder, Jeff
2014-01-01
Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.
Cryogenic target formation using cold gas jets
Hendricks, C.D.
1980-02-26
A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.
PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy
2017-07-06
The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes ofmore » operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.« less
Tank Pressure Control Experiment on the Space Shuttle
NASA Technical Reports Server (NTRS)
1989-01-01
The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.
Cryogenic Technology Development for Exploration Missions
NASA Technical Reports Server (NTRS)
Chato, David J.
2007-01-01
This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.
Thermal Control Working Group report
NASA Technical Reports Server (NTRS)
Haslett, Robert; Mahefkey, E. Thomas
1986-01-01
The Thermal Control Working Group limited its evaluation to issues associated with Earth orbiting and planetary spacecraft with power levels up to 50 kW. It was concluded that the space station technology is a necessary precursor but does not meet S/C 2000 needs (life, high heat flux, long term cryogenics, and survivability). Additional basic and applied research are required (fluid/materials compatibility and two phase system modeling). Scaling, the key issue, must define accelerated life test criteria. The two phase systems require 0g to 1 g correlation. Additional ground test beds are required and combined space environment tests of materials.
NASA Astrophysics Data System (ADS)
Joshi, D. M.
2017-09-01
Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.
Jiang, Hui; He, Yan; He, Yumei; Li, Aiguo; Wang, Hua; Zheng, Yi; Dong, Zhaohui
2015-11-01
Ru/C multilayer monochromators with different periodic thicknesses were investigated using X-ray grazing-incidence reflectivity, diffuse scattering, Bragg imaging, morphology testing, etc. before and after cryogenic cooling. Quantitative analyses enabled the determination of the key multilayer structural parameters for samples with different periodic thicknesses, especially the influence from the ruthenium crystallization. The results also reveal that the basic structures and reflection performance keep stable after cryogenic cooling. The low-temperature treatment smoothed the surfaces and interfaces and changed the growth characteristic to a low-frequency surface figure. This study helps with the understanding of the structure evolution of multilayer monochromators during cryogenic cooling and presents sufficient experimental proof for using cryogenically cooled multilayer monochromators in a high-thermal-load undulator beamline.
NASA Astrophysics Data System (ADS)
1991-08-01
Consideration is given to operational characteristics of future launch vehicles, trends in propulsion technology, technology challenges in the development of cryogenic propulsion systems for future reusable space-launch vehicles, estimation of the overall drag coefficient of an aerospace plane, and self-reliance in aerospace structures. Attention is also given to basic design concepts for smart actuators for aerospace plane control, a software package for the preliminary design of a helicopter, and multiconstraint wing optimization.
NASA Astrophysics Data System (ADS)
Antony, Joby; Mathuria, D. S.; Chaudhary, Anup; Datta, T. S.; Maity, T.
2017-02-01
Cryogenic network for linear accelerator operations demand a large number of Cryogenic sensors, associated instruments and other control-instrumentation to measure, monitor and control different cryogenic parameters remotely. Here we describe an alternate approach of six types of newly designed integrated intelligent cryogenic instruments called device-servers which has the complete circuitry for various sensor-front-end analog instrumentation and the common digital back-end http-server built together, to make crateless PLC-free model of controls and data acquisition. These identified instruments each sensor-specific viz. LHe server, LN2 Server, Control output server, Pressure server, Vacuum server and Temperature server are completely deployed over LAN for the cryogenic operations of IUAC linac (Inter University Accelerator Centre linear Accelerator), New Delhi. This indigenous design gives certain salient features like global connectivity, low cost due to crateless model, easy signal processing due to integrated design, less cabling and device-interconnectivity etc.
Magnetically Actuated Propellant Orientation, Controlling Fluids in a Low-Gravity Environment
NASA Technical Reports Server (NTRS)
Martin, James J.; Holt, James B.
2000-01-01
Cryogenic fluid management (CFM) is a technology area common to virtually every space transportation propulsion concept envisioned. Storage, supply, transfer and handling of sub-critical cryogenic fluids are basic capabilities that have long been needed by multiple programs and the need is expected to continue in the future. The use of magnetic fields provides another method, which could replace or augment current/traditional approaches, potentially simplifying vehicle operational constraints. The magnetically actuated propellant orientation (MAPO) program effort focused on the use of magnetic fields to control fluid motion as it relates to positioning (i.e. orientation and acquisition) of a paramagnetic substance such as LO2. Current CFM state- of-the-art systems used to control and acquire propellant in low gravity environments rely on liquid surface tension devices which employ vanes, fine screen mesh channels and baskets. These devices trap and direct propellant to areas where it's needed and have been used routinely with storable (non-cryogenic) propellants. However, almost no data exists r,egarding their operation in cryogenics and the use of such devices confronts designers with a multitude of significant technology issues. Typical problems include a sensitivity to screen dry out (due to thermal loads and pressurant gas) and momentary adverse accelerations (generated from either internal or external sources). Any of these problems can potentially cause the acquisition systems to ingest or develop vapor and fail. The use of lightweight high field strength magnets may offer a valuable means of augmenting traditional systems potentially mitigating or at least easing operational requirements. Two potential uses of magnetic fields include: 1) strategically positioning magnets to keep vent ports clear of liquid (enabling low G vented fill operations), and 2) placing magnets in the center or around the walls of the tank to create an insulating vapor pocket (between the liquid and the tank wall) which could effectively lower heat transfer to the liquid (enabling increased storage time).
Shuttle cryogenic supply system optimization study. Volume 5A-1: Users manual for math models
NASA Technical Reports Server (NTRS)
1973-01-01
The Integrated Math Model for Cryogenic Systems is a flexible, broadly applicable systems parametric analysis tool. The program will effectively accommodate systems of considerable complexity involving large numbers of performance dependent variables such as are found in the individual and integrated cryogen systems. Basically, the program logic structure pursues an orderly progression path through any given system in much the same fashion as is employed for manual systems analysis. The system configuration schematic is converted to an alpha-numeric formatted configuration data table input starting with the cryogen consumer and identifying all components, such as lines, fittings, and valves, each in its proper order and ending with the cryogen supply source assembly. Then, for each of the constituent component assemblies, such as gas generators, turbo machinery, heat exchangers, and accumulators, the performance requirements are assembled in input data tabulations. Systems operating constraints and duty cycle definitions are further added as input data coded to the configuration operating sequence.
Developing Low-Noise GaAs JFETs For Cryogenic Operation
NASA Technical Reports Server (NTRS)
Cunningham, Thomas J.
1995-01-01
Report discusses aspects of effort to develop low-noise, low-gate-leakage gallium arsenide-based junction field-effect transistors (JFETs) for operation at temperature of about 4 K as readout amplifiers and multiplexing devices for infrared-imaging devices. Transistors needed to replace silicon transistors, relatively noisy at 4 K. Report briefly discusses basic physical principles of JFETs and describes continuing process of optimization of designs of GaAs JFETs for cryogenic operation.
Use of PROFIBUS for cryogenic instrumentation at XFEL
NASA Astrophysics Data System (ADS)
Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.
2017-12-01
The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.
Cryogenics and the Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)
1997-01-01
Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management technology as it applies to the current human Mars mission scenarios.
Cryogenic wind tunnels: Unique capabilities for the aerodynamicist
NASA Technical Reports Server (NTRS)
Hall, R. M.
1976-01-01
The cryogenic wind-tunnel concept as a practical means for improving ground simulation of transonic flight conditions. The Langley 1/3-meter transonic cryogenic tunnel is operational, and the design of a cryogenic National Transonic Facility is undertaken. A review of some of the unique capabilities of cryogenic wind tunnels is presented. In particular, the advantages of having independent control of tunnel Mach number, total pressure, and total temperature are highlighted. This separate control over the three tunnel parameters will open new frontiers in Mach number, Reynolds number, aeroelastic, and model-tunnel interaction studies.
Performance of the SBRC 190, a cryogenic multiplexer for photoconductor arrays
NASA Technical Reports Server (NTRS)
Dotson, Jessie L.; Koerber, C. T.; Mason, C. G.; Simpson, J. P.; Moore, E. M.; Witteborn, F. C.; Farhoomand, J.; Erickson, E. F.; DeVincenzi, D. (Technical Monitor)
2002-01-01
The SBRC 190 cryogenic readouts were developed for use with far-infrared arrays of Ge:Sb and Ge:Ga photoconductor detectors. The SBRC 190 provides an AC-coupled CTIA (capacitance transimpedance amplifier) unit cell for each detector and multiplexes up to 32 detectors. This paper presents our test results characterizing and optimizing the performance of these novel devices. We will discuss their basic behavior in addition to describing the trade-offs inherent in different sampling strategies.
Cooling of superconducting devices by liquid storage and refrigeration unit
Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene
2013-08-20
A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.
Plans for the development of cryogenic engines for space exploration
NASA Technical Reports Server (NTRS)
Stone, James R.; Shaw, Loretta M.; Aukerman, Carl A.
1991-01-01
The NASA Lewis Research Center (LeRC) is conducting a broad range of basic research and focused technology development activities in both aeronautical and space propulsion. By virtue of the successful conduct of these programs, LeRC is strongly qualified to lead Advanced Development and subsequent development programs on cryogenic space propulsion systems on support of the Space Exploration Initiative. A review is provided of technology status, including recent progress in the ongoing activities, and a top level description of the proposed program.
Boundary-Layer Transition Detection in Cryogenic Wind Tunnel Using Fluorescent Paints
NASA Technical Reports Server (NTRS)
Sullivan, John
1999-01-01
Luminescent molecular probes imbedded in a polymer binder form a temperature or pressure paint. On excitation by light of the proper wavelength, the luminescence, which is quenched either thermally or by oxygen, is detected by a camera or photodetector. From the detected luminescent intensity, temperature and pressure can be determined. The basic photophysics, calibration, accuracy and time response of a luminescent paints is described followed by applications in low speed, transonic, supersonic and cryogenic wind tunnels and in rotating machinery.
NASA Technical Reports Server (NTRS)
Ladson, Charles L.; Ray, Edward J.
1987-01-01
Presented is a review of the development of the world's first cryogenic pressure tunnel, the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). Descriptions of the instrumentation, data acquisition systems, and physical features of the two-dimensional 8- by 24-in, (20.32 by 60.96 cm) and advanced 13- by 13-in (33.02 by 33.02 cm) adaptive-wall test-section inserts of the 0.3-m TCT are included. Basic tunnel-empty Mach number distributions, stagnation temperature distributions, and power requirements are included. The Mach number capability of the facility is from about 0.20 to 0.90. Stagnation pressure can be varied from about 80 to 327 K.
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1982-01-01
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar.
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Goglia, G. L.
1979-01-01
The details of the efforts to synthesize a control-compatible multivariable model of a liquid nitrogen cooled, gaseous nitrogen operated, closed circuit, cryogenic pressure tunnel are presented. The synthesized model was transformed into a real-time cryogenic tunnel simulator, and this model is validated by comparing the model responses to the actual tunnel responses of the 0.3 m transonic cryogenic tunnel, using the quasi-steady-state and the transient responses of the model and the tunnel. The global nature of the simple, explicit, lumped multivariable model of a closed circuit cryogenic tunnel is demonstrated.
Additive manufacturing of hierarchical injectable scaffolds for tissue engineering.
Béduer, A; Piacentini, N; Aeberli, L; Da Silva, A; Verheyen, C A; Bonini, F; Rochat, A; Filippova, A; Serex, L; Renaud, P; Braschler, T
2018-06-05
We present a 3D-printing technology allowing free-form fabrication of centimetre-scale injectable structures for minimally invasive delivery. They result from the combination of 3D printing onto a cryogenic substrate and optimisation of carboxymethylcellulose-based cryogel inks. The resulting highly porous and elastic cryogels are biocompatible, and allow for protection of cell viability during compression for injection. Implanted into the murine subcutaneous space, they are colonized with a loose fibrovascular tissue with minimal signs of inflammation and remain encapsulation-free at three months. Finally, we vary local pore size through control of the substrate temperature during cryogenic printing. This enables control over local cell seeding density in vitro and over vascularization density in cell-free scaffolds in vivo. In sum, we address the need for 3D-bioprinting of large, yet injectable and highly biocompatible scaffolds and show modulation of the local response through control over local pore size. This work combines the power of 3D additive manufacturing with clinically advantageous minimally invasive delivery. We obtain porous, highly compressible and mechanically rugged structures by optimizing a cryogenic 3D printing process. Only a basic commercial 3D printer and elementary control over reaction rate and freezing are required. The porous hydrogels obtained are capable of withstanding delivery through capillaries up to 50 times smaller than their largest linear dimension, an as yet unprecedented compression ratio. Cells seeded onto the hydrogels are protected during compression. The hydrogel structures further exhibit excellent biocompatibility 3 months after subcutaneous injection into mice. We finally demonstrate that local modulation of pore size grants control over vascularization density in vivo. This provides proof-of-principle that meaningful biological information can be encoded during the 3D printing process, deploying its effect after minimally invasive implantation. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cryogenic Liquid Sample Acquisition System for Remote Space Applications
NASA Technical Reports Server (NTRS)
Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John
2013-01-01
There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.
NASA Technical Reports Server (NTRS)
1973-01-01
The evaluation of candidate cryogenic fuel systems for space shuttle vehicles is discussed. A set of guidelines was used to establish a matrix of possible combinations for the integration of potential cryogenic systems. The various concepts and combinations which resulted from the integration efforts are described. The parameters which were considered in developing the matrix are: (1) storage of cryogenic materials, (2) fuel lines, (3) tank pressure control, (4) thermal control, (5) fluid control, and (6) fluid conditioning. Block diagrams and drawings of the candidate systems are provided. Performance predictions for the systems are outlined in tables of data.
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick
2014-01-01
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection,more » to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.
2017-01-01
Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.
Research Reports: 1988 NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Cothran, Ernestine K. (Editor); Karr, Gerald R. (Editor)
1988-01-01
The basic objectives are to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA: to enrich and refresh the research and teaching activities of the participants' institutions; and to contribute to the research objectives of the NASA centers. Topics addressed include: cryogenics; thunderstorm simulation; computer techniques; computer assisted instruction; system analysis weather forecasting; rocket engine design; crystal growth; control systems design; turbine pumps for the Space Shuttle Main engine; electron mobility; heat transfer predictions; rotor dynamics; mathematical models; computational fluid dynamics; and structural analysis.
Sequential cryogen spraying for heat flux control at the skin surface
NASA Astrophysics Data System (ADS)
Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart
2001-05-01
Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.
National Transonic Facility status
NASA Technical Reports Server (NTRS)
Mckinney, L. W.; Bruce, W. E., Jr.; Gloss, B. B.
1989-01-01
The National Transonic Facility (NTF) was operational in a combined checkout and test mode for about 3 years. During this time there were many challenges associated with movement of mechanical components, operation of instrumentation systems, and drying of insulation in the cryogenic environment. Most of these challenges were met to date along with completion of a basic flow calibration and aerodynamic tests of a number of configurations. Some of the major challenges resulting from cryogenic environment are reviewed with regard to hardware systems and data quality. Reynolds number effects on several configurations are also discussed.
Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI)
NASA Technical Reports Server (NTRS)
Swenson, Charles; Hunter, Roger C.; Baker, Christopher E.
2018-01-01
The Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI) project will demonstrate an advanced thermal control system for CubeSats and enable the use of cryogenic electro-optical instrumentation on small satellite platforms. Specifically, the project focuses on the development of a deployable solar tracking radiator, a rotationally flexible rotary union fluid joint, and a thermal/vibrational isolation system for miniature cryogenic detectors. This technology will represent a significant improvement over the current state of the art for CubeSat thermal control, which generally relies on simple passive and conductive methods.
NASA Astrophysics Data System (ADS)
Fast, R. W.
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250
Nelson, J. Stuart; Anvari, Bahman; Tanenbaum, B. Samuel; Milner, Thomas E.
1999-01-01
Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.
Automatic control of a liquid nitrogen cooled, closed-circuit, cryogenic pressure tunnel
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Goglia, G. L.
1980-01-01
The control system design, performance analysis, microprocesser based controller software development, and specifications for the Transonic Cryogenic Tunnel (TCT) are discussed. The control laws for the single-input single-output controllers were tested on the TCT simulator, and successfully demonstrated on the TCT.
Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam
2012-01-01
A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.
NASA Technical Reports Server (NTRS)
Miller, W. S.
1974-01-01
The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.
New Process Controls for the Hera Cryogenic Plant
NASA Astrophysics Data System (ADS)
Böckmann, T.; Clausen, M.; Gerke, Chr.; Prüß, K.; Schoeneburg, B.; Urbschat, P.
2010-04-01
The cryogenic plant built for the HERA accelerator at DESY in Hamburg (Germany) is now in operation for more than two decades. The commercial process control system for the cryogenic plant is in operation for the same time period. Ever since the operator stations, the control network and the CPU boards in the process controllers went through several upgrade stages. Only the centralized Input/Output system was kept unchanged. Many components have been running beyond the expected lifetime. The control system for one at the three parts of the cryogenic plant has been replaced recently by a distributed I/O system. The I/O nodes are connected to several Profibus-DP field busses. Profibus provides the infrastructure to attach intelligent sensors and actuators directly to the process controllers which run the open source process control software EPICS. This paper describes the modification process on all levels from cabling through I/O configuration, the process control software up to the operator displays.
The problem of dimensional instability in airfoil models for cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1982-01-01
The problem of dimensional instability in airfoil models for cryogenic wind tunnels is discussed in terms of the various mechanisms that can be responsible. The interrelationship between metallurgical structure and possible dimensional instability in cryogenic usage is discussed for those steel alloys of most interest for wind tunnel model construction at this time. Other basic mechanisms responsible for setting up residual stress systems are discussed, together with ways in which their magnitude may be reduced by various elevated or low temperature thermal cycles. A standard specimen configuration is proposed for use in experimental investigations into the effects of machining, heat treatment, and other variables that influence the dimensional stability of the materials of interest. A brief classification of various materials in terms of their metallurgical structure and susceptability to dimensional instability is presented.
Self-contained cryogenic gas sampling apparatus and method
McManus, G.J.; Motes, B.G.; Bird, S.K.; Kotter, D.K.
1996-03-26
Apparatus for obtaining a whole gas sample, is composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method is described for obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant. 3 figs.
Self-contained cryogenic gas sampling apparatus and method
McManus, Gary J.; Motes, Billy G.; Bird, Susan K.; Kotter, Dale K.
1996-01-01
Apparatus for obtaining a whole gas sample, composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method of obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant.
TankSIM: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.
2015-01-01
Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.
Testing the equipment for the cryogenic optical test of the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Whitman, Tony L.; Dziak, K. J.; Huguet, Jesse; Knight, J. Scott; Reis, Carl; Wilson, Erin
2014-08-01
After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the JWST optics are tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. Tens of trucks full of custom test equipment are being delivered to the JSC, in addition to the large pieces built at the Center, and the renovation of the chamber itself. The facility is tested for the thermal stability control for optical measurements and contamination control during temperature transitions. The support for the OTIS is also tested for thermal stability control, load tested in the cryogenic environment, and tested for isolation of the background vibration for the optical measurements. The Center of Curvature Optical Assembly (COCOA) is tested for the phasing and wavefront error (WFE) measurement of an 18 segment mirror and for cryogenic operation. A photogrammetry system is tested for metrology performance and cryogenic operation. Test mirrors for auto-collimation measurements are tested for optical performance and cryogenic operation. An assembly of optical test sources are calibrated and tested in a cryogenic environment. A Pathfinder telescope is used as a surrogate telescope for cryogenic testing of the OTIS optical test configuration. A Beam Image Analyzer (BIA) is used as a surrogate ISIM with the Pathfinder in this test. After briefly describing the OTIS optical test configuration, the paper will overview the list and configuration of significant tests of the equipment leading up to the OTIS test.
Development of magnetostrictive active members for control of space structures
NASA Technical Reports Server (NTRS)
Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.
1992-01-01
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.
Development of magnetostrictive active members for control of space structures
NASA Astrophysics Data System (ADS)
Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.
1992-08-01
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.
NASA Astrophysics Data System (ADS)
England, Troy; Curry, Matthew; Carr, Steve; Swartzentruber, Brian; Lilly, Michael; Bishop, Nathan; Carrol, Malcolm
2015-03-01
Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance typical of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will discuss calibration data, as well as modeling and simulation of cryogenic silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) circuits connected to a silicon SET and operating at 4 K. We find a continuum of solutions from simple, single-HBT amplifiers to more complex, multi-HBT circuits suitable for integration, with varying noise levels and power vs. bandwidth tradeoffs. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Miniature thermo-electric cooled cryogenic pump
Keville, R.F.
1997-11-18
A miniature thermo-electric cooled cryogenic pump is described for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a {Delta}T=100 C characteristic. The pump operates under vacuum pressures of 5{times}10{sup {minus}4} Torr to ultra high vacuum (UHV) conditions in the range of 1{times}10{sup {minus}7} to 3{times}10{sup {minus}9} Torr and will typically remove partial pressure, 2{times}10{sup {minus}7} Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5{degree}, and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof. 2 figs.
Miniature thermo-electric cooled cryogenic pump
Keville, Robert F.
1997-01-01
A miniature thermo-electric cooled cryogenic pump for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a .DELTA.T=100.degree. C. characteristic. The pump operates under vacuum pressures of 5.times.10.sup.-4 Torr to ultra high vacuum (UHV) conditions in the range of 1.times.10.sup.-7 to 3.times.10.sup.-9 Torr and will typically remove partial pressure, 2.times.10.sup.-7 Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5.degree., and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof.
Shuttle: Reaction control system. Cryogenic liquid distribution system: Study
NASA Technical Reports Server (NTRS)
Akkerman, J. W.
1972-01-01
A cryogenic liquid distribution system suitable for the reaction control system on space shuttles is described. The system thermodynamics, operation, performance and weight analysis are discussed along with the design, maintenance and integration concepts.
NASA Astrophysics Data System (ADS)
Aoki, K.; Ohuchi, N.; Zong, Z.; Arimoto, Y.; Wang, X.; Yamaoka, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Hirose, M.; Endou, T.; Iwasaki, M.; Nakamura, T.
2017-12-01
A remote monitoring system was developed based on the software infrastructure of the Experimental Physics and Industrial Control System (EPICS) for the cryogenic system of superconducting magnets in the interaction region of the SuperKEKB accelerator. The SuperKEKB has been constructed to conduct high-energy physics experiments at KEK. These superconducting magnets consist of three apparatuses, the Belle II detector solenoid, and QCSL and QCSR accelerator magnets. They are each contained in three cryostats cooled by dedicated helium cryogenic systems. The monitoring system was developed to read data of the EX-8000, which is an integrated instrumentation system to control all cryogenic components. The monitoring system uses the I/O control tools of EPICS software for TCP/IP, archiving techniques using a relational database, and easy human-computer interface. Using this monitoring system, it is possible to remotely monitor all real-time data of the superconducting magnets and cryogenic systems. It is also convenient to share data among multiple groups.
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.
1985-01-01
The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).
Lessons learned: design, start-up, and operation of cryogenic systems
NASA Astrophysics Data System (ADS)
Bell, W. M.; Bagley, R. E.; Motew, S.; Young, P.-W.
2014-11-01
Cryogenic systems involving a pumped cryogenic fluid, such as liquid nitrogen (LN2), require careful design since the cryogen is close to its boiling point and cold. At 1 atmosphere, LN2 boils at 77.4 K (-320.4 F). These systems, typically, are designed to transport the cryogen, use it for process heat removal, or for generation of gas (GN2) for process use. As the design progresses, it is important to consider all aspects of the design including, cryogen storage, pressure control and safety relief systems, thermodynamic conditions, equipment and instrument selection, materials, insulation, cooldown, pump start-up, maximum design and minimum flow rates, two phase flow conditions, heat flow, process control to meet and maintain operating conditions, piping integrity, piping loads on served equipment, warm-up, venting, and shut-down. "Cutting corners" in the design process can result in stalled start-ups, field rework, schedule hits, or operational restrictions. Some of these "lessoned learned" are described in this paper.
Cryogenic temperature control by means of energy storage materials. [for long space voyages
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Picklesimer, E. A.; Connor, L. E.
1977-01-01
An investigation was conducted to study the concept of thermal control by means of physical or chemical reaction heats for applications involving the storage of cryogens during long-term space voyages. The investigation included some preliminary experimental tests of energy storage material (ESM) effectiveness. The materials considered can store and liberate large amounts of thermal energy by means of mechanisms such as sensible heat, heat of fusion, and physical or chemical reaction heat. A differential thermal analysis was utilized in the laboratory tests. Attention is given to the evaluation of cryogenic ESM thermal control concepts, the experimental determination of phase change materials characteristics, and adsorption ESMs. It is found that an ESM shield surrounded by multiple layer insulation provides the best protection for a cryogen store.
Satellite Testbed for Evaluating Cryogenic-Liquid Behavior in Microgravity
NASA Technical Reports Server (NTRS)
Putman, Philip Travis (Inventor)
2017-01-01
Provided is a testbed for conducting an experiment on a substance in a cryogenic liquid state in a microgravity environment. The testbed includes a frame with rectangular nominal dimensions, and a source section including a supply of the substance to be evaluated in the cryogenic liquid state. An experiment section includes an experiment vessel in fluid communication with the storage section to receive the substance from the storage section and condense the substance into the cryogenic liquid state. A sensor is adapted to sense a property of the substance in the cryogenic liquid state in the experiment vessel as part of the experiment. A bus section includes a controller configured to control delivery of the substance from the storage section to the experiment vessel, and receive property data indicative of the property sensed by the sensor for subsequent evaluation on Earth.
Comolli, Luis R; Duarte, Robert; Baum, Dennis; Luef, Birgit; Downing, Kenneth H; Larson, David M; Csencsits, Roseann; Banfield, Jillian F
2012-06-01
We present a modern, light portable device specifically designed for environmental samples for cryogenic transmission-electron microscopy (cryo-TEM) by on-site cryo-plunging. The power of cryo-TEM comes from preparation of artifact-free samples. However, in many studies, the samples must be collected at remote field locations, and the time involved in transporting samples back to the laboratory for cryogenic preservation can lead to severe degradation artifacts. Thus, going back to the basics, we developed a simple mechanical device that is light and easy to transport on foot yet effective. With the system design presented here we are able to obtain cryo-samples of microbes and microbial communities not possible to culture, in their near-intact environmental conditions as well as in routine laboratory work, and in real time. This methodology thus enables us to bring the power of cryo-TEM to microbial ecology. Copyright © 2011 Wiley Periodicals, Inc.
Automatic control of NASA Langley's 0.3-meter cryogenic test facility
NASA Technical Reports Server (NTRS)
Thibodeaux, J. J.; Balakrishna, S.
1980-01-01
Experience during the past 6 years of operation of the 0.3-meter transonic cryogenic tunnel at the NASA Langley Research Center has shown that there are problems associated with efficient operation and control of cryogenic tunnels using manual control schemes. This is due to the high degree of process crosscoupling between the independent control variables (temperature, pressure, and fan drive speed) and the desired test condition (Mach number and Reynolds number). One problem has been the inability to maintain long-term accurate control of the test parameters. Additionally, the time required to change from one test condition to another has proven to be excessively long and much less efficient than desirable in terms of liquid nitrogen and electrical power usage. For these reasons, studies have been undertaken to: (1) develop and validate a mathematical model of the 0.3-meter cryogenic tunnel process, (2) utilize this model in a hybrid computer simulation to design temperature and pressure feedback control laws, and (3) evaluate the adequacy of these control schemes by analysis of closed-loop experimental data. This paper will present the results of these studies.
Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.
1996-01-01
A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.
Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project
NASA Technical Reports Server (NTRS)
Harp, Janice Leshay
2014-01-01
This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.
G2 Autonomous Control for Cryogenic Delivery Systems
NASA Technical Reports Server (NTRS)
Dito, Scott J.
2014-01-01
The Independent System Health Management-Autonomous Control (ISHM-AC) application development for cryogenic delivery systems is intended to create an expert system that will require minimal operator involvement and ultimately allow for complete autonomy when fueling a space vehicle in the time prior to launch. The G2-Autonomous Control project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to a rocket for testing purposes. To develop this application, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through training classes and subsequent application development, and are now in the process of building the application that will soon be used to test on cryogenic loading equipment here at the Kennedy Space Center Cryogenics Test Laboratory (CTL). The G2 ISHM-AC application will bring with it a safer and more efficient propellant loading system for the future launches at Kennedy Space Center and eventually mobile launches from all over the world.
NASA Technical Reports Server (NTRS)
Rybak, S. C.; Willen, G. S.; Follett, W. H.; Hanna, G. J.; Cady, E. C.; Distefano, E.; Meserole, J. S.
1990-01-01
This feasibility study presents the conceptual design of a spacecraft for performing a series of cryogenic fluid management flight experiments. This spacecraft, the Cryogenic On-Orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite, will use liquid hydrogen as the test fluid, be launched on a Delta expendable launch vehicle, and conduct a series of experiments over a two to three month period. These experiments will investigate the physics of subcritical cryogens in the low gravity space environment to characterize their behavior and to correlate the data with analytical and numerical models of in-space cryogenic fluid management systems. Primary technologies addressed by COLD-SAT are: (1) pressure control; (2) chilldown; (3) no-vent fill; (4) liquid acquisition device fill; (5) pressurization; (6) low-g fill and drain; (7) liquid acquisition device expulsion; (8) line chilldown; (9) thermodynamic state control; and (10) fluid dumping.
Renewal of the Control System and Reliable Long Term Operation of the LHD Cryogenic System
NASA Astrophysics Data System (ADS)
Mito, T.; Iwamoto, A.; Oba, K.; Takami, S.; Moriuchi, S.; Imagawa, S.; Takahata, K.; Yamada, S.; Yanagi, N.; Hamaguchi, S.; Kishida, F.; Nakashima, T.
The Large Helical Device (LHD) is a heliotron-type fusion plasma experimental machine which consists of a fully superconducting magnet system cooled by a helium refrigerator having a total equivalent cooling capacity of 9.2 kW@4.4 K. Seventeenplasma experimental campaigns have been performed successfully since1997 with high reliability of 99%. However, sixteen years have passed from the beginning of the system operation. Improvements are being implementedto prevent serious failures and to pursue further reliability.The LHD cryogenic control system was designed and developed as an open system utilizing latest control equipment of VME controllers and UNIX workstations at the construction time. Howeverthe generation change of control equipment has been advanced. Down-sizing of control deviceshas beenplanned from VME controllers to compact PCI controllers in order to simplify the system configuration and to improve the system reliability. The new system is composed of compact PCI controller and remote I/O connected with EtherNet/IP. Making the system redundant becomes possible by doubling CPU, LAN, and remote I/O respectively. The smooth renewal of the LHD cryogenic controlsystem and the further improvement of the cryogenic system reliability are reported.
NASA Technical Reports Server (NTRS)
1973-01-01
A computer programmer's manual for a digital computer which will permit rapid and accurate parametric analysis of current and advanced attitude control propulsion systems is presented. The concept is for a cold helium pressurized, subcritical cryogen fluid supplied, bipropellant gas-fed attitude control propulsion system. The cryogen fluids are stored as liquids under low pressure and temperature conditions. The mathematical model provides a generalized form for the procedural technique employed in setting up the analysis program.
Cryogenic Controls for Fermilab's Srf Cavities and Test Facility
NASA Astrophysics Data System (ADS)
Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.
2008-03-01
A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.
Antony, Joby; Mathuria, D S; Datta, T S; Maity, Tanmoy
2015-12-01
The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW(®). This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.
NASA Astrophysics Data System (ADS)
Antony, Joby; Mathuria, D. S.; Datta, T. S.; Maity, Tanmoy
2015-12-01
The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW®. This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antony, Joby; Mathuria, D. S.; Datta, T. S.
The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similarmore » control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as “CADS,” which stands for “Complete Automation of Distribution System.” CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW{sup ®}. This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.« less
Facesheet Delamination of Composite Sandwich Materials at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Odegard, Gregory M.; Herring, Helen M.
2003-01-01
The next generation of space transportation vehicles will require advances in lightweight structural materials and related design concepts to meet the increased demands on performance. One potential source for significant structural weight reduction is the replacement of traditional metallic cryogenic fuel tanks with new designs for polymeric matrix composite tanks. These new tank designs may take the form of thin-walled sandwich constructed with lightweight core and composite facesheets. Life-time durability requirements imply the materials must safely carry pressure loads, external structural loads, resist leakage and operate over an extremely wide temperature range. Aside from catastrophic events like tank wall penetration, one of the most likely scenarios for failure of a tank wall of sandwich construction is the permeation of cryogenic fluid into the sandwich core and the subsequent delamination of the sandwich facesheet due to the build-up of excessive internal pressure. The research presented in this paper was undertaken to help understand this specific problem of core to facesheet delamination in cryogenic environments and relate this data to basic mechanical properties. The experimental results presented herein provide data on the strain energy release rate (toughness) of the interface between the facesheet and the core of a composite sandwich subjected to simulated internal pressure. A unique test apparatus and associated test methods are described and the results are presented to highlight the effects of cryogenic temperature on the measured material properties.
Process Modeling and Dynamic Simulation for EAST Helium Refrigerator
NASA Astrophysics Data System (ADS)
Lu, Xiaofei; Fu, Peng; Zhuang, Ming; Qiu, Lilong; Hu, Liangbing
2016-06-01
In this paper, the process modeling and dynamic simulation for the EAST helium refrigerator has been completed. The cryogenic process model is described and the main components are customized in detail. The process model is controlled by the PLC simulator, and the realtime communication between the process model and the controllers is achieved by a customized interface. Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K. Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge. The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future. supported by National Natural Science Foundation of China (No. 51306195) and Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, CAS (No. CRYO201408)
Expandable Purge Chambers Would Protect Cryogenic Fittings
NASA Technical Reports Server (NTRS)
Townsend, Ivan I., III
2004-01-01
Expandable ice-prevention and cleanliness-preservation (EIP-CP) chambers have been proposed to prevent the accumulation of ice or airborne particles on quick-disconnect (QD) fittings, or on ducts or tubes that contain cryogenic fluids. In the original application for which the EIP-CP chambers were conceived, there is a requirement to be able to disconnect and reconnect the QD fittings in rapid succession. If ice were to form on the fittings by condensation and freezing of airborne water vapor on the cold fitting surfaces, the ice could interfere with proper mating of the fittings, making it necessary to wait an unacceptably long time for the ice to thaw before attempting reconnection. By keeping water vapor away from the cold fitting surfaces, the EIP-CP chambers would prevent accumulation of ice, preserving the ability to reconnect as soon as required. Basically, the role of an EIP-CP chamber would be to serve as an enclosure for a flow of dry nitrogen gas that would keep ambient air away from QD cryogenic fittings. An EIP-CP chamber would be an inflatable device made of a fabriclike material. The chamber would be attached to an umbilical plate holding a cryogenic QD fitting.
Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers
NASA Technical Reports Server (NTRS)
Beck, J. W.
1984-01-01
The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.
Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems
NASA Technical Reports Server (NTRS)
Walker, M.; Figueroa, F.
2015-01-01
The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.
Subcooling for Long Duration In-Space Cryogenic Propellant Storage
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff
2010-01-01
Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.
Cryogenic and radiation hard ASIC design for large format NIR/SWIR detector
NASA Astrophysics Data System (ADS)
Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses
2014-10-01
An ASIC is developed to control and data quantization for large format NIR/SWIR detector arrays. Both cryogenic and space radiation environment issue are considered during the design. Therefore it can be integrated in the cryogenic chamber, which reduces significantly the vast amount of long wires going in and out the cryogenic chamber, i.e. benefits EMI and noise concerns, as well as the power consumption of cooling system and interfacing circuits. In this paper, we will describe the development of this prototype ASIC for image sensor driving and signal processing as well as the testing in both room and cryogenic temperature.
NASA Technical Reports Server (NTRS)
Morse, S. F.; Roper, A. T.
1975-01-01
The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.
Feasibility study for the Cryogenic Orbital Nitrogen Experiment (CONE)
NASA Technical Reports Server (NTRS)
Bell, R. S.; Crouch, M. A.; Hanna, G. J.; Cady, E. C.; Meserole, J. S.
1991-01-01
An improved understanding of low gravity subcritical cryogenic fluid behavior is critical for the continued development of space based systems. Although early experimental programs provided some fundamental understanding of zero gravity cryogenic fluid behavior, more extensive flight data are required to design space based cryogenic liquid storage and transfer systems with confidence. As NASA's mission concepts evolve, the demand for optimized in-space cryogenic systems is increasing. Cryogenic Orbital Nitrogen Experiment (CONE) is an attached shuttle payload experiment designed to address major technological issues associated with on-orbit storage and supply of cryogenic liquids. During its 7 day mission, CONE will conduct experiments and technology demonstrations in active and passive pressure control, stratification and mixing, liquid delivery and expulsion efficiency, and pressurant bottle recharge. These experiments, conducted with liquid nitrogen as the test fluid, will substantially extend the existing low gravity fluid data base and will provide future system designers with vital performance data from an orbital environment.
Education in Helium Refrigeration
NASA Astrophysics Data System (ADS)
Gistau Baguer, G. M.
2004-06-01
On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics… and so on. Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.
Automated Cryocooler Monitor and Control System Software
NASA Technical Reports Server (NTRS)
Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad
2011-01-01
This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.
Shuttle cryogenic supply system optimization study. Volume 1: Management supply, sections 1 - 3
NASA Technical Reports Server (NTRS)
1973-01-01
An analysis of the cryogenic supply system for use on space shuttle vehicles was conducted. The major outputs of the analysis are: (1) evaluations of subsystem and integrated system concepts, (2) selection of representative designs, (3) parametric data and sensitivity studies, (4) evaluation of cryogenic cooling in environmental control subsystems, and (5) development of mathematical model.
Cryogenic Propellant Feed System Analytical Tool Development
NASA Technical Reports Server (NTRS)
Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.
2011-01-01
The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 8: Thermal control panel
NASA Technical Reports Server (NTRS)
1975-01-01
Technology deficiencies in the area of thermal control for future space missions are identified with emphasis on large space structures and cold controlled environments. Thermal control surfaces, heat pipes, and contamination are considered along with cryogenics, insulation, and design techniques. Major directions forecast for thermal control technology development and space experiments are: (1) extend the useful lifetime of cryogenic systems for space, (2) reduce temperature gradients, and (3) improve temperature stability.
Automatic cryogenic liquid level controller is safe for use near combustible substances
NASA Technical Reports Server (NTRS)
Krejsa, M.
1966-01-01
Automatic mechanical liquid level controller that is independent of any external power sources is used with safety in the presence of combustibles. A gas filled capillary tube which leads from a pressurized chamber, is inserted into the cryogenic liquid reservoir and becomes a liquid level sensing element or probe.
Terrestrial Planet Finder cryogenic delay line development
NASA Technical Reports Server (NTRS)
Smythe, Robert F.; Swain, Mark R.; Alvarez-Salazar, Oscar; Moore, James D.
2004-01-01
Delay lines provide the path-length compensation that makes the measurement of interference fringes possible. When used for nulling interferometry, the delay line must control path-lengths so that the null is stable and controlled throughout the measurement. We report on a low noise, low disturbance, and high bandwidth optical delay line capable of meeting the TPF interferometer optical path length control requirements at cryogenic temperatures.
Value for controlling flow of cryogenic fluid
Knapp, Philip A.
1996-01-01
A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.
Adjustable expandable cryogenic piston and ring
Mazur, Peter O.; Pallaver, Carl B.
1980-01-01
The operation of a reciprocating expansion engine for cryogenic refrigeration is improved by changing the pistons and rings so that the piston can be operated from outside the engine to vary the groove in which the piston ring is located. This causes the ring, which is of a flexible material, to be squeezed so that its contact with the wall is subject to external control. This control may be made manually or it may be made automatically in response to instruments that sense the amount of blow-by of the cryogenic fluid and adjust for an optimum blow-by.
NASA Astrophysics Data System (ADS)
Dutt, R. N.; Meena, D. K.; Kar, S.; Soni, V.; Nadaf, A.; Das, A.; Singh, F.; Datta, T. S.
2017-02-01
A system for carrying out automatic experimental measurements of various electrical transport characteristics and their relation to magnetic fields for samples mounted on the sample holder on a Variable Temperature Insert (VTI) of the Cryogen Free Superconducting Magnet System (CFMS) has been developed. The control and characterization system is capable of monitoring, online plotting and history logging in real-time of cryogenic temperatures with the Silicon (Si) Diode and Zirconium Oxy-Nitride sensors installed inside the magnet facility. Electrical transport property measurements have been automated with implementation of current reversal resistance measurements and automatic temperature set-point ramping with the parameters of interest available in real-time as well as for later analysis. The Graphical User Interface (GUI) based system is user friendly to facilitate operations. An ingenious electronics for reading Zirconium Oxy-Nitride temperature sensors has been used. Price to performance ratio has been optimized by using in house developed measurement techniques mixed with specialized commercial cryogenic measurement / control equipment.
The COLD-SAT Experiment for Cryogenic Fluid Management Technology
NASA Technical Reports Server (NTRS)
Schuster, J. R.; Wachter, J. P.; Vento, D. M.
1990-01-01
Future national space transportation missions will depend on the use of cryogenic fluid management technology development needs for these missions. In-space testing will be conducted in order to show low gravity cryogenic fluid management concepts and to acquire a technical data base. Liquid H2 is the preferred test fluid due to its propellant use. The design of COLD-SAT (Cryogenic On-orbit Liquid Depot Storage, Acquisition, and Transfer Satellite), an Expendable Launch Vehicle (ELV) launched orbital spacecraft that will perform subcritical liquid H2 storage and transfer experiments under low gravity conditions is studied. An Atlas launch vehicle will place COLD-SAT into a circular orbit, and the 3-axis controlled spacecraft bus will provide electric power, experiment control, and data management, attitude control, and propulsive accelerations for the experiments. Low levels of acceleration will provide data on the effects that low gravity might have on the heat and mass transfer processes used. The experiment module will contain 3 liquid H2 tanks; fluid transfer, pressurization and venting equipment; and instrumentation.
Subcooling Cryogenic Propellants for Long Duration Space Exploration
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Canavan, Edgar; Johnson, Wesley; Kutter, Bernard; Shull, Jeff
2009-01-01
The use of cryogenic propellants such as hydrogen and oxygen is crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles with the flexibility to remain in orbit or travel in space for months, necessitating long-term storage of these cryogens. One powerful technique for easing the challenge of cryogenic fluid storage is to remove energy from tlie cryogenic propellant by isobaricly subcooling them below their normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced. After launch, even with the use of the best insulation systems, heat will leak into the cold cryogenic propellant tank. However, the large heat capacity available in highly subcooled cryogenic propellants allows them to absorb the energy that leaks into the tank until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be no loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot many months with minimal mass penalty. Subcooling technologies for cryogenic propellants would thus provide the Exploration Systems Mission Directorate with an enhanced level of mission flexibility. However, there are a few challenges associated with subcooling cryogenic propellants since compact subcooling ground support equipment has not been demonstrated. This paper explores the beneficial impact of subcooling cryogenic propellants on the launch pad for long-term cryogenic propellant storage in space and proposes a novel method for implementing subcooling of cryogenic propellants for spacecraft such as the Ares V Earth Departure Stage (EDS). Analysis indicates that with a careful strategy to handle the subcooled cryogen it would be possible to store cryogenic propellants in space for many months without venting. A concept for subcooling the cryogenic propellant relatively quickly and inexpensively on the launch pad - the thermodynamic cryogen subcooler (TCS) - will be presented. Important components of the TCS and an associated subcooled cryogen tank (SCT) will be discussed in this paper. Results from a preliminary thermodynamic model of the performance of a TCS for an EDS sized hydrogen tank will also be presented.
NASA Astrophysics Data System (ADS)
Kangas, Miikka Matias
The big bang, early galaxy formation, the interstellar medium, and high z galaxy cluster evolution are all science objectives that are studied in the far infrared (FIR). The cosmological parameters that describe the universe are encoded in anisotropies in the Cosmic Microwave Background (CMB), and can be extracted from precision subdegree angular resolution FIR maps. Cryogenic bolometers are well suited for these science objectives, and are evolving rapidly today. A cryogenic bolometric system is made up of a few building blocks, which can be modularized or integrated depending on the maturity of the scientific field they are used for. Integration of systems increases with the maturity of the technology. The basic building blocks are the bolometer, the cryogenics, the dewar, the optics, the filters, and electronics. The electronics can be further subdivided into room temperature back-end and cryogenic front-end electronics. The electronics are often partly integrated into the dewar. The dewar is part of the support structure, and only the subkelvin portion the dewar is referred to as cryogenics here. Each of these can be a sophisticated engineering feat on their own, and this dissertation revolves around the development of several of these elements. The microfabrication sequence for a free standing micromesh detector was developed. Polarization preserving photometer optics and filters were constructed and tested. A test dewar mechanical and optical structure was created to test single pixel photometers prior to mounting in the flight dewar. A modular flight dewar capable of holding an array of photometers and adaptable to a number of different cryogenics schemes and detector arrays was engineered and constructed. A zero gravity dilution refrigerator coil was constructed and tested. A corrugated platelet array concept was designed and tested. Metal mesh filter design and fabrication techniques were developed. Kevlar isolator structures were improved to work in subkelvin dewars, and detector modules that mounted the bolometer chips to the photometer tubes were created. These subsystems underwent testing to compare the predicted behavior and actual performance.
Cryogenic Fluid Management Technology Development Roadmaps
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Johnson, W. L.
2017-01-01
Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.
NASA Technical Reports Server (NTRS)
Walker, G.
1985-01-01
A great diversity of methods and mechanisms were devised to effect cryogenic refrigeration. The basic parameters and considerations affecting the selection of a particular system are reviewed. A classification scheme for mechanical cryocoolers is presented. An important distinguishing feature is the incorporation or not of a regenerative heat exchanger, of valves, and of the method for achieving a pressure variation.
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 10: Basic research panel
NASA Technical Reports Server (NTRS)
1975-01-01
Possible research experiments using the space transportation system are identified based on user requirements. Opportunity driven research areas include quantum electronics, cryogenics system technology, superconducting devices and detectors, and photo-induced reactions. Mission driven research requirements were examined and ranked based on inputs from the user group.
Cryogenic liquid-level detector
NASA Technical Reports Server (NTRS)
Hamlet, J.
1978-01-01
Detector is designed for quick assembly, fast response, and good performance under vibratory stress. Its basic parallel-plate open configuration can be adapted to any length and allows its calibration scale factor to be predicted accurately. When compared with discrete level sensors, continuous reading sensor was found to be superior if there is sloshing, boiling, or other disturbance.
Design Status of the Cryogenic System and Operation Modes Analysys of the JT-60SA Tokamak
NASA Astrophysics Data System (ADS)
Roussel, P.; Hoa, C.; Lamaison, V.; Michel, F.; Reynaud, P.; Wanner, M.
2010-04-01
The JT-60SA project is part of the Broader Approach Programme signed between Japan and Europe. This superconducting upgrade of the existing JT-60U tokamak in Naka, Japan shall start operation in 2016 and shall support ITER exploitation and research towards DEMO fusion reactor. JT-60SA is currently in the basic design phase. The cryogenic system of JT-60SA shall provide supercritical helium to cool the superconducting magnets and their structures at 4.4 K, and the divertor cryopumps at a temperature of 3.7 K. In addition it shall provide refrigeration for the thermal shields at 80 K and deliver helium at 50 K for the current leads. The equivalent refrigeration capacity at 4.5 K will be about 10 kW. The refrigeration process has to be optimised for different operation modes. During the day, in plasma operation state, the refrigerator will cope with the pulsed heat loads which may increase up to 100% of the average power, representing a big challenge compared to other tokamaks. Fast discharge quenches of the magnets, the impact from baking of the vacuum vessel, cool down and warm up modes are presented from the cryogenic system point of view and their impact on the cryogenic design is described.
NASA Technical Reports Server (NTRS)
Kilgore, W. Allen; Balakrishna, S.
1991-01-01
The 0.3 m Transonic Cryogenic Tunnel (TCT) microcomputer based controller has been operating for several thousand hours in a safe and efficient manner. A complete listing is provided of the source codes for the tunnel controller and tunnel simulator. Included also is a listing of all the variables used in these programs. Several changes made to the controller are described. These changes are to improve the controller ease of use and safety.
The cryogenic wind tunnel for high Reynolds number testing. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kilgore, R. A.
1974-01-01
Experiments performed at the NASA Langley Research Center in a cryogenic low-speed continuous-flow tunnel and in a cryogenic transonic continuous-flow pressure tunnel have demonstrated the predicted changes in Reynolds number, drive power, and fan speed with temperature, while operating with nitrogen as the test gas. The experiments have also demonstrated that cooling to cryogenic temperatures by spraying liquid nitrogen directly into the tunnel circuit is practical and that tunnel temperature can be controlled within very close limits. Whereas most types of wind tunnel could operate with advantage at cryogenic temperatures, the continuous-flow fan-driven tunnel is particularly well suited to take full advantage of operating at these temperatures. A continuous-flow fan-driven cryogenic tunnel to satisfy current requirements for test Reynolds number can be constructed and operated using existing techniques. Both capital and operating costs appear acceptable.
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.
1984-01-01
The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.
A highly reliable cryogenic mixing pump with no mechanical moving parts
NASA Astrophysics Data System (ADS)
Chen, W.; Niblick, A. L.
2017-12-01
This paper presents the design and preliminary test results of a novel cryogenic mixing pump based on magnetocaloric effect. The mixing pump is developed to enable long-term cryogenic propellant storage in space by preventing thermal stratification of cryogens in storage tanks. The mixing pump uses an innovative thermodynamic process to generate fluid jets to promote fluid mixing, eliminating the need for mechanical pumps. Its innovative mechanism uses a solid magnetocaloric material to alternately vaporize and condense the cryogen in the pumping chamber, and thus control the volume of the fluid inside the pumping chamber to produce pumping action. The pump is capable of self-priming and can generate a high-pressure rise. This paper discusses operating mechanism and design consideration of the pump, introduces the configuration of a brassboard cryogenic pump, and presents the preliminary test results of the pump with liquid nitrogen.
An FPGA-based instrumentation platform for use at deep cryogenic temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway Lamb, I. D.; Colless, J. I.; Hornibrook, J. M.
2016-01-15
We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.
2015-02-01
Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent by Frank Kellogg , Clara Hofmeister...Process Control Agent Frank Kellogg Bowhead Science and Technology Clara Hofmeister Advanced Materials Processing and Analysis Center...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Frank Kellogg , Clara Hofmeister, Anit Giri, and Kyu Cho 5d. PROJECT NUMBER 5e
NASA Technical Reports Server (NTRS)
Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.
1998-01-01
As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.
NASA's Cryogenic Fluid Management Technology Project
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Motil, Susan M.
2008-01-01
The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.
Cryogenic Two-Phase Flight Experiment: Results overview
NASA Technical Reports Server (NTRS)
Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.
1995-01-01
This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.
Development of a cryogenic capillary pumped loop
NASA Astrophysics Data System (ADS)
Kroliczek, Edward J.; Cullimore, Brent
1996-03-01
This paper describes the initial development of a promising new cryogenic technology. Room temperature capillary pumped loops (CPLs), a derivative of heat pipe technology, have been under development for almost two decades and are emerging as a design solution for many spacecraft thermal control problems. While cryogenic capillary pumped loops have application to passive spacecraft radiators and to long term storage of cryogenic propellants and open-cycle coolants, their application to the integration of spacecraft cryocoolers has generated the most excitement. Without moving parts or complex controls, they are able to thermally connect redundant cryocoolers to a single remote load, eliminating thermal switches and providing mechanical isolation at the same time. Development of a cryogenic CPL (CCPL) presented some unique challenges including start-up from a super-critical state, the management of parasitic heat leaks and pressure containment at ambient temperatures. These challenges have been overcome with a novel design that requires no additional devices or preconditioning for start-up. This paper describes the design concept and development and results conducted under SBIR Phase I and Phase II.
Commissioning of cryogenic system for China Spallation Neutron Source
NASA Astrophysics Data System (ADS)
Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun
2017-12-01
China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.
Integrated Ground Operations Demonstration Units Testing Plans and Status
NASA Technical Reports Server (NTRS)
Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.
2012-01-01
Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control
Wall mounted heat exchanger characterization. [cryogenic propellant tanks
NASA Technical Reports Server (NTRS)
Bullard, B. R.
1975-01-01
Analytical models are presented for describing the heat and mass transfer and the energy distribution in the contents of a cryogenic propellant tank, under varying gravity levels. These models are used to analytically evaluate the effectiveness of a wall heat exchanger as a means of controlling the pressure in the tank during flight and during fill operations. Pressure and temperature histories are presented for tanks varying in size from 4 to 22.5 feet in diameter and gravity levels from 0-1. Results from the subscale test program, utilizing both non-cryogenic and cryogenic fluid, designed to evaluate a tank wall heat exchanger are described and compared with the analytical models. Both the model and test results indicate that a passive tank wall heat exchanger can effectively control tank pressure. However, the weight of such a system is considerably higher than that of an active mixer system.
Sorption compressor/mechanical expander hybrid refrigeration
NASA Technical Reports Server (NTRS)
Jones, J. A.; Britcliffe, M.
1987-01-01
Experience with Deep Space Network (DSN) ground-based cryogenic refrigerators has proved the reliability of the basic two-stage Gifford-McMahon helium refrigerator. A very long life cryogenic refrigeration system appears possible by combining this expansion system or a turbo expansion system with a hydride sorption compressor in place of the usual motor driven piston compressor. To test the feasibility of this system, a commercial Gifford-McMahon refrigerator was tested using hydrogen gas as the working fluid. Although no attempt was made to optimize the system for hydrogen operation, the refrigerator developed 1.3 W at 30 K and 6.6 W at 60 K. The results of the test and of theoretical performances of the hybrid compressor coupled to these expansion systems are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, K. X.; Wang, J. J.; Yuan, Z.
The effect of cryogenic treatment on the plastic property of Ti-6Al-4V plate was studied in the present work. After cryogenic treatment, the low temperature temper at 180 ▭ was conducted in one of the groups and the results were compared with that of the untreated and cryotreated ones. The SLX series program controlled cryogenic equipment was used for the cryogenic treatment. The tensile tests were conducted by universal tensile testing machine and parameters of elongation and area reduction were used to evaluate plastic property. The scanning electron microscope was used to study the morphology of microstructure and fracture surface. Themore » results show that after cryogenic treatment alone the elongation increased 10.6% and the area reduction increased 13.5% while the strength reduced to a small extent. Cryogenic treatment followed with low temperature temper increased the elongation and area reduction just by the extent of 4.7% and 9.5%. It means that the additional low temperature temper after cryogenic is not beneficial to the tensile properties of Ti-6Al-4V alloy. The examination of microstructure by scanning electron microscopy revealed that cryogenic treatment reduced the content of β phase particles which is the main reason for the improvement in plasticity.« less
Effect of cryogenic treatment on nickel-titanium endodontic instruments
Kim, J. W.; Griggs, J. A.; Regan, J. D.; Ellis, R. A.; Cai, Z.
2005-01-01
Aim To investigate the effects of cryogenic treatment on nickel-titanium endodontic instruments. The null hypothesis was that cryogenic treatment would result in no changes in composition, microhardness or cutting efficiency of nickel-titanium instruments. Methodology Microhardness was measured on 30 nickel-titanium K-files (ISO size 25) using a Vicker’s indenter. Elemental composition was measured on two instruments using X-ray spectroscopy. A nickel-titanium bulk specimen was analysed for crystalline phase composition using X-ray diffraction. Half of the specimens to be used for each analysis were subjected to a cryogenic treatment in liquid nitrogen (−196 °C) for either 3 s (microhardness specimens) or 10 min (other specimens). Cutting efficiency was assessed by recording operator choice using 80 nickel-titanium rotary instruments (ProFile® 20, .06) half of which had been cryogenically treated and had been distributed amongst 14 clinicians. After conditioning by preparing four corresponding canals, each pair of instruments were evaluated for cutting efficiency by a clinician during preparation of one canal system in vitro. A Student’s t-test was used to analyse the microhardness data, and a binomial test was used to analyse the observer choice data. Composition data were analysed qualitatively. Results Cryogenically treated specimens had a significantly higher microhardness than the controls (P < 0.001; β > 0.999). Observers showed a preference for cryogenically treated instruments (61%), but this was not significant (P = 0.21). Both treated and control specimens were composed of 56% Ni, 44% Ti, 0% N (by weight) with a majority in the austenite phase. Conclusions Cryogenic treatment resulted in increased microhardness, but this increase was not detected clinically. There was no measurable change in elemental or crystalline phase composition. PMID:15910471
Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks
NASA Technical Reports Server (NTRS)
Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.; Heyadat, Ali
2007-01-01
A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in normal gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-31) software. Quantitative model validation is ,provided by engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage_ Technology Demonstrator (STUSTD) program. The engineering checkout tests provide cryogenic tank self-pressurization test data at various heat leaks and tank fill levels. The predicted self-pressurization rates, ullage and liquid temperatures at discrete locations within the STUSTD tank are in good agreement with test data. The work presented here advances current CFD modeling capabilities for cryogenic pressure control and helps develop a low cost CFD-based design process for space hardware.
Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander
NASA Astrophysics Data System (ADS)
Joshi, D. M.; Patel, H. K.; Shah, D. K.
2015-04-01
Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the efficient performance of cryogenic turboexpander (Radial Inflow type) to ensure that the control systems meet the technical conditions and constraints more accurately and ensure the equipment safety.
Demonstration Experiments for Solid-State Physics Using a Table-Top Mechanical Stirling Refrigerator
ERIC Educational Resources Information Center
Osorio, M. R.; Morales, A. Palacio; Rodrigo, J. G.; Suderow, H.; Vieira, S.
2012-01-01
Liquid-free cryogenic devices are acquiring importance in basic science and engineering. But they can also lead to improvements in teaching low temperature and solid-state physics to graduate students and specialists. Most of the devices are relatively expensive, but small-sized equipment is slowly becoming available. Here, we have designed…
Novel microwave readout for phase qubits
NASA Astrophysics Data System (ADS)
Kumar, Shwetank; Steffen, Matthias; Rothwell, Mary-Beth; Rozen, James; Keefe, George; Ketchen, Mark
2010-03-01
We present a novel microwave based readout for a phase qubit which circumvents loss mechanisms that have been shown to impact qubit coherence times. Additionally, this new technique facilitates multiplexing of qubits thereby reducing the number of cryogenic wires required for operating the qubits. The basic operation of the circuit will be discussed and compared with experimental data.
NASA Technical Reports Server (NTRS)
Plachta, David W.; Tucker, Stephen; Hoffman, David J.
1993-01-01
This paper analyzes, defines, and sizes cryogenic storage thermal control systems that meet the requirements of future NASA Mars human exploration missions. The design issues of this system include the projection of the existing Multilayer Insulation data base for cryogenic storage to much thicker (10 cm or more) insulation systems, the unknown heat leak from mechanical interfaces, and the thermal and structural performance effects of the large tank sizes required for a Mars mission. Acknowledging these unknown effects, heat loss projections are made based on extrapolation of the existing data base. The results indicate that hydrogen, methane, and oxygen are feasible propellants, and that the best suited thermal control sytems are 'thick' MLI, thermodynamic vent sytems, cryocoolers, and vacuum jackets.
NASA Astrophysics Data System (ADS)
Chen, G. B.; Zhong, Y. K.; Zheng, X. L.; Li, Q. F.; Xie, X. M.; Gan, Z. H.; Huang, Y. H.; Tang, K.; Kong, B.; Qiu, L. M.
2003-12-01
A novel gas-phase inlet configuration in the natural circulation system instead of the liquid-phase inlet is introduced to cool down a cryogenic pump system from room temperature to cryogenic temperatures, effectively. The experimental apparatus is illustrated and test process is described. Heat transfer and pressure drop data during the cool-down process are recorded and portrayed. By contrast with liquid-phase inlet configuration, experimental results demonstrate that the natural circulation with the gas-phase inlet configuration is an easier and more controllable way to cool down the pump system and maintain it at cryogenic temperatures.
NASA Astrophysics Data System (ADS)
Ghasemi Nanesa, Hadi
Cryogenic treatment, known as treating materials at sub-zero temperatures, has been added to conventional heat treatment cycle of high alloyed steels where martensitic transformation is incomplete after quenching to room temperature. Incomplete martensitic transformation occurs due to the effect of high content of alloying elements on pushing down martensite start and finish temperatures to very low values, specifically, on tool steels. In spite of obtaining significant improvements in mechanical and wear properties after cryogenic treatment, there is no cohesive picture about what exactly modifies the microstructure of tool steels during cryogenic treatment and therefore divergent opinions on the influence of process parameters are still reported. For example, the suggested time length for cryogenic treatment starts from few seconds to several days indicating the lack of understanding about micromechanisms responsible for microstructural evolution while holding at cryogenic temperatures. In this regard, the main objective of this project is to develop a better understanding on the fundamental micromechanisms operating during cryogenic treatment. To attain this objective, the following milestones are pursued. - To study the conventional cryogenic treatment and finding challenges. - To identify and characterize the optimum starting microstructure before cryogenic treatment. - To determine the important processing parameters those control the evolution of microstructure and hardness. - To investigate the interaction between carbide precipitation and martensitic transformation in the AISI D2 steel. - To propose an optimal cryogenic treatment for AISI D2 steel.
Miniature thermoacoustic cryocooler driven by a vertical comb-drive
NASA Astrophysics Data System (ADS)
Hao, Zhili; Fowler, Mark; Hammer, Jay A.; Whitley, Michael R.; Brown, David
2003-01-01
In this paper, we propose a novel miniature MEMS based thermoacoustic cryo-cooler for thermal management of cryogenic electronic devices. The basic idea is to exploit a new way to realize a highly-reliable miniature cryo-cooler, which would allow integration of a cryogenic cooling system directly into a cryogenic electronic device. A vertical comb-drive is proposed as the means to provide an acoustic source through a driving plate to a resonant tube. By exciting a standing wave within the resonant tube, a temperature difference develops across the stack in the tube, thereby enabling heat exchange between two heat exchangers. The use of gray scale technology to fabricate tapered resonant tube provides a way to improve the efficiency of the cooling system, compared with a simple cylinder configuration. Furthermore, a tapered tube leads to extremely strong standing waves with relatively pure waveforms and reduces possible harmonics. The working principle of this device is described here. The fabrication of this device is considered, which is compatible with current MEMS fabrication technology. Finally, the theoretical analysis of key components of this cryo-cooler is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori
2005-07-15
A simulated fuel processing (cryogenic distillation columns and a palladium diffuser) and CMSB (cryogenic molecular sieve bed) systems were linked together, and were operated. The validity of the CMSB was discussed through this experiment as an integrated system for the recovery of blanket tritium. A gas stream of hydrogen isotopes and He was supplied to the CMSB as the He sweep gas in blanket of a fusion reactor. After the breakthrough of tritium was observed, regeneration of the CMSB was carried out by evacuating and heating. The hydrogen isotopes were finally recovered by the diffuser. At first, only He gasmore » was sent by the evacuating. The hydrogen isotopes gas was then rapidly released by the heating. The system worked well against the above drastic change of conditions. The amount of hydrogen isotopes gas finally recovered by the diffuser was in good agreement with that adsorbed by the CMSB. The dynamic behaviors (breakthrough and regeneration) of the system were explained well by a set of basic codes.« less
HAWCPol: a first-generation far-infrared polarimeter for SOFIA
NASA Astrophysics Data System (ADS)
Dowell, C. Darren; Cook, Brant T.; Harper, D. Al; Lin, Lung-Sheng; Looney, Leslie W.; Novak, Giles; Stephens, Ian; Berthoud, Marc; Chuss, David T.; Crutcher, Richard M.; Dotson, Jessie L.; Hildebrand, Roger H.; Houde, Martin; Jones, Terry J.; Krejny, Megan; Lazarian, Alexandre; Moseley, S. Harvey; Tassis, Kostas; Vaillancourt, John E.; Werner, Michael W.
2010-07-01
We describe our ongoing project to build a far-infrared polarimeter for the HAWC instrument on SOFIA. Far-IR polarimetry reveals unique information about magnetic fields in dusty molecular clouds and is an important tool for understanding star formation and cloud evolution. SOFIA provides flexible access to the infrared as well as good sensitivity to and angular resolution of continuum emission from molecular clouds. We are making progress toward outfitting HAWC, a first-generation SOFIA camera, with a four-band polarimeter covering 50 to 220 microns wavelength. We have chosen a conservative design which uses quartz half-wave plates continuously rotating at ~0.5 Hz, ball bearing suspensions, fixed wire-grid polarizers, and cryogenic motors. Design challenges are to fit the polarimeter into a volume that did not originally envision one, to minimize the heating of the cryogenic optics, and to produce negligible interference in the detector system. Here we describe the performance of the polarimeter measured at cryogenic temperature as well as the basic method we intend for data analysis. We are on track for delivering this instrument early in the operating lifetime of SOFIA.
Mechanical Design of the LHC Standard Half-Cell
NASA Astrophysics Data System (ADS)
Poncet, A.; Brunet, J. C.; Cruikshank, P.; Genet, M.; Parma, V.; Rohmig, P.; Saban, R.; Tavian, L.; Veness, R.; Vlogaert, J.; Williams, L. R.
1997-05-01
The LHC Conceptual Design Report issued on 20th October 1995 (CERN/AC/95-05 (LHC) - nicknamed "Yellow Book") introduced significant changes to some fundamental features of the LHC standard half-cell, composed of one quadrupole, 3 dipoles and a set of corrector magnets. A separate cryogenic distribution line was introduced, which was previously inside the main cryostat. The dipole length has been increased from 10 to 15 m and independent powering of the focusing and defocusing quadrupole magnets was chosen. Individual quench protection diodes were introduced in magnets interconnects and many auxiliary bus bars were added to feed in series the various families of correcting superconducting magnets. The various highly intricate basic systems such as: cryostats and cryogenics feeders, superconducting magnets and their electrical feeding and protection, vacuum beam screen and its cooling, support and alignment devices have been redesigned, taking into account the very tight space available. These space constraints are given by the necessity to have maximum integral bending field strength for maximum LHC energy, and the existing LHC tunnel. Finally, cryogenic and vacuum sectorisation have been introduced to reduce downtimes and facilitate commissioning.
Large format array controller (aLFA-C): tests and characterisation at ESA
NASA Astrophysics Data System (ADS)
Lemmel, Frédéric; ter Haar, Jörg; van der Biezen, John; Duvet, Ludovic; Nelms, Nick; Blommaert, Sander; Butler, Bart; van der Luijt, Cornelis; Heijnen, Jerko; Smit, Hans; Visser, Ivo
2016-08-01
For future near infrared astronomy missions, ESA is developing a complete detection and conversion chain (photon to SpaceWire chain system): Large Format Array (aLFA-N) based on MCT type detectors. aLFA-C (Astronomy Large Format Array Controller): a versatile cryogenic detector controller. An aLFA-C prototype was developed by Caeleste (Belgium) under ESA contract (400106260400). To validate independently the performances of the aLFA-C prototype and consolidate the definition of the follow-on activity, a dedicated test bench has been designed and developed in ESTEC/ESA within the Payload Technology Validation group. This paper presents the test setup and the performance validation of the first prototype of this controller at room and cryogenic temperature. Test setup and software needed to test the HAWAII-2RG and aLFA-N detectors with the aLFA-C prototype at cryogenic temperature will be also presented.
Study of Cryogenic Complex Plasma
2010-08-17
inner diameter of 9.6 cm and the height of 80 cm. The Dewar bottle is filled with liquid helium or liquid nitrogen and is inserted in a liquid ...gas in the glass tube is controlled by the cryogenic liquid , liquid helium or liquid nitrogen , contained in the inner Dewar bottle. The outer Dewar...bottle contains liquid nitrogen to maintain the inner cryogenic temperature. An rf helium plasma with a neutral gas pressure P = 0.1 ~ 100 Pa is
Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators
NASA Technical Reports Server (NTRS)
Dick, G. John; Wang, Rabi
2006-01-01
Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.
Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Ray, E. J.; Ladson, C. L.; Adcock, J. B.; Lawing, P. L.; Hall, R. M.
1979-01-01
The past 6 years of operation with the NASA Langley 0.3 m transonic cryogenic tunnel (TCT) show that there are no insurmountable problems associated with cryogenic testing with gaseous nitrogen at transonic Mach numbers. The fundamentals of the concept were validated both analytically and experimentally and the 0.3 m TCT, with its unique Reynolds number capability, was used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects were developed and cryogenic tunnel conditions can be set and maintained accurately. Cryogenic cooling by injecting liquid nitrogen directly into the tunnel circuit imposes no problems with temperature distribution or dynamic response characteristics. Experience with the 0.3 m TCT, indicates that there is a significant learning process associated with cryogenic, high Reynolds number testing. Many of the questions have already been answered; however, factors such as tunnel control, run logic, economics, instrumentation, and model technology present many new and challenging problems.
Space environmental considerations for a long-term cryogenic storage vessel
NASA Technical Reports Server (NTRS)
Nakanishi, Shigeo
1987-01-01
Information is given on the kind of protection that is needed against impact and perforation of a long-term cryogenic storage vessel in space by meteoroids and space debris. The long-term effects of the space environment on thermal control surfaces and coatings, and the question of whether the insulation and thermal control surfaces should be encased in a vacuum jacket shell are discussed.
Analysis and Design of the NASA Langley Cryogenic Pressure Box
NASA Technical Reports Server (NTRS)
Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.
1999-01-01
A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.
Fiberoptic characteristics for extreme operating environments
NASA Technical Reports Server (NTRS)
Delcher, R. C.
1992-01-01
Fiberoptics could offer several major benefits for cryogenic liquid-fueled rocket engines, including lightning immunity, weight reduction, and the possibility of implementing a number of new measurements for engine condition monitoring. The technical feasibility of using fiberoptics in the severe environments posed by cryogenic liquid-fueled rocket engines was determined. The issues of importance and subsequent requirements for this use of fiberoptics were compiled. These included temperature ranges, moisture embrittlement succeptability, and the ability to withstand extreme shock and vibration levels. Different types of optical fibers were evaluated and several types of optical fibers' ability to withstand use in cryogenic liquid-fueled rocket engines was demonstrated through environmental testing of samples. This testing included: cold-bend testing, moisture embrittlement testing, temperature cycling, temperature extremes testing, vibration testing, and shock testing. Three of five fiber samples withstood the tests to a level proving feasibility, and two of these remained intact in all six of the tests. A fiberoptic bundle was also tested, and completed testing without breakage. Preliminary cabling and harnessing for fiber protection was also demonstrated. According to cable manufacturers, the successful -300 F cold bend, vibration, and shock tests are the first instance of any major fiberoptic cable testing below roughly -55 F. This program has demonstrated the basic technical feasibility of implementing optical fibers on cryogenic liquid-fueled rocket engines, and a development plan is included highlighting requirements and issues for such an implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, T.; Cai, Y.; Smellie, R.
1993-05-01
The basic features of the Superconducting Super Collider lattice are the two beamlines formed by superconducting dipoles (7736) and quadrupoles (1564). The dipoles constraint two 20 TeV proton beams into counterrotating closed orbits of 86.2 km. The quadrupoles (FODO) require cryogenic cooling the LHe temperatures. This requirement isolates the main magnets from the outside world. The interface required, the spool, is a crucial component of superconducting lattice design and machine operation. There are over 1588 spools in the Super Collider. We present hear SSCL spool designs which consist of (1) housing for superconducting closed orbit and multipole correction magnets, (2)more » cryogenic function, magnet quench protection, system power, and instrumentation interfaces, and (3) cold to warm transitions for ware magnet and warm instrumentation drift spaces.« less
Use of thermal sieve to allow optical testing of cryogenic optical systems.
Kim, Dae Wook; Cai, Wenrui; Burge, James H
2012-05-21
Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.
The US National Transonic Facility, NTF
NASA Technical Reports Server (NTRS)
Bruce, Walter E., Jr.; Gloss, Blair B.
1989-01-01
The construction of the National Transonic Facility was completed in September 1982 and the start-up and checkout of tunnel systems were performed over the next two years. In August 1984, the Operational Readiness Review (ORR) was conducted and the facility was declared operational for final checkout of cryogenic instrumentation and control systems, and for the aerodynamic calibration and testing to commence. Also, the model access system for the cryogenic mode of operation would be placed into operation along with tunnel testing. Since the ORR, a host of operating problems resulting from the cryogenic environment were identified and solved. These range from making mechanical and electrical systems functional to eliminating temperature induced model vibration to coping with the outgassing of moisture from the thermal insulation. Additionally, a series of aerodynamic tests have demonstrated data quality and provided research data on several configurations. Some of the more significant efforts are reviewed since the ORR and the NTF status concerning hardware, instrumentation and process controls systems, operating constraints imposed by the cryogenic environment, and data quality are summarized.
Physics Based Model for Cryogenic Chilldown and Loading. Part IV: Code Structure
NASA Technical Reports Server (NTRS)
Luchinsky, D. G.; Smelyanskiy, V. N.; Brown, B.
2014-01-01
This is the fourth report in a series of technical reports that describe separated two-phase flow model application to the cryogenic loading operation. In this report we present the structure of the code. The code consists of five major modules: (1) geometry module; (2) solver; (3) material properties; (4) correlations; and finally (5) stability control module. The two key modules - solver and correlations - are further divided into a number of submodules. Most of the physics and knowledge databases related to the properties of cryogenic two-phase flow are included into the cryogenic correlations module. The functional form of those correlations is not well established and is a subject of extensive research. Multiple parametric forms for various correlations are currently available. Some of them are included into correlations module as will be described in details in a separate technical report. Here we describe the overall structure of the code and focus on the details of the solver and stability control modules.
Reliability Testing on the CTI-Cryogenic 1 Watt Integral Cooler (HD- 1033C/UA)
1989-09-01
SUBJECT TERMS (Continue on reverse if necessary and identify by block numbe) FIELD GROUP SUB- GROUP Cryocooler, Stirling Cycle, Cryogenics 19, ABSTRCT...the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers... controlled high/low temperature chamber. * A microprocessor which was programmed to automatically cycle the temperature in the chamber in accordance
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Kilgore, W. Allen
1992-01-01
The NASA Langley 0.3-m Transonic Cryogenic Tunnel is to be modified to operate with sulfur hexafluoride gas while retaining its present capability to operate with nitrogen. The modified tunnel will provide high Reynolds number flow on aerodynamic models with two different test gases. The document details a study of the SF6 tunnel performance boundaries, thermodynamic modeling of the tunnel process, nonlinear dynamical simulation of math model to yield tunnel responses, the closed loop control requirements, control laws, and mechanization of the control laws on the microprocessor based controller.
Large-Scale Cryogen Systems and Test Facilities
NASA Technical Reports Server (NTRS)
Johnson, R. G.; Sass, J. P.; Hatfield, W. H.
2007-01-01
NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.
Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.
2007-01-01
In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.
Nanotribological behavior of deep cryogenically treated martensitic stainless steel
Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban
2017-01-01
Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally. PMID:28904837
Nanotribological behavior of deep cryogenically treated martensitic stainless steel.
Prieto, Germán; Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban
2017-01-01
Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic-plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.
Performance tests of a cryogenic hybrid magnetic bearing for turbopumps
NASA Technical Reports Server (NTRS)
Dirusso, Eliseo; Brown, Gerald V.
1992-01-01
Experiments were performed on a Hybrid Magnetic Bearing designed for cryogenic applications such as turbopumps. This bearing is considerably smaller and lighter than conventional magnetic bearings and is more efficient because it uses a permanent magnet to provide a bias flux. The tests were performed in a test rig that used liquid nitrogen to simulate cryogenic turbopump temperatures. The bearing was tested at room temperature and at liquid nitrogen temperature (-320 F). The maximum speed for the test rig was 14000 rpm. For a magnetic bearing stiffness of 20000 lb/in, the flexible rotor had two critical speeds. A static (nonrotating) bearing stiffness of 85000 lb/in was achieved. Magnetic bearing stiffness, permanent magnet stiffness, actuator gain, and actuator force interaction between two axes were evaluated, and controller/power amplifier characteristics were determined. The tests revealed that it is feasible to use this bearing in the cryogenic environment and to control the rotor dynamics of flexible rotors when passing through bending critical speeds. The tests also revealed that more effort should be placed on enhancing the controller to achieve higher bearing stiffness and on developing displacement sensors that reduce drift caused by temperature and reduce sensor electrical noise.
Large scale cryogenic fluid systems testing
NASA Technical Reports Server (NTRS)
1992-01-01
NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.
Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Taylor, Brian; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert
2015-01-01
The purpose of this paper is to investigate, facilitate a discussion and determine a path forward for technology development of cryogenic fluid management technology that is necessary for long duration deep space missions utilizing nuclear thermal propulsion systems. There are a number of challenges in managing cryogenic liquids that must be addressed before long durations missions into deep space, such as a trip to Mars can be successful. The leakage rate of hydrogen from pressure vessels, seals, lines and valves is a critical factor that must be controlled and minimized. For long duration missions, hydrogen leakage amounts to large increases in hydrogen and therefore vehicle mass. The size of a deep space vehicle, such as a mars transfer vehicle, must be kept small to control cost and the logistics of a multi launch, assembled in orbit vehicle. The boil off control of the cryogenic fluid is an additional obstacle to long duration missions. The boil off caused by heat absorption results in the growth of the propellant needs of the vehicle and therefore vehicle mass. This is a significant problem for a vehicle using nuclear (fission) propulsion systems. Radiation from the engines deposits large quantities of heat into the cryogenic fluid, greatly increasing boil off beyond that caused by environmental heat leakage. Addressing and resolving these challenges is critical to successful long duration space exploration. This paper discusses the state of the technology needed to address these challenges and discuss the path forward needed in technology development.
NASA Technical Reports Server (NTRS)
Ameen, Lauren; Hervol, David; Waters, Deborah
2017-01-01
For large in-space cryogenic upper stages, substantial axial heat removal from a forward skirt by vapor-based heat interception may not be achieved by simple attachment methods unless sufficient thermal conductance from the skirt to the cooling fluid can be achieved. Preferable methods would allow for the addition of the cooling system to existing structure with minimal impact on the structure. Otherwise, significant modification to the basic structural design andor novel and complex attachment mechanisms with high effective thermal conductance are likely to be required. The approach being pursued by evolvable Cryogenics (eCryo) is to increase the thermal performance of a relatively simple attachment system by applying metallic or other thermally conductive material coatings to the mating surface area of the fluid channel where it is attached the skirt wall. The expectation of candidate materials is that the dramatic increase in conductivity of pure metals at temperatures close to liquid hydrogen vapor temperature will compensate for the reduced actual contact area typical of mechanical joints. Basic contact conductance data at low temperatures for candidate interface materials is required to enable the test approach. A test rig was designed at NASA Glenn Research Center to provide thermal contact resistance testing between small sample coupons coated with conductive material via electron beam evaporation, a low-temperature option that will not affect physical properties of base materials. Average coating thicknesses were 10 k. The test fixture was designed to mount directly to a cryocooler cold head within a vacuum test chamber. The purpose of this test was to determine qualitative contact conductance between various test samples. Results from this effort will be implemented in a sub-scale vapor-based heat interception test, where the applicability for increased heat removal on large structural skirts will be considered.
Development of a distributed-parameter mathematical model for simulation of cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Tripp, J. S.
1983-01-01
A one-dimensional distributed-parameter dynamic model of a cryogenic wind tunnel was developed which accounts for internal and external heat transfer, viscous momentum losses, and slotted-test-section dynamics. Boundary conditions imposed by liquid-nitrogen injection, gas venting, and the tunnel fan were included. A time-dependent numerical solution to the resultant set of partial differential equations was obtained on a CDC CYBER 203 vector-processing digital computer at a usable computational rate. Preliminary computational studies were performed by using parameters of the Langley 0.3-Meter Transonic Cryogenic Tunnel. Studies were performed by using parameters from the National Transonic Facility (NTF). The NTF wind-tunnel model was used in the design of control loops for Mach number, total temperature, and total pressure and for determining interactions between the control loops. It was employed in the application of optimal linear-regulator theory and eigenvalue-placement techniques to develop Mach number control laws.
Refrigeration and Cryogenics Specialist. J3ABR54530
ERIC Educational Resources Information Center
Air Force Training Command, Sheppard AFB, TX.
This document package contains an Air Force course used to train refrigeration and cryogenics specialists. The course is organized in six blocks designed for group instruction. The blocks cover the following topics: electrical principles; fundamentals of tubing and piping; metering devices, motor controls, domestic and commercial refrigeration;…
Worwetz, H.A.
1975-09-02
This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)
Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Theilacker, J.; Klebaner, A.
2015-11-05
The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05more » PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.« less
Power control electronics for cryogenic instrumentation
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.
Requirements for maintaining cryogenic propellants during planetary surface stays
NASA Technical Reports Server (NTRS)
Riccio, Joseph R.; Schoenberg, Richard J.
1991-01-01
Potential impacts on the planetary surface system infrastructure resulting from the use of liquid hydrogen and oxygen propellants for a stage and half lander are discussed. Particular attention is given to techniques which can be incorporated into the surface infrastructure and/or the vehicle to minimize the impact resulting from the use of these cryogens. Methods offered for reducing cryogenic propellant boiloff include modification of the lander to accommodate boiloff, incorporation of passive thermal control devices to the lander, addition of active propellant management, and use of alternative propellants.
Ferromagnetic Josephson Junctions for Cryogenic Memory
NASA Astrophysics Data System (ADS)
Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.
2015-03-01
Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.
The NASA Langley Research Center 0.3-meter transonic cryogenic tunnel T-P/Re-M controller manual
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Kilgore, W. Allen
1989-01-01
A new microcomputer based controller for the 0.3-m Transonic Cryogenic Tunnel (TCT) has been commissioned in 1988 and has reliably operated for more than a year. The tunnel stagnation pressure, gas stagnation temperature, tunnel wall structural temperature and flow Mach number are precisely controlled by the new controller in a stable manner. The tunnel control hardware, software, and the flow chart to assist in calibration of the sensors, actuators, and the controller real time functions are described. The software installation details are also presented. The report serves as the maintenance and trouble shooting manual for the 0.3-m TCT controller.
Gyroscope relativity experiment
NASA Technical Reports Server (NTRS)
Decher, R.
1971-01-01
A gyroscope test of general relativity theory is proposed. The basic ideas and hardware concepts conceived by the investigators to implement the experiment are discussed. The goal is to measure the extremely small relativistic precession of gyroscopes in an earth-orbiting satellite. The experiment hardware (cryogenic gyroscopes, a telescope and superconducting circuits) is enclosed in a liquid helium dewar. The experiment will operate in orbit for about one year.
NASA Technical Reports Server (NTRS)
Burge, G. W.; Blackmon, J. B.
1973-01-01
Areas of cryogenic fuel systems were identified where critical experimental information was needed either to define a design criteria or to establish the feasibility of a design concept or a critical aspect of a particular design. Such data requirements fell into three broad categories: (1) basic surface tension screen characteristics; (2) screen acquisition device fabrication problems; and (3) screen surface tension device operational failure modes. To explore these problems and to establish design criteria where possible, extensive laboratory or bench test scale experiments were conducted. In general, these proved to be quite successful and, in many instances, the test results were directly used in the system design analyses and development. In some cases, particularly those relating to operational-type problems, areas requiring future research were identified, especially screen heat transfer and vibrational effects.
Jefferson Lab 12 GEV Cebaf Upgrade
NASA Astrophysics Data System (ADS)
Rode, C. H.
2010-04-01
The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ˜6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a 310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.
Cryogenic Lifetime Studies of 130 nm and 65 nm CMOS Technologies for High-Energy Physics Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, James R.; Deptuch, G. W.; Wu, Guoying
2015-06-04
The Long Baseline Neutrino Facility intends to use unprecedented volumes of liquid argon to fill a time projection chamber in an underground facility. Research is under way to place the electronics inside the cryostat. For reasons of efficiency and economics, the lifetimes of these circuits must be well in excess of 20 years. The principle mechanism for lifetime degradation of MOSFET devices and circuits operating at cryogenic temperatures is hot carrier degradation. Choosing a process technology that is, as much as possible, immune to such degradation and developing design techniques to avoid exposure to such damage are the goals. This,more » then, requires careful investigation and a basic understanding of the mechanisms that underlie hot carrier degradation and the secondary effects they cause in circuits. In this work, commercially available 130 nm and 65 nm nMOS transistors operating at cryogenic temperatures are investigated. Our results show that both technologies achieve the lifetimes required by the experiment. Minimal design changes are necessary in the case of the 130 nm process and no changes whatsoever are necessary for the 65 nm process.« less
Cryogenic Capillary Screen Heat Entrapment
NASA Technical Reports Server (NTRS)
Bolshinskiy, L.G.; Hastings, L.J.; Stathman, G.
2007-01-01
Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of sub-cooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: "To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs.?"Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, "200x1400" and "325x2300", both with Twill Dutch Weave. Upon consideration of both the water and LN2 data it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.
Active Control of Cryogenic Propellants in Space
NASA Technical Reports Server (NTRS)
Notardonato, William
2011-01-01
A new era of space exploration is being planned. Exploration architectures under consideration require the long term storage of cryogenic propellants in space. This requires development of active control systems to mitigate the effect of heat leak. This work summarizes current state of the art, proposes operational design strategies and presents options for future architectures. Scaling and integration of active systems will be estimated. Ideal long range spacecraft systems will be proposed with Exploration architecture benefits considered.
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Kilgore, W. Allen
1995-01-01
The NASA Langley 0.3-m Transonic Cryogenic Tunnel was modified in 1994, to operate with any one of the three test gas media viz., air, cryogenic nitrogen gas, or sulfur hexafluoride gas. This document provides the initial test results with respect to the tunnel performance and tunnel control, as a part of the commissioning activities on the microcomputer based controller. The tunnel can provide precise and stable control of temperature to less than or equal to +/- 0.3 K in the range 80-320 K in cyro mode or 300-320 K in air/SF6 mode, pressure to +/- 0.01 psia in the range 15-88 psia and Mach number to +/- O.0015 in the range 0.150 to transonic Mach numbers up to 1.000. A new heat exchanger has been included in the tunnel circuit and is performing adequately. The tunnel airfoil testing benefits considerably by precise control of tunnel states and helps in generating high quality aerodynamic test data from the 0.3-m TCT.
Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity
NASA Technical Reports Server (NTRS)
Hedayat, Ali; Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.
2008-01-01
A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in low gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-3D software and simulates low gravity extrapolations of engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage Technology Demonstrator (STUSTD) program. Model results illustrate that stable low gravity liquid-gas interfaces are maintained during all phases of the pressure control cycle. Steady and relatively smooth ullage pressurization rates are predicted. This work advances current low gravity CFD modeling capabilities for cryogenic pressure control and aids the development of a low cost CFD-based design process for space hardware.
Shuttle cryogenic supply system optimization study. Volume 6: Appendixes
NASA Technical Reports Server (NTRS)
1973-01-01
The optimization of the cryogenic supply system for space shuttles is discussed. The subjects considered are: (1) auxiliary power unit parametric data, (2) propellant acquisition, (3) thermal protection and thermodynamic properties, (4) instrumentation and controls, and (5) initial component redundancy evaluations. Diagrams of the systems are provided. Graphs of the performance capabilities are included.
Design and performance of a cryogenic iris aperture mechanism
NASA Astrophysics Data System (ADS)
de Jonge, C.; Laauwen, W. M.; de Vries, E. A.; Smit, H. P.; Detrain, A.; Eggens, M. J.; Ferrari, L.; Dieleman, P.
2014-07-01
A cryogenic iris mechanism is under development as part of the ground calibration source for the SAFARI instrument. The iris mechanism is a variable aperture used as an optical shutter to fine-tune and modulate the absolute power output of the calibration source. It has 4 stainless steel blades that create a near-circular aperture in every position. The operating temperature is 4.5 Kelvin to provide a negligible background to the SAFARI detectors, and `hot spots' above 9K should be prevented. Cryogenic testing proved that the iris works at 4K. It can be used in a broad range of cryogenic optical instruments where optical throughput needs to be controlled. Challenges in the design include the low cooling power available (5mW) and low friction at cryogenic temperatures. The actuator is an `arc-type' rotary voice-coil motor. The use of flexural pivots creates a mono-stable mechanism with a resonance frequency at 26Hz. Accurate and fast position control with disturbance rejection is managed by a PID servo loop using a hall-sensor as input. At 4 Kelvin, the frequency is limited to 4Hz to avoid excess dissipation and heating. In this paper, the design and performance of the iris are discussed. The design was optimized using a thermal, magnetic and mechanical model made with COMSOL Finite Element Analysis software. The dynamical and state-space modeling of the mechanism and the concept of the electrical control are presented. The performance of the iris show good agreement to the analytical and COMSOL modeling.
Helium refrigeration system for hydrogen liquefaction applications
NASA Astrophysics Data System (ADS)
Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.
2017-02-01
Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.
Steering and positioning targets for HWIL IR testing at cryogenic conditions
NASA Astrophysics Data System (ADS)
Perkes, D. W.; Jensen, G. L.; Higham, D. L.; Lowry, H. S.; Simpson, W. R.
2006-05-01
In order to increase the fidelity of hardware-in-the-loop ground-truth testing, it is desirable to create a dynamic scene of multiple, independently controlled IR point sources. ATK-Mission Research has developed and supplied the steering mirror systems for the 7V and 10V Space Simulation Test Chambers at the Arnold Engineering Development Center (AEDC), Air Force Materiel Command (AFMC). A portion of the 10V system incorporates multiple target sources beam-combined at the focal point of a 20K cryogenic collimator. Each IR source consists of a precision blackbody with cryogenic aperture and filter wheels mounted on a cryogenic two-axis translation stage. This point source target scene is steered by a high-speed steering mirror to produce further complex motion. The scene changes dynamically in order to simulate an actual operational scene as viewed by the System Under Test (SUT) as it executes various dynamic look-direction changes during its flight to a target. Synchronization and real-time hardware-in-the-loop control is accomplished using reflective memory for each subsystem control and feedback loop. This paper focuses on the steering mirror system and the required tradeoffs of optical performance, precision, repeatability and high-speed motion as well as the complications of encoder feedback calibration and operation at 20K.
Liu, Jiemin; Jiang, Guibin; Zhou, Qunfang; Liu, Jingfu; Wen, Meijuan
2003-10-01
A laboratory-made micro-cryogenic chromatographic oven was mainly improved in size, which was controlled at 6 x 6 x 2.5 cm. A thermoelectric system was used to cool the capillary column instead of the traditional liquid cryogen. A cold block connected to the cryogenic module was directly solidified at room temperature with thermally conductive adhesive so that the uniformity of transferring heat was greatly improved, and the size of the system was reduced. Moreover, this system was inexpensive and convenient for both operation and control. The newly developed device coupled with headspace solid-phase microextraction (SPME) was successfully applied to the determination of methyl tert-butyl ether (MTBE) and its degradation products. During the analysis procedure, a 65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used to extract MTBE and its degradation products. The extraction was controlled at 50 degrees C for 30 min and the NaCl content in the sample was maintained at 35%. The limits of detection (LODs) ranged from 0.006 microg mL(-1) (for MTBE) to 0.206 microg mL(-1) (for methyl acetate) and the relative standard deviations (RSD%) were below 4%. The spiked recoveries for the developed method were evaluated using various water samples as a matrix.
NASA Astrophysics Data System (ADS)
Oh, Hyun-Ung; Lee, Min-Kyu; Shin, Somin; Hong, Joo-Sung
2011-09-01
Spaceborne pulse tube type cryocoolers are widely used for providing cryogenic temperatures for sensitive infrared, gamma-ray and X-ray detectors. Thermal control for the compressor of the cryocooler is one of the important technologies for the cooling performance, mission life time, and jitter stability of the cooler. The thermal design of the compressor assembly proposed in this study is basically composed of a heat pipe, a radiator, and a heater. In the present work, a method for heat pipe implementation is proposed and investigated to ensure the jitter stability of the compressor under the condition that one heat pipe is not working. An optimal design of the radiator that uses ribs for effective use by minimizing the temperature gradient on the radiator and reducing its weight is introduced. The effectiveness of the thermal design of the compressor assembly is demonstrated by on-orbit thermal analysis using the correlated thermal model obtained from the thermal balance test that is performed under a space simulating environment.
Computational Modeling of Liquid and Gaseous Control Valves
NASA Technical Reports Server (NTRS)
Daines, Russell; Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Moore, Arden; Sulyma, Peter
2005-01-01
In this paper computational modeling efforts undertaken at NASA Stennis Space Center in support of rocket engine component testing are discussed. Such analyses include structurally complex cryogenic liquid valves and gas valves operating at high pressures and flow rates. Basic modeling and initial successes are documented, and other issues that make valve modeling at SSC somewhat unique are also addressed. These include transient behavior, valve stall, and the determination of flow patterns in LOX valves. Hexahedral structured grids are used for valves that can be simplifies through the use of axisymmetric approximation. Hybrid unstructured methodology is used for structurally complex valves that have disparate length scales and complex flow paths that include strong swirl, local recirculation zones/secondary flow effects. Hexahedral (structured), unstructured, and hybrid meshes are compared for accuracy and computational efficiency. Accuracy is determined using verification and validation techniques.
Verification of the predictive capabilities of the 4C code cryogenic circuit model
NASA Astrophysics Data System (ADS)
Zanino, R.; Bonifetto, R.; Hoa, C.; Richard, L. Savoldi
2014-01-01
The 4C code was developed to model thermal-hydraulics in superconducting magnet systems and related cryogenic circuits. It consists of three coupled modules: a quasi-3D thermal-hydraulic model of the winding; a quasi-3D model of heat conduction in the magnet structures; an object-oriented a-causal model of the cryogenic circuit. In the last couple of years the code and its different modules have undergone a series of validation exercises against experimental data, including also data coming from the supercritical He loop HELIOS at CEA Grenoble. However, all this analysis work was done each time after the experiments had been performed. In this paper a first demonstration is given of the predictive capabilities of the 4C code cryogenic circuit module. To do that, a set of ad-hoc experimental scenarios have been designed, including different heating and control strategies. Simulations with the cryogenic circuit module of 4C have then been performed before the experiment. The comparison presented here between the code predictions and the results of the HELIOS measurements gives the first proof of the excellent predictive capability of the 4C code cryogenic circuit module.
Design manual: Oxygen Thermal Test Article (OTTA)
NASA Technical Reports Server (NTRS)
Chronic, W. L.; Baese, C. L.; Conder, R. L.
1974-01-01
The characteristics of a cryogenic tank for storing liquid hydrogen, nitrogen, oxygen, methane, or helium for an extended period of time with minimum losses are discussed. A description of the tank and control module, assembly drawings and details of major subassemblies, specific requirements controlling development of the system, thermal concept considerations, thermal analysis methods, and a record of test results are provided. The oxygen thermal test article thermal protection system has proven that the insulation system for cryogenic vessels is effective.
Electromechanical actuation for cryogenic valve control
NASA Technical Reports Server (NTRS)
Lister, M. J.; Reichmuth, D. M.
1993-01-01
The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Klebaner, A.; Theilacker, J.
2011-06-01
The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.
Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.
2017-01-01
To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.
Airships for transporting highly volatile commodities
NASA Technical Reports Server (NTRS)
Sonstegaard, M.
1975-01-01
Large airships may prove feasible as carriers of commodities that move as gases or cryogenic liquids; buoyant gaseous cargo could be ballasted with liquid cargo. Airships are compact in shape, operate in a rarified medium, and hence can be fast and perhaps economic carriers of costly cryogenic tanks. The high-pressure gas pipeline has excessive surface area when carrying hydrogen and excessive fluid density when carrying natural gas, while the cryogenic ocean tanker runs in a dense medium and makes gravity waves. But the airship, despite its fluid dynamic advantages, faces problems of safety, weather, and altitude control.
JWST NIRSpec Cryogenic Light Shield Mechanism
NASA Technical Reports Server (NTRS)
Hale, Kathleen; Sharma, Rajeev
2006-01-01
The focal plane detectors for the Near-Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST) require a light tight cover for calibration along with an open field-of-view during ground performance testing within a cryogenic dewar. In order to meet the light attenuation requirements and provide open and closed fields of view without breaking vacuum, a light shield mechanism was designed. This paper describes the details of the light shield mechanism design and test results. Included is information on the labyrinth light path design, motor capability and performance, dry film lubrication, mechanism control, and mechanism cryogenic performance results.
Ultrafast photo-induced hidden phases in strained manganite thin films
NASA Astrophysics Data System (ADS)
Zhang, Jingdi; McLeod, A. S.; Zhang, Gu-Feng; Stoica, Vladimir; Jin, Feng; Gu, Mingqiang; Gopalan, Venkatraman; Freeland, John W.; Wu, Wenbin; Rondinelli, James; Wen, Haidan; Basov, D. N.; Averitt, R. D.
Correlated transition metal oxides (TMOs) are particularly sensitive to external control because of energy degeneracy in a complex energy landscape that promote a plethora of metastable states. However, it remains a grand challenge to actively control and fully explore the rich landscape of TMOs. Dynamic control with pulsed photons can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. In the past, we have demonstrated that mode-selective single-laser-pulse excitation of a strained manganite thin film La2/3Ca1/3MnO3 initiates a persistent phase transition from an emergent antiferromagnetic insulating ground state to a ferromagnetic metallic metastable state. Beyond the photo-induced insulator to metal transition, we recently discovered a new peculiar photo-induced hidden phase, identified by an experimental approach that combines ultrafast pump-probe spectroscopy, THz spectroscopy, X-ray diffraction, cryogenic near-field spectroscopy and SHG probe. This work is funded by the DOE, Office of Science, Office of Basic Energy Science under Award Numbers DE-SC0012375 and DE-SC0012592.
Thermal Optimization of an On-Orbit Long Duration Cryogenic Propellant Depot
NASA Technical Reports Server (NTRS)
Honour, Ryan; Kwas, Robert; O'Neil, Gary; Kutter, Gary
2012-01-01
A Cryogenic Propellant Depot (CPD) operating in Low Earth Orbit (LEO) could provide many near term benefits to NASA's space exploration efforts. These benefits include elongation/extension of spacecraft missions and requirement reduction of launch vehicle up-mass. Some of the challenges include controlling cryogenic propellant evaporation and managing the high costs and long schedules associated with the new development of spacecraft hardware. This paper describes a conceptual CPD design that is thermally optimized to achieve extremely low propellant boil-off rates. The CPD design is based on existing launch vehicle architecture, and its thermal optimization is achieved using current passive thermal control technology. Results from an integrated thermal model are presented showing that this conceptual CPD design can achieve propellant boil-off rates well under 0.05% per day, even when subjected to the LEO thermal environment.
Thermal Optimization and Assessment of a Long Duration Cryogenic Propellant Depot
NASA Technical Reports Server (NTRS)
Honour, Ryan; Kwas, Robert; O'Neil, Gary; Kutter, Bernard
2012-01-01
A Cryogenic Propellant Depot (CPD) operating in Low Earth Orbit (LEO) could provide many near term benefits to NASA space exploration efforts. These benefits include elongation/extension of spacecraft missions and reduction of launch vehicle up-mass requirements. Some of the challenges include controlling cryogenic propellant evaporation and managing the high costs and long schedules associated with new spacecraft hardware development. This paper describes a conceptual CPD design that is thermally optimized to achieve extremely low propellant boil-off rates. The CPD design is based on existing launch vehicle architecture, and its thermal optimization is achieved using current passive thermal control technology. Results from an integrated thermal model are presented showing that this conceptual CPD design can achieve propellant boil-off rates well under 0.05% per day, even when subjected to the LEO thermal environment.
Physics Based Model for Cryogenic Chilldown and Loading. Part I: Algorithm
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Smelyanskiy, Vadim N.; Brown, Barbara
2014-01-01
We report the progress in the development of the physics based model for cryogenic chilldown and loading. The chilldown and loading is model as fully separated non-equilibrium two-phase flow of cryogenic fluid thermally coupled to the pipe walls. The solution follow closely nearly-implicit and semi-implicit algorithms developed for autonomous control of thermal-hydraulic systems developed by Idaho National Laboratory. A special attention is paid to the treatment of instabilities. The model is applied to the analysis of chilldown in rapid loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The numerical predictions are in reasonable agreement with the experimental time traces. The obtained results pave the way to the development of autonomous loading operation on the ground and space.
Basic cryogenics and materials. Phase 1
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1985-01-01
The effects of cryogenic temperatures on the mechanical and physical properties of materials are summarized. Heat capacity and thermal conductivity are considered in the context of conservation of liquid nitrogen, thermal stability of the gas stream, and the response time for changes in operating temperature. Particular attention is given to the effects of differential expansion and failure due to thermal fatigue. Factors affecting safety are discussed, including hazards created due to the inadvertent production of liquid oxygen and the physiological effects of exposure to liquid and gaseous nitrogen, such as cold burns and asphyxiation. The preference for using f.c.c. metals at low temperatures is explained in terms of their superior toughness. The limitations on the use of ferritic steels is also considered. Nonmetallic materials are discussed, mainly in the context of their LOX compatibility and their use in the form of foams and fibers as insultants, seals, and fiber reinforced composites.
A Cryogenic Infrared Calibration Target
NASA Technical Reports Server (NTRS)
Wollack, E. J.; Kinzer, R. E., Jr.; Rinehart, S. A.
2014-01-01
A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R < or = 0.003, from 800 to 4800/cm (12 - 2 microns ). Upon expanding the spectral range under consideration to 400-10,000/ cm-1 (25 - 1 microns) the observed performance gracefully degrades to R < or = 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to approx.4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented
Treite, P.; Nuesslein, U.; Jia, Yi; ...
2015-07-15
The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features ofmore » the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.« less
Basic cryogenics and materials
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1985-01-01
The effects of cryogenic temperatures on the mechanical and physical properties of materials are summarized. Heat capacity and thermal conductivity are considered in the context of conservation of liquid nitrogen, thermal stability of the gas stream, and the response time for changes in operating temperature. Particular attention is given to the effects of differential expansion and failure due to thermal fatigue. Factors affecting safety are discussed, including hazards created due to the inadvertent production of liquid oxygen and the physiological effects of exposure to liquid and gaseous nitrogen, such as cold burns and asphyxiation. The preference for using f.c.c. metals at low temperatures is explained in terms of their superior toughness. The limitations on the use of ferritic steels is also considered. Nonmetallic materials are discussed, mainly in the context of their LOX compatibility and their use in the form of foams and fibers as insulatants, seals, and fiber reinforced composites.
Basic cryogenics and materials
NASA Astrophysics Data System (ADS)
Wigley, D. A.
1985-07-01
The effects of cryogenic temperatures on the mechanical and physical properties of materials are summarized. Heat capacity and thermal conductivity are considered in the context of conservation of liquid nitrogen, thermal stability of the gas stream, and the response time for changes in operating temperature. Particular attention is given to the effects of differential expansion and failure due to thermal fatigue. Factors affecting safety are discussed, including hazards created due to the inadvertent production of liquid oxygen and the physiological effects of exposure to liquid and gaseous nitrogen, such as cold burns and asphyxiation. The preference for using f.c.c. metals at low temperatures is explained in terms of their superior toughness. The limitations on the use of ferritic steels is also considered. Nonmetallic materials are discussed, mainly in the context of their LOX compatibility and their use in the form of foams and fibers as insulatants, seals, and fiber reinforced composites.
Basic cryogenics and materials. Phase 1
NASA Astrophysics Data System (ADS)
Wigley, D. A.
1985-06-01
The effects of cryogenic temperatures on the mechanical and physical properties of materials are summarized. Heat capacity and thermal conductivity are considered in the context of conservation of liquid nitrogen, thermal stability of the gas stream, and the response time for changes in operating temperature. Particular attention is given to the effects of differential expansion and failure due to thermal fatigue. Factors affecting safety are discussed, including hazards created due to the inadvertent production of liquid oxygen and the physiological effects of exposure to liquid and gaseous nitrogen, such as cold burns and asphyxiation. The preference for using f.c.c. metals at low temperatures is explained in terms of their superior toughness. The limitations on the use of ferritic steels is also considered. Nonmetallic materials are discussed, mainly in the context of their LOX compatibility and their use in the form of foams and fibers as insultants, seals, and fiber reinforced composites.
A cryogenic infrared calibration target
NASA Astrophysics Data System (ADS)
Wollack, E. J.; Kinzer, R. E.; Rinehart, S. A.
2014-04-01
A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R ⩽ 0.003, from 800 to 4800 cm-1 (12 - 2 μm). Upon expanding the spectral range under consideration to 400-10 000 cm-1 (25 - 1 μm) the observed performance gracefully degrades to R ⩽ 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to ˜4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials—Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder—are characterized and presented.
OMNY—A tOMography Nano crYo stage
NASA Astrophysics Data System (ADS)
Holler, M.; Raabe, J.; Diaz, A.; Guizar-Sicairos, M.; Wepf, R.; Odstrcil, M.; Shaik, F. R.; Panneels, V.; Menzel, A.; Sarafimov, B.; Maag, S.; Wang, X.; Thominet, V.; Walther, H.; Lachat, T.; Vitins, M.; Bunk, O.
2018-04-01
For many scientific questions gaining three-dimensional insight into a specimen can provide valuable information. We here present an instrument called "tOMography Nano crYo (OMNY)," dedicated to high resolution 3D scanning x-ray microscopy at cryogenic conditions via hard X-ray ptychography. Ptychography is a lens-less imaging method requiring accurate sample positioning. In OMNY, this in achieved via dedicated laser interferometry and closed-loop position control reaching sub-10 nm positioning accuracy. Cryogenic sample conditions are maintained via conductive cooling. 90 K can be reached when using liquid nitrogen as coolant, and 10 K is possible with liquid helium. A cryogenic sample-change mechanism permits measurements of cryogenically fixed specimens. We compare images obtained with OMNY with older measurements performed using a nitrogen gas cryo-jet of stained, epoxy-embedded retina tissue and of frozen-hydrated Chlamydomonas cells.
NASA Technical Reports Server (NTRS)
Dirusso, Eliseo; Brown, Gerald V.
1990-01-01
Experiments were performed on a passive tuned electromagnetic damper that could be used for damping rotor vibrations in cryogenic turbopumps for rocket engines. The tests were performed in a rig that used liquid nitrogen to produce cryogenic turbopump temperatures. This damper is most effective at cryogenic temperatures and is not a viable damper at room temperature. The unbalanced amplitude response of the rotor shaft was measured for undamped (baseline) and damped conditions at the critical speeds of the rotor (approx. 5900 to 6400 rpm) and the data were compared. The tests were performed for a speed range between 900 and 10 000 rpm. The tests revealed that the damper is very effective for damping single-mode narrow bandwidth amplitude response but is less effective in damping broadband response or multimode amplitude response.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.
2012-01-01
The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.
Cryogenic Boil-Off Reduction System
NASA Astrophysics Data System (ADS)
Plachta, David W.; Guzik, Monica C.
2014-03-01
A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.
2016-09-01
as an example the integration of cryogenic superconductor components, including filters and amplifiers to improve the pulse quality and validate the...5 5.1 CRYOGENIC BAND-PASS FILTERS .............................................................................10 6. BIBLIOGRAPHY...10 16. Gain plot of DARPA SURF tunable band-pass filter tuned to 950-MHz .............................. 10 v 17. VSG at -50 dBm: Experimental
Passive cryogenic cooling of electrooptics with a heat pipe/radiator.
Nelson, B E; Goldstein, G A
1974-09-01
The current status of the heat pipe is discussed with particular emphasis on applications to cryogenic thermal control. The competitive nature of the passive heat pipe/radiator system is demonstrated through a comparative study with other candidate systems for a 1-yr mission. The mission involves cooling a spaceborne experiment to 100 K while it dissipates 10 W.
Insulating Cryogenic Pipes With Frost
NASA Technical Reports Server (NTRS)
Stephenson, J. G.; Bova, J. A.
1985-01-01
Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.
A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion
NASA Technical Reports Server (NTRS)
Choi, Benjamin; Siebert, Mark
2008-01-01
The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.
NASA Technical Reports Server (NTRS)
Regalado Reyes, Bjorn Constant
2015-01-01
1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.
Ground operations demonstration unit for liquid hydrogen initial test results
NASA Astrophysics Data System (ADS)
Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.
2015-12-01
NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.
Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.
2015-01-01
NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.
A versatile laboratory cryogenic plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrov, V.M.; Marevichev, I.P.; Petrova, Y.B.
1983-07-01
The Institute of Theoretical and Experimental physics has designed a versatile cryogenic plant (VCP) which can liquefy helium, hydrogen, neon, and can extract neon from a gaseous neon-helium mixture. It can also be used as a refrigerator for cryostating external objects. The versatile cryogenic plant is schematicized and the refrigerating capacity and VCP control panel are detailed. Characteristic features which distinguish the VCP from other plants are specified. The processes involved in the liquefaction of helium, hydrogen, or neon, and the cryostating and cooling of an external object are explained. The use of the plant showed it to be economic,more » reliable, and convenient to operate.« less
Cryogenic and radiation-hard asic for interfacing large format NIR/SWIR detector arrays
NASA Astrophysics Data System (ADS)
Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses
2017-11-01
For scientific and earth observation space missions, weight and power consumption is usually a critical factor. In order to obtain better vehicle integration, efficiency and controllability for large format NIR/SWIR detector arrays, a prototype ASIC is designed. It performs multiple detector array interfacing, power regulation and data acquisition operations inside the cryogenic chambers. Both operation commands and imaging data are communicated via the SpaceWire interface which will significantly reduce the number of wire goes in and out the cryogenic chamber. This "ASIC" prototype is realized in 0.18um CMOS technology and is designed for radiation hardness.
Medium Fidelity Simulation of Oxygen Tank Venting
NASA Technical Reports Server (NTRS)
Sweet, Adam; Kurien, James; Lau, Sonie (Technical Monitor)
2001-01-01
The item to he cleared is a medium-fidelity software simulation model of a vented cryogenic tank. Such tanks are commonly used to transport cryogenic liquids such as liquid oxygen via truck, and have appeared on liquid-fueled rockets for decades. This simulation model works with the HCC simulation system that was developed by Xerox PARC and NASA Ames Research Center. HCC has been previously cleared for distribution. When used with the HCC software, the model generates simulated readings for the tank pressure and temperature as the simulated cryogenic liquid boils off and is vented. Failures (such as a broken vent valve) can be injected into the simulation to produce readings corresponding to the failure. Release of this simulation will allow researchers to test their software diagnosis systems by attempting to diagnose the simulated failure from the simulated readings. This model does not contain any encryption software nor can it perform any control tasks that might be export controlled.
Operational present status and reliability analysis of the upgraded EAST cryogenic system
NASA Astrophysics Data System (ADS)
Zhou, Z. W.; Y Zhang, Q.; Lu, X. F.; Hu, L. B.; Zhu, P.
2017-12-01
Since the first commissioning in 2005, the cryogenic system for EAST (Experimental Advanced Superconducting Tokamak) has been cooled down and warmed up for thirteen experimental campaigns. In order to promote the refrigeration efficiencies and reliability, the EAST cryogenic system was upgraded gradually with new helium screw compressors and new dynamic gas bearing helium turbine expanders with eddy current brake to improve the original poor mechanical and operational performance from 2012 to 2015. Then the totally upgraded cryogenic system was put into operation in the eleventh cool-down experiment, and has been operated for the latest several experimental campaigns. The upgraded system has successfully coped with various normal operational modes during cool-down and 4.5 K steady-state operation under pulsed heat load from the tokamak as well as the abnormal fault modes including turbines protection stop. In this paper, the upgraded EAST cryogenic system including its functional analysis and new cryogenic control networks will be presented in detail. Also, its operational present status in the latest cool-down experiments will be presented and the system reliability will be analyzed, which shows a high reliability and low fault rate after upgrade. In the end, some future necessary work to meet the higher reliability requirement for future uninterrupted long-term experimental operation will also be proposed.
A Practical Cryogen-Free CO2 Purification and Freezing Technique for Stable Isotope Analysis.
Sakai, Saburo; Matsuda, Shinichi
2017-04-18
Since isotopic analysis by mass spectrometry began in the early 1900s, sample gas for light-element isotopic measurements has been purified by the use of cryogens and vacuum-line systems. However, this conventional purification technique can achieve only certain temperatures that depend on the cryogens and can be sustained only as long as there is a continuous cryogen supply. Here, we demonstrate a practical cryogen-free CO 2 purification technique using an electrical operated cryocooler for stable isotope analysis. This approach is based on portable free-piston Stirling cooling technology and controls the temperature to an accuracy of 0.1 °C in a range from room temperature to -196 °C (liquid-nitrogen temperature). The lowest temperature can be achieved in as little as 10 min. We successfully purified CO 2 gas generated by carbonates and phosphoric acid reaction and found its sublimation point to be -155.6 °C at 0.1 Torr in the vacuum line. This means that the temperature required for CO 2 trapping is much higher than the liquid-nitrogen temperature. Our portable cooling system offers the ability to be free from the inconvenience of cryogen use for stable isotope analysis. It also offers a new cooling method applicable to a number of fields that use gas measurements.
2011-03-30
NASA cut the ribbon on a new cryogenics control center at John C. Stennis Space Center on March 30. The new facility is part of a project to strengthen Stennis facilities to withstand the impacts of future storms like hurricane Katrina in 2005. Participants in the ribbon-cutting included (l to r): Jason Zuckerman, director of project management for The McDonnel Group; Keith Brock, director of the NASA Project Directorate at Stennis; Stennis Deputy Director Rick Gilbrech; Steve Jackson of Jacobs Technology; and Troy Frisbie, Cryo Control Center Construction project manager for NASA Center Operations at Stennis.
Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan
2012-12-18
Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.
Shuttle propellant loading instrumenation development
NASA Technical Reports Server (NTRS)
Hamlet, J.
1975-01-01
A continuous capacitance sensor was developed and an analog signal conditioner was evaluated to demonstrate the acceptability of these items for use in the space shuttle propellant loading system. An existing basic sensor concept was redesigned to provide capability for cryogenic operation, to improve performance, and to minimize production costs. Sensor development verification consisted of evaluation of sensor linearity, cryogenic performance, and stability during vibration. The signal conditioner evaluation consisted mainly of establishing the effects of the variations in temperature and cable parameters and evaluating the stability. A sensor linearity of 0.04 in. was achieved over most of the sensor length. The sensor instability caused by vibration was 0.04 percent. The cryogenic performance data show a maximum instability of 0.19 percent at liquid hydrogen temperature; a theoretical calibration can be computed a within 1 percent. The signal conditioner evaluation showed that, with temperature compensation, all error sources typically contribute much less than 1 percent. An estimate of the accuracy achievable with the sensor and signal conditioner shows an rss estimate of 0.75 in. for liquid oxygen and 1.02 in. for liquid hydrogen. These are approximately four times better than the shuttle requirements. Comparison of continuous sensor and discrete sensor performance show the continuous sensor to be significantly better when there is surface activity due to sloshing, boiling, or other disturbances.
Correction of Dynamic Characteristics of SAR Cryogenic GTE on Consumption of Gasified Fuel
NASA Astrophysics Data System (ADS)
Bukin, V. A.; Gimadiev, A. G.; Gangisetty, G.
2018-01-01
When the gas turbine engines (GTE) NK-88 were developed for liquid hydrogen and NK-89 for liquefied natural gas, performance of the systems with a turbo-pump unitary was improved and its proved without direct regulation of the flow of a cryogenic fuel, which was supplied by a centrifugal pump of the turbo-pump unit (TPU) Command from the “kerosene” system. Such type of the automatic control system (SAR) has the property of partial “neutralization” of the delay caused by gasification of the fuel. This does not require any measurements in the cryogenic medium, and the failure of the centrifugal cryogenic pump does not lead to engine failure. On the other hand, the system without direct regulation of the flow of cryogenic fuel has complex internal dynamic connections, their properties are determined by the characteristics of the incoming units and assemblies, and it is difficult to maintain accurate the maximum boundary level and minimum fuel consumption due to the influence of a booster pressure change. Direct regulation of the consumption of cryogenic fuel (prior to its gasification) is the preferred solution, since for using traditional liquid and gaseous fuels this is the main and proven method. The scheme of correction of dynamic characteristics of a single-loop SAR GTE for the consumption of a liquefied cryogenic fuel with a flow rate correction in its gasified state, which ensures the dynamic properties of the system is not worse than for NK-88 and NK-89 engines.
An algorithm for minimum-cost set-point ordering in a cryogenic wind tunnel
NASA Technical Reports Server (NTRS)
Tripp, J. S.
1981-01-01
An algorithm for minimum cost ordering of set points in a cryogenic wind tunnel is developed. The procedure generates a matrix of dynamic state transition costs, which is evaluated by means of a single-volume lumped model of the cryogenic wind tunnel and the use of some idealized minimum-costs, which is evaluated by means of a single-volume lumped model of the cryogenic wind tunnel and the use of some idealized minimum-cost state-transition control strategies. A branch and bound algorithm is employed to determine the least costly sequence of state transitions from the transition-cost matrix. Some numerical results based on data for the National Transonic Facility are presented which show a strong preference for state transitions that consume to coolant. Results also show that the choice of the terminal set point in an open odering can produce a wide variation in total cost.
Chill Down Process of Hydrogen Transport Pipelines
NASA Technical Reports Server (NTRS)
Mei, Renwei; Klausner, James
2006-01-01
A pseudo-steady model has been developed to predict the chilldown history of pipe wall temperature in the horizontal transport pipeline for cryogenic fluids. A new film boiling heat transfer model is developed by incorporating the stratified flow structure for cryogenic chilldown. A modified nucleate boiling heat transfer correlation for cryogenic chilldown process inside a horizontal pipe is proposed. The efficacy of the correlations is assessed by comparing the model predictions with measured values of wall temperature in several azimuthal positions in a well controlled experiment by Chung et al. (2004). The computed pipe wall temperature histories match well with the measured results. The present model captures important features of thermal interaction between the pipe wall and the cryogenic fluid, provides a simple and robust platform for predicting pipe wall chilldown history in long horizontal pipe at relatively low computational cost, and builds a foundation to incorporate the two-phase hydrodynamic interaction in the chilldown process.
Overview of RICOR tactical cryogenic refrigerators for space missions
NASA Astrophysics Data System (ADS)
Riabzev, Sergey; Filis, Avishai; Livni, Dorit; Regev, Itai; Segal, Victor; Gover, Dan
2016-05-01
Cryogenic refrigerators represent a significant enabling technology for Earth and Space science enterprises. Many of the space instruments require cryogenic refrigeration to enable the use of advanced detectors to explore a wide range of phenomena from space. RICOR refrigerators involved in various space missions are overviewed in this paper, starting in 1994 with "Clementine" Moon mission, till the latest ExoMars mission launched in 2016. RICOR tactical rotary refrigerators have been incorporated in many space instruments, after passing qualification, life time, thermal management testing and flight acceptance. The tactical to space customization framework includes an extensive characterization and qualification test program to validate reliability, the design of thermal interfacing with a detector, vibration export control, efficient heat dissipation in a vacuum environment, robustness, mounting design, compliance with outgassing requirements and strict performance screening. Current RICOR development is focused on dedicated ultra-long-life, highly reliable, space cryogenic refrigerator based on a Pulse Tube design
NASA Astrophysics Data System (ADS)
Kotnig, C.; Tavian, L.; Brenn, G.
2017-12-01
The cooling of the superconducting magnet cold masses with superfluid helium (He II) is a well-established concept successfully in operation for years in the LHC. Consequently, its application for the cooling of FCC magnets is an obvious option. The 12-kW heat loads distributed over 10-km long sectors not only require an adaption of the magnet bayonet heat exchangers but also present new challenges to the cryogenic plants, the distribution system and the control strategy. This paper recalls the basic LHC cooling concept with superfluid helium and defines the main parameters for the adaption to the FCC requirements. Pressure drop and hydrostatic head are developed in the distribution and pumping systems; their impact on the magnet temperature profile and the corresponding cooling efficiency is presented and compared for different distribution and pumping schemes.
Orbital operations with the Shuttle Infrared Telescope Facility /SIRTF/
NASA Technical Reports Server (NTRS)
Werner, M. W.; Lorell, K. R.
1981-01-01
The Shuttle Infrared Telescope Facility (SIRTF) is a cryogenically-cooled, 1-m-class telescope that will be operated from the Space Shuttle as an observatory for infrared astronomy. This paper discusses the scientific constraints on and the requirements for pointing and controlling SIRTF as well as several aspects of SIRTF orbital operations. The basic pointing requirement is for an rms stability of 0.25 arcsec, which is necessary to realize the full angular resolution of the 5-micron diffraction-limited SIRTF. Achieving this stability requires the use of hardware and software integral to SIRTF working interactively with the gyrostabilized Shuttle pointing-mount. The higher sensitivity of SIRTF, together with orbital and time constraints, puts a premium on rapid target acquisition and on efficient operational and observational procedures. Several possible acquisition modes are discussed, and the importance of source acquisition by maximizing the output of an infrared detector is emphasized.
Controlling hazardous energy sources (lockout/tagout)
NASA Technical Reports Server (NTRS)
Dominguez, Manuel B.
1991-01-01
The minimum requirements as established by the Occupational Safety and Health Administration (OSHA) standard 29 CFR 1910.147 are discussed for preventing the unexpected operation of equipment or release of energy which could cause injury to personnel, damage to equipment, harm to the environment, or loss or compromise of test data. Safety requirements both for government and contractor personnel are explained for potentially hazardous energy sources during work operations at LeRC (Cleveland and Plum Brook Stations). Basic rules are presented to ensure protection against harmful exposures, and baseline implementation requirements are discussed from which detailed lockout/tagout procedures can be developed for individual equipment items. Examples of energy sources covered by this document include electrical, pneumatic, mechanical, chemical, cryogenic, thermal, spring tension/compression suspended or moving loads, and other potentially hazardous sources. Activities covered by this standard include, but are not limited to, construction, maintenance, installation, calibration, inspection, cleaning, or repair.
Controlling hazardous energy sources (lockout/tagout)
NASA Astrophysics Data System (ADS)
Dominguez, Manuel B.
1991-10-01
The minimum requirements as established by the Occupational Safety and Health Administration (OSHA) standard 29 CFR 1910.147 are discussed for preventing the unexpected operation of equipment or release of energy which could cause injury to personnel, damage to equipment, harm to the environment, or loss or compromise of test data. Safety requirements both for government and contractor personnel are explained for potentially hazardous energy sources during work operations at LeRC (Cleveland and Plum Brook Stations). Basic rules are presented to ensure protection against harmful exposures, and baseline implementation requirements are discussed from which detailed lockout/tagout procedures can be developed for individual equipment items. Examples of energy sources covered by this document include electrical, pneumatic, mechanical, chemical, cryogenic, thermal, spring tension/compression suspended or moving loads, and other potentially hazardous sources. Activities covered by this standard include, but are not limited to, construction, maintenance, installation, calibration, inspection, cleaning, or repair.
Cryogenic Test Technology 1984.
1985-04-01
requirements. The material selection for the Pathfinder I was further restricted by long delivery times before Nitronic 40 was chosen. The alloys under...severe requirements of cryogenic model building. A detailed study of the characteristics of Nitronic 40 is reported in reference 36. This paper, and...remarks elsewhere about experience with Pathfinder I (made from Nitronic 40 ), suggest that quality control problems were encountered with at least one batch
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Tomsik, Thomas M.
2011-01-01
As focus shifts towards long-duration space exploration missions, an increased interest in active thermal control of cryogenic propellants to achieve zero boil-off of cryogens has emerged. An active thermal control concept of considerable merit is the integration of a broad area cooling system for a cryogenic propellant tank with a combined cryocooler and circulator system that can be used to reduce or even eliminate liquid cryogen boil-off. One prospective cryocooler and circulator combination is the reverse turbo-Brayton cycle cryocooler. This system is unique in that it has the ability to both cool and circulate the coolant gas efficiently in the same loop as the broad area cooling lines, allowing for a single cooling gas loop, with the primary heat rejection occurring by way of a radiator and/or aftercooler. Currently few modeling tools exist that can size and characterize an integrated reverse turbo-Brayton cycle cryocooler in combination with a broad area cooling design. This paper addresses efforts to create such a tool to assist in gaining a broader understanding of these systems, and investigate their performance in potential space missions. The model uses conventional engineering and thermodynamic relationships to predict the preliminary design parameters, including input power requirements, pressure drops, flow rate, cycle performance, cooling lift, broad area cooler line sizing, and component operating temperatures and pressures given the cooling load operating temperature, heat rejection temperature, compressor inlet pressure, compressor rotational speed, and cryogenic tank geometry. In addition, the model allows for the preliminary design analysis of the broad area cooling tubing, to determine the effect of tube sizing on the reverse turbo-Brayton cycle system performance. At the time this paper was written, the model was verified to match existing theoretical documentation within a reasonable margin. While further experimental data is needed for full validation, this tool has already made significant steps towards giving a clearer understanding of the performance of a reverse turbo-Brayton cycle cryocooler integrated with broad area cooling technology for zero boil-off active thermal control.
NASA Astrophysics Data System (ADS)
Bonne, F.; Bonnay, P.; Hoa, C.; Mahoudeau, G.; Rousset, B.
2017-02-01
This papers deals with the Japan Torus-60 Super Advanced fusion experiment JT-60SA cryogenic system. A presentation of the JT-60SA cryogenic system model, from 300K to 4.4K -using the Matlab/Simulink/Simscape Simcryogenics library- will be given. As a first validation of our modelling strategy, the obtained operating point will be compared with the one obtained from HYSYS simulations. In the JT60-SA tokamak, pulsed heat loads are expected to be coming from the plasma and must be handled properly, using both appropriate refrigerator architecture and appropriate control model, to smooth the heat load. This paper presents model-based designed PID control schemes to control the helium mass inside the phase separator. The helium mass inside the phase separator as been chosen to be the variable of interest in the phase separator since it is independent of the pressure which can vary from 1 bar to 1.8 bar during load smoothing. Dynamics simulations will be shown to assess the legitimacy of the proposed strategy. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
System and method of active vibration control for an electro-mechanically cooled device
Lavietes, Anthony D.; Mauger, Joseph; Anderson, Eric H.
2000-01-01
A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.
Optical Design of the Developmental Cryogenic Active Telescope Testbed (DCATT)
NASA Technical Reports Server (NTRS)
Davila, Pam; Wilson, Mark; Young, Eric W.; Lowman, Andrew E.; Redding, David C.
1997-01-01
In the summer of 1996, three Study teams developed conceptual designs and mission architectures for the Next Generation Space Telescope (NGST). Each group highlighted areas of technology development that need to be further advanced to meet the goals of the NGST mission. The most important areas for future study included: deployable structures, lightweight optics, cryogenic optics and mechanisms, passive cooling, and on-orbit closed loop wavefront sensing and control. NASA and industry are currently planning to develop a series of ground testbeds and validation flights to demonstrate many of these technologies. The Deployed Cryogenic Active Telescope Testbed (DCATT) is a system level testbed to be developed at Goddard Space Flight Center in three phases over an extended period of time. This testbed will combine an actively controlled telescope with the hardware and software elements of a closed loop wavefront sensing and control system to achieve diffraction limited imaging at 2 microns. We will present an overview of the system level requirements, a discussion of the optical design, and results of performance analyses for the Phase 1 ambient concept for DCATT,
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Hoa, Christine; Bonnay, Patrick; Bon-Mardion, Michel; Monteiro, Lionel
2015-12-01
In this article, we present a new Simulink library of cryogenics components (such as valve, phase separator, mixer, heat exchanger...) to assemble to generate model-based control schemes. Every component is described by its algebraic or differential equation and can be assembled with others to build the dynamical model of a complete refrigerator or the model of a subpart of it. The obtained model can be used to automatically design advanced model based control scheme. It also can be used to design a model based PI controller. Advanced control schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT- 60SA). The paper gives the example of the generation of the dynamical model of the 400W@1.8K refrigerator and shows how to build a Constrained Model Predictive Control for it. Based on the scheme, experimental results will be given. This work is being supported by the French national research agency (ANR) through the ANR-13-SEED-0005 CRYOGREEN program.
NASA Technical Reports Server (NTRS)
Roder, H. M.
1974-01-01
Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.
Cryogenic Design of the New High Field Magnet Test Facility at CERN
NASA Astrophysics Data System (ADS)
Benda, V.; Pirotte, O.; De Rijk, G.; Bajko, M.; Craen, A. Vande; Perret, Ph.; Hanzelka, P.
In the framework of the R&D program related to the Large Hadron Collider (LHC) upgrades, a new High Field Magnet (HFM) vertical test bench is required. This facility located in the SM18 cryogenic test hall shall allow testing of up to 15 tons superconducting magnets with energy up to 10 MJ in a temperature range between 1.9 K and 4.5 K. The article describes the cryogenic architecture to be inserted in the general infrastructure of SM18 including the process and instrumentation diagram, the different operating phases including strategy for magnet cool down and warm up at controlled speed and quench management as well as the design of the main components.
Mars transit vehicle thermal protection system: Issues, options, and trades
NASA Technical Reports Server (NTRS)
Brown, Norman
1986-01-01
A Mars mission is characterized by different mission phases. The thermal control of cryogenic propellant in a propulsive vehicle must withstand the different mission environments. Long term cryogenic storage may be achieved by passive or active systems. Passive cryo boiloff management features will include multilayer insulation, vapor cooled shield, and low conductance structural supports and penetrations. Active boiloff management incorporates the use of a refrigeration system. Key system trade areas include active verses passive system boiloff management (with respect to safety, reliability, and cost) and propellant tank insulation optimizations. Technology requirements include refrigeration technology advancements, insulation performance during long exposure, and cryogenic fluid transfer system for mission vehicle propellant tanking during vehicle buildip in LEO.
NASA Technical Reports Server (NTRS)
Kramer, Edward (Editor)
1998-01-01
The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.
The integration of liquid cryogen cooling and cryocoolers withsuperconducting electronic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.
2003-07-09
The need for cryogenic cooling has been a critical issuethat has kept superconducting electronic devices from reaching the marketplace. Even though the performance of many of the superconductingcircuits is superior to silicon electronics, the requirement forcryogenic cooling has put the superconducting devices at a seriousdisadvantage. This report discusses the process of refrigeratingsuperconducting devices with cryogenic liquids and small cryocoolers.Three types of cryocoolers are compared for vibration, efficiency, andreliability. The connection of a cryocooler to the load is discussed. Acomparison of using flexible copper straps to carry the heat load andusing heat pipe is shown. The type of instrumentation needed formonitoringmore » and controlling the cooling is discussed.« less
Hybrid Direct-Current Circuit Breaker
NASA Technical Reports Server (NTRS)
Wang, Ruxi (Inventor); Premerlani, William James (Inventor); Caiafa, Antonio (Inventor); Pan, Yan (Inventor)
2017-01-01
A circuit breaking system includes a first branch including at least one solid-state snubber; a second branch coupled in parallel to the first branch and including a superconductor and a cryogenic contactor coupled in series; and a controller operatively coupled to the at least one solid-state snubber and the cryogenic contactor and programmed to, when a fault occurs in the load circuit, activate the at least one solid-state snubber for migrating flow of the electrical current from the second branch to the first branch, and, when the fault is cleared in the load circuit, activate the cryogenic contactor for migrating the flow of the electrical current from the first branch to the second branch.
NASA Technical Reports Server (NTRS)
Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.
1989-01-01
The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.
Commissioning results of CERN HIE-ISOLDE and INFN ALPI cryogenic control systems
NASA Astrophysics Data System (ADS)
Inglese, V.; Pezzetti, M.; Calore, A.; Modanese, P.; Pengo, R.
2017-02-01
The cryogenic systems of both accelerators, namely HIE ISOLDE (High Intensity and Energy Isotope Separator On Line DEvice) at CERN and ALPI (Acceleratore Lineare Per Ioni) at LNL, have been refurbished. HIE ISOLDE is a major upgrade of the existing ISOLDE facilities, which required the construction of a superconducting linear accelerator consisting of six cryomodules, each containing five superconductive RF cavities and superconducting solenoids. The ALPI linear accelerator, similar to HIE ISOLDE, is located at Legnaro National Laboratories (LNL) and became operational in the early 90’s. It is composed of 74 superconducting RF cavities, assembled inside 22 cryostats. The new control systems are equipped with PLC, developed on the CERN UNICOS framework, which include Schneider and Siemens PLCs and various fieldbuses (Profibus DP and PA, WorldFIP). The control systems were developed in synergy between CERN and LNL in order to build, effectively and with an optimized use of resources, control systems allowing to enhance ease of operation, maintainability, and long-term availability. This paper describes (i) the cryogenic systems, with special focus on the design of the control systems hardware and software, (ii) the strategy adopted in order to achieve a synergic approach, and (iii) the commissioning results after the cool-down to 4.5 K of the cryomodules.
A cryogenic waveplate rotator for polarimetry at mm and submm wavelengths
NASA Astrophysics Data System (ADS)
Salatino, M.; de Bernardis, P.; Masi, S.
2011-04-01
Context. Polarimetry at mm and submm wavelengths is the new frontier of research in cosmic microwave background and interstellar dust studies. Polarimeters working in the IR to MM range need to be operated at cryogenic temperatures to limit the systematic effects related to the emission of the polarization analyzer. Aims: We study the effect of the temperature of the different components of a waveplate polarimeter and describe a system able to rotate a birefringent crystal at 4 K in a completely automated way. Methods: We simulate the main systematic effects related to the temperature and non-ideality of the optical components in a Stokes polarimeter. To limit these effects, a cryogenic implementation of the polarimeter is mandatory. In our system, the rotation produced by a step motor running at room temperature is transmitted down to cryogenic temperatures by means of a long shaft and gears running on custom cryogenic bearings. Results: Our system is able to rotate a birefringent crystal at 4 K in a completely automated way and dissipates only a few mW in the cold environment. A readout system based on optical fibers allows us to control the rotation of the crystal to better than 0.1°. Conclusions: This device fulfills the stringent requirements for operations in cryogenic space experiments, such as the forthcoming PILOT, BOOMERanG and LSPE.
Main improvements of LHC Cryogenics Operation during Run 2 (2015-2018)
NASA Astrophysics Data System (ADS)
Delprat, L.; Bradu, B.; Brodzinski, K.; Ferlin, G.; Hafi, K.; Herblin, L.; Rogez, E.; Suraci, A.
2017-12-01
After the successful Run 1 (2010-2012), the LHC entered its first Long Shutdown period (LS1, 2013-2014). During LS1 the LHC cryogenic system went under a complete maintenance and consolidation program. The LHC resumed operation in 2015 with an increased beam energy from 4 TeV to 6.5 TeV. Prior to the new physics Run 2 (2015-2018), the LHC was progressively cooled down from ambient to the 1.9 K operation temperature. The LHC has resumed operation with beams in April 2015. Operational margins on the cryogenic capacity were reduced compared to Run 1, mainly due to the observed higher than expected electron-cloud heat load coming from increased beam energy and intensity. Maintaining and improving the cryogenic availability level required the implementation of a series of actions in order to deal with the observed heat loads. This paper describes the results from the process optimization and update of the control system, thus allowing the adjustment of the non-isothermal heat load at 4.5 - 20 K and the optimized dynamic behaviour of the cryogenic system versus the electron-cloud thermal load. Effects from the new regulation settings applied for operation on the electrical distribution feed-boxes and inner triplets will be discussed. The efficiency of the preventive and corrective maintenance, as well as the benefits and issues of the present cryogenic system configuration for Run 2 operational scenario will be described. Finally, the overall availability results and helium management of the LHC cryogenic system during the 2015-2016 operational period will be presented.
2011-03-30
NASA cut the ribbon on a new cryogenics control center at John C. Stennis Space Center on March 30. The new facility is part of a project to strengthen Stennis facilities to withstand the impacts of future storms like hurricane Katrina in 2005. Participants in the ribbon-cutting included (l to r): Jason Zuckerman, director of project management for The McDonnel Group; Keith Brock, director of the NASA Project Directorate at Stennis; Stennis Deputy Director Rick Gilbrech; Steve Jackson, outgoing program manager of the Jacobs Technology NASA Test Operations Group; and Troy Frisbie, Cryo Control Center Construction project manager for NASA Center Operations at Stennis.
Modeling, simulation and control for a cryogenic fluid management facility, preliminary report
NASA Technical Reports Server (NTRS)
Turner, Max A.; Vanbuskirk, P. D.
1986-01-01
The synthesis of a control system for a cryogenic fluid management facility was studied. The severe demand for reliability as well as instrumentation and control unique to the Space Station environment are prime considerations. Realizing that the effective control system depends heavily on quantitative description of the facility dynamics, a methodology for process identification and parameter estimation is postulated. A block diagram of the associated control system is also produced. Finally, an on-line adaptive control strategy is developed utilizing optimization of the velocity form control parameters (proportional gains, integration and derivative time constants) in appropriate difference equations for direct digital control. Of special concern are the communications, software and hardware supporting interaction between the ground and orbital systems. It is visualized that specialist in the OSI/ISO utilizing the Ada programming language will influence further development, testing and validation of the simplistic models presented here for adaptation to the actual flight environment.
NASA Astrophysics Data System (ADS)
Dotsenko, V. V.; Sahu, A.; Chonigman, B.; Tang, J.; Lehmann, A. E.; Gupta, V.; Talalevskii, A.; Ruotolo, S.; Sarwana, S.; Webber, R. J.; Gupta, D.
2017-02-01
Research and development of cryogenic application-specific integrated circuits (ASICs), such as high-frequency (tens of GHz) semiconductor and superconductor mixed-signal circuits and large-scale (>10,000 Josephson Junctions) superconductor digital circuits, have long been hindered by the absence of specialized cryogenic test apparatus. During their iterative development phase, most ASICs require many additional input-output lines for applying independent bias controls, injecting test signals, and monitoring outputs of different sub-circuits. We are developing a full suite of modular test apparatus based on cryocoolers that do not consume liquid helium, and support extensive electrical interfaces to standard and custom test equipment. Our design separates the cryogenics from electrical connections, allowing even inexperienced users to conduct testing by simply mounting their ASIC on a removable electrical insert. Thermal connections between the cold stages and the inserts are made with robust thermal links. ICE-T accommodates two independent electrical inserts at the same time. We have designed various inserts, such as universal ones with all 40 or 80 coaxial cables and those with customized wiring and temperature-controlled stages. ICE-T features fast thermal cycling for rapid testing, enables detailed testing over long periods (days to months, if necessary), and even supports automated testing of digital ICs with modular additions.
NASA Astrophysics Data System (ADS)
Yeager, C. J.; Courts, S. S.; Chapin, L.
2004-06-01
The electrical properties of a novel cryogenic heater are presented. A new ceramic-metal composition (cermet) has been developed that can be sputter deposited. This material has a very low temperature coefficient of resistivity. Resistivity measurements as a function of temperature are presented. The cermet has a constant resistance to within 0.1% between 77 K and 50 mK. At 4.2 K the d(logR)/d(logT) value is approximately -0.0005. The resistance change between room temperature and 4.2 K is 2.5%. The cermet heater will be compared to other low temperature coefficient of resistivity alloys (Evanohm, phosphor-bronze, nichrome and platinum-tungsten wire) that are used for cryogenic heaters and fixed resistors. Unlike the wire alloys, this material can be sputter deposited. This allows various die designs (meander patterns) to control the final resistance. The die can be mounted into standard commercial cryogenic sensor packages. Compared to other wire alloys, this allows for a simpler implementation for a cryogenic heater and fixed resistance standards. The material can also be deposited onto existing structures such as MEMS based heat capacity chip under development.
Design and fabrication of conventional and unconventional superconductors
NASA Technical Reports Server (NTRS)
Collings, E. W.
1983-01-01
The design and fabrication of conventional and unconventionally processed Ti-Nb base and Al5-compound-base, respectively, composite superconductors is discussed in a nine section review. The first two sections introduce the general properties of alloy and compound superconductors, and the design and processing requirements for the production of long lengths of stable low loss conductor. All aspects of flux jump stability, and the general requirements of cryogenic stabilization are addressed. Conductor design from an a.c.-loss standpoint; some basic formulae describing hysteretic and eddy current losses and the influences on a.c. loss of filament diameter, strand (conductor) diameter, twist pitch, and matrix resistivity are discussed. The basic techniques used in the fabrication of conventional multifilamentary conductors are described.
Compact drilling and sample system
NASA Technical Reports Server (NTRS)
Gillis-Smith, Greg R.; Petercsak, Doug
1998-01-01
The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.
Design and development of a direct injection system for cryogenic engines
NASA Astrophysics Data System (ADS)
Mutumba, Angela; Cheeseman, Kevin; Clarke, Henry; Wen, Dongsheng
2018-04-01
The cryogenic engine has received increasing attention due to its promising potential as a zero-emission engine. In this study, a new robust liquid nitrogen injection system was commissioned and set up to perform high-pressure injections into an open vessel. The system is used for quasi-steady flow tests used for the characterisation of the direct injection process for cryogenic engines. An electro-hydraulic valve actuator provides intricate control of the valve lift, with a minimum cycle time of 3 ms and a frequency of up to 20 Hz. With additional sub-cooling, liquid phase injections from 14 to 94 bar were achieved. Results showed an increase in the injected mass with the increase in pressure, and decrease in temperature. The injected mass was also observed to increases linearly with the valve lift. Better control of the injection process, minimises the number of variables, providing more comparable and repeatable sets of data. Implications of the results on the engine performance were also discussed.
Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism (PSM)
NASA Technical Reports Server (NTRS)
Mitchell, Alissa L.; Capon, Thomas L.; Hakun, Claef; Haney, Paul; Koca, Corina; Guzek, Jeffrey
2014-01-01
Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.
NASA Technical Reports Server (NTRS)
Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian
2016-01-01
The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.
High-gain cryogenic amplifier assembly employing a commercial CMOS operational amplifier.
Proctor, J E; Smith, A W; Jung, T M; Woods, S I
2015-07-01
We have developed a cryogenic amplifier for the measurement of small current signals (10 fA-100 nA) from cryogenic optical detectors. Typically operated with gain near 10(7) V/A, the amplifier performs well from DC to greater than 30 kHz and exhibits noise level near the Johnson limit. Care has been taken in the design and materials to control heat flow and temperatures throughout the entire detector-amplifier assembly. A simple one-board version of the amplifier assembly dissipates 8 mW to our detector cryostat cold stage, and a two-board version can dissipate as little as 17 μW to the detector cold stage. With current noise baseline of about 10 fA/(Hz)(1/2), the cryogenic amplifier is generally useful for cooled infrared detectors, and using blocked impurity band detectors operated at 10 K, the amplifier enables noise power levels of 2.5 fW/(Hz)(1/2) for detection of optical wavelengths near 10 μm.
2012-07-09
CAPE CANAVERAL, Fla. – Near the Hypergolic Maintenance Facility at NASA’s Kennedy Space Center in Florida, a groundbreaking ceremony was held to mark the location of the Ground Operations Demonstration Unit Liquid Hydrogen, or GODU LH2, test site. From left, are Johnny Nguyen, Fluids Test and Technology Development branch chief Emily Watkins, engineering intern Jeff Walls, Engineering Services Contract, or ESC, Cryogenics Test Lab engineer Kelly Currin, systems engineer Stephen Huff and Rudy Werlink partially hidden, cryogenics engineers Angela Krenn, systems engineer Doug Hammond, command and control engineer in the electrical division William Notardonato, GODU LH2 project manager and Kevin Jumper, ESC Cryogenics Test Lab manager. The GODU LH2 test site is one of the projects in NASA’s Advanced Exploration Systems Program. The site will be used to demonstrate advanced liquid hydrogen systems that are cost and energy efficient ways to store and transfer liquid hydrogen during process, loading, launch and spaceflight. The main components of the site will be a storage tank and a cryogenic refrigerator. Photo credit: NASA/Dimitri Gerondidakis
2012-07-09
CAPE CANAVERAL, Fla. – Near the Hypergolic Maintenance Facility at NASA’s Kennedy Space Center in Florida, a groundbreaking ceremony was held to mark the location of the Ground Operations Demonstration Unit Liquid Hydrogen, or GODU LH2, test site. From left, are Johnny Nguyen, Fluids Test and Technology Development branch chief Emily Watkins, engineering intern Jeff Walls, Engineering Services Contract, or ESC, Cryogenics Test Lab engineer Kelly Currin, systems engineer Stephen Huff and Rudy Werlink partially hidden, cryogenics engineers Angela Krenn, systems engineer Doug Hammond, command and control engineer in the electrical division William Notardonato, GODU LH2 project manager and Kevin Jumper, ESC Cryogenics Test Lab manager. The GODU LH2 test site is one of the projects in NASA’s Advanced Exploration Systems Program. The site will be used to demonstrate advanced liquid hydrogen systems that are cost and energy efficient ways to store and transfer liquid hydrogen during process, loading, launch and spaceflight. The main components of the site will be a storage tank and a cryogenic refrigerator. Photo credit: NASA/Dimitri Gerondidakis
Tran, Thuy T B; Shelat, Kinnari J; Tang, Daniel; Li, Enpeng; Gilbert, Robert G; Hasjim, Jovin
2011-04-27
Whole polished rice grains were ground using cryogenic and hammer milling to understand the mechanisms of degradation of starch granule structure, whole (branched) molecular structure, and individual branches of the molecules during particle size reduction (grinding). Hammer milling caused greater degradation to starch granules than cryogenic milling when the grains were ground to a similar volume-median diameter. Molecular degradation of starch was not evident in the cryogenically milled flours, but it was observed in the hammer-milled flours with preferential cleavage of longer (amylose) branches. This can be attributed to the increased grain brittleness and fracturability at cryogenic temperatures, reducing the mechanical energy required to diminish the grain size and thus reducing the probability of chain scission. The results indicate, for the first time, that branching, whole molecule, and granule structures of starch can be independently altered by varying grinding conditions, such as grinding force and temperature.
Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2012-01-01
The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.
The Zero Boil-Off Tank Experiment Contributions to the Development of Cryogenic Fluid Management
NASA Technical Reports Server (NTRS)
Chato, David J.; Kassemi, Mohammad
2015-01-01
The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale ISS experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the current status of the ZBOT experiment as it approaches its flight to installation on the International Space Station, how its findings can be scaled to larger and more ambitious cryogenic fluid management experiments, as well as ideas for follow-on investigations using ZBOT like hardware to study other aspects of cryogenic fluid management.
NASA Technical Reports Server (NTRS)
Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning
2013-01-01
A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.
Pool Boiling Experiment Has Five Successful Flights
NASA Technical Reports Server (NTRS)
Chiaramonte, Fran
1997-01-01
The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.
Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout
NASA Astrophysics Data System (ADS)
England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm
Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
A cryogenic infrared calibration target.
Wollack, E J; Kinzer, R E; Rinehart, S A
2014-04-01
A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R ⩽ 0.003, from 800 to 4800 cm(-1) (12 - 2 μm). Upon expanding the spectral range under consideration to 400-10,000 cm(-1) (25 - 1 μm) the observed performance gracefully degrades to R ⩽ 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to ∼4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented.
SiGe HBT cryogenic preamplification for higher bandwidth donor spin read-out
NASA Astrophysics Data System (ADS)
Curry, Matthew; Carr, Stephen; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm
2014-03-01
Single-shot read-out of a donor spin can be performed using the response of a single-electron-transistor (SET). This technique can produce relatively large changes in current, on the order of 1 (nA), to distinguish between the spin states. Despite the relatively large signal, the read-out time resolution has been limited to approximately 100 (kHz) of bandwidth because of noise. Cryogenic pre-amplification has been shown to extend the response of certain detection circuits to shorter time resolution and thus higher bandwidth. We examine a SiGe HBT circuit configuration for cryogenic preamplification, which has potential advantages over commonly used HEMT configurations. Here we present 4 (K) measurements of a circuit consisting of a Silicon-SET inline with a Heterojunction-Bipolar-Transistor (HBT). We compare the measured bandwidth with and without the HBT inline and find that at higher frequencies the signal-to-noise-ratio (SNR) with the HBT inline exceeds the SNR without the HBT inline. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Comparison of mission design options for manned Mars missions
NASA Technical Reports Server (NTRS)
Babb, Gus R.; Stump, William R.
1986-01-01
A number of manned Mars mission types, propulsion systems, and operational techniques are compared. Conjunction and opposition class missions for cryogenic, hybrid (cryo/storable), and NERVA propulsion concepts are addressed. In addition, both Earth and Mars orbit aerobraking, direct entry of landers, hyperbolic rendezvous, and electric propulsion cases are examined. A common payload to Mars was used for all cases. The basic figure of merit used was weight in low Earth orbit (LEO) at mission initiation. This is roughly proportional to launch costs.
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.
1986-01-01
About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.
Predicting spacecraft multilayer insulation performance from heat transfer measurements
NASA Technical Reports Server (NTRS)
Stimpson, L. D.; Hagemeyer, W. A.
1974-01-01
Multilayer insulation (MLI) ideally consists of a series of radiation shields with low-conductivity spacers. When MLI blankets were installed on cryogenic tanks or spacecraft, a large discrepancy between the calorimeter measurements and the performance of the installed blankets was discovered. It was found that discontinuities such as exposed edges coupled with high lateral heat transfer created 'heat leaks' which overshadowed the basic heat transfer of the insulation. Approaches leading to improved performance predictions of MLI units are discussed.
NASA Technical Reports Server (NTRS)
Swenson, Charles
2016-01-01
The Active CryoCubeSat project will demonstrate an advanced thermal control system for a 6-Unit (6U) CubeSat platform. A miniature, active thermal control system, in which a fluid is circulated in a closed loop from thermal loads to radiators, will be developed. A miniature cryogenic cooler will be integrated with this system to form a two-stage thermal control system. Key components will be miniaturized by using advanced additive manufacturing techniques resulting in a thermal testbed for proving out these technologies. Previous CubeSat missions have not tackled the problem of active thermal control systems nor have any past or current CubeSat missions included cryogenic instrumentation. This Active CryoCubeSat development effort will provide completely new capacities for CubeSats and constitutes a major advancement over the state-of-the-art in CubeSat thermal control.
Resonant cryogenic chopper. [for infrared and submillimeter radiometers
NASA Technical Reports Server (NTRS)
Page, Lyman A.; Cheng, Edward S.; Meyer, Stephan S.
1992-01-01
An account is given of the design features, construction, and performance of a both mechanically and thermally robust, resonant cryogenic chopper operating at 4.2 K. The chopper can occult a 2.54-cm aperture at 4.5 Hz, with approximately 1-mW dissipation. The controllability of the stator and rotor magnetic fields facilitates performance optimization and the determination of any possible interference effects. Attention is given to long-term amplitude stability determinations.
Engineering changes to the 0.1m cryogenic wind tunnel at Southampton University
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1984-01-01
The more important changes to the 0.1 m cryogenic wind tunnel since its completion in 1977 are outlined. These include detailed improvements in the fan drive to allow higher speeds, and the provision of a test section leg suitable for use with a magnetic suspension and balance system. The instrumentation, data logging, data reduction and tunnel controls were also improved and modernized. A tunnel performance summary is given.
Focal Plane Array Shutter Mechanism of the JWST NIRSpec Detector System
NASA Technical Reports Server (NTRS)
Hale, Kathleen; Sharma, Rajeev
2006-01-01
This viewgraph presentation reviews the requirements, chamber location, shutter system design, stepper motor specifications, dry lubrication, control system, the environmental cryogenic function testing and the test results of the Focal Plane Array Shutter mechanism for the James Webb Space Telescope Near Infrared Spectrum Detector system. Included are design views of the location for the Shutter Mechanism, lubricant (lubricated with Molybdenum Di Sulfide) thickness, and information gained from the cryogenic testing.
Cryogenic High-Sensitivity Magnetometer
NASA Technical Reports Server (NTRS)
Day, Peter; Chui, Talso; Goodstein, David
2005-01-01
A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.
Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.
2017-01-01
In support of a facility characterization test, the Integrated Cryogenic Propulsion Test Article (ICPTA) was hotfire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). The ICPTA utilizes liquid oxygen and liquid methane propellants for its main engine and four reaction control engines, and uses a cold helium system for tank pressurization. The hotfire test series included high altitude, high vacuum, ambient temperature, and deep cryogenic environments, and several hundred sensors on the vehicle collected a range of system level data useful to characterize the operation of an integrated LOX/Methane spacecraft in the space environment - a unique data set for this propellant combination.
Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard
2003-01-01
DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.
The nuMOIRCS project: detector upgrade overview and early commissioning results
NASA Astrophysics Data System (ADS)
Walawender, Josh; Wung, Matthew; Fabricius, Maximilian; Tanaka, Ichi; Arimoto, Nobuo; Cook, David; Elms, Brian; Hashiba, Yasuhito; Hu, Yen-Sang; Iwata, Ikuru; Nishimura, Tetsuo; Omata, Koji; Takato, Naruhisa; Wang, Shiang-Yu; Weber, Mark
2016-08-01
In 2014 and 2015 the Multi-Object InfraRed Camera and Spectrograph (MOIRCS) instrument at the Subaru Telescope on Maunakea is underwent a significant modernization and upgrade project. We upgraded the two Hawaii2 detectors to Hawaii2-RG models, modernized the cryogenic temperature control system, and rewrote much of the instrument control software. The detector upgrade replaced the Hawaii2 detectors which use the Tohoku University Focal Plane Array Controller (TUFPAC) electronics with Hawaii2-RG detectors using SIDECAR ASIC (a fully integrated FPA controller system-on-a-chip) and a SAM interface card. We achieved an improvement in read noise by a factor of about 2 with this detector and electronics upgrade. The cryogenic temperature control upgrade focused on modernizing the components and making the procedures for warm up and cool down of the instrument safer. We have moved PID control loops out of the instrument control software and into Lakeshore model 336 cryogenic temperature controllers and have added interlocks on the warming systems to prevent overheating of the instrument. Much of the instrument control software has also been re-written. This was necessitated by the different interface to the detector electronics (ASIC and SAM vs. TUFPAC) and by the desire to modernize the interface to the telescope control software which has been updated to Subaru's "Gen2" system since the time of MOIRCS construction and first light. The new software is also designed to increase reliability of operation of the instrument, decrease overheads, and be easier for night time operators and support astronomers to use.
Cryogenic system for COMET experiment at J-PARC
NASA Astrophysics Data System (ADS)
Ki, Taekyung; Yoshida, Makoto; Yang, Ye; Ogitsu, Toru; Iio, Masami; Makida, Yasuhiro; Okamura, Takahiro; Mihara, Satoshi; Nakamoto, Tatsushi; Sugano, Michinaka; Sasaki, Ken-ichi
2016-07-01
Superconducting conductors and cryogenic refrigeration are key factors in the accelerator science because they enable the production of magnets needed to control and detect the particles under study. In Japan, a system for COMET (Coherent Muon to Electron Transition), which will produce muon beam lines, is under the construction at J-PARC (Japan Proton Accelerator Research Complex). The system consists of three superconducting magnets; the first is a pion-capture solenoid, the second is a muon-transport solenoid, and the third is a detector solenoid. It is necessary to cool down the magnets efficiently using two-phase helium and maintain them securely at 4.5 K. For stable cryogenic refrigeration of the magnets, a suitable cooling method, structures, and the irradiation effect on materials should be investigated. In this paper, we focus on the development of an overall cryogenic system for cooling the capture and transport solenoids. A conduction-cooling method is considered for cooling the capture and transport solenoids because of the advantages such as the reduction of total heat load, fewer components, and simplified structure. To supply cryogenic fluids (4.5 K liquid helium and 58 K gas helium) and currents to the conduction-cooled magnets subjected to high irradiation, cryogenic components (cooling paths in the magnets, transfer tubes, and a current lead box) are developed. Based on the environment of high irradiation, the conditions (temperature and pressure) of helium in cooling paths are estimated, as well as the temperature of the capture magnet. We develop a dynamic model for quench simulation and estimate the maximum pressure in the cooling pipe when the capture magnet quenches. We conclude with a discussion of the next steps and estimated challenges for the cryogenic system.
Automated Cryocooler Monitor and Control System
NASA Technical Reports Server (NTRS)
Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.
2011-01-01
A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and typically provide 50 watts of heat. There are four basic operating modes. "Cool " mode commands the system to cool to normal operating temperature. "Heat " mode is used to warm the device to a set temperature near room temperature. "Pump " mode is a maintenance function that allows the vacuum system to be operated alone to remove accumulated contaminants from the vacuum area. In "Off " mode, no power is applied to the system.
NASA Technical Reports Server (NTRS)
Chen, P. S.; Stanton, W. P.
2002-01-01
In 1996, Marshall Space Flight Center developed a multistep heating rate-controlled (MSRC) aging technique that significantly enhanced cryogenic fracture toughness (CFT) and reduced the statistical spread of fracture toughness values in alloy 2195 by controlling the location and size of strengthening precipitate T1. However, it could not be readily applied to flight-related hardware production, primarily because large-scale production furnaces are unable to maintain a heating rate of 0.6 C (1 F)/hr. In August 1996, a new program was initiated to determine whether the MSRC aging treatment could be further modified to facilitate its implementation to flight hardware production. It was successfully redesigned into a simplified two-step aging treatment consisting of 132 C (270 F)/20 hr + 138 C (280 F)/40 hr. Results indicated that two-step aging can achieve the same yield strength levels as those produced by conventional aging while providing greatly improved ductility. Two-step aging proved to be very effective at enhancing CFT, enabling previously rejected materials to meet simulated service requirements. Cryogenic properties are improved by controlling T1 nucleation and growth so that they are promoted in the matrix and suppressed in the subgrain boundaries.
Development of a camera casing suited for cryogenic and vacuum applications
NASA Astrophysics Data System (ADS)
Delaquis, S. C.; Gornea, R.; Janos, S.; Lüthi, M.; von Rohr, Ch Rudolf; Schenk, M.; Vuilleumier, J.-L.
2013-12-01
We report on the design, construction, and operation of a PID temperature controlled and vacuum tight camera casing. The camera casing contains a commercial digital camera and a lighting system. The design of the camera casing and its components are discussed in detail. Pictures taken by this cryo-camera while immersed in argon vapour and liquid nitrogen are presented. The cryo-camera can provide a live view inside cryogenic set-ups and allows to record video.
Absolute pressure transducers for space shuttle and orbiter propulsion and control systems
NASA Technical Reports Server (NTRS)
Bolta, J. J.
1974-01-01
A preliminary design was completed, reviewing of such subjects as: the trade studies for media isolation and one sensor vs. two sensors for two bridges; compensation resistors; unit design; hydrogen embrittlement; sealing techniques and test station design. A design substantiation phase was finished, consisting of testing of a prototype unit and fabrication technique studies. A cryogenic test station was implemented and prototype sensor cells were fabricated, sensors assembled, and cryogenic tests performed.
Development of a Ground Operations Demonstration Unit for Liquid Hydrogen at Kennedy Space Center
NASA Astrophysics Data System (ADS)
Notardonato, W. U.
NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project will design, assemble, and test a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives and will culminate with an operational demonstration of the loading of a simulated flight tank with densified propellants. The system will be unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. The integrated refrigerator is the critical feature enabling the testing of the following three functions: zero-loss storage and transfer, propellant densification/conditioning, and on-site liquefaction. This paper will discuss the test objectives, the design of the system, and the current status of the installation.
NASA Technical Reports Server (NTRS)
Dye, Scott A.
2015-01-01
New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/sq m, or 27 percent of the heat leak of conventional MLI (26.7 W/sq m). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.
NASA Technical Reports Server (NTRS)
Dye, Scott A.
2015-01-01
New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.
Spaceborne sensors (1983-2000 AD): A forecast of technology
NASA Technical Reports Server (NTRS)
Kostiuk, T.; Clark, B. P.
1984-01-01
A technical review and forecast of space technology as it applies to spaceborne sensors for future NASA missions is presented. A format for categorization of sensor systems covering the entire electromagnetic spectrum, including particles and fields is developed. Major generic sensor systems are related to their subsystems, components, and to basic research and development. General supporting technologies such as cryogenics, optical design, and data processing electronics are addressed where appropriate. The dependence of many classes of instruments on common components, basic R&D and support technologies is also illustrated. A forecast of important system designs and instrument and component performance parameters is provided for the 1983-2000 AD time frame. Some insight into the scientific and applications capabilities and goals of the sensor systems is also given.
Thermal Insulation System Analysis Tool (TISTool) User's Manual. Version 1.0.0
NASA Technical Reports Server (NTRS)
Johnson, Wesley; Fesmire, James; Leucht, Kurt; Demko, Jonathan
2010-01-01
The Thermal Insulation System Analysis Tool (TISTool) was developed starting in 2004 by Jonathan Demko and James Fesmire. The first edition was written in Excel and Visual BasIc as macros. It included the basic shapes such as a flat plate, cylinder, dished head, and sphere. The data was from several KSC tests that were already in the public literature realm as well as data from NIST and other highly respectable sources. More recently, the tool has been updated with more test data from the Cryogenics Test Laboratory and the tank shape was added. Additionally, the tool was converted to FORTRAN 95 to allow for easier distribution of the material and tool. This document reviews the user instructions for the operation of this system.
NASA Technical Reports Server (NTRS)
Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will
2015-01-01
As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.
Cryogenic Control System Migration and Developments towards the UNICOS CERN Standard at INFN
NASA Astrophysics Data System (ADS)
Modanese, Paolo; Calore, Andrea; Contran, Tiziano; Friso, Alessandro; Pengo, Marco; Canella, Stefania; Burioli, Sergio; Gallese, Benedetto; Inglese, Vitaliano; Pezzetti, Marco; Pengo, Ruggero
The cryogenic control systems at Laboratori Nazionali di Legnaro (LNL) are undergoing an important and radical modernization, allowing all the plants controls and supervision systems to be renewed in a homogeneous way towards the CERN-UNICOS standard. Before the UNICOS migration project started there were as many as 7 different types of PLC and 7 different types of SCADA, each one requiring its own particular programming language. In these conditions, even a simple modification and/or integration on the program or on the supervision, required the intervention of a system integrator company, specialized in its specific control system. Furthermore it implied that the operators have to be trained to learn the different types of control systems. The CERN-UNICOS invented for LHC [1] has been chosen due to its reliability and planned to run and be maintained for decades on. The complete migration is part of an agreement between CERN and INFN.
2016-08-03
Inside a control building at NASA's Kennedy Space Center in Florida, Adam Swinger, cryogenic research engineer in the Exploration Research and Technology Directorate, communicates with team members during a test of the Ground Operations Demo Unit for liquid hydrogen. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.
NASA Astrophysics Data System (ADS)
Hinterberger, A.; Gerber, S.; Doser, M.
2017-09-01
In this paper we report on measurements and simulations of superconducting tubes in the presence of inhomogeneous externally applied magnetic fields in a cryogenic environment. The shielding effect is studied for two different tube materials, Pb and Nb, employing Hall sensors in a tabletop experiment. The measured internal and external fields of the tubes agree with the theory of the Meissner-Ochsenfeld effect [1], field trapping of type 2 superconductors, phase transitions and tube geometries. The obtained measurements are compared to a finite element simulation. Next, the simulation model is applied to estimate the shielding effect in the vicinity of a cryogenic Penning trap experiment. The controlled suppression of external magnetic fields is important for future precision experiments in atomic and antimatter physics in cryogenic environments.
NASA Astrophysics Data System (ADS)
Beliakov, V. P.
Recent developments and trends in cryogenic engineering are reviewed, with emphasis on the role of cryogenics in power generation, machine building, chemistry, and metallurgy. Several cryogenic systems are described, including air-separation apparatus, cryogenic storage systems, cryothermovacuum devices, and the cryogenic systems of superconducting devices. The theoretical principles underlying the design of cryogenic systems are examined, along with the theory for the processes involved.
Structure Formation in Complex Plasma - Quantum Effects in Cryogenic Complex Plasmas
2014-09-26
pipe at the flange attached to the inner Dewar bottle. The temperature of the gas in the glass tube is controlled by the cryogenic liquid , liquid ...dust particles. The supersonic flow was possible to make in a complex plasma since dust acoustic wave is characterized by a sound speed of a few cm...through the illumination of laser light on dust particles. The supersonic flow was possible to make in a complex plasma since dust acoustic wave is
Jet mixing in low gravity - Results of the Tank Pressure Control Experiment
NASA Technical Reports Server (NTRS)
Bentz, M. D.; Meserole, J. S.; Knoll, R. H.
1992-01-01
The Tank Pressure Control Experiment (TPCE) is discussed with attention given to the results for controlling storage-tank pressures by forced-convective mixing in microgravitational environments. The fluid dynamics of cryogenic fluids in space is simulated with freon-113 during axial-jet-induced mixing. The experimental flow-pattern data are found to confirm previous data as well as existing mixing correlations. Thermal nonuniformities and tank pressure can be reduced by employing low-energy mixing jets which are useful for enhancing heat/mass transfer between phases. It is found that space cryogenic systems based on the principle of active mixing can be more reliable and predictable than other methods, and continuous or periodic mixing can be accomplished with only minor energy addition to the fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takayama, Yuki; Nakasako, Masayoshi; RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148
2012-05-15
Coherent x-ray diffraction microscopy (CXDM) has the potential to visualize the structures of micro- to sub-micrometer-sized biological particles, such as cells and organelles, at high resolution. Toward advancing structural studies on the functional states of such particles, here, we developed a system for the preparation of frozen-hydrated biological samples for cryogenic CXDM experiments. The system, which comprised a moist air generator, microscope, micro-injector mounted on a micromanipulator, custom-made sample preparation chamber, and flash-cooling device, allowed for the manipulation of sample particles in the relative humidity range of 20%-94%rh at 293 K to maintain their hydrated and functional states. Here, wemore » report the details of the system and the operation procedure, including its application to the preparation of a frozen-hydrated chloroplast sample. Sample quality was evaluated through a cryogenic CXDM experiment conducted at BL29XUL of SPring-8. Taking the performance of the system and the quality of the sample, the system was suitable to prepare frozen-hydrated biological samples for cryogenic CXDM experiments.« less
A cryogenic tensile testing apparatus for micro-samples cooled by miniature pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Chen, L. B.; Liu, S. X.; Gu, K. X.; Zhou, Y.; Wang, J. J.
2015-12-01
This paper introduces a cryogenic tensile testing apparatus for micro-samples cooled by a miniature pulse tube cryocooler. At present, tensile tests are widely applied to measure the mechanical properties of materials; most of the cryogenic tensile testing apparatus are designed for samples with standard sizes, while for non-standard size samples, especially for microsamples, the tensile testing cannot be conducted. The general approach to cool down the specimens for tensile testing is by using of liquid nitrogen or liquid helium, which is not convenient: it is difficult to keep the temperature of the specimens at an arbitrary set point precisely, besides, in some occasions, liquid nitrogen, especially liquid helium, is not easily available. To overcome these limitations, a cryogenic tensile testing apparatus cooled by a high frequency pulse tube cryocooler has been designed, built and tested. The operating temperatures of the developed tensile testing apparatus cover from 20 K to room temperature with a controlling precision of ±10 mK. The apparatus configurations, the methods of operation and some cooling performance will be described in this paper.
Experimental Results of Integrated Refrigeration and Storage System Testing
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Johnson, W. L.; Jumper, K.
2009-01-01
Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage
NASA Astrophysics Data System (ADS)
Ding, Huiming; Wu, Yingzhe; Lu, Qunjie; Xu, Ping; Zheng, Jinyang; Wei, Lijun
2018-06-01
Designing a cryogenic pressure vessel based on the mechanical properties of the austenitic stainless steel (ASS) at its cryogenic operating temperature fully utilizes the potential of the material at low temperatures, resulting in lightweight and compact products. A series of tensile tests and impact tests were carried out in a wide range of 77-293 K, to investigate the mechanical properties of S30408 base metal (BM) and welded joints (WJ) at cryogenic temperatures. As the temperature decreases, yield stress (Rp0.2) and ultimate tensile stress (Rm) increase significantly thanks to the low-temperature strengthening effects. To estimate strengths at cryogenic temperatures, quadratic polynomial model was used to accurately predict the variations of Rp0.2 and Rm from 77 K to 293 K. As an important phase in the WJ, ferrite presents a radial pattern and an inhomogeneity in the WJ's cross-section. Due to the formation of ferrite in the WJ, the WJ has higher Rp0.2 and lower Rm , Charpy absorbed energy and lateral expansion compared with the BM. Strain-induced martensite transformation is an important role influencing the deformation of ASS at low temperatures. In this study, less martensite amount was measured in the weldment zone with higher Nickel equivalents which stabilize the austenite phase at cryogenic temperatures. Additionally, due to higher ferrite content and more precipitates forming, the SAW joints has lower Rm and impact toughness than PAW + GTAW joints. To ensure the structural integrity and safety, the PAW + GTAW method should be chosen and ferrite content be controlled.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.
2014-01-01
In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.
Mixing-induced fluid destratification and ullage condensation
NASA Technical Reports Server (NTRS)
Meserole, Jere S.; Jones, Ogden S.; Fortini, Anthony F.
1987-01-01
In many applications, on-orbit storage and transfer of cryogens will require forced mixing to control tank pressure without direct venting to space. During a no-vent transfer or during operation of a thermodynamic vent system in a cryogen storage tank, pressure control is achieved by circulating cool liquid to the liquid-vapor interface to condense some of the ullage vapor. To measure the pressure and temperature response rates in mixing-induced condensation, an experiment has been developed using Freon 11 to simulate the two-phase behavior of a cryogen. A thin layer at the liquid surface is heated to raise the tank pressure, and then a jet mixer is turned on to circulate the liquid, cool the surface, and reduce the pressure. Many nozzle configurations and flow rates are used. Tank pressure and the temperature profiles in the ullage and the liquid are measured. Initial data from this ground test are shown correlated with normal-gravity and drop-tower dye-mixing data. Pressure collapse times are comparable to the dye-mixing times, whereas the times needed for complete thermal mixing are much longer than the dye-mixing times.
NASA Technical Reports Server (NTRS)
Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina
2014-01-01
Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.
NASA Technical Reports Server (NTRS)
Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina
2014-01-01
Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.
Martian Cryogenic Carbonate Formation: Stable Isotope Variations Observed in Laboratory Studies
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K. Jr.
2014-01-01
The history of water on Mars is tied to the formation of carbonates through atmospheric CO2 and its control of the climate history of the planet. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms easily from freezing solutions when carbon dioxide degasses quickly from Ca-bicarbonate-rich water, a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lake beds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. A series of laboratory experiments were conducted that simulated cryogenic carbonate formation on Mars in order to understand their isotopic systematics. The results indicate that carbonates grown under martian conditions show variable enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values.
Free-surface flow of liquid oxygen under non-uniform magnetic field
NASA Astrophysics Data System (ADS)
Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min
2017-01-01
The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsedmore » heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick; Bradu, Benjamin
2014-01-01
In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
Tank Pressure Control Experiment (TPCE)
NASA Technical Reports Server (NTRS)
Bentz, Mike
1992-01-01
The Tank Pressure Control Experiment (TPCE) is a small self-contained STS payload designed to test a jet mixer for cryogenic fluid pressure control. Viewgraphs are presented that describe project organization, experiment objectives and approach, risk management, payload concept and mission plan, and initial test data.
Development of a motorized cryovalve for the control of superfluid liquid helium
NASA Technical Reports Server (NTRS)
Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Frank, D. J.
1988-01-01
Recent advances in the technology of infrared detectors have made possible a wide range of scientific measurements and investigations. One of the requirements for the use of sensitive IR detectors is that the entire instrument be cooled to temperatures approaching absolute zero. The cryogenic cooling system for these instruments is commonly designed as a large dewar containing liquid helium which completely surrounds the apparatus. Thus, there is a need for a remotely controlled, motorized cryovalve that is simple, reliable, and compact and can operate over extended periods of time in cryo-vac conditions. The design, development, and test of a motorized cryovalve with application to a variety of cryogenic systems currently under development is described.
Review of specimen heating in mechanical tests at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Ogata, T.; Yuri, T.; Ono, Y.
2014-01-01
At cryogenic temperatures near 4 K, a discontinuous deformation produces a large amount of specimen temperature rise that might bring significant changes in mechanical properties. The authors measured the specimen heating in tensile tests, fatigue test, and other tests in liquid helium for stainless steels and other materials. In this paper, we have measured the specimen temperature in high-cycle and low-cycle fatigue tests for stainless steels at various frequencies and stress levels and evaluated the testing conditions to keep the specimen at a specified temperature. We proposed maximum frequency in load-controlled fatigue tests for specified loading variables and a maximum strain rate in strain-controlled fatigue tests.
Control of large thermal distortions in a cryogenic wind tunnel
NASA Technical Reports Server (NTRS)
Gustafson, J. C.
1983-01-01
The National Transonic Facility (NTF) is a research wind tunnel capable of operation at temperatures down to 89K (160 R) and pressures up to 900,000 Pa (9 atmospheres) to achieve Reynolds numbers approaching 120,000,000. Wide temperature excursions combined with the precise alignment requirements of the tunnel aerodynamic surfaces imposed constraints on the mechanisms supporting the internal structures of the tunnel. The material selections suitable for this application were also limited. A general design philosophy of utilizing a single fixed point for each linear degree of freedom and guiding the expansion as required was adopted. These support systems allow thermal expansion to take place in a manner that minimizes the development of thermally induced stresses while maintaining structural alignment and resisting high aerodynamic loads. Typical of the support mechanisms are the preload brackets used in the fan shroud system and the Watts linkage used to support the upstream nacelle. The design of these mechanisms along with the basic design requirements and the constraints imposed by the tunnel system are discussed.
Multi-Element Unstructured Analyses of Complex Valve Systems
NASA Technical Reports Server (NTRS)
Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy
2004-01-01
The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.
NASA Astrophysics Data System (ADS)
Kassemi, Mohammad; Kartuzova, Olga
2016-03-01
Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.
Cryogenic Quenching Process for Electronic Part Screening
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J.; Cressler, John
2011-01-01
The use of electronic parts at cryogenic temperatures (less than 100 C) for extreme environments is not well controlled or developed from a product quality and reliability point of view. This is in contrast to the very rigorous and well-documented procedures to qualify electronic parts for mission use in the 55 to 125 C temperature range. A similarly rigorous methodology for screening and evaluating electronic parts needs to be developed so that mission planners can expect the same level of high reliability performance for parts operated at cryogenic temperatures. A formal methodology for screening and qualifying electronic parts at cryogenic temperatures has been proposed. The methodology focuses on the base physics of failure of the devices at cryogenic temperatures. All electronic part reliability is based on the bathtub curve, high amounts of initial failures (infant mortals), a long period of normal use (random failures), and then an increasing number of failures (end of life). Unique to this is the development of custom screening procedures to eliminate early failures at cold temperatures. The ability to screen out defects will specifically impact reliability at cold temperatures. Cryogenic reliability is limited by electron trap creation in the oxide and defect sites at conductor interfaces. Non-uniform conduction processes due to process marginalities will be magnified at cryogenic temperatures. Carrier mobilities change by orders of magnitude at cryogenic temperatures, significantly enhancing the effects of electric field. Marginal contacts, impurities in oxides, and defects in conductor/conductor interfaces can all be magnified at low temperatures. The novelty is the use of an ultra-low temperature, short-duration quenching process for defect screening. The quenching process is designed to identify those defects that will precisely (and negatively) affect long-term, cryogenic part operation. This quenching process occurs at a temperature that is at least 25 C colder than the coldest expected operating temperature. This quenching process is the opposite of the standard burn-in procedure. Normal burn-in raises the temperature (and voltage) to activate quickly any possible manufacturing defects remaining in the device that were not already rejected at a functional test step. The proposed inverse burn-in or quenching process is custom-tailored to the electronic device being used. The doping profiles, materials, minimum dimensions, interfaces, and thermal expansion coefficients are all taken into account in determining the ramp rate, dwell time, and temperature.
Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion
NASA Technical Reports Server (NTRS)
Rahman, Shamim A.
2010-01-01
Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.
LH2 on-orbit storage tank support trunnion design and verification
NASA Technical Reports Server (NTRS)
Bailey, W. J.; Fester, D. A.; Toth, J. M., Jr.
1985-01-01
A detailed fatigue analysis was conducted to provide verification of the trunnion design in the reusable Cryogenic Fluid Management Facility for Shuttle flights and to assess the performance capability of the trunnion E-glass/S-glass epoxy composite material. Basic material property data at ambient and liquid hydrogen temperatures support the adequacy of the epoxy composite for seven-mission requirement. Testing of trunnions fabricated to the flight design has verified adequate strength and fatigue properties of the design to meet the requirements of seven Shuttle flights.
2016-07-29
Research Addressing Contaminants in Low Permeability Zones - A State of the Science Review SERDP Project ER-1740 JULY 2016 Tom Sale Saeed...process, or service by trade name, trademark, manufacturer , or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or...managing releases of chlorinated solvents and other persistent contaminants in groundwater in unconsolidated sediments. N/A U U U UU 126 Dr. Tom Sale 970
Method and apparatus of cryogenic cooling for high temperature superconductor devices
Yuan, Xing; Mine, Susumu
2005-02-15
A method and apparatus for providing cryogenic cooling to HTS devices, in particular those that are used in high-voltage electric power applications. The method involves pressurizing liquid cryogen to above one atmospheric pressure to improve its dielectric strength, while sub-cooling the liquid cryogen to below its saturation temperature in order to improve the performance of the HTS components of the device. An apparatus utilizing such a cooling method consists of a vessel that contains a pressurized gaseous cryogen region and a sub-cooled liquid cryogen bath, a liquid cryogen heating coupled with a gaseous cryogen venting scheme to maintain the pressure of the cryogen to a value in a range that corresponds to optimum dielectric strength of the liquid cryogen, and a cooling system that maintains the liquid cryogen at a temperature below its boiling point to improve the performance of HTS materials used in the device.
In-Space Propellant Production Using Water
NASA Technical Reports Server (NTRS)
Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William
2012-01-01
A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.
Cryogenic and thermal design for the Space Infrared Telescope Facility (SIRTF)
NASA Technical Reports Server (NTRS)
Lee, J. H.; Brooks, W. F.
1984-01-01
The 1-meter class cryogenically cooled Space Infrared Telescope Facility (SIRTF) planned by NASA, is scheduled for a 1992 launch. SIRTF would be deployed from the Shuttle, and placed into a sun synchronous polar orbit of 700 km. The facility has been defined for a mission with a minimum initial lifetime of one year in orbit with mission extension that could be made possible through in-orbit servicing of the superfluid helium cryogenic system, and use of a thermal control system. The superfluid dewar would use an orbital disconnect system for the tank supports, and vapor cooling of the barrel baffle. The transient analysis of the design shows that the superfluid helium tank with no active feedback comes within temperature requirements for the nominal orbital aperture heat load, quiescent instrument, and chopper conditions.
NASA Astrophysics Data System (ADS)
Bellur, K.; Médici, E. F.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.
2018-04-01
Control of boil-off of cryogenic propellants is a continuing technical challenge for long duration space missions. Predicting phase change rates of cryogenic liquids requires an accurate estimation of solid-fluid interface temperature distributions in regions where a contact line or a thin liquid film exists. This paper described a methodology to predict inner wall temperature gradients with and without evaporation using discrete temperature measurements on the outer wall of a container. Phase change experiments with liquid hydrogen and methane in cylindrical test cells of various materials and sizes were conducted at the Neutron Imaging Facility at the National Institute of Standards and Technology. Two types of tests were conducted. The first type of testing involved thermal cycling of an evacuated cell (dry) and the second involved controlled phase change with cryogenic liquids (wet). During both types of tests, temperatures were measured using Si-diode sensors mounted on the exterior surface of the test cells. Heat is transferred to the test cell by conduction through a helium exchange gas and through the cryostat sample holder. Thermal conduction through the sample holder is shown to be the dominant mode with the rate of heat transfer limited by six independent contact resistances. An iterative methodology is employed to determine contact resistances between the various components of the cryostat stick insert, test cell and lid using the dry test data. After the contact resistances are established, inner wall temperature distributions during wet tests are calculated.
Digital control of magnetic bearings in a cryogenic cooler
NASA Technical Reports Server (NTRS)
Feeley, J.; Law, A.; Lind, F.
1990-01-01
This paper describes the design of a digital control system for control of magnetic bearings used in a spaceborne cryogenic cooler. The cooler was developed by Philips Laboratories for the NASA Goddard Space Flight Center. Six magnetic bearing assemblies are used to levitate the piston, displacer, and counter-balance of the cooler. The piston and displacer are driven by linear motors in accordance with Stirling cycle thermodynamic principles to produce the desired cooling effect. The counter-balance is driven by a third linear motor to cancel motion induced forces that would otherwise be transmitted to the spacecraft. An analog control system is currently used for bearing control. The purpose of this project is to investigate the possibilities for improved performance using digital control. Areas for potential improvement include transient and steady state control characteristics, robustness, reliability, adaptability, alternate control modes, size, weight, and cost. The present control system is targeted for the Intel 80196 microcontroller family. The eventual introduction of application specific integrated circuit (ASIC) technology to this problem may produce a unique and elegant solution both here and in related industrial problems.
Use of Atomic Fuels for Rocket-Powered Launch Vehicles Analyzed
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
1999-01-01
At the NASA Lewis Research Center, the launch vehicle gross lift-off weight (GLOW) was analyzed for solid particle feed systems that use high-energy density atomic propellants (ref. 1). The analyses covered several propellant combinations, including atoms of aluminum, boron, carbon, and hydrogen stored in a solid cryogenic particle, with a cryogenic liquid as the carrier fluid. Several different weight percents for the liquid carrier were investigated, and the GLOW values of vehicles using the solid particle feed systems were compared with that of a conventional oxygen/hydrogen (O2/H2) propellant vehicle. Atomic propellants, such as boron, carbon, and hydrogen, have an enormous potential for high specific impulse Isp operation, and their pursuit has been a topic of great interest for decades. Recent and continuing advances in the understanding of matter, the development of new technologies for simulating matter at its most basic level, and manipulations of matter through microtechnology and nanotechnology will no doubt create a bright future for atomic propellants and an exciting one for the researchers exploring this technology.
NASA Technical Reports Server (NTRS)
Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.
1987-01-01
Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.
Status of maglev: Opportunities in cryogenics and superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, H.T.
1994-12-31
A program to develop a prototype of a magnetically levitated (maglev) high-speed-ground-transportation system has been announced by the U.S. administration. This paper reviews the development of maglev and steel-wheel-on-steel-rail trains and examines the unique right-of-way requirements for these systems. The basic principles of maglev are discussed, highlighting U.S. efforts in this field. Japanese and German maglev systems and four recently designed U.S. systems are discussed. Five of these systems use superconducting magnets. The trend in the demand for intercity transportation capacity is reviewed, and the need for maglev to supplement or replace short-haul aircraft is discussed in terms of itsmore » competitiveness in travel time, capacity to transport large numbers of passengers, and environmental considerations, including energy, emissions, land use, and noise. The unusual consideration that the superconducting magnets should be sacrificed, if necessary, to permit the vehicle to stop safely is discussed, and various design and development issues related to the cryogenics and superconductivity in the system are listed.« less
NASA Technical Reports Server (NTRS)
Fast, Ronald W. (Editor)
1991-01-01
The present volume on advances in cryogenic engineering discusses heat and mass transfer in helium, heat transfer in cryogenic fluids, thermoacoustic oscillations, and insulation. Attention is given to applications of superconductivity with reference to magnetic stability and coil protection, cryogenic techniques, and refrigeration for electronics and superconducting systems. Topics addressed include compressors, expanders, and pumps for liquid helium, magnetic refrigerators, pulse tube refrigerators, and cryocoolers. Also examined are properties of cryogenic fluids, cryogenic applications in transportion and space science and technology, and cryogenic instrumentation.
Constellation-X Microcalorimeter Development
NASA Technical Reports Server (NTRS)
Kelly, Richard (Technical Monitor); Silver, Eric
2004-01-01
Discussion topics: Review concept for NTD array construction. Tested revised fabrication tique: simpler construction; more rugged; and easier to control thermal properties. Development status. Related cryogenic infrastructure.
Development of the Circulation Control Flow Scheme Used in the NTF Semi-Span FAST-MAC Model
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Allan, Brian G.; Goodliff, Scott L.; Melton, Latunia P.; Anders, Scott G.; Carter, Melissa B.; Capone, Francis J.
2013-01-01
The application of a circulation control system for high Reynolds numbers was experimentally validated with the Fundamental Aerodynamic Subsonic Transonic Modular Active Control semi-span model in the NASA Langley National Transonic Facility. This model utilized four independent flow paths to modify the lift and thrust performance of a representative advanced transport type of wing. The design of the internal flow paths highlights the challenges associated with high Reynolds number testing in a cryogenic pressurized wind tunnel. Weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions ranging from 0.1 to 10 lbm/sec. Results from the test verified system performance and identified solutions associated with the weight-flow metering system that are linked to internal perforated plates used to achieve flow uniformity at the jet exit.
NASA Astrophysics Data System (ADS)
Aleksandrova, I. V.; Koresheva, E. R.; Koshelev, I. E.; Krokhin, O. N.; Nikitenko, A. I.; Osipov, I. E.
2017-12-01
A central element of a power plant based on inertial confinement fusion (ICF) is a target with cryogenic hydrogen fuel that should be delivered to the center of a reactor chamber with a high accuracy and repetition rate. Therefore, a cryogenic target factory (CTF) is an integral part of any ICF reactor. A promising way to solve this problem consists in the FST layering method developed at the Lebedev Physical Institute (LPI). This method (rapid fuel layering inside moving free-standing targets) is unique, having no analogs in the world. The further development of FST-layering technologies is implemented in the scope of the LPI program for the creation of a modular CTF and commercialization of the obtained results. In this report, we discuss our concept of CTF (CTF-LPI) that exhibits the following distinctive features: using a FST-layering technology for the elaboration of an in-line production of cryogenic targets, using an effect of quantum levitation of high-temperature superconductors (HTSCs) in magnetic field for noncontacting manipulation, transport, and positioning of the free-standing cryogenic targets, as well as in using a Fourier holography technique for an on-line characterization and tracking of the targets flying into the reactor chamber. The results of original experimental and theoretical investigations performed at LPI indicate that the existing and developing target fabrication capabilities and technologies can be applied to ICF target production. The unique scientific, engineering, and technological base developed in Russia at LPI allows one to make a CTFLPI prototype for mass production of targets and delivery thereof at the required velocity into the ICF reactor chamber.
Cryogenic insulation development
NASA Technical Reports Server (NTRS)
Leonhard, K. E.
1972-01-01
Multilayer insulations for long term cryogenic storage are described. The development effort resulted in an insulation concept using lightweight radiation shields, separated by low conductive Dacron fiber tufts. The insulation is usually referred to as Superfloc. The fiber tufts are arranged in a triangular pattern and stand about .040 in. above the radiation shield base. Thermal and structural evaluation of Superfloc indicated that this material is a strong candidate for the development of high performance thermal protection systems because of its high strength, purge gas evacuation capability during boost, its density control and easy application to a tank.
A transient thermal model of a neutral buoyancy cryogenic fluid delivery system
NASA Astrophysics Data System (ADS)
Bue, Grant C.; Conger, Bruce S.
A thermal-performance model is presently used to evaluate a preliminary Neutral Buoyancy Cryogenic fluid-delivery system for underwater EVA training. Attention is given to the modeling of positional transients generated from the moving of internal components, including the control of cycling artifacts, as well as to the convection and boiling characteristics of the cryofluid, 250-psi N2/O2 gas, and water contained in the tank. Two piston designs are considered according to performance criteria; temperature and heat-transfer rate profiles are presented.
Cryogenic fluid management for low-g transfer
NASA Technical Reports Server (NTRS)
Frank, D. J.; Jaekle, D. E., Jr.
1986-01-01
An account is given of design and operations criteria pertaining to low-g environment systems for the collection and delivery of liquid cryogens to a supply tank drain inlet in orbit. Analyses must assess the draining efficiencies of such devices, because the minimization of supply tank residual contents is of the essence. Settling accelerations, passive expulsion, and positive expulsion methods of fluid control have all been successfully demonstrated in orbit. Attention is given to the unique advantages and disadvantages of each method in view of different sets of requirements.
Improvements in the efficiency of turboexpanders in cryogenic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agahi, R.R.; Lin, M.C.; Ershaghi, B.
1996-12-31
Process designers have utilized turboexpanders in cryogenic processes because of their higher thermal efficiencies when compared with conventional refrigeration cycles. Process design and equipment performance have improved substantially through the utilization of modern technologies. Turboexpander manufacturers have also adopted Computational Fluid Dynamic Software, Computer Numerical Control Technology and Holography Techniques to further improve an already impressive turboexpander efficiency performance. In this paper, the authors explain the design process of the turboexpander utilizing modern technology. Two cases of turboexpanders processing helium (4.35{degrees}K) and hydrogen (56{degrees}K) will be presented.
Small rocket research and technology
NASA Technical Reports Server (NTRS)
Schneider, Steven; Biaglow, James
1993-01-01
Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a ceramic composite of mixed hafnium carbide and tantalum carbide reinforced with graphite fibers.
Fracture-tough, corrosion-resistant bearing steels
NASA Technical Reports Server (NTRS)
Olson, Gregory B.
1990-01-01
The fundamental principles allowing design of stainless bearing steels with enhanced toughness and stress corrosion resistance has involved both investigation of basic phenomena in model alloys and evaluation of a prototype bearing steel based on a conceptual design exercise. Progress in model studies has included a scanning Auger microprobe (SAM) study of the kinetics of interfacial segregation of embrittling impurities which compete with the kinetics of alloy carbide precipitation in secondary hardening steels. These results can define minimum allowable carbide precipitation rates and/or maximum allowable free impurity contents in these ultrahigh strength steels. Characterization of the prototype bearing steel designed to combine precipitated austenite transformation toughening with secondary hardening shows good agreement between predicted and observed solution treatment response including the nature of the high temperature carbides. An approximate equilibrium constraint applied in the preliminary design calculations to maintain a high martensitic temperature proved inadequate, and the solution treated alloy remained fully austenitic down to liquid nitrogen temperature rather than transforming above 200 C. The alloy can be martensitically transformed by cryogenic deformation, and material so processed will be studied further to test predicted carbide and austenite precipitation behavior. A mechanistically-based martensitic kinetic model was developed and parameters are being evaluated from available kinetic data to allow precise control of martensitic temperatures of high alloy steels in future designs. Preliminary calculations incorporating the prototype stability results suggest that the transformation-toughened secondary-hardening martensitic-stainless design concept is still viable, but may require lowering Cr content to 9 wt. pct. and adding 0.5 to 1.0 wt. pct. Al. An alternative design approach based on strain-induced martensitic transformation during cryogenic forming, thus removing the high martensitic constraint, may permit alloy compositions offering higher fracture roughness.
Cryogen-free operation of the Soft X-ray Spectrometer instrument
NASA Astrophysics Data System (ADS)
Sneiderman, Gary A.; Shirron, Peter J.; Fujimoto, Ryuichi; Bialas, Thomas G.; Boyce, Kevin R.; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Hartz, Leslie; Ishisaki, Yoshitaka; Kelley, Richard L.; Kilbourne, Caroline A.; Masters, Candace; McCammon, Dan; Mitsuda, Kazuhisa; Noda, Hirofumi; Porter, Frederick S.; Szymkowiak, Andrew E.; Takei, Yoh; Tsujimoto, Masahiro; Yoshida, Seiji
2016-07-01
The Soft X-ray Spectrometer (SXS) is the first space-based instrument to implement redundancy in the operation of a sub-Kelvin refrigerator. The SXS cryogenic system consists of a superfluid helium tank and a combination of Stirling and Joule-Thompson (JT) cryocoolers that support the operation of a 3-stage adiabatic demagnetization refrigerator (ADR). When liquid helium is present, the x-ray microcalorimeter detectors are cooled to their 50 mK operating temperature by two ADR stages, which reject their heat directly to the liquid at 1.1 K. When the helium is depleted, all three ADR stages are used to accomplish detector cooling while rejecting heat to the JT cooler operating at 4.5 K. Compared to the simpler helium mode operation, the cryogen-free mode achieves the same instrument performance by controlling the active cooling devices within the cooling system differently. These include the three ADR stages and four active heat switches, provided by NASA, and five cryocoolers, provided by JAXA. Development and verification details of this capability are presented within this paper and offer valuable insights into the challenges, successes, and lessons that can benefit other missions, particularly those employing cryogen-free cooling systems.
Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2010-01-01
DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.
Pressure and temperature fluctuation simulation of J-PARC cryogenic hydrogen system
NASA Astrophysics Data System (ADS)
Tatsumoto, H.; Ohtsu, K.; Aso, T.; Kawakami, Y.
2015-12-01
The J-PARC cryogenic hydrogen system provides supercritical cryogenic hydrogen to the moderators at a pressure of 1.5 MPa and temperature of 18 K and removes 3.8 kW of nuclear heat from the 1 MW proton beam operation. We prepared a heater for thermal compensation and an accumulator, with a bellows structure for volume control, to mitigate the pressure fluctuation caused by switching the proton beam on and off. In this study, a 1-D simulation code named DiSC-SH2 was developed to understand the propagation of pressure and temperature propagations through the hydrogen loop due to on and off switching of the proton beam. We confirmed that the simulated dynamic behaviors in the hydrogen loop for 300-kW and 500-kW proton beam operations agree well with the experimental data under the same conditions.
Cryogenic target system for hydrogen layering
Parham, T.; Kozioziemski, B.; Atkinson, D.; ...
2015-11-24
Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highlymore » constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.« less
Schlegel, R; Hänke, T; Baumann, D; Kaiser, M; Nag, P K; Voigtländer, R; Lindackers, D; Büchner, B; Hess, C
2014-01-01
We present the design, setup, and operation of a new dip-stick scanning tunneling microscope. Its special design allows measurements in the temperature range from 4.7 K up to room temperature, where cryogenic vacuum conditions are maintained during the measurement. The system fits into every (4)He vessel with a bore of 50 mm, e.g., a transport dewar or a magnet bath cryostat. The microscope is equipped with a cleaving mechanism for cleaving single crystals in the whole temperature range and under cryogenic vacuum conditions. For the tip approach, a capacitive automated coarse approach is implemented. We present test measurements on the charge density wave system 2H-NbSe2 and the superconductor LiFeAs which demonstrate scanning tunneling microscopy and spectroscopy data acquisition with high stability, high spatial resolution at variable temperatures and in high magnetic fields.
C-SIDE: The control-structure interaction demonstration experiment
NASA Technical Reports Server (NTRS)
Mohl, James B.; Davis, Hugh W.
1993-01-01
The Control-Structure Interaction Demonstration Experiment (C-SIDE) is sponsored by the Electro-Optics and Cryogenics Division of Ball Aerospace Systems Group. Our objective is to demonstrate methods of solution to structure control problems utilizing currently available hardware in a system that is an extension of our corporate experience. The larger space structures with which Ball has been associated are the SEASAT radar antenna, Shuttle Imaging Radar (SIR) -A, -B and -C antennas and the Radarsat spacecraft. The motivation for the C-SIDE configuration is to show that integration of active figure control in the radar's system-level design can relieve antenna mechanical design constraints. This presentation is primarily an introduction to the C-SIDE testbed. Its physical and functional layouts, and major components are described. The sensor is of special interest as it enables direct surface figure measurements from a remote location. The Remote Attitude Measurement System (RAMS) makes high-rate, unobtrusive measurements of many locations, several of which may be collocated easily with actuators. The control processor is a 386/25 executing a reduced order model-based algorithm with provision for residual mode filters to compensate for structure interaction. The actuators for the ground demonstration are non-contacting, linear force devices. Results presented illustrate some basic characteristics of control-structure interaction with this hardware. The testbed will be used for evaluation of current technologies and for research in several areas. A brief indication of the evolution of the C-SIDE is given at the conclusion.
Cryogen spray cooling: Effects of droplet size and spray density on heat removal.
Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B
2001-01-01
Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1988-01-01
Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.
Auxiliary Propulsion Activities in Support of NASA's Exploration Initiative
NASA Technical Reports Server (NTRS)
Best, Philip J.; Unger, Ronald J.; Waits, David A.
2005-01-01
The Space Launch Initiative (SLI) procurement mechanism NRA8-30 initiated the Auxiliary Propulsion System/Main Propulsion System (APS/MPS) Project in 2001 to address technology gaps and development risks for non-toxic and cryogenic propellants for auxiliary propulsion applications. These applications include reaction control and orbital maneuvering engines, and storage, pressure control, and transfer technologies associated with on-orbit maintenance of cryogens. The project has successfully evolved over several years in response to changing requirements for re-usable launch vehicle technologies, general launch technology improvements, and, most recently, exploration technologies. Lessons learned based on actual hardware performance have also played a part in the project evolution to focus now on those technologies deemed specifically relevant to the Exploration Initiative. Formal relevance reviews held in the spring of 2004 resulted in authority for continuation of the Auxiliary Propulsion Project through Fiscal Year 2005 (FY05), and provided for a direct reporting path to the Exploration Systems Mission Directorate. The tasks determined to be relevant under the project were: continuation of the development, fabrication, and delivery of three 870 lbf thrust prototype LOX/ethanol reaction control engines; the fabrication, assembly, engine integration and testing of the Auxiliary Propulsion Test Bed at White Sands Test Facility; and the completion of FY04 cryogenic fluid management component and subsystem development tasks (mass gauging, pressure control, and liquid acquisition elements). This paper presents an overview of those tasks, their scope, expectations, and results to-date as carried forward into the Exploration Initiative.
Study and development of a cryogenic heat exchanger for life support systems
NASA Technical Reports Server (NTRS)
Soliman, M. M.
1973-01-01
A prototype cryogenic heat exchanger for removal of waste heat from a spacecraft environmental control life support system was developed. The heat exchanger uses the heat sink capabilities of the cryogenic propellants and, hence, can operate over all mission phases from prelaunch to orbit, to post landing, with quiescent periods during orbit. A survey of candidate warm fluids resulted in the selection of E-2, a fluorocarbon compound, because of its low freezing point and high boiling point. The final design and testing of the heat exchanger was carried out, however, using Freon-21, which is similar to E-2 except for its low boiling point. This change was motivated by the desire for cost effectiveness of the experimental program. The transient performance of the heat exchanger was demonstrated by an analog simulation of the heat sink system. Under the realistic transient heat load conditions (20 sec ramp from minimum to maximum Freon-21 inlet temperature), the control system was able to maintain the warm fluid outlet temperature within + or - 3 F. For a 20-sec ramp from 0 F to -400 F in the hydrogen inlet temperature, at maximum heat load, the warm fluid outlet temperature was maintained within + or - 7 F.
Mobile refrigeration system for precool and warm up of superconducting magnets
NASA Astrophysics Data System (ADS)
Gandla, S. K.; Longsworth, R. C.
2017-12-01
Conservation of helium has become more important in recent years due to global shortages in supply. Magnetic resonance imaging (MRI) superconducting magnets use approximately 20% of the world’s helium reserves in liquid form to cool down and maintain operating temperatures at 4 K. This paper describes a mobile cryogenic refrigeration system, which has been developed by Sumitomo (SHI) Cryogenics of America, Inc. to conserve helium by shipping MRI magnets warm and cooling them down or servicing them on site at a medical facility. The system can cool a typical magnet from room temperature to below 40K in less than a week. The system consists of four single stage Displex®-type Gifford-McMahon (GM) expanders in a cryostat with heat exchangers integrated on the cold ends that cool the helium gas, which is circulated in a closed-loop system through the magnet by a cryogenic fan. The system is configured with heaters on the heat exchangers to effectively warm up a magnet. The system includes a scroll vacuum pump, which is used to evacuate the helium circuit with or without the magnet and turbo pump to evacuate the cryostat. Vacuum-jacketed transfer lines connect the cryostat to the magnet. The system is designed with its own controller for continuous operation of precool, warm up and evacuation processes with automatic and manual controls. The cryostat, pumps and gas controls are mounted on a dewar cart. One compressor and the system controller are mounted on a compressor and control cart, and the other three compressors are mounted on separate carts.
Sources of Cryogenic Data and Information
NASA Astrophysics Data System (ADS)
Mohling, R. A.; Hufferd, W. L.; Marquardt, E. D.
It is commonly known that cryogenic data, technology, and information are applied across many military, National Aeronautics and Space Administration (NASA), and civilian product lines. Before 1950, however, there was no centralized US source of cryogenic technology data. The Cryogenic Data Center of the National Bureau of Standards (NBS) maintained a database of cryogenic technical documents that served the national need well from the mid 1950s to the early 1980s. The database, maintained on a mainframe computer, was a highly specific bibliography of cryogenic literature and thermophysical properties that covered over 100 years of data. In 1983, however, the Cryogenic Data Center was discontinued when NBS's mission and scope were redefined. In 1998, NASA contracted with the Chemical Propulsion Information Agency (CPIA) and Technology Applications, Inc. (TAI) to reconstitute and update Cryogenic Data Center information and establish a self-sufficient entity to provide technical services for the cryogenic community. The Cryogenic Information Center (CIC) provided this service until 2004, when it was discontinued due to a lack of market interest. The CIC technical assets were distributed to NASA Marshall Space Flight Center and the National Institute of Standards and Technology. Plans are under way in 2006 for CPIA to launch an e-commerce cryogenic website to offer bibliography data with capability to download cryogenic documents.
NASA Astrophysics Data System (ADS)
Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng
2017-03-01
The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.
NASA Astrophysics Data System (ADS)
Pal, Sandip; Kar, Ranjan; Mandal, Anupam; Das, Ananda; Saha, Subrata
2017-05-01
A prototype of a variable temperature insert has been developed in-house as a cryogenic thermometer calibration facility. It was commissioned in fulfilment of the very stringent requirements of the temperature control of the cryogenic system. The calibration facility is designed for calibrating industrial cryogenic thermometers that include a temperature sensor and the wires heat-intercept in the 2.2 K-325 K temperature range. The isothermal section of the calibration block onto which the thermometers are mounted is weakly linked with the temperature control zone mounted with cooling capillary coil and cryogenic heater. The connecting wires of the thermometer are thermally anchored with the support of the temperature insert. The calibration procedure begins once the temperature of the support is stabilized. Homogeneity of the calibration block’s temperature is established both by simulation and by cross-comparison of two calibrated sensors. The absolute uncertainty present in temperature measurement is calculated and found comparable with the measured uncertainty at different temperature points. Measured data is presented in comparison to the standard thermometers at fixed points and it is possible to infer that the absolute accuracy achieved is better than ±0.5% of the reading in comparison to the fixed point temperature. The design and development of simpler, low cost equipment, and approach to analysis of the calibration results are discussed further in this paper, so that it can be easily devised by other researchers.
Low vibration microminiature split Stirling cryogenic cooler for infrared aerospace applications
NASA Astrophysics Data System (ADS)
Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnel, C.; Freeman, J.; Riabzev, S.
2011-06-01
The operation of the thermo-mechanical unit of a cryogenic cooler may originate a resonant excitation of the spacecraft frame, optical bench or components of the optical train. This may result in degraded functionality of the inherently vibration sensitive space-borne infrared imager directly associated with the cooler or neighboring instrumentation typically requiring a quiet micro-g environment. The best practice for controlling cooler induced vibration relies on the principle of active momentum cancellation. In particular, the pressure wave generator typically contains two oppositely actuated piston compressors, while the single piston expander is counterbalanced by an auxiliary active counter-balancer. Active vibration cancellation is supervised by a dedicated DSP feed-forward controller, where the error signals are delivered by the vibration sensors (accelerometers or load cells). This can result in oversized, overweight and overpriced cryogenic coolers with degraded electromechanical performance and impaired reliability. The authors are advocating a reliable, compact, cost and power saving approach capitalizing on the combined application of a passive tuned dynamic absorber and a low frequency vibration isolator. This concept appears to be especially suitable for low budget missions involving mini and micro satellites, where price, size, weight and power consumption are of concern. The authors reveal the results of theoretical study and experimentation on the attainable performance using a fullscale technology demonstrator relying on a Ricor model K527 tactical split Stirling cryogenic cooler. The theoretical predictions are in fair agreement with the experimental data. From experimentation, the residual vibration export is quite suitable for demanding wide range of aerospace applications. The authors give practical recommendations on heatsinking and further maximizing performance.
An environmental transfer hub for multimodal atom probe tomography.
Perea, Daniel E; Gerstl, Stephan S A; Chin, Jackson; Hirschi, Blake; Evans, James E
2017-01-01
Environmental control during transfer between instruments is required for samples sensitive to air or thermal exposure to prevent morphological or chemical changes prior to analysis. Atom probe tomography is a rapidly expanding technique for three-dimensional structural and chemical analysis, but commercial instruments remain limited to loading specimens under ambient conditions. In this study, we describe a multifunctional environmental transfer hub allowing controlled cryogenic or room-temperature transfer of specimens under atmospheric or vacuum pressure conditions between an atom probe and other instruments or reaction chambers. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organic molecule made possible via controlled cryogenic transfer into the atom probe using the hub. The ability to prepare and transfer specimens in precise environments promises a means to access new science across many disciplines from untainted samples and allow downstream time-resolved in situ atom probe studies.
Spacecraft cryogenic gas storage systems
NASA Technical Reports Server (NTRS)
Rysavy, G.
1971-01-01
Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.
NASA Tech Briefs, November 2005
NASA Technical Reports Server (NTRS)
2005-01-01
Topics covered include: Laser System for Precise, Unambiguous Range Measurements; Flexible Cryogenic Temperature and Liquid-Level Probes; Precision Cryogenic Dilatometer; Stroboscopic Interferometer for Measuring Mirror Vibrations; Some Improvements in H-PDLCs; Multiple-Bit Differential Detection of OQPSK; Absolute Position Encoders With Vertical Image Binning; Flexible, Carbon-Based Ohmic Contacts for Organic Transistors; GaAs QWIP Array Containing More Than a Million Pixels; AutoChem; Virtual Machine Language; Two-Dimensional Ffowcs Williams/Hawkings Equation Solver; Full Multigrid Flow Solver; Doclet To Synthesize UML; Computing Thermal Effects of Cavitation in Cryogenic Liquids; GUI for Computational Simulation of a Propellant Mixer; Control Program for an Optical-Calibration Robot; SQL-RAMS; Distributing Data from Desktop to Hand-Held Computers; Best-Fit Conic Approximation of Spacecraft Trajectory; Improved Charge-Transfer Fluorescent Dyes; Stability-Augmentation Devices for Miniature Aircraft; Tool Measures Depths of Defects on a Case Tang Joint; Two Heat-Transfer Improvements for Gas Liquefiers; Controlling Force and Depth in Friction Stir Welding; Spill-Resistant Alkali-Metal-Vapor Dispenser; A Methodology for Quantifying Certain Design Requirements During the Design Phase; Measuring Two Key Parameters of H3 Color Centers in Diamond; Improved Compression of Wavelet-Transformed Images; NASA Interactive Forms Type Interface - NIFTI; Predicting Numbers of Problems in Development of Software; Hot-Electron Photon Counters for Detecting Terahertz Photons; Magnetic Variations Associated With Solar Flares; and Artificial Intelligence for Controlling Robotic Aircraft.
Avian artificial insemination and semen preservation
Gee, G.F.; Risser, Arthur C.; Todd, Frank S.
1983-01-01
Summary: Artificial insemination is a practical propagation tool that has been successful with a variety of birds. Cooperative, massage, and electroejaculation and modifications of these three basic methods of semen collection are described for a variety of birds. Semen color and consistency and sperm number, moti!ity, and morphology, as discussed, are useful indicators of semen quality, but the most reliable test of semen quality is the production of fertile eggs. Successful cryogenic preservation of avian semen with DMSO or glycerol as the cryoprotectant has been possible. Although the methods for preservation require special equipment, use of frozen semen requires only simple insemination supplies
Infrared spectroscopy of isoprene in noble gas matrices
NASA Astrophysics Data System (ADS)
Ito, Fumiyuki
2018-06-01
In this study, the infrared absorption spectra of 2-methyl-1,3-butadiene (isoprene) in noble gas matrices (Ar, Kr, and Xe) have been reported. The vibrational structure observed at cryogenic temperature, in combination with anharmonic vibrational calculations using density functional theory, helped in unambiguously assigning the fundamental modes of isoprene unresolved in the previous gas phase measurements, which would be of basic importance in the remote sensing of this molecule. A careful comparison with the most recent gas phase study [Brauer et al., Atmos. Meas. Tech. 7 (2014) 3839-3847.] led us to alternative assignments of the weak bands.
Development of a non-cryogenic nitrogen/oxygen supply system. [for spacecraft environments
NASA Technical Reports Server (NTRS)
1977-01-01
Modular components were refined or replaced to improve the performance of the electrolysis module in a system which generates both oxygen and hydrogen from hydrazine hydrate. Significant mechanical and electrical performance improvements were achieved in the cathode. Improvements were also made in the phase separation area but at considerable cost in time and money and to the detriment of other investigative areas. Only the pump/bubble separator failed in a manner necessitating redesign. Its failure was, however, due to its being operated above the temperature range for which it was designed. The basic electrolysis cell design was not changed.
Microwave Switching and Attenuation with Superconductors.
NASA Astrophysics Data System (ADS)
Poulin, Grant Darcy
1995-01-01
The discovery of high temperature superconducting (HTS) materials having a critical temperature above the boiling point of liquid nitrogen has generated a large amount of interest in both the basic and applied scientific communities. Considerable research effort has been expended in developing HTS microwave devices, since thin film, passive, microwave components will likely be the first area to be successfully commercialized. This thesis describes a new thin film HTS microwave device that can be operated as a switch or as a continuously variable attenuator. It is well suited for low power analog signal control applications and can easily be integrated with other HTS devices. Due to its small size and mass, the device is expected to find application as a receiver protection switch or as an automatic gain control element, both used in satellite communications receivers. The device has a very low insertion loss, and the isolation in the OFF state is continuously variable to 25 dB. With minor modifications, an isolation exceeding 50 dB is readily achievable. A patent application for the device has been filed, with the patent rights assigned to COM DEV. The device is based on an unusual non-linear response in HTS materials. Under a non-zero DC voltage bias, the current through a superconducting bridge is essentially voltage independent. We have proposed a thermal instability to account for this behaviour. Thermal modelling in conjunction with direct temperature measurements were used to confirm the validity of the model. We have developed a detailed model explaining the microwave response of the device. The model accurately predicts the microwave attenuation as a function of the applied DC control voltage and fully explains the device operation. A key feature is that the device acts as a pure resistive element at microwave frequencies, with no reactance. The resistance is continuously variable, controlled by the DC bias voltage. This distinguishes it from a PIN diode, since PIN diodes have a capacitive reactance that limits their frequency range. Measurements made to confirm the microwave model validity resulted in the development of a new cryogenic de-embedding technique. The technique allows accurate microwave measurements to be made on devices at cryogenic temperatures using only room temperature calibration standards. We have also investigated the effect of kinetic inductance on coplanar waveguide transmission lines, and indicate under what conditions kinetic inductance must be considered in transmission line design.
The Effects of Cryogenic Treatment on Cutting Tools
NASA Astrophysics Data System (ADS)
Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.
2017-08-01
Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.
Sagalowicz, Laurent; Acquistapace, Simone; Watzke, Heribert J; Michel, Martin
2007-11-20
We developed a method that enables differentiation between liquid crystalline-phase particles corresponding to different space groups. It consists of controlled tilting of the specimen to observe different orientations of the same particle using cryogenic transmission electron microscopy. This leads to the visualization of lattice planes (or reflections) that are present for a given structure and absent for the other one(s) and that give information on liquid crystalline structures and their space groups. In particular, we show that we can unambiguously distinguish among particles having the inverted micellar cubic (space group Fd(3)m, 227), the inverted bicontinuous gyroid (space group Ia(3)d, 230), the inverted bicontinuous diamond (space group Pn(3)m, 224), and the inverted bicontinuous primitive cubic structure (space group Im(3)m, 229).
Performance of High-Speed PWM Control Chips at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard; Overton, Eric
2001-01-01
The operation of power electronic systems at cryogenic temperatures is anticipated in many NASA space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. As part of the NASA Glenn Low Temperature Electronics Program, several commercial high-speed Pulse Width Modulation (PWM) chips have been characterized in terms of their performance as a function of temperature in the range of 25 to -196 C (liquid nitrogen). These chips ranged in their electrical characteristics, modes of control, packaging options, and applications. The experimental procedures along with the experimental data obtained on the investigated chips are presented and discussed.
Modular cryogenic interconnects for multi-qubit devices.
Colless, J I; Reilly, D J
2014-11-01
We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with -3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, George
2017-06-13
Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.
Reliability of large superconducting magnets through design
NASA Astrophysics Data System (ADS)
Henning, C. D.
1981-01-01
Design and quality control of large superconducting magnets for reliability comparable to pressure vessels are discussed. The failure modes are analyzed including thermoelectric instabilities, electrical shorts, cryogenic/vacuum defects, and mechanical malfunctions. Design must take into consideration conductor stability, insulation based on the Paschen curves, and the possible burnout of cryogenic transition leads if the He flow is interrupted. The final stage of the metal drawing process should stress the superconductor material to a stress value higher than the magnet design stress, cabled conductors should be used to achieve mechanical redundancy, and ground-plane insulation must be multilayered for arc prevention.
Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures
NASA Technical Reports Server (NTRS)
Fesmire, James; Sass, Jared; Johnson, Wesley
2010-01-01
With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).
Interim Cryogenic Propulsion Stage (ICPS) Handover Signing
2017-10-26
Meeting in the Launch Control Center of NASA's Kennedy Space Center in Florida, officials of the agency's Spacecraft/Payload Integration and Evolution (SPIE) organization formally turn over processing of the Space Launch System (SLS) rocket's Interim Cryogenic Propulsion Stage (ICPS) to the center's Ground Systems Development and Operations (GSDO) directorate. The ICPS is the first integrated piece of flight hardware to arrive in preparation for the uncrewed Exploration Mission-1. With the Orion attached, the ICPS sits atop the SLS rocket and will provide the spacecraft with the additional thrust needed to travel tens of thousands of miles beyond the Moon.
Zero Boil-OFF Tank Hardware Setup
2017-09-19
iss053e027051 (Sept. 19, 2017) --- Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. ZBOT uses an experimental fluid to test active heat removal and forced jet mixing as alternative means for controlling tank pressure for volatile fluids. Rocket fuel, spacecraft heating and cooling systems, and sensitive scientific instruments rely on very cold cryogenic fluids. Heat from the environment around cryogenic tanks can cause their pressures to rise, which requires dumping or "boiling off" fluid to release the excess pressure, or actively cooling the tanks in some way.
Note: Cryogenic heat switch with stepper motor actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melcher, B. S., E-mail: bsmelche@syr.edu; Timbie, P. T., E-mail: pttimbie@wisc.edu
2015-12-15
A mechanical cryogenic heat switch has been developed using a commercially available stepper motor and control electronics. The motor requires 4 leads, each carrying a maximum, pulsed current of 0.5 A. With slight modifications of the stepper motor, the switch functions reliably in vacuum at temperatures between 300 K and 4 K. The switch generates a clamping force of 262 N at room temperature. At 4 K it achieves an “on state” thermal conductance of 5.04 mW/K and no conductance in the “off state.” The switch is optimized for cycling an adiabatic demagnetization refrigerator.
Friction-Stir Welding of Large Scale Cryogenic Fuel Tanks for Aerospace Applications
NASA Technical Reports Server (NTRS)
Jones, Clyde S., III; Venable, Richard A.
1998-01-01
The Marshall Space Flight Center has established a facility for the joining of large-scale aluminum-lithium alloy 2195 cryogenic fuel tanks using the friction-stir welding process. Longitudinal welds, approximately five meters in length, were made possible by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and the spindle travel system will be described in this paper. Process controls and real-time data acquisition will also be described, and were critical elements contributing to successful weld operation.
NASA Technical Reports Server (NTRS)
Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.
2003-01-01
The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.
NASA Astrophysics Data System (ADS)
Fast, R. W.
The book presents a review of literature on superfluid helium, together with papers under the topics on heat and mass transfer in He II; applications of He II for cooling superconducting devices in space; heat transfer to liquid helium and liquid nitrogen; multilayer insulation; applications of superconductivity, including topics on magnets and other devices, magnet stability and coil protection, and cryogenic techniques; and refrigeration for electronics. Other topics discussed include refrigeration of superconducting systems; the expanders, cold compressors, and pumps for liquid helium; dilution refrigerators; magnetic refrigerators; pulse tube refrigerators; cryocoolers for space applications; properties of cryogenic fluids; cryogenic instrumentation; hyperconducting devices (cryogenic magnets); cryogenic applications in space science and technology and in transportation; and miscellaneous cryogenic techniques and applications.
Validation and performance of the LHC cryogenic system through commissioning of the first sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serio, L.; Bouillot, A.; Casas-Cubillos, J.
2007-12-01
The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was establishedmore » and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.« less
Commissioning the cryogenic system of the first LHC sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millet, F.; Claudet, S.; Ferlin, G.
2007-12-01
The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioningmore » is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.« less
Konz, Ioana; Fernández, Beatriz; Fernández, M Luisa; Pereiro, Rosario; Sanz-Medel, Alfredo
2014-01-27
A new custom-built Peltier-cooled laser ablation cell is described. The proposed cryogenic cell combines a small internal volume (20 cm(3)) with a unique and reliable on-sample temperature control. The use of a flexible temperature sensor, directly located on the sample surface, ensures a rigorous sample temperature control throughout the entire analysis time and allows instant response to any possible fluctuation. In this way sample integrity and, therefore, reproducibility can be guaranteed during the ablation. The refrigeration of the proposed cryogenic cell combines an internal refrigeration system, controlled by a sensitive thermocouple, with an external refrigeration system. Cooling of the sample is directly carried out by 8 small (1 cm×1 cm) Peltier elements placed in a circular arrangement in the base of the cell. These Peltier elements are located below a copper plate where the sample is placed. Due to the small size of the cooling electronics and their circular allocation it was possible to maintain a peephole under the sample for illumination allowing a much better visualization of the sample, a factor especially important when working with structurally complex tissue sections. The analytical performance of the cryogenic cell was studied using a glass reference material (SRM NIST 612) at room temperature and at -20°C. The proposed cell design shows a reasonable signal washout (signal decay within less than 10 s to background level), high sensitivity and good signal stability (in the range 6.6-11.7%). Furthermore, high precision (0.4-2.6%) and accuracy (0.3-3.9%) in the isotope ratio measurements were also observed operating the cell both at room temperature and at -20°C. Finally, experimental results obtained for the cell application to qualitative elemental imaging of structurally complex tissue samples (e.g. eye sections from a native frozen porcine eye and fresh flower leaves) demonstrate that working in cryogenic conditions is critical in such type of direct sample analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Method of measuring heat influx of a cryogenic transfer system
Niemann, Ralph C.; Zelipsky, Steven A.; Rezmer, Ronald R.; Smelser, Peter
1981-01-01
A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.
Liquid Acquisition Strategies for Exploration Missions: Current Status 2010
NASA Technical Reports Server (NTRS)
Chato, David J.
2010-01-01
NASA is currently developing the propulsion system concepts for human exploration missions to the lunar surface. The propulsion concepts being investigated are considering the use of cryogenic propellants for the low gravity portion of the mission, that is, the lunar transit, lunar orbit insertion, lunar descent and the rendezvous in lunar orbit with a service module after ascent from the lunar surface. These propulsion concepts will require the vapor free delivery of the cryogenic propellants stored in the propulsion tanks to the exploration vehicles main propulsion system (MPS) engines and reaction control system (RCS) engines. Propellant management devices (PMD s) such as screen channel capillary liquid acquisition devices (LAD s), vanes and sponges currently are used for earth storable propellants in the Space Shuttle Orbiter OMS and RCS applications and spacecraft propulsion applications but only very limited propellant management capability exists for cryogenic propellants. NASA has begun a technology program to develop LAD cryogenic fluid management (CFM) technology through a government in-house ground test program of accurately measuring the bubble point delta-pressure for typical screen samples using LO2, LN2, LH2 and LCH4 as test fluids at various fluid temperatures and pressures. This presentation will document the CFM project s progress to date in concept designs, as well ground testing results.
Cryogen spray cooling during laser tissue welding.
Fried, N M; Walsh, J T
2000-03-01
Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p < 0.05). Cryogen cooling of the tissue surface during laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing.
Issues of Long-Term Cryogenic Propellant Storage in Microgravity
NASA Technical Reports Server (NTRS)
Muratov, C. B.; Osipov, Viatcheslav V.; Smelyanskiy, Vadim N.
2011-01-01
Modern multi-layer insulation (MLI) allows to sharply reduce the heat leak into cryogenic propellant storage tanks through the tank surface and, as a consequence, significantly extend the storage duration. In this situation the MLI penetrations, such as support struts, feed lines, etc., become one of the most significant challenges of the tanks heat management. This problem is especially acute for liquid hydrogen (LH2) storage, since currently no efficient cryocoolers exist that operate at very low LH2 temperatures (20K). Even small heat leaks under microgravity conditions and over the period of many months give rise to a complex slowly-developing, large-scale spatiotemporal physical phenomena in a multi-phase liquid-vapor mixture. These phenomena are not well-understood nor can be easily controlled. They can be of a potentially hazardous nature for long-term on-orbital cryogenic torage, propellant loading, tank chilldown, engine restart, and other in-space cryogenic fluid management operations. To support the engineering design solutions that would mitigate these effects a detailed physics-based analysis of heat transfer, vapor bubble formation, growth, motion, coalescence and collapse is required in the presence of stirring jets of different configurations and passive cooling devices such as MLI, thermodynamic vent system, and vapor-cooled shield. To develop physics-based models and correlations reliable for microgravity conditions and long-time scales there is a need for new fundamental data to be collected from on-orbit cryogenic storage experiments. Our report discusses some of these physical phenomena and the design requirements and future studies necessary for their mitigation. Special attention is payed to the phenomena occurring near MLI penetrations.
Cryosphere: a kingdom of anomalies and diversity
NASA Astrophysics Data System (ADS)
Melnikov, Vladimir; Gennadinik, Viktor; Kulmala, Markku; Lappalainen, Hanna K.; Petäjä, Tuukka; Zilitinkevich, Sergej
2018-05-01
The cryosphere of the Earth overlaps with the atmosphere, hydrosphere and lithosphere over vast areas with temperatures below 0 °C and pronounced H2O phase changes. In spite of its strong variability in space and time, the cryosphere plays the role of a global thermostat, keeping the thermal regime on the Earth within rather narrow limits, affording continuation of the conditions needed for the maintenance of life. Objects and processes related to cryosphere are very diverse, due to the following basic reasons: the anomalous thermodynamic and electromagnetic properties of H2O, the intermediate intensity of hydrogen bonds and the wide spread of cryogenic systems all over the Earth. However, these features attract insufficient attention from research communities. Cryology is usually understood as a descriptive discipline within physical geography, limited to glaciology and permafrost research. We emphasise its broad interdisciplinary landscape involving physical, chemical and biological phenomena related to the H2O phase transitions and various forms of ice. This paper aims to draw the attention of readers to the crucial importance of cryogenic anomalies, which make the Earth atmosphere and the entire Earth system very special, if not unique, objects in the universe.
Capillary Liquid Acquisition Device Heat Entrapment
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hastings, L. J.; Statham, G.; Turpin, J. B.
2007-01-01
Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of subcooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs? Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, 200x1400 and 325x2300, both with Twill Dutch Weave. Upon consideration of both the water and LN2 data, it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.
Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, Barry; Bremer, Johan; Chalifour, Michel
2017-01-01
The Short-Baseline Neutrino (SBN) physics program will involve three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. The Program will be composed of an existing and operational detector known as Micro Boone (170 ton LAr mass) plus two new experiments known as the SBN Near Detector (SBND, ~ 260more » ton) and the SBN Far Detector (SBN-FD, ~ 600 tons). Fermilab is now building two new facilities to house the experiments and incorporate all cryogenic and process systems to operate these detectors beginning in the 2018-2019 time frame. The SBN cryogenics are a collaborative effort between Fermilab and CERN. The SBN cryogenic systems for both detectors are composed of several sub-systems: External/Infrastructure (or LN2), Proximity (or LAr), and internal cryogenics. For each detector the External/Infrastructure cryogenics includes the equipment used to store and the cryogenic fluids needed for the operation of the Proximity cryogenics, including the LN2 and LAr storage facilities. The Proximity cryogenics consists of all the systems that take the cryogenic fluids from the external/infrastructure cryogenics and deliver them to the internal at the required pressure, temperature, purity and mass flow rate. It includes the condensers, the LAr and GAr purification systems, the LN2 and LAr phase separators, and the interconnecting piping. The Internal cryogenics is comprised of all the cryogenic equipment located within the cryostats themselves, including the GAr and LAr distribution piping and the piping required to cool down the cryostats and the detectors. These cryogenic systems will be engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution presents the performance, the functional requirements and the modes of operation of the SBN cryogenics, and details the current status of the design, present and future needs.« less
Modeling a Transient Pressurization with Active Cooling Sizing Tool
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Plachta, David W.; Elchert, Justin P.
2011-01-01
As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank pressure recovery with ZBO of a liquid oxygen propellant tank.
A numerical solution of the Navier-Stokes equations for supercritical fluid thermodynamic analysis
NASA Technical Reports Server (NTRS)
Heinmiller, P. J.
1971-01-01
An explicit numerical solution of the compressible Navier-Stokes equations is applied to the thermodynamic analysis of supercritical oxygen in the Apollo cryogenic storage system. The wave character is retained in the conservation equations which are written in the basic fluid variables for a two-dimensional Cartesian coordinate system. Control-volume cells are employed to simplify imposition of boundary conditions and to ensure strict observance of local and global conservation principles. Non-linear real-gas thermodynamic properties responsible for the pressure collapse phenomonon in supercritical fluids are represented by tabular and empirical functions relating pressure and temperature to density and internal energy. Wall boundary conditions are adjusted at one cell face to emit a prescribed mass flowrate. Scaling principles are invoked to achieve acceptable computer execution times for very low Mach number convection problems. Detailed simulations of thermal stratification and fluid mixing occurring under low acceleration in the Apollo 12 supercritical oxygen tank are presented which model the pressure decay associated with de-stratification induced by an ordinary vehicle maneuver and heater cycle operation.
Basic Physics Questions Addressed by Astrophysics
NASA Technical Reports Server (NTRS)
Mather, John C.
2009-01-01
Dark matter, dark energy, the Big Bang, testing relativity -- all are physics questions accessible to astrophysicists -- but all require new equipment. As Harwit's "Cosmic Discovery" pointed out, almost all great surprises in astronomy came from new equipment or new uses of equipment designed for other purposes, and many of those had military applications. I will outline prospects for new equipment and discuss how that equipment can be developed and built. Bigger and lighter mirrors, wavefront sensing and control, new detector technology, cryogenics -- each has its own social network, its own special possibilities, and its own funding sources outside science. I will discuss some examples drawn from real-life experience with the James Webb Space Telescope, a telescope that was said to have a "giggle factor" when it was proposed in 1995. Now each of the 10 major technologies has been brought to maturity, flight hardware is being built, and launch is planned for 2014. As an instrument builder all my life, I will speculate a little on what may be within our reach over the next few decades.
Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC
NASA Technical Reports Server (NTRS)
2005-01-01
This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.
Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures
NASA Technical Reports Server (NTRS)
Johnson, L. D.
1967-01-01
Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.
Methane Lunar Surface Thermal Control Test
NASA Technical Reports Server (NTRS)
Plachta, David W.; Sutherlin, Steven G.; Johnson, Wesley L.; Feller, Jeffrey R.; Jurns, John M.
2012-01-01
NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages.
Experimental investigation of CO2 condensation process using cryogen
NASA Astrophysics Data System (ADS)
Lee, Cheonkyu; Yoo, Junghyun; Lee, Jisung; Park, Hana; Jeong, Sangkwon
2014-01-01
Carbon dioxide (CO2) is one of the dominant gas molecules that causes greenhouse effect, i.e. global warming. Numerous studies have been carried out to regulate the emission of CO2 to reduce greenhouse gas. The liquid CO2 is a convenient form of transportation compared to high-pressurized gaseous CO2. Therefore, the direct liquefaction mechanism of CO2 at low temperature draws technical attention recently. In particular, cold thermal energy of Liquefied Natural Gas (LNG) could be a candidate to condense gaseous CO2, especially in the LNG powered ship. In this paper, the detailed direct condensation process of CO2 using LN2 with intermittent solidification is investigated. Pressurized CO2 at 600 kPa is directly liquefied in a vessel by liquid nitrogen which is supplied into the coiled tube heat exchanger inside the CO2 vessel. The heat exchanger temperature is controlled from 130 K to 205 K to regulate the solidification and sublimation of CO2 by duty control with cryogenic solenoid valve. The characteristics of CO2 condensation process with cryogen are analyzed from the measurement results. The results show that the solidification causes the significant degradation of CO2 condensation heat transfer. Finally, the condensation rate with and without solidification is compared.
Propulsion Risk Reduction Activities for Non-Toxic Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth
2010-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for non-toxic or "green" propellants. The PCAD project focuses on the development of non-toxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of non-toxic propellants for space missions. Implementation of non-toxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that non-toxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.
Propulsion Risk Reduction Activities for Nontoxic Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth L.
2010-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for nontoxic or "green" propellants. The PCAD project focuses on the development of nontoxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of nontoxic propellants for space missions. Implementation of nontoxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that nontoxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.
NASA Technical Reports Server (NTRS)
Cepeda-Rizo, Juan; Krylo, Robert; Fisher, Melanie; Bugby, David C.
2011-01-01
Camera cooling for SIM presents three thermal control challenges; stable operation at 163K (110 C), decontamination heating to +20 C, and a long span from the cameras to the radiator. A novel cryogenic cooling system based on a methane heat pipe meets these challenges. The SIM thermal team, with the help of heat pipe vendor ATK, designed and tested a complete, low temperature, cooling system. The system accommodates the two SIM cameras with a double-ended conduction bar, a single methane heat pipe, independent turn-off devices, and a flight-like radiator. The turn ]off devices consist of a liquid trap, for removing the methane from the pipe, and an electrical heater to raise the methane temperature above the critical point thus preventing two-phase operation. This is the first time a cryogenic heat pipe has been tested at JPL and is also the first heat pipe to incorporate the turn-off features. Operation at 163K with a methane heat pipe is an important new thermal control capability for the lab. In addition, the two turn-off technologies enhance the "bag of tricks" available to the JPL thermal community. The successful test program brings this heat pipe to a high level of technology readiness.
NASA Astrophysics Data System (ADS)
Bonne, F.; Alamir, M.; Bonnay, P.
2017-02-01
This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
NASA Astrophysics Data System (ADS)
Berzak Hopkins, L. F.; Meezan, N. B.; Le Pape, S.; Divol, L.; Mackinnon, A. J.; Ho, D. D.; Hohenberger, M.; Jones, O. S.; Kyrala, G.; Milovich, J. L.; Pak, A.; Ralph, J. E.; Ross, J. S.; Benedetti, L. R.; Biener, J.; Bionta, R.; Bond, E.; Bradley, D.; Caggiano, J.; Callahan, D.; Cerjan, C.; Church, J.; Clark, D.; Döppner, T.; Dylla-Spears, R.; Eckart, M.; Edgell, D.; Field, J.; Fittinghoff, D. N.; Gatu Johnson, M.; Grim, G.; Guler, N.; Haan, S.; Hamza, A.; Hartouni, E. P.; Hatarik, R.; Herrmann, H. W.; Hinkel, D.; Hoover, D.; Huang, H.; Izumi, N.; Khan, S.; Kozioziemski, B.; Kroll, J.; Ma, T.; MacPhee, A.; McNaney, J.; Merrill, F.; Moody, J.; Nikroo, A.; Patel, P.; Robey, H. F.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M.; Sepke, S.; Stadermann, M.; Stoeffl, W.; Thomas, C.; Town, R. P. J.; Volegov, P. L.; Wild, C.; Wilde, C.; Woerner, E.; Yeamans, C.; Yoxall, B.; Kilkenny, J.; Landen, O. L.; Hsing, W.; Edwards, M. J.
2015-05-01
Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ˜3.5 ) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 ×1015 neutrons, with 20% calculated alpha heating at convergence ˜27 × .
Cryogenic fluid management experiment
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.
1981-01-01
The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.
Engineering and fabrication cost considerations for cryogenic wind tunnel models
NASA Technical Reports Server (NTRS)
Boykin, R. M., Jr.; Davenport, J. B., Jr.
1983-01-01
Design and fabrication cost drivers for cryogenic transonic wind tunnel models are defined. The major cost factors for wind tunnel models are model complexity, tolerances, surface finishes, materials, material validation, and model inspection. The cryogenic temperatures require the use of materials with relatively high fracture toughness but at the same time high strength. Some of these materials are very difficult to machine, requiring extensive machine hours which can add significantly to the manufacturing costs. Some additional engineering costs are incurred to certify the materials through mechanical tests and nondestructive evaluation techniques, which are not normally required with conventional models. When instrumentation such as accelerometers and electronically scanned pressure modules is required, temperature control of these devices needs to be incorporated into the design, which requires added effort. Additional thermal analyses and subsystem tests may be necessary, which also adds to the design costs. The largest driver to the design costs is potentially the additional static and dynamic analyses required to insure structural integrity of the model and support system.
Supplemental multilayer insulation research facility
NASA Technical Reports Server (NTRS)
Dempsey, P. J.; Stochl, R. J.
1995-01-01
The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3 x 10(exp -4) Newton/sq meter (1 x 10(exp -6) torr). Warm side boundary temperatures can be maintained constant between 111 K (200 R) and 361 K (650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 cu meter (120 gallon) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH2 and LN2 ground storage dewars.
Study of robust thin film PT-1000 temperature sensors for cryogenic process control applications
NASA Astrophysics Data System (ADS)
Ramalingam, R.; Boguhn, D.; Fillinger, H.; Schlachter, S. I.; Süßer, M.
2014-01-01
In some cryogenic process measurement applications, for example, in hydrogen technology and in high temperature superconductor based generators, there is a need of robust temperature sensors. These sensors should be able to measure the large temperature range of 20 - 500 K with reasonable resolution and accuracy. Thin film PT 1000 sensors could be a choice to cover this large temperature range. Twenty one sensors selected from the same production batch were tested for their temperature sensitivity which was then compared with different batch sensors. Furthermore, the sensor's stability was studied by subjecting the sensors to repeated temperature cycles of 78-525 K. Deviations in the resistance were investigated using ice point calibration and water triple point calibration methods. Also the study of directional oriented intense static magnetic field effects up to 8 Oersted (Oe) were conducted to understand its magneto resistance behaviour in the cryogenic temperature range from 77 K - 15 K. This paper reports all investigation results in detail.
Update on Thales flexure bearing coolers and drive electronics
NASA Astrophysics Data System (ADS)
Willems, D.; Benschop, T.; v. d. Groep, W.; Mullié, J.; v. d. Weijden, H.; Tops, M.
2009-05-01
Thales Cryogenics has a long background in delivering cryogenic coolers with an MTTF far above 20.000 hrs for military, civil and space programs. Developments in these markets required continuous update of the flexure bearing cooler portfolio for new and emerging applications. The cooling requirements of new application have not only their influence on the size of the compressor, cold finger and cooling technology used but also on the integration and control of the cooler in the application. Thales Cryogenics developed a compact Cooler Drive Electronics based on DSP technology that could be used for driving linear flexure bearing coolers with extreme temperature stability and with additional diagnostics inside the CDE. This CDE has a wide application and can be modified to specific customer requirements. During the presentation the latest developments in flexure bearing cooler technology will be presented both for Stirling and Pulse Tube coolers. Also the relation between the most important recent detector requirements and possible available solutions on cryocooler level will be presented.
Silicon Germanium Cryogenic Low Noise Amplifiers
NASA Astrophysics Data System (ADS)
Bardin, J. C.; Montazeri, S.; Chang, Su-Wei
2017-05-01
Silicon germanium heterojunction bipolar transistors have emerged in the last decade as an excellent option for use in cryogenic low noise amplifiers. This paper begins with a review of the critical developments that have led to today’s cryogenic low noise amplifiers. Next, recent work focused on minimizing the power consumption of SiGe cryogenic amplifiers is presented. Finally, open issues related to the cryogenic noise properties of SiGe HBTs are discussed.
Inferential Framework for Autonomous Cryogenic Loading Operations
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara
2017-01-01
We address problem of autonomous cryogenic management of loading operations on the ground and in space. As a step towards solution of this problem we develop a probabilistic framework for inferring correlations parameters of two-fluid cryogenic flow. The simulation of two-phase cryogenic flow is performed using nearly-implicit scheme. A concise set of cryogenic correlations is introduced. The proposed approach is applied to an analysis of the cryogenic flow in experimental Propellant Loading System built at NASA KSC. An efficient simultaneous optimization of a large number of model parameters is demonstrated and a good agreement with the experimental data is obtained.
Method of measuring heat influx of a cryogenic transfer system. [Patent application
Niemann, R.C.; Zelipsky, S.A.; Rezmer, R.R.; Smelser, P.
1980-10-29
A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.
Cryogenics and its application with reference to spice grinding: a review.
Balasubramanian, S; Gupta, Manoj Kumar; Singh, K K
2012-01-01
Cryogenics is the study of very low temperature and its application on different materials including biological products. Cryogenics has numerous applications in space science, electronics, automobiles, the manufacturing industry, sports and musical instruments, biological science and agriculture, etc. Cryogenic freezing finds pivotal application in food, that is, spices and condiments. Although there is a wide range of cryogens to produce the desired low temperature, generally liquid nitrogen (LN₂) is used in food grinding. The application of low temperature shows a promising pathway to produce higher quality end product with higher flavor and volatile oil retention. Cryogenic grinders generally consist of precoolers and grinder with the cryogen distribution system. In such grinding systems, cryogens subject the raw material up to or lower than glass transition temperature before it is ground, thus eliminating much of the material and quality hassles of traditional grinding. At present, the capital investment including cryogen and handling costs escalate the final cost of the product. Thus, for large-scale production, a proper design to optimize and make it feasible is the need of the hour and understanding the behavior of different food materials at these low temperature conditions. This article reviews the scenario and application of cryogenics in different sectors, especially to spice grinding.
Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems
NASA Astrophysics Data System (ADS)
Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana
2017-12-01
At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.
Cryogenic thermal control technology summaries
NASA Technical Reports Server (NTRS)
Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.
1974-01-01
A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.
Passive eddy-current damping as a means of vibration control in cryogenic turbomachinery
NASA Technical Reports Server (NTRS)
Cunningham, R. E.
1986-01-01
Lateral shaft vibrations produced by a rotating unbalance weight were damped by means of eddy currents generated in copper conductors that were precessing cyclicly in the gap formed by the pole faces of C-shaped, permanent magnets. The damper assembly, which was located at the lower bearing support of a vertically oriented rotor was completely immersed in liquid nitrogen during the test run. The test rotor was operated over a speed range from 800 to 10,000 rpm. Three magnet/conductor designs were evaluated. Experimental damping coefficients varied from 180 to 530 N sec/m. Reasonable agreement was noted for theoretical values of damping for these same assemblies. Values of damping coefficients varied from 150 to 780 N sec/m. The results demonstrate that passive eddy-current damping is a viable candidate for vibration control in cryogenic turbomachinery.
NASA Astrophysics Data System (ADS)
Shaffer, James; Dunmire, Howard; Samuels, Raemon; Trively, Martin
1989-12-01
The U.S. Army CECOM Center for Night Vision and Electro-Optics (C2NVEO) is responsible for developing cryogenic coolers for all infrared imaging systems for the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers in fielded Army weapon systems such as: M60A3 and M1 Tanks, Bradley Fighting Vehicle (BFV) System, tube-launched, optically tracked, wire-guided (TOW) Missile System, and Army Attack Helicopters. Currently, there are over 30,000 coolers in fielded systems and several thousand more are added each year. C2NVEO conducts development programs and monitors contractor internal research and development efforts to improve cooler performance such as reliability, audio noise, power consumption, and output vibration. The HD-1045 1/4-Watt Split Stirling Cooler was originally designed and developed by the C2NVEO in the early 1970s as a replacement for the gas bottle/cryostat used on the Manportable Common Thermal Night Sights. To date, however, the HD-1045 cooler has been used in the field in the Integrated Sight Unit (ISU) of the BFV System and is currently being used in the Driver Thermal Viewer (DTV) full scale development program. This document describes and reports the results of reliability testing done on Hughes Temperature Controlled 1/4 Watt split Cycle Cryogenic Coolers (HD-1045 (V)/UA), referred to herein as the coolers.
2016-09-01
TECHNICAL REPORT 3046 September 2016 GENERATION OF QUALITY PULSES FOR CONTROL OF QUBIT/QUANTUM MEMORY SPIN STATES: EXPERIMENTAL AND SIMULATION...control circuitry for control of electron/ nuclear spin states of qubits/quantum memory applicable to semiconductor, superconductor, ionic, and...coherence time of the qubit/ memory , we present as an example the integration of cryogenic superconductor components, including filters and
On-wafer, cryogenic characterization of ultra-low noise HEMT devices
NASA Technical Reports Server (NTRS)
Bautista, J. J.; Laskar, J.; Szydlik, P.
1995-01-01
Significant advances in the development of high electron-mobility field-effect transistors (HEMT's) have resulted in cryogenic, low-noise amplifiers (LNA's) whose noise temperatures are within an order of magnitude of the quantum noise limit (hf/k). Further advances in HEMT technology at cryogenic temperatures may eventually lead to the replacement of maser and superconducting insulator superconducting front ends in the 1- to 100-GHz frequency band. Key to identification of the best HEMT's and optimization of cryogenic LNA's are accurate and repeatable device measurements at cryogenic temperatures. This article describes the design and operation of a cryogenic coplanar waveguide probe system for the characterization and modeling of advanced semiconductor transistors at cryogenic temperatures. Results on advanced HEMT devices are presented to illustrate the utility of the measurement system.
NASA Astrophysics Data System (ADS)
Song, Jung-Bin; Lee, Haigun
2012-12-01
A cooling system employing a solid cryogen (SC), such as solid nitrogen (SN2), was recently reported for high-temperature superconducting (HTS) applications. However, thermal contact between the SC and the HTS can be degraded by repeated overcurrent runs, resulting in 'thermal dry-out'. Novel cryogens, SC with small amounts of liquid cryogen, have been suggested to overcome this problem. Such cooling systems rely on the small amount of liquid cryogen to facilitate heat exchange so as to fully exploit the heat capacity of the solid cryogen. This paper presents a description and summary of recent activities at Korea University related to cooling systems employing mixed cryogens of solid-liquid nitrogen, solid argon-liquid nitrogen, and solid nitrogen-liquid neon.
Cryogenic immersion microscope
Le Gros, Mark; Larabell, Carolyn A.
2010-12-14
A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.
Study of Cryogenic Complex Plasma
2008-10-27
nitrogen or liquid helium) and dust particles are introduced in the plasma. In YD-2, a cryogenic plasma is produced in the vapor of liquid helium above the...cryogenic liquid ( liquid nitrogen or liquid helium) and dust particles are introduced in the plasma. In YD-2, a cryogenic plasma is produced in the vapor...cryogenic liquid ( liquid nitrogen or liquid helium) in the Dewar bottle produces a stable plasma. We have been successful in producing a plasma (1
X-ray Cryogenic Facility (XRCF) Handbook
NASA Technical Reports Server (NTRS)
Kegley, Jeffrey R.
2016-01-01
The X-ray & Cryogenic Facility (XRCF) Handbook is a guide for planning operations at the facility. A summary of the capabilities, policies, and procedures is provided to enhance project coordination between the facility user and XRCF personnel. This handbook includes basic information that will enable the XRCF to effectively plan and support test activities. In addition, this handbook describes the facilities and systems available at the XRCF for supporting test operations. 1.2 General Facility Description The XRCF was built in 1989 to meet the stringent requirements associated with calibration of X-ray optics, instruments, and telescopes and was subsequently modified in 1999 & 2005 to perform the challenging cryogenic verification of Ultraviolet, Optical, and Infrared mirrors. These unique and premier specialty capabilities, coupled with its ability to meet multiple generic thermal vacuum test requirements for large payloads, make the XRCF the most versatile and adaptable space environmental test facility in the Agency. XRCF is also recognized as the newest, most cost effective, most highly utilized facility in the portfolio and as one of only five NASA facilities having unique capabilities. The XRCF is capable of supporting and has supported missions during all phases from technology development to flight verification. Programs/projects that have benefited from XRCF include Chandra, Solar X-ray Imager, Hinode, and James Webb Space Telescope. All test programs have been completed on-schedule and within budget and have experienced no delays due to facility readiness or failures. XRCF is currently supporting Strategic Astrophysics Technology Development for Cosmic Origins. Throughout the years, XRCF has partnered with and continues to maintain positive working relationships with organizations such as ATK, Ball Aerospace, Northrop Grumman Aerospace, Excelis (formerly Kodak/ITT), Smithsonian Astrophysical Observatory, Goddard Space Flight Center, University of Alabama Huntsville, and more.
Development of dual solid cryogens for high reliability refrigeration system
NASA Technical Reports Server (NTRS)
Caren, R. P.; Coston, R. M.
1967-01-01
High reliability solid cryogen refrigeration system consists of a container initially filled with a solid cryogen which is coupled thermally to an infrared detector by means of a link of high thermal conductivity extending from a heat exchanger within the cryogen container.
NASA Astrophysics Data System (ADS)
Collier, Rémy; Durut, Frédéric; Reneaume, Benoît; Chicane, Cédric; Théobald, Marc; Breton, Olivier; Martin, Michel; Fleury, Emmanuel; Vincent-Viry, Olivier; Bachelet, Franck; Jeannot, Laurent; Geoffray, Isabelle; Botrel, Ronan; Dauteuil, Christophe; Hermerel, Cyril; Choux, Alexandre; Bednarczyk, Sophie; Legaie, Olivier
2008-11-01
For the French inertial confinement fusion (ICF) experiments, cryogenic target assemblies (CTAs) for the LMJ program are manufactured and filled at CEA Valduc (Dijon) in the cryogenic targets filling station (IRCC). They will be moved at about 20 K into a transport cryostat for cryogenic targets and will be driven from CEA/Valduc to CEA/CESTA (Bordeaux). Cryogenic targets will then be transferred by several cryogenic grippers on the cryogenic target positioner before shots. The CTA has to meet severe specifications and involves a lot of challenging tasks for its manufacture. To fill CTAs by permeation with deuterium-tritium (DT), the IRCC need to meet strict thermal, mechanical and dimensional specifications. To obtain a good combustion yield, a very homogenous DT ice layer and very smooth roughness at 1.5 K below the DT triple point are also required. This paper deals with the up to date main issues in the different fields of the LMJ cryogenic target program.
Preliminary thermal design of the COLD-SAT spacecraft
NASA Technical Reports Server (NTRS)
Arif, Hugh
1991-01-01
The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya
2015-01-01
Laminar models agree closely with the pressure evolution and vapor phase temperature stratification but under-predict liquid temperatures. Turbulent SST k-w and k-e models under-predict the pressurization rate and extent of stratification in the vapor but represent liquid temperature distributions fairly well. These conclusions seem to equally apply to large cryogenic tank simulations as well as small scale simulant fluid pressurization cases. Appropriate turbulent models that represent both interfacial and bulk vapor phase turbulence with greater fidelity are needed. Application of LES models to the tank pressurization problem can serve as a starting point.
Friction Stir Welding of Large Scale Cryogenic Tanks for Aerospace Applications
NASA Technical Reports Server (NTRS)
Russell, Carolyn; Ding, R. Jeffrey
1998-01-01
The Marshall Space Flight Center (MSFC) has established a facility for the joining of large-scale aluminum cryogenic propellant tanks using the friction stir welding process. Longitudinal welds, approximately five meters in length, have been made by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and travel system will be described in this presentation along with process controls and real-time data acquisition developed for this application. The approach to retrofitting other large welding tools at MSFC with the friction stir welding process will also be discussed.
Design Factors for Applying Cryogen Storage and Delivery Technology to Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Millis, Marc G.
1996-01-01
Thermodynamic Vent System (TVS) and Multilayer Insulation (MLI) technology, originally developed for long term storage of cryogen propellants in microgravity, is ideally suited for propellant storage and delivery systems for solar thermal propulsion. With this technology the heat-induced pressure rise in the tank provides the propellant delivery pressure without the need for an auxiliary pressurant system, and propellant delivery is used to remove the excess heat to control tank pressure. The factors to consider in designing such a balanced system, are presented. An example of a minimum system design is presented along with examples of laboratory-tested hardware.
The effect of weld porosity on the cryogenic fatigue strength of ELI grade Ti-5Al-2.5Sn
NASA Technical Reports Server (NTRS)
Rogers, P. R.; Lambdin, R. C.; Fox, D. E.
1992-01-01
The effect of weld porosity on the fatigue strength of ELI grade Ti-5Al-2.5Sn at cryogenic temperature was determined. A series of high cycle fatigue (HCF) and tensile tests were performed at -320 F on specimens made from welded sheets of the material. All specimens were tested with weld beads intact and some amount of weld offset. Specimens containing porosity and control specimens containing no porosity were tested. Results indicate that for the weld configuration tested, the fatigue life of the material is not affected by the presence of spherical embedded pores.
Fracture control of H-O engine components. [titanium tin alloy fuel pump impellers
NASA Technical Reports Server (NTRS)
Ryder, J. T.
1977-01-01
An investigation was made to obtain the material characterization and fatigue crack propagation data necessary to establish the salient characteristics of a Ti-6Al-2.5Sn(ELI) alloy fuel pump impeller to be used in a cryogenic service environment. Testing variables considered were: coupon orientation, frequency, load range ratio, and temperature. Data analysis correlated crack propagation data from conventional laboratory coupons with data from a parallel sided rotating disk used to model rotor stresses. Four major design recommendations when bore regions of fuel pump impellers to be operated in cryogenic environments are to be relatively highly stressed are discussed.
Microcomputer based controller for the Langley 0.3-meter Transonic Cryogenic Tunnel
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Kilgore, W. Allen
1989-01-01
Flow control of the Langley 0.3-meter Transonic Cryogenic Tunnel (TCT) is a multivariable nonlinear control problem. Globally stable control laws were generated to hold tunnel conditions in the presence of geometrical disturbances in the test section and precisely control the tunnel states for small and large set point changes. The control laws are mechanized as four inner control loops for tunnel pressure, temperature, fan speed, and liquid nitrogen supply pressure, and two outer loops for Mach number and Reynolds number. These integrated control laws have been mechanized on a 16-bit microcomputer working on DOS. This document details the model of the 0.3-m TCT, control laws, microcomputer realization, and its performance. The tunnel closed loop responses to small and large set point changes were presented. The controller incorporates safe thermal management of the tunnel cooldown based on thermal restrictions. The controller was shown to provide control of temperature to + or - 0.2K, pressure to + or - 0.07 psia, and Mach number to + or - 0.002 of a given set point during aerodynamic data acquisition in the presence of intrusive geometrical changes like flexwall movement, angle-of-attack changes, and drag rake traverse. The controller also provides a new feature of Reynolds number control. The controller provides a safe, reliable, and economical control of the 0.3-m TCT.
Heat switch technology for cryogenic thermal management
NASA Astrophysics Data System (ADS)
Shu, Q. S.; Demko, J. A.; E Fesmire, J.
2017-12-01
Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.
Future launchers strategy : the ariane 2010 initiative
NASA Astrophysics Data System (ADS)
Bonnal, Ch.; Eymard, M.; Soccodato, C.
2001-03-01
With the new cryogenic upper stage ESC, the European heavy launcher Ariane 5+ is perfectly suited to the space market envisioned for the coming decade: flexible to cope with any payload and commercially attractive despite a fierce competition. Current Arianespace projections for the following years 2010-2020 indicate two major trends: satellites may still become larger and may require very different final orbits; today's market largely dominated by GEO may well evolve, influenced by LEO operations such as those linked to ISS or by constellations, to remain competitive, the launch cost has to be reduced. The future generation of the European heavy launcher has therefore to focus on an ever increased flexibility with a drastic cost reduction. Two strategies are possible to achieve this double goal: reusable launchers, either partially or totally, may ease the access to space, limiting costly expendable stages; the assessment of their technical feasibility and financial viability is undergoing in Europe under the Future Launchers Technology Program (FLTP), expendable launchers, derived from the future Ariane 5+. This second way started by CNES at the end of year 1999 is called the "Ariane 2010 initiative". The main objectives are simultaneously an increase of 25% in performance and a reduction of 30% in launch cost wrt Ariane 5+. To achieve these very ambitious goals, numerous major modifications are studied: technical improvements : modifications of the Solid Rocket Boosters may consist in filament winding casing, increased loading, simplified casting, improved grain, simplified Thrust Vector Control, … evolution of the Vulcain engine leading to higher efficiency despite a simplified design, flow separation controlled nozzle extension, propellant management of the two cryogenic stages, simplified electrical system, increased standardization, for instance on flanged interfaces and manufacturing processes, operational improvements such as launch cycle simplification and standardization of the coupled analyses, organizational improvements such as a redistribution of responsibilities for the developments. All these modifications will of course not be implemented together; the aim is to have a coherent catalogue of improvements in order to enable future choices depending on effective requirements. These basic elements will also be considered for the development of other launchers, in the small or medium size range.
Zero Boil-Off Tank (ZBOT) Experiment
NASA Technical Reports Server (NTRS)
Mcquillen, John
2016-01-01
The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.
Development of cryogenic thermal control heat pipes. [of stainless steels
NASA Technical Reports Server (NTRS)
1978-01-01
The development of thermal control heat pipes that are applicable to the low temperature to cryogenic range was investigated. A previous effort demonstrated that stainless steel axially grooved tubing which met performance requirements could be fabricated. Three heat pipe designs utilizing stainless steel axially grooved tubing were fabricated and tested. One is a liquid trap diode heat pipe which conforms to the configuration and performance requirements of the Heat Pipe Experiment Package (HEPP). The HEPP is scheduled for flight aboard the Long Duration Flight Exposure Facility (LDEF). Another is a thermal switch heat pipe which is designed to permit energy transfer at the cooler of the two identical legs. The third thermal component is a hybrid variable conductance heat pipe (VCHP). The design incorporates both a conventional VCHP system and a liquid trap diode. The design, fabrication and thermal testing of these heat pipes is described. The demonstrated heat pipe behavior including start-up, forward mode transport, recovery after evaporator dry-out, diode performance and variable conductance control are discussed.
Could cryopreserved human semen samples be stored at -80°C?
Vaz, Carlos R; Lamim, Tamara; Salvador, Rafael A; Batschauer, Anna P B; Amaral, Vera Lucia L; Til, David
2018-06-01
To evaluate storage time effects in cryopreserved human semen samples, kept in the freezer at a controlled temperature of -80°C, on sperm viability after thawing. We used 20 semen samples. Each sample was cryopreserved in 10 fingers, which were divided into five groups: one group was kept in cryogenic canisters throughout the experiment(control), and four groups were kept in a VIP Ultra Low MDF-U76V- PE freezer, with the temperature set at -80°C, for 24, 48, 72 and 96 hours, respectively. After the exposure time, the samples were stored in cryogenic canisters after being thawed. The analyzed parameters were: motility, vitality and mitochondrial activity. After thawing, we noticed decreased sperm motility, vitality and mitochondrial activity, when comparing the tested groups with the control group, as well as a progressive reduction in the analyzed parameters between the times evaluated. Cryopreservation of semen samples at -80°C is potentially harmful to sperm viability, causing damage when submitted to longer exposure times.
Free-piston reciprocating cryogenic expander utilizing phase controller
NASA Astrophysics Data System (ADS)
Cha, Jeongmin; Park, Jiho; Kim, Kyungjoong; Jeong, Sangkwon
2017-02-01
In a free-piston expander which eliminates mechanical linkages, a prescribed behaviour of the free-piston movement is the key to an expander performance. In this paper, we have proposed an idea of reducing complexity of the free-piston expander. It is to replace both multiple solenoid valves and reservoirs that are indispensable in a previous machine with a combination of a single orifice-reservoir assembly. It functions as a phase controller like that of a pulse tube refrigerator so that it generates time-delay of pressure variation between the warm-end and the reservoir resulting in the intended expansion of the cold-end volume down to the pre-set reservoir pressure. The modeling of this unique free-piston reciprocating expander utilizing phase controller is developed to understand and predict the performance of the new-type expander. Additionally, the operating parameters are analysed at the specified conditions to enable one to develop a more efficient free-piston type cryogenic expander.
NASA Technical Reports Server (NTRS)
Bronson, J. C.
1970-01-01
Insulating qualities of frost and mechanisms for using frost in specific applications in controlled experiments are discussed. With available supply of moist air, frost possesses inherent advantage of easy insulation of cryogenic lines and improvement of overall system efficiency.
Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Nussbaum, P.; Gustafson, G.
1984-01-01
The objective of the research project described is to define and demonstrate methods to advance the state of the art of pressure sensors for the space shuttle main engine (SSME). Silicon piezoresistive technology was utilized in completing tasks: generation and testing of three transducer design concepts for solid state applications; silicon resistor characterization at cryogenic temperatures; experimental chip mounting characterization; frequency response optimization and prototype design and fabrication. Excellent silicon sensor performance was demonstrated at liquid nitrogen temperature. A silicon resistor ion implant dose was customized for SSME temperature requirements. A basic acoustic modeling software program was developed as a design tool to evaluate frequency response characteristics.
Cryogenic Fluid Management Technology for Moon and Mars Missions
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.
2010-01-01
In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.
49 CFR 173.316 - Cryogenic liquids in cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... filling density for hydrogen, cryogenic liquid is defined as the percent ratio of the weight of lading in... 49 Transportation 2 2011-10-01 2011-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in...
49 CFR 173.316 - Cryogenic liquids in cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... °F.). (2) The cryogenic liquids of argon, nitrogen, oxygen, helium and neon must be loaded and... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in...
49 CFR 173.316 - Cryogenic liquids in cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in cylinders. (a) General requirements. (1) A cylinder may not be loaded with a cryogenic liquid colder than...
49 CFR 173.316 - Cryogenic liquids in cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in cylinders. (a) General requirements. (1) A cylinder may not be loaded with a cryogenic liquid colder than...
Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)
NASA Technical Reports Server (NTRS)
Chojnacki, Kent
2013-01-01
Objectives: 1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration. 2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment. 3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment.
NASA Astrophysics Data System (ADS)
Smirnov, Alex I.; Smirnova, Tatyana I.; MacArthur, Ryan L.; Good, Jeremy A.; Hall, Renny
2006-03-01
Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν =95-300GHz and this requires magnetic fields of 3.4-10.7T for electronic spins with g ≈2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppm/h over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.
Electromagnetic Smart Valves for Cryogenic Applications
NASA Astrophysics Data System (ADS)
Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.
2004-06-01
Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.
Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Ray, E. J.; Ladson, C. L.; Adcock, J. B.; Lawing, P. L.; Hall, R. M.
1979-01-01
The fundamentals of cryogenic testing are validated both analytically and experimentally employing the 0.3-m transonic cryogenic tunnel. The tunnel with its unique Reynolds number capability has been used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects have been developed and cryogenic tunnel conditions are set and maintained accurately. It is shown that cryogenic cooling, by injecting nitrogen directly into the tunnel circuit, imposes no problems with temperature distribution or dynamic response characteristics.
Infrared detectors and test technology of cryogenic camera
NASA Astrophysics Data System (ADS)
Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long
2016-10-01
Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.
Kyrala, G A; Dixit, S; Glenzer, S; Kalantar, D; Bradley, D; Izumi, N; Meezan, N; Landen, O L; Callahan, D; Weber, S V; Holder, J P; Glenn, S; Edwards, M J; Bell, P; Kimbrough, J; Koch, J; Prasad, R; Suter, L; Kline, J L; Kilkenny, J
2010-10-01
Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.
Possible human endogenous cryogens.
Shido, Osamu; Sugimoto, Naotoshi
2011-06-01
Anapyrexia, which is a regulated fall in core temperature, is beneficial for animals and humans when the oxygen supply is limited, e.g., hypoxic, ischemic, or histotoxic hypoxia, since at low body temperature the tissues require less oxygen due to Q(10). Besides hypoxia, anapyrexia can be induced various exogenous and endogenous substances, named cryogens. However, there are only a few reports investigating endogenous cryogens in mammals. We have experienced one patient who suffered from severe hypothermia. The patient seemed to be excessively producing endogenous peptidergic cryogenic substances the molecular weight of which may be greater than 30 kDa. In animal studies, the patient's cryogen appeared to affect metabolic functions, including thermogenic threshold temperatures, and then to produce hypothermia. Since endogenous cryogenic substances may be regarded as useful tool in human activities, e.g., during brain hypothermia therapy or staying in a space station or spaceship, further studies may be needed to identify human endogenous cryogens.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.
2012-01-01
(1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration; (2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment; and (3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment
NASA Technical Reports Server (NTRS)
Ko, William L.
1994-01-01
Thermocryogenic buckling and stress analyses were conducted on a horizontally oriented cryogenic tank using the finite element method. The tank is a finite-length circular cylindrical shell with its two ends capped with hemispherical shells. The tank is subjected to cylindrical strip heating in the region above the liquid-cryogen fill level and to cryogenic cooling below the fill level (i.e., under thermocryogenic loading). The effects of cryogen fill level on the buckling temperature and thermocryogenic stress field were investigated in detail. Both the buckling temperature and stress magnitudes were relatively insensitive to the cryogen fill level. The buckling temperature, however, was quite sensitive to the radius-to-thickness ratio. A mechanical stress analysis of the tank also was conducted when the tank was under: (1) cryogen liquid pressure loading; (2) internal pressure loading; and (3) tank-wall inertia loading. Deformed shapes of the cryogenic tanks under different loading conditions were shown, and high-stress domains were mapped on the tank wall for the strain-gage installations. The accuracies of solutions from different finite element models were compared.
49 CFR 179.400-19 - Valves and gages.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... satisfactory properties at the lading temperature. (1) Liquid control valves must be of extended stem design...
Research and technology, 1984 report
NASA Technical Reports Server (NTRS)
1984-01-01
Research and technology projects in the following areas are described: cryogenic engineering, hypergolic engineering, hazardous warning instrumentation, structures and mechanics, sensors and controls, computer sciences, communications, material analysis, biomedicine, meteorology, engineering management, logistics, training and maintenance aids, and technology applications.
NASA Technical Reports Server (NTRS)
Merino, F.; Oneill, R. F.
1980-01-01
The Cryogenic Fluid Management Experiment (CFME) was analyzed to assess the feasibility and advisability of deleting the vapor cooled shield (VCS) from the baseline CFME insulation and pressure control system. Two alternate concepts of CFME insulation and pressure control, neither of which incorporated the VCS, were investigated. The first concept employed a thermodynamic vent system (TVS) to throttle the flow through an internal wall mounted heat exchanger (HX) within the pressure vessel to decrease boiloff and pressure rise rate, while the second concept utilized a TVS without an internal heat exchanger. Only the first concept was viable. Its performance was assessed for a seven day mission and found to be satisfactory. It was also concluded that VCS development costs would be greater than for an internal HX installation. Based upon the above comparisons, the HX was recommended as a replacement for the VCS.
Review and test of chilldown methods for space-based cryogenic tanks
NASA Astrophysics Data System (ADS)
Chato, David J.; Sanabria, Rafael
The literature for tank chilldown methods applicable to cryogenic tankage in the zero gravity environment of earth orbit is reviewed. One method is selected for demonstration in a ground based test. The method selected for investigation was the charge-hold-vent method which uses repeated injection of liquid slugs, followed by a hold to allow complete vaporization of the liquid and a vent of the tank to space vacuum to cool tankage to the desired temperature. The test was conducted on a 175 cubic foot, 2219 aluminum walled tank weighing 329 pounds, which was previously outfitted with spray systems to test nonvented fill technologies. To minimize hardware changes, a simple control-by-pressure scheme was implemented to control injected liquid quantities. The tank cooled from 440 R sufficiently in six charge-hold-vent cycles to allow a complete nonvented fill of the test tank. Liquid hydrogen consumed in the process is estimated at 32 pounds.
Review and test of chilldown methods for space-based cryogenic tanks
NASA Technical Reports Server (NTRS)
Chato, David J.; Sanabria, Rafael
1991-01-01
The literature for tank chilldown methods applicable to cryogenic tankage in the zero gravity environment of earth orbit is reviewed. One method is selected for demonstration in a ground based test. The method selected for investigation was the charge-hold-vent method which uses repeated injection of liquid slugs, followed by a hold to allow complete vaporization of the liquid and a vent of the tank to space vacuum to cool tankage to the desired temperature. The test was conducted on a 175 cubic foot, 2219 aluminum walled tank weighing 329 pounds, which was previously outfitted with spray systems to test nonvented fill technologies. To minimize hardware changes, a simple control-by-pressure scheme was implemented to control injected liquid quantities. The tank cooled from 440 R sufficiently in six charge-hold-vent cycles to allow a complete nonvented fill of the test tank. Liquid hydrogen consumed in the process is estimated at 32 pounds.
Design Studies for a Far Infrared Absolute Spectrometer for the Cosmic Background Explorer
NASA Technical Reports Server (NTRS)
Johnson, N. J. E.
1980-01-01
Unrelenting symmetry of design is required to assure the thermal balance of a cryogenically cooled, rapid scan interferometer spectrometer to be mounted in vacuum with the Cosmic Background Explorer liquid helium dewar. The instrument receives inputs from Winston cone optical flux collectors, one open to space and a second coupled to a black body reference source. A differential instrument, the spectrometer produces outputs corresponding to the Fourier transform of the spectral radiance difference between the two inputs. The two outputs are sensed by four detectors, two optimized for shorter wavelength response, and two optimized for longer wavelengths. The optical design, detector and signal channel, system sensitivity, mechanics, thermal control and cryogenics, electronics and power systems, command and control, calibration, system test requirements, and the instrument interface are discussed. Recommendations for continued work are indicated for the superconducting reflective horns, the motor bearing and drive, and design detail.
Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission
NASA Astrophysics Data System (ADS)
Mustafi, S.; DeLee, C.; Francis, J.; Li, X.; McGuinness, D.; Nixon, C. A.; Purves, L.; Willis, W.; Riall, S.; Devine, M.; Hedayat, A.
2016-03-01
Liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic propellants can dramatically enhance NASA's ability to explore the solar system due to their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LO2 as propellants, and the resulting spacecraft design was able to achieve a 43% launch mass reduction over a TOPS mission, that utilized a traditional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission that requires the cryogenics propellants to be stored for 8.5 years.
Cryogenic system configuration for the International Linear Collider (ILC) at mountainous site
NASA Astrophysics Data System (ADS)
Nakai, H.; Okamura, T.; Delikaris, D.; Peterson, T.; Yamamoto, A.
2017-02-01
The International Linear Collider (ILC) plans to make use of ten cryoplants for its main linacs, each providing 19 kW at 4.5 K equivalent and among of it 3.6 kW at 2 K. Each cryoplant will consist of various cryogenic components such as a 4.5 K refrigerator cold box, a 2 K refrigerator cold box, and helium compressors and so on. In the technical design report (TDR) of the ILC, due to the mountainous topology, almost all cryogenic components would be installed in underground cryogenic caverns next to the main linac tunnels and only cooling towers on surface area. However, we would like to find a more effective and sophisticated configuration of the cryoplant components (cryogenic configuration). Under several constraints of technical, geographical, and environmental points of view, the cryogenic configuration should be considered carefully to satisfy such various conditions. After discussions on this topic conducted at various workshops and conferences, an updated cryogenic configuration is suggested. The proposed updated configuration may affect the total construction cost of the ILC and the entire structure of the ILC conventional facilities. The updated cryogenic configuration is presented and the on-going discussions with the conventional facilities and siting (CFS) colleagues for further improvement of the cryogenic configuration is introduced.
NASA Technical Reports Server (NTRS)
1975-01-01
A cryogenic H2-O2 auxiliary power unit (APU) was developed and successfully demonstrated. It has potential application as a minimum weight alternate to the space shuttle baseline APU because of its (1) low specific propellant consumption and (2) heat sink capabilities that reduce the amount of expendable evaporants. A reference system was designed with the necessary heat exchangers, combustor, turbine-gearbox, valves, and electronic controls to provide 400 shp to two aircraft hydraulic pumps. Development testing was carried out first on the combustor and control valves. This was followed by development of the control subsystem including the controller, the hydrogen and oxygen control valves, the combustor, and a turbine simulator. The complete APU system was hot tested for 10 hr with ambient and cryogenic propellants. Demonstrated at 95 percent of design power was 2.25 lb/hp-hr. At 10 percent design power, specific propellant consumption was 4 lb/hp-hr with space simulated exhaust and 5.2 lb/hp-hr with ambient exhaust. A 10 percent specific propellant consumption improvement is possible with some seal modifications. It was demonstrated that APU power levels could be changed by several hundred horsepower in less than 100 msec without exceeding allowable turbine inlet temperatures or turbine speed.
Investigation of woven composites as potential cryogenic tank materials
NASA Astrophysics Data System (ADS)
Islam, Md. S.; Melendez-Soto, E.; Castellanos, A. G.; Prabhakar, P.
2015-12-01
In this paper, carbon fiber and Kevlar® fiber woven composites were investigated as potential cryogenic tank materials for storing liquid fuel in spacecraft or rocket. Towards that end, both carbon and Kevlar® fiber composites were manufactured and tested with and without cryogenic exposure. The focus was on the investigation of the influence of initial cryogenic exposure on the degradation of the composite. Tensile, flexural and inter laminar shear strength (ILSS) tests were conducted, which indicate that Kevlar® and carbon textile composites are potential candidates for use under cryogenic exposure.
Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY
2012-03-13
The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.
Orbital storage and supply of subcritical liquid nitrogen
NASA Technical Reports Server (NTRS)
Aydelott, John C.
1990-01-01
Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.
Compensation for 6.5 K cryogenic distortion of a fused quartz mirror by refiguring
NASA Technical Reports Server (NTRS)
Augason, Gordon C.; Young, Jeffrey A.; Melugin, Ramsey K.; Clarke, Dana S.; Howard, Steven D.; Scanlan, Michael; Wong, Steven; Lawton, Kenneth C.
1993-01-01
A 46 cm diameter, lightweight, Amersil TO8E, fused-natural-quartz mirror with a single-arch cross section was tested at the NASA-Ames Research Center Cryogenic Optical Test Facility to measure its cryogenic distortion at 6.5 K. Then the mirror was refigured with the inverse of the measured cryogenic distortion to compensate for this figure defect. The mirror was retested at 6.5 K and found to have a significantly improved figure. The compensation for cryogenic distortion was not complete, but preliminary analysis indicates that the compensation was better than 0.25 waves P-V if edge effects are ignored. The feasibility of compensating for cryogenic distortion by refiguring has thus been verified.
Experimental investigation of CO{sub 2} condensation process using cryogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Cheonkyu; Yoo, Junghyun; Lee, Jisung
2014-01-29
Carbon dioxide (CO{sub 2}) is one of the dominant gas molecules that causes greenhouse effect, i.e. global warming. Numerous studies have been carried out to regulate the emission of CO{sub 2} to reduce greenhouse gas. The liquid CO{sub 2} is a convenient form of transportation compared to high-pressurized gaseous CO{sub 2}. Therefore, the direct liquefaction mechanism of CO{sub 2} at low temperature draws technical attention recently. In particular, cold thermal energy of Liquefied Natural Gas (LNG) could be a candidate to condense gaseous CO{sub 2}, especially in the LNG powered ship. In this paper, the detailed direct condensation process ofmore » CO{sub 2} using LN{sub 2} with intermittent solidification is investigated. Pressurized CO{sub 2} at 600 kPa is directly liquefied in a vessel by liquid nitrogen which is supplied into the coiled tube heat exchanger inside the CO{sub 2} vessel. The heat exchanger temperature is controlled from 130 K to 205 K to regulate the solidification and sublimation of CO{sub 2} by duty control with cryogenic solenoid valve. The characteristics of CO{sub 2} condensation process with cryogen are analyzed from the measurement results. The results show that the solidification causes the significant degradation of CO{sub 2} condensation heat transfer. Finally, the condensation rate with and without solidification is compared.« less
Toscano-Garibay, Julia Dolores; Quiroz-Mercado, Hugo; Espitia-Pinzón, Clara; Gil-Carrasco, Félix; Flores-Estrada, José Javier
2014-01-01
Cryotherapy is a no invasive technique that uses intense cold to freeze and destroy cancer tissues. There are no descriptions of its effects over the expression of vascular endothelial growth factor and pigment epithelium-derived factor. Experimental study in cryogenic spot were applied in the right sclera of twelve pigs for ten minutes. Other 3 pigs were used as normal controls. Animals were sacrificed at 7, 14 and 21 and the tissues of choriodes and retina were dissected in areas of approximately 1 cm2 surrounding cryogenic spots. Expression levels of vascular endothelial growth factor and pigment epithelium-derived factor were determined analyzed using polymerase chain reaction coupled to reverse-transcription. Vascular endothelial growth factor was significantly downregulated (24%, p< 0.05) seven days post-treatment meanwhile pigment epithelium-derived factor levels increased 44.8% (p< 0.05) as compared to normal controls (untreated). Both vascular endothelial growth factor and pigment epithelium-derived factor levels remain the same until day 14 but returned to basal expression at day 21. This work expose the relation of cryotherapy with the expression of two factors related to angiogenesis. RESULTS showed significant changes on the expression of vascular endothelial growth factor and pigment epithelium-derived factor illustrating that both proteins are regulated in response to cryogenic treatment in relatively short periods (21 days).
Pallaver, Carl B.; Morgan, Michael W.
1978-01-01
A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.
Liquefied Natural Gas Transfer
NASA Technical Reports Server (NTRS)
1980-01-01
Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.
TankSIM: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.
2015-01-01
Developed for predicting the behavior of cryogenic liquids inside propellant tanks under various environmental and operating conditions. Provides a multi-node analysis of pressurization, ullage venting and thermodynamic venting systems (TVS) pressure control using axial jet or spray bar TVS. Allows user to combine several different phases for predicting the liquid behavior for the entire flight mission timeline or part of it. Is a NASA in-house code, based on FORTRAN 90-95 and Intel Visual FORTRAN compiler, but can be used on any other platform (Unix-Linux, Compaq Visual FORTRAN, etc.). The last Version 7, released on December 2014, included detailed User's Manual. Includes the use of several RefPROP subroutines for calculating fluid properties.
Cryogenic strain gage techniques used in force balance design for the National Transonic Facility
NASA Technical Reports Server (NTRS)
Ferris, A. T.
1986-01-01
A force balance is a strain gage transducer used in wind tunnels to measure the forces and moments on aerodynamic models. Techniques have been established for temperature-compensation of force balances to allow their use over the operating temperature range of a cryogenic wind tunnel (-190C to 60C) without thermal control. This was accomplished by using a patented strain gage matching process to minimize inherent thermal differences, and a thermal compensation procedure to reduce the remaining thermally-induced outputs to acceptable levels. A method of compensating for mechanical movement of the axial force measuring beam caused by thermally-induced stresses under transient temperatures was also included.
A magnetically suspended linearly driven cryogenic refrigerator
NASA Technical Reports Server (NTRS)
Stolfi, F.; Goldowsky, M.; Ricciardelli, J.; Shapiro, P.
1983-01-01
This paper described a novel Stirling cycle cryogenic refrigerator which was designed, fabricated and successfully tested at Philips Laboratories. The prominent features of the machine are an electro-magnetic bearing system, a pair of moving magnet linear motors, and clearance seals with a 25 mu m radial gap. The all-metal and ceramic construction eliminates long-term organic contamination of the helium working fluid. The axial positions of the piston and displacer are electronically controlled, permitting independent adjustment of the amplitude of each and their relative phase relationship during operation. A simple passive counterbalance reduces axial vibrations. The design of the refrigerator system components is discussed and a comparison is made between performance estimates and measured results.
Physics Based Model for Online Fault Detection in Autonomous Cryogenic Loading System
NASA Technical Reports Server (NTRS)
Kashani, Ali; Devine, Ekaterina Viktorovna P; Luchinsky, Dmitry Georgievich; Smelyanskiy, Vadim; Sass, Jared P.; Brown, Barbara L.; Patterson-Hine, Ann
2013-01-01
We report the progress in the development of the chilldown model for rapid cryogenic loading system developed at KSC. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The two-phase flow model of the chilldown is approximated as one-dimensional homogeneous fluid flow with no slip condition for the interphase velocity. The model is built using commercial SINDAFLUINT software. The results of numerical predictions are in good agreement with the experimental time traces. The obtained results pave the way to the application of the SINDAFLUINT model as a verification tool for the design and algorithm development required for autonomous loading operation.
NASA Astrophysics Data System (ADS)
Sharma, A.; Tibai, Z.; Hebling, J.; Fülöp, J. A.
2018-03-01
Laser-driven proton acceleration from a micron-sized cryogenic hydrogen microjet target is investigated using multi-dimensional particle-in-cell simulations. With few-cycle (20-fs) ultraintense (2-PW) laser pulses, high-energy quasi-monoenergetic proton acceleration is predicted in a new regime. A collisionless shock-wave acceleration mechanism influenced by Weibel instability results in a maximum proton energy as high as 160 MeV and a quasi-monoenergetic peak at 80 MeV for 1022 W/cm2 laser intensity with controlled prepulses. A self-generated strong quasi-static magnetic field is also observed in the plasma, which modifies the spatial distribution of the proton beam.
Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.
Tunnell, James W; Torres, Jorge H; Anvari, Bahman
2002-01-01
Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.
NASA Astrophysics Data System (ADS)
Amils, Ricardo I.; Gallego, Juan Daniel; Sebastián, José Luis; Muñoz, Sagrario; Martín, Agustín; Leuther, Arnulf
2016-06-01
The pressure to increase the sensitivity of instrumentation has pushed the use of cryogenic Low Noise Amplifier (LNA) technology into a growing number of fields. These areas range from radio astronomy and deep space communications to fundamental physics. In this context manufacturing for cryogenic environments requires a proper thermal knowledge of the materials to be able to achieve adequate design behavior. In this work, we present experimental measurements of the thermal conductivity of a silver filled conductive epoxy (EPO-TEK H20E) which is widely used in cryogenic electronics applications. The characterization has been made using a sample preparation which mimics the practical use of this adhesive in the fabrication of cryogenic devices. We apply the data obtained to a detailed analysis of the effects of the conductive epoxy in a monolithic thermal noise source used for high accuracy cryogenic microwave noise measurements. In this application the epoxy plays a fundamental role since its limited thermal conductivity allows heating the chip with relatively low power. To our knowledge, the cryogenic thermal conductivity data of this epoxy has not been reported before in the literature in the 4-300 K temperature range. A second non-conductive epoxy (Gray Scotch-Weld 2216 B/A), also widely used in cryogenic applications, has been measured in order to validate the method by comparing with previous published data.
Long-Term Cryogenic Propellant Storage for the Titan Orbiter Polar Surveyor (TOPS) Mission
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Francis, John; Li, Xiaoyi; DeLee, Hudson; Purves, Lloyd; Willis, Dewey; Nixon, Conor; Mcguinness, Dan; Riall, Sara; Devine, Matt;
2015-01-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.
Long-Term Cryogenic Propellant Storage for the TOPS Mission
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Francis, John; Li, Xiaoyi; Purves, Lloyd; DeLee, Hudson; Riall, Sara; McGuinness, Dan; Willis, Dewey; Nixon, Conor; Devine Matt;
2015-01-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.
Aerospace Coolers: A 50-Year Quest for Long-Life Cryogenic Cooling in Space
NASA Astrophysics Data System (ADS)
Ross, R. G.
Cryogenic temperatures are critical to allow infrared, gamma-ray and X-ray detectors to operate with low background noise and high sensitivity. As a result, the world's aerospace industry has long dreamed of having the means for multiyear cryogenic cooling in space to enable long-life sensors of various forms for scientific, missile defense, and reconnaissance observations. Not long after the first Sputnik was launched into space in October 1957, engineers and scientists were actively seeking means of providing cryogenic cooling for evermore sophisticated and sensitive detectors in a variety of spectral regions. Although both passive cryoradiators and stored cryogens have provided a source of cryogenic cooling for many missions, the consistent dream of scientists and mission planners was always for a mechanical refrigerator that could achieve the temperatures of the coldest cryogens (vastly colder than possible with passive radiators) and have multiyear life without the finite life limitations of stored cryogens. The first cryocoolers in space were short-life Joule-Thomson and Stirling cryocoolers flown on both US and USSR missions around 1970. Since that time, extensive research and development of evermore sophisticated cryocoolers (Stirling, Vuilleumier, Brayton, magnetic, sorption, and pulse tube) has taken place in the world's aerospace industry. This chapter examines the enormous progress made by the aerospace industry over the past 50 years in developing both cryostats and cryocoolers to enable the widespread use of cryogenic temperatures in space.
Propulsion Technology Needs for Exploration
NASA Technical Reports Server (NTRS)
Brown, Thomas
2007-01-01
The objectives of currently planned exploration efforts, as well as those further in the future, require significant advancements in propulsion technologies. The current Lunar exploration architecture has set goals and mission objectives that necessitate the use of new systems and the extension of existing technologies beyond present applications. In the near term, the majority of these technologies are the result of a need to apply high performing cryogenic propulsion systems to long duration in-space applications. Advancement of cryogenic propulsion to these applications is crucial to provide higher performing propulsion systems that reduce the vehicle masses; enhance the safety of vehicle systems and ground operations; and provide a path for In-situ Resource Utilization (ISRU).Use of a LOX/LH2 main propulsion system for Lunar Lander Descent is a top priority because more conventional storable propellants are far from meeting the performance needs of the current architecture. While LOX/LH2 pump feed engines have been used in flight applications for many years, these engines have limited throttle capabilities. Engines that are capable of much greater throttling while still meeting high performance goals are a necessity to achieving exploration goals. Applications of LOX/CH4 propulsion to Lander ascent propulsion systems and reaction control systems are also if interest because of desirable performance and operations improvements over conventional storable systems while being more suitable for use of in-situ produced propellants. Within the current lunar architecture, use of cryogenic propulsion for the Earth Departure Stage and Lunar Lander elements also necessitate the need for advanced Cryogenic Fluid Management technologies. These technologies include long duration propellant storage/distribution, low-gravity propellant management, cryogenic couplings and disconnects, light weight composite tanks and support structure, and subsystem integration. In addition to the propulsive and fluid management system technologies described, many component level technologies are also required to enable to the success if the integrated systems. The components include, but are not limited to, variable/throttling valves, variable position actuators, leak detectors, light weight cryogenic fluid pumps, sensor technology and others. NASA, partnering with the Aerospace Industry must endeavor to develop these, and other promising propulsion technologies, to enable the implements of the country's goals in exploration of the Moon, Mars and beyond.
CRYOTE (Cryogenic Orbital Testbed) Concept
NASA Technical Reports Server (NTRS)
Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie
2009-01-01
Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.
Design of hydrogen vent line for the cryogenic hydrogen system in J-PARC
NASA Astrophysics Data System (ADS)
Tatsumoto, Hideki; Aso, Tomokazu; Kato, Takashi; Ohtsu, Kiichi; Hasegawa, Shoichi; Maekawa, Fujio; Futakawa, Masatoshi
2009-02-01
As one of the main experimental facilities in J-PARC, an intense spallation neutron source (JSNS) driven by a 1-MW proton beam selected supercritical hydrogen at a temperature of 20 K and a pressure of 1.5 MPa as a moderator material. Moderators are controlled by a cryogenic hydrogen system that has a hydrogen relief system, which consists of high and low pressure stage of manifolds, a hydrogen vent line and a stack, in order to release hydrogen to the outside safely. The design of the hydrogen vent line should be considered to prevent purge nitrogen gas in the vent line from freezing when releasing the cryogenic hydrogen, to prevent moisture in the stack placed in an outdoor location from freezing, and to inhibit large piping temperature reduction at a building wall penetration. In this work, temperature change behaviors in the hydrogen vent line were analyzed by using a CFD code, STAR-CD. We determined required sizes of the vent line based on the analytical results and its layout in the building.
Thermal Performance of Low Layer Density Multilayer Insu1ation Using Liquid Nitrogen
NASA Technical Reports Server (NTRS)
Johnson, Wesley L.; Fesmire, James E.
2011-01-01
In order to support long duration cryogenic propellant storage, the Cryogenic Fluid Management (CFM) Project of the Exploration Technology Development Program (ETDP) is investigating the long duration storage propertie$ of liquid methane on the lunar surface. The Methane Lunar Surface Thermal Control (MLSTC) testing is using a tank of the approximate dimensions of the Altair ascent tanks inside of a vacuum chamber to simulate the environment in low earth orbit and on the lunar surface. The thermal performance testing of multilayer insulation (MLI) coupons that are fabricated identically to the tank applied insulation is necessary to understand the performance of the blankets and to be able to predict the performance of the insulation prior to testing. This coupon testing was completed in Cryostat-100 at the Cryogenics Test Laboratory. The results showed the properties of the insulation as a function of layer density, number of layers, and warm boundary temperature. These results aid in the understanding of the performance parameters o fMLI and help to complete the body of literature on the topic.
The NTF Inlet Guide Vanes Thermal Gradient Problem and Its Mitigation
NASA Technical Reports Server (NTRS)
Venkat, Venki S.; Paryz, Roman W.; Bissett, Owen W.; Kilgore, W.
2013-01-01
The National Transonic Facility (NTF) utilizes Inlet Guide Vanes (IGV) to provide precise, quick response Mach number control for the tunnel. During cryogenic operations, the massive IGV structure can experience large thermal gradients, measured as "Delta T or (Delta)T", between the IGV ring and its support structure called the transfer case. If these temperature gradients are too large, the IGV structure can be stressed beyond its safety limit and cease operation. In recent years, (Delta)T readings exceeding the prescribed safety limits were observed frequently during cryogenic operations, particularly during model access. The tactical operation methods of the tunnel to minimize (Delta)T did not always succeed. One obvious option to remedy this condition is to warm up the IGV structure by disabling the main drive operation, but this "natural" warm up method can takes days in some cases, resulting in productivity loss. This paper documents the thermal gradient problem associated with the IGV structure during cryogenic operation and how the facility has recently achieved an acceptable mitigation which has resulted in improved efficiency of operations.
NASA Astrophysics Data System (ADS)
Wang, Meng; Liu, Zhenyu
2017-07-01
A novel process comprised of ultra-fast cooling after control rolling, intercritical quenching and tempering (UFC-LT) was applied to 3.5%Ni steel. In addition, quenching and tempering (QT) treatment was conducted in comparison. The present study focuses on the relationship between the microstructure and cryogenic toughness of 3.5%Ni steel. Results show that the microstructure of steel treated by UFC-LT consisted of tempered martensite, intercritical ferrite and two types of reversed austenite (RA) (needle shape and blocky). Compared to the QT sample, the UFC-LT sample's ultimate tensile strength decreased slightly, while its elongation increased from 32.3 to 35.7%, and its Charpy absorption energy at -135 °C increased from 112 to 237 J. The ductile-brittle transition temperature of UFC-LT sample was lower than that of the QT sample by 18 °C. The superior cryogenic toughness after UFC-LT compared to QT treatment can be attributed to the dissolution of cementite, approximately 3.0% increase in RA and the decrease in effective grain size.
First high-convergence cryogenic implosion in a near-vacuum hohlraum
Berzak Hopkins, L. F.; Meezan, N. B.; Le Pape, S.; ...
2015-04-29
Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated inmore » a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 X 10¹⁵ neutrons, with 20% calculated alpha heating at convergence ~27X.« less
Thermal-Mechanical Cyclic Test of a Composite Cryogenic Tank for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Messinger, Ross; Pulley, John
2003-01-01
This viewgraph presentation provides an overview of thermal-mechanical cyclic tests conducted on a composite cryogenic tank designed for reusable launch vehicles. Topics covered include: a structural analysis of the composite cryogenic tank, a description of Marshall Space Flight Center's Cryogenic Structure Test Facility, cyclic test plans and accomplishments, burst test and analysis and post-testing evaluation.
A study of cryogenic tissue-engineered liver slices in calcium alginate gel for drug testing.
Chen, Ruomeng; Wang, Bo; Liu, Yaxiong; Lin, Rong; He, Jiankang; Li, Dichen
2018-06-01
To address issues such as transportation and the time-consuming nature of tissue-engineered liver for use as an effective drug metabolism and toxicity testing model, "ready-to-use" cryogenic tissue-engineered liver needs to be studied. The research developed a cryogenic tissue-engineered liver slice (TELS), which comprised of HepG2 cells and calcium alginate gel. Cell viability and liver-specific functions were examined after different cryopreservation and recovery culture times. Then, cryogenic TELSs were used as a drug-testing model and treated with Gefitinib. Cryogenic TELSs were stored at -80 °C to ensure high cell viability. During recovery in culture, the cells in the cryogenic TELS were evenly distributed, massively proliferated, and then formed spheroid-like aggregates from day 1 to day 13. The liver-specific functions in the cryogenic TELS were closely related to cryopreservation time and cell proliferation. As a reproducible drug-testing model, the cryogenic TELS showed an obvious drug reaction after treatment with the Gefitinib. The present study shows that the cryopreservation techniques can be used in drug-testing models. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Reby Roy, K. E.; Mohammed, Jesna; Abhiroop, V. M.; Thekkethil, S. R.
2017-02-01
Cryogenic fluids have many applications in space, medicine, preservation etc. The chill-down of cryogenic fluid transfer line is a complicated phenomenon occurring in most of the cryogenic systems. The cryogenic fluid transfer line, which is initially at room temperature, has to be cooled to the temperature of the cryogen as fast as possible. When the cryogenic fluid at liquid state passes along the line, transient heat transfer between the cryogen and the transfer line causes voracious evaporation of the liquid. This paper makes a contribution to the two-phase flow along a rectangular flow passage consisting of an array of elliptically shaped matrix elements. A simplified 2D model is considered and the problem is solved using ANSYS FLUENT. The present analysis aims to study the influence of the slenderness ratio of matrix elements on the heat transfer rate and chill down time. For a comparative study, matrix elements of slenderness ratios 5 and 10 are considered. Liquid nitrogen at 74K flows through the matrix. The material of the transfer line is assumed to be aluminium which is initially at room temperature. The influence of Reynolds numbers from 800 to 3000 on chill-down is also investigated.
Latest developments in cryogenic safety
NASA Astrophysics Data System (ADS)
Webster, T. J.
1983-03-01
The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.
Latest developments in cryogenic safety
NASA Technical Reports Server (NTRS)
Webster, T. J.
1983-01-01
The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.
NASA Technical Reports Server (NTRS)
VanDresar, Neil T.; Zimmerli, Gregory A.
2014-01-01
Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.
Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout
NASA Astrophysics Data System (ADS)
England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm
Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.
Upgrade to the Cryogenic Hydrogen Gas Target Monitoring System
NASA Astrophysics Data System (ADS)
Slater, Michael; Tribble, Robert
2013-10-01
The cryogenic hydrogen gas target at Texas A&M is a vital component for creating a secondary radioactive beam that is then used in experiments in the Momentum Achromat Recoil Spectrometer (MARS). A stable beam from the K500 superconducting cyclotron enters the gas cell and some incident particles are transmuted by a nuclear reaction into a radioactive beam, which are separated from the primary beam and used in MARS experiments. The pressure in the target chamber is monitored so that a predictable isotope production rate can be assured. A ``black box'' received the analog pressure data and sent RS232 serial data through an outdated serial connection to an outdated Visual Basic 6 (VB6) program, which plotted the chamber pressure continuously. The black box has been upgraded to an Arduino UNO microcontroller [Atmel Inc.], which can receive the pressure data and output via USB to a computer. It has been programmed to also accept temperature data for future upgrade. A new computer program, with updated capabilities, has been written in Python. The software can send email alerts, create audible alarms through the Arduino, and plot pressure and temperature. The program has been designed to better fit the needs of the users. Funded by DOE and NSF-REU Program.
Cryopumping in Cryogenic Insulations for a Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Weiser, Erik S.; Grimsley, Brian W.; Jensen, Brian J.
2003-01-01
Testing at cryogenic temperatures was performed to verify the material characteristics and manufacturing processes of reusable propellant tank cryogenic insulations for a Reusable Launch Vehicle (RLV). The unique test apparatus and test methods developed for the investigation of cryopumping in cryogenic insulations are described. Panel level test specimens with various types of cryogenic insulations were subjected to a specific thermal profile where the temperature varied from -262 C to 21 C. Cryopumping occurred if the interior temperature of the specimen exhibited abnormal temperature fluctuations, such as a sudden decrease in temperature during the heating phase.
Case history of magnetic bearing supported hot gas turboexpander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Destombes, Y.; Allaire, P.E.
1995-12-31
A very significant advantage for the use of magnetic bearings in hot gas and cryogenic expanders is that the bearing operating temperature can be much higher or lower than for conventional oil lubricated fluid film or rolling element bearings. This has lead to the increasing development of industrial expanders which are magnetic bearing supported and rather complex bearing oil supply sealing arrangements can be eliminated. As advances in magnetic bearing technology and understanding occur, the design and performance of the magnetic bearings continues to improve. The purpose of this paper is to describe some characteristics of industrial magnetic bearing supportedmore » turboexpanders, both hot gas and cryogenic, and present a particular hot gas expander application. This paper discusses the basic principles of operation of the magnetic bearings including the bearing radial and thrust bearings, sensors, control system, and dynamic characteristics. The governing equations are given for upper quadrant radial bearing designs. Design equations relevant to bearing design will be presented to assist potential users of magnetic bearings in understanding their operation. The paper also presents a practical application of magnetic bearings to a hot gas turbogenerator. The bearings support a turbine wheel which converts the exhaust gas energy of a blast furnace into electrical power through a synchronous 6 MW generator. The magnetic bearing allowed the rotor to be constructed as a single shaft machine. The turbine wheel is directly connected to the generator rotor. The unit has been successfully operated for a 8 year period and now has in excess of 70,000 hours in a steel plant in Europe. It has some unique features: (1) it is the heaviest magnetic bearing supported rotor in industrial operation at 8 tons, (2) it has very high unbalance acceptance, (3) it has a special rotor mounted auxiliary bearing design, and (4) only the upper quadrant of the bearing is employed in the unit.« less
Refrigeration for Cryogenic Sensors
NASA Technical Reports Server (NTRS)
Gasser, M. G. (Editor)
1983-01-01
Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.
Conceptual Design and Analysis of Orbital Cryogenic Liquid Storage and Supply Systems.
1981-05-01
MCR -79-561, Martin Marietta Corporation, June 1979. 5. Tegart, J. R.: Hydrodynamic Analysis Report - Cryogenic Fluid Management...Experiment, MCR -79-563, Martin Marietta Corporation, June 1979, (Contract NAS3-2 1591). 6. Gille, J. P.: Thermal Analysis Report - Cryogenic Fluid Management...Analysis Report - Cryogenic Fluid Management Experiment, MCR -79-567, Martin Marietta Corporation, June 1979, (Contract NAS3-21591). 8. "Low
Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacramento, R. L.; Alves, B. X.; Silva, B. A.
2015-07-15
We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.
Surface Tension Confines Cryogenic Liquid
NASA Technical Reports Server (NTRS)
Castles, Stephen H.; Schein, Michael E.
1989-01-01
New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.
NASA Technical Reports Server (NTRS)
Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.
2016-01-01
The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.
NASA Technical Reports Server (NTRS)
Smith, Brian S.; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan;
2016-01-01
The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally approx.300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.
NASA Technical Reports Server (NTRS)
Hetrick, M. A.; Rantanen, R. O.; Ress, E. B.; Froechtenigt, J. F.
1978-01-01
Within the simulation limitations of on-orbit conditions, it was demonstrated that a helium purge system could be an effective method for reducing the incoming flux of contaminant species. Although a generalized purge system was employed in conjunction with basic telescope components, the simulation provided data that could be used for further modeling and design of a specific helium injection system. Experimental telescope pressures required for 90% attenuation appeared to be slightly higher (factor of 2 to 5). Cooling the helium purge gas and telescope components from 300 to 140 K had no measurable effect on stopping efficiency of a given mass flow of helium from the diffuse injector.
MTL distributed magnet measurement system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogiec, J.M.; Craker, P.A.; Garbarini, J.P.
1993-04-01
The Magnet Test Laboratory (MTL) at the Superconducting Super collider Laboratory will be required to precisely and reliably measure properties of magnets in a production environment. The extensive testing of the superconducting magnets comprises several types of measurements whose main purpose is to evaluate some basic parameters characterizing magnetic, mechanic and cryogenic properties of magnets. The measurement process will produce a significant amount of data which will be subjected to complex analysis. Such massive measurements require a careful design of both the hardware and software of computer systems, having in mind a reliable, maximally automated system. In order to fulfillmore » this requirement a dedicated Distributed Magnet Measurement System (DMMS) is being developed.« less
Wirelessly Interrogated Position or Displacement Sensors
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, Bryant D.
2007-01-01
Two simple position or displacement sensors based on inductance-capacitance resonant circuits have been conceived. These sensors are both powered and interrogated without use of wires and without making contact with other objects. Instead, excitation and interrogation are accomplished by means of a magnetic-field-response recorder. Both of the present position or displacement sensors consist essentially of variable rectangular parallel-plate capacitors electrically connected in series with fixed inductors. Simple inductance-capacitance circuits of the type used in these sensors are inherently robust; their basic mode of operation does not depend on maintenance of specific environmental conditions. Hence, these sensors can be used under such harsh conditions as cryogenic temperatures, high pressures, and radioactivity.
Basic materials and structures aspects for hypersonic transport vehicles (HTV)
NASA Astrophysics Data System (ADS)
Steinheil, E.; Uhse, W.
A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.
From Research to Flight: Thinking About Implementation While Performing Fundamental Research
NASA Technical Reports Server (NTRS)
Johnson, Les
2010-01-01
This slide presentation calls for a strategy to implement new technologies. Such a strategy would allow advanced space transportation technologies to mature for exploration beyond Earth orbit. It discusses the difference between technology push versus technology pull. It also reviews the three basic technology readiness levels (TRL). The presentation traces examples of technology development to flight application: the Space Shuttle Main Engine Advanced Health Management System, the Friction Stir Welding technology the (auto-adjustable pin tool). A couple of technologies currently not in flight, but are being reviewed for potential use are: cryogenic fluid management (CFM), and solar sail propulsion. There is also an attempt to explain why new technologies are so difficult to field.
Energy Efficient Cryogenics on Earth and in Space
NASA Technical Reports Server (NTRS)
Fesmire, James E.
2012-01-01
The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for energy-efficient cryogenics on Earth and in space.
NASA Technical Reports Server (NTRS)
Symons, Pat
1991-01-01
The topics presented are covered in viewgraph form. The concluded remarks are: (1) advanced cryogenic fluid systems technology is enhancing or enabling to all known transportation scenarios for space exploration; (2) an integrated/coordinated program involving LeRC/MSFC has been formulated to address all known CFM needs - new needs should they develop, can be accommodated within available skills/facilities; (3) all required/experienced personnel and facilities are finally in place - data from initial ground-based experiments is being collected and analyzed - small scale STS experiments are nearing flight - program is beginning to yield significant results; (4) future proposed funding to primarily come from two sources; and (5) cryogenic fluid experimentation is essential to provide required technology and assure implementation in future NASA missions.
Laser-induced damage of coatings on Yb:YAG crystals at cryogenic condition
NASA Astrophysics Data System (ADS)
Wang, He; Zhang, Weili; Chen, Shunli; Zhu, Meiping; He, Hongbo; Fan, Zhengxiu
2011-12-01
As large amounts of heat need to be dissipated during laser operation, some diode pumped solid state lasers (DPSSL), especially Yb:YAG laser, operate at cryogenic condition. This work investigated the laser induced damage of coatings (high-reflective and anti-reflective coatings) on Yb:YAG crystals at cryogenic temperature and room temperature. The results show that the damage threshold of coatings at cryogenic temperature is lower than the one at room temperature. Field-emission scanning electron microscopy (FESEM), optical profiler, step profiler and Atomic force microscope (AFM) were used to obtain the damage morphology, size and depth. Taking alteration of physical parameters, microstructure of coatings and the environmental pollution into consideration, we analyzed the key factor of lowering the coating damage threshold at cryogenic conditions. The results are important to understand the mechanisms leading to damage at cryogenic condition.
Developments in advanced and energy saving thermal isolations for cryogenic applications
NASA Astrophysics Data System (ADS)
Shu, Q. S.; Demko, J. A.; Fesmire, J. E.
2015-12-01
The cooling power consumption in large scale superconducting systems is huge and cryogenic devices used in space applications often require an extremely long cryogen holding time. To economically maintain the device at its operating temperature and minimize the refrigeration losses, high performance of thermal isolation is essential. The radiation from warm surrounding surfaces and conducting heat leaks through supports and penetrations are the dominant heat loads to the cold mass under vacuum condition. The advanced developments in various cryogenic applications to successfully reduce the heat loads through radiation and conduction are briefly and systematically discussed and evaluated in this review paper. These include: (1) thermal Insulation for different applications (foams, perlites, glass bubbles, aerogel and MLI), (2) sophisticated low-heat-leak support (cryogenic tension straps, trolley bars and posts with dedicated thermal intercepts), and (3) novel cryogenic heat switches.
NASA Technical Reports Server (NTRS)
Kegley, Jeff; Burdine, Robert V. (Technical Monitor)
2002-01-01
A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.
NASA Technical Reports Server (NTRS)
Kegley, Jeff; Stahl, H. Philip (Technical Monitor)
2002-01-01
A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature SiO2 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.
Gas gap heat switch for a cryogen-free magnet system
NASA Astrophysics Data System (ADS)
Barreto, J.; Borges de Sousa, P.; Martins, D.; Kar, S.; Bonfait, G.; Catarino, I.
2015-12-01
Cryogen-free superconducting magnet systems (CFMS) have become popular over the last two decades for the simple reason that the use of liquid helium is rather cumbersome and that helium is a scarce resource. Some available CFMS use a mechanical cryocooler as the magnet's cold source. However, the variable temperature insert (VTI) for some existing CFMS are not strictly cryogen-free as they are still based on helium gas circulation through the sample space. We designed a prototype of a gas gap heat switch (GGHS) that allows a thermal management of a completely cryogen-free magnet system, with no helium losses. The idea relies on a parallel cooling path to a variable temperature insert (VTI) of a magnetic properties measurement system under development at Inter-University Accelerator Centre. A Gifford-McMahon cryocooler (1.5 W @ 4.2 K) would serve primarily as the cold source of the superconducting magnet, dedicating 1 W to this cooling, under quite conservative safety factors. The remaining cooling power (0.5 W) is to be diverted towards a VTI through a controlled GGHS that was designed and built with a 80 μm gap width. The built GGHS thermal performance was measured at 4 K, using helium as the exchange gas, and its conductance is compared both with a previously developed analytical model and a finite element method. Lessons learned lead to a new and more functional prototype yet to be reported.