Science.gov

Sample records for cryogenic ge performance

  1. Approaching cryogenic Ge performance with Peltier-cooled CdTe

    NASA Astrophysics Data System (ADS)

    Khusainov, Abdurakhman; Iwanczyk, Jan S.; Patt, Bradley E.; Pirogov, Alexandre M.; Vo, Duc T.; Russo, Phyllis A.

    2001-12-01

    A new class of hand-held, portable spectrometers based on large area (1cm2) CdTe detectors of thickness up to 3mm has been demonstrated to produce energy resolution of between 0.3 and 0.5% FWHM at 662 keV. The system uses a charge loss correction circuit for improved efficiency, and detector temperature stabilization to ensure consistent operation of the detector during field measurements over a wide range of ambient temperature. The system can operate continuously for up to 8hrs on rechargeable batteries. The signal output from the charge loss corrector is compatible with most analog and digital spectroscopy amplifiers and multi channel analyzers. Using a detector measuring 11.2 by 9.1 by 2.13 mm3, we have recently been able to obtain the first wide-range plutonium gamma-ray isotopic analysis with other than a cryogenically cooled germanium spectrometer. The CdTe spectrometer is capable of measuring small plutonium reference samples in about one hour, covering the range from low to high burnup. The isotopic analysis software used to obtain these results was FRAM Version 4 from LANL. The new spectrometer is expected to be useful for low-grade assay, as well as for some in-situ plutonium gamma-ray isotopics in lieu of cryogenically cooled Ge.

  2. Cryogenic operation of a 24 GHz MMIC SiGe HBT medium power amplifier

    NASA Astrophysics Data System (ADS)

    Qin, Guoxuan; Jiang, Ningyue; Seo, Jung-Hun; Cho, Namki; Ponchak, George E.; van der Weide, Daniel; Ma, Pingxi; Stetson, Scott; Racanelli, Marco; Ma, Zhenqiang

    2010-12-01

    The performance of a SiGe heterojunction bipolar transistor (HBT) millimetre-wave power amplifier (PA) operating at cryogenic temperature was reported and analysed for the first time. A 24 GHz two-stage medium PA employing common-emitter and common-base SiGe power HBTs in the first and the second stage, respectively, showed a significant power gain increase at 77 K in comparison with that measured at room temperature. Detailed analyses indicate that cryogenic operation of SiGe HBT-based PAs mainly affects (improves) the performance of the SiGe HBTs in the circuits due to transconductance enhancement through magnified, favourable changes of SiGe bandgap due to cooling (ΔEg/kT) and minimized thermal effects, with little influence on the passive components of the circuits.

  3. Cryogenic ultra-low-noise SiGe transistor amplifier.

    PubMed

    Ivanov, B I; Trgala, M; Grajcar, M; Il'ichev, E; Meyer, H-G

    2011-10-01

    An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 μW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers.

  4. Performance of Power Converters at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2001-01-01

    Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.

  5. IRAS cryogenic system flight performance report

    NASA Technical Reports Server (NTRS)

    Urbach, A. R.; Mason, P. V.

    1984-01-01

    It is pointed out that the Infrared Astronomical Satellite (IRAS) is the first telescope to perform observations in the far infrared from orbit. IRAS was launched on January 25, 1983 into a 900 km orbit. The use of the first large superfluid helium dewar in space makes it possible to provide a 2 K telescope environment for an anticipated period of one year. A description of the cryogenic system of IRAS is presented, taking into account the superfluid helium tank, the insulation system, the vacuum shell, the aperture cover, and the fluid management system. The dynamic performance of the cryogenic system is considered along with aspects of prelaunch preparations. Details of flight performance are also discussed, giving attention to transient performance, and steady state performance.

  6. Thermal Performance Testing Of Cryogenic Piping Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.

    2003-01-01

    Thermal performance measurement of piping systems under actual field conditions is important for space launch development and commercial industry. Knowledge of the true insulating effectiveness is needed in system design, development, and research activities. A new 18-meter-long test apparatus for cryogenic pipelines has been developed. Three different pipelines, rigid or flexible, can be tested simultaneously. Critical factors in heat leak measurements include eliminating heat transfer at end connections and obtaining proper liquid saturation condition. Effects due to variations in the external ambient conditions like wind, humidity, and solar radiation must be minimized. The static method of liquid nitrogen evaporation has been demonstrated, but the apparatus can be adapted for dynamic testing with cryogens, chilled water, or other working fluids. This technology is suited for the development of an industry standard test apparatus and method. Examples of the heat transfer data from testing commercially available pipelines are given. Prototype pipelines are currently being tested and evaluated at the Cryogenics Test Laboratory of NASA Kennedy Space Center.

  7. Realization and performance of cryogenic selection mechanisms

    NASA Astrophysics Data System (ADS)

    Aitink-Kroes, Gabby; Bettonvil, Felix; Kragt, Jan; Elswijk, Eddy; Tromp, Niels

    2014-07-01

    Within Infra-Red large wavelength bandwidth instruments the use of mechanisms for selection of observation modes, filters, dispersing elements, pinholes or slits is inevitable. The cryogenic operating environment poses several challenges to these cryogenic mechanisms; like differential thermal shrinkage, physical property change of materials, limited use of lubrication, high feature density, limited space etc. MATISSE the mid-infrared interferometric spectrograph and imager for ESO's VLT interferometer (VLTI) at Paranal in Chile coherently combines the light from 4 telescopes. Within the Cold Optics Bench (COB) of MATISSE two concepts of selection mechanisms can be distinguished based on the same design principles: linear selection mechanisms (sliders) and rotating selection mechanisms (wheels).Both sliders and wheels are used at a temperature of 38 Kelvin. The selection mechanisms have to provide high accuracy and repeatability. The sliders/wheels have integrated tracks that run on small, accurately located, spring loaded precision bearings. Special indents are used for selection of the slider/wheel position. For maximum accuracy/repeatability the guiding/selection system is separated from the actuation in this case a cryogenic actuator inside the cryostat. The paper discusses the detailed design of the mechanisms and the final realization for the MATISSE COB. Limited lifetime and performance tests determine accuracy, warm and cold and the reliability/wear during life of the instrument. The test results and further improvements to the mechanisms are discussed.

  8. Measurement, modeling, and simulation of cryogenic SiGe HBT amplifier circuits for fast single spin readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Curry, Matthew; Carr, Steve; Swartzentruber, Brian; Lilly, Michael; Bishop, Nathan; Carrol, Malcolm

    2015-03-01

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance typical of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will discuss calibration data, as well as modeling and simulation of cryogenic silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) circuits connected to a silicon SET and operating at 4 K. We find a continuum of solutions from simple, single-HBT amplifiers to more complex, multi-HBT circuits suitable for integration, with varying noise levels and power vs. bandwidth tradeoffs. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  9. Thermal Performance Testing of Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  10. Cryogenic system for the interferometric cryogenic gravitationalwave telescope, KAGRA - design, fabrication, and performance test -

    NASA Astrophysics Data System (ADS)

    Tokoku, C.; Kimura, N.; Koike, S.; Kume, T.; Sakakibara, Y.; Suzuki, T.; Yamamoto, K.; Chen, D.; Goto, S.; Tanaka, M.; Ioka, S.; Nakamoto, K.; Nezuka, H.; Uchiyama, T.; Ohashi, M.; Kuroda, K.

    2014-01-01

    KAGRA is the cryogenic interferometric gravitational wave telescope designed for the direct detection of gravitational waves from the astronomical sources. To achieve the best sensitivity, one of the most difficult challenges is cooling the mirrors to 20K to reduce the thermal noise. We developed four cryostats and sixteen very-low-vibration cryocooler units to accomplish our purpose. In this paper, we describe the outline of the cryogenic design and fabrication, and the results of the cryogenic performance test of the cryostats and cryocooler units.

  11. Gates for electron confinement in Si/SiGe 2DEGs at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Slinker, K. A.; Klein, L. J.; Goswami, S.; Truitt, J. L.; Savage, D. E.; Lagally, M. G.; van der Weide, D. W.; Coppersmith, S. N.; Eriksson, M. A.; Chu, J. O.; Ott, J. A.; Mooney, P. M.

    2004-03-01

    A major challenge is the fabrication of ultra-low leakage gates for 2DEG confinement in Si/SiGe at cryogenic temperatures. Here we report results on the fabrication of gates by four different methods: metallic Schottky gates, metal-oxide-silicon, metal-dielectric-silicon using spin-on glass, and lateral etch-defined gates. Lateral etch-defined gates are shown to produce quantum dots displaying Coulomb blockade. We discuss the prospects for producing similar structures using truly metallic gates in combination with etch-defined trenches.

  12. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  13. A Cryogenic SiGe Low-noise Amplifier Optimized for Phased-array Feeds

    NASA Astrophysics Data System (ADS)

    Groves, Wavley M., III; Morgan, Matthew A.

    2017-08-01

    The growing number of phased-array feeds (PAF) being built for radio astronomy demonstrates an increasing need for low-noise amplifiers (LNA), which are designed for repeatability, low noise, and ease of manufacture. Specific design features that help to achieve these goals include the use of unpackaged transistors (for cryogenic operation); single-polarity biasing; straight plug-in radio frequency (RF) interfaces to facilitate installation and re-work; and the use of off-the-shelf components. The focal L-band array for the Green Bank Telescope (FLAG) is a cooperative effort by Brigham Young University and the National Radio Astronomy Observatory using warm dipole antennae and cryogenic Silicon Germanium Heterojunction Bipolar Transistor (SiGe HBT) LNAs. These LNAs have an in band gain average of 38 dB and 4.85 Kelvin average noise temperature. Although the FLAG instrument was the driving instrument behind this development, most of the key features of the design and the advantages they offer apply broadly to other array feeds, including independent-beam and phased, and for many antenna types such as horn, dipole, Vivaldi, connected-bowtie, etc. This paper focuses on the unique requirements array feeds have for low-noise amplifiers and how amplifier manufacturing can accommodate these needs.

  14. Cryogenic performance of the space infrared optical payload

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Tan, Fanjiao; Zhang, Wei; Liu, Mingdong; Wang, Haipeng

    2016-10-01

    A model as well as the methodology is proposed to analyze the cryogenic performance of space infrared optical payload. And the model is established from two aspects: imaging quality and background radiation. On the basis of finite element analysis, the deformation of optical surface in cryogenic environment is characterized by Zernike polynomials, and then, the varying pattern of MTF of space cryogenic optical payload could be concluded accordingly. Then from the theory of thermal radiative transfer, the temperature distribution and the deformation of the optical payload under the action of inertial load and thermal load are analyzed based on the finite element method, and the spontaneous radiation and scattering properties of the optical surface and shielding factors between the opto-mechanical structure are considered to establish the radiation calculation model. Furthermore, the cryogenic radiation characteristics of the space infrared optical payload are obtained by the radiation calculation model. Finally, experiments are conducted using an actual off-axis TMA space infrared optical payload. And the results indicate that the background radiation of the space infrared optical payload is decreased by 79% while 33% for MTF at the thermal control temperature of 240K. In this circumstance, the system background radiation is effectively suppressed and the detection sensitivity of the optical payload is improved as well, while the imaging quality is acceptable. The model proposed in this paper can be applied to the analyzing cryogenic properties of space infrared optical payload, and providing theoretical guidance for the design and application of the space cryogenic optical payload.

  15. Cryogenic performance of high-efficiency germanium immersion grating

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kaji, Sayumi; Kobayashi, Naoto; Sukegawa, Takashi; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-08-01

    Immersion gratings will play important roles for infrared astronomy in the next generation. We have been developing immersion gratings with a variety of kinds of materials and have succeeded in fabricating a high-efficiency germanium (Ge) immersion grating with both a reflection coating on the grating surface and an AR coating on the entrance surface. The grating will be installed in a K-, L-, and M-bands (2-5μm) high-resolution (R=80,000) spectrograph, VINROUGE, which is a prototype for the TMT MIR instrument. In this paper, we report the preliminary results on the evaluation of the Ge immersion grating. We confirmed that the peak absolute diffraction efficiency was in the range of 70-80%, which was as expected from the design, at both room and cryogenic temperatures.

  16. Minimizing RF Performance Spikes in a Cryogenic Orthomode Transducer (OMT)

    NASA Astrophysics Data System (ADS)

    Henke, Doug; Claude, Stephane

    2014-04-01

    The turnstile junction exhibits very low cross-polarization leakage and is suitable for low-noise millimeter-wave receivers. For use in a cryogenic receiver, it is best if the orthomode transducer (OMT) is implemented in waveguide, contains no additional assembly features, and may be directly machined. However, machined OMTs are prone to sharp signal drop-outs that are costly to overall performance since they show up directly as spikes in receiver noise. We explore the various factors contributing to this degradation and discuss how the current design mitigates each cause. Final performance is demonstrated at cryogenic temperatures.

  17. Initial performance of upgraded Tevatron cryogenic systems

    SciTech Connect

    Norris, B.L.

    1996-09-01

    Fermilab began operating a re-designed satellite refrigerator systems in November 1993. Upgrades were installed to operate the Tevatron at a magnet temperature of 3.5 K, approximately 1K lower than the original design. Refrigerator upgrades included new valve boxes, larger reciprocating expanders, the installation of cold vapor compressors, new sub-atmospheric instrumentation and an entirely new distributed controls system. Cryogenic system reliability data for Colliding Physics Run 1B is presented emphasizing a failure analysis for each aspect of the upgrade. Comparison to data for Colliding Physics Run 1A (previous to upgrade) is presented to show the impact of a major system overhaul. New operational problems and their solutions are presented in detail.

  18. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  19. A high-performance wave guide cryogenic thermal break

    NASA Astrophysics Data System (ADS)

    Melhuish, S. J.; McCulloch, M. A.; Piccirillo, L.; Stott, C.

    2016-10-01

    We describe a high-performance wave guide cryogenic thermal break. This has been constructed both for Ka band, using WR28 wave guide, and Q band, using WR22 wave guide. The mechanical structure consists of a hexapod (Stewart platform) made from pultruded carbon fibre tubing. We present a tentative examination of the cryogenic Young's modulus of this material. The thermal conductivity is measured at temperatures above the range explored by Runyan and Jones, resulting in predicted conductive loads through our thermal breaks of 3.7 mW to 3 K and 17 μK to 1 K.

  20. A high-performance wave guide cryogenic thermal break.

    PubMed

    Melhuish, S J; McCulloch, M A; Piccirillo, L; Stott, C

    2016-10-01

    We describe a high-performance wave guide cryogenic thermal break. This has been constructed both for Ka band, using WR28 wave guide, and Q band, using WR22 wave guide. The mechanical structure consists of a hexapod (Stewart platform) made from pultruded carbon fibre tubing. We present a tentative examination of the cryogenic Young's modulus of this material. The thermal conductivity is measured at temperatures above the range explored by Runyan and Jones, resulting in predicted conductive loads through our thermal breaks of 3.7 mW to 3 K and 17 μK to 1 K.

  1. Performance of the new cryogenic vacuum system at the Bevatron

    SciTech Connect

    Avery, R.T.; Alonso, J.R.; Henderson, T.F.; Kennedy, K.D.; Meneghetti, J.R.

    1983-08-01

    A cryogenically cooled liner has been installed within the Bevatron to achieve 10/sup -10/ Torr vacuum. Features and performance of this liner are described including achieved pressures, residual gas composition, cryo heat loads, leak rates through moving and static seals, and cool-down and warm-up times.

  2. Performance of the new cryogenic vacuum system at the Bevatron

    SciTech Connect

    Avery, R.T.; Henderson, T.F.; Kennedy, K.D.; Meneghetti, J.R.; Alonso, J.R.

    1983-03-01

    A cryogenically cooled liner has been installed within the Bevatron to achieve 10/sup -10/ torr vacuum. Features and performance of this liner are described including achieved pressures, residual gas composition, cryo heat loads, leak rates through moving and static seals, and cool-down and warm-up times.

  3. Standardization in Cryogenic Insulation Systems Testing and Performance Data

    NASA Astrophysics Data System (ADS)

    Fesmire, James E.

    The close relationship between industrial energy use and cryogenics drives the need for optimized thermal insulation systems. Emerging cryofuels usage is enabled by adequate isolation of the liquid hydrogen or liquefied natural gas from the ambient environment. Thermal performance data for the total insulation system, as rendered, are essential for both engineering designs and cost-benefit decisions involving comparisons among alternatives. These data are obtained through rigorous testing with suitable apparatus and repeatable methods. Properly defined terminology, analysis, and reporting are also vital. Advances in cryogenic insulation test apparatus and methods have led to the recent addition of two new technical standards of ASTM International: C1774 - Standard Guide for Thermal Performance Testing of Cryogenic InsulationSystems and C740 - Standard Guide for Evacuated Reflective Cryogenic Insulation. Among the different techniques described in the new standards is the cylindrical boiloff calorimeter for absolute heat measurement over the full range of vacuum pressure conditions. The details of this apparatus, test method, and data analysis are given. Benchmark thermal performance data, including effective thermal conductivity (ke) and heat flux (q) for the boundary temperatures of 293 K and 77 K, are given for a number of different multilayer insulation (MLI) systems in comparison with data for other commonly-used insulation systems including perlite powder, fiberglass, polyurethane foam, and aerogels.

  4. Performance and Reliability of Solid Tantalum Capacitors at Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2006-01-01

    Performance of different types of solid tantalum capacitors was evaluated at room and low temperatures, down to 15 K. The effect of temperature on frequency dependencies of capacitance, effective series resistances (ESR), leakage currents, and breakdown voltages has been investigated and analyzed. To assess thermo-mechanical robustness of the parts, several groups of loose capacitors and those soldered on FR4 boards were subjected to multiple (up to 500) temperature cycles between room temperature and 77 K. Experiments and mathematical modeling have shown that degradation in tantalum capacitors at low temperatures is mostly due to increasing resistance of the manganese cathode layer, resulting in substantial decrease of the roll-off frequency. Absorption currents follow a power law, I approximately t(sup -m), with the exponent m varying from 0.8 to 1.1. These currents do not change significantly at cryogenic conditions and the value of the exponent remains the same down to 15 K. Variations of leakage currents with voltage can be described by Pool-Frenkel and Schottky mechanisms of conductivity, with the Schottky mechanism prevailing at cryogenic conditions. Breakdown voltages of tantalum capacitors increase and the probability of scintillations decreases at cryogenic temperatures. However, breakdown voltages measured during surge current testing decrease at liquid nitrogen (LN) compared to room-temperature conditions. Results of temperature cycling suggest that tantalum capacitors are capable of withstanding multiple exposures to cryogenic conditions, but the probability of failures varies for different part types.

  5. Cryogenic performance of a lightweight silicon carbide mirror

    NASA Astrophysics Data System (ADS)

    Eng, Ron; Carpenter, James R.; Foss, Colby A., Jr.; Hadaway, James B.; Haight, Harlan J.; Hogue, William D.; Kane, David; Kegley, Jeffrey R.; Stahl, H. Philip; Wright, Ernest R.

    2005-08-01

    Low cost, high performance lightweight Silicon Carbide (SiC) mirrors provide an alternative to Beryllium mirrors. A Trex Enterprises 0.25m diameter low areal density SiC mirror using its patented Chemical Vapor Composites (CVC) technology was evaluated for its optical performance at cryogenic temperature. CVC SiC is chemically pure, thermally stable, and mechanically stiff. CVC technology yields higher growth rate than that of CVD SiC. NASA has funded lightweight optical materials technology development efforts for future space based telescope programs. As part of these efforts, a Trex SiC mirror was measured interferometrically from room temperature to 30 degrees Kelvin. This paper will discuss the test goals, the cryogenic optical testing infrastructure and instrumentation at MSFC, test results, and lessons learned.

  6. Performance tests of a cryogenic hybrid magnetic bearing for turbopumps

    NASA Technical Reports Server (NTRS)

    Dirusso, Eliseo; Brown, Gerald V.

    1992-01-01

    Experiments were performed on a Hybrid Magnetic Bearing designed for cryogenic applications such as turbopumps. This bearing is considerably smaller and lighter than conventional magnetic bearings and is more efficient because it uses a permanent magnet to provide a bias flux. The tests were performed in a test rig that used liquid nitrogen to simulate cryogenic turbopump temperatures. The bearing was tested at room temperature and at liquid nitrogen temperature (-320 F). The maximum speed for the test rig was 14000 rpm. For a magnetic bearing stiffness of 20000 lb/in, the flexible rotor had two critical speeds. A static (nonrotating) bearing stiffness of 85000 lb/in was achieved. Magnetic bearing stiffness, permanent magnet stiffness, actuator gain, and actuator force interaction between two axes were evaluated, and controller/power amplifier characteristics were determined. The tests revealed that it is feasible to use this bearing in the cryogenic environment and to control the rotor dynamics of flexible rotors when passing through bending critical speeds. The tests also revealed that more effort should be placed on enhancing the controller to achieve higher bearing stiffness and on developing displacement sensors that reduce drift caused by temperature and reduce sensor electrical noise.

  7. Design and performance of a cryogenic iris aperture mechanism

    NASA Astrophysics Data System (ADS)

    de Jonge, C.; Laauwen, W. M.; de Vries, E. A.; Smit, H. P.; Detrain, A.; Eggens, M. J.; Ferrari, L.; Dieleman, P.

    2014-07-01

    A cryogenic iris mechanism is under development as part of the ground calibration source for the SAFARI instrument. The iris mechanism is a variable aperture used as an optical shutter to fine-tune and modulate the absolute power output of the calibration source. It has 4 stainless steel blades that create a near-circular aperture in every position. The operating temperature is 4.5 Kelvin to provide a negligible background to the SAFARI detectors, and `hot spots' above 9K should be prevented. Cryogenic testing proved that the iris works at 4K. It can be used in a broad range of cryogenic optical instruments where optical throughput needs to be controlled. Challenges in the design include the low cooling power available (5mW) and low friction at cryogenic temperatures. The actuator is an `arc-type' rotary voice-coil motor. The use of flexural pivots creates a mono-stable mechanism with a resonance frequency at 26Hz. Accurate and fast position control with disturbance rejection is managed by a PID servo loop using a hall-sensor as input. At 4 Kelvin, the frequency is limited to 4Hz to avoid excess dissipation and heating. In this paper, the design and performance of the iris are discussed. The design was optimized using a thermal, magnetic and mechanical model made with COMSOL Finite Element Analysis software. The dynamical and state-space modeling of the mechanism and the concept of the electrical control are presented. The performance of the iris show good agreement to the analytical and COMSOL modeling.

  8. Thermal Performance Testing of Glass Microspheres under Cryogenic Vacuum Conditions

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.

    2004-06-01

    A key element of space launch vehicles and systems is thermal insulation for cryogenic tanks and piping. Glass microspheres, or glass bubbles, represent an alternative insulation material for a number of applications. Composite materials and engineered thermal insulation systems are also being developed based on the use of glass bubbles as the main constituent material. Commonly used materials, such as spray-on foam insulation, or SOFI, for vehicle tanks and perlite powder for ground storage tanks, are targeted for replacement with the new-technology systems that use glass bubbles. Complete thermal characterization of the glass bubbles is the first step toward producing the engineering solutions required for the energy-efficient, low-maintenance cryogenic systems of the future. Thermal performance testing of the glass microsphere material was successfully completed at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The test measurements were made at the full temperature difference (typical boundary temperatures of 78 kelvin [K] and 293 K) and included the full cold-vacuum pressure range. The results are reported in apparent thermal conductivity (k-value) and mean heat flux.

  9. Boron diffusion layer formation using Ge cryogenic implantation with low-temperature microwave annealing

    NASA Astrophysics Data System (ADS)

    Murakoshi, Atsushi; Harada, Tsubasa; Miyano, Kiyotaka; Harakawa, Hideaki; Aoyama, Tomonori; Yamashita, Hirofumi; Kohyama, Yusuke

    2016-04-01

    It is shown that a low-sheet-resistance p-type diffusion layer with a small diffusion depth can be fabricated efficiently by cryogenic boron and germanium implantation combined with low-temperature (400 °C) microwave annealing. Compared with the conventional annealing at 1000 °C, a much smaller diffusion depth is obtained at the same sheet resistance. The low sheet resistance at 400 °C is due to microwave absorption in the surface amorphous layer, which is formed by cryogenic germanium implantation. However, the pn junction leakage was worse than that in conventional annealing, because crystal defects remain near the amorphous/crystal interface after microwave annealing. It is found that the pn junction leakage is improved greatly by cryogenic germanium implantation. These results show that a suitable combination of cryogenic implantation and microwave annealing is very promising for p-type diffusion layer technology.

  10. Design theory and performance of cryogenic molecular adsorption refrigeration systems

    NASA Technical Reports Server (NTRS)

    Hartwig, W. H.; Woltman, A. W.; Masson, J. P.

    1978-01-01

    Closed-cycle operation of molecular adsorption refrigeration systems (MARS) has been demonstrated by using thermally cycled zeolites to adsorb and desorb various gases under pressures of 20-60 atm. This paper develops three aspects of the design theory: the physical theory of molecular adsorption of small molecules such as A, N2, N2O and NH3, the design relations for closed-cycle flow for three or more compressors, and the coefficient of performance. This work is intended to demonstrate nonmechanical gas compression for various cryogenic gases than can compete with mechanical systems with a different mix of advantages and disadvantages.

  11. Design and performance of a Cryogenic Heat Pipe Experiment (CRYOHP)

    NASA Technical Reports Server (NTRS)

    Beam, Jerry; Brennan, Patrick J.; Bello, Mel

    1992-01-01

    The Cryogenic Heat Pipe Experiment which is designed to demonstrate the thermal performance of two different axially grooved oxygen heat pipes in microgravity is discussed. The CRYOHP is manifested for flight aboard STS-53. The first heat pipe design is based on an extrapolated 0-g transport capability of about 20 W-m with oxygen in the range of 80-100 K. The second heat pipe design permits 0-g 'dry-out' in the CRYOHP and offers improved ground testability for 1-g correlation.

  12. Improving cryogenic deuterium–tritium implosion performance on OMEGA

    SciTech Connect

    Sangster, T. C.; Goncharov, V. N.; Betti, R.; Radha, P. B.; Boehly, T. R.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Froula, D. H.; Glebov, Y. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J.; and others

    2013-05-15

    A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented. The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant perturbation source at the ablation surface; performance degradation is confirmed by 2D hydrodynamic simulations that include these defects. A trend in the value of the Lawson criterion [Betti et al., Phys. Plasmas 17, 058102 (2010)] for each of the implosions in adiabat–IFAR space suggests the existence of a stability boundary that leads to ablator mixing into the hot spot for the most ignition-equivalent designs.

  13. Validation and performance of the LHC cryogenic system through commissioning of the first sector

    SciTech Connect

    Serio, L.; Bouillot, A.; Casas-Cubillos, J.; Chakravarty, A.; Claudet, S.; Gicquel, F.; Gomes, P.; Kumar, M.; Kush, P.K.; Millet, F.; Perin, A.; /CERN /Fermilab /Tata Inst. /CERN

    2007-12-01

    The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was established and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.

  14. Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley Louis

    2010-01-01

    Multilayer insulation (MLI) has been shown to be the best performing cryogenic insulation system at high vacuum (less that 10 (exp 3) torr), and is widely used on spaceflight vehicles. Over the past 50 years, many investigations into MLI have yielded a general understanding of the many variables that are associated with MLI. MLI has been shown to be a function of variables such as warm boundary temperature, the number of reflector layers, and the spacer material in between reflectors, the interstitial gas pressure and the interstitial gas. Since the conduction between reflectors increases with the thickness of the spacer material, yet the radiation heat transfer is inversely proportional to the number of layers, it stands to reason that the thermal performance of MLI is a function of the number of layers per thickness, or layer density. Empirical equations that were derived based on some of the early tests showed that the conduction term was proportional to the layer density to a power. This power depended on the material combination and was determined by empirical test data. Many authors have graphically shown such optimal layer density, but none have provided any data at such low densities, or any method of determining this density. Keller, Cunnington, and Glassford showed MLI thermal performance as a function of layer density of high layer densities, but they didn't show a minimal layer density or any data below the supposed optimal layer density. However, it was recently discovered that by manipulating the derived empirical equations and taking a derivative with respect to layer density yields a solution for on optimal layer density. Various manufacturers have begun manufacturing MLI at densities below the optimal density. They began this based on the theory that increasing the distance between layers lowered the conductive heat transfer and they had no limitations on volume. By modifying the circumference of these blankets, the layer density can easily be

  15. The XRS Low Temperature Cryogenic System: Ground Performance Test Results

    NASA Technical Reports Server (NTRS)

    Breon, Susan; Sirron, Peter; Boyle, Robert; Canavan, Ed; DiPirro, Michael; Serlemitsos, Aristides; Tuttle, James; Whitehouse, Paul

    1998-01-01

    The X-Ray Spectrometer (XRS) instrument is part of the Astro-E mission scheduled to launch early in 2000. Its cryogenic system is required to cool a 32-element square array of x-ray microcalorimeters to 60-65 mK over a mission lifetime of at least 2 years. This is accomplished using an adiabatic demagnetization refrigerator (ADR) contained within a two-stage superfluid helium/solid neon cooler. Goddard Space Flight Center is providing the ADR and helium dewar. The flight system was assembled in Sept. 1997 and subjected to extensive thermal performance tests. This paper presents test results at both the system and component levels. In addition, results of the low temperature topoff performed in Japan with the engineering unit neon and helium dewars are discussed.

  16. Measurement of performance limits in cryogenic heat pipes

    SciTech Connect

    Haug, F.; Prenger, F.C.; Chrisman, R.H.

    1986-01-01

    This paper describes the results of an experimental study designed to investigate the fabrication and operation of gravity-assist cryogenic heat pipes. Two heat pipes were built, the first having no formal wick but a roughened internal surface, the second having spiral grooves machined with a specially developed tool. The wall material of the heat pipes was brass and hydrogen was used as the working fluid. The wicked heat pipe became operational over the entire temperature range from the triple-point to the critical point. The performance limitation depended on the operating temperature and the tilt angle. Axial heat flux densities of up to 50W/cm/sup 2/ were obtained. 15 refs., 9 figs.

  17. Performance of a cryogenic test facility for 4 K interferometer delay line investigations

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian; Naylor, David; Gom, Brad; Gunuganti, Sudhakar; Winter, Calvin; Jones, Martyn; Walker, David

    2016-07-01

    The next generation of space-borne instruments for far infrared astronomical spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The University of Lethbridge Test Facility Cryostat (TFC) is a large volume, closed cycle, 4 K cryogenic facility, developed for this purpose. This paper discusses the design and performance of the facility and associated metrology instrumentation, both internal and external to the TFC. Additionally, an apparatus for measuring the thermal and mechanical properties of carbon-fiber-reinforced polymers is presented.

  18. Influence of temperature on transit times and microwave noise performances of SiGe HBT

    NASA Astrophysics Data System (ADS)

    Diaz-Albarran, L. M.; Ramirez-Garcia, E.; Zerounian, N.; Aniel, F.; Rodriguez-Mendez, L. M.; Valdez-Perez, D.; Galaz-Larios, M. C.; Enciso-Aguilar, M. A.

    2016-03-01

    The influence of temperature (300 K and 40 K) on intrinsic transit times and microwave noise performances of silicon germanium (SiGe) heterojunction bipolar transistors (HBTs) is investigated. At 300 K, we compared measured and modelled S-parameters and four noise parameters, and we found a good agreement. At 40 K, we compared measured and modelled S-parameters, and we deduced noise performances from the S-parameter measurements. The electric model includes correlated junction noise sources and a proper extraction of the transit times involved in these sources. Moreover, the microwave noise model considers all the physical phenomena that impact noise performances in SiGe HBTs. We analysed three devices having different Ge content (10%-20%, 10%-25% and 10%-30%). At 40 K, the device with 10%-25% reaches one of the lowest base transit times (τ B), the lowest minimum noise figure (NFmin), and the lowest equivalent noise resistance (R n), for operation frequencies up to the maximum device dynamic performances (f ≈ f T) These results demonstrate the excellent potential to develop cryogenic applications of SiGe HBTs.

  19. Germanium JFET for Cryogenic Readout Electronics

    NASA Technical Reports Server (NTRS)

    Das, N. C.; Monroy, C.; Jhabvala, M.; Shu, P.

    1999-01-01

    The n-channel Germanium junction field effect transistor (Ge-JFET) was designed and fabricated for cryogenic applications. The Ge-JFET exhibits superior noise performance at liquid nitrogen temperature (77 K). From the device current voltage characteristics of n-channel JFETs, it is seen that transconductance increases monotonically with the lowering of temperature to 4.2 K (liquid helium temperature).

  20. Performance testing of a commercially produced cryogenic refrigerator

    SciTech Connect

    Keshock, E.G. . Dept. of Mechanical and Aerospace Engineering); Murphy, R.W. )

    1990-09-01

    A commercially available cryogenic refrigeration unit, model M-20, (3-phase, 60-Hz, 230-V) manufactured by Cryodynamics, Inc., was subjected to laboratory testing to measure some of its performance characteristics. Comparisons were made with those performance characteristics given in manufacturer literature for the M-20 unit (3-phase, 400-Hz, 208-V). At 77 K, the measured cooling capacity of the 60-Hz/230-V unit was very nearly the same (<2% difference) as the specified capacity (110 W) of the 400-Hz/208-V unit. At temperature levels higher than 77 K, measured cooling capacities exceeded the manufacturer product data sheet values. Coefficients of performance (COP) based on the experimental measurements ranged from about 0.37 at 250 K to 0.03 at 70 K. Comparison of measured to ideal (Carnot cycle) COPs yielded values ranging from about 8 to 18%, with broad maximum occurring between approximately 100 and 150 K. Finally, the measured cool-down time from room temperature to 77 K was about 10 minutes compared with a specification sheet value of 7.4 minutes. This difference may be attributed to lower thermal mass (without heater block) and higher operating frequency conditions associated with the specification. 6 figs., 2 tabs.

  1. Thermal Performance of a Cryogenic Fluid Management Cubesat Mission

    NASA Technical Reports Server (NTRS)

    Berg, J. J.; Oliveira, J. M.; Congiardo, J. F.; Walls, L. K.; Putman, P. T.; Haberbusch, M. S.

    2013-01-01

    Development for an in-space demonstration of a CubeS at as a Cryogenic Fluid Management (CFM) test bed is currently underway. The favorable economics of CubeSats make them appealing for technology development activity. While their size limits testing to smaller scales, many of the regimes relevant to CFM can still be achieved. The first demo flight of this concept, CryoCube®-1, will focus on oxygen liquefaction and low-gravity level sensing using Reduced Gravity CryoTracker®. An extensive thermal modeling effort has been underway to both demonstrate concept feasibility and drive the prototype design. The satellite will utilize both a sun- and earth-shield to passively cool its experimental tank below 115 K. An on-board gas generator will create high pressure gaseous oxygen, which will be throttled into a bottle in the experimental node and condensed. The resulting liquid will be used to perform various experiments related to level sensing. Modeling efforts have focused on the spacecraft thermal performance and its effects on condensation in the experimental node. Parametric analyses for both optimal and suboptimal conditions have been considered and are presented herein.

  2. Overview and Status of the 12 GeV Cryogenic System Upgrade At Jlab

    SciTech Connect

    Dana Arenius, Jonathan Creel, Venkatarao Ganni, Kelly Dixon, Peter Knudsen

    2010-04-01

    As part of the planned Jefferson Laboratory's electron accelerator (CEBAF) power upgrade, ten additional superconducting RF cryomodules will be added to its accelerator linacs. Although physically the same size as each of the original 40 linac cryomodules, each new cryomodule will have approximately 4 times the acceleration power. To support the additional cryomodule heat loads generated, the existing 2K, 4600W Central Helium Liquefier (CHL) plant capacity will be doubled to a total of 9200W at 2K plus 24,000W at 35K for shield loads. The specified base line process cycle has been modeled after the laboratory s "Ganni Helium Cycle" process technology. In addition, a fourth physics experimental "Hall D" will be constructed which will have an additional stand alone 200W at 4K helium cryogenic plant. In October of 2008, Jefferson Laboratory (JLab) received approval for project "Critical Decision 3" construction phase status from the US Department of Energy.

  3. Pulse-Shape Analysis of Ionization Signals in Cryogenic Ge Detectors for Dark Matter

    NASA Astrophysics Data System (ADS)

    Foerster, N.; Broniatowski, A.; Eitel, K.; Marnieros, S.; Paul, B.; Piro, M.-C.; Siebenborn, B.

    2016-08-01

    The detectors of the direct dark matter search experiment EDELWEISS consist of high-purity germanium crystals operated at cryogenic temperatures (mathrm {{<}20 mK}) and low electric fields (mathrm {{<}1 V/cm}). The surface discrimination is based on the simultaneous measurement of the charge amplitudes on different sets of electrodes. As the rise time of a charge signal strongly depends on the location of an interaction in the crystal, a time-resolved measurement can also be used to identify surface interactions. This contribution presents the results of a study of the discrimination power of the rise time parameter from a hot carrier transport simulation in combination with time-resolved measurements using an EDELWEISS-type detector in a test cryostat at ground level. We show the setup for the time-resolved ionization signal read-out in the EDELWEISS-III experiment and first results from data taking in the underground laboratory of Modane.

  4. Physics and performance of nanoscale semiconductor devices at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Balestra, F.; Ghibaudo, G.

    2017-02-01

    The physics and performance of various advanced semiconductor devices, which are the most promising for the end of the ITRS roadmap, are investigated in a wide temperature range down to 20 K. The transport parameters in front and/or back channels in fully depleted ultrathin film SOI devices, Trigate, FinFET, Omega-gate nanowire FET and 3D-stacked SiGe nanowire FETs, fabricated with high-k dielectrics/metal gate, elevated source/drain, different channel orientations, shapes and strains, are addressed. The impacts of the gate length, Si film and wire diameter down to 10 nm, are also shown. The variations of the phonon, Coulomb, neutral defects and surface roughness scattering as a function of temperature and device architecture are highlighted. An overview of the influence of temperature on other main electrical parameters of MOSFETs, nanowires FETs and tunnel FETs, such as threshold voltage, subthreshold swing, leakage and driving currents is also given.

  5. Process of making cryogenically cooled high thermal performance crystal optics

    DOEpatents

    Kuzay, T.M.

    1992-06-23

    A method is disclosed for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N[sub 2] is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation. 7 figs.

  6. Process of making cryogenically cooled high thermal performance crystal optics

    SciTech Connect

    Kuzay, T.M.

    1990-06-29

    A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N{sub 2} is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

  7. Process of making cryogenically cooled high thermal performance crystal optics

    DOEpatents

    Kuzay, Tuncer M.

    1992-01-01

    A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N.sub.2 is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

  8. Ames Research Center cryogenic mirror testing program - A comparison of the cryogenic performance of metal and glass mirrors with different types of mounts

    NASA Technical Reports Server (NTRS)

    Miller, Jacob H.; Melugin, Ramsey K.; Augason, Gordon C.; Howard, Steven D.; Pryor, G. Mark

    1989-01-01

    A summary of the cryogenic testing of glass and metal mirrors performed at NASA Ames Research Center (ARC) and two other places is presented. Recent improvements to the ARC Cryogenic Optics Test Facility are described. The purposes of the tests were to determine: (1) how glass mirrors would perform at cryogenic temperatures compared with metal mirrors and (2) how various mirror mounts would affect the cryogenic performance of mirrors. Details of a cryogenic test of a 50 cm 'double arch', fused-silica mirror with a three-point mount and with a radially-compliant, flexured mount are given. Within the accuracy of the measurements, it was determined that the flexured mount did not induce appreciable distortion in the double arch mirror. Results of the cryogenic tests of a number of glass mirrors and two beryllium mirrors are included. The cryogenic distortion of the glass mirrors was found to be less than that for the beryllium mirrors. Within the accuracy of the measurements, no hysteresis was found in the glass mirrors. It was possible to measure hysteresis in one of the beryllium mirrors.

  9. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    NASA Technical Reports Server (NTRS)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  10. Cryogenic propellant management: Integration of design, performance and operational requirements

    NASA Technical Reports Server (NTRS)

    Worlund, A. L.; Jamieson, J. R., Jr.; Cole, T. W.; Lak, T. I.

    1985-01-01

    The integration of the design features of the Shuttle elements into a cryogenic propellant management system is described. The implementation and verification of the design/operational changes resulting from design deficiencies and/or element incompatibilities encountered subsequent to the critical design reviews are emphasized. Major topics include: subsystem designs to provide liquid oxygen (LO2) tank pressure stabilization, LO2 facility vent for ice prevention, liquid hydrogen (LH2) feedline high point bleed, pogo suppression on the Space Shuttle Main Engine (SSME), LO2 low level cutoff, Orbiter/engine propellant dump, and LO2 main feedline helium injection for geyser prevention.

  11. High-performance Ge-on-Si photodetectors

    NASA Astrophysics Data System (ADS)

    Michel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.

    2010-08-01

    The past decade has seen rapid progress in research into high-performance Ge-on-Si photodetectors. Owing to their excellent optoelectronic properties, which include high responsivity from visible to near-infrared wavelengths, high bandwidths and compatibility with silicon complementary metal-oxide-semiconductor circuits, these devices can be monolithically integrated with silicon-based read-out circuits for applications such as high-performance photonic data links and infrared imaging at low cost and low power consumption. This Review summarizes the major developments in Ge-on-Si photodetectors, including epitaxial growth and strain engineering, free-space and waveguide-integrated devices, as well as recent progress in Ge-on-Si avalanche photodetectors.

  12. GeMS/GSAOI performances from a user perspective

    NASA Astrophysics Data System (ADS)

    Dalessandro, Emanuele; Saracino, Sara; Origlia, Livia; Marchetti, Enrico; Ferraro, Francesco R.; Lanzoni, Barbara; Geisler, Douglas; Mauro, Francesco

    2016-07-01

    Ground-based near-IR imagers assisted by Multi Conjugate Adaptive Optics (MCAO) systems are the technological frontier to obtain high-quality stellar photometry in crowded fields at the highest possible spatial resolution. The Gemini MCAO System (GeMS) feeding the Gemini South Adaptive Optics Imager (GSAOI) is the only facility of this kind currently available to the Community. We used a set of images obtained in the J and Ks bands of the central regions of two Galactic bulge globular clusters (Liller 1 and NGC 6624) with GeMS/GSAOI, under significantly different atmospheric conditions. We characterized the performances of the system in terms of efficiency and uniformity of the Point Spread Function (PSF) over the field of view with varying seeing, airmass and tip-tilt star asterisms. We also compared the PSF performances of GeMS/GSAOI with the HST/ACS ones in the F606W and F814W bands.

  13. Spiral 2 cryogenic system overview: Design, construction and performance test

    SciTech Connect

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S.; Souli, M.; Commeaux, C.

    2014-01-29

    The new particle accelerator project Spiral 2 at GANIL (“Grand Accélérateur d’Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  14. Spiral 2 cryogenic system overview: Design, construction and performance test

    NASA Astrophysics Data System (ADS)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S.; Souli, M.; Commeaux, C.

    2014-01-01

    The new particle accelerator project Spiral 2 at GANIL ("Grand Accélérateur d'Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  15. Performance improvement for epitaxially grown SiGe on Si solar cell using a compositionally graded SiGe base

    NASA Astrophysics Data System (ADS)

    Li, Dun; Zhao, Xin; Wang, Li; Conrad, Brianna; Soeriyadi, Anastasia; Lochtefeld, Anthony; Gerger, Andrew; Perez-Wurfl, Ivan; Barnett, Allen

    2016-12-01

    Silicon germanium (SiGe) is a material with high mobility and relatively low bandgap making it an attractive candidate for the bottom subcell in a III-V tandem solar cell grown on silicon (Si) substrate. This paper reports on the performance improvement of an epitaxially grown SiGe on Si solar cell by growing a higher Ge composition SiGe layer in the base. The purpose of growing a higher Ge composition SiGe layer in the base is to improve the light absorption. The first iteration of this structure was an Si0.18Ge0.82 solar cell fabricated with a 1 μm thick Si0.12Ge0.88 layer in the base. This solar cell had a lower efficiency compared with the reference solar cell without the Si0.12Ge0.88 layer. One of the main reasons for the lower efficiency is believed to be the high threading dislocation density (TDD) caused by the abrupt change of lattice constant between Si0.18Ge0.82 and Si0.12Ge0.88 in the base. In order to reduce the TDD, the second iteration of the structure was fabricated with a compositionally graded SiGe base. With the new structure, an SiGe on Si solar cell with an efficiency of 3.1%, when filtered by a GaAs0.79P0.21 top cell, was fabricated. The Ge composition in the base of this solar cell gradually increased from 82% to 85% and then decreased again to 82%. The developed SiGe solar cell with graded base provides more flexibility for a highly efficient GaAsP/SiGe dual junction solar cell grown on an Si substrate.

  16. CEBAF SRF Performance during Initial 12 GeV Commissioning

    SciTech Connect

    Bachimanchi, Ramakrishna; Allison, Trent; Daly, Edward; Drury, Michael; Hovater, J; Lahti, George; Mounts, Clyde; Nelson, Richard; Plawski, Tomasz

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of eleven new 100 MV cryomodules (88 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. Not all the cavities were operated at the minimum gradient of 19.3 MV/m with the beam. Though the initial 12 GeV milestones were achieved during the initial commissioning of CEBAF, there are still some issues to be addressed for long term reliable operation of these modules. This paper reports the operational experiences during the initial commissioning and the path forward to improve the performance of C100 (100 MV) modules.

  17. Performance and materials aspects of Ge:Be photoconductors

    NASA Technical Reports Server (NTRS)

    Haegel, N. M.; Haller, E. E.; Luke, P. N.

    1983-01-01

    Ge:Be photoconductors were developed for low photon background applications in the 30 to 50 MM wavelength region. These detectors provide higher responsivity and lower noise equivalent power (NEP) than the Ge:Ga detectors currently operating in this wavelength range. Beryllium doped single crystals were grown by the Czochralski method from a carbon susceptor under a vacuum of approx. one million torr. An optimum detective quantum efficiency of 46% at a background flux of 1.5 x 10 to the 8th power photons/second (7 x 10 to the 13th power W) was reported. Ge:Be detector performance is strongly influenced by the absolute concentrations and the concentration ratio of residual shallow donors and shallow acceptors.

  18. Performance and materials aspects of Ge:Be photoconductors

    NASA Technical Reports Server (NTRS)

    Haegel, N. M.; Haller, E. E.; Luke, P. N.

    1983-01-01

    Ge:Be photoconductors have been developed for low photon background applications in the 30 - 50 micron wavelength region. These detectors provide higher responsivity and lower noise equivalent power (NEP) than the Ge:Ga detectors currently operating in this wavelength range. Beryllium-doped single crystals were grown by the Czochralski method from a carbon susceptor under a vacuum of approximately 10 to the -6th torr. An optimum detective quantum efficiency of 46 percent at a background flux of 1.5 x 10 to the 8th photons/second (7 x 10 to the -13th W is reported. Ge:Be detector performance is strongly influenced by the absolute concentrations and the concentration ratio of residual shallow donors and shallow acceptors.

  19. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Developed for predicting the behavior of cryogenic liquids inside propellant tanks under various environmental and operating conditions. Provides a multi-node analysis of pressurization, ullage venting and thermodynamic venting systems (TVS) pressure control using axial jet or spray bar TVS. Allows user to combine several different phases for predicting the liquid behavior for the entire flight mission timeline or part of it. Is a NASA in-house code, based on FORTRAN 90-95 and Intel Visual FORTRAN compiler, but can be used on any other platform (Unix-Linux, Compaq Visual FORTRAN, etc.). The last Version 7, released on December 2014, included detailed User's Manual. Includes the use of several RefPROP subroutines for calculating fluid properties.

  20. Cryogenic Temperature Effects on Performance of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Hui, David; Dutta, P. K.

    2003-01-01

    The objective of this study is to evaluate the low temperature behavior of polymer composites down to the cryogenic temperature range. This would be accomplished by study of its behavior in several ways. First we would study the microfracture growth by observing the acoustic emission as the temperature is lowered. We would also note any damage growth by ultrasonic velocity testing applying the pulse echo method. Effects of such low temperature would then be studied by examining the shear properties by the short beam shear test, and also the fracture toughness properties over a wide range of strain rate and temperature. At present these studies are continuing. The limited data obtained from these studies are reported in this report.

  1. Cryogenic heat pipe experiment - Flight performance onboard a sounding rocket

    NASA Technical Reports Server (NTRS)

    Harwell, W.; Quadrini, J.; Sherman, A.; Mcintosh, R.

    1975-01-01

    Flight data from a 15.8 mm OD, 760 mm long, axial-groove, methane cryogenic heat pipe verified successful priming and operation during six min of zero-g time. The nominal power applied to the evaporator was 60-w for the first 60 sec of zero-g time, 14 w for the next 270 sec, and 25 w for the last 20 sec of flight. The heat pipe condenser was mounted into an aluminum heat sink which was cooled to 103 K at launch and increased in temperature to 128 K by the end of the flight. Ground test data obtained for the flight heat pipe, together with theoretical predictions, indicate a zero-g heat transport capability of 3500 to 4000 w-cm in the 100-125 K temperature range.

  2. NTD-GE Based Microcalorimeter Performance

    NASA Technical Reports Server (NTRS)

    Bandler, Simon; Silver, Eric; Schnopper, Herbert; Murray, Stephen; Barbera, Marco; Madden, Norm; Landis, Don; Beeman, Jeff; Haller, Eugene; Tucker, Greg

    2000-01-01

    Our group has been developing x-ray microcalorimeters consisting of neutron transmutation doped (NTD) germanium thermistors attached to superconducting tin absorbers. We discuss the performance of single pixel x-ray detectors, and describe an array technology. In this paper we describe the read-out circuit that allows us to measure fast signals in our detectors as this will be important in understanding the primary cause of resolution broadening. We describe briefly a multiplexing scheme that allows a number of different calorimeters to be read out using a single JFET. We list the possible causes of broadening and give a description of the experiment which best demonstrates the cause of the primary broadening source. We mention our strategy for finding a suitable solution to this problem and describe briefly a technology for building arrays of these calorimeters.

  3. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Villa, E.; Aja, B.; de la Fuente, L.; Artal, E.

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  4. Design and thermodynamic performance analysis of multichannel cryogenic transfer line for XFEL AMTF

    NASA Astrophysics Data System (ADS)

    Duda, P.; Chorowski, M.; Polinski, J.

    2017-02-01

    The XATL1 cryogenic transfer line for XFEL/AMTF is dedicated for transferring cryogenic cooling power from helium refrigerators to a cryogenic test facility by means of the continuous flows of cold helium in supercritical and gaseous state. The external envelope of the transfer line contains 4 cold process lines and a common radiation shield, as well as the system of supports and thermal contraction compensators. The XATL1 was designed and manufactured within the Polish in-kind contribution to the XFEL project. The line has been under operation since year 2012. The paper presents a design, including supporting and thermal compensation systems, of the XATL1 line. The line performance analysis based on the Second Law of Thermodynamics has been done, and the output has been compared with the design assumptions.

  5. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.

    PubMed

    Villa, E; Aja, B; de la Fuente, L; Artal, E

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  6. PERFORMANCE OF A LIQUID XENON CALORIMETER CRYOGENIC SYSTEM FOR THE MEG EXPERIMENT

    SciTech Connect

    Haruyama, T.; Kasami, K.; Hisamitsu, Y.; Iwamoto, T.; Mihara, S.; Mori, T.; Nishiguchi, H.; Otani, W.; Sawada, R.; Uchiyama, Y.; Nishitani, T.

    2008-03-16

    The {mu}-particle rare decay physics experiment, the MU-E-GAMMA (MEG) experiment, will soon be operational at the Paul Scherrer Institute in Zurich. To achieve the extremely high sensitivity required to detect gamma rays, 800 L of liquid xenon is used as the medium in the calorimeter, viewed by 830 photomultiplier tubes (PMT) immersed in it. The required liquid xenon purity is of the order of ppb of water, and is obtained by using a cryogenic centrifugal pump and cold molecular sieves. The heat load of the calorimeter at 165 K is to be approximately 120 W, which is removed by a pulse-tube cryocooler developed at KEK and built by Iwatani Industrial Gas Corp., with a cooling power of about 200 W at 165 K. The cryogenic system is also equipped with a 1000-L dewar. This paper describes the results of an initial performance test of each cryogenic component.

  7. High-performance cryogenic fractal 180° hybrid power divider with integrated directional coupler

    NASA Astrophysics Data System (ADS)

    Ladu, Adelaide; Montisci, Giorgio; Valente, Giuseppe; Navarrini, Alessandro; Marongiu, Pasqualino; Pisanu, Tonino; Mazzarella, Giuseppe

    2017-06-01

    A 180° hybrid and a directional coupler to be employed in the P-band cryogenic receiver of the Sardinia Radio Telescope are proposed in this work. An in-depth study of the issues related to the use of microwave components for cryogenic radio astronomy receivers is carried out to select the best suited technology and configuration. As a result, a planar fractal 180° hybrid configuration available in the literature has been optimized aiming to increase the operating bandwidth in order to comply with the design specifications of the application at hand. A coupled line directional coupler with weak coupling and high isolation, used to calibrate the receiver chain, is cascaded to the 180° hybrid and realized in the same layout. The final device, consisting of the 180° hybrid and the directional coupler, has been manufactured and tested at the cryogenic temperature of 20 K, showing a good agreement between experimental results and predicted performance.

  8. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    SciTech Connect

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  9. Performance of a 60 gram cryogenic germanium detector

    SciTech Connect

    Cummings, A.; Wang, N.; Shutt, T.; Barnes, P.; Lange, A.; Sadoulet, B.; Stubbs, C. . Dept. of Physics); Emes, J.; Ross, R.; Smith, G. ); Giraud-Heraud ); Haller, E.E. . Dept. of Materials Science and Mineral Engineering); Rich, J. )

    1991-04-01

    The authors have developed a 60 g particle detector which utilizes both the ionization and the photons produced by a particle interaction. Six NTD Ge thermistors are attached to a pure germanium crystal which has implanted contacts for drifting charge. The authors have operated our detector at 30 mK, and the authors have studied its response to irradiation by 18 and 60 keV photons from an 241 Am source. This paper presents an analysis of the resolution of our detector, considering the noise of the front end electronics, and signals from extraneous sources such as microphonics.

  10. Design optimization of high-performance electrodynamic actuators for use in a cryogenically cooled telescope

    NASA Technical Reports Server (NTRS)

    Aubrun, J. N.; Lorell, K. R.; Silveira, K. P.

    1983-01-01

    An analysis and optimization of a mirror-actuator system for large excursion/high-frequency chopping is developed. The results of this analysis, combined with laboratory measurements of a prototype actuator operating at cryogenic temperatures, allow performance predictions to be made for a real system utilizing this technology.

  11. Flight Performance of Gravity Probe B Cryogenic System

    NASA Astrophysics Data System (ADS)

    Murray, D. O.; Taber, M. A.; Burns, K. M.

    2006-04-01

    Gravity Probe B (GP-B) is a cryogenic and space-based test of Einstein's General Theory of Relativity by means of precision gyroscopes, The GP-B spacecraft was launched into a polar orbit from Vandenberg AFB on April 20, 2004. The launch and operation of GP-B represented the culmination of forty years of planning, technology development, hardware fabrication, and testing. The superfluid liquid helium became depleted on September 29, 2005, giving a lifetime of 17.3 months compared to the requirement of 16.5 months and a thermal model prediction of 16.6 months. The flight dewar contained 2320 liters of ~1.8 K superfluid helium at launch and housed the science instrument consisting of four precision gyroscopes and a telescope. A porous plug phase separator effected the venting of the helium boiloff gas. This venting helium was used to operate 16 thrusters, which are the actuators that effect precision pointing on a fixed star and adjust the orbit to be drag free or close to true zero-g.

  12. Impacts of plasma-induced damage due to UV light irradiation during etching on Ge fin fabrication and device performance of Ge fin field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mizubayashi, Wataru; Noda, Shuichi; Ishikawa, Yuki; Nishi, Takashi; Kikuchi, Akio; Ota, Hiroyuki; Su, Ping-Hsun; Li, Yiming; Samukawa, Seiji; Endo, Kazuhiko

    2017-02-01

    We investigated the impacts of plasma-induced damage due to UV light irradiation during etching on Ge fin fabrication and the device performance of Ge fin field-effect transistors (Ge FinFETs). UV light irradiation during etching affected the shape of the Ge fin and the surface roughness of the Ge fin sidewall. A vertical and smooth Ge fin could be fabricated by neutral beam etching without UV light irradiation. The performances of Ge FinFETs fabricated by neutral beam etching were markedly improved as compared to those of Ge FinFETs fabricated by inductively coupled plasma etching, in which the UV light has an impact.

  13. The cryogenic on-orbit liquid analytical tool (COOLANT) - A computer program for evaluating the thermodynamic performance of orbital cryogen storage facilities

    NASA Technical Reports Server (NTRS)

    Taylor, W. J.; Honkonen, S. C.; Williams, G. E.; Liggett, M. W.; Tucker, S. P.

    1991-01-01

    The United States plans to establish a permanent manned presence at the Space Station Freedom in low earth orbit (LEO) and then carry out exploration of the solar system from this base. These plans may require orbital cryogenic propellant storage depots. The COOLANT program has been developed to analyze the thermodynamic performance of these depots to support design tradeoff studies. It was developed as part of the Long Term Cryogenic Storage Facility Systems Study for NASA/MSFC. This paper discusses the program structure and capabilities of the COOLANT program. In addition, the results of an analysis of a 200,000 lbm hydrogen/oxygen storage depot tankset using COOLANT are presented.

  14. Impact of Ge profile on the performance of PNP SiGe HBT on thin film SOI

    NASA Astrophysics Data System (ADS)

    Misra, Prasanna K.; Qureshi, S.

    2012-10-01

    The pnp SiGe HBT on thin film SOI is investigated with different Ge profiles using 2D numerical simulations in MEDICI. The base current, collector current, DC current gain, AC voltage gain, unity current gain frequency and breakdown voltage is obtained for a 0.09 × 1.0 μm2 pnp SiGe HBT with triangular (0%-30%), trapezoidal (10%- 20%) and box (15%) Ge profiles in the base layer. The results obtained with the Ge profiles, has been analyzed and compared. The Ft BVCEO product for triangular, trapezoidal and box Ge profiles has been found as 190.8, 401, and 359.6 GHzV respectively. The tradeoff between voltage gain and unity current gain frequency for the Ge profiles has been analyzed. The simulation result suggests that the pnp SiGe HBT on thin film SOI with trapezoidal Ge profile is a potential candidate for the high speed complementary bipolar circuits that can be used in high performance mixed signal applications.

  15. Modifications to JLab 12 GeV Refrigerator and Wide Range Mix Mode Performance Testing Results

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Hasan, N.; Dixon, K.; Norton, R.; Creel, J.

    2017-02-01

    Analysis of data obtained during the spring 2013 commissioning of the new 4.5 K refrigeration system at Jefferson Lab (JLab) for the 12 GeV upgrade indicated a wide capacity range with good efficiency and minimal operator interaction. Testing also showed that the refrigerator required higher liquid nitrogen (LN) consumption for its pre-cooler than anticipated by the design. This does not affect the capacity of the refrigerator, but it does result in an increased LN utility cost. During the summer of 2015 the modifications were implemented by the cold box manufacturer, according to a design similar to the JLab 12 GeV cold box specification. Subsequently, JLab recommissioned the cold box and performed extensive performance testing, ranging from 20% to 100% of the design maximum capacity, and in various modes of operation, ranging from pure refrigeration, pure liquefaction, half-and-half mix mode and at selected design modes using the Floating Pressure - Ganni Cycle. The testing demonstrated that the refrigerator system has a good and fairly constant performance over a wide capacity range and different modes of operation. It also demonstrated the modifications resulted in a LN consumption that met the design for the pure refrigeration mode (which is the most demanding) and was lower than the design for the nominal and maximum capacity modes. In addition, a pulsed-load test, similar to what is expected for cryogenic systems supporting fusion experiments, was conducted to observe the response using the Floating Pressure - Ganni Cycle, which was stable and robust. This paper will discuss the results and analysis of this testing pertaining to the LN consumption, the system efficiency over a wide range of capacity and different modes and the behaviour of the system to a pulsed load.

  16. Performance analysis for the cryogenic etalon spectrometer on the Upper Atmospheric Research Satellite

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Forney, P. B.; Kumer, J. B.; Naes, L. G.; Nast, T. C.

    1983-01-01

    The Upper Atmospheric Research Satellite (UARS) program has the objective of providing an 18-month to 2-year platform for observations of the upper atmosphere, giving particular attention to the stratosphere, mesosphere, and lower thermosphere. The primary aims of the mission are related to the measurement of the solar energy input between 120 and 500 km, the acquisition of global maps of the vertical and horizontal distribution of a series of critical trace and minor species, and the investigation of the dynamics of the upper atmosphere. One of several instruments designed to perform neutral species measurements on board the satellite is the Cryogenic Limb Array Etalon Spectrometer (CLAES). The CLAES experiment is concerned with measurements of concentrations of species of interest to the ozone layer balance. Attention is given to the performance requirements of the instrument and the effects of these requirements on the cryogenic design.

  17. On the selection of materials for cryogenic seals and the testing of their performance

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    1989-01-01

    Three questions are addressed: what mission must a cryogenic seal perform; what are the contrasts between desirable and available seal materials; and how realistic must test conditions be. The question of how to quantify the response of a material subject to large strains and which is susceptible to memory effects leads to a discussion of theoretical issues. Accordingly, the report summarizes some ideas from the rational mechanics of materials. The report ends with a list of recommendations and a conclusion.

  18. SEU tests performed on the digital communication system for LHC cryogenic instrumentation

    NASA Astrophysics Data System (ADS)

    Casas-Cubillos, J.; Faccio, F.; Gomes, P.; Martin, M. A.; Rodriguez-Ruiz, M. A.

    2002-06-01

    The future LHC particle accelerator will use a large number of cryogenic sensors and actuators, most of which are located inside the machine tunnel and therefore in a radiation environment. These elements will communicate through a fieldbus. This paper reports the irradiation study carried out on WorldFIP fieldbus communication system. A digital communication system based on WorldFIP fieldbus protocol has been implemented and single event effects and total ionizing dose radiation tests have been performed on it.

  19. Net Shape Spin Formed Cryogenic Aluminum Lithium Cryogenic Tank Domes for Lower Cost Higher Performance Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Hoffman, Eric; Domack, Marcia; Brewster, Jeb; Russell, Carolyn

    2013-01-01

    With the goal of lower cost (simplified manufacturing and lower part count) and higher performance (higher strength to weight alloys) the NASA Technical Maturation Program in 2006 funded a proposal to investigate spin forming of space launch vehicle cryogenic tank domes. The project funding continued under the NASA Exploration Technology Development Program through completion in FY12. The first phase of the project involved spin forming of eight, 1 meter diameter "path finder" domes. Half of these were processed using a concave spin form process (MT Aerospace, Augsburg Germany) and the other half using a convex process (Spincraft, Boston MA). The convex process has been used to produce the Ares Common Bulkhead and the concave process has been used to produce dome caps for the Space Shuttle light weight external tank and domes for the NASDA H2. Aluminum Lithium material was chosen because of its higher strength to weight ratio than the Aluminum 2219 baseline. Aluminum lithium, in order to obtain the desired temper (T8), requires a cold stretch after the solution heat treatment and quench. This requirement favors the concave spin form process which was selected for scale up. This paper describes the results of processing four, 5.5 meter diameter (upper stage scale) net shaped spin formed Aluminum Lithium domes. In order to allow scalability beyond the limits of foundry and rolling mills (about 12 foot width) the circular blank contained one friction stir weld (heavy lifter scales require a flat blank containing two welds). Mechanical properties data (tensile, fracture toughness, stress corrosion, and simulated service testing) for the parent metal and weld will also be discussed.

  20. Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.; Patel, H. K.; Shah, D. K.

    2015-04-01

    Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the

  1. Cryogenic Performance of Trex SiC Mirror

    NASA Technical Reports Server (NTRS)

    Foss, Colby; Kane, Dave; Bray, Donald; Hadaway, James

    2005-01-01

    Low cost, high performance lightweight Silicon Carbide (Sic) mirrors provide an alternative to Beryllium mirrors. A Trex Enterprises 0.25m diameter lightweight Sic mirror using its patented Chemical Vapor Composites (CVC) technology was evaluated for its optical performance. CVC Sic is chemically pure, thermally stable, and mechanically stiff. CVC technology yields higher growth rate than that of CVD Sic. NASA has funded lightweight optical materials technology development efforts involving Sic mirrors for future space based telescope programs. As part of these efforts, a Trex Sic was measured interferometrically from room temperature to 30 degrees Kelvin. This paper will discuss the test goals, the test instrumentation, test results, and lessons learned.

  2. An ultralightweight, evacuated, load-bearing, high-performance insulation system. [for cryogenic propellant tanks

    NASA Technical Reports Server (NTRS)

    Parmley, R. T.; Cunnington, G. R., Jr.

    1978-01-01

    A new hollow-glass microsphere insulation and a flexible stainless-steel vacuum jacket were demonstrated on a flight-weight cryogenic test tank, 1.17 m in diameter. The weight of the system is three times lighter than the most advanced vacuum-jacketed design demonstrated to date, a free-standing honeycomb hard shell with a multilayer insulation system (for a Space Tug application). Design characteristics of the flexible vacuum jacket are presented along with a model describing the insulation thermal performance as a function of boundary temperatures and emittance, compressive load on the insulation and insulation gas pressure. Test data are compared with model predictions and with prior flat-plate calorimeter test results. Potential applications for this insulation system or a derivative of this system include the cryogenic Space Tug, the Single-Stage-to-Orbit Space Shuttle, LH2 fueled subsonic and hypersonic aircraft, and LNG applications.

  3. Power electronics performance in cryogenic environment: evaluation for use in HTS power devices

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Valtchev, S.; Pina, J.; Gonçalves, A.; Ventim Neves, M.; Rodrigues, A. L.

    2008-02-01

    Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications.

  4. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    NASA Technical Reports Server (NTRS)

    Toland, Ronald; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    In spite of its baseline mechanical stress relief, aluminum 6061-T651 harbors some residual stress that may relieve and distort mirror figure to unacceptable levels at cryogenic operating temperatures unless relieved during fabrication. Cryogenic instruments using aluminum mirrors for both ground-based and space IR astronomy have employed a variety of heat treatment formulae, with mixed results. We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(TM) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  5. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    NASA Technical Reports Server (NTRS)

    Toland, Ronald; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    In spite of its baseline mechanical stress relief, aluminum 6061-T651 harbors some residual stress that may relieve and distort mirror figure to unacceptable levels at cryogenic operating temperatures unless relieved during fabrication. Cryogenic instruments using aluminum mirrors for both ground-based and space IR astronomy have employed a variety of heat treatment formulae, with mixed results. We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(TM) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  6. Cryogenic Performance of a Lightweight Silicon Carbide Mirror

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Carpenter, James; Haight, Harlan; Hogue, William; Kegley, Jeff; Stahl, H. Philip; Wright, Ernie; Kane, Dave; Hadaway, James

    2005-01-01

    Low cost, high performance lightweight Silicon Carbide (SiC) mirrors provide an alternative to Beryllium mirrors. A Trex Enterprises 0.25m diameter lightweight SiC mirror using its patented Chemical Vapor Composites (CVC) technology was evaluated for its optical performance. CVC SiC is chemically pure, thermally stable, and mechanically stiff. CVC technology yields higher growth rate than that of CVD SiC. NASA has funded lightweight optical materials technology development efforts involving SiC mirrors for future space based telescope programs. As part of these efforts, a Trex SiC was measured interferometrically from room temperature to 30 degrees Kelvin. This paper will discuss the test goals, the test instrumentation, test results, and lessons learned.

  7. Cryogenic Performance of a Lightweight Silicon Carbide Mirror

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Carpenter, James; Haight, Harlan; Hogue, William; Kegley, Jeff; Stahl, H. Philip; Wright, Ernie; Kane, Dave; Hadaway, James

    2005-01-01

    Low cost, high performance lightweight Silicon Carbide (SiC) mirrors provide an alternative to Beryllium mirrors. A Trex Enterprises 0.25m diameter lightweight SiC mirror using its patented Chemical Vapor Composites (CVC) technology was evaluated for its optical performance. CVC SiC is chemically pure, thermally stable, and mechanically stiff. CVC technology yields higher growth rate than that of CVD SiC. NASA has funded lightweight optical materials technology development efforts involving SiC mirrors for future space based telescope programs. As part of these efforts, a Trex SiC was measured interferometrically from room temperature to 30 degrees Kelvin. This paper will discuss the test goals, the test instrumentation, test results, and lessons learned.

  8. Refrigeration for Cryogenic Sensors

    SciTech Connect

    Gasser, M.G.

    1983-12-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  9. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  10. Cryogenic performance of a cryocooler-cooled superconducting undulator

    SciTech Connect

    Fuerst, J. D.; Doose, C.; Hasse, Q.; Ivanyushenkov, Y.; Kasa, M.; Shiroyanagi, Y.

    2014-01-29

    A cryocooler-cooled superconducting undulator has been installed and operated with beam at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The device consists of a dual-core 42-pole magnet structure that is cooled to 4.2 K with a system of four cryocoolers operating in a zero-boil-off configuration. This effort represents the culmination of a development program to establish concept feasibility and evaluate cryostat design and cryocooler-based refrigeration. Cryostat performance is described including cool-down/warm-up, steady-state operation, cooling margin, and the impact of beam during operation in the APS storage ring. Plans for future devices with longer magnets, which will incorporate lessons learned from the development program, are also discussed.

  11. Cryogenic performance of a cryocooler-cooled superconducting undulator

    NASA Astrophysics Data System (ADS)

    Fuerst, J. D.; Doose, C.; Hasse, Q.; Ivanyushenkov, Y.; Kasa, M.; Shiroyanagi, Y.

    2014-01-01

    A cryocooler-cooled superconducting undulator has been installed and operated with beam at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The device consists of a dual-core 42-pole magnet structure that is cooled to 4.2 K with a system of four cryocoolers operating in a zero-boil-off configuration. This effort represents the culmination of a development program to establish concept feasibility and evaluate cryostat design and cryocooler-based refrigeration. Cryostat performance is described including cool-down/warm-up, steady-state operation, cooling margin, and the impact of beam during operation in the APS storage ring. Plans for future devices with longer magnets, which will incorporate lessons learned from the development program, are also discussed.

  12. Cryogenic performance of lightweight SiC and C/SiC mirrors

    NASA Astrophysics Data System (ADS)

    Hadaway, James B.; Eng, Ron; Stahl, H. Philip; Carpenter, James R.; Kegley, Jeffrey R.; Hogue, William D.

    2004-10-01

    The technology associated with the use of silicon carbide (SiC) for high-performance mirrors has matured significantly over the past 10-20 years. More recently, the material has been considered for cryogenic applications such as space-based infrared telescopes. In light of this, NASA has funded several technology development efforts involving SiC mirrors. As part of these efforts, three lightweight SiC mirrors have been optically tested at cryogenic temperatures within the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The three mirrors consisted of a 0.50 m diameter carbon fiber-reinforced SiC, or C/SiC, mirror from IABG in Germany, a 0.51 m diameter SiC mirror from Xinetics, Inc., and a 0.25 m diameter SiC mirror from POCO Graphite, Inc. The surface figure error was measured interferometrically from room temperature (~290 K) to ~30 K for each mirror. The radius-of-curvature (RoC) was also measured over this range for the IABG C/SiC & Xinetics SiC mirrors. This paper will describe the test goals, the test instrumentation, and the test results for these cryogenic tests.

  13. Cryogenic Optical Performance of the Cassini Composite Infrared Spectrometer (CIRS) Flight Telescope

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Hagopian, John

    1998-01-01

    The CIRS half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out of house and then assembled, aligned and tested upon receipt at GSFC. A 24 inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope's image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the image performance requirement of 80% encircled energy within a 432 microns diameter circle.

  14. Cryogenic Optical Performance of the Cassini Composite InfraRed Spectrometer (CIRS) Flight Telescope

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Hagopian, John

    1998-01-01

    The CIRS half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out of house and then assembled, aligned and tested upon receipt at GSFC. A 24 inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope,s image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the cold image performance requirement of 80% encircled energy within a 460 micron diameter circle.

  15. Thermal Performance Testing of Cryogenic Multilayer Insulation with Silk Net Spacers

    NASA Astrophysics Data System (ADS)

    Johnson, W. L.; Frank, D. J.; Nast, T. C.; Fesmire, J. E.

    2015-12-01

    Early comprehensive testing of cryogenic multilayer insulation focused on the use of silk netting as a spacer material. Silk netting was used for multiple test campaigns that were designed to provide baseline thermal performance estimates for cryogenic insulation systems. As more focus was put on larger systems, the cost of silk netting became a deterrent and most aerospace insulation firms were using Dacron (or polyester) netting spacers by the early 1970s. In the midst of the switch away from silk netting there was no attempt to understand the difference between silk and polyester netting, though it was widely believed that the silk netting provided slightly better performance. Without any better reference for thermal performance data, the silk netting performance correlations continued to be used. In order to attempt to quantify the difference between the silk netting and polyester netting, a brief test program was developed. The silk netting material was obtained from Lockheed Martin and was tested on the Cryostat-100 instrument in three different configurations, 20 layers with both single and double netting and 10 layers with single netting only. The data show agreement within 15 - 30% with the historical silk netting based correlations and show a substantial performance improvement when compared to previous testing performed using polyester netting and aluminum foil/fiberglass paper multilayer insulation. Additionally, the data further reinforce a recently observed trend that the heat flux is not directly proportional to the number of layers installed on a system.

  16. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Beard, Shawn J.; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike

    2008-10-01

    A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment.

  17. Thermal Performance of Cryogenic Piping Multilayer Insulation in Actual Field Installations

    NASA Technical Reports Server (NTRS)

    Fesmire, J.; Augustnynowicz, S.; Thompson, K. (Technical Monitor)

    2002-01-01

    A standardized way of comparing the thermal performance of different pipelines in different sizes is needed. Vendor data for vacuum-insulated piping are typically given in heat leak rate per unit length (W/m) for a specific diameter pipeline. An overall k-value for actual field installations (k(sub oafi)) is therefore proposed as a more generalized measure for thermal performance comparison and design calculation. The k(sub oafi) provides a direct correspondence to the k-values reported for insulation materials and illustrates the large difference between ideal multilayer insulation (MLI) and actual MLI performance. In this experimental research study, a section of insulated piping was tested under cryogenic vacuum conditions, including simulated spacers and bending. Several different insulation systems were tested using a 1-meter-long cylindrical cryostat test apparatus. The simulated spacers tests showed significant degradation in the thermal performance of a given insulation system. An 18-meter-long pipeline test apparatus is now in operation at the Cryogenics Test Laboratory, NASA Kennedy Space Center, for conducting liquid nitrogen thermal performance tests.

  18. Characteristics and performance of the ESTEC large space simulator cryogenic system

    NASA Technical Reports Server (NTRS)

    Amlinger, H.; Bosma, S. J.

    1986-01-01

    The final concept and performance characteristics of the Large Space Simulator (LSS) at ESTEC, The Netherlands are discussed. The LSS cryogenics system has proven its operational capabilities under simulated heat load conditions and provides sufficient margin for future elevated requirements. The acceptance test proved that nominal operating pressures can be lower than the design parameters, providing increased system safety and reliability. The ease of access for repair and the incorporated redundancy will limit system downtime. Finally, the system design resulted in a low consumption of LN sub 2, which is an important factor in keeping the operational costs at a low level.

  19. Potential improvements in SiGe radioisotope thermoelectric generator performance

    SciTech Connect

    Mowery, A.L.

    1999-01-01

    In accordance with NASA{close_quote}s slogan: {open_quotes}Better, Cheaper, Faster,{close_quotes} this paper will address potential improvements to SiGe RTG technology to make them Better. RTGs are doubtless cheaper than {open_quotes}paper designs{close_quotes} which are better and cheaper until development, performance and safety test costs are considered. RTGs have the advantage of being fully developed and tested in the rigors of space for over twenty years. Further, unless a new system can be accelerated tested, as were the RTGs, they cannot be deployed reliably unless a number of systems have succeeded for test periods exceeding the mission lifetime. Two potential developments are discussed that can improve the basic RTG performance by 10 to 40{sup +}{percent} depending on the mission profile. These improvements could be demonstrated in years. Accelerated testing could also be performed in this period to preserve existing RTG reliability. Data from a qualification tested RTG will be displayed, while not definitive, to support the conclusions. Finally, it is anticipated that other investigators will be encouraged to suggest further modifications to the basic RTG design to improve its performance. {copyright} {ital 1999 American Institute of Physics.}

  20. GeGI (Germanium Gamma Imager) Performance: Maritime Interdiction Operation

    SciTech Connect

    Dreyer, Jonathan G.; Burks, Morgan T.; Trombino, Dave

    2014-09-23

    The Gamma Ray Imager (GeGI) was demonstrated during the Maritime Interdiction Operation at Point Alameda, the site of the former Naval Air Station, in Alameda, CA. During this exercise GeGI was used to localize sources within an abandoned building and a cargo ship, the Admiral Callaghan.

  1. Voltage-Assisted Calorimetric Detection of Gamma Interactions in a Prototype Cryogenic Ge Detector of the EDELWEISS Collaboration for Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Broniatowski, A.; Piro, M.-C.; Marnieros, S.; Bergé, L.; Dumoulin, L.; Chapellier, M.

    2016-07-01

    As a part of an R&D program to improve the sensitivity of its detectors to low-mass (<10 GeV) weakly interacting massive particles, the Edelweiss dark matter collaboration is developing cryogenic ionization-and-heat coplanar grid germanium detectors, operated in a high-bias mode where advantage is taken of the voltage-assisted amplification of the ionization signals for enhanced sensitivity to low-energy (

  2. Updated cryogenic performance test results for the flight model JWST fine guidance sensor

    NASA Astrophysics Data System (ADS)

    Rowlands, Neil; Beaton, Alexander; Chayer, Pierre; Haley, Craig; Midwinter, Calvin; Volk, Kevin; Warner, Gerry; Zhou, Julia

    2016-07-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) has successfully completed its final cryogenic performance verification tests. The performance of the newly upgraded Fine Guidance Sensor (FGS) / Near Infrared Imager and Slitless Spectrometer (NIRISS) was evaluated in these tests. We describe some of the key guider performance results which have been obtained and compare them to previous results with an older generation of H2RG infrared detector arrays. The identification mode sensitivity improvement is described along with noise equivalent angle (NEA) sensitivity performance improvements in tracking and fine guiding modes. Tracking mode allows the Observatory line of sight to settle in advance of the fine guidance mode and also facilitates moving target observing. The NEA of the FGS-Guiders will in part determine the ultimate image quality of the JWST Observatory.

  3. FRIB Cryogenic Plant Status

    SciTech Connect

    Dixon, Kelly D.; Ganni, Venkatarao; Knudsen, Peter N.; Casagranda, Fabio

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  4. Characterizing the performance of cryogenic lens mounts for the HARMONI spectograph

    NASA Astrophysics Data System (ADS)

    Allen, Jamie R.; O'Brien, Kieran; Lynn, James D.; Thatte, Niranjan A.; Tosh, Ian A. J.; Tacon, Mike

    2016-08-01

    Two different cryogenic lens mounts have been developed and tested for potential use in the HARMONI spectrograph cameras. Problems were encountered during initial tests whereby the lenses were cracking where they were adhered to the mount. This was found to be caused by the choice of adhesive and solved by changing to a silicone RTV glue. The cryogenic performance of the two lens mount designs was tested, with the baseline design seeing the lens move by 18 μm radially from warm to cold, which is just within the tightest tolerances from the optical design, as long as any misalignments in the mounting procedure can be removed when aligning the lenses in the camera barrel. The alternative design was found have much worse performance with the lens moving by 40 μm due to fragile flexures and so is no longer being considered. A mounting procedure for spherical lenses has also been developed which is capable of peak to valley alignments of 10 μm axially, and 5 μm radially.

  5. Performance of smart piezoelectric transducers for structural health monitoring on composite laminates in cryogenic environments

    NASA Astrophysics Data System (ADS)

    Tseng, Kevin K.; Tinker, Michael L.; Lassiter, John O.; Wang, Liangsheng

    2004-07-01

    An important way of increasing the payload in a reusable launch vehicle (RLV) is to replace heavy metallic materials by lightweight composite laminates. Engineers and scientists have studied many metallic materials thoroughly, due to the long history of practical usage in many aerospace and aeronautical structures. Compared to metallic materials, composite laminates are a relatively new material and therefore require more attention to ensure the safety and reliability. Among various parts and systems of the RLV, this study focuses on tanks containing cryogenic fuel. Historically, aluminum alloys have been used as the materials to construct fuel tanks for launch vehicles. To replace aluminum alloys with composite laminates or honeycomb materials, engineers have to make sure that the composites are free of defects before, during, and after launch. In addition to robust design and manufacturing procedures, the performance of the composite structures needs to be evaluated constantly. In recent years, the impedance-based health monitoring technique has shown its promise in many applications. This technique makes use of the special properties of smart piezoelectric materials to identify the change of material properties due to the nucleation and progression of damage. A major advantage of this technique is that the procedure is nondestructive in nature and does not perturb the properties and performance of the materials and structures. This paper reports the results of applying the impedance-based nondestructive testing technique to the damage identification of composite laminates at cryogenic temperature. These materials have potential application for fuel tanks in future RLV"s.

  6. Performance of the Primary Mirror Center-of-Curvature Optical Metrology System during Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.

  7. Thermodynamic Control System for cryogenic propellant storage : experimental and analytical performance assessment

    NASA Astrophysics Data System (ADS)

    Mer, Samuel; Thibault, Jean-Paul; Corre, Christophe

    2016-11-01

    Future operations in space exploration require to store cryogens for long duration. Residual heat loads induce cryogenic propellant vaporization and tank self-pressurization (SP), eventually leading to storage failure for large enough mission duration. The present study focuses on the Thermodynamic Venting System (TVS) control strategy : liquid propellant is pumped from the tank, cooled down by a heat exchanger and re-injected, as a jet, inside the tank. The injection is followed by vapor condensation and liquid bath destratification due to mixing. The system cold source is created thanks to a Vented Branch where a liquid fraction is withdrawn from the tank and expanded through a Joule-Thomson valve. The vented branch vaporization permits to cool down the injection loop. Quantitative analyses of SP and TVS control have been experimentally performed using a 110 L tank and a simulant fluid. A database of accurate temperature and pressure dynamics has been gathered and used to validate a homogeneous thermodynamic model which provides a fast prediction of the tank dynamics. The analytical model has been coupled with a multi-objective optimizer to identify system components and regulation strategies that maximize the tank storage duration for various mission types. The authors acknowledge the joint support of the Centre National d'Etudes Spatiales and Air Liquide Advanced Technologies.

  8. Operation and performance of the ICARUS T600 cryogenic plant at Gran Sasso underground Laboratory

    NASA Astrophysics Data System (ADS)

    Antonello, M.; Aprili, P.; Baibussinov, B.; Boffelli, F.; Bubak, A.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieślik, K.; Cline, D. B.; Cocco, A. G.; Dabrowska, A.; Dermenev, A.; Disdier, J. M.; Falcone, A.; Farnese, C.; Fava, A.; Ferrari, A.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G. L.; Rossella, M.; Rubbia, C.; Sala, P. R.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Sulej, R.; Szarska, M.; Terrani, M.; Torti, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H. G.; Yang, X.; Zalewska, A.; Zani, A.; Zaremba, K.

    2015-12-01

    ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with an excellent calorimetric energy measurement. After the three months demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam (CNGS) and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid argon. Overall plant performance and stability during the underground run are discussed. Finally, the decommissioning procedures, carried out about six months after the end of the CNGS neutrino beam operation, are reported.

  9. Cryogenic irradiation of an EMCCD for the WFIRST coronagraph: preliminary performance analysis

    NASA Astrophysics Data System (ADS)

    Bush, Nathan; Hall, David; Holland, Andrew; Burgon, Ross; Murray, Neil; Gow, Jason; Jordan, Douglas; Demers, Richard; Harding, Leon K.; Nemati, Bijan; Hoenk, Michael; Michaels, Darren; Peddada, Pavani

    2016-08-01

    The Wide Field Infra-Red Survey Telescope (WFIRST) is a NASA observatory scheduled to launch in the next decade that will settle essential questions in exoplanet science. The Wide Field Instrument (WFI) offers Hubble quality imaging over a 0.28 square degree field of view and will gather NIR statistical data on exoplanets through gravitational microlensing. An on-board coronagraph will for the first time perform direct imaging and spectroscopic analysis of exoplanets with properties analogous to those within our own solar system, including cold Jupiters, mini Neptunes and potentially super Earths. The Coronagraph Instrument (CGI) will be required to operate with low signal flux for long integration times, demanding all noise sources are kept to a minimum. The Electron Multiplication (EM)-CCD has been baselined for both the imaging and spectrograph cameras due its ability to operate with sub-electron effective read noise values with appropriate multiplication gain setting. The presence of other noise sources, however, such as thermal dark signal and Clock Induced Charge (CIC), need to be characterized and mitigated. In addition, operation within a space environment will subject the device to radiation damage that will degrade the Charge Transfer Effciency (CTE) of the device throughout the mission lifetime. Irradiation at the nominal instrument operating temperature has the potential to provide the best estimate of performance degradation that will be experienced in-flight, since the final population of silicon defects has been shown to be dependent upon the temperature at which the sensor is irradiated. Here we present initial findings from pre- and post- cryogenic irradiation testing of the e2v CCD201-20 BI EMCCD sensor, baselined for the WFIRST coronagraph instrument. The motivation for irradiation at cryogenic temperatures is discussed with reference to previous investigations of a similar nature. The results are presented in context with those from a previous

  10. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al 6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(trademark) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  11. Performance of High-Speed PWM Control Chips at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard; Overton, Eric

    2001-01-01

    The operation of power electronic systems at cryogenic temperatures is anticipated in many NASA space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. As part of the NASA Glenn Low Temperature Electronics Program, several commercial high-speed Pulse Width Modulation (PWM) chips have been characterized in terms of their performance as a function of temperature in the range of 25 to -196 C (liquid nitrogen). These chips ranged in their electrical characteristics, modes of control, packaging options, and applications. The experimental procedures along with the experimental data obtained on the investigated chips are presented and discussed.

  12. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  13. Design, construction and cooling system performance of a prototype cryogenic stopping cell for the Super-FRS at FAIR

    NASA Astrophysics Data System (ADS)

    Ranjan, M.; Dendooven, P.; Purushothaman, S.; Dickel, T.; Reiter, M. P.; Ayet, S.; Haettner, E.; Moore, I. D.; Kalantar-Nayestanaki, N.; Geissel, H.; Plaß, W. R.; Schäfer, D.; Scheidenberger, C.; Schreuder, F.; Timersma, H.; Van de Walle, J.; Weick, H.

    2015-01-01

    A cryogenic stopping cell for stopping energetic radioactive ions and extracting them as a low energy beam was developed. This first ever cryogenically operated stopping cell serves as prototype device for the Low-Energy Branch of the Super-FRS at FAIR. The cell has a stopping volume that is 1 m long and 25 cm in diameter. Ions are guided by a DC field along the length of the stopping cell and by a combined RF and DC fields provided by an RF carpet at the exit-hole side. The ultra-high purity of the stopping gas required for optimum ion survival is reached by cryogenic operation. The design considerations and construction of the cryogenic stopping cell, as well as some performance characteristics, are described in detail. Special attention is given to the cryogenic aspects in the design and construction of the stopping cell and the cryocooler-based cooling system. The cooling system allows the operation of the stopping cell at any desired temperature between about 70 K and room temperature. The cooling system performance in realistic on-line conditions at the FRS Ion Catcher Facility at GSI is discussed. A temperature of 110 K at which efficient ion survival was observed is obtained after 10 h of cooling. A minimum temperature of the stopping gas of 72 K was reached. The expertise gained from the design, construction and performance of the prototype cryogenic stopping cell has allowed the development of a final version for the Low-Energy Branch of the Super-FRS to proceed.

  14. A review of cryogenic testing performed by the thermochemical test branch, Manned Spacecraft Center in support of Apollo 13 and14

    NASA Technical Reports Server (NTRS)

    Propp, C. E.; Mcgee, J. M.

    1971-01-01

    The Apollo 13 anomaly provided considerable impetus for a variety of types of cryogenic and ignition tests. The logic of the various test program designs, the test techniques, and their final impact upon the investigation findings are described. In addition, several test programs initiated to determine the thermal performance and general performance characteristics of the redesigned Apollo 14 cryogenic storage system are presented.

  15. Influence of absorber layer dopants on performance of Ge/Si single photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Pilgrim, Neil J.; Ikonic, Zoran; Kelsall, Robert W.

    2013-04-01

    Monte Carlo electronic transport simulations are applied to investigate the influence of the Ge absorber layer on the performance of Ge/Si single photon avalanche diodes. Ge dopant type and concentration control the internal electric field gradients, which directly influence the probabilistic distribution of times from the point of charge photo-generation to that of transmission over the Ge/Si heterojunction. The electric field adjacent to the heterointerface is found to be the dominant factor in achieving rapid transmission, leading to a preference for p-type dopants in the Ge absorber. The contribution to jitter from the Ge layer is estimated and appears relatively independent of bias, though scales near-linearly with layer height.

  16. Thermal Performance of Aged and Weathered Spray-On Foam Insulation (SOFI) Materials Under Cryogenic Vacuum Conditions (Cryostat-4)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.

  17. Design and performance of transfer assembly for the infrared telescope for Space Lab 2. [cryogenic system

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1984-01-01

    The cryogenic design features employed in the case of the Infrared Telescope (IRT) for Spacelab 2 are unique. They involve the delivery of helium gas at a temperature of 2 K to the IR detectors from a superfluid supply dewar which is separate from the telescope/detector unit. This design has the advantage that thermal and mechanical vibration disturbances in the liquid helium bath are decoupled from the IR detector. The interfacing of the storage dewar with the IRT telescope/detector unit (called cryostat) is the function of the subsystem which is called the transfer assembly (TA). The TA design is discussed, taking into account the porous plug module, the plumbing module, the helix module, and the dewar heat exchanger units. Aspects of transfer assembly performance are also considered.

  18. The Cryogenic Performances of Specific Optical and Electrical Components for a Liquid Argon Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Gong, Datao; Hou, Suen; Liu, Chonghan; Liu, Tiankuan; Su, Da-shung; Teng, Ping-kun; Xiang, Annie C.; Ye, Jingbo; LBNE Collaboration

    In this paper we present a cryogenic performance study of specific optical and electrical components for the Liquid Argon Time Projection Chamber (LArTPC), a potential far site detector technology of the long baseline neutrino experiment (LBNE). We have confirmed that an LVDS driver can drive a 20-meter CAT5E twisted pair up to 1 gigabit per second at liquid nitrogen temperature (77 K). We have verified that a 16:1 serializer Application Specific Integrated Circuit (ASIC), three types of laser diodes, optical fibers and connectors, and field-programming gate arrays (FPGAs) continue to function at 77 K. A variety of commercial resistors and capacitors have been tested at 77 K. All tests we have conducted show that the cold front-end electronics is promising.

  19. Performance analysis of irreversible quantum Stirling cryogenic refrigeration cycles and their parametric optimum criteria

    NASA Astrophysics Data System (ADS)

    Lin, Bihong; Chen, Jincan

    2006-08-01

    The influence of both the quantum degeneracy and the finite-rate heat transfer between the working substance and the heat reservoirs on the optimal performance of an irreversible Stirling cryogenic refrigeration cycle using an ideal Fermi or Bose gas as the working substance is investigated, based on the theory of statistical mechanics and thermodynamic properties of ideal quantum gases. The inherent regeneration losses of the cycle are analysed. Expressions for several important performance parameters such as the coefficient of performance, cooling rate and power input are derived. By using numerical solutions, the cooling rate of the cycle is optimized for a given power input. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal regions of the coefficient of performance and power input are determined. In particular, the optimal performance of the cycle in the strong and weak gas degeneracy cases and the high temperature limit are discussed in detail. The analytic expressions of some optimized parameters are derived. Some optimum criteria are given. The distinctions and connections between the Stirling refrigeration cycles working with the ideal quantum and classical gases are revealed.

  20. A high performance Ge/Si0.5Ge0.5/Si heterojunction dual sources tunneling transistor with a U-shaped channel

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Wang, Qianqiong; Chen, Shupeng

    2017-06-01

    In this paper, a new Ge/Si0.5Ge0.5/Si heterojunction dual sources tunneling transistor with a U-shaped channel (Ge_DUTFET) is proposed and investigated by Silvaco-Atlas simulation. The line tunneling perpendicular to channel and point tunneling parallel to channel simultaneously occur on both sides of the gate. The Ge is chosen as the source region material to increase the line tunneling current. The designed heterojunction between the Ge source and Si channel decreases the point tunneling barrier width to enhance the point tunneling current. And this heterojunction can also promote the Ge_DUTFET to occur point tunneling at the small gate voltage, which makes it obtain the smaller turn-on voltage. Furthermore, the Si0.5Ge0.5 buffer layer is also helpful for the enhancement of performance. The simulation results reveal that Ge_DUTFET has the better performance compared with the Si_DUTFET. The on-state current and average subthreshold swing of Ge_DUTFET are 1.11 × 10-5A/μm and 35.1mV/dec respectively. The max cut-off frequency (fT) and gain bandwidth product (GBW) are 26.6 GHz and 16.6 GHz respectively. The fT and GBW of the Ge_DUTFET are respectively increased by ∼27.4% and ∼84.3% compared with the Si_DUTFET.

  1. Performance of Ge:Ga far infrared detectors

    NASA Technical Reports Server (NTRS)

    Hueschen, M. R.; Richards, P. L.

    1983-01-01

    A systematic study was carried out of the properties of Ge:Ga photoconductive infrared detectors for wavelengths approx. 100 micron. The detectors studied were made from Ge:Ga with acceptor concentration N sub A approx. 2 x 10 exp 14/cu cm with both low compensation (10 exp -2) and ultralow compensation (10 exp -4). Noise measurements have been made as a function of background photon rate, bias voltage, and chopping frequency. Detective quantum efficiencies approaching unity have been observed over a side range of experimental parameters. Photocurrent has been measured as a function of voltage and temperature. Hall mobility and lifetime have been measured to determine their effect on detector properties. A small potential drop has been observed in nominally ohmic contacts produced by implantation of B ions.

  2. Large Cryogenic Germanium Detector. Final Report

    SciTech Connect

    Mandic, Vuk

    2013-02-13

    The goal of this project was to investigate possible ways of increasing the size of cryogenic Ge detectors. This project identified two possible approaches to increasing the individual cryogenic Ge detector size. The first approach relies on using the existing technology for growing detector-grade (high-purity) germanium crystals of dislocation density 100-7000 cm{sup -2}. The second approach is to consider dislocation-free Ge crystals.

  3. Integrated Two-Dimensional DRACO Simulations of Cryogenic DT Target Performance on OMEGA

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Radha, P. B.; Goncharov, V. N.; Betti, R.; Epstein, R.; Marshall, F. J.; McCrory, R. L.; Meyerhofer, D. D.; Sangster, T. C.; Skupsky, S.

    2013-10-01

    Integrated simulations of cryogenic deuterium-tritium (DT) target implosions on OMEGA have been performed using the radiation-hydrodynamic code DRACO. Taking into account the known nonuniformities of target and laser irradiation, 2-D simulations examine the target performance of a variety of ignition-relevant implosions. The effects of cross-beam energy transfer and nonlocal heat transport are mimicked by a time-dependent flux limiter. DRACO simulations show good agreement with experiments in ρR , neutron yield, Ti, neutron rate, and x-ray images for the mid-adiabat (α ~ 4 ) implosions. For low-adiabat (α ~ 2) and high in-flight aspect ratio (IFAR > 24) implosions, the integrated simulations with the known nonuniformity sources cannot fully explain the reduction in target performance. Examinations of other possible nonuniformity sources and the thermal conductivity model will be presented. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. A cryogenic test facility

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  5. High-Performance Cryogenic Designs for OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Collins, T. J. B.; Marozas, J. A.; Regan, S. P.; Betti, R.; Boehly, T. R.; Campbell, E. M.; Froula, D. H.; Igumenshchev, I. V.; McCrory, R. L.; Myatt, J. F.; Radha, P. B.; Sangster, T. C.; Shvydky, A.

    2016-10-01

    The main advantage of laser symmetric direct drive (SDD) is a significantly higher coupled drive laser energy to the hot-spot internal energy at stagnation compared to that of laser indirect drive. Because of coupling losses resulting from cross-beam energy transfer (CBET), however, reaching ignition conditions on the NIF with SDD requires designs with excessively large in-flight aspect ratios ( 30). Results of cryogenic implosions performed on OMEGA show that such designs are unstable to short-scale nonuniformity growth during shell implosion. Several CBET reduction strategies have been proposed in the past. This talk will discuss high-performing designs using several CBET-mitigation techniques, including using drive laser beams smaller than the target size and wavelength detuning. Designs that are predicted to reach alpha burning regimes as well as a gain of 10 to 40 at the NIF-scale will be presented. Hydrodynamically scaled OMEGA designs with similar CBET-reduction techniques will also be discussed. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Experimental and numerical investigation on performance of a double inlet type cryogenic pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Biswas, Animesh; Ghosh, Subrata K.

    2016-09-01

    A helium filled double inlet pulse tube refrigerator (DIPTR) has been designed, built and operated to provide cryogenic cooling. The experimental studies have been carried out to characterize the performance of the DIPTR at various values of the mean pressure of helium (0.7-1.5 MPa), amplitudes of pressure oscillations, and sizes of orifice opening. A detailed time-dependent three dimensional computational fluid dynamics (CFD) model of the DIPTR has also been developed to predict its performance. In the CFD model, the continuity, momentum and energy equations have been solved for both the refrigerant gas (helium) and the porous media regions (the regenerator and heat exchangers) in the DIPTR. The computational results have been compared with specific experimental results to validate the numerical model. The results predicted by the model show better results as compared to experimental results, as the effects of wall thicknesses and natural convective losses of the various components of the DIPTR to the surroundings have not been included in the model.

  7. On the Relationship Between Schottky Barrier Capacitance and Mixer Performance at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1996-01-01

    The flat-band voltage is the Schottky junction voltage required to shrink the depletion width to zero. At cryogenic temperatures, mixer diodes are generally biased and/or pumped beyond the flat-band condition to minimize conversion loss and noise figure. This occurs despite the presumed sharp increase in junction capacitance near flat-band, which should instead limit mixer performance. Past moderate forward bias, the diode C-V relationship is difficult to measure. A simple analytic expression for C(V) is usually used to model and predict mixer performance. This letter provides experimental data on C(V) at 77 K based on a microwave measurement and modeling technique. Data is also provided on the conversion loss of a singly balanced mixer optimized for 77 K operation. The connection between junction capacitance, flat-band potential, and conversion loss is examined. It is shown that the analytic expression greatly overestimates the junction capacitance that occurs as flat-band is approached.

  8. Performance test of the cryogenic cooling system for the superconducting fault current limiter

    NASA Astrophysics Data System (ADS)

    Hong, Yong-Ju; In, Sehwan; Yeom, Han-Kil; Kim, Heesun; Kim, Hye-Rim

    2015-12-01

    A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

  9. The measurement of thermodynamic performance in cryogenic two-phase turbo-expander

    NASA Astrophysics Data System (ADS)

    Niu, Lu; Hou, Yu; Sun, Wan; Chen, Shuangtao

    2015-09-01

    Liquid fraction measurement in cryogenic two-phase flow is a complex issue, especially for an industrial cryogenic system. In this paper, a simple thermal method is proposed for measuring the liquid fraction in cryogenic two-phase turbo-expander by an electric heating unit in experimental study. The liquid fraction of the cryogenic two-phase flow is determined through the heat balance built at the outlet of the turbo-expander (inlet of heating unit) and the outlet of the heating unit. Liquid fractions from 1.16% to 5.02% are obtained from five two-phase expansion cases. Under the same turbo-expander inlet pressure and rotating speed, five superheated expansion cases are tested to evaluate the wetness loss in two-phase expansion. The results show that the proposed method is successful in measuring the liquid fraction of cryogenic two-phase expansion for turbo-expander in an industrial air separation plant. The experimental isentropic efficiency ratio and the tested Baumann factor decrease with the increasing mean wetness. Based on prediction of Baumann rule, the cryogenic turbo-expander with low liquid fraction in two-phase expansion cases suffers from more severe wetness loss than that with the higher liquid fraction.

  10. High-performance Ge p-i-n photodetector on Si substrate

    NASA Astrophysics Data System (ADS)

    Chen, Li-qun; Huang, Xiang-ying; Li, Min; Huang, Yan-hua; Wang, Yue-yun; Yan, Guang-ming; Li, Cheng

    2015-05-01

    High-performance and tensile-strained germanium (Ge) p-i-n photodetector is demonstrated on Si substrate. The epitaxial Ge layers were prepared in an ultrahigh vacuum chemical vapor deposition (UHV-CVD) system using low temperature Ge buffer technique. The devices were fabricated by in situ doping and using Si as passivation layer between Ge and metal, which can improve the ohmic contact and realize the high doping. The results show that the dark current of the photodetector with diameter of 24 μm is about 2.5×10-7 μA at the bias voltage of -1 V, and the optical responsivity is 0.1 A/W at wavelength of 1.55 μm. The 3 dB bandwidth (BW) of 4 GHz is obtained for the photodetector with diameter of 24 μm at reverse bias voltage of 1 V. The long diffusion time of minority carrier in n-type Ge and the large contact resistance in metal/Ge contacts both affect the performance of Ge photodetectors.

  11. Initial observations of GeSe-xenon transport experiments performed on the D1 space flight

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.; Trivedi, S. B.

    1986-01-01

    GeSe-xenon experiments performed aboard the D1 mission at xenon pressures of 2 and 6 atm confirm the crystal growth pattern, sizes, and surface morphology of crystals previously grown aboard STS-7 for different pressures. Besides the deposition and growth of GeSe crystals on the ampoule wall, several large single-crystalline GeSe platelets with lateral dimensions much greater than those of crystals on the wall and obtained on the ground are found. The present results reemphasize the question concerning the nucleation phenomena in microgravity.

  12. Fundamentals of Cryogenics

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

    2014-01-01

    Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

  13. Development and performance validation of a cryogenic linear stage for SPICA-SAFARI verification

    NASA Astrophysics Data System (ADS)

    Ferrari, Lorenza; Smit, H. P.; Eggens, M.; Keizer, G.; de Jonge, A. W.; Detrain, A.; de Jonge, C.; Laauwen, W. M.; Dieleman, P.

    2014-07-01

    In the context of the SAFARI instrument (SpicA FAR-infrared Instrument) SRON is developing a test environment to verify the SAFARI performance. The characterization of the detector focal plane will be performed with a backilluminated pinhole over a reimaged SAFARI focal plane by an XYZ scanning mechanism that consists of three linear stages stacked together. In order to reduce background radiation that can couple into the high sensitivity cryogenic detectors (goal NEP of 2•10-19 W/√Hz and saturation power of few femtoWatts) the scanner is mounted inside the cryostat in the 4K environment. The required readout accuracy is 3 μm and reproducibility of 1 μm along the total travel of 32 mm. The stage will be operated in "on the fly" mode to prevent vibrations of the scanner mechanism and will move with a constant speed varying from 60 μm/s to 400 μm/s. In order to meet the requirements of large stroke, low dissipation (low friction) and high accuracy a DC motor plus spindle stage solution has been chosen. In this paper we will present the stage design and stage characterization, describing also the measurements setup. The room temperature performance has been measured with a 3D measuring machine cross calibrated with a laser interferometer and a 2-axis tilt sensor. The low temperature verification has been performed in a wet 4K cryostat using a laser interferometer for measuring the linear displacements and a theodolite for measuring the angular displacements. The angular displacements can be calibrated with a precision of 4 arcsec and the position could be determined with high accuracy. The presence of friction caused higher values of torque than predicted and consequently higher dissipation. The thermal model of the stage has also been verified at 4K.

  14. Ambient and Cryogenic Alignment Verification and Performance of the Infrared Multi-Object Spectrometer

    NASA Technical Reports Server (NTRS)

    Connelly, Joseph A.; Ohl, Raymond G.; Mink, Ronald G.; Mentzell, J. Eric; Saha, Timo T.; Tveekrem, June L.; Hylan, Jason E.; Sparr, Leroy M.; Chambers, V. John; Hagopian, John G.

    2003-01-01

    The Infrared Multi-Object Spectrometer (IRMOS) is a facility instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8 - 2.5 micron) spectrometer with low- to mid-resolving power (R = 300 - 3000). IRMOS produces simultaneous spectra of approximately 100 objects in its 2.8 x 2.0 arc-min field of view using a commercial Micro Electro-Mechanical Systems (MEMS) Digital Micro-mirror Device (DMD) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the DMD field stop, and the spectrograph images the DMD onto the detector. We describe ambient breadboard subsystem alignment and imaging performance of each stage independently, and the ambient and cryogenic imaging performance of the fully assembled instrument. Interferometric measurements of subsystem wavefront error serve to venfy alignment, and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing provides further verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Image testing is performed at multiple field points. A mercury-argon pencil lamp provides spectral lines at 546.1 nm and 1550 nm, and a CCD camera and IR camera are used as detectors. We use commercial optical modeling software to predict the point-spread function and its effect on instrument slit transmission and resolution. Our breadboard test results validate this prediction. We conclude with an instrument performance prediction for first light.

  15. Hubble Space Telescope Pointing Performance Due to Micro-Dynamic Disturbances from the NICMOS Cryogenic Cooler

    NASA Technical Reports Server (NTRS)

    Clapp, Brian R.; Sills, Joel W., Jr.; Voorhees, Carl R.; Griffin, Thomas J. (Technical Monitor)

    2002-01-01

    The Vibration Admittance Test (VET) was performed to measure the emitted disturbances of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryogenic Cooler (NCC) in preparation for NCC installation onboard the Hubble Space Telescope (HST) during Servicing Mission 3B (SM3B). Details of the VET ground-test are described, including facility characteristics, sensor complement and configuration, NCC suspension, and background noise measurements. Kinematic equations used to compute NCC mass center displacements and accelerations from raw measurements are presented, and dynamic equations of motion for the NCC VET system are developed and verified using modal test data. A MIMO linear frequency-domain analysis method is used to compute NCC-induced loads and HST boresight jitter from VET measurements. These results are verified by a nonlinear time-domain analysis approach using a high-fidelity structural dynamics and pointing control simulation for HST. NCC emitted acceleration levels not exceeding 35 micro-g rms were measured in the VET and analysis methods herein predict 3.1 milli-areseconds rms jitter for HST on-orbit. Because the NCC is predicted to become the predominant disturbance source for HST, VET results indicate that HST will continue to meet the 7 milli-arcsecond pointing stability mission requirement in the post-SM3B era.

  16. Performance of High-frequency High-flux Magnetic Cores at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Hammoud, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.

    2002-01-01

    Three magnetic powder cores and one ferrite core, which are commonly used in inductor and transformer design for switch mode power supplies, were selected for investigation at cryogenic temperatures. The powder cores are Molypermalloy Core (MPC), High Flux Core (HFC), and Kool Mu Core (KMC). The performance of four inductors utilizing these cores has been evaluated as a function of temperature from 20 C to -180 C. All cores were wound with the same wire type and gauge to obtain equal values of inductance at room temperature. Each inductor was evaluated in terms of its inductance, quality (Q) factor, resistance, and dynamic hysteresis characteristics (B-H loop) as a function of temperature and frequency. Both sinusoidal and square wave excitations were used in these investigations. Measured data obtained on the inductance showed that both the MPC and the HFC cores maintain a constant inductance value, whereas with the KMC and ferrite core hold a steady value in inductance with frequency but decrease as temperature is decreased. All cores exhibited dependency, with varying degrees, in their quality factor and resistance on test frequency and temperature. Except for the ferrite, all cores exhibited good stability in the investigated properties with temperature as well as frequency. Details of the experimental procedures and test results are presented and discussed in the paper.

  17. Experimental investigation on the performance of a neon cryogenic oscillating heat pipe

    NASA Astrophysics Data System (ADS)

    Liang, Qing; Li, Yi; Wang, Qiuliang

    2017-06-01

    An experimental investigation is conducted to study the performance of a cryogenic oscillating heat pipe (OHP) using neon as the working fluid. The stainless steel OHP with an inner diameter of 0.9 mm has 4 turns, and the lengths of the evaporator, condenser section and adiabatic section are 35 mm, 35 mm and 95 mm, respectively. The temperature of the evaporator and condenser and the pressure of the OHP are measured. The results show that the cooling down process of the OHP from room temperature to the working temperature can be significantly accelerated by charging with neon. During the pseudo steady-state operation process, the temperature of evaporator and the pressure of the OHP increase with increasing heat input. When the dry out appears, the temperature of evaporator rises quickly, and the pressure of the OHP drops sharply. In addition, the effective thermal conductivity of the OHP at the different heat inputs and the different filling ratios is calculated. It increases with increasing heat input, and there exists an optimum filling ratio which makes the maximum effective thermal conductivity. For this OHP, the optimum filling ratio is 24.5%, at which the effective thermal conductivity is 6100-22,180 W/m K.

  18. Cryogenic System for J-Parc Neutrino Superconducting Magnet Beam LINE—DESIGN, Construction and Performance Test

    NASA Astrophysics Data System (ADS)

    Makida, Y.; Ohhata, H.; Okamura, T.; Suzuki, S.; Araoka, O.; Ogitsu, T.; Kimura, N.; Nakamoto, T.; Sasaki, K.; Kaneda, S.; Takahashi, T.; Ito, A.; Nagami, M.; Kumaki, T.; Nakashima, T.

    2010-04-01

    A helium cryogenic plant has been constructed in the proton accelerator research complex, J-PARC, to cool a string of superconducting magnets in the neutrino beam line since 2005. It consists of a screw compressor with a capacity of 160 g/s at 1.4 MPa, a 1.5 kW refrigerator, a centrifugal SHE pump with a flow rate of 300 g/s and peripherals. After system integration, performance tests have been carried out. In a preliminary cooling test without magnets, the cryogenic system attained a cooling capacity of 522 W by circulating supercritical helium flow of 300 g/s at 0.4 MPa and at 4.5 K. Afterwards a full system test with the magnets was carried out. The magnets were successfully charged up to an ultimate current of 5000 A beyond a nominal current of 4400 A. This paper describes the plant design and the result of performance measurements.

  19. Introduction of performance boosters like Ge as channel material for the future of CMOS

    SciTech Connect

    Samia, Slimani; Bouaza, Djellouli

    2016-06-10

    High mobility materials are being considered to replace Si in the channel to achieve higher drive currents and switching speeds. Ge is one of new attractive channel materials that require CMOS scaling For future technology nodes and future high performance P-MOSFETS, we have studied a nanoscale SOI DG MOSFETs using quantum simulation approach on DG MOSFETs within the variation of Ge channel concentration and in the presence of source and drain doping by replacing Silicon in the channel by Ge using various dielectric constant. The use of high mobility channel (like Ge) to maximize the MOSFET IDsat and simultaneously circumvent the poor electrostatic control to suppress short-channel effects and enhance source injection velocity. The leakage current (I{sub off}) can be controlled by different gates oxide thickness more ever the required threshold voltage (V{sub TH}) can be achieved by keeping gate work function and altering the doping channel.

  20. Cryogenic machining and burnishing of AZ31B magnesium alloy for enhanced surface integrity and functional performance

    NASA Astrophysics Data System (ADS)

    Pu, Zhengwen

    Surface integrity of manufactured components has a critical impact on their functional performance. Magnesium alloys are lightweight materials used in the transportation industry and are also emerging as a potential material for biodegradable medical implants. However, the unsatisfactory corrosion performance of Mg alloys limits their application to a great extent. Surface integrity factors, such as grain size, crystallographic orientation and residual stress, have been proved to remarkably influence the functional performance of magnesium alloys, including corrosion resistance, wear resistance and fatigue life. In this dissertation, the influence of machining conditions, including dry and cryogenic cooling (liquid nitrogen was sprayed to the machined surface during machining), cutting edge radius, cutting speed and feed rate, on the surface integrity of AZ31B Mg alloy was investigated. Cryogenic machining led to the formation of a "featureless layer" on the machined surface where significant grain refinement from 12 microm to 31 nm occurred due to dynamic recrystallization (DRX), as well as increased intensity of basal plane on the surface and more compressive residual stresses. Dry and cryogenic burnishing experiments of the same material were conducted using a fixed roller setup. The thickness of the processed-influenced layer, where remarkable microstructural changes occurred, was dramatically increased from the maximum value of 20 microm during machining to 3.4 mm during burnishing. The burnishing process also produced a stronger basal texture on the surface than the machining process. Preliminary corrosion tests were conducted to evaluate the corrosion performance of selected machined and burnished AZ31B Mg samples in 5% NaCl solution and simulated body fluid (SBF ). Cryogenic cooling and large edge radius tools were found to significantly improve the corrosion performance of machined samples in both solutions. The largest improvement in the material

  1. Testing the performance of a cryogenic visualization system on thermal counterflow by using hydrogen and deuterium solid tracers.

    PubMed

    La Mantia, M; Chagovets, T V; Rotter, M; Skrbek, L

    2012-05-01

    An experimental apparatus has been designed to analyze by visualization cryogenic flows of liquid (4)He and consequently address unresolved problems of quantum turbulence. The newly implemented flow visualization setup is described and its specific features discussed. Thermal counterflow experiments have been performed and the motion of solid hydrogen and deuterium tracers studied by using the particle tracking velocimetry technique in order to probe the system capabilities. It is shown that the obtained results are consistent with the two-fluid model describing the behavior of superfluid (4)He. A number of technical and fundamental issues, such as particles' aggregation, role of rotating particles in counterflow and evidence of non-Gaussian distribution of tracers' velocities, are also discussed. The apparatus appears to be well-suited to the task of analyzing cryogenic flows and potentially capable of obtaining new results stimulating further understanding of the underlying physics.

  2. Ge/GeO2-Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance.

    PubMed

    Zeng, Lingxing; Huang, Xiaoxia; Chen, Xi; Zheng, Cheng; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng

    2016-01-13

    Germanium-based nanostructures are receiving intense interest in lithium-ion batteries because they have ultrahigh lithium ion storage ability. However, the Germanium-based anodes undergo the considerably large volume change during the charge/discharge processes, leading to a fast capacity fade. In the present work, a Ge/GeO2-ordered mesoporous carbon (Ge/GeO2-OMC) nanocomposite was successfully fabricated via a facile nanocasting route by using mesoporous carbon as a nanoreactor, and was then used as an anode for lithium-ion batteries. Benefited from its unique three-dimensional "meso-nano" structure, the Ge/GeO2-OMC nanocomposite exhibited large reversible capacity, excellent long-time cycling stability and high rate performance. For instance, a large reversible capacity of 1018 mA h g(-1) was obtained after 100 cycles at a current density of 0.1 A g(-1), which might be attributed to the unique structure of the Ge/GeO2-OMC nanocomposite. In addition, a reversible capacity of 492 mA h g(-1) can be retained when cycled to 500 cycles at a current density of 1 A g(-1).

  3. The challenges of archiving networked-based multimedia performances (Performance cryogenics)

    NASA Astrophysics Data System (ADS)

    Cohen, Elizabeth; Cooperstock, Jeremy; Kyriakakis, Chris

    2002-11-01

    Music archives and libraries have cultural preservation at the core of their charters. New forms of art often race ahead of the preservation infrastructure. The ability to stream multiple synchronized ultra-low latency streams of audio and video across a continent for a distributed interactive performance such as music and dance with high-definition video and multichannel audio raises a series of challenges for the architects of digital libraries and those responsible for cultural preservation. The archiving of such performances presents numerous challenges that go beyond simply recording each stream. Case studies of storage and subsequent retrieval issues for Internet2 collaborative performances are discussed. The development of shared reality and immersive environments generate issues about, What constitutes an archived performance that occurs across a network (in multiple spaces over time)? What are the families of necessary metadata to reconstruct this virtual world in another venue or era? For example, if the network exhibited changes in latency the performers most likely adapted. In a future recreation, the latency will most likely be completely different. We discuss the parameters of immersive environment acquisition and rendering, network architectures, software architecture, musical/choreographic scores, and environmental acoustics that must be considered to address this problem.

  4. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  5. Assessment of DC and low-frequency noise performances of triple-gate FinFETs at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Cretu, B.; Boudier, D.; Simoen, E.; Veloso, A.; Collaert, N.

    2016-12-01

    In this work an in-depth investigation in terms of short-channel effects, analog operation and low-frequency noise performances at very low temperature operation is given. The most important electrical parameters are investigated and it is highlighted that for our devices the downscaling to sub-10 nm technologies leads to improved drain-induced barrier lowering (DIBL) and intrinsic voltage gain. As expected, cryogenic operation leads to an amelioration of the subthreshold slope and charge sharing effect. A reduction of the threshold voltage and of the effective mobility is also observed. Discontinuities in the subthreshold slope in the drain current-gate voltage characteristics can be linked to potential non-uniformities in the channel width. It was observed that noise spectra contain 1/f and generation-recombination contributions. Low-frequency noise measurements as a function of the applied gate voltage at cryogenic operation show that the carrier number fluctuations dominate the flicker noise in weak inversion. Access resistance noise contributions were evidenced in strong inversion. The fact that devices suffer from generation-recombination noise even at 10 K operation shows that there are some active traps even at this cryogenic temperature operation. The low-frequency noise measurements as a function of temperature (10 K-70 K) are used as a non-destructive device characterization tool in order to identify traps induced during the device processing and to make a correlation between the observed traps and some technological steps.

  6. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  7. Cryogenics Research and Engineering Experience

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  8. Performance of the primary mirror center-of-curvature optical metrology system during cryogenic testing of the JWST Pathfinder telescope

    NASA Astrophysics Data System (ADS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment and phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development and spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software and procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate and efficient cryogenic testing of the JWST flight telescope.

  9. Performance of the Primary Mirror Center-of-curvature Optical Metrology System During Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius-of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse & fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment & phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development & spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software & procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate & efficient cryogenic testing of the JWST flight telescope.

  10. Performance test of pipe-shaped radiation shields for cryogenic interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yusuke; Kimura, Nobuhiro; Akutsu, Tomotada; Suzuki, Toshikazu; Kuroda, Kazuaki

    2015-08-01

    One of the most important challenges in cryogenic interferometric gravitational wave detectors is to reduce the undesirable thermal radiation coming through holes in the radiation shield, which are necessary for the laser beam to pass through. For this purpose, pipe-shaped radiation shields called duct shields are used. Here, we have manufactured duct shields for KAGRA in Japan, one of the cryogenic interferometric gravitational wave detectors, and measured the thermal radiation coming through the duct shields. The measured result was found to be consistent with the calculation result that the duct shield can reduce the thermal radiation to less than 1%. This fact confirmed that the amount of thermal radiation coming through the duct shields was smaller than KAGRA’s requirement.

  11. Ultra low noise cryogenic amplifiers for radio astronomy

    NASA Astrophysics Data System (ADS)

    Bryerton, E. W.; Morgan, Matthew Alexander; Pospieszalski, Marian W.

    2013-01-01

    Cryogenic cooling of receivers to reduce their noise temperature is especially important in radio astronomy, as the antenna noise temperature is determined by the cosmic microwave background radiation (2.725 K) modified by the presence of atmosphere. For frequencies up to 120 GHz direct amplification at cryogenic temperatures is typically employed using InP heterostructure field-effect transistors (HFETs) or, more recently, SiGe heterostructure bipolar transistors (HBTs). This article reviews developments in this field and presents the current state-of-the-art. Examples of noise performance of amplifiers using InP HFETs and SiGe HBTs are compared with the model predications. Some gaps in our current understanding of experimental results are emphasized, and some comments on possible future developments are offered.

  12. Quantum dot Ge/TiO2 heterojunction photoconductor fabrication and performance

    NASA Astrophysics Data System (ADS)

    Church, Carena P.; Muthuswamy, Elayaraja; Zhai, Guangmei; Kauzlarich, Susan M.; Carter, Sue A.

    2013-11-01

    Spun cast TiO2-Ge quantum dot (QD) heterojunction type photodetectors have been fabricated and characterized, with interest paid to photocurrent enhancements related to device design. Performance as a function of absorber layer thickness, QD size, and back contact is investigated. We have achieved ultra-thin (˜200 nm) devices with photocurrents at 0.5 V of 10-4 A cm-2 while the thickest devices have photocurrents at 0.5 V of 10-2 A cm-2 with on-off ratios >100, which represents 5 orders of magnitude increase in photocurrents over previously fabricated Ge QD devices. At 0.5 V bias, the currents in our devices are competitive with thin-film Ge photovoltaics.

  13. Performance of a quantum defect minimized disk laser based on cryogenically cooled Yb:CaF2

    NASA Astrophysics Data System (ADS)

    Kahle, Martin; Körner, Jörg; Hein, Joachim; Kaluza, Malte C.

    2017-07-01

    A low quantum defect is the fundamental key to a high efficiency of any laser. To study the anticipated performance boost for a 980 nm-diode pumped cryogenically cooled Yb:CaF2 disk laser we compared its operation at output wavelengths of 991 nm, 996 nm, and 1032 nm. Despite the higher quantum defect a maximum efficiency of 74% (output versus incident power) with an output power of 15.8 W was achieved at the 1032 nm output wavelength. This observation led to a detailed analysis of remaining loss mechanisms we are reporting on in this paper.

  14. Effect of trailing edge thickness on the performance of a helium turboexpander used in cryogenic refrigeration and liquefaction cycles

    NASA Astrophysics Data System (ADS)

    Sam, Ashish Alex; Ghosh, Parthasarathi

    2017-02-01

    Turboexpanders in cryogenic refrigeration and liquefaction cycles, which is of radial inflow configuration, constitute stationary and rotating components like nozzle, a rotating wheel and a diffuser. The relative motion between the stationary and rotating components and the interactions of secondary flows and vortices at different stages make the turboexpander flow unsteady. Computational Fluid Dynamics (CFD) analysis of this flow is essential to identify the scope for improvement in efficiency. The trailing edge vortex formed due to the mixing of the pressure and suction side streams is an important phenomenon to analyse, as this leads to efficiency degradation of the machine. Additionally, there are mechanical vibrations and dynamic loading associated with. This flow non-uniformity at the exit should be suppressed as this may affect the pressure recovery process in the diffuser and thereby the turboexpander’s performance. The strength of this vortex depends upon the geometrical parameters like trailing edge shape, thickness etc. In this paper, transient CFD analyses of a cryogenic turboexpander designed for helium refrigeration and liquefaction cycles using Ansys CFX® were performed to investigate the effect of trailing edge thickness on the turboexpander performance and the performance characteristics and the flow patterns were compared to understand the flow characteristics in each case.

  15. Cryogenic exciter

    DOEpatents

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  16. Development of an improved performance SiGe unicouple

    SciTech Connect

    Nakahara, J.F.; Franklin, B.; DeFillipo, L.E.

    1995-01-20

    A two-step diffusion bonding process was developed such that the p-type material is bonded to the SiMo hot shoe first at 1594 K followed by the lower melting point n-type material between 1518 and 1520 K. Standard procedures were used to silicon nitride coat the thermoelectric pellets and to attach the cold side CTE transition and heat rejection components to produce unicouples. Two unicouples successfully withstood simulated rivet operations as would be experienced in the fabrication of a Radioisotope Thermoelectric Generator (RTG) converter to verify the integrity of the tungsten cold shoe to thermoelectric material interface. The performance of these unicouples will be further evaluated in an 18-couple test module. {copyright}American Institute of Physics 1995

  17. Optimum performance analysis of an irreversible quantum cryogenic refrigeration cycle working with an ideal Bose or Fermi gas

    NASA Astrophysics Data System (ADS)

    Lin, Bihong; Chen, Jincan

    2008-05-01

    An irreversible model of the Carnot cryogenic refrigeration cycle working with an ideal Bose or Fermi gas is established, which is composed of two irreversible adiabatic and two isothermal processes. The effects of the quantum degeneracy of the working substance, the irreversibility of the finite-rate heat transfer between the working fluid and the heat reservoirs, and the internal irreversibility in two adiabatic processes on the optimum performance characteristics of the quantum refrigeration cycle are analyzed. The performance characteristics of the cycle in strong and weak gas degeneracy cases are discussed. Expressions for several important performance parameters such as the coefficient of performance, cooling rate and power input are derived. By using numerical solutions, the cooling rate of the cycle is optimized for a given power input. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal regions of the coefficient of performance and power input are determined. Some optimum criteria are given.

  18. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1975-01-01

    A recently developed, potentially high-performance nonarterial wick has been extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 K and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: (1) maximum heat pipe performance as a function of fluid inventory, (2) maximum performance as a function of operating temperature, (3) maximum performance as a function of evaporator elevation, and (4) influence of slab wick orientation on performance. The experimental data was compared with theoretical predictions obtained with the computer program GRADE.

  19. Capillary-Induced Ge Uniformly Distributed in N-Doped Carbon Nanotubes with Enhanced Li-Storage Performance.

    PubMed

    Guo, Haipeng; Ruan, Boyang; Liu, Lili; Zhang, Lei; Tao, Zhanliang; Chou, Shulei; Wang, Jiazhao; Liu, Huakun

    2017-07-01

    Germanium (Ge) is a prospective anode material for lithium-ion batteries, as it possesses large theoretical capacity, outstanding lithium-ion diffusivity, and excellent electrical conductivity. Ge suffers from drastic capacity decay and poor rate performance, however, owing to its low electrical conductivity and huge volume expansion during cycling processes. Herein, a novel strategy has been developed to synthesize a Ge@N-doped carbon nanotubes (Ge@N-CNTs) composite with Ge nanoparticles uniformly distributed in the N-CNTs by using capillary action. This unique structure could effectively buffer large volume expansion. When evaluated as an anode material, the Ge@N-CNTs demonstrate enhanced cycling stability and excellent rate capabilities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Assembly and performance of a 6.4 T cryogen-free dynamic nuclear polarization system.

    PubMed

    Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Wang, Qing; Lumata, Lloyd

    2017-09-01

    We report on the assembly and performance evaluation of a 180-GHz/6.4 T dynamic nuclear polarization (DNP) system based on a cryogen-free superconducting magnet. The DNP system utilizes a variable-field superconducting magnet that can be ramped up to 9 T and equipped with cryocoolers that can cool the sample space with the DNP assembly down to 1.8 K via the Joule-Thomson effect. A homebuilt DNP probe insert with top-tuned nuclear magnetic resonance coil and microwave port was incorporated into the sample space in which the effective sample temperature is approximately 1.9 K when a 180-GHz microwave source is on during DNP operation. (13) C DNP of [1-(13) C] acetate samples doped with trityl OX063 and 4-oxo-TEMPO in this system have resulted in solid-state (13) C polarization levels of 58 ± 3% and 18 ± 2%, respectively. The relatively high (13) C polarization levels achieved in this work have demonstrated that the use of a cryogen-free superconducting magnet for (13) C DNP is feasible and in fact, relatively efficient-a major leap to offset the high cost of liquid helium consumption in DNP experiments. Copyright © 2017 John Wiley & Sons, Ltd.

  1. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes.

    PubMed

    Martinez, Nicholas J D; Derose, Christopher T; Brock, Reinhard W; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2016-08-22

    We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.

  2. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

    DOE PAGES

    Martinez, Nicholas J. D.; Derose, Christopher T.; Brock, Reinhard W.; ...

    2016-08-09

    Here, we present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10–12, in the range from –18.3 dBm to –12 dBm received optical power intomore » a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.« less

  3. SRF CAVITY PERFORMANCE OVERVIEW FOR THE 12 GeV UPGRADE

    SciTech Connect

    A. Burrill, G.K. Davis, C.E. Reece, A.V. Reilly, M. Stirbet

    2012-07-01

    The CEBAF accelerator, a recirculating CW electron accelerator that is currently operating at Jefferson Laboratory, is in the process of having 10 new cryomodules installed to allow for the maximum beam energy to be increased from 6 GeV to 12 GeV. This upgrade required the fabrication, processing and RF qualification of 80, seven cell elliptical SRF cavities, a process that was completed in February 2012. The RF performance achieve in the vertical testing dewars has exceeded the design specification by {approx}25% and is a testament to the cavity design and processing cycle that has been implemented. This paper will provide a summary of the cavity RF performance in the vertical tests, as well as review the overall cavity processing cycle and duration for the project.

  4. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

    SciTech Connect

    Martinez, Nicholas J. D.; Derose, Christopher T.; Brock, Reinhard W.; Starbuck, Andrew L.; Pomerene, Andrew T.; Lentine, Anthony L.; Trotter, Douglas C.; Davids, Paul S.

    2016-08-09

    Here, we present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10–12, in the range from –18.3 dBm to –12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.

  5. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

    DOE PAGES

    Martinez, Nicholas J. D.; Derose, Christopher T.; Brock, Reinhard W.; ...

    2016-08-09

    Here, we present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10–12, in the range from –18.3 dBm to –12 dBm received optical power intomore » a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.« less

  6. Performances Of Arrays Of Ge:Ga Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Mccreight, C.; Farhoomand, J.

    1992-01-01

    Report presents evaluation of performances of two electronic modules containing few-element linear focal-plane arrays of Ge:Ga photodetectors and associated multiplexing readout circuitry. Tested to demonstrate feasibility of many-element, two-dimensional focal-plane arrays of far-infrared detectors and associated circuitry for use in astronomical and other low-background scientific observations. Revealed deficiencies that must be overcome in future designs.

  7. Implementation of [18F]GE-180 for routine production on ORA Neptis Perform Synthesizer

    NASA Astrophysics Data System (ADS)

    Jivan, S.; Villeret, G.; Neumannn, K.; Slater, J.; Vanbrocklin, H.

    2017-05-01

    The aim of this work is to develop a method to produce [18F]GE-180 on a Neptis Perform Synthesizer® module with high radiochemical yield, purity and reproducibility. Herein is described the labelling, HPLC purification and final product formulation. Decay corrected yields of 45±5% (n=20) were achieved after a 60 minute synthesis. Radiochemical purity was >95% and all other quality control parameters were within specifications.

  8. Design and performance of a modular low-radioactivity readout system for cryogenic detectors in the CDMS experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Barnes, P. D., Jr.; Brink, P. L.; Cabrera, B.; Clarke, R. M.; Gaitskell, R. J.; Golwala, S. R.; Huber, M. E.; Kurylowicz, M.; Mandic, V.; Martinis, J. M.; Meunier, P.; Mirabolfathi, N.; Nam, S. W.; Perillo-Isaac, M.; Saab, T.; Sadoulet, B.; Schnee, R. W.; Seitz, D. N.; Shutt, T.; Smith, G. W.; Stockwell, W. K.; Sundqvist, K. M.; White, S.

    2008-07-01

    The Cryogenic Dark Matter Search (CDMS) experiment employs ultra-cold solid-state detectors to search for rare events resulting from WIMP-nucleus scattering. An innovative detector packaging and readout system has been developed to meet the unusual combination of requirements for: low temperature, low radioactivity, low energy threshold, and large channel count. Features include use of materials with low radioactivity such as multi-layer KAPTON laminates for circuit boards; immunity to microphonic noise via a vacuum coaxial wiring design, manufacturability, and modularity. The detector readout design had to accommodate various electronic components which have to be operated in close proximity to the detector as well maintaining separate individual temperatures (ranging from 600 mK to 150 K) in order to achieve optimal noise performance. The paper will describe the general electrical, thermal, and mechanical designs of the CDMS readout system, as well as presenting the theoretical and measured performance of the detector readout channels.

  9. Thermal performance of a modularized replaceable multilayer insulation system for a cryogenic stage

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.

    1977-01-01

    A rugged modularized MLI system for a 2.23-meter-diameter (87.6-in.-diam) liquid hydrogen tank was designed, fabricated, and tested under simulated near-earth and deep-space environments. The two blankets of the system were each composed of 17 double-aluminized Mylar radiation shields separated by silk net. The unit area weight of the installed system was 1.54 kg/sqm (0.32 lb/sq ft). The overall average heat transferred into the insulated tank was 22.7 and 0.98 watts (77.4 and 3.3 Btu/hr) during simulated near-earth and deep-space testing, respectively. The near-earth result was only 2.6 times that predicted for an undisturbed insulation system (i.e., no seams or penetrations). Tests indicate that this insulation concept could be useful for a cryogenic space tug or orbit transfer vehicle application.

  10. Model Predictions and Observed Performance of JWST's Cryogenic Position Metrology System

    NASA Technical Reports Server (NTRS)

    Lunt, Sharon R.; Rhodes, David; DiAntonio, Andrew; Boland, John; Wells, Conrad; Gigliotti, Trevis; Johanning, Gary

    2016-01-01

    The James Webb Space Telescope cryogenic testing requires measurement systems that both obtain a very high degree of accuracy and can function in that environment. Close-range photogrammetry was identified as meeting those criteria. Testing the capability of a close-range photogrammetric system prior to its existence is a challenging problem. Computer simulation was chosen over building a scaled mock-up to allow for increased flexibility in testing various configurations. Extensive validation work was done to ensure that the actual as-built system meet accuracy and repeatability requirements. The simulated image data predicted the uncertainty in measurement to be within specification and this prediction was borne out experimentally. Uncertainty at all levels was verified experimentally to be less than 0.1 millimeters.

  11. Cryogenic System for Interferometry of High-precision Optics at 20 K: Design and Performance

    NASA Technical Reports Server (NTRS)

    Blake,Peter; Chambers, John; Mink, Ronald G.; Content, David; Davila, Pamela; Robinson, F. David; Chrzanowski, Chris; Shirgur, Badri; Frohlich, chip

    2005-01-01

    This report describes the facility and experimental methods at the Goddard Space Flight Center Optics Branch for the measurement of the surface figure of cryogenically-cooled spherical mirrors using standard phase-shifting interferometry, with a standard uncertainty below 2nm rms. Two developmental silicon carbide mirrors were tested: both were spheres with radius of curvature of 600 mm, and clear apertures of 150 mm. The mirrors were cooled within a cryostat, and the surface figure error measured through a fused-silica window. The GSFC team developed methods to measure the in-situ SFE at 20 K with a combined standard uncertainty below 2 nm rms and the change in SFE with temperature (the cryochange) with a combined standard uncertainty of 0.25 -- 0.75 nm rms. This paper will present the measurement facility, methods, and uncertainty analysis.

  12. Model predictions and observed performance of JWST's cryogenic position metrology system

    NASA Astrophysics Data System (ADS)

    Lunt, Sharon R.; Rhodes, David; DiAntonio, Andrew; Boland, John; Wells, Conrad; Gigliotti, Trevis; Johanning, Gary

    2016-07-01

    The James Webb Space Telescope (JWST) cryogenic testing requires measurement systems that both obtain a very high degree of accuracy and can function in that environment. Close-range photogrammetry was identified as meeting those criteria. Testing the capability of a close-range photogrammetric system prior to its existence is a challenging problem. Computer simulation was chosen over building a scaled mock-up to allow for increased flexibility in testing various configurations. Extensive validation work was done to ensure that the actual as-built system meets accuracy and repeatability requirements. The simulated image data predicted the uncertainty in measurement to be within specification and this prediction was borne out experimentally. Uncertainty at all levels was verified experimentally to be <0.1 mm.

  13. Performance of all-metal demountable cryogenic seals at superfluid helium temperatures

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Spivak, Alan L.

    1989-01-01

    Two all-metal demountable cryogenic seals with an outside diameter of 36.6 mm, inside diameter of 27.2 mm, and thickness of 0.51 mm were leak-tested at room temperature (300 K), liquid nitrogen temperature (21 cycles at 77 K), liquid helium temperature (9 cycles at 4.2 K), and superfluid helium temperature (4 cycles at 1.6 K). Each seal was mounted and demounted for 13 cycles. Thickness measurements at 90 deg intervals along the circumference showed a maximum seal compression of 0.038 mm. Leak-rate measurements at all temperatures showed no detectable leak above the helium background level, typically 0.1 x 10(-9) std-cc/sec, during testing.

  14. Performance of all-metal demountable cryogenic seals at superfluid helium temperatures

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Spivak, Alan L.; Kittel, Peter

    1989-01-01

    Two all-metal demountable cryogenic seals with an outside diameter of 36.6 mm, inside diameter of 27.2 mm, and thickness of 0.51 mm were leak-tested at room temperature (300 K), liquid nitrogen temperature (21 cycles at 77 K), liquid helium temperature (9 cycles at 4.2 K), and susperfluid helium temperature (4 cycles at 1.6 K). Each seal was mounted and demounted for 13 cycles. Thickness measurements at 90 deg intervals along the circumference showed a maximum seal compression of 0.038 mm. Leak-rate measurements at all temperatures showed no detectable leak above the helium background level, typically 0.1 x 10(-9) std-cc/sec, during testing.

  15. Performance of all-metal demountable cryogenic seals at superfluid helium temperatures

    NASA Technical Reports Server (NTRS)

    Salerno, L. J.; Kittel, P. L.; Spivak, A. L.

    1991-01-01

    Two all-metal demountable cryogenic seals with an outside diameter of 36.6 mm, inside diameter of 27.2 mm and thickness of 0.51 mm were leak-tested at room temperature (300 K), liquid nitrogen temperature (21 cycles at 77 K), liquid helium temperature (nine cycles at 4.2K) and superfluid helium temperature (four cycles at 1.6 K). Each seal was mounted and demounted for 13 cycles. Thickness measurements at 90 deg intervals along the circumference showed a maximum seal compression of 0.038 mm. Leak rate measurements at all temperatures showed no detectable leak above the helium background level, typically 0.1 x 10 exp -9 std cu cm/s, during testing.

  16. Settled Cryogenic Propellant Transfer

    NASA Technical Reports Server (NTRS)

    Kutter, Bernard F.; Zegler, Frank; Sakla, Steve; Wall, John; Hopkins, Josh; Saks, Greg; Duffey, Jack; Chato, David J.

    2006-01-01

    Cryogenic propellant transfer can significantly benefit NASA s space exploration initiative. LMSSC parametric studies indicate that "Topping off" the Earth Departure Stage (EDS) in LEO with approx.20 mT of additional propellant using cryogenic propellant transfer increases the lunar delivered payload by 5 mT. Filling the EDS to capacity in LEO with 78 mT of propellants increases the delivered payload by 20 mT. Cryogenic propellant transfer is directly extensible to Mars exploration in that it provides propellant for the Mars Earth Departure stage and in-situ propellant utilization at Mars. To enable the significant performance increase provided by cryogenic propellant transfer, the reliability and robustness of the transfer process must be guaranteed. By utilizing low vehicle acceleration during the cryogenic transfer the operation is significantly simplified and enables the maximum use of existing, reliable, mature upper stage cryogenic-fluid-management (CFM) techniques. Due to settling, large-scale propellant transfer becomes an engineering effort, and not the technology development endeavor required with zero-gravity propellant transfer. The following key CFM technologies are all currently implemented by settling on both the Centaur and Delta IV upper stages: propellant acquisition, hardware chilldown, pressure control, and mass gauging. The key remaining technology, autonomous rendezvous and docking, is already in use by the Russians, and must be perfected for NASA whether the use of propellant transfer is utilized or not.

  17. New stopping cell capabilities: RF carpet performance at high gas density and cryogenic operation

    NASA Astrophysics Data System (ADS)

    Ranjan, M.; Purushothaman, S.; Dickel, T.; Geissel, H.; Plass, W. R.; Schäfer, D.; Scheidenberger, C.; Van de Walle, J.; Weick, H.; Dendooven, P.

    2011-12-01

    We have developed a stopping cell to be used at the FRS and Super-FRS (Super-conducting FRagment Separator) at the GSI Helmholtz Centre for Heavy-Ion Research and the Facility for Antiproton and Ion Research (FAIR), both in Darmstadt, Germany. The cell has a stopping volume with a length of 1 m and a diameter of 25 cm. It is aimed at operation with high-density helium gas (up to 0.2 mg/cm3). Ours is the first realisation of a stopping cell in which the required purity of the helium stopping gas is ensured by operation at cryogenic temperatures. On the exit side, the ions are guided to the exit hole by an RF carpet with 4 electrodes per mm, operating at a frequency of 5.8 MHz. We present the first commissioning results of the cryogenic stopping cell. Using 219Rn ions emitted as alpha-decay recoils from a 223Ra source, a combined ion survival and extraction efficiency between 10 and 25% is measured for helium gas at a temperature of 85 K and with a density up to 0.07 mg/cm3 (equivalent to a pressure of 430 mbar at room temperature). This density is almost two times higher than demonstrated up to now for RF ion repelling structures in helium gas. Given the operational and design parameters of the system, it is projected that this technology is useful up to a helium gas density of at least 0.2 mg/cm3.

  18. Performance of cryogenic probes as a function of ionic strength and sample tube geometry

    PubMed Central

    Voehler, Markus W.; Collier, Galen; Young, John K.; Stone, Michael P.; Germann, Markus W.

    2016-01-01

    The pursuit for more sensitive NMR probes culminated with development of the cryogenic cooled NMR probe. A key factor for the sensitivity is the overall resistance of RF circuitry and sample. Lowering the coil temperature to ~25 K and the use of superconducting coil material has greatly reduced the resistance contribution of the hardware. However, the resistance of a salty sample remains the same and evolves as the major factor determining the signal-to-noise ratio. Several approaches have been proposed to reduce the resistance contribution of the sample. These range from encapsulating proteins in a water cavity formed by reverse micelles in low viscosity fluids to the optimal selection of low mobility, low conductivity buffer ions. Here we demonstrate that changing the sample diameter has a pronounced effect on the sample resistance and this results in dramatic improvements of the signal-to-noise ratio and shorter π/2 pulses. We determined these parameters for common 5 mm NMR tubes under different experimental conditions and compared them to the 2, 3 and 4 mm tubes, in addition, 5 mm Shigemi tubes were included since these are widely used. We demonstrate benefits and applicability of studying NMR samples with up to 4 M salt concentrations in cryogenic probes. Under high salt conditions, best results in terms of short π/2 pulses and high signal-to-noise ratios are obtained using 2 or 3 mm NMR tubes, especially when limited sample is available. The 4 mm tube is preferred when sample amounts are abundant at intermediate salt conditions. PMID:16949320

  19. High Frequency Performance of SiGeC HBTs with Selectively & Non-Selectively Grown Collector

    NASA Astrophysics Data System (ADS)

    Suvar, Erdal; Haralson, Erik; Radamson, Henry H.; Wang, Yong-Bin; Malm, B. Gunnar; Östling, Mikael

    2004-01-01

    Two high-frequency heterojunction bipolar transistor (HBT) architectures based on SiGeC have been fabricated and characterized. Different collector designs were applied either by using selective epitaxial growth doped with phosphorous or by nonselective epitaxial growth doped with arsenic. Both designs have a nonselectively deposited SiGeC base doped with boron and a poly-crystalline emitter doped with phosphorous. Both HBT designs exhibit similar electrical characteristics with a peak DC current gain of around 1600 and a BVCEO of 1.8V. The cut-off frequency (fT) and maximum frequency of oscillation (fmax) vary from 40 80GHz and 15 30GHz, respectively, depending on lateral design relations. Good high frequency performance for a device with a selectively grown collector is demonstrated for the first time.

  20. FIRAS optical alignment and performance during vibration qualification and cryogenic cycling. [Far InfraRed Absolute Spectrometer

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.

    1989-01-01

    NASA's Cosmic Background Explorer (COBE) is designed to investigate the Cosmic Background Radiation (CBR), that permeates the universe as a consequence of the Big Bang. This 3 degree Kelvin radiation is a fossil that contains much information about the early universe. The Far Infrared Absolute Spectrophotometer (FIRAS), will investigate the spectral isotropy of this ancient remnant and look for clues as to the subsequent evolution of the universe. The instrument is a cryogenically cooled, modified Michelson interferometer which operates in the 1 cm to 100 micron wavelength range. FIRAS is designed to provide absolute spectral information, therefore, all possible perturbations to the instrument response must be investigated to minimize distortions of the data. This paper discusses the methodology and resultant variations in the instrument performance noted during room temperature, and liquid nitrogen, (LN2) temperature vibration qualification. Reference alignment shifts in critical components such as the instrument wire-grid beamsplitter are correlated to changes in the instrument spectral response.

  1. Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Amin, S. Intekhab; Anand, Sunny; Sarin, R. K.

    2016-04-01

    In this work, the performance comparison of two heterojunction PIN TFETs having Si channel and Si0.5Ge0.5 source with high-k (SiGe DGTFET HK) and hetero-gate dielectric (SiGe DGTFET HG) respectively with those of two homojunction Si based PIN (DGTFET HK and DGTFET HG) TFETs is performed. Similarly, by employing the technique of pocketing at source junction in above four PIN TFETs, the performances of resultant four PNPN TFETs (SiGe PNPN DGTFET HK, SiGe PNPN DGTFET HG, PNPN DGTFET HK and PNPN DGTFET HG) are also compared with each other. Due to lower tunnel resistance of SiGe based heterojunction PIN and PNPN TFETs, the DC parameters such as ON current, ON-OFF current ratio, average subthreshold slope are improved significantly as compared to Si based PIN and PNPN TFETs respectively. The output characteristics of HG architectures in Si based homojunction PIN and PNPN TFETs is observed to be identical to with respective Si based HK PIN and PNPN TFET architectures. However, the output characteristics of HG architectures in SiGe based heterojunction PIN and PNPN TFETs degrade as compared to their respective SiGe based HK PIN and PNPN TFET architectures. In ON state, SiGe based HK and HG PIN and PNPN TFETs have lower gate capacitance (Cgg) as compared to their respective Si based HK and HG PIN and PNPN TFETs. Moreover, HG architecture suppresses gate to drain capacitance (Cgd) and ambipolar conduction. Transconductance (gm) and cut off frequency (fT) is also observed to be higher for SiGe based PIN and PNPN TFETs.

  2. Epitaxial Technologies for SiGeSn High Performance Optoelectronic Devices

    DTIC Science & Technology

    2015-04-29

    includes i) Growth of mid-IR GeSn/SiGeSn materials using Ultra-high- vacuum Chemical Vapor Deposition , ii) In-depth characterizations of GeSn materials...for SiGeSn varies from 2% to 5%. The reciprocal space map shows that the as-grown GeSn layers are relaxed. The TEM image shows that the misfit...dislocations are localized at the interface between Si and epitaxy layer . Room temperature photoluminescence (PL) from GeSn and SiGeSn samples have

  3. Cryogenic System for Interferometric Measurement of Dimensional Changes at 40 K: Design and Performance

    NASA Technical Reports Server (NTRS)

    Blake, Peter; Miller, Franklin; Zukowski, Tim; Canavan, Edgar R.; Crane, Allen; Madison, Tim; Miller, David

    2007-01-01

    This report describes the facility, experimental methods, characterizations, and uncertainty analysis of the Cryo Distortion Measurement Facility (CDMF) at the Goddard Space Flight Center (GSFC). This facility is designed to measure thermal distortions of structural elements as the temperature is lowered from 320K to below 40 K over multiple cycles, and is capable of unattended running and data logging. The first measurement is to be the change in length and any bending of composite tubes with Invar end-fittings. The CDMF includes a chamber that is efficiently cooled with two cryo-coolers (one single-stage and one two-stage) rather than with liquid cryogens. Five optical ports incorporate sapphire radiation shields - transparent to the interferometer - on each of two shrouds and a fused silica vacuum-port window. The change in length of composite tubes is monitored continuously with displacement-measuring interferometers; and the rotations, bending, and twisting are measured intermittently with theodolites and a surface-figure interferometer. Nickel-coated invar mirrors and attachment mechanisms were developed and qualified by test in the CDMF. The uncertainty in measurement of length change of 0.4 m tubes is currently estimated at 0.9 micrometers.

  4. Cryogenic submicron linear actuator

    NASA Astrophysics Data System (ADS)

    Serrano, Javier; Moreno Raso, Javier; González de María, David; Argelaguet Vilaseca, Heribert; Lamensans, Mikel; López Justo, David; Sanz Puig, Violeta

    2010-07-01

    The Cryogenic Submicron Linear Actuator (CSA) is a medium range (+/-5 mm) submicron resolution linear actuator suitable to be used at cryogenic temperature (12K). The unit has been developed for fine positioning use. The unit is based on classic motor-gear concept with nut and screw; different materials and lubrications have been tested for the same design configuration to compare performances. Load capability is above 20N. This paper describes main design features, results of different lubrications tested, tested performances, and main lessons learned.

  5. Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2002-02-01

    In this lecture we discuss the principle of method of cooling to a very low temperature, i.e. cryogenic. The "gas molecular model" will be introduced to explain the mechanism cooling by the expansion engine and the Joule-Thomson expansion valve. These two expansion processes are normally used in helium refrigeration systems to cool the process gas to cryogenic temperature. The reverse Carnot cycle will be discussed in detail as an ideal refrigeration cycle. First the fundamental process of liquefaction and refrigeration cycles will be discussed, and then the practical helium refrigeration system. The process flow of the system and the key components; -compressor, expander, and heat exchanger- will be discussed. As an example of an actual refrigeration system, we will use the cryogenic system for the KEKB superconducting RF cavity. We will also discuss the liquid helium distribution system, which is very important, especially for the cryogenic systems used in accelerator applications. 1 Principles of Cooling and Fundamental Cooling Cycle 2 Expansion engine, Joule-Thomson expansion, kinetic molecular theory, and enthalpy 3 Liquefaction Systems 4 Refrigeration Systems 5 Practical helium liquefier/refrigeration system 6 Cryogenic System for TRISTAN Superconducting RF Cavity

  6. Enhanced performance of GeSn source-pocket tunnel field-effect transistors for low-power applications

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Liang, Renrong; Wang, Jing; Xu, Jun

    2016-07-01

    Germanium-tin (GeSn) source-pocket tunnel field-effect transistors (TFETs) are comprehensively investigated by numerical device simulations at low supply voltages. Device configurations with homo- and hetero-tunneling junctions (TJ) are analyzed and compared. It is shown that direct-gap GeSn alloys are favorable for increasing the source-pocket tunneling rate. Increasing the source Sn composition of the device may aid the on-state current increase, but the subthreshold swing (SS) is degraded because of the reduced band gap. At ultrascaled supply voltages, the GeSn hetero-TJ TFET with higher pocket Sn composition exhibits the best performance and SS, and the device performance can be further improved by increasing the Sn composition in the pocket region. These simulation results could be used to understand and optimize the performance of GeSn source-pocket TFETs, which are very promising electronic devices for low-power applications.

  7. An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Sung; You, Won-Hyo; Yoo, Chang-Hyuk; Kim, Kyung-Su; Kim, Yooil

    2013-12-01

    Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low (-100 °C) and cryogenic (-163 °C) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083- O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

  8. Impact of the GE1/1 upgrade on CMS muon system performance

    NASA Astrophysics Data System (ADS)

    Magnani, A.; Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abdelalim, A. A.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Ahmed, W.; Aleksandrov, A.; Aly, R.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Elmetenawee, W.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hassan, A.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Masod, R.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohamed, S.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Sha, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2016-01-01

    During the future LHC upgrade planned in 2018, the forward endcap region of the CMS muon spectrometer will be upgraded with GEM chambers. GEM technology is able to withstand the radiation environment expected in the forward region. The GE1/1 station will be included in the muon L1 trigger, allowing to keep low pT threshold even at high luminosity. Moreover, it will bring detection redundancy in the most critical part of the CMS muon system, along with benefits to muon reconstruction performance.

  9. First performance of the GeMS + GMOS system - 1. Imaging

    NASA Astrophysics Data System (ADS)

    Hibon, Pascale; Garrel, Vincent; Neichel, Benoit; Prout, Benjamin; Rigaut, Francois; Koning, Alice; Carrasco, Eleazar R.; Gimeno, German; Pessev, Peter

    2016-09-01

    During the commissioning of the Gemini MCAO System (GeMS), we had the opportunity to obtain data with the Gemini Multi-Object Spectrograph (GMOS), the most utilized instrument at Gemini South Observatory, in 2012 March and May. Several globular clusters were observed in imaging mode that allowed us to study the performance of this new and untested combination. GMOS is a visible instrument, hence pushing MCAO towards the visible. We report here on the results with the GMOS instruments, derive photometric performance in term of full width at half-maximum (FWHM) and throughput. In most of the cases, we obtained an improvement factor of at least 2 against the natural seeing. This result also depends on the natural guide star constellation selected for the observations and we then study the impact of the guide star selection on the FWHM performance. We also derive a first astrometric analysis showing that the GeMS+GMOS system provide an absolute astrometric precision better than 8 mas and a relative astrometric precision lower than 50 mas.

  10. Evaluation of an 18-couple module composed of improved performance SiGe unicouples

    SciTech Connect

    Kelly, C.E.; Klee, P.M.; Nakahara, J.F.; Hartman, R.F.

    1995-12-31

    Radioisotope Thermoelectric Generators (RTGs) have played a major role in providing spacecraft electrical power for interplanetary exploration. Silicon Germanium alloys are the thermoelectric material employed in RTGs. Over the past several years a number of investigations have reported improvements in the figure of merit of these alloys. These improvements are attractive to mission planners because they result in enhanced RTG specific power (watts/lb) and improved efficiency which leads to lower fuel costs. This paper describes the fabrication and testing of an 18-couple module device utilizing unicouples with improved SiGe alloys. The unicouples were fabricated using materials with over a 10% improvement in the 573 to 1,273 K integrated average figure-of-merit over Cassini materials. The p-type material was fabricated by the standard vacuum casting and hot pressing method while the n-type material containing GaP was fabricated by a new method of mechanical alloying and hot isostatic pressing. The unicouples were fabricated in a similar fashion to standard unicouples except that the thermoelectric materials were bonded to the SiMo hot shoe in two thermal cycles due to the disparity of the melting points. A sufficient quantity of unicouples was fabricated to assemble an 18-couple module to evaluate the thermoelectric performance of the improved SiGe materials. The module was brought up to operating temperature following the same heatup rate as previous modules. The module was stabilized at a hot shoe temperature of 1,308 K. Initial performance was compared to the established SiGe database and found to show no improvement thermally or electrically.

  11. Cryogenic generator cooling

    NASA Astrophysics Data System (ADS)

    Eckels, P. W.; Fagan, T. J.; Parker, J. H., Jr.; Long, L. J.; Shestak, E. J.; Calfo, R. M.; Hannon, W. F.; Brown, D. B.; Barkell, J. W.; Patterson, A.

    The concept for a hydrogen cooled aluminum cryogenic generator was presented by Schlicher and Oberly in 1985. Following their lead, this paper describes the thermal design of a high voltage dc, multimegawatt generator of high power density. The rotor and stator are cooled by saturated liquid and supercritical hydrogen, respectively. The brushless exciter on the same shaft is also cooled by liquid hydrogen. Component development testing is well under way and some of the test results concerning the thermohydraulic performance of the conductors are reported. The aluminum cryogenic generator's characteristics are attractive for hydrogen economy applications.

  12. First performance test of a 25 T cryogen-free superconducting magnet

    NASA Astrophysics Data System (ADS)

    Awaji, Satoshi; Watanabe, Kazuo; Oguro, Hidetoshi; Miyazaki, Hiroshi; Hanai, Satoshi; Tosaka, Taizo; Ioka, Shigeru

    2017-06-01

    A 25 T cryogen-free superconducting magnet (25T-CSM) was developed and installed at the High Field Laboratory for Superconducting Materials (HFLSM), IMR, Tohoku University. The 25T-CSM consists of a high-temperature superconducting (HTS) coil and a low-temperature superconducting (LTS) coil. A high-strength CuNb/Nb3Sn Rutherford cable with a reinforcing stabilizer CuNb composite is adopted for the middle LTS section coil. All the coils were impregnated using an epoxy resin for conduction cooling. Initially, a GdBa2Cu3O y (Gd123) coil was designed as the HTS insert coil, and then a Bi2Sr2Ca2Cu3O y (Bi2223) coil was also developed. The HTS insert and the LTS (CuNb/Nb3Sn and NbTi) outsert coils are cooled by two 4K GM and two GM/JT cryocoolers, respectively. The LTS coils successfully generated a central magnetic field of 14 T at an operating current of 854 A without any training quench. The Gd123 coil generated 10.15 T at an operating current of 132.6 A in the absence of a background field. Subsequently, the operating current of the Gd123 insert was increased in a step-by-step manner under a background field of 14 T. The Gd123 coil could be operated up to 124.0 A stably, which corresponds to 23.55 T, but quenched at around 124.6 A (23.61 T). The Bi2223 insert coil using a Ni-alloy reinforced Bi2223 tape successfully generated 11.48 T at an operation current of 204.7A in a stand-alone test and 24.57 T in a background field of 14 T. The differences between the calculated and the measured values of the central magnetic fields are about 0.4 T for the Gd123 insert and 0.1 T for the Bi2223 insert around 24 T.

  13. GeMS/GSAOI Photometric and Astrometric Performance in Dense Stellar Fields

    NASA Astrophysics Data System (ADS)

    Dalessandro, E.; Saracino, S.; Origlia, L.; Marchetti, E.; Ferraro, F. R.; Lanzoni, B.; Geisler, D.; Cohen, R. E.; Mauro, F.; Villanova, S.

    2016-12-01

    Ground-based imagers at 8 m class telescopes assisted by multi-conjugate adaptive optics are primary facilities with which to obtain accurate photometry and proper motions in dense stellar fields. We observed the central region of the globular clusters Liller 1 and NGC 6624 with the Gemini Multi-conjugate Adaptive Optics System (GeMS) feeding the Gemini South Adaptive Optics Imager (GSAOI) currently available at the Gemini South telescope, under different observing conditions. We characterized the stellar point-spread function (PSF) in terms of FWHM, Strehl ratio (SR), and encircled energy (EE), over the field of view (FOV). We found that, for sub-arcsecond seeing at the observed airmass, we can obtain the diffraction-limited PSF (FWHM ≈ 80 mas), SR ∼ 40%, and EE ≥ 50% with a dispersion around 10% over the FOV of 85″ × 85″, in the K s band. In the J band the best images provide FWHMs between 60 and 80 mas, SR \\gt 10 % , and {EE}\\gt 40 % . For seeing at the observed airmass exceeding 1″, the performance worsens but it is still possible to perform PSF fitting photometry with 25% EE in J and 40% in K s . We also computed the geometric distortions of GeMS/GSAOI and we obtained corrected images with an astrometric accuracy of ∼1 mas in a stellar field with high crowding.

  14. Performance of the active sidewall boundary-layer removal system for the Langley 0.3-meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen; Murthy, A. V.

    1989-01-01

    A performance evaluation of an active sidewall boundary-layer removal system for the Langley 0.3-m Transonic Cryogenic Tunnel (TCT) was evaluated in 1988. This system uses a compressor and two throttling digital valves to control the boundary-layer mass flow removal from the tunnel. The compressor operates near the maximum pressure ratio for all conditions. The system uses a surge prevention and flow recirculation scheme. A microprocessor based controller is used to provide the necessary mass flow and compressor pressure ratio control. Initial tests on the system indicated problems in realizing smooth mass flow control while running the compressor at high speed and high pressure ratios. An alternate method has been conceived to realize boundary-layer mass flow control which avoids the recirculation of the compressor mass flow and operation near the compressor surge point. This scheme is based on varying the speed of the compressor for a sufficient pressure ratio to provide needed mass flow removal. The system has a mass flow removal capability of about 10 percent of test section flow at M = 0.3 and 4 percent at M = 0.8. The system performance has been evaluated in the form of the compressor map, and compressor tunnel interface characteristics covering most of the 0.3-m TCT operational envelope.

  15. Cryogenic shutter

    NASA Technical Reports Server (NTRS)

    Barney, Richard D. (Inventor); Magner, Thomas J. (Inventor)

    1991-01-01

    A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also termally connected to a reservoir containing the cryogen to further reduce the internal temperature.

  16. Cryogenic shutter

    NASA Technical Reports Server (NTRS)

    Barney, Richard D. (Inventor); Magner, Thomas J. (Inventor)

    1992-01-01

    A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also thermally connected to a reservoir containing cryogen to further reduce the internal temperature.

  17. CMOS reliability issues for emerging cryogenic Lunar electronics applications

    NASA Astrophysics Data System (ADS)

    Chen, Tianbing; Zhu, Chendong; Najafizadeh, Laleh; Jun, Bongim; Ahmed, Adnan; Diestelhorst, Ryan; Espinel, Gustavo; Cressler, John D.

    2006-06-01

    We investigate the reliability issues associated with the application of CMOS devices contained within an advanced SiGe HBT BiCMOS technology to emerging cryogenic space electronics (e.g., down to 43 K, for Lunar missions). Reduced temperature operation improves CMOS device performance (e.g., transconductance, carrier mobility, subthreshold swing, and output current drive), as expected. However, operation at cryogenic temperatures also causes serious device reliability concerns, since it aggravates hot-carrier effects, effectively decreasing the inferred device lifetime significantly, especially at short gate lengths. In the paper, hot-carrier effects are demonstrated to be a stronger function of the device gate length than the temperature, suggesting that significant trade-offs between the gate length and the operational temperature must be made in order to ensure safe and reliable operation over typical projected mission lifetimes in these hostile environments.

  18. Performance improvement of Ge-Sb-Te material by GaSb doping for phase change memory

    SciTech Connect

    Lu, Yegang; Zhang, Zhonghua; Song, Sannian; Cheng, Limin; Song, Zhitang; Shen, Xiang; Wang, Guoxiang; Dai, Shixun

    2013-06-17

    Effects of GaSb doping on phase change characteristics of Ge-Sb-Te material are investigated by in situ resistance and x-ray diffraction measurement, optical spectroscopy, and x-ray photoelectron spectroscopy. The crystallization temperature and data retention of Ge-Sb-Te material increase significantly by the addition of GaSb, which results from the high thermal stability of amorphous GaSb. In addition, GaSb-doped Ge-Sb-Te material exhibits faster crystallization speed due to the change in electronic states as a result of the formation of chemical bonds with Ga element. Incorporation of GaSb is highly effective way to enhance the comprehensive performance of Ge-Sb-Te material for phase change memory.

  19. Experimental measurements and theoretical model of the cryogenic performance of bialkali photocathode and characterization with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Xie, Huamu; Ben-Zvi, Ilan; Rao, Triveni; Xin, Tianmu; Wang, Erdong

    2016-10-01

    High-average-current, high-brightness electron sources have important applications, such as in high-repetition-rate free-electron lasers, or in the electron cooling of hadrons. Bialkali photocathodes are promising high-quantum-efficiency (QE) cathode materials, while superconducting rf (SRF) electron guns offer continuous-mode operation at high acceleration, as is needed for high-brightness electron sources. Thus, we must have a comprehensive understanding of the performance of bialkali photocathode at cryogenic temperatures when they are to be used in SRF guns. To remove the heat produced by the radio-frequency field in these guns, the cathode should be cooled to cryogenic temperatures. We recorded an 80% reduction of the QE upon cooling the K2CsSb cathode from room temperature down to the temperature of liquid nitrogen in Brookhaven National Laboratory (BNL)'s 704 MHz SRF gun. We conducted several experiments to identify the underlying mechanism in this reduction. The change in the spectral response of the bialkali photocathode, when cooled from room temperature (300 K) to 166 K, suggests that a change in the ionization energy (defined as the energy gap from the top of the valence band to vacuum level) is the main reason for this reduction. We developed an analytical model of the process, based on Spicer's three-step model. The change in ionization energy, with falling temperature, gives a simplified description of the QE's temperature dependence. We also developed a 2D Monte Carlo code to simulate photoemission that accounts for the wavelength-dependent photon absorption in the first step, the scattering and diffusion in the second step, and the momentum conservation in the emission step. From this simulation, we established a correlation between ionization energy and reduction in the QE. The simulation yielded results comparable to those from the analytical model. The simulation offers us additional capabilities such as calculation of the intrinsic emittance

  20. Experimental measurements and theoretical model of the cryogenic performance of bialkali photocathode and characterization with Monte Carlo simulation

    DOE PAGES

    Xie, Huamu; Ben-Zvi, Ilan; Rao, Triveni; ...

    2016-10-19

    High-average-current, high-brightness electron sources have important applications, such as in high-repetition-rate free-electron lasers, or in the electron cooling of hadrons. Bialkali photocathodes are promising high-quantum-efficiency (QE) cathode materials, while superconducting rf (SRF) electron guns offer continuous-mode operation at high acceleration, as is needed for high-brightness electron sources. Thus, we must have a comprehensive understanding of the performance of bialkali photocathode at cryogenic temperatures when they are to be used in SRF guns. To remove the heat produced by the radio-frequency field in these guns, the cathode should be cooled to cryogenic temperatures.We recorded an 80% reduction of the QE uponmore » cooling the K2CsSb cathode from room temperature down to the temperature of liquid nitrogen in Brookhaven National Laboratory (BNL)’s 704 MHz SRF gun.We conducted several experiments to identify the underlying mechanism in this reduction. The change in the spectral response of the bialkali photocathode, when cooled from room temperature (300 K) to 166 K, suggests that a change in the ionization energy (defined as the energy gap from the top of the valence band to vacuum level) is the main reason for this reduction.We developed an analytical model of the process, based on Spicer’s three-step model. The change in ionization energy, with falling temperature, gives a simplified description of the QE’s temperature dependence.We also developed a 2D Monte Carlo code to simulate photoemission that accounts for the wavelength-dependent photon absorption in the first step, the scattering and diffusion in the second step, and the momentum conservation in the emission step. From this simulation, we established a correlation between ionization energy and reduction in the QE. The simulation yielded results comparable to those from the analytical model. The simulation offers us additional capabilities such as calculation of the intrinsic

  1. High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform

    NASA Astrophysics Data System (ADS)

    Liu, Jifeng; Michel, Jurgen; Giziewicz, Wojciech; Pan, Dong; Wada, Kazumi; Cannon, Douglas D.; Jongthammanurak, Samerkhae; Danielson, David T.; Kimerling, Lionel C.; Chen, Jian; Ilday, F. Ömer; Kärtner, Franz X.; Yasaitis, John

    2005-09-01

    We demonstrate a high-performance, tensile-strained Ge p-i-n photodetector on Si platform with an extended detection spectrum of 650-1605 nm and a 3 dB bandwidth of 8.5 GHz measured at λ =1040nm. The full bandwidth of the photodetector is achieved at a low reverse bias of 1 V, compatible with the low driving voltage requirements of Si ultralarge-scale integrated circuits. Due to the direct bandgap shrinkage induced by a 0.20% tensile strain in the Ge layer, the device covers the entire C band and a large part of the L band in telecommunications. The responsivities of the device at 850, 980, 1310, 1550, and 1605 nm are 0.55, 0.68, 0.87, 0.56, and 0.11A/W, respectively, without antireflection coating. The internal quantum efficiency in the wavelength range of 650-1340 nm is over 90%. The entire device was fabricated using materials and processing that can be implemented in a standard Si complementary metal oxide semiconductor (CMOS) process flow. With high speed, a broad detection spectrum and compatibility with Si CMOS technology, this device is attractive for applications in both telecommunications and integrated optical interconnects.

  2. Ge/SiGe for silicon photonics

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yasuhiko

    2017-01-01

    Near-infrared Ge photonic devices on a Si platform are presented toward low-cost, low-energy and high-capacity optical communications. Using Ge epitaxial layers selectively grown by chemical vapor deposition on Si-on-insulator layers, Ge photodiodes (PDs) of vertical pin structures are integrated with Si optical waveguides. The integrated Ge PDs show high responsivities as large as 0.8 A/W at 1.55 μm with the 3-dB cutoff frequency more than 10 GHz. SiGe/Ge heterostructures have potential applications to higher-performance devices. One application is to low-noise and low-voltage avalanche photodiodes (APDs), where a SiGe layer is inserted at the interface between the optical absorption layer of Ge and the carrier-multiplication layer of Si or Ge. The band discontinuity at the interface enhances the impact ionization for photo-generated carriers injected via SiGe. Fabricated APDs show an enhanced multiplication gain. The other application of SiGe is to a stressor to control the direct bandgap of Ge. As a proof of concept, a tensile-strained Si0.2Ge0.8 overlayer is shown to induce a compressive stress in the underlying Ge mesa stripe, leading to a blue shift in the absorption edge of Ge.

  3. Cryogenic storage tank thermal analysis

    NASA Technical Reports Server (NTRS)

    Wright, J. P.

    1976-01-01

    Parametric study discusses relationship between cryogenic boil-off and factors such as tank size, insulation thickness and performance, structural-support heat leaks and use of vapor-cooled shields. Data presented as series of nomographs and curves.

  4. Design and performance of a cryogenic scanning tunneling microscope in high magnetic field for 2D layered materials study

    NASA Astrophysics Data System (ADS)

    Chuang, Tien-Ming; Chung, Pei-Fang; Guan, Syu-You; Yu, Shan-An; Liu, Che-An; Hsu, Chia-Sheng; Su, Chih-Chuan; Sankar, Raman; Chou, Fang-Cheng

    2015-03-01

    We will describe the design and performance of a cryogenic scanning tunneling microscope (STM) system in a high magnetic field. A Pan-type STM is mounted on a homemade low vibration 4He pot refrigerator, which can be operated in continuous flow mode at T ~ 1.6K and in a magnetic field of up to 9 Tesla. A cleavage device at T =4.2K stage is used to cleave the 2D layered materials before inserting into STM as well as functioning as the radiation shield. The liquid helium boil rate of 4.6 liters per day is achieved due to our careful design, which allows the measurement at base temperature up to 10 days. We will demonstrate its capability of measuring atomically registered energy resolved spectroscopic maps in both real space and momentum space by our recent results on Rashba BiTeI. This work is supported by Ministry of Science and Technology, Taiwan and Kenda Foundation, Taiwan.

  5. Effect of deep cryogenic treatment on the microstructure and wear performance of Cr-Mn-Cu white cast iron grinding media

    NASA Astrophysics Data System (ADS)

    Vidyarthi, M. K.; Ghose, A. K.; Chakrabarty, I.

    2013-12-01

    The phase transformation and grinding wear behavior of Cr-Mn-Cu white cast irons subjected to destabilization treatment followed by air cooling or deep cryogenic treatment were studied as a part of the development program of substitute alloys for existing costly wear resistant alloys. The microstructural evolution during heat treatment and the consequent improvement in grinding wear performance were evaluated with optical and scanning electron microscopy, X-ray diffraction analysis, bulk hardness, impact toughness and corrosion rate measurements, laboratory ball mill grinding wear test etc. The deep cryogenic treatment has a significant effect in minimizing the retained austenite content and converts it to martensite embedded with fine M7C3 alloy carbides. The cumulative wear losses in cryotreated alloys are lesser than those with conventionally destabilized alloys followed by air cooling both in wet and dry grinding conditions. The cryotreated Cr-Mn-Cu irons exhibit comparable wear performance to high chromium irons.

  6. Thermal Performance of Biological Substance Systems in Vitro Under Static and Dynamic Conditions at the Cryogenic Test Laboratory, NASA Kennedy Space Center, USA

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, James E.; Steinrock, T. (Technical Monitor)

    2001-01-01

    A unique research program, including a comprehensive study of thermal performance at cryogenic vacuum insulation systems, was performed at the NASA Kennedy Space Center. The main goal was to develop a new soft vacuum system (from 1 torr to 10 torr) that provides an intermediate level of performance (k-value below 4.8 mW/m-K). Liquid nitrogen boil-off methods were used to test conventional materials, novel materials, and certain combinations. The test articles included combinations of aluminum foil, fiberglass paper, polyester fabric, silica aerogel composite blanket, fumed silica, silica aerogel powder, and syntactic foam. A new LCI system was developed at the Cryogenics Test Laboratory. This system performs exceptionally well at soft vacuum levels and nearly as good as an MLI at high vacuum levels. Apparent thermal conductivities for the LCI range from 2 mW/m-K at soft vacuum to 0.1 mW/m-K at high vacuum. Several cryostats were designed, constructed, and calibrated by the Cryogenics Test Laboratory at KSC NASA as part of this research program. The cryostat test apparatus is a liquid nitrogen boil-off calorimeter system for direct measurement of the apparent thermal conductivity at a fixed vacuum level between 5 x 10(exp -5) and 760 torr. The apparatus is also used for transient measurements of temperature profiles. The development of efficient, robust cryogenic insulation systems has been a targeted area of research for a number of years. Improved methods of characterization, testing, and evaluation of complex biological substance systems for cryosurgery and cryobiology are the focus of this paper.

  7. The in-vacuo torque performance of dry-lubricated ball bearings at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Gould, S. G.; Roberts, E. W.

    1989-01-01

    The performance of dry-lubricated, angular contact ball bearings in vacuum at a temperature of 20 degrees K has been investigated, and is compared with the in-vacuo performance at room temperatures. Bearings were lubricated using dry-lubricant techniques which have been previously established for space applications involving operations at or near room temperature. Comparative tests were undertaken using three lubricants: molybdenum disulphide, lead, and PTFE. Results obtained using the three lubricants are presented.

  8. CRYOGENIC MAGNETS

    DOEpatents

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  9. High performance LWIR microbolometer with Si/SiGe quantum well thermistor and wafer level packaging

    NASA Astrophysics Data System (ADS)

    Roer, Audun; Lapadatu, Adriana; Bring, Martin; Wolla, Erik; Hohler, Erling; Kittilsland, Gjermund

    2011-11-01

    An uncooled microbolometer with peak responsivity in the long wave infrared region of the electromagnetic radiation is developed at Sensonor Technologies. It is a 384 x 288 focal plane array with a pixel pitch of 25μm, based on monocrystalline Si/SiGe quantum wells as IR sensitive material. The high sensitivity (TCR) and low 1/f noise are the main performance characteristics of the product. The frame rate is maximum 60Hz and the output interface is digital (LVDS). The quantum well thermistor material is transferred to the read-out integrated circuit (ROIC) by direct wafer bonding. The ROIC wafer containing the released pixels is bonded in vacuum with a silicon cap wafer, providing hermetic encapsulation at low cost. The resulting wafer stack is mounted in a standard ceramic package. In this paper the architecture of the pixels and the ROIC, the wafer packaging and the electro-optical measurement results are presented.

  10. Performance of multiplexed Ge:Ga detector arrays in the far infrared

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Mccreight, Craig

    1990-01-01

    The performance of two multi-element, multiplexed Ge:Ga linear arrays under low-background conditions was investigated. The on-focal switching is accomplished by MOSFET switches, and the integrated charge is made available through MOSFET source followers. The tests were conducted at 106 microns, and the radiation on the detectors was confined to a spectral window 1.25 microns wide using a stack of cold filters. At 4.2 K, the highest responsivity was 584 A/W, the noise equivalent power was 1.0 x 10(exp -16) W/square root of Hz, and the read noise was 6100 electrons/sample. A detailed description of the test setup and procedure is presented.

  11. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2008-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost-effective approaches to the required on-orbit demonstration are suggested.

  12. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost effective approaches to the required on-orbit demonstration are suggested.

  13. Investigations on Absorber Materials at Cryogenic Temperatures

    SciTech Connect

    Marhauser, Frank; Elliott, Thomas; Rimmer, Robert

    2009-05-01

    In the framework of the 12 GeV upgrade project for the Continuous Electron Beam Accelerator Facility (CEBAF) improvements are being made to refurbish cryomodules housing Thomas Jefferson National Accelerator Facility's (JLab) original 5-cell cavities. Recently we have started to look into a possible simplification of the existing Higher Order Mode (HOM) absorber design combined with the aim to find alternative material candidates. The absorbers are implemented in two HOM-waveguides immersed in the helium bath and operate at 2 K temperature. We have built a cryogenic setup to perform measurements on sample load materials to investigate their lossy characteristics and variations from room temperature down to 2 K. Initial results are presented in this paper.

  14. Flight electronics for vibration cancellation in cryogenic refrigerators: performance and environmental testing results

    NASA Astrophysics Data System (ADS)

    Burriesci, Lawrence G.; Cook, Eric I.; Hackett, John P.; Drummond, James R.; Mand, Gurpreet S.

    1996-10-01

    Space flight optical instruments and their support hardware must reliably operate in stressing environments for the duration of their mission. They must also survive the mechanical and thermal stresses of transportation, storage and launch. It is necessary to qualify the hardware design through environmental testing and to verify the hardware's ability to perform properly during and/or after some selected environmental tests on the ground. As a rule, flight electronics are subjected to thermal, mechanical and electromagnetic environmental testing. Thermal testing takes the form of temperature cycling over a temperature difference range (Delta) T of up to 100 degrees C for a minimum of six cycles, with additional performance verification testing at the hot and cold extremes. Mechanical testing takes the form of exposure to random vibration, sine sweep vibration, shock spectra and static loading on a centrifuge or by sine burst on a vibration table. A standard series of electromagnetic interference and electromagnetic compatibility testing is also performed.

  15. Performance of a Cryogenic 21 Meter-Path Copper Herriott Cell Vacuum Coupled to a Bruker 125HR System

    NASA Astrophysics Data System (ADS)

    Mantz, Arlan W.; Sung, Keeyoon; Crawford, Timothy J.; Yu, Shanshan; Brown, Linda R.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    2013-06-01

    Accurate modeling of planetary atmospheres requires a detailed knowledge of the temperature and pressure dependence of spectroscopic line parameters of atmospheric molecules. With this requirement in mind, a new Herriott cell having a 21 meter folded absorption path was designed and fabricated with Oxygen-Free High Conductivity (OFHC) copper body and gold coated OFHC copper mirrors to operate for the first time with a broad-band Fourier transform spectrometer. The cell, enclosed in an isolated vacuum box, is cooled by a CTI Cryogenics, Inc. model 1050 closed-cycle helium refrigerator which also cryopumps the vacuum box. The temperature of the cell is monitored by a silicon temperature sensor and regulated by a Lakeshore model 331 temperature controller. The new cell system was integrated to the JPL Bruker model 125HR interferometer with transfer optics which are fully evacuated to 12 mTorr (the pressure inside the interferometer). The optics were through-put matched for entrance apertures smaller than 2 mm. The system has successfully operated for several months at gas sample temperatures between 75 and 250 K with extremely good stability to obtain spectra of methane, carbon dioxide, and oxygen bands between 0.76 and 3 μm. We present the characterization and performance of the Herriott cell system and preliminary analyses of newly recorded spectra. Research described in this paper was performed at Connecticut College, the Jet Propulsion Laboratory, California Institute of Technology, NASA Langley Research Center, and The College of William and Mary under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  16. Unlocking the Origin of Superior Performance of a Si-Ge Core-Shell Nanowire Quantum Dot Field Effect Transistor.

    PubMed

    Dhungana, Kamal B; Jaishi, Meghnath; Pati, Ranjit

    2016-07-13

    The sustained advancement in semiconducting core-shell nanowire technology has unlocked a tantalizing route for making next generation field effect transistor (FET). Understanding how to control carrier mobility of these nanowire channels by applying a gate field is the key to developing a high performance FET. Herein, we have identified the switching mechanism responsible for the superior performance of a Si-Ge core-shell nanowire quantum dot FET over its homogeneous Si counterpart. A quantum transport approach is used to investigate the gate-field modulated switching behavior in electronic current for ultranarrow Si and Si-Ge core-shell nanowire quantum dot FETs. Our calculations reveal that for the ON state, the gate-field induced transverse localization of the wave function restricts the carrier transport to the outer (shell) layer with the pz orbitals providing the pathway for tunneling of electrons in the channels. The higher ON state current in the Si-Ge core-shell nanowire FET is attributed to the pz orbitals that are distributed over the entire channel; in the case of Si nanowire, the participating pz orbital is restricted to a few Si atoms in the channel resulting in a smaller tunneling current. Within the gate bias range considered here, the transconductance is found to be substantially higher in the case of a Si-Ge core-shell nanowire FET than in a Si nanowire FET, which suggests a much higher mobility in the Si-Ge nanowire device.

  17. Use of simple x-ray measurement in the performance analysis of cryogenic RF accelerator cavities

    SciTech Connect

    D. Dotson; M. Drury; R. May; C. Reece

    1996-10-01

    X-ray emission by radiofrequency (RF) resonant cavities has long been known to accelerator health physicists as a potentially serious source of radiation exposure. The authors points out the danger of klystrons and microwave cavities by stating that the radiation source term is erratic and may be unpredictable depending on microscopic surface conditions which change with time. He also states the x-ray output is a rapidly increasing function of RF input power. At Jefferson Lab, the RF cavities used to accelerate the electron beam employ superconducting technology. X-rays are emitted at high cavity gradients, and measurements of cavity x-rays are valuable for health physics purposes and provide a useful diagnostic tool for assessing cavity performance. The quality factor (Q) for superconducting RF resonant cavities used at Jefferson Lab, is typically 5 x 10{sup 9} for the nominal design gradient of 5 MVm{sup {minus}1}. This large value for Q follows from the small resistive loss in superconducting technology. The operating frequency is 1,497 MHz. In the absence of beam, the input power for a cavity is typically 750 W and the corresponding dissipated power is 2.6 W. At 5 MWm{sup {minus}1}, the input power is 3 kW fully beam loaded. At higher gradients, performance degradation tends to occur due to the onset of electron field emission from defects in the cavity.

  18. A Piezoelectric Cryogenic Heat Switch

    NASA Technical Reports Server (NTRS)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  19. Performance of a hypersonic hot fuselage structure with a carbon dioxide frost projected, nonintegral cryogenic tank

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Jackson, L. R.

    1975-01-01

    A model which consisted of a hot structure and a nonintegral tank protected by a carbon dioxide frost thermal protection system was tested under the following conditions: (1) room temperature loading and (2) heating and loading corresponding to the Mach 8 flight of an air-breathing launch vehicle. In the simulated flight tests, liquid nitrogen inside the tank was withdrawn at the rate fuel would be consumed. Prior to each simulated flight test, carbon dioxide was cryodeposited in the insulation surrounding the tank; during the tests, subliming CO2 frost absorbed heat and provided a purge gas for the space between the tank and the structure. A method of flame spraying the joints between panels with a nickel-aluminum material was developed to prevent excessive leakage of the purge gas through the outer structure. The tests indicated that the hot structure (with a joint repaired by riveting), the nonintegral tank and suspension system, and the carbon dioxide frost thermal protection system provide a workable concept with predictable performance.

  20. Cryogenic performances of T700 and T800 carbon fibre- epoxy laminates

    NASA Astrophysics Data System (ADS)

    Wei, Wang; Rongjin, Huang; Chuanjun, Huang; Zhao, Yuqiang; Li, Shaopeng; Laifeng, Li

    2015-12-01

    The temperature dependence of thermal expansion, thermal conductivity and mechanical properties of T700 carbon fibre (T700 CFs) /epoxy composite and T800 CF/epoxy composite were investigated. The mechanical and thermal properties of the unidirectional composite material laminates (0°/90°) at low temperature were studied. The results show that comparing the composite material T700 CFs with T800 CFs, the thermal expansion and thermal conductivity performances of T800 CFs (0°/90°) are all smaller than those of T700 CFs. Typically, the coefficient of thermal expansion (CTE) of T800 CFs in 0° is very low in the temperature range of 120-300K, which reaches as low as -0.4×10-6 K-1. The value of thermal conductivity of this material at 0° is about 3.2 W.(m.K)-1 at room temperature. Tensile and compression tests indicate that the tensile strength of T800 CFs in 0° direction at 77K reaches 2310 MPa, while the compressive strength is about 852 MPa. This composite material may possibly be exploited to design the critical components for practical applications such as hydrogen storage tanks.

  1. The performance of a cryogenically cooled monochromator for an in-vacuum undulator beamline.

    PubMed

    Zhang, Lin; Lee, Wah Keat; Wulff, Michael; Eybert, Laurent

    2003-07-01

    The channel-cut silicon monochromator on beamline ID09 at the European Synchrotron Radiation Facility is indirectly cooled from the sides by liquid nitrogen. The thermal slope error of the diffracting surface is calculated by finite-element analysis and the results are compared with experiments. The slope error is studied as a function of cooling coefficients, beam size, position of the footprint and power distribution. It is found that the slope error versus power curve can be divided into three regions: (i). The linear region: the thermal slope error is linearly proportional to the power. (ii). The transition region: the temperature of the Si crystal is close to 125 K; the thermal slope error is below the straight line extrapolated from the linear curve described above. (iii). The non-linear region: the temperature of the Si crystal is higher than 125 K and the thermal slope error increases much faster than the power. Heat-load tests were also performed and the measured rocking-curve widths are compared with those calculated by finite-element modeling. When the broadening from the intrinsic rocking-curve width and mounting strain are included, the calculated rocking-curve width versus heat load is in excellent agreement with experiment.

  2. Performance of high-altitude, long-endurance, turboprop airplanes using conventional or cryogenic fuels

    NASA Technical Reports Server (NTRS)

    Liu, G. C.; Morris, C. E. K., Jr.; Koenig, R. W.

    1983-01-01

    An analytical study has been conducted to evaluate the potential endurance of remotely piloted, low speed, high altitude, long endurance airplanes designed with 1990 technology. The baseline configuration was a propeller driven, sailplane like airplane powered by turbine engines that used JP-7, liquid methane, or liquid hydrogen as fuel. Endurance was measured as the time spent between 60,000 feet and an engine limited maximum altitude of 70,000 feet. Performance was calculated for a baseline vehicle and for configurations derived by varying aerodynamic, structural or propulsion parameters. Endurance is maximized by reducing wing loading and engine size. The level of maximum endurance for a given wing loading is virtually the same for all three fuels. Constraints due to winds aloft and propulsion system scaling produce maximum endurance values of 71 hours for JP-7 fuel, 70 hours for liquid methane, and 65 hours for liquid hydrogen. Endurance is shown to be strongly effected by structural weight fraction, specific fuel consumption, and fuel load. Listings of the computer program used in this study and sample cases are included in the report.

  3. Cryogenic performance of a conduction-cooling splittable quadrupole magnet for ILC cryomodules

    SciTech Connect

    Kimura, N.; Yamamoto, A.; Andreev, N.; Kashikhin, V. S.; Tartaglia, M. A.; Kerby, J.; Takahashi, M.; Tosaka, T.

    2014-01-29

    A conduction-cooled splittable superconducting quadrupole magnet was designed and fabricated at Fermilab for use in cryomodules of the International Linear Collider (ILC) type, in which the magnet was to be assembled around the beam tube to avoid contaminating the ultraclean superconducting radio frequency cavity volume. This quadrupole was first tested in a liquid helium bath environment at Fermilab, where its quench and magnetic properties were characterized. Because the device is to be cooled by conduction when installed in cryomodules, a separate test with a conduction-cooled configuration was planned at KEK and Fermilab. The magnet was converted to a conduction-cooled configuration by adding conduction-cooling passages made of high-purity aluminum. Efforts to convert and refabricate the magnet into a cryostat equipped with a double-stage pulse-tube-type cryocooler began in 2011, and a thermal performance test, including a magnet excitation test of up to 30 A, was conducted at KEK. In this test, the magnet with the conduction-cooled configuration was successfully cooled to 4 K within 190 h, with an acceptable heat load of less than 1 W at 4 K. It was also confirmed that the conduction-cooled splittable superconducting quadrupole magnet was practical for use in ILC-type cryomodules.

  4. Cryogenic optical systems and instruments IV; Proceedings of the Meeting, San Diego, CA, July 10-12, 1990

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K. (Editor); Pruitt, Gerald R. (Editor)

    1990-01-01

    Consideration is given to cryogenic system design and optical technology; cryogenic instruments, sensors, and detectors; space cryogenic dewars and coolers; and cryogenic mechanisms, testing, and structures. Particular attention is given to mission optimization of the Space Infrared Telescope Facility (SIRTF), alternative aperture stop position designs for SIRTF, scaling laws for lightweight optics, evaluation of a far-infrared Ge:Ga multiplexed detector array, cryogenic limb array etalon spectrometer calibration, reliability growth of coolers for advanced optical systems and instruments, flight-qualified solid argon cooler for the BBXRT instrument, precision mechanisms for optical alignments at cryogenic temperatures, versatile cryogenic rotary-positioning systems, and optical alignments of the Cosmic Background Explorer observatory.

  5. ILC cryogenic systems reference design

    SciTech Connect

    Peterson, T.J.; Geynisman, M.; Klebaner, A.; Theilacker, J.; Parma, V.; Tavian, L.; /CERN

    2008-01-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  6. Ilc Cryogenic Systems Reference Design

    NASA Astrophysics Data System (ADS)

    Peterson, T. J.; Geynisman, M.; Klebaner, A.; Parma, V.; Tavian, L.; Theilacker, J.

    2008-03-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  7. Thermal endurance and microstructural evolution of PtGe for high-performance nano-scale Ge-on-Si MOSFETS.

    PubMed

    Kang, Min-Ho; Shin, Hong-Sik; Oh, Se-Kyung; Yoo, Jung-Ho; Lee, Ga-Won; Oh, Jung-Woo; Majhi, Prashant; Jammy, Raj; Lee, Hi-Deok

    2011-07-01

    The thermal endurance and microstructural evolution of Ni-germanide (NiGe) and Pt-germanide (PtGe) on a Ge-on-Si substrate were compared in this paper. In case of the Ni/TiN structure, the sheet resistance exhibited a stable RTP window of 350 to 600 degrees C, while that of the Pt/TiN structure showed more stable characteristics up to 700 degrees C. Furthermore, after post-germanidation annealing, NiGe exhibited the formation of islands due to the severe agglomeration as well as a prominent grain boundary grooving, which accounts for the sharp increase of the sheet resistance from 550 degrees C, whereas PtGe showed a smooth and continuous surface morphological stability without signs of agglomeration even up to 600 degrees C. Although about two times higher resistivity (31.5 micro ohms-cm) and greater Ge consumption (3.27 nm) were shown, PtGe showed more stable sheet resistance, better surface and interface morphological stability and a wider thermal processing window above 100 degrees C than NiGe. Therefore, PtGe is more suitable for the germanided shallow source/drain for nano-scale Ge MOSFETs than NiGe.

  8. Enhancement in thermoelectric performance of SiGe nanoalloys dispersed with SiC nanoparticles.

    PubMed

    Bathula, Sivaiah; Jayasimhadri, M; Gahtori, Bhasker; Kumar, Anil; Srivastava, A K; Dhar, Ajay

    2017-09-08

    SiGe is one of the most widely used thermoelectric materials for radioisotope thermoelectric generator applications for harnessing waste-heat at high temperatures. In the present study, we report a simple experimental strategy for enhancing the thermoelectric and mechanical properties of n-type SiGe nanoalloys by dispersing SiC nanoparticles in a SiGe nanoalloy matrix. This strategy yielded a high value of figure-of-merit (ZT) of ∼1.7 at 900 °C in the SiGe/SiC nanocomposite, which is nearly twice that reported for its pristine bulk counterpart and ∼15% higher than that of pristine SiGe nanoalloys. This significant enhancement in the ZT primarily originates from a reduction in the lattice thermal conductivity, owing to a high density of nano-scale interfaces, lattice-scale modulations and mass fluctuations, which lead to extensive scattering of heat-carrying phonons. The dispersion of SiC nanoparticles also significantly enhances the mechanical properties of the resulting SiGe/SiC nanocomposite, including fracture toughness and hardness. The enhancement in the thermoelectric and mechanical properties of the SiGe/SiC nanocomposites has been correlated with their microstructural features, elucidated employing X-ray diffraction, and scanning and transmission electron microscopy.

  9. Investigation of cryogenic rupture disc design

    NASA Technical Reports Server (NTRS)

    Keough, J. B.; Oldland, A. H.

    1973-01-01

    Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

  10. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.

    PubMed

    Zhu, Yun Guang; Wang, Ye; Han, Zhao Jun; Shi, Yumeng; Wong, Jen It; Huang, Zhi Xiang; Ostrikov, Kostya Ken; Yang, Hui Ying

    2014-12-21

    The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.

  11. Effect of casing treatment on performance of a multistage compressor. [J85-GE-13 engine tests

    NASA Technical Reports Server (NTRS)

    Wenzel, L. M.; Moss, J. E., Jr.; Mehalic, C. M.

    1975-01-01

    AJ85-GE-13 engine was equipped with a compressor case which allowed changes to the case wall over the rotor tips of six of its stages. The engine was tested with four inlet configurations: undistorted and with 180 deg circumferential, hub radial, and tip radial distortions. Baseline data defining compressor performance and stall regions were taken for these inlet configurations with solid (untreated) compressor case inserts. Circumferentially grooved inserts were installed in the first three and last three stages, and the compressor was mapped under similar conditions. The compressor was mapped a third time with untreated inserts in the first three stages and inserts having slots conforming to blade angles in the last three stages. In most cases, the stall pressure ratio was the same as or lower than the baseline. Pumping capacity with the slotted inserts was reduced. Overall compressor efficiency with the grooved rings installed did not appreciably differ from the baseline, but it was 1 to 2 percentage points lower than the baseline with the slotted rings in place. Average stage characteristics for the undistorted inlet case showed little or no sensitivity to casing treatment.

  12. Finite-element simulation of the performance of a superconducting meander structure shielding for a cryogenic current comparator

    NASA Astrophysics Data System (ADS)

    De Gersem, H.; Marsic, N.; Müller, W. F. O.; Kurian, F.; Sieber, T.; Schwickert, M.

    2016-12-01

    The ferrite core and measuring coil of a cryogenic current comparator have to be shielded against external magnetic fields by a compact, efficient meander structure made of superconducting niobium. A design with minimized material and production costs is only feasible when a highly accurate magnetic field simulator is available. 3D field models become prohibitively large. The cylindrical symmetry of the devices motivates to develop a quasi-3D field solver, exploiting the symmetry while still capable of representing 3D field distributions.

  13. Cryogenic deformable mirror technology development

    NASA Astrophysics Data System (ADS)

    Mulvihill, Maureen L.; Roche, Michael E.; Cavaco, Jeffrey L.; Shawgo, Ryan J.; Chaudhry, Zaffir A.; Ealey, Mark A.

    2003-10-01

    Xinetics is working with NASA to develop a cryogenic deformable mirror (DM) specific to the needs of future Origins Program missions such as TPF and JWST. Of utmost importance was the development of an electroceramic material that exhibited electrostrictive properties at cryogenic temperatures. In this paper, the actuator developmental tests and subsequent cryogenic deformable mirror design and cryogenic testing performance of the 349-channel discrete actuator deformable mirror demonstrator are discussed. The cofired actuator stroke response was nearly constant from 35 to 65 K such that at 150V the actuator free-stroke was ~3 microns. The 349-ch cryogenic DM was designed and built with as few parts and materials as possible to minimize the CTE mismatch. The polished mirror was cycled twice from 300 to 35 K. The rms surface figure was monitored using a Zygo interferometer on cooling and consistent data was measured during both temperature cycles. The figure changed from 0.5 waves (P-V) at 300 K to 5 waves at 35 K and returned to 0.6 waves at 300K. The actuators were powered and the influence functions were measured between 35 and 65 K. Even though it is not a functional DM at 35 K, it is a substantial step forward in the development of a cryogenic deformable mirror technology.

  14. Cryogenic Wind Tunnels.

    DTIC Science & Technology

    1980-07-01

    CRYOGENIC WIND TUNNEL by J.D.CadweD 18 A CRYOGENIC TRANSONIC INTERMITTENT TUNNEL PROJECT: THE INDUCED -FLOW CRYOGENIC WIND-TUNNEL T2 AT ONERA/CERT by...CRYOGENIC TUNNELS The types of tunnel drive and test gas currently exploited in cryogenic wind tunnels include: Drive Test Gas fan nitrogen induced flow...reduce other heat fluxes. Other sources can arise from thermally induced oscillations under both storage and transfer con- ditions. 1.3 (c) Reduction

  15. Advances in cryogenic engineering. Volume 29

    SciTech Connect

    Fast, R.W.

    1984-01-01

    Applications of superconductivity are discussed, taking into account the thermal performance of the MFTF magnets, the design and testing of a large bore superconducting magnet test facility, the development of a 12-tesla multifilamentary Nb3Sn magnet, a superconducting magnet for solid NMR studies, advanced applications of superconductors, transition and recovery of a cryogenically stable superconductor, and finite-difference modeling of the cryostability of helium II cooled conductor packs. Other topics explored are related to resource availability, heat exchangers, heat transfer to He I, liquid nitrogen, heat transfer in He II, refrigeration for superconducting and cryopump systems, refrigeration of cryogenic systems, refrigeration and liquefaction, dilution and magnetic refrigeration, cryocoolers, refrigeration for space applications, cryogenic applications, cryogenic instrumentation and data acquisition, and properties of fluids. Attention is given to biomedical applications of cryogenics in China, long-term cryogen storage in space, and a passive orbital disconnect strut.

  16. Advances of cryogenics in aeronautics and astronautics

    NASA Astrophysics Data System (ADS)

    You, Lixin

    1992-02-01

    The application principles of cryogenic techniques in aerospace are discussed in detail. Recent advances are addressed, including those made in China. These include: (1) characteristics and applications of rockets propelled by cryogenic liquid hydrogen (LOH)/LOX fuels and those propelled by a new generation of cryogenic liquid propellants; (2) characteristics and status of LOH/LOX-fueled and LNG-fueled aircraft; (3) principles and working envelopes of cryogenic wind tunnels performing aerodynamic experiments at full-scale Re; (4) the main application fields of cryogenics in space technology and their requirements regarding refrigeration temperature and load; (5) the application of cryogenics to fields such as cooling reentry flight vehicles, space simulation facilities, environmental control systems for flight vehicles, and life support systems.

  17. CRYOGENIC DEWAR

    DOEpatents

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  18. Cryogenic processes and equipment - 1984; Proceedings of the Fifth Intersociety Cryogenics Symposium, New Orleans, LA, December 9-14, 1984

    NASA Astrophysics Data System (ADS)

    Kerney, P. J.; Chatterjee, N.; Crawford, D. B.; El-Masri, M.

    The topics of cryogenic processes for LNG and EOR, cryogenic refrigerators, components for cryogenic systems, liquid hydrogen as a fuel, cryogenic processes and equipment for large systems, and cryogenic thermodynamics and heat transfer are discussed. The papers include analysis of process efficiency for baseload LNG production, process efficiency considerations for nitrogen rejection units, design and performance analysis of gas sorption compressors, cryogenic vacuum pump design, and the hydrogen-fueled hydrogen transport rail system (a NASA proposal). In addition, refueling considerations for liquid hydrogen-fueled vehicles, variable oxygen supply systems, and orientation dependence to liquid helium heat transfer from a cable-in-channel configuration are considered.

  19. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids

    NASA Technical Reports Server (NTRS)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1976-01-01

    A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.

  20. EOL performance comparison of GaAs/Ge and Si BSF/R solar arrays

    NASA Technical Reports Server (NTRS)

    Woike, Thomas J.

    1993-01-01

    EOL power estimates for solar array designs are significantly influenced by the predicted degradation due to charged particle radiation. New radiation-induced power degradation data for GaAs/Ge solar arrays applicable to missions ranging from low earth orbit (LEO) to geosynchronous earth orbit (GEO) and compares these results to silicon BSF/R arrays. These results are based on recently published radiation damage coefficients for GaAs/Ge cells. The power density ratio (GaAs/Ge to Si BSF/R) was found to be as high as 1.83 for the proton-dominated worst-case altitude of 7408 km medium Earth orbit (MEO). Based on the EOL GaAs/Ge solar array power density results for MEO, missions which were previously considered infeasible may be reviewed based on these more favorable results. The additional life afforded by using GaAs/Ge cells is an important factor in system-level trade studies when selecting a solar cell technology for a mission and needs to be considered. The data presented supports this decision since the selected orbits have characteristics similar to most orbits of interest.

  1. Thermal performance of an integrated thermal protection system for long-term storage of cryogenic propellants in space

    NASA Technical Reports Server (NTRS)

    Dewitt, R. L.; Boyle, R. J.

    1977-01-01

    It was demonstrated that cryogenic propellants can be stored unvented in space long enough to accomplish a Saturn orbiter mission after 1,200-day coast. The thermal design of a hydrogen-fluorine rocket stage was carried out, and the hydrogen tank, its support structure, and thermal protection system were tested in a vacuum chamber. Heat transfer rates of approximately 23 W were measured in tests to simulate the near-Earth portion of the mission. Tests to simulate the majority of the time the vehicle would be in deep space and sun-oriented resulted in a heat transfer rate of 0.11 W.

  2. Improved Prototype Cryomodule for the CEBAF 12 GeV Upgrade

    SciTech Connect

    Charles Reece; Danny Machie; Edward Daly; Isidoro Campisi; Jacek Sekutowicz; John Hogan; Karl Smith; Katherine Wilson; Mark Wiseman; Peter Kneisel; Timothy Whitlatch; William Hicks; Timothy Rothgeb

    2003-05-12

    In order to provide a higher performance building block cryomodule for the CEBAF 12 GeV upgrade, modifications have been made to the design of the Upgrade Cryomodule. The prototype cryomodule will be completed in 2004 and be installed for operation in CEBAF. Design changes enable the use of higher gradient cavities to achieve greater than 100 MV per cryomodule while not exceeding the budgeted cryogenic load of 300 W during steady-state operation.

  3. Performance of the 0.3-meter transonic cryogenic tunnel with air, nitrogen, and sulfur hexafluoride media under closed loop automatic control

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen

    1995-01-01

    The NASA Langley 0.3-m Transonic Cryogenic Tunnel was modified in 1994, to operate with any one of the three test gas media viz., air, cryogenic nitrogen gas, or sulfur hexafluoride gas. This document provides the initial test results with respect to the tunnel performance and tunnel control, as a part of the commissioning activities on the microcomputer based controller. The tunnel can provide precise and stable control of temperature to less than or equal to +/- 0.3 K in the range 80-320 K in cyro mode or 300-320 K in air/SF6 mode, pressure to +/- 0.01 psia in the range 15-88 psia and Mach number to +/- O.0015 in the range 0.150 to transonic Mach numbers up to 1.000. A new heat exchanger has been included in the tunnel circuit and is performing adequately. The tunnel airfoil testing benefits considerably by precise control of tunnel states and helps in generating high quality aerodynamic test data from the 0.3-m TCT.

  4. Performance of First C100 Cryomodules for the CEBAF 12 GeV Upgrade Project

    SciTech Connect

    Drury, Michael A.; Burrill, Andrew B.; Davis, G. Kirk; Hogan, John P.; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joseph; Reece, Charles E.; Reilly, Anthony V.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

    2012-09-01

    The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the project is a doubling of the available beam energy of CEBAF from 6 GeV to 12 GeV. This increase in beam energy will be due primarily to the construction and installation of ten "C100" cryomodules in the CEBAF linacs. The C100 cryomodules are designed to deliver an average 108 MV each from a string of eight seven-cell, electropolished superconducting RF cavities operating at an average accelerating gradient of 19.2 MV/m. The new cryomodules fit in the same available linac space as the original CEBAF 20 MV cryomodules. Cryomodule production started in September 2010. Initial acceptance testing started in June 2011. The first two C100 cryomodules were installed and tested from August 2011 through October 2011, and successfully operated during the last period of the CEBAF 6 GeV era, which ended in May 2012. This paper will present the results of acceptance testing and commissioning of the C100 style cryomodules to date.

  5. Performance of Magnetic-Superconductor Non-Contact Harmonic Drive for Cryogenic Space Applications: Speed, Torque and Efficiency Measurements

    NASA Astrophysics Data System (ADS)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Valiente-Blanco, Ignacio; Cristache, Cristian; Alvarez-Valenzuela, Marco-Antonio; Sanchez-Garcia-Casarrubios, Juan

    2015-09-01

    Harmonic Drives are widely used in space mainly because of their compactness, large reduction ratio ad zero backlash. However, their use in extreme environments like in cryogenic temperatures is still a challenge. Lubrication, lifetime and fatigue are still issues under these conditions.The MAGDRIVE project, funded by the EU Space FP7 was devoted to test a new concept of harmonic drive reducer. By using the magnetic distance force interactions of magnets and ferromagnetic materials, all the conventional mechanical elements of a Harmonic Drives (teeth, flexspline and ball bearings) are substituted by contactless mechanical components (magnetic gear and superconducting magnetic bearings). The absence of contact between any moving parts prevents wear, lubricants are no longer required and the operational life time is greatly increased. As the magnetic transmission is continuous there is no backlash in the reduction. MAG SOAR Company is already providing contactless mechanical components for space applications able to operate in a wide range of temperatures.In this paper the tests results of a -1:20 ratio MAGDRIVE prototype are reported. In these tests successful operation at 40 K and 10-3 Pa was demonstrated for more than 1.5 million input cycles. A maximum torque of 3 Nm and efficiency higher than 75% at 3000 rpm were demonstrated. The maximum tested input speed was 3000 rpm -six times the previous existing record for harmonic drives at cryogenic temperature.

  6. In Situ Synthesis and Characterization of Ge Embedded Electrospun Carbon Nanostructures as High Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Lee, Young-Woo; Kim, Da-Mi; Kim, Si-Jin; Kim, Min-Cheol; Choe, Hui-Seon; Lee, Kyu-Ho; Sohn, Jung Inn; Cha, Seung Nam; Kim, Jong Min; Park, Kyung-Won

    2016-03-23

    While active materials based on germanium (Ge) are considered as a promising alternative anodic electrode due to their relatively high reversible capacity and excellent lithium-ion diffusivity, the quite unstable structural/electrochemical stability and severe volume expansion or pulverization problems of Ge electrodes remain a considerable challenge in lithium ion batteries (LIBs). Here, we present the development of Ge embedded in one-dimensional carbon nanostructures (Ge/CNs) synthesized by the modified in situ electrospinning technique using a mixed electrospun solution consisting of a Ge precursor as an active material source and polyacrylonitrile (PAN) as a carbon source. The as-prepared Ge/CNs exhibit superior lithium ion behavior properties, i.e., highly reversible specific capacity, rate performance, Li ion diffusion coefficient, and superior cyclic stability (capacity retention: 85% at 200 mA g(-1)) during Li alloying/dealloying processes. These properties are due to the high electrical conductivity and unique structures containing well-embedded Ge nanoparticles (NPs) and a one-dimensional carbon nanostructure as a buffer medium, which is related to the volume expansion of Ge NPs. Thus, it is expected that the Ge/CNs can be utilized as a promising alternative anodic material in LIBs.

  7. An HEMT-Based Cryogenic Charge Amplifier for Sub-kelvin Semiconductor Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Sadoulet, B.; Juillard, A.; Jin, Y.

    2016-07-01

    We present the design and noise performance of a fully cryogenic (T=4 K) high-electron mobility transistor (HEMT)-based charge amplifier for readout of sub-kelvin semiconductor radiation detectors. The amplifier is being developed for use in direct detection dark matter searches such as the cryogenic dark matter search and will allow these experiments to probe weakly interacting massive particle masses below 10 GeV/c^2 while retaining background discrimination. The amplifier dissipates ≈ 1 mW of power and provides an open loop voltage gain of several hundreds. The measured noise performance is better than that of JFET-based charge amplifiers and is dominated by the noise of the input HEMT. An optimal filter calculation using the measured closed loop noise and typical detector characteristics predicts a charge resolution of σ _q=106 eV (35 electrons) for leakage currents below 4 × 10^{-15} A.

  8. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  9. Development and Performance of Detectors for the Cryogenic Dark Matter Search Experiment with an Increased Sensitivity Based on a Maximum Likelihood Analysis of Beta Contamination

    SciTech Connect

    Driscoll, Donald D

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) uses cryogenically-cooled detectors made of germanium and silicon in an attempt to detect dark matter in the form of Weakly-Interacting Massive Particles (WIMPs). The expected interaction rate of these particles is on the order of 1/kg/day, far below the 200/kg/day expected rate of background interactions after passive shielding and an active cosmic ray muon veto. Our detectors are instrumented to make a simultaneous measurement of both the ionization energy and thermal energy deposited by the interaction of a particle with the crystal substrate. A comparison of these two quantities allows for the rejection of a background of electromagnetically-interacting particles at a level of better than 99.9%. The dominant remaining background at a depth of ~ 11 m below the surface comes from fast neutrons produced by cosmic ray muons interacting in the rock surrounding the experiment. Contamination of our detectors by a beta emitter can add an unknown source of unrejected background. In the energy range of interest for a WIMP study, electrons will have a short penetration depth and preferentially interact near the surface. Some of the ionization signal can be lost to the charge contacts there and a decreased ionization signal relative to the thermal signal will cause a background event which interacts at the surface to be misidentified as a signal event. We can use information about the shape of the thermal signal pulse to discriminate against these surface events. Using a subset of our calibration set which contains a large fraction of electron events, we can characterize the expected behavior of surface events and construct a cut to remove them from our candidate signal events. This thesis describes the development of the 6 detectors (4 x 250 g Ge and 2 x 100 g Si) used in the 2001-2002 CDMS data run at the Stanford Underground Facility with a total of 119 livedays of data. The preliminary results presented are based on the first use

  10. Physical characteristics modification of a SiGe-HBT semiconductor device for performance improvement in a terahertz detecting system

    NASA Astrophysics Data System (ADS)

    Ghodsi, Hamed; Kaatuzian, Hassan

    2015-05-01

    In order to improve the performance of a pre-designed direct conversion terahertz detector which is implemented in a 0.25 μm-SiGe-BiCMOS process, we propose some slight modifications in the bipolar section of the SiGe device physical design. Comparison of our new proposed device and the previously reported device is done by SILVACO TCAD software simulation and we have used previous experimentally reported data to confirm our software simulations. Our proposed modifications in device structural design show a present device responsivity improvement of about 10% from 1 to 1.1 A/W while the bandwidth improvement is about 218 GHz. The minimum noise equivalent power at detector output is increased by about 14.3% and finally power consumption per pixel at the maximum responsivity is decreased by about 5%.

  11. Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem

    NASA Astrophysics Data System (ADS)

    Lai, Tianwei; Fu, Bao; Chen, Shuangtao; Zhang, Qiyong; Hou, Yu

    2017-02-01

    The EAST superconducting tokamak, an advanced steady-state plasma physics experimental device, has been built at the Institute of Plasma Physics, Chinese Academy of Sciences. All the toroidal field magnets and poloidal field magnets, made of NbTi/Cu cable-in-conduit conductor, are cooled with forced flow supercritical helium at 3.8 K. The cryogenic system of EAST consists of a 2 kW/4 K helium refrigerator and a helium distribution system for the cooling of coils, structures, thermal shields, bus-lines, etc. The high-speed turbo-expander is an important refrigerating component of the EAST cryogenic system. In the turbo-expander, the axial supporting technology is critical for the smooth operation of the rotor bearing system. In this paper, hydrostatic thrust bearings are designed based on the axial load of the turbo-expander. Thereafter, a computational fluid dynamics-based numerical model of the aerostatic thrust bearing is set up to evaluate the bearing performance. Tilting effect on the pressure distribution and bearing load is analyzed for the thrust bearing. Bearing load and stiffness are compared with different static supply pressures. The net force from the thrust bearings can be calculated for different combinations of bearing clearance and supply pressure.

  12. Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem

    NASA Astrophysics Data System (ADS)

    Tianwei, LAI; Bao, FU; Shuangtao, CHEN; Qiyong, ZHANG; Yu, HOU

    2017-02-01

    The EAST superconducting tokamak, an advanced steady-state plasma physics experimental device, has been built at the Institute of Plasma Physics, Chinese Academy of Sciences. All the toroidal field magnets and poloidal field magnets, made of NbTi/Cu cable-in-conduit conductor, are cooled with forced flow supercritical helium at 3.8 K. The cryogenic system of EAST consists of a 2 kW/4 K helium refrigerator and a helium distribution system for the cooling of coils, structures, thermal shields, bus-lines, etc. The high-speed turbo-expander is an important refrigerating component of the EAST cryogenic system. In the turbo-expander, the axial supporting technology is critical for the smooth operation of the rotor bearing system. In this paper, hydrostatic thrust bearings are designed based on the axial load of the turbo-expander. Thereafter, a computational fluid dynamics-based numerical model of the aerostatic thrust bearing is set up to evaluate the bearing performance. Tilting effect on the pressure distribution and bearing load is analyzed for the thrust bearing. Bearing load and stiffness are compared with different static supply pressures. The net force from the thrust bearings can be calculated for different combinations of bearing clearance and supply pressure.

  13. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes

    NASA Astrophysics Data System (ADS)

    Zhu, Yun Guang; Wang, Ye; Han, Zhao Jun; Shi, Yumeng; Wong, Jen It; Huang, Zhi Xiang; Ostrikov, Kostya Ken; Yang, Hui Ying

    2014-11-01

    The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO2/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO2) and SnO2 nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO2(GeO2)0.13/G nanocomposites can deliver a capacity of 1200 mA h g-1 at a current density of 100 mA g-1, which is much higher than the traditional theoretical specific capacity of such nanocomposites (~702 mA h g-1). More importantly, the SnO2(GeO2)0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g-1 at a discharge current of 2000 mA g-1) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO2 and GeO2) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO2/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO2) and SnO2 nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO2(GeO2)0.13/G nanocomposites can deliver a capacity of 1200 mA h g-1 at a current density of 100 mA g-1, which is much higher than the traditional theoretical specific capacity of such nanocomposites (~702 mA h g-1). More importantly, the SnO2(GeO2)0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g-1 at a discharge current of 2000 mA g-1) and excellent long

  14. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  15. Cryogenic insulation development

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1972-01-01

    Multilayer insulations for long term cryogenic storage are described. The development effort resulted in an insulation concept using lightweight radiation shields, separated by low conductive Dacron fiber tufts. The insulation is usually referred to as Superfloc. The fiber tufts are arranged in a triangular pattern and stand about .040 in. above the radiation shield base. Thermal and structural evaluation of Superfloc indicated that this material is a strong candidate for the development of high performance thermal protection systems because of its high strength, purge gas evacuation capability during boost, its density control and easy application to a tank.

  16. Improving the opto-microwave performance of SiGe/Si phototransistor through edge-illuminated structure

    NASA Astrophysics Data System (ADS)

    Tegegne, Z. G.; Viana, C.; Polleux, J. L.; Grzeskowiak, M.; Richalot, E.

    2016-03-01

    This paper demonstrates the experimental study of edge and top illuminated SiGe phototransistors (HPT) implemented using the existing industrial SiGe2RF Telefunken GmbH BiCMOS technology for opto-microwave (OM) applications using 850nm Multi-Mode Fibers (MMF). Its technology and structure are described. Two different optical window size HPTs with top illumination (5x5μm2, 10x10μm2) and an edge illuminated HPTs having 5μm x5μm size are presented and compared. A two-step post fabrication process was used to create an optical access on the edge of the HPT for lateral illumination with a lensed MMF through simple polishing and dicing techniques. We perform Opto-microwave Scanning Near-field Optical Microscopy (OM-SNOM) analysis on edge and top illuminated HPTs in order to observe the fastest and the highest sensitive regions of the HPTs. This analysis also allows understanding the parasitic effect from the substrate, and thus draws a conclusion on the design aspect of SiGe/Si HPT. A low frequency OM responsivity of 0.45A/W and a cutoff frequency, f-3dB, of 890MHz were measured for edge illuminated HPT. Compared to the top illuminated HPT of the same size, the edge illuminated HPT improves the f-3dB by a factor of more than two and also improves the low frequency responsivity by a factor of more than four. These results demonstrate that a simple etched HPT is still enough to achieve performance improvements compared to the top illuminated HPT without requiring a complex coupling structure. Indeed, it also proves the potential of edge coupled SiGe HPT in the ultra-low-cost silicon based optoelectronics circuits with a new approach of the optical packaging and system integration to 850nm MMF.

  17. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  18. Cryogenic Technology for Superconducting Accelerators

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2012-01-01

    Superconducting devices such as magnets and cavities are key components in the accelerator field for increasing the beam energy and intensity, and at the same time making the system compact and saving on power consumption in operation. An effective cryogenic system is required to cool and keep the superconducting devices in the superconducting state stably and economically. The helium refrigeration system for application to accelerators will be discussed in this review article. The concept of two cooling modes -- the liquefier and refrigerator modes -- will be discussed in detail because of its importance for realizing efficient cooling and stable operation of the system. As an example of the practical cryogenic system, the TRISTAN cryogenic system of KEK Laboratory will be treated in detail and the main components of the cryogenic system, including the high-performance multichannel transfer line and liquid nitrogen circulation system at 80K, will also be discussed. In addition, we will discuss the operation of the cryogenic system, including the quench control and safety of the system. The satellite refrigeration system will be discussed because of its potential for wide application in medium-size accelerators and in industry.

  19. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  20. Tests of low background photo conductors. [as astronomical IR detectors at cryogenic operating temperatures

    NASA Technical Reports Server (NTRS)

    Young, E. T.; Low, F. J.

    1979-01-01

    In support of two infrared astronomy space projects, the IRAS satellite and the IRT on Spacelab 2, low-background tests were carried out on the performance and characterization of Si:Ga, Si:As, Si:Sb and Ge:Ga photoconductive detectors. These test results represent a useful appraisal of this family of detectors when operated at 1.8-4.2 K and at background power levels of 10 to the -14th to 10 to the -13th W. In addition to detector performance data, results are also presented on cryogenically cooled MOSFET amplifiers operated in the source follower and in the balanced-dc-TIA configurations.

  1. Performance of the e2v 1.2 GPix cryogenic camera for the J-PAS 2.5m survey telescope

    NASA Astrophysics Data System (ADS)

    Robbins, M. S.; Bastable, M.; Bates, A.; Dryer, M.; Eames, S.; Fenemore-Jones, G.; Haddow, G.; Jorden, P. R.; Lane, B.; Marin-Franch, A.; Mortimer, J.; Palmer, I.; Puttay, N.; Renshaw, R.; Smith, M.; Taylor, K.; Tearle, J.; Weston, P.; Wheeler, P.; Worley, J.

    2016-08-01

    The J-PAS project will perform a five-year survey of the northern sky from a new 2.5m telescope in Teruel, Spain. In this paper the build and factory testing of the commercially supplied cryogenic camera is described. The 1.2 Giga-pixel focal plane is contained within a novel liquid-nitrogen cooled vacuum cryostat, which maintains the flatness for the cooled, 0.45m diameter focal plane to better than 27 μm peak to valley. The cooling system controls the focal plane to a temperature of -100°C with a variation across the focal plane of better than 2.5oC and a stability of better than +/- 0.5 °C over the long periods of operation required. The proximity drive electronics achieves total system level noise performance better than 5 e- from the 224-channel CCD system.

  2. Effect of GeO2 on the lasing performance of Yb: Phosphate glass fiber

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wang, Yajie; Zhang, Liyan; Chen, Danping

    2017-02-01

    A novel GeO2 modified Yb: phosphate glass with good luminescent properties has been demonstrated. P and PG fibers were fabricated by the stack-and-draw method. An output power of 6.4 W with slope efficiency of 46% was obtained from 40.5 cm long PG fiber, while 40.2 cm long P fiber had an output power of 2.7 W and 34% slope efficiency.

  3. Dispersion of nanodiamond on chemical mechanical polishing performance for Ge1Sb6Te3 film.

    PubMed

    Yang, Il-Ho; Song, Min-Jung; Shin, Dong-Hee; Lee, Seung-Koo; Hwang, Eung-Rim; Lim, Dae-Soon

    2013-09-01

    This study describes the effect of surfactant concentration on the chemical mechanical polishing process of Ge1Sb6Te3 film using nanodiamond-based slurry. Aggregated diamond nanoparticles were dispersed in a slurry solution containing anionic poly(sodium 4-styrene sulfonate) using milling system. The zeta-potential, particle size and transmission electron microscopy image of the dispersed nanodiamond particles were analyzed for slurries having varying surfactant concentrations to identify the effect of the surfactant concentration on the milling process. The cationic nanodiamond particles were covered with the anionic poly(sodium 4-styrene sulfonate) polymer, and the polymer acted as a dispersion agent on account of the electrostatic repulsion. By increasing the surfactant concentration in the milling process, the average particle size of the nanodiamond particle decreased until the concentration reached 0.9 wt%. In addition, the surface roughness and material removal rate of the Ge1Sb6Te3 film in the polishing process strongly-depended on the surfactant concentration. Both surface roughness and material removal rate decreased with an increase in the surfactant concentration. Excess poly(sodium 4-styrene sulfonate) acted as a passivation layer, resulting in a decrease in the surface roughness and material removal rate of the Ge1Sb6Te3 film.

  4. A piezoelectric cryogenic heat switch.

    PubMed

    Jahromi, Amir E; Sullivan, Dan F

    2014-06-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios of about 100-200 at lowest and highest measures temperature were achieved when the positioner applied its maximum force of 8 N, respectively. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an ideal PZHS.

  5. Design of High Performance Si/SiGe Heterojunction Tunneling FETs with a T-Shaped Gate.

    PubMed

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Yang, Zhaonian

    2017-12-01

    In this paper, a new Si/SiGe heterojunction tunneling field-effect transistor with a T-shaped gate (HTG-TFET) is proposed and investigated by Silvaco-Atlas simulation. The two source regions of the HTG-TFET are placed on both sides of the gate to increase the tunneling area. The T-shaped gate is designed to overlap with N(+) pockets in both the lateral and vertical directions, which increases the electric field and tunneling rate at the top of tunneling junctions. Moreover, using SiGe in the pocket regions leads to the smaller tunneling distance. Therefore, the proposed HTG-TFET can obtain the higher on-state current. The simulation results show that on-state current of HTG-TFET is increased by one order of magnitude compared with that of the silicon-based counterparts. The average subthreshold swing (SS) of HTG-TFET is 44.64 mV/dec when V g is varied from 0.1 to 0.4 V, and the point SS is 36.59 mV/dec at V g = 0.2 V. Besides, this design cannot bring the sever Miller capacitance for the TFET circuit design. By using the T-shaped gate and SiGe pocket regions, the overall performance of the TFET is optimized.

  6. Design of High Performance Si/SiGe Heterojunction Tunneling FETs with a T-Shaped Gate

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Yang, Zhaonian

    2017-03-01

    In this paper, a new Si/SiGe heterojunction tunneling field-effect transistor with a T-shaped gate (HTG-TFET) is proposed and investigated by Silvaco-Atlas simulation. The two source regions of the HTG-TFET are placed on both sides of the gate to increase the tunneling area. The T-shaped gate is designed to overlap with N+ pockets in both the lateral and vertical directions, which increases the electric field and tunneling rate at the top of tunneling junctions. Moreover, using SiGe in the pocket regions leads to the smaller tunneling distance. Therefore, the proposed HTG-TFET can obtain the higher on-state current. The simulation results show that on-state current of HTG-TFET is increased by one order of magnitude compared with that of the silicon-based counterparts. The average subthreshold swing (SS) of HTG-TFET is 44.64 mV/dec when V g is varied from 0.1 to 0.4 V, and the point SS is 36.59 mV/dec at V g = 0.2 V. Besides, this design cannot bring the sever Miller capacitance for the TFET circuit design. By using the T-shaped gate and SiGe pocket regions, the overall performance of the TFET is optimized.

  7. Novel Cryogenic Insulation Materials: Aerogel Composites

    NASA Technical Reports Server (NTRS)

    White, Susan

    2001-01-01

    New insulation materials are being developed to economically and reliably insulate future reusable spacecraft cryogenic tanks over a planned lifecycle of extreme thermal challenges. These insulation materials must prevent heat loss as well as moisture and oxygen condensation on the cryogenic tanks during extended groundhold, must withstand spacecraft launch conditions, and must protect a partly full or empty reusable cryogenic tank from significant reentry heating. To perform over such an extreme temperature range, novel composites were developed from aerogels and high-temperature matrix material such as Space Shuttle tile. These materials were fabricated and tested for use both as cryogenic insulation and as high-temperature insulation. The test results given in this paper were generated during spacecraft re-entry heating simulation tests using cryogenic cooling.

  8. A study of the effects of the base doping profile on SiGe heterojunction bipolar transistor performance for all levels of injection

    NASA Astrophysics Data System (ADS)

    Khanduri, Gagan; Panwar, Brishbhan

    2006-04-01

    The effects of two different base doping profiles on the current gain and cut-off frequency for all levels of current injection have been studied for NPN Si/SiGe/Si double heterojunction bipolar transistors (SiGe DHBTs). The two-dimensional simulation results for a SiGe DHBT with uniform base doping and a fixed base Gummel number are compared with a non-uniform base doping profile SiGe drift-DHBT device. The study explains the performance of SiGe HBTs at different injection levels by analysing the electron and hole mobility, drift velocity, electric field, junction capacitances and intrinsic and extrinsic base region conductivities. The base doping profile in the SiGe drift-DHBT is controlled in such a way that it creates a net accelerating drift field in the quasi-neutral base for minority electrons. This accelerating field subsequently improves the current gain and cut-off frequency for the SiGe drift-DHBT in comparison with the SiGe DHBT for all levels of injection.

  9. High performance mechanisms of near-infrared photodetectors with microcrystalline SiGe films deposited using laser-assisted plasma enhanced chemical vapor deposition system.

    PubMed

    Lee, Ching-Ting; Tsai, Min-Yen

    2013-03-11

    The SiH(4) and GeH(4) reactant gases used for depositing microcrystalline SiGe films could be simultaneously decomposed when acted cooperatively on the plasma and the assistant CO(2) laser in the laser-assisted plasma enhanced chemical vapor deposition system. The carrier mobility of the 80 W laser-assisted SiGe films was significantly increased to 66.8 cm(2)/V-s compared with 2.22 cm(2)/V-s of the non-laser-assisted SiGe films. The performances of the resulting p-Si/i-SiGe/n-Si near-infrared photodetectors were improved due to the high quality and high carrier mobility of the laser-assisted SiGe films. The maximum photoresponsivity and the maximum quantum efficiency of the photodetectors with 80 W laser-assisted SiGe films were respectively improved to 0.47 A/W and 68.5% in comparison with 0.31 A/W and 46.5% of the photodetectors with non-laser-assisted SiGe films.

  10. High-performance Si sbnd SiGe HBTs SiGe-technology development in Esprit Project 8001 TIBIA: An overview

    NASA Astrophysics Data System (ADS)

    Terpstra, D.; De Boer, W. B.; Slotboom, J. W.

    1997-10-01

    Five major European Semiconductor Companies have cooperated on the development of technologies for the fabrication of Si sbnd SiGe-based Heterojunction Bipolar Transistors. This cooperation was part of the European Community Esprit Project 8001 TIBIA, on BICMOS Technology Development and Applications. This article presents an overview of the various concepts studied by the projet-partners, the fabrication processes and the results obtained on single devices and preliminary test-circuits (which already demonstrate the added value of Si sbnd SiGe HBTs in existing Si-technology). A more detailed description is given of the process studied at Philips, which involves double-polysilicon transistors with a selectively deposited Si sbnd SiGe base.

  11. Survey of cryogenic semiconductor devices

    SciTech Connect

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  12. Status of the ESS cryogenic system

    SciTech Connect

    Weisend II, J. G.; Darve, C.; Gallimore, S.; Hees, W.; Jurns, J.; Köttig, T.; Ladd, P.; Molloy, S.; Parker, T.; Wang, X. L.

    2014-01-29

    The European Spallation Source (ESS) is a neutron science facility funded by a collaboration of 17 European countries currently under design and construction in Lund, Sweden. The centerpiece of ESS is a 2.5 GeV proton linac utilizing superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used at ESS in the liquid hydrogen moderators surrounding the target. ESS also uses both liquid helium and liquid nitrogen in a number of the planned neutron instruments. There is also a significant cryogenic installation associated with the site acceptance testing of the ESS cryomodules. The ESS cryogenic system consists of 3 separate helium refrigeration/liquefaction plants supplying the accelerator, target moderators and instruments. An extensive cryogenic distribution system connects the accelerator cryoplant with the cryomodules. This paper describes the preliminary design of the ESS cryogenic system including the expected heat loads. Challenges associated with the required high reliability and turn-down capability will also be discussed. A unique feature of ESS is its commitment to sustainability and energy recovery. A conceptual design for recovering waste heat from the helium compressors for use in the Lund district heating system will also be described.

  13. Status of the ESS cryogenic system

    NASA Astrophysics Data System (ADS)

    Weisend, J. G., II; Darve, C.; Gallimore, S.; Hees, W.; Jurns, J.; Köttig, T.; Ladd, P.; Molloy, S.; Parker, T.; Wang, X. L.

    2014-01-01

    The European Spallation Source (ESS) is a neutron science facility funded by a collaboration of 17 European countries currently under design and construction in Lund, Sweden. The centerpiece of ESS is a 2.5 GeV proton linac utilizing superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used at ESS in the liquid hydrogen moderators surrounding the target. ESS also uses both liquid helium and liquid nitrogen in a number of the planned neutron instruments. There is also a significant cryogenic installation associated with the site acceptance testing of the ESS cryomodules. The ESS cryogenic system consists of 3 separate helium refrigeration/liquefaction plants supplying the accelerator, target moderators and instruments. An extensive cryogenic distribution system connects the accelerator cryoplant with the cryomodules. This paper describes the preliminary design of the ESS cryogenic system including the expected heat loads. Challenges associated with the required high reliability and turn-down capability will also be discussed. A unique feature of ESS is its commitment to sustainability and energy recovery. A conceptual design for recovering waste heat from the helium compressors for use in the Lund district heating system will also be described.

  14. Method and apparatus of cryogenic cooling for high temperature superconductor devices

    DOEpatents

    Yuan, Xing; Mine, Susumu

    2005-02-15

    A method and apparatus for providing cryogenic cooling to HTS devices, in particular those that are used in high-voltage electric power applications. The method involves pressurizing liquid cryogen to above one atmospheric pressure to improve its dielectric strength, while sub-cooling the liquid cryogen to below its saturation temperature in order to improve the performance of the HTS components of the device. An apparatus utilizing such a cooling method consists of a vessel that contains a pressurized gaseous cryogen region and a sub-cooled liquid cryogen bath, a liquid cryogen heating coupled with a gaseous cryogen venting scheme to maintain the pressure of the cryogen to a value in a range that corresponds to optimum dielectric strength of the liquid cryogen, and a cooling system that maintains the liquid cryogen at a temperature below its boiling point to improve the performance of HTS materials used in the device.

  15. Magnetic performance of orthorhombic Mn35Ge35Te30 nanocrystals

    NASA Astrophysics Data System (ADS)

    Mahdy, Iman A.

    2017-01-01

    Nanocrystalline antiferromagnetic Mn35Ge35Te30 diluted magnetic semiconductors powder syntheses by the conventional direct reaction of pure metals. Nanocrystalline nature of the prepared sample confirmed using various techniques, where x-Ray diffraction (XRD) and atomic force microscope (AFM) measurements shows ~96 nm particle size, while transmission electron microscope (TEM) shows 92 nm particle size. XRD analysis show orthorhombic symmetry with lattice parameters a=7.386611±(0.0066) Å, b=8.962502±(0.0090) Å and c=7.027349±(0.0040) Å. Electron Spin resonance (ESR) show a broad asymmetric line whereas the remnant Mn2+ six-hyperfine lines are broadened within |+1/2>→|-1/2> line according to high anisotropy; calculated Landé g-factor is 2.047. Vibrating sample magnetometer (VSM) analysis, field-moment characteristics revealed a hysteresis loop with small coercive field indicating that Mn35Ge35Te30 is a soft magnetic material. Moreover, hysteresis measurements at different temperatures show increasing magnetization with increasing temperature up to 150 K followed by decreased with increasing temperature up to 300 K. This behavior indicated to the antiferromagnetic nature of the prepared nanocrystalline materials. Magnetic moment - temperature measurements show Néel temperature TN=172.6 K. Magnetic force microscope revealed magnetic domains as a result of interaction between magnetic dipole moments of magnetic cantilever and pressed powder.

  16. DC characteristics and analog/RF performance of novel polarity control GaAs-Ge based tunnel field effect transistor

    NASA Astrophysics Data System (ADS)

    Nigam, Kaushal; Kondekar, Pravin; Sharma, Dheeraj

    2016-04-01

    In this paper, for the first time, DC characteristics and analog/RF performance of polarity control GaAs-Ge hetero TFET (GaAs-Ge H-TFET) structure have been analysed, using electrically doped dynamically configurable concept. For this, we have considered a hetero structure with two distinctive gates (Control gate and Polarity gate). Polarity gate induces p+ region at the source side and n+ region at the drain side, instead of relying on the abrupt doping profile at the junctions. Therefore, the fabrication process of the proposed device avoids ion-implantation, photo masking and complicated thermal budget. Hence, it shows high immunity against process variations, doping control issues and random dopant fluctuations (RDF). In order to optimize the device performance, interfacing of III-V groups materials with IV group semiconductor is done for hetero-junction. The introduction of hetero-junction and band gap engineering offer higher ION/IOFF ratio (5.1 × 1012), steep sub-threshold slope (18 mV/decade) and significantly change in analog/RF performance. The analog/RF figures of merit are analysed in term of transconductance (gm), output conductance (gds), gate to source capacitance (Cgs), gate to drain capacitance (Cgd), cutoff frequency (fT) and gain bandwidth (GBW) product. The proposed work would be beneficial for low power high frequency applications. The simulation results presented in this paper were carried out by using 2-D ATLAS.

  17. Examination of the temperature dependent electronic behavior of GeTe for switching applications

    NASA Astrophysics Data System (ADS)

    Champlain, James G.; Ruppalt, Laura B.; Guyette, Andrew C.; El-Hinnawy, Nabil; Borodulin, Pavel; Jones, Evan; Young, Robert M.; Nichols, Doyle

    2016-06-01

    The DC and RF electronic behaviors of GeTe-based phase change material switches as a function of temperature, from 25 K to 375 K, have been examined. In its polycrystalline (ON) state, GeTe behaved as a degenerate p-type semiconductor, exhibiting metal-like temperature dependence in the DC regime. This was consistent with the polycrystalline (ON) state RF performance of the switch, which exhibited low resistance S-parameter characteristics. In its amorphous (OFF) state, the GeTe presented significantly greater DC resistance that varied considerably with bias and temperature. At low biases (<1 V) and temperatures (<200 K), the amorphous GeTe low-field resistance dramatically increased, resulting in exceptionally high amorphous-polycrystalline (OFF-ON) resistance ratios, exceeding 109 at cryogenic temperatures. At higher biases and temperatures, the amorphous GeTe exhibited nonlinear current-voltage characteristics that were best fit by a space-charge limited conduction model that incorporates the effect of a defect band. The observed conduction behavior suggests the presence of two regions of localized traps within the bandgap of the amorphous GeTe, located at approximately 0.26-0.27 eV and 0.56-0.57 eV from the valence band. Unlike the polycrystalline state, the high resistance DC behavior of amorphous GeTe does not translate to the RF switch performance; instead, a parasitic capacitance associated with the RF switch geometry dominates OFF state RF transmission.

  18. Progress on the CUORE Cryogenic System

    SciTech Connect

    Martinez, M.; Arnaboldi, C.; Nucciotti, A.; Schaeffer, D.; Sisti, M.; Barucci, M.; Bucci, C.; Frossati, G.; De Waard, A.; Woodcraft, A.

    2009-12-16

    We give here an update on the CUORE cryogenic system. It consists of a large cryogen-free cryostat cooled by five pulse tubes and one high-power specially designed dilution refrigerator built by Leiden Cryogenics. The cryostat design has been completed and it is presently under construction. The site at the Gran Sasso Underground Laboratory is ready for the installation of the cryostat which is expected to begin by the end of 2009. We discuss here the preliminary results obtained on the performance of the mechanical cryorefrigerators. We also present a measurement of the residual heat leak of the copper which has been selected for the cryostat fabrication.

  19. Possible human endogenous cryogens.

    PubMed

    Shido, Osamu; Sugimoto, Naotoshi

    2011-06-01

    Anapyrexia, which is a regulated fall in core temperature, is beneficial for animals and humans when the oxygen supply is limited, e.g., hypoxic, ischemic, or histotoxic hypoxia, since at low body temperature the tissues require less oxygen due to Q(10). Besides hypoxia, anapyrexia can be induced various exogenous and endogenous substances, named cryogens. However, there are only a few reports investigating endogenous cryogens in mammals. We have experienced one patient who suffered from severe hypothermia. The patient seemed to be excessively producing endogenous peptidergic cryogenic substances the molecular weight of which may be greater than 30 kDa. In animal studies, the patient's cryogen appeared to affect metabolic functions, including thermogenic threshold temperatures, and then to produce hypothermia. Since endogenous cryogenic substances may be regarded as useful tool in human activities, e.g., during brain hypothermia therapy or staying in a space station or spaceship, further studies may be needed to identify human endogenous cryogens.

  20. Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization.

    PubMed

    Yuan, Fang-Wei; Yang, Hong-Jie; Tuan, Hsing-Yu

    2012-11-27

    We demonstrate that dodecanethiol monolayer passivation can significantly enhance the anode performance of germanium (Ge) nanowires in lithium-ion batteries. The dodecanethiol-passivated Ge nanowires exhibit an excellent electrochemical performance with a reversible specific capacity of 1130 mAh/g at 0.1 C rate after 100 cycles. The functionalized Ge nanowires show high-rate capability having charge and discharge capacities of ∼555 mAh/g at high rates of 11 C. The functionalized Ge nanowires also performed well at 55 °C, showing their thermal stability at high working temperatures. Moreover, full cells using a LiFePO(4) cathode were assembled and the electrodes still have stable capacity retention. An aluminum pouch type lithium cell was also assembled to provide larger current (∼30 mA) for uses on light-emitting-diodes (LEDs) and audio devices. Investigation of the role of organic monolayer coating showed that the wires formed a robust nanowire/PVDF network through strong C-F bonding so as to maintain structure integrity during the lithiation/delithiation process. Organic monolayer-coated Ge nanowires represent promising Ge-C anodes with controllable low carbon content (ca. 2-3 wt %) for high capacity, high-rate lithium-ion batteries and are readily compatible with the commercial slurry-coating process for cell fabrication.

  1. Elimination of gold diffusion in the heterostructure core/shell growth of high performance Ge/Si nanowire HFETs

    SciTech Connect

    Picraux, Samuel T; Dayeh, Shadi A

    2010-01-01

    Radial heterostructure nanowires offer the possibility of surface, strain, band-edge and modulution-doped engineering for optimizing performance of nanowire transistors. Synthesis of such heterostructures is non-trivial and is typically accompanied with Au diffusion on the nanowire sidewalls that result in rough morphology and undesired whisker growth. Here, they report a novel growth procedure to synthesize Ge/Si core/multi-shell nanowires by engineering the growth interface between the Au seed and the nanowire sidewalls. Single crystal Ge/Si core/multi-shell nanowires are used to fabricate side-by-side FET transistors with and without Au diffusion. Elimination of Au diffusion in the synthesis of such structures led to {approx} 2X improvement in hole field-effect mobility, transconductances and currents. Initial prototype devices with a 10 nm PECVD nitride gate dielectric resulted in a record maximum on current of 430 {micro}A/V (I{sub DS}L{sub G}/{pi}DV{sub DS}), {approx} 2X higher than ever achieved before in a p-type FET.

  2. Lithium Germanate (Li2 GeO3 ): A High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Rahman, Md Mokhlesur; Sultana, Irin; Yang, Tianyu; Chen, Zhiqiang; Sharma, Neeraj; Glushenkov, Alexey M; Chen, Ying

    2016-12-23

    A simple, cost-effective, and easily scalable molten salt method for the preparation of Li2 GeO3 as a new type of high-performance anode for lithium-ion batteries is reported. The Li2 GeO3 exhibits a unique porous architecture consisting of micrometer-sized clusters (secondary particles) composed of numerous nanoparticles (primary particles) and can be used directly without further carbon coating which is a common exercise for most electrode materials. The new anode displays superior cycling stability with a retained charge capacity of 725 mAh g(-1) after 300 cycles at 50 mA g(-1) . The electrode also offers excellent rate capability with a capacity recovery of 810 mAh g(-1) (94 % retention) after 35 cycles of ascending steps of current in the range of 25-800 mA g(-1) and finally back to 25 mA g(-1) . This work emphasizes the importance of exploring new electrode materials without carbon coating as carbon-coated materials demonstrate several drawbacks in full devices. Therefore, this study provides a method and a new type of anode with high reversibility and long cycle stability.

  3. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    DOE PAGES

    Knudsen, P.; Ganni, V.; Dixon, K.; ...

    2015-08-10

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less

  4. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    SciTech Connect

    Knudsen, P.; Ganni, V.; Dixon, K.; Norton, R.; Creel, J.

    2015-08-10

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which may be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.

  5. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Dixon, K.; Norton, R.; Creel, J.

    2015-08-01

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which may be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.

  6. Cryogenic Yb: YAG Thin-Disk Laser

    DTIC Science & Technology

    2016-09-09

    at room and cryogenic (80°K) temperatures will be presented. The Yb:YAG gain media is cooled using either a pressurized R134A refrigerant system or...thin disk laser performance at room and cryogenic (80°K) temperatures will be presented. The Yb:YAG gain media is cooled using either a pressurized...is thicker than that which would be necessary for room temperature operation. This is to alleviate stresses from the large difference in expansion

  7. Below-Ambient and Cryogenic Thermal Testing

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  8. Linac cryogenic distribution system maintenance and upgrades at JLab

    SciTech Connect

    Dixon, K.; Wright, M.; Ganni, V.

    2014-01-29

    The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm{sup 3} of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

  9. Linac cryogenic distribution system maintenance and upgrades at Jlab

    SciTech Connect

    Dixon, Kelly D.; Wright, Mathew C.; Ganni, Venkatarao

    2014-01-01

    The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm{sup 3} of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

  10. Linac cryogenic distribution system maintenance and upgrades at JLab

    NASA Astrophysics Data System (ADS)

    Dixon, K.; Wright, M.; Ganni, V.

    2014-01-01

    The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm3 of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

  11. Subcooling for Long Duration In-Space Cryogenic Propellant Storage

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff

    2010-01-01

    Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.

  12. Development of a cryogenic FTIR system for measuring very small attenuation coefficients of infrared materials

    NASA Astrophysics Data System (ADS)

    Kaji, Sayumi; Sarugaku, Yuki; Ikeda, Yuji; Nakanishi, Kenshi; Kobayashi, Naoto; Kondo, Sohei; Arasaki, Takayuki; Kawakita, Hideyo

    2016-07-01

    We have been working on a long-term project for developing a variety of infrared immersion gratings for near- to mid-infrared wavelengths. The transmittance of material is essential to realize high-efficiency immersion gratings for astronomical applications. For a typical grating, the attenuation coefficient αatt must be <0.01 cm-1 for the absolute diffraction efficiency of >70%. However, as there are few reports of αatt < 0.01 cm-1 for infrared optical materials in the literatures, we performed high-accuracy measurements of αatt for a variety of infrared materials applicable to immersion gratings. We have already reported αatt at room temperature for single-crystal Si, single-crystal Ge, CVD-ZnS, CVDZnSe, and high-resistivity single-crystal CdZnTe (Ikeda et al. 2009[7], Kaji et al. 2014[10], and Sarugaku et al. 2016[9]). Next, we proceeded with the measurements of αatt at cryogenic temperatures of 20-80 K range, which is the typical operational temperatures of infrared instruments, and for which the shifts of the band gap and/or the sharpness of the lattice absorption lines from the corresponding room temperature values are expected. Thus, we developed a new cryogenic FTIR system that enables high-accuracy measurements at cryogenic temperatures. The system has a mechanism with which two sample cells and a reference cell can be easily and quickly switched without any vacuum leak or temperature change. Our preliminary measurement of Ge using this cryogenic FTIR system found that both the cut-on and cut-off wavelengths shift to the shorter (from 2.0 to 1.7 μm) and longer (from 10.6 to 10.9 μm) wavelengths, respectively, when the temperature is decreased from room temperature to the cryogenic temperature (<28 K). We plan to complete cryogenic measurements for a variety of infrared materials by the end of 2016.

  13. Constraints on Low-mass WIMP Signals from the Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Leman, Steven W.; CDMS Collaboration

    2011-09-01

    Two different, previously released, Cryogenic Dark Matter Search (CDMS) data sets have been reanalyzed to improve sensitivity to low-mass Weakly Interacting Massive Particle (WIMP) signals. The first data set was obtained from 2001 to 2002 at the shallow-depth Stanford Underground Facility (SUF) with four germanium and two silicon detectors. The second data set utilized eight germanium detectors at the deep Soudan Underground Laboratory from 2006 to 2008. The SUF data excludes parameter space between 3 and 4 GeV / c2 while the Soudan result excludes parameter space favored by the DAMA / LIBRA and CoGeNT data as light WIMP signals at the >90% confidence level. Expected performance of new detectors with an interleaved charge readout, also being commissioned at Soudan, will also be discussed.

  14. Cryogenic Flange and Seal Evaluation

    NASA Technical Reports Server (NTRS)

    Ramirez, Adrian

    2014-01-01

    The assembly of flanges, seals, and pipes are used to carry cryogenic fluid from a storage tank to the vehicle at launch sites. However, after a certain amount of cycles these raised face flanges with glass-filled Teflon gaskets have been found to have torque relaxation and are as a result susceptible to cryogenic fluid leakage if not re-torqued. The intent of this project is to identify alternate combinations of flanges and seals which may improve thermal cycle performance and decrease re-torque requirements. The general approach is to design a test fixture to evaluate leak characteristics between spiral and concentric serrations and to test alternate flange and seal combinations. Due to insufficient time, it was not possible to evaluate these different types of combinations for the combination that improved thermal cycle performance the most. However, the necessary drawings for the test fixture were designed and assembled along with the collection of the necessary parts.

  15. High-performance LWIR microbolometer with Si/SiGe quantum well thermistor and wafer level packaging

    NASA Astrophysics Data System (ADS)

    Roer, Audun; Lapadatu, Adriana; Wolla, Erik; Kittilsland, Gjermund

    2013-06-01

    An uncooled microbolometer with peak responsivity in the long wave infrared region of the electromagnetic radiation is developed at Sensonor AS. It is a 384 x 288 focal plane array with a pixel pitch of 25µm, based on monocrystalline Si/SiGe quantum wells as IR sensitive material. The high sensitivity (TCR) and low 1/f-noise are the main performance characteristics of the product. The frame rate is maximum 60Hz and the output interface is digital (LVDS). The quantum well thermistor material is transferred to the read-out integrated circuit (ROIC) by direct wafer bonding. The ROIC wafer containing the released pixels is bonded in vacuum with a silicon cap wafer, providing hermetic encapsulation at low cost. The resulting wafer stack is mounted in a standard ceramic package. In this paper the architecture of the pixels and the ROIC, the wafer packaging and the electro-optical measurement results are presented.

  16. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  17. SCRF Cryogenic Operating Experience at FNPL

    NASA Astrophysics Data System (ADS)

    DeGraff, B.; Soyars, W.; Martinez, A.

    2006-04-01

    The Fermilab-NICADD Photoinjector Laboratory (FNPL), a photoelectron research and development beam line, has been operational since 1998. A single TESLA 9-cell superconducting RF cavity is operated in support of this accelerator system. The superfluid cryogenic system consists of a dewar-fed liquid helium supply with up to 2 g/s vacuum pumping capacity. Helium gas is recovered to the Tevatron cryogenic system. The photoinjector static load is about 2.5 W to 1.8 K, with a typical dynamic component of about 0.5 W. The capabilities, performance, operating experience, and reliability of this superfluid cryogenic system will be discussed. An auxiliary cryogenic system for testing bare superconducting RF cavities in a vertical dewar is also available, providing a steady state capacity of about 12 W at 1.8 K for testing.

  18. Characterisation of diode-connected SiGe BiCMOS HBTs for space applications

    NASA Astrophysics Data System (ADS)

    Venter, Johan; Sinha, Saurabh; Lambrechts, Wynand

    2016-02-01

    Silicon-germanium (SiGe) bipolar complementary metal-oxide semiconductor (BiCMOS) transistors have vertical doping profiles reaching deeper into the substrate when compared to lateral CMOS transistors. Apart from benefiting from high-speed, high current gain and low-output resistance due to its vertical profile, BiCMOS technology is increasingly becoming a preferred technology for researchers to realise next-generation space-based optoelectronic applications. BiCMOS transistors have inherent radiation hardening, to an extent predictable cryogenic performance and monolithic integration potential. SiGe BiCMOS transistors and p-n junction diodes have been researched and used as a primary active component for over the last two decades. However, further research can be conducted with diode-connected heterojunction bipolar transistors (HBTs) operating at cryogenic temperatures. This work investigates these characteristics and models devices by adapting standard fabrication technology components. This work focuses on measurements of the current-voltage relationship (I-V curves) and capacitance-voltage relationships (C-V curves) of diode-connected HBTs. One configuration is proposed and measured, which is emitterbase shorted. The I-V curves are measured for various temperature points ranging from room temperature (300 K) to the temperature of liquid nitrogen (77 K). The measured datasets are used to extract a model of the formed diode operating at cryogenic temperatures and used as a standard library component in computer aided software designs. The advantage of having broad-range temperature models of SiGe transistors becomes apparent when considering implementation of application-specific integrated circuits and silicon-based infrared radiation photodetectors on a single wafer, thus shortening interconnects and lowering parasitic interference, decreasing the overall die size and improving on overall cost-effectiveness. Primary applications include space-based geothermal

  19. A cryogenic receiver for EPR.

    PubMed

    Narkowicz, R; Ogata, H; Reijerse, E; Suter, D

    2013-12-01

    Cryogenic probes have significantly increased the sensitivity of NMR. Here, we present a compact EPR receiver design capable of cryogenic operation. Compared to room temperature operation, it reduces the noise by a factor of ≈2.5. We discuss in detail the design and analyze the resulting noise performance. At low microwave power, the input noise density closely follows the emission of a cooled 50Ω resistor over the whole measurement range from 20K up to room temperature. To minimize the influence of the microwave source noise, we use high microwave efficiency (≈1.1-1.7mTW(-1/2)) planar microresonators. Their efficient conversion of microwave power to magnetic field permits EPR measurements with very low power levels, typically ranging from a few μW down to fractions of nW. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi

    2006-01-01

    Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.

  1. ZERODUR TAILORED for cryogenic application

    NASA Astrophysics Data System (ADS)

    Jedamzik, R.; Westerhoff, T.

    2014-07-01

    ZERODUR® glass ceramic from SCHOTT is known for its very low thermal expansion coefficient (CTE) at room temperature and its excellent CTE homogeneity. It is widely used for ground-based astronomical mirrors but also for satellite applications. Many reference application demonstrate the excellent and long lasting performance of ZERODUR® components in orbit. For space application a low CTE of the mirror material is required at cryogenic temperatures together with a good match of the thermal expansion to the supporting structure material. It is possible to optimize the coefficient of thermal expansion of ZERODUR® for cryogenic applications. This paper reports on measurements of thermal expansion of ZERODUR® down to cryogenic temperatures of 10 K performed by the PTB (Physikalisch Technische Bundesanstallt, Braunschweig, Germany, the national metrology laboratory). The ZERODUR® TAILORED CRYO presented in this paper has a very low coefficient of thermal expansion down to 70 K. The maximum absolute integrated thermal expansion down to 10 K is only about 20 ppm. Mirror blanks made from ZERODUR® TAILORED CRYO can be light weighted to almost 90% with our modern processing technologies. With ZERODUR® TAILORED CRYO, SCHOTT offers the mirror blank material for the next generation of space telescope applications.

  2. Usaf Space Sensing Cryogenic Considerations

    NASA Astrophysics Data System (ADS)

    Roush, F.

    2010-04-01

    Infrared (IR) space sensing missions of the future depend upon low mass components and highly capable imaging technologies. Limitations in visible imaging due to the earth's shadow drive the use of IR surveillance methods for a wide variety of applications for Intelligence, Surveillance, and Reconnaissance (ISR), Ballistic Missile Defense (BMD) applications, and almost certainly in Space Situational Awareness (SSA) and Operationally Responsive Space (ORS) missions. Utilization of IR sensors greatly expands and improves mission capabilities including target and target behavioral discrimination. Background IR emissions and electronic noise that is inherently present in Focal Plane Arrays (FPAs) and surveillance optics bench designs prevents their use unless they are cooled to cryogenic temperatures. This paper describes the role of cryogenic coolers as an enabling technology for generic ISR and BMD missions and provides ISR and BMD mission and requirement planners with a brief glimpse of this critical technology implementation potential. The interaction between cryogenic refrigeration component performance and the IR sensor optics and FPA can be seen as not only mission enabling but also as mission performance enhancing when the refrigeration system is considered as part of an overall optimization problem.

  3. SNS Cryogenic Systems Commissioning

    NASA Astrophysics Data System (ADS)

    Hatfield, D.; Casagrande, F.; Campisi, I.; Gurd, P.; Howell, M.; Stout, D.; Strong, H.; Arenius, D.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2006-04-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  4. SNS Cryogenic Systems Commissioning

    SciTech Connect

    D. Hatfield; F. Casagrande; I. Campisi; P. Gurd; M. Howell; D. Stout; H. Strong; D. Arenius; J. Creel; K. Dixon; V. Ganni; and P. Knudsen

    2005-08-29

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  5. Impact of the Cryogen Free Revolution on Neutron Scattering Laboratories

    NASA Astrophysics Data System (ADS)

    Kirichek, Oleg

    A global shortage of helium gas can seriously jeopardise the scientific programmes of neutron scattering laboratories due to the use of cryogenic sample environment in the majority of the neutron scattering experiments. Recently developed cryogen-free technology allows a significant reduction or even a complete elimination of liquid helium consumption. Here we review the impact of the cryogen-free revolution on cryogenic equipment used at large neutron facilities, such as cryostats, dilution refrigerators, superconducting magnets and other cryogenic systems. Particular attention is given to the newly developed superconducting magnets for neutron diffraction and spectroscopy experiments. Use of the cryogen-free approach, as well as cutting-edge superconducting magnet technology and advanced neutron optics allows researcher to achieve extraordinary performance in their experiments, opening up new opportunities in neutron scattering research.

  6. Feasibility study for the Cryogenic Orbital Nitrogen Experiment (CONE)

    NASA Technical Reports Server (NTRS)

    Bell, R. S.; Crouch, M. A.; Hanna, G. J.; Cady, E. C.; Meserole, J. S.

    1991-01-01

    An improved understanding of low gravity subcritical cryogenic fluid behavior is critical for the continued development of space based systems. Although early experimental programs provided some fundamental understanding of zero gravity cryogenic fluid behavior, more extensive flight data are required to design space based cryogenic liquid storage and transfer systems with confidence. As NASA's mission concepts evolve, the demand for optimized in-space cryogenic systems is increasing. Cryogenic Orbital Nitrogen Experiment (CONE) is an attached shuttle payload experiment designed to address major technological issues associated with on-orbit storage and supply of cryogenic liquids. During its 7 day mission, CONE will conduct experiments and technology demonstrations in active and passive pressure control, stratification and mixing, liquid delivery and expulsion efficiency, and pressurant bottle recharge. These experiments, conducted with liquid nitrogen as the test fluid, will substantially extend the existing low gravity fluid data base and will provide future system designers with vital performance data from an orbital environment.

  7. A computer algorithm for performing interactive algebraic computation on the GE Image-100 system

    NASA Technical Reports Server (NTRS)

    Hart, W. D.; Kim, H. H.

    1979-01-01

    A subroutine which performs specialized algebraic computations upon ocean color scanner multispectral data is presented. The computed results are displayed on a video display. The subroutine exists as a component of the aircraft sensor analysis package. The user specifies the parameters of the computations by directly interacting with the computer. A description of the conversational options is also given.

  8. Cryogenic optical tests of a lightweight HIP beryllium mirror

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Miller, Jacob H.; Young, J. A.; Howard, Steven D.; Pryor, G. Mark

    1989-01-01

    Five interferometric tests were conducted at cryogenic temperatures on a lightweight, 50 cm diameter, hot isostatic pressed (HIP) beryllium mirror in the Ames Research Center (ARC) Cryogenic Optics Test Facility. The purpose of the tests was to determine the stability of the mirror's figure when cooled to cryogenic temperatures. Test temperatures ranged from room ambient to 8 K. One cycle to 8 K and five cycles to 80 K were performed. Optical and thermal test methods are described. Data is presented to show the amount of cryogenic distortion and hysteresis present in the mirror when measured with an earlier, Shack interferometer, and with a newly-acquired, phase-measuring interferometer.

  9. Cryopumping in Cryogenic Insulations for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Weiser, Erik S.; Grimsley, Brian W.; Jensen, Brian J.

    2003-01-01

    Testing at cryogenic temperatures was performed to verify the material characteristics and manufacturing processes of reusable propellant tank cryogenic insulations for a Reusable Launch Vehicle (RLV). The unique test apparatus and test methods developed for the investigation of cryopumping in cryogenic insulations are described. Panel level test specimens with various types of cryogenic insulations were subjected to a specific thermal profile where the temperature varied from -262 C to 21 C. Cryopumping occurred if the interior temperature of the specimen exhibited abnormal temperature fluctuations, such as a sudden decrease in temperature during the heating phase.

  10. Advances in cryogenic engineering. Volume 29 - Proceedings of the Cryogenic Engineering Conference, Colorado Springs, CO, August 15-17, 1983

    NASA Astrophysics Data System (ADS)

    Fast, R. W.

    Applications of superconductivity are discussed, taking into account the thermal performance of the MFTF magnets, the design and testing of a large bore superconducting magnet test facility, the development of a 12-tesla multifilamentary Nb3Sn magnet, a superconducting magnet for solid NMR studies, advanced applications of superconductors, transition and recovery of a cryogenically stable superconductor, and finite-difference modeling of the cryostability of helium II cooled conductor packs. Other topics explored are related to resource availability, heat exchangers, heat transfer to He I, liquid nitrogen, heat transfer in He II, refrigeration for superconducting and cryopump systems, refrigeration of cryogenic systems, refrigeration and liquefaction, dilution and magnetic refrigeration, cryocoolers, refrigeration for space applications, cryogenic applications, cryogenic instrumentation and data acquisition, and properties of fluids. Attention is given to biomedical applications of cryogenics in China, long-term cryogen storage in space, and a passive orbital disconnect strut.

  11. The Effects of Cryogenic Treatment on Cutting Tools

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.

    2017-08-01

    Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.

  12. RHIC Performance as a 100 GeV Polarized Proton Collider in Run-9

    SciTech Connect

    Montag, C.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; DOttavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hahn, H.; Harvey, M.; Hayes, T.; Huang, H.; Ingrassia, P.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Lee, R.C.; Luccio, A.U.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Menga, P.M.; Michnoff, R.; Minty, M.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Pozdeyev, E.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Russo, T.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Sivertz, M.; Smith, K.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2010-05-23

    During the second half of Run-9, the Relativisitc Heavy Ion Collider (RHIC) provided polarized proton collisions at two interaction points. The spin orientation of both beams at these collision points was controlled by helical spin rotators, and physics data were taken with different orientations of the beam polarization. Recent developments and improvements will be presented, as well as luminosity and polarization performance achieved during Run-9.

  13. An Experimental Platform for Performing Measurements of the RF Magnetic Permeability and Electric Permittivity of Functional Materials at Cryogenic Temperatures

    DTIC Science & Technology

    2013-09-01

    research into a class of electronics based on modifying superconducting circuitry through the integration of complex functional materials with...governing the superconducting tunneling properties can assume frequency-dependent behavior. The interfacing of multi- ferroic and superconducting ...characteristic performance of various types of superconducting circuit structures. This could potentially enable high-precision dynamic control of

  14. Cryogenic readout techniques for germanium detectors

    SciTech Connect

    Benato, G.; Cattadori, C.; Di Vacri, A.; Ferri, E.

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  15. Advances in Cryogenic Principles

    NASA Astrophysics Data System (ADS)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  16. Liquid cryogenic lubricant

    NASA Technical Reports Server (NTRS)

    Dietrich, M. W.; Townsend, D. P.; Zaretsky, E. V.

    1970-01-01

    Fluorinated polyethers are suitable lubricants for rolling-element bearings in cryogenic systems. Lubrication effectiveness is comparable to that of super-refined mineral oil lubricants operating at room temperature.

  17. JWST NIRSpec Cryogenic Light Shield Mechanism

    NASA Technical Reports Server (NTRS)

    Hale, Kathleen; Sharma, Rajeev

    2006-01-01

    The focal plane detectors for the Near-Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST) require a light tight cover for calibration along with an open field-of-view during ground performance testing within a cryogenic dewar. In order to meet the light attenuation requirements and provide open and closed fields of view without breaking vacuum, a light shield mechanism was designed. This paper describes the details of the light shield mechanism design and test results. Included is information on the labyrinth light path design, motor capability and performance, dry film lubrication, mechanism control, and mechanism cryogenic performance results.

  18. Vuilleumier Cycle Cryogenic Refrigeration

    DTIC Science & Technology

    1976-04-01

    WORDS (Continue on reverse side if necessary and identify by block number) Cryogenic Refrigerator Vuilleumier Cycle 20. ABSTRACT (Continue on reverse ...The energy added to the gas was stored in the regenerator packing, or matrix, by gas flow in the reverse direction during a previous part of the cycle ...AFFDL-TR-76-17 VUILLEUMIER CYCLE CRYOGENIC REFRIGERATION ENVIRONMENTAL CONTROL BRANCH 4 VEHICLE EQUIPMENT DIVISION APRIL 1976 TECHNICAL REPORT AFFDL

  19. Cryogenic Feedthrough Test Rig

    NASA Technical Reports Server (NTRS)

    Skaff, Antony

    2009-01-01

    The cryogenic feedthrough test rig (CFTR) allows testing of instrumentation feedthroughs at liquid oxygen and liquid hydrogen temperature and pressure extremes (dangerous process fluid) without actually exposing the feedthrough to a combustible or explosive process fluid. In addition, the helium used (inert gas), with cryogenic heat exchangers, exposes the feedthrough to that environment that allows definitive leak rates of feedthrough by typical industry-standard helium mass spectrometers.

  20. Cryogenic Shutter Mechanism

    NASA Technical Reports Server (NTRS)

    Barney, Richard D.; Magner, Thomas J.

    1989-01-01

    Electromagnetic shutter mechanism operates at ambient and cryogenic temperatures to shield optical element, such as mirror, filter, polarizer, beam splitter, or detector, from external light and radiation in cryogenic Dewar equipped with window for optical evaluation. Shutter mechanism in Dewar container alternately shields and exposes optical element as paddle rotates between mechanical stops. Mounted on cold plate of liquid-helium reservoir. Paddle, shaft, and magnet constitutes assembly rotated by electromagnetic field on coil.

  1. First Results from the Cryogenic Dark Matter Search in the Soudan Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alvaro-Dean, J.; Armel-Funkhouser, M. S.; Attisha, M. J.; Baudis, L.; Bauer, D. A.; Beaty, J.; Brink, P. L.; Bunker, R.; Burke, S. P.; Cabrera, B.; Caldwell, D. O.; Callahan, D.; Castle, J. P.; Chang, C. L.; Choate, R.; Crisler, M. B.; Cushman, P.; Dixon, R.; Dragowsky, M. R.; Driscoll, D. D.; Duong, L.; Emes, J.; Ferril, R.; Filippini, J.; Gaitskell, R. J.; Haldeman, M.; Hale, D.; Holmgren, D.; Huber, M. E.; Johnson, B.; Johnson, W.; Kamat, S.; Kozlovsky, M.; Kula, L.; Kyre, S.; Lambin, B.; Lu, A.; Mahapatra, R.; Manalaysay, A. G.; Mandic, V.; May, J.; McDonald, R.; Merkel, B.; Meunier, P.; Mirabolfathi, N.; Morrison, S.; Nelson, H.; Nelson, R.; Novak, L.; Ogburn, R. W.; Orr, S.; Perera, T. A.; Perillo Isaac, M. C.; Ramberg, E.; Rau, W.; Reisetter, A.; Ross, R. R.; Saab, T.; Sadoulet, B.; Sander, J.; Savage, C.; Schmitt, R. L.; Schnee, R. W.; Seitz, D. N.; Serfass, B.; Smith, A.; Smith, G.; Spadafora, A. L.; Sundqvist, K.; Thompson, J.-P. F.; Tomada, A.; Wang, G.; Williams, J.; Yellin, S.; Young, B. A.

    2004-11-01

    We report the first results from a search for weakly interacting massive particles (WIMPs) in the Cryogenic Dark Matter Search experiment at the Soudan Underground Laboratory. Four Ge and two Si detectors were operated for 52.6live days, providing 19.4kg d of Ge net exposure after cuts for recoil energies between 10 and 100keV. A blind analysis was performed using only calibration data to define the energy threshold and selection criteria for nuclear-recoil candidates. Using the standard dark-matter halo and nuclear-physics WIMP model, these data set the world's lowest exclusion limits on the coherent WIMP-nucleon scalar cross section for all WIMP masses above 15 GeV/c2, ruling out a significant range of neutralino supersymmetric models. The minimum of this limit curve at the 90% C.L. is 4×10-43 cm2 at a WIMP mass of 60 GeV/c2.

  2. First results from the Cryogenic Dark Matter Search in the Soudan Underground Laboratory.

    PubMed

    Akerib, D S; Alvaro-Dean, J; Armel-Funkhouser, M S; Attisha, M J; Baudis, L; Bauer, D A; Beaty, J; Brink, P L; Bunker, R; Burke, S P; Cabrera, B; Caldwell, D O; Callahan, D; Castle, J P; Chang, C L; Choate, R; Crisler, M B; Cushman, P; Dixon, R; Dragowsky, M R; Driscoll, D D; Duong, L; Emes, J; Ferril, R; Filippini, J; Gaitskell, R J; Haldeman, M; Hale, D; Holmgren, D; Huber, M E; Johnson, B; Johnson, W; Kamat, S; Kozlovsky, M; Kula, L; Kyre, S; Lambin, B; Lu, A; Mahapatra, R; Manalaysay, A G; Mandic, V; May, J; McDonald, R; Merkel, B; Meunier, P; Mirabolfathi, N; Morrison, S; Nelson, H; Nelson, R; Novak, L; Ogburn, R W; Orr, S; Perera, T A; Perillo Isaac, M C; Ramberg, E; Rau, W; Reisetter, A; Ross, R R; Saab, T; Sadoulet, B; Sander, J; Savage, C; Schmitt, R L; Schnee, R W; Seitz, D N; Serfass, B; Smith, A; Smith, G; Spadafora, A L; Sundqvist, K; Thompson, J-P F; Tomada, A; Wang, G; Williams, J; Yellin, S; Young, B A

    2004-11-19

    We report the first results from a search for weakly interacting massive particles (WIMPs) in the Cryogenic Dark Matter Search experiment at the Soudan Underground Laboratory. Four Ge and two Si detectors were operated for 52.6 live days, providing 19.4 kg d of Ge net exposure after cuts for recoil energies between 10 and 100 keV. A blind analysis was performed using only calibration data to define the energy threshold and selection criteria for nuclear-recoil candidates. Using the standard dark-matter halo and nuclear-physics WIMP model, these data set the world's lowest exclusion limits on the coherent WIMP-nucleon scalar cross section for all WIMP masses above 15 GeV/c2, ruling out a significant range of neutralino supersymmetric models. The minimum of this limit curve at the 90% C.L. is 4 x 10(-43) cm2 at a WIMP mass of 60 GeV/c2.

  3. NASA's Cryogenic Fluid Management Technology Project

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  4. Cryogenic Field Measurement of Pr2Fe14B Undulator and Performance Enhancement Options at the NSLS-II

    SciTech Connect

    Tanabe, T.; Chubar, O.; Harder, David A.; Lehecka, Michael; Rank, James; Rakowsky, George; Spataro, Charles

    2009-09-27

    Short period (14.5mm) hybrid undulator arrays composed of Praseodymium Iron Boron (Pr{sub 2}Fe{sub 14}B) magnets (CR53, NEOMAX, Inc.) and vanadium permendur poles have been fabricated at Brookhaven National Laboratory. Unlike Neodymium Iron Boron (Nd{sub 2}Fe{sub 14}B) magnets which exhibit spin reorientation at temperatures below 150K, PrFeB arrays monotonically increase performance with lower operating temperature. It opens up the posibility for use in operating a cryo-permanent magnet undulator (CPMU) in the range of 40K to 60K where very efficient cryocoolers are available. Magnetic flux density profiles were measured at various temperature ranges from room temperature down to liquid helium (LHe) using the Vertical Testing Facility (VTF) at the National Snchrotron Light Source-II (NSLS-II). Temperature variations of phase error have been characterized. In addition, we examined the use of textured Dysprosium (Dy) poles to replace permendur poles to obtain further improvement in performance.

  5. Telescope-optical system performance analysis for the Cryogenic Limb Array Etalon Spectrometer (CLAES) on the Upper Atmospheric Research Satellite

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Forney, P. B.; Morrow, H. E.; Anapol, M.

    1983-01-01

    A first-order performance analysis of the CLAES telescope-optical system is presented. The experiment involves the passive measurement of earth-limb radiance over a 10-60 km tangent altitude range, and is based on a solid Fabry-Perot spectrometer which provides spectral resolution of 0.25/cm for atmospheric emission spectroscopy over the 3.5-12 micron IR range. The optical system is required to provide a high degree of off-axis rejection and stray-light control, primarily to suppress intense emission from the earth surface. The astigmatism and other geometric aberrations are corrected by a secondary mirror which produces an excellent image of the primary one, allowing for location of a diffraction control or Lyot stop. The off-axis scattering performance of the telescope is examined in terms of the mirror scatter coefficient and point source rejection ratio. A mirror bidirectional reflectance distribution function of 0.0001 at 1 deg with a 1/theta-squared roll-off between 1 and 0.2 deg is realizable based on recent measurements. This results in an off-axis radiance term that is generally small in comparison with the system-limiting NER.

  6. Effect of traps and defects on high temperature performance of Ge channel junctionless nanowire transistors

    NASA Astrophysics Data System (ADS)

    Sun, Chuanchuan; Liang, Renrong; Xiao, Lei; Liu, Libin; Xu, Jun; Wang, Jing

    2017-07-01

    We investigate the effect of traps and defects on high temperature performance of p-type germanium-on-insulator (GOI) based junctionless nanowire transistors (JNTs) at temperatures ranging from 300 to 450 K. Temperature dependence of the main electrical parameters, such as drive current (Ion), leakage current (Ioff), threshold voltage (Vt), transconductance (Gm) and subthreshold slope (SS) are extracted and compared with the reported results of conventional inversion mode (IM) MOSFETs and Si based JNTs. The results show that the high interface trap density (Dit) and defects can degrade high temperature reliability of GOI based JNTs significantly, in terms of Ioff, Vt variation, Gm-max and SS values. The Ioff is much more dependent on temperature than Ion and mainly affected by trap-assisted-tunneling (TAT) current. The Vt variation with temperature is larger than that for IM MOSFETs and SOI based JNTs, which can be mostly attributed to the high Dit. The high Dit can also induce high SS values. The maximum Gm has a weak dependence on temperature and is significantly influenced by neutral defects scattering. Limiting the Dit and neutral defect densities is critical for the reliability of GOI based JNTs working at high temperatures.

  7. RHIC PERFORMANCE DURING THE FY10 200 GeV Au+Au HEAVY ION RUN

    SciTech Connect

    Brown, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.; Bruno, D.; Carlson, C.; Connolly, R.; de Maria, R.; D’Ottavio, T.; Drees, A.; Fischer, W.; Fu, W.; Gardner, C.; Gassner, D.; Glenn, J.W.; Hao, Y.; Harvey, M.; Hayes, T.; Hoff, L.; Huang, H.; Laster, J.; Lee, R.; Litvinenko, V.; Luo, Y.; MacKay, W.; Marr, G.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Oerter, B.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Russo, T.; Sampson, P.; Sandberg, J.; Satogata, T.; Severino, F.; Schoefer, V.; Schultheiss, C.; Smith, K.; Steski, D.; Tepikian, S.; Theisen, C.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2010-05-23

    Since the last successful RHIC Au+Au run in 2007 (Run-7), the RHIC experiments have made numerous detector improvements and upgrades. In order to benefit from the enhanced detector capabilities and to increase the yield of rare events in the acquired heavy ion data a significant increase in luminosity is essential. In Run-7 RHIC achieved an average store luminosity of = 12 x 10{sup 26} cm{sup -2} s{sup -1} by operating with 103 bunches (out of 111 possible), and by squeezing to {beta}* = 0.85 m. This year, Run-10, we achieved = 20 x 10{sup 26} cm{sup -2} s{sup -1}, which put us an order of magnitude above the RHIC design luminosity. To reach these luminosity levels we decreased {beta}* to 0.75 m, operated with 111 bunches per ring, and reduced longitudinal and transverse emittances by means of bunched-beam stochastic cooling. In addition we introduced a lattice to suppress intra-beam scattering (IBS) in both RHIC rings, upgraded the RF control system, and separated transition crossing times in the two rings. We present an overview of the changes and the results of Run-10 performance.

  8. NASA/GE Energy Efficient Engine low pressure turbine scaled test vehicle performance report

    NASA Technical Reports Server (NTRS)

    Bridgeman, M. J.; Cherry, D. G.; Pedersen, J.

    1983-01-01

    The low pressure turbine for the NASA/General Electric Energy Efficient Engine is a highly loaded five-stage design featuring high outer wall slope, controlled vortex aerodynamics, low stage flow coefficient, and reduced clearances. An assessment of the performance of the LPT has been made based on a series of scaled air-turbine tests divided into two phases: Block 1 and Block 2. The transition duct and the first two stages of the turbine were evaluated during the Block 1 phase from March through August 1979. The full five-stage scale model, representing the final integrated core/low spool (ICLS) design and incorporating redesigns of stages 1 and 2 based on Block 1 data analysis, was tested as Block 2 in June through September 1981. Results from the scaled air-turbine tests, reviewed herein, indicate that the five-stage turbine designed for the ICLS application will attain an efficiency level of 91.5 percent at the Mach 0.8/10.67-km (35,000-ft), max-climb design point. This is relative to program goals of 91.1 percent for the ICLS and 91.7 percent for the flight propulsion system (FPS).

  9. The aerodynamic design and performance of the NASA/GE E3 low pressure turbine

    NASA Technical Reports Server (NTRS)

    Cherry, D. G.; Dengler, R. P.

    1984-01-01

    The aerodynamic design and scaled rig test results of the low pressure turbine (LPT) component for the NASA/General Electric Energy Efficient Engine (E3) are presented. The low pressure turbine is a highly loaded five-stage design featuring high outer wall slope, controlled vortex aerodynamics, low stage flow coefficient, and reduced clearances. An assessment of its performance has been made based on a series of scaled air turbine tests which were divided into two phases: Block I (March through August, 1979) and Block II (June through September, 1981). Results from the Block II five-stage test, summarized in the paper, indicate that the E3 LPT will attain an efficiency level of 91.5 percent at the Mach 0.8/35,000 ft. max. climb altitude design point. This is relative to program goals of 91.1 percent for the E3 demonstrator engine and 91.7 percent for a fully developed flight propulsion system LPT.

  10. Commissioning the cryogenic system of the first LHC sector

    SciTech Connect

    Millet, F.; Claudet, S.; Ferlin, G.; Perin, A.; Riddone, G.; Serio, L.; Soubiran, M.; Tavian, L.; Ronayette, L.; Rabehl, R.; /Fermilab

    2007-12-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioning is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.

  11. Performance of a Cryogenic Multipath Herriott Cell Vacuum-Coupled to a Bruker IFS-125HR System

    NASA Astrophysics Data System (ADS)

    Mantz, Arlan; Sung, Keeyoon; Crawford, Timothy J.; Brown, Linda; Smith, Mary Ann H.

    2014-06-01

    Accurate modeling of atmospheric trace gases requires detailed knowledge of spectroscopic line parameters at temperatures and pressures relevant to the atmospheric layers where the spectroscopic signatures form. Pressure-broadened line shapes, frequency shifts, and their temperature dependences, are critical spectroscopic parameters that limit the accuracy of state-of-the-art atmospheric remote sensing. In order to provide temperature dependent parameters from controlled laboratory experiments, a 20.946 ± 0.001 m long path Herriott cell and associated transfer optics were designed and fabricated at Connecticut College to operate in the near infrared using a Bruker 125 HR Fourier transform spectrometer. The cell body and gold coated mirrors are fabricated with Oxygen-Free High Conductivity (OFHC) copper. Transfer optics are through-put matched for entrance apertures smaller than 2 mm. A closed-cycle Helium refrigerator cools the cell and cryopumps the surrounding vacuum box. This new system and its transfer optics are fully evacuated to ˜10 mTorr (similar to the pressure inside the interferometer). Over a period of several months, this system has maintained extremely good stability in recording spectra at gas sample temperatures between 75 and 250 K. The absorption path length and cell temperatures are validated using CO spectra. The characterization of the Herriott cell is described along with its performance and future applications. We thank Drs. V. Malathy Devi and D. Chris Benner at The College of William and Mary for helpful discussion. Research described in this paper was performed at Connecticut College, the Jet Propulsion Laboratory, California Institute of Technology, and NASA Langley Research Center, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  12. Effect of nitrogen doping on the performance of Ge2Sb2Te5 films in chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Hee; Song, Min-Jung; Kim, Jin-Wook; Kim, Gyu-Hyun; Hong, Kwon; Lim, Dae-Soon

    2014-03-01

    The effects of nitrogen doping on Ge2Sb2Te5 (GST) films for chemical mechanical polishing (CMP) and their performance were investigated. Nitrogen doping was controlled using a rapid thermal annealing system with nitrogen gas flow rates that varied from 0 to 20 sccm at 300 °C. The material removal rate, surface characteristics and crystal structure of the nitrogen doped GST films after CMP were examined by X-ray diffraction (XRD), scanning electron microscopy, and atomic force microscopy. XRD patterns revealed that the intensities of crystalline diffraction peaks decreased with increasing nitrogen flow rate. With increasing flow rate, the material removal rate and surface roughness of GST films reduced owing to nitrogen doping effects. Current-voltage (I-V) characteristics of the nitrogen doped GST films after CMP showed changes in the threshold voltage owing to changes in crystallization and surface roughness. Further, Nitrogen doped GST films in CMP showed a strong correlation with material removal rate, surface roughness, and crystallization.

  13. Measurements of the performance of a beam condition monitor prototype in a 5 GeV electron beam

    NASA Astrophysics Data System (ADS)

    Hempel, M.; Afanaciev, K.; Burtowy, P.; Dabrowski, A.; Henschel, H.; Idzik, M.; Karacheban, O.; Lange, W.; Leonard, J.; Levy, I.; Lohmann, W.; Pollak, B.; Przyborowski, D.; Ryjov, V.; Schuwalow, S.; Stickland, D.; Walsh, R.; Zagozdzinska, A.

    2016-08-01

    The Fast Beam Conditions Monitor, BCM1F, in the Compact Muon Solenoid, CMS, experiment was operated since 2008 and delivered invaluable information on the machine induced background in the inner part of the CMS detector supporting a safe operation of the inner tracker and high quality data. Due to the shortening of the time between two bunch crossings from 50 ns to 25 ns and higher expected luminosity at the Large Hadron Collider, LHC, in 2015, BCM1F needed an upgrade to higher bandwidth. In addition, BCM1F is used as an on-line luminometer operated independently of CMS. To match these requirements, the number of single crystal diamond sensors was enhanced from 8 to 24. Each sensor is subdivided into two pads, leading to 48 readout channels. Dedicated fast front-end ASICs were developed in 130 nm technology, and the back-end electronics is completely upgraded. An assembled prototype BCM1F detector comprising sensors, a fast front-end ASIC and optical analog readout was studied in a 5 GeV electron beam at the DESY-II accelerator. Results on the performance are given.

  14. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  15. Brush Seals for Cryogenic Applications: Performance, Stage Effects, and Preliminary Wear Results in LN2 and LH2

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Walker, James F.; Perkins, H. Douglas; Hoopes, Joan F.; Williamson, G. Scott

    1996-01-01

    Brush seals are compliant contacting seals and have significantly lower leakage than labyrinth seals in gas turbine applications. Their long life and low leakage make them candidates for use in rocket engine turbopumps. Brush seals, 50.8 mm (2 in.) in diameter with a nominal 127-micron (0.005-in.) radial interference, were tested in liquid nitrogen (LN2) and liquid hydrogen (LH2) at shaft speeds up to 35,000 and 65,000 rpm, respectively, and at pressure drops up to 1.21 MPa (175 psid) per brush. A labyrinth seal was also tested in liquid nitrogen to provide a baseline. The LN2 leakage rate of a single brush seal with an initial radial shaft interference of 127 micron (0.005 in.) measured one-half to one-third the leakage rate of a 12-tooth labyrinth seal with a radial clearance of 127 micron (0.005 in.). Two brushes spaced 7.21 micron (0.248 in.) apart leaked about one-half as much as a single brush, and two brushes tightly packed together leaked about three-fourths as much as a single brush. The maximum measured groove depth on the Inconel 718 rotor with a surface finish of 0.81 micron (32 microinch) was 25 micron (0.0010 in.) after 4.3 hr of shaft rotation in liquid nitrogen. The Haynes-25 bristles wore approximately 25 to 76 micron (0.001 to 0.003 in.) under the same conditions. Wear results in liquid hydrogen were significantly different. In liquid hydrogen the rotor did not wear, but the bristle material transferred onto the rotor and the initial 127 micron (0.005 in.) radial interference was consumed. Relatively high leakage rates were measured in liquid hydrogen. More testing is required to verify the leakage performance, to validate and calibrate analysis techniques, and to determine the wear mechanisms. Performance, staging effects, and preliminary wear results are presented.

  16. High-precision cryogenic wheel mechanisms of the JWST/MIRI instrument: performance of the flight models

    NASA Astrophysics Data System (ADS)

    Krause, O.; Müller, F.; Birkmann, S.; Böhm, A.; Ebert, M.; Grözinger, U.; Henning, Th.; Hofferbert, R.; Huber, A.; Lemke, D.; Rohloff, R.-R.; Scheithauer, S.; Gross, T.; Fischer, T.; Luichtel, G.; Merkle, H.; Übele, M.; Wieland, H.-U.; Amiaux, J.; Jager, R.; Glauser, A.; Parr-Burman, P.; Sykes, J.

    2010-07-01

    The Mid Infrared Instrument (MIRI) aboard JWST is equipped with one filter wheel and two dichroic-grating wheel mechanisms to reconfigure the instrument between observing modes such as broad/narrow-band imaging, coronagraphy and low/medium resolution spectroscopy. Key requirements for the three mechanisms with up to 18 optical elements on the wheel include: (1) reliable operation at T = 7 K, (2) high positional accuracy of 4 arcsec, (3) low power dissipation, (4) high vibration capability, (5) functionality at 7 K < T < 300 K and (6) long lifetime (5-10 years). To meet these requirements a space-proven wheel concept consisting of a central MoS2-lubricated integrated ball bearing, a central torque motor for actuation, a ratchet system with monolithic CuBe flexural pivots for precise and powerless positioning and a magnetoresistive position sensor has been implemented. We report here the final performance and lessons-learnt from the successful acceptance test program of the MIRI wheel mechanism flight models. The mechanisms have been meanwhile integrated into the flight model of the MIRI instrument, ready for launch in 2014 by an Ariane 5 rocket.

  17. Cryogenic Permanent Magnet Undulators

    SciTech Connect

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-06-23

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm{sub 2}Co{sub 17} or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  18. The integrated cryogenic system for the atmospheric vertical interferometric detector on FY-4 satellite

    NASA Astrophysics Data System (ADS)

    Wu, Yinong; Liu, EnGuang; Jiang, Zhenhua; Yang, Baoyu; Mu, Yongbin

    2016-05-01

    The cryogenic system for the atmospheric vertical interferometric detector on FY-4 satellite includes a Stirling cryocooler, a radiant cooler, a cryogenic heat pipe and some flexible thermal links as well. These cryogenic elements were integrated together in order to decrease the background radiation and maximize the sensitivity with high efficiency and high reliability. This paper summarizes the cryogenic integration design, technical challenges, and the results of thermal and performance testing.

  19. Performance enhancement in uniaxially tensile stressed GeSn n-channel fin tunneling field-effect transistor: Impact of stress direction

    NASA Astrophysics Data System (ADS)

    Wang, Hongjuan; Han, Genquan; Jiang, Xiangwei; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-04-01

    In this work, the boosting effect on the performance of GeSn n-channel fin tunneling FET (nFinTFET) enabled by uniaxial tensile stress is investigated theoretically. As the fin rotates within the (001) plane, the uniaxial tensile stress is always along its direction. The electrical characteristics of tensile-stressed GeSn nFinTFETs with point and line tunneling modes are computed utilizing the technology computer aided design (TCAD) simulator in which the dynamic nonlocal band-to-band tunneling (BTBT) algorithm is employed. In comparison with the relaxed devices, tensile-stressed GeSn nFinTFETs achieve a substantial enhancement in band-to-band tunneling generation rate (G BTBT) and on-state current I ON owing to the reduced bandgap E G induced by the tensile stress. Performance improvement of GeSn nFinTFETs induced by tensile stress demonstrates a strong dependence on channel direction and tunneling modes. Under the same magnitude of stress, line-nFinTFETs obtain a more pronounced I ON enhancement over the transistors with point tunneling mode.

  20. Cryogenic Fluid Management Technology Development Roadmaps

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Johnson, W. L.

    2017-01-01

    Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.

  1. Active Costorage of Cryogenic Propellants for Exploration

    NASA Technical Reports Server (NTRS)

    Canavan, Edgar R.; Boyle, Rob; Mustafi, Shuvo

    2008-01-01

    Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used cryogens to cool instruments. In many cases, the lifetime of the primary cryogen tank has been extended by intercepting much of the heat incident on the tank at an intermediate-temperature shield cooled either by a second cryogen tank or a mechanical cryocooler. For an LH2/LO2 propellant system, a combination of these ideas can be used, in which the shield around the LO2 tank is attached to, and at the same temperature as, the LO2 tank, but is actively cooled so as to remove all heat impinging on the tank and shield. This configuration eliminates liquid oxygen boil-off and cuts the liquid hydrogen boil-off to a small fraction of the unshielded rate. This paper studies the concept of active costorage as a means of long-term cryogenic propellant storage. The paper describes the design impact of an active costorage system for the Crew Exploration Vehicle (CEV). This paper also compares the spacecraft level impact of the active costorage concept with a passive storage option in relation to two different scales of spacecraft that will be used for the lunar exploration effort, the CEV and the Earth Departure Stage (EDS). Spacecraft level studies are performed to investigate the impact of scaling of the costorage technologies for the different components of the Lunar Architecture and for different mission durations.

  2. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys

    NASA Astrophysics Data System (ADS)

    Bathula, Sivaiah; Jayasimhadri, M.; Gahtori, Bhasker; Singh, Niraj Kumar; Tyagi, Kriti; Srivastava, A. K.; Dhar, Ajay

    2015-07-01

    Despite SiGe being one of the most widely studied thermoelectric materials owing to its application in radioisotope thermoelectric generators (RTG), the thermoelectric figure-of merit (ZT) of p-type SiGe is still quite low, resulting in poor device efficiencies. In the present study, we report a substantial enhancement in ZT ~ 1.2 at 900 °C for p-type nanostructured Si80Ge20 alloys by creating several types of defect features within the Si80Ge20 nanostructured matrix in a spectrum of nano to meso-scale dimensions during its nanostructuring, by employing mechanical alloying followed by spark plasma sintering. This enhancement in ZT, which is ~25% over the existing state-of-the-art value for a p-type nanostructured Si80Ge20 alloy, is primarily due to its ultralow thermal conductivity of ~2.04 W m-1 K-1 at 900 °C, resulting from the scattering of low-to-high wavelength heat-carrying phonons by different types of defect features in a range of nano to meso-scale dimensions in the Si80Ge20 nanostructured matrix. These include point defects, dislocations, isolated amorphous regions, nano-scale grain boundaries and more importantly, the nano to meso-scale residual porosity distributed throughout the Si80Ge20 matrix. These nanoscale multi-dimensional defect features have been characterized by employing scanning and transmission electron microscopy and correlated with the electrical and thermal transport properties, based on which the enhancement of ZT has been discussed.Despite SiGe being one of the most widely studied thermoelectric materials owing to its application in radioisotope thermoelectric generators (RTG), the thermoelectric figure-of merit (ZT) of p-type SiGe is still quite low, resulting in poor device efficiencies. In the present study, we report a substantial enhancement in ZT ~ 1.2 at 900 °C for p-type nanostructured Si80Ge20 alloys by creating several types of defect features within the Si80Ge20 nanostructured matrix in a spectrum of nano to meso

  3. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys.

    PubMed

    Bathula, Sivaiah; Jayasimhadri, M; Gahtori, Bhasker; Singh, Niraj Kumar; Tyagi, Kriti; Srivastava, A K; Dhar, Ajay

    2015-08-07

    Despite SiGe being one of the most widely studied thermoelectric materials owing to its application in radioisotope thermoelectric generators (RTG), the thermoelectric figure-of merit (ZT) of p-type SiGe is still quite low, resulting in poor device efficiencies. In the present study, we report a substantial enhancement in ZT∼ 1.2 at 900 °C for p-type nanostructured Si80Ge20 alloys by creating several types of defect features within the Si80Ge20 nanostructured matrix in a spectrum of nano to meso-scale dimensions during its nanostructuring, by employing mechanical alloying followed by spark plasma sintering. This enhancement in ZT, which is ∼25% over the existing state-of-the-art value for a p-type nanostructured Si80Ge20 alloy, is primarily due to its ultralow thermal conductivity of ∼2.04 W m(-1) K(-1) at 900 °C, resulting from the scattering of low-to-high wavelength heat-carrying phonons by different types of defect features in a range of nano to meso-scale dimensions in the Si80Ge20 nanostructured matrix. These include point defects, dislocations, isolated amorphous regions, nano-scale grain boundaries and more importantly, the nano to meso-scale residual porosity distributed throughout the Si80Ge20 matrix. These nanoscale multi-dimensional defect features have been characterized by employing scanning and transmission electron microscopy and correlated with the electrical and thermal transport properties, based on which the enhancement of ZT has been discussed.

  4. TPC magnet cryogenic system

    SciTech Connect

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system.

  5. Cryogenic Insulation Bondline Studies for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Johnson, T. F.; Weiser, E. S.; Duong, P. G.

    2003-01-01

    Cryogenic insulations bonded to metallic substrates were characterized under simulated mission conditions representative for a reusable launch vehicle. The combined thermal and mechanical test consisted of 50 to a 100 cycles. These combined thermal and mechanical cycles simulated flight missions with temperatures ranging from -423 F to 450 F and a maximum mechanical tension load ranging from 20,000 lbs. to 97,650 lbs. The combined thermal and mechanical (uniaxial tension) test apparatus (1 ft. by 2 ft. Test Apparatus) developed at the NASA Langley Research Center, was used to perform cyclic tests on cryogenic insulations bonded to tank wall substrates. No visual delamination or degradation was observed in the cryogenic insulation-to-metallic substrate bondline or butt joints between cryogenic insulation panels. In addition, after cyclic testing was performed, residual property results from tension-pull and closed-cell content tests of the cryogenic insulations indicated a decrease in the bondline strength and closed-cell content.

  6. Cryogenic optical systems and instruments V; Proceedings of the Meeting, San Diego, CA, July 23, 24, 1992

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K. (Editor)

    1993-01-01

    Topics discussed in this volume include cryogenic system design and optical technology; cryogenic instruments; cryogenic/IR mechanisms, testing, and performance; and space cryogenic dewars and coolers. Papers included are on the SIRTF cryooptics technology plan, the development of the SPIRIT III sensor, the design of a rapidly cooled cryogenic mirror, the cryogenic Michelson interferometer on the Space Shuttle, a reflective optical system for a hemispherical field radiometer, and infrared filters for cryogenic radiometers. Attention is also given to the development of a variable-profile scan mirror mechanism, a direct-drive digitally commutated filter wheel positioning system for cryogenic optical applications, a high-performance chopping secondary mirror for infrared astronomy, recent developments in compressor-based Joule-Thomson cooling, a radiative cryogenic cooler for the pressure modulator IR radiometer, and SIRTF thermal design modifications to increase lifetime.

  7. Cryogenic wind tunnels. II

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    The application of the cryogenic concept to various types of tunnels including Ludwieg tube tunnel, Evans clean tunnel, blowdown, induced-flow, and continuous-flow fan-driven tunnels is discussed. Benefits related to construction and operating costs are covered, along with benefits related to new testing capabilities. It is noted that cooling the test gas to very low temperatures increases Reynolds number by more than a factor of seven. From the energy standpoint, ambient-temperature fan-driven closed-return tunnels are considered to be the most efficient type of tunnel, while a large reduction in the required tunnel stagnation pressure can be achieved through cryogenic operation. Operating envelopes for three modes of operation for a cryogenic transonic pressure tunnel with a 2.5 by 2.5 test section are outlined. A computer program for calculating flow parameters and power requirements for wind tunnels with operating temperatures from saturation to above ambient is highlighted.

  8. Enhanced thermoelectric performance of In-substituted GeSb{sub 6}Te{sub 10} with homologous structure

    SciTech Connect

    Kosuga, Atsuko Matsuzawa, Mie; Fujii, Yousuke; Nakai, Kazuki; Funahashi, Ryoji; Tachizawa, Takuya; Kubota, Yoshiki; Kifune, Kouichi

    2014-08-01

    We studied the crystal structure and thermoelectric properties of polycrystalline GeIn{sub x}Sb{sub 6−x}Te{sub 10} (x = 0, 0.18, 0.3, and 0.6). Rietveld and Le Bail analyses showed that all compositions crystallized in trigonal structures with a 51-layer period. Substituting In decreased both the lattice and electronic thermal conductivity, as well as markedly increased the Seebeck coefficient. We ascribed this increase to increases in the effective mass of the carriers, likely caused by the formation of additional energy states near the Fermi level. In GeIn{sub 0.6}Sb{sub 5.4}Te{sub 10}, we found a maximum ZT of 0.75 at 710 K, 1.9 times higher than that of GeSb{sub 6}Te{sub 10}.

  9. High intensity low temperature (HILT) performance of space concentrator GaInP/GaInAs/Ge MJ SCs

    SciTech Connect

    Shvarts, Maxim Z. Kalyuzhnyy, Nikolay A.; Mintairov, Sergey A.; Soluyanov, Andrei A.; Timoshina, Nailya Kh.; Gudovskikh, Alexander S.; Luque, Antonio

    2014-09-26

    In the work, the results of an investigation of GaInP/GaInAs/Ge MJ SCs intended for converting concentrated solar radiation, when operating at low temperatures (down to −190 °C) are presented. A kink of the cell I-V characteristic has been observed in the region close to V{sub oc} starting from −20°C at operation under concentrated sunlight. The causes for its occurrence have been analyzed and the reasons for formation of a built-in potential barrier for majority charge carriers at the n-GaInP/n-Ge isotype hetero-interface are discussed. The effect of charge carrier transport in n-GaInP/n-pGe heterostructures on MJ SC output characteristics at low temperatures has been studied including EL technique.

  10. Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Kimmel, W. M.; Kuhn, N. S.; Berry, R. F.; Newman, J. A.

    2001-01-01

    An overview and status of current activities seeking alternatives to 200 grade 18Ni Steel CVM alloy for cryogenic wind tunnel models is presented. Specific improvements in material selection have been researched including availability, strength, fracture toughness and potential for use in transonic wind tunnel testing. Potential benefits from utilizing damage tolerant life-prediction methods, recently developed fatigue crack growth codes and upgraded NDE methods are also investigated. Two candidate alloys are identified and accepted for cryogenic/transonic wind tunnel models and hardware.

  11. Cryogenic Propellant Densification Study

    NASA Technical Reports Server (NTRS)

    Ewart, R. O.; Dergance, R. H.

    1978-01-01

    Ground and vehicle system requirements are evaluated for the use of densified cryogenic propellants in advanced space transportation systems. Propellants studied were slush and triple point liquid hydrogen, triple point liquid oxygen, and slush and triple point liquid methane. Areas of study included propellant production, storage, transfer, vehicle loading and system requirements definition. A savings of approximately 8.2 x 100,000 Kg can be achieved in single stage to orbit gross liftoff weight for a payload of 29,484 Kg by utilizing densified cryogens in place of normal boiling point propellants.

  12. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  13. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  14. Cryogenic foil bearing turbopumps

    NASA Technical Reports Server (NTRS)

    Gu, Alston L.

    1993-01-01

    Cryogenic foil bearing turbopumps offer high reliability and low cost. The fundamental cryogenic foil bearing technology has been validated in both liquid hydrogen and liquid oxygen. High load capacity, excellent rotor dynamics, and negligible bearing wear after over 100 starts and stops, and over many hours of testing, were observed in both fluids. An experimental liquid hydrogen foil bearing turbopump was also successfully demonstrated. The results indicate excellent stability, high reliability, wide throttle-ability, low bearing cooling flow, and two-phase bearing operability. A liquid oxygen foil bearing turbopump has been built and is being tested at NASA MSFC.

  15. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  16. Cryogenic high resolution translation unit (CTU)

    NASA Astrophysics Data System (ADS)

    Serrano, Javier; Moreno Raso, Javier; Pedrosa, Enrique; Moral, Andoni; San Juan, José Luis; Lecina, María; Díez, Lucía; Sanz, Alfonso; Belenguer, Tomás; Ramos, Gonzalo

    2008-07-01

    The CTU (Cryogenics Translation Unit) is a low range (+/-1 mm) high resolution (<50 nm) translation unit to be used at cryogenic temperature (20K). The unit is a multipurpose device capable of fine closed loop positioning. This device can be used as active element in IR Instrumentation for compensating thermo-elastic deformation moving optical elements or sensors. CTU motion system is based in thin flexures deformation to assure repeatability and moves in closed loop mode by means of a fine linear actuator and a calibrated non contact capacitive sensor. This paper describes main design features, how cryogenic testing of main requirements was carried out (including methodologies used for calibration and submicron verification), tested performances, and main lesson learned during the development.

  17. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  18. Photochemistry of chloropicrin in cryogenic matrices

    NASA Astrophysics Data System (ADS)

    Wade, Elisabeth A.; Reak, Kristina E.; Parsons, Bradley F.; Clemes, Thomas P.; Singmaster, Karen A.

    2002-11-01

    The photolysis of chloropicrin (CCl 3NO 2) was investigated in Ar and N 2 cryogenic matrices. The extent of reaction was monitored using FT-IR spectroscopy. Phosgene and nitrosyl chloride were the observed photoproducts at all wavelengths investigated (220, 251, 313, 365, and 405 nm). When the photolysis was performed with 220, 251, or 313 nm light, two additional bands were also observed. These bands have been assigned to CCl 3ONO. Chloropicrin was also photolyzed in the presence of O 2 and 18O2. 18O-labeled photoproducts were not detected in cryogenic matrices.

  19. Cryogenic propulsion for lunar and Mars missions

    NASA Technical Reports Server (NTRS)

    Redd, Larry

    1988-01-01

    Future missions to the moon and Mars have been investigated with regard to propulsion system selection. The results of this analysis show that near state-of-the-art LO2/LH2 propulsion technology provides a feasible means of performing lunar missions and trans-Mars injections. In other words, existing cryogenic space engines with certain modifications and product improvements would be suitable for these missions. In addition, present day cryogenic system tankage and structural weights appear to scale reasonably when sizing for large payload and high energy missions such as sending men to Mars.

  20. Simulations of Cavitating Cryogenic Inducers

    NASA Technical Reports Server (NTRS)

    Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.

    2004-01-01

    Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.

  1. Process optimizations to recessed e-SiGe source/drain for performance enhancement in 22 nm all-last high-k/metal-gate pMOSFETs

    NASA Astrophysics Data System (ADS)

    Qin, Changliang; Wang, Guilei; Hong, Peizhen; Liu, Jinbiao; Yin, Huaxiang; Yin, Haizhou; Ma, Xiaolong; Cui, Hushan; Lu, Yihong; Meng, Lingkuan; Xiang, Jinjuan; Zhong, Huicai; Zhu, Huilong; Xu, Qiuxia; Li, Junfeng; Yan, Jian; Zhao, Chao; Radamson, Henry H.

    2016-09-01

    In this paper, the technology of recessed embedded SiGe (e-SiGe) source/drain (S/D) module is optimized for the performance enhancement in 22 nm all-last high-k/metal-gate (HK/MG) pMOSFETs. Different Si recess-etch techniques were applied in S/D regions to increase the strain in the channel and subsequently, improve the performance of transistors. A new recess-etch method consists of a two-step etch method is proposed. This process is an initial anisotropic etch for the formation of shallow trench followed by a final isotropic etch. By introducing the definition of the upper edge distance (D) between the recessed S/D region and the channel region, the process advantage of the new approach is clearly presented. It decreases the value of D than those by conventional one-step isotropic or anisotropic etch of Si. Therefore, the series resistance is reduced and the channel strain is increased, which confirmed by the simulation results. The physical reason of D reducing is analyzed in brief. Applying this recess design, the implant conditions for S/D extension (SDE) are also optimized by using a two-step implantation of BF2 in SiGe layers. The overlap space between doping junction and channel region has great effect on the device's performance. The designed implantation profile decreases the overlap space while keeps a shallow junction depth for a controllable short channel effect. The channel resistance as well as the transfer ID-VG curves varying with different process conditions are demonstrated. It shows the drive current of the device with the optimized SDE implant condition and Si recess-etch process is obviously improved. The change trend of on-off current distributions extracted from a series of devices confirmed the conclusions. This study provides a useful guideline for developing high performance strained PMOS SiGe technology.

  2. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system

    SciTech Connect

    Grant, Alexander M.; Deller, Timothy W.; Maramraju, Sri Harsha; Khalighi, Mohammad Mehdi; Delso, Gaspar; Levin, Craig S.

    2016-05-15

    Purpose: The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. Methods: The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. Results: The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. Conclusions: Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.

  3. Effective passivation and high-performance metal-oxide-semiconductor devices using ultra-high-vacuum deposited high- κ dielectrics on Ge without interfacial layers

    NASA Astrophysics Data System (ADS)

    Chu, L. K.; Chu, R. L.; Lin, T. D.; Lee, W. C.; Lin, C. A.; Huang, M. L.; Lee, Y. J.; Kwo, J.; Hong, M.

    2010-09-01

    Without using any interfacial passivation layers, high- κ dielectric Y 2O 3, HfO 2, and Ga 2O 3(Gd 2O 3) [GGO], by electron beam evaporation in ultra-high-vacuum (UHV), have been directly deposited on Ge substrate. Comprehensive investigations have been carried out to study the oxide/Ge interfaces chemically, structurally, and electronically: hetero-structures of all the studied oxides on Ge are highly thermally stable with annealing to 500 °C, and their interfaces remain atomically sharp. The electrical analyses have been conducted on metal-oxide-semiconductor (MOS) devices, i.e. MOS capacitors (MOSCAPs) and MOS field-effect-transistors (MOSFETs). Dielectrics constants of the Y 2O 3, HfO 2, and GGO have been extracted to be ˜17, 20, and 13-15, respectively, indicating no interfacial layer formation with 500 °C annealing. A low interfacial density of states ( Dits), as low as 3 × 10 11 cm -2 eV -1, has been achieved for GGO/Ge near mid-gap along with a high Fermi-level movement efficiency as high as 80%. The GGO/Ge pMOSFETs with TiN as the metal gate have yielded very high-performances, in terms of 496 μA/μm, 178 μS/μm, and 389 cm 2/V s in saturation drain current density, maximum transconductance, and effective hole mobility, respectively. The gate width and gate length of the MOSFET are 10 μm and 1 μm.

  4. Enhancement in device performance of hepta-layer coupled InGaAs quantum dot infrared detector by AuGe surface plasmons

    NASA Astrophysics Data System (ADS)

    Pandey, Sushil Kumar; Tyagi, Lavi; Ghadi, Hemant; Rawool, Harshal; Chakrabarti, Subhananda

    2016-09-01

    In this work, we have studied the effect of AuGe alloy nanoparticles deposition on properties of molecular beam epitaxy grown heptalayer coupled InGaAs 5.25 mono-layer quantum-dots (QDs) samples. AuGe 12 nm film was deposited using electron beam evaporator on these samples which were later annealed at 300 °C to create AuGe nanoparticles. SEM measurement confirms formation of AuGe nanoparticles which support surface Plasmon modes. The PL spectra at 20K confirms maximum enhancement of 53% in intensity of peak at ̴̴ 1123 nm for 300 °C annealed sample in comparison to as-grown (without nanoparticle) sample. Single pixel detectors were fabricated from asgrown and 300°C annealed nanoparticle sample using two level lithography and wet etching process. We have observed two-order and one-order augmentation in responsivity and detectivity from device having nanoparticles compared to the as-grown respectively at 80K. Peak detectivity of 4.2×107cm.Hz 1/2/W at 80K was observed for device having nanoparticles. Around 30% increment in spectral response having peak around 5μm at -1V bias for device having AuGe nanoparticles compared to the as-grown device was observed. The observed enhancement is due to increase light trapping or light scattering into the device by nanoparticles. Demonstration of this plasmonic-based detector will move forward the development of high-performance infrared QDs detectors.

  5. Commissioning results of the U14 cryogenic undulator at SLS

    NASA Astrophysics Data System (ADS)

    Calvi, M.; Schmidt, Th; Anghel, A.; Cervellino, A.; Leake, S. J.; Willmott, P. R.; Tanaka, T.

    2013-03-01

    After 10 years of operation the wiggler-source Materials Science beamline at the Swiss Light Source was the first beamline to undergo a significant upgrade. The replacement of the W61 wiggler by the cryogenic undulator U14 makes the SLS the first wiggler free third generation light source. With the help of the cryogenic technology [1], the period length could be reduced from 19 mm to 14 mm. With a minimum gap of 3.8 mm and the x-ray energy range could be extended to nearly 40 keV. The undulator has been built in cooperation with SPring-8 and Hitachi. PSI designed the liquid-nitrogen-based cryogenic system and made the magnetic measurements under cryogenic conditions before installation. To be cost efficient, the undulator shares the cryogenic refrigeration system with the monochromator. Operational aspects like stability or temporal response to gap changes will be discussed as well as the spectral performance.

  6. Cryogenic Adsorption of Nitrogen and Carbon Dioxide in Activated Carbon

    NASA Astrophysics Data System (ADS)

    Shen, Fuzhi; Liu, Huiming; Xu, Dong; Zhang, Hengcheng; Lu, Junfeng; Li, Laifeng

    2017-09-01

    Activated carbon have been used for a long time at low temperature for cryogenic applications. The knowledge of adsorption characteristics of activated carbon at cryogenic temperature is essential for some specific applications. However, such experimental data are very scare in the literature. In order to measure the adsorption characteristics of activated carbon under variable cryogenic temperatures, an adsorption measurement device was presented. The experiment system is based on the commercially available PCT-pro adsorption analyzer coupled to a two-stage Gifford McMahon refrigerator, which allows the sample to be cooled to 4.2K. Cryogenic environment can be maintained steadily without the cryogenic liquid through the cryocooler and temperature can be controlled precisely between 5K and 300K by the temperature controller. Adsorption measurements were performed in activated carbon for carbon dioxide and nitrogen and the adsorption isotherm were obtained.

  7. Physical understanding of cryogenic implant benefits for electrical junction stability

    SciTech Connect

    Adeni Khaja, Fareen; Colombeau, Benjamin; Thanigaivelan, Thirumal; Ramappa, Deepak; Henry, Todd

    2012-03-12

    We investigate the effect of cryogenic temperature implants on electrical junction stability for ultra shallow junction applications for sub-32 nm technology nodes and beyond. A comprehensive study was conducted to gain physical understanding of the impact of cryogenic temperature implants on dopant-defect interactions. Carborane (C{sub 2}B{sub 10}H{sub 12}) molecule, a potential alternative to monomer boron was implanted in carbon preamorphized silicon substrates at cryogenic implant temperatures. Results indicate implants at cryogenic temperatures increase dopant activation with reduced diffusion, resulting in lower sheet resistance for a lower junction depth. Further, this study emphasizes the benefits of co-implants performed at cryogenic temperatures as alternative to traditional preamorphizing implants.

  8. Long-Term Cryogenic Propellant Storage for the TOPS Mission

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Francis, John; Li, Xiaoyi; Purves, Lloyd; DeLee, Hudson; Riall, Sara; McGuinness, Dan; Willis, Dewey; Nixon, Conor; Devine Matt; hide

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.

  9. Cryogenic Laser Calorimetry for Impurity Analysis

    NASA Technical Reports Server (NTRS)

    Swimm, R. T.

    1985-01-01

    The results of a one-year effort to determine the applicability of laser-calorimetric spectroscopy to the study of deep-level impurities in silicon are presented. Critical considerations for impurity analysis by laser-calorimetric spectroscopy are discussed, the design and performance of a cryogenic laser calorimeter is described, and measurements of background absorption in high-purity silicon are presented.

  10. Disk Valve For Cryogenics

    NASA Technical Reports Server (NTRS)

    Calhoun, Richard B.

    1993-01-01

    Lightweight disk valve designed to have dimensions and capabilities similar to those of valve described in "Lightweight Right-Angle Valve For Cryogenics" (MSC-21889). Simple unit remains leaktight over wide range of pressures and temperatures without need for manual readjustment of packing gland. Weighs less than 60 g and made relatively inexpensively from some commercial and few simple custom-machined components.

  11. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  12. Valve for cryogenic service

    DOEpatents

    Worwetz, H.A.

    1975-09-02

    This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)

  13. Cryogenic structural support

    DOEpatents

    Niemann, Ralph C.; Mataya, Karl F.; Gonczy, John D.

    1982-01-01

    A tensile support member is provided for use in a cryogenic environment. The member is in the form of a link formed of an epoxy glass laminate with at least one ply of the laminate having its fibers aligned circumferentially about the link.

  14. Examination of the temperature dependent electronic behavior of GeTe for switching applications

    SciTech Connect

    Champlain, James G.; Ruppalt, Laura B.; Guyette, Andrew C.; El-Hinnawy, Nabil; Borodulin, Pavel; Jones, Evan; Young, Robert M.; Nichols, Doyle

    2016-06-28

    The DC and RF electronic behaviors of GeTe-based phase change material switches as a function of temperature, from 25 K to 375 K, have been examined. In its polycrystalline (ON) state, GeTe behaved as a degenerate p-type semiconductor, exhibiting metal-like temperature dependence in the DC regime. This was consistent with the polycrystalline (ON) state RF performance of the switch, which exhibited low resistance S-parameter characteristics. In its amorphous (OFF) state, the GeTe presented significantly greater DC resistance that varied considerably with bias and temperature. At low biases (<1 V) and temperatures (<200 K), the amorphous GeTe low-field resistance dramatically increased, resulting in exceptionally high amorphous-polycrystalline (OFF-ON) resistance ratios, exceeding 10{sup 9} at cryogenic temperatures. At higher biases and temperatures, the amorphous GeTe exhibited nonlinear current-voltage characteristics that were best fit by a space-charge limited conduction model that incorporates the effect of a defect band. The observed conduction behavior suggests the presence of two regions of localized traps within the bandgap of the amorphous GeTe, located at approximately 0.26–0.27 eV and 0.56–0.57 eV from the valence band. Unlike the polycrystalline state, the high resistance DC behavior of amorphous GeTe does not translate to the RF switch performance; instead, a parasitic capacitance associated with the RF switch geometry dominates OFF state RF transmission.

  15. Robust Multilayer Insulation for Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Scholtens, B. E.

    2008-03-01

    New requirements for thermal insulation include robust Multilayer insulation (MLI) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

  16. Robust Multilayer Insulation for Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Scholtens, B. F.; Augustynowicz, S. D.

    2007-01-01

    New requirements for thermal insulation include robust Multilayer insulation (MU) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

  17. Cryogenic Fluid Management Technology for Moon and Mars Missions

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  18. Cryogenic testing and analysis associated with Tevatron lower temperature operation

    SciTech Connect

    Theilacker, J.C.

    1996-09-01

    An upgrade of the Tevatron cryogenic system was installed and commissioned in 1993 to allow lower temperature operation. As a result, higher energy operation is possible. Following the installation and initial commissioning, it was decided to continue the current colliding beam physics at the previous energy of 900 GeV. This has allowed us to perform parasitic lower temperature tests in the Tevatron over the last year and a half. This paper presents the results of operational experiences and thermal and hydraulic testing which has taken place. The primary goal of the testing is to better understand the operation of the cold compressor system, associated instrumentation, and the performance of the existing magnet system during lower temperature operation. This will lead to a tentatively scheduled higher energy test run in the fall of 1995. The test results have shown that more elaborate controlling methods are necessary in order to achieve reliable system operation. Fortunately, our new satellite refrigerator controls system is capable of the expansion necessary to reach our goal. New features are being added to the control system which will allow for more intelligent control and better diagnostics for component monitoring and trending.

  19. Carrier density control and enhanced thermoelectric performance of Bi and Cu co-doped GeTe

    NASA Astrophysics Data System (ADS)

    Shimano, S.; Tokura, Y.; Taguchi, Y.

    2017-05-01

    Thermoelectric energy conversion is one of the most important and desirable functions of materials, because the ability to recycle a part of the energy wasted as heat back to useful electric energy significantly contributes to a sustainable society in future. For practical applications of thermoelectric materials, sufficiently high conversion efficiency is required over a wide range of temperature. It is also desirable that the materials are composed of non-toxic elements from an environmental perspective. In this paper, we report the successful control of the hole-type charge carrier density in GeTe-based materials by co-doping Bi and Cu, and the resultant improvement in the thermoelectric figure of merit over a wide range of temperature from room temperature to around 800 K, especially below 500 K, compared to those of previously reported analogous materials, thereby demonstrating the potential of GeTe-based materials for practical applications.

  20. Cryogenic Quenching Process for Electronic Part Screening

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.; Cressler, John

    2011-01-01

    The use of electronic parts at cryogenic temperatures (less than 100 C) for extreme environments is not well controlled or developed from a product quality and reliability point of view. This is in contrast to the very rigorous and well-documented procedures to qualify electronic parts for mission use in the 55 to 125 C temperature range. A similarly rigorous methodology for screening and evaluating electronic parts needs to be developed so that mission planners can expect the same level of high reliability performance for parts operated at cryogenic temperatures. A formal methodology for screening and qualifying electronic parts at cryogenic temperatures has been proposed. The methodology focuses on the base physics of failure of the devices at cryogenic temperatures. All electronic part reliability is based on the bathtub curve, high amounts of initial failures (infant mortals), a long period of normal use (random failures), and then an increasing number of failures (end of life). Unique to this is the development of custom screening procedures to eliminate early failures at cold temperatures. The ability to screen out defects will specifically impact reliability at cold temperatures. Cryogenic reliability is limited by electron trap creation in the oxide and defect sites at conductor interfaces. Non-uniform conduction processes due to process marginalities will be magnified at cryogenic temperatures. Carrier mobilities change by orders of magnitude at cryogenic temperatures, significantly enhancing the effects of electric field. Marginal contacts, impurities in oxides, and defects in conductor/conductor interfaces can all be magnified at low temperatures. The novelty is the use of an ultra-low temperature, short-duration quenching process for defect screening. The quenching process is designed to identify those defects that will precisely (and negatively) affect long-term, cryogenic part operation. This quenching process occurs at a temperature that is at least

  1. Aerodynamic performance and pressure distributions for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Jenkins, Renaldo V.; Hill, Acquilla S.; Ray, Edward J.

    1988-01-01

    This report presents in graphic and tabular forms the aerodynamic coefficient and surface pressure distribution data for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. The test was another in a series of tests involved in the joint NASA/U.S. Industry Advanced Technology Airfoil Tests program. This 14% thick supercritical airfoil was tested at Mach numbers from 0.6 to 0.76 and angles of attack from -2.0 to 6.0 degrees. The test Reynolds numbers were 4 million, 6 million, 10 million, 15 million, 30 million, 40 million, and 45 million.

  2. CRYOTE (Cryogenic Orbital Testbed) Concept

    NASA Technical Reports Server (NTRS)

    Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie

    2009-01-01

    Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.

  3. Cryogenics for HL-LHC

    NASA Astrophysics Data System (ADS)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  4. A new cryogenic diode thermometer

    NASA Astrophysics Data System (ADS)

    Courts, S. S.; Swinehart, P. R.; Yeager, C. J.

    2002-05-01

    While the introduction of yet another cryogenic diode thermometer is not earth shattering, a new diode thermometer, the DT-600 series, recently introduced by Lake Shore Cryotronics, possesses three features that make it unique among commercial diode thermometers. First, these diodes have been probed at the chip level, allowing for the availability of a bare chip thermometer matching a standard curve-an important feature in situations where real estate is at a premium (IR detectors), or where in-situ calibration is difficult. Second, the thermometry industry has assumed that interchangeability should be best at low temperatures. Thus, good interchangeability at room temperatures implies a very good interchangeability at cryogenic temperature, resulting in a premium priced sensor. The DT-600 series diode thermometer is available in an interchangeability band comparable to platinum RTDs with the added advantage of interchangeability to 2 K. Third, and most important, the DT-600 series diode does not exhibit an instability in the I-V characteristic in the 8 K to 20 K temperature range that is observed in other commercial diode thermometer devices [1]. This paper presents performance characteristics for the DT-600 series diode thermometer along with a comparison of I-V curves for this device and other commercial diode thermometers exhibiting an I-V instability.

  5. Cryogenic Capillary Screen Heat Entrapment

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L.G.; Hastings, L.J.; Stathman, G.

    2007-01-01

    Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of sub-cooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: "To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs.?"Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, "200x1400" and "325x2300", both with Twill Dutch Weave. Upon consideration of both the water and LN2 data it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.

  6. Cost-Efficient Storage of Cryogens

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Sass, J. P.; Nagy, Z.; Sojourner, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2008-03-01

    NASA's cryogenic infrastructure, which supports launch vehicle operations and propulsion testing, is reaching an age when major refurbishment is required. Key elements of this infrastructure are the large double-walled cryogenic storage tanks used for both space vehicle launch operations and rocket propulsion testing at various NASA field centers. Perlite powder has historically been the insulation material of choice for these applications, but new bulk-fill insulation materials, including glass bubbles and aerogel beads, have been shown to provide improved thermal and mechanical performance. Research was conducted on thermal performance to identify operational considerations and risks associated with using these new materials in large cryogenic storage tanks. The program was divided into three main areas: material testing (thermal conductivity and physical characterization), tank demonstration testing (liquid nitrogen and liquid hydrogen), and system studies (thermal modeling, granular physics, and insulation changeout). This research showed that more energy-efficient insulation solutions are possible for large-scale cryogenic storage tanks worldwide and summarized the operational requirements that should be considered for these applications.

  7. Cost-Efficient Storage of Cryogens

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J. P.; Nagy, Z.; Sojoumer, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2007-01-01

    NASA's cryogenic infrastructure that supports launch vehicle operations and propulsion testing is reaching an age where major refurbishment will soon be required. Key elements of this infrastructure are the large double-walled cryogenic storage tanks used for both space vehicle launch operations and rocket propulsion testing at the various NASA field centers. Perlite powder has historically been the insulation material of choice for these large storage tank applications. New bulk-fill insulation materials, including glass bubbles and aerogel beads, have been shown to provide improved thermal and mechanical performance. A research testing program was conducted to investigate the thermal performance benefits as well as to identify operational considerations and associated risks associated with the application of these new materials in large cryogenic storage tanks. The program was divided into three main areas: material testing (thermal conductivity and physical characterization), tank demonstration testing (liquid nitrogen and liquid hydrogen), and system studies (thermal modeling, economic analysis, and insulation changeout). The results of this research work show that more energy-efficient insulation solutions are possible for large-scale cryogenic storage tanks worldwide and summarize the operational requirements that should be considered for these applications.

  8. Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    San Andres, Luis

    1996-01-01

    This report describes a thermohydrodynamic analysis and computer programs for the prediction of the static and dynamic force response of fluid film bearings for cryogenic applications. The research performed addressed effectively the most important theoretical and practical issues related to the operation and performance of cryogenic fluid film bearings. Five computer codes have been licensed by the Texas A&M University to NASA centers and contractors and a total of 14 technical papers have been published.

  9. Na2 BaMQ4 (M=Ge, Sn; Q=S, Se): Infrared Nonlinear Optical Materials with Excellent Performances and that Undergo Structural Transformations.

    PubMed

    Wu, Kui; Yang, Zhihua; Pan, Shilie

    2016-06-01

    Infrared nonlinear optical (IR NLO) materials with excellent performances are particularly important in laser technology. However, to design and synthesize an efficient IR NLO material with a balance between the optical band gap and the NLO coefficient is still a huge challenge. With this in mind, four new IR NLO materials Na2 BaSnS4 , Na2 BaSnSe4 , Na2 BaGeS4 , and Na2 BaGeSe4 were successfully designed and synthesized. The compounds exhibit excellent properties with a suitable balance of band gap and NLO coefficient measured for Na2 BaSnS4 (3.27 eV and about 17×KDP, that is, about 17 times that of KH2 PO4 (KDP)) and Na2 BaGeS4 (3.7 eV and about 10×KDP), demonstrating that the systems satisfy the key requirements as promising IR NLO candidates. Remarkably, the new compounds also undergo a novel structural transformation from tetragonal to trigonal systems, the first time that this has been reported for quaternary metal chalcogenides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hydrodynamic Mixing of Ablator Material into the Compressed Fuel and Hot Spot of Direct-Drive DT Cryogenic Implosions

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Goncharov, V. N.; Epstein, R.; Betti, R.; Bonino, M. J.; Cao, D.; Collins, T. J. B.; Campbell, E. M.; Forrest, C. J.; Glebov, V. Yu.; Harding, D. R.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Sangster, T. C.; Stoeckl, C.; Luo, R. W.; Schoff, M. E.; Farrell, M.

    2016-10-01

    Hydrodynamic mixing of ablator material into the compressed fuel and hot spot of direct-drive DT cryogenic implosions is diagnosed using time-integrated, spatially resolved xray spectroscopy. The laser drive ablates most of the 8- μm-thick CH ablator, which is doped with trace amounts of Ge ( 0.5 at.) and surrounds the cryogenic DT layer. A small fraction of the ablator material is mixed into the compressed shell and the hot spot by the ablation-front Rayleigh-Taylor hydrodynamic instability seeded by laser imprint, the target mounting stalk, and surface debris. The amount of mix mass inferred from spectroscopic analysis of the Ge K-shell emission will be presented. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Exposure to Mission-Relevant Doses of 1 GeV/n (48)Ti Particles Impairs Attentional Set-Shifting Performance in Retired Breeder Rats.

    PubMed

    Hadley, Melissa M; Davis, Leslie K; Jewell, Jessica S; Miller, Vania D; Britten, Richard A

    2016-01-01

    Astronauts on deep space missions will be required to work more autonomously than on previous missions, and thus their ability to perform executive functions could be critical to mission success. In this study we have determined the impact that exposure to 10, 15 and 20 cGy of 1 GeV/n (48)Ti particles has on the long-term (three-months post exposure) ability of male retired breeder Wistar rats to perform attentional set shifting. The ability of the rats to conduct compound discrimination reversal (CDR) was significantly impaired at all doses studied, with compound discrimination (CD) being impaired at 10 and 15 cGy. Impaired CD performance would result in a decreased ability to identify and focus on relevant aspects of a task being conducted, while the functional consequence of an impaired CDR performance would be a reduction in the individual's ability to recognize when that factor changes from a positive to a negative factor for the successful completion of a task. In contrast to our previous study with 1 GeV/n (56)Fe particles, there were no significant impairments in the ability of the (48)Ti-irradiated rats to conduct simple discrimination. This study further supports the notion that "mission-relevant" doses of HZE particles (<20 cGy) can impair certain aspects of attentional set-shifting performance in retired breeder rats, but there may be some ion-specific changes in the specific cognitive domains impaired.

  12. Stirling cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P. (Inventor)

    1983-01-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  13. Cryogenic Control System

    SciTech Connect

    Goloborod'ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  14. Cryogenic treatment of gas

    DOEpatents

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  15. Flexible cryogenic conduit

    SciTech Connect

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-12-21

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  16. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  17. Stirling cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P.

    1983-06-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  18. Flexible cryogenic conduit

    DOEpatents

    Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  19. Cryogenic support system

    DOEpatents

    Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.

    1988-01-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

  20. Cryogenic support system

    DOEpatents

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  1. Exposure to Mission Relevant Doses of 1 GeV/Nucleon 56Fe Particles Leads to Impairment of Attentional Set-Shifting Performance in Socially Mature Rats

    PubMed Central

    Britten, Richard A.; Davis, Leslie K.; Jewell, Jessica S.; Miller, Vania D.; Hadley, Melissa M.; Sanford, Larry D.; Machida, Mayumi; Lonart, György

    2014-01-01

    Previous ground-based experiments have shown that cranial irradiation with mission relevant (20 cGy) doses of 1 GeV/nucleon 56Fe particles leads to a significant impairment in Attentional Set Shifting (ATSET) performance, a measure of executive function, in juvenile Wistar rats. However, the use of head only radiation exposure and the biological age of the rats used in that study may not be pertinent to determine the likelihood that ATSET will be impaired in Astronauts on deep space flights. In this study we have determined the impact that whole-body exposure to 10, 15 and 20 cGy of 1 GeV/nucleon 56Fe particles had on the ability (at three months post exposure) of socially mature (retired breeder) Wistar rats to conduct the attentional set-shifting paradigm. The current study has established that whole-body exposures to 15 and 20 (but not 10) cGy of 1 GeV/nucleon 56Fe particles results in the impairment of ATSET in both juvenile and socially mature rats. However, the exact nature of the impaired ATSET performance varied depending upon the age of the rats, whether whole-body versus cranial irradiation was used and the dose of 1 GeV/u 56Fe received. Exposure of juvenile rats to 20 cGy of 1 GeV/nucleon 56Fe particles led to a decreased ability to perform intra-dimensional shifting (IDS) irrespective of whether the rats received head only or whole-body exposures. Juvenile rats that received whole-body exposure also had a reduced ability to habituate to the assay and to complete intra-dimensional shifting reversal (IDR), whereas juvenile rats that received head only exposure had a reduced ability to complete compound discrimination reversal (CDR). Socially mature rats that received whole-body exposures to 10 cGy of 1 GeV/nucleon 56Fe particles exhibited no obvious decline in set-shifting performance; however those exposed to 15 and 20 cGy had a reduced ability to perform simple discrimination (SD) and compound discrimination (CD). Exposure to 20 cGy of 1 GeV/nucleon 56

  2. Cryogenic Test Technology 1984.

    DTIC Science & Technology

    1985-04-01

    super- sonic cruise research model (Figure 19) made from Vascomax 200, a flat-plate delta wing model (Figure 20) made from Vascomax 200 with pressure...beam welded together Sting design has been considered in papers 8),93, from General Dynamics. An attempt was made to design a composite sting but the...ment in the cryogenic toughness of comrcial high-strength martensitic and maragingW steels has been demonstrated through the use of grain-refining

  3. A compact cryogenic pump

    SciTech Connect

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  4. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark

    2015-01-01

    Under our NASA Innovative Advanced Concepts (NIAC) project we have theoretically demonstrated a novel selective surface that reflects roughly 100 times more solar radiation than any other known coating. If this prediction holds up under experimental tests it will allow cryogenic temperatures to be reached in deep space even in the presence of the sun. It may allow LOX to be carried to the Moon and Mars. It may allow superconductors to be used in deep space without a refrigeration system.

  5. Cryogenic Production Testing

    NASA Astrophysics Data System (ADS)

    Buchness, R. K.; Banks, E.; Doidge, J.; Gable, A.; Nelson, L.; Olsen, D.

    1985-10-01

    Rockwell has realized rapid testing of Infrared Focal Plane Arrays (IRFPAs) using a totally automated cryogenic test station with the latest technology in device handling, data acquisition, illumination and throughput capabilities. This station provides testing of HgCdTe Focal Plane Arrays fabricated in a fully certified production facility. All aspects of this facility are under Quality Control surveillance including the hardware and software used by the automated test station.

  6. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark; Gibson, Tracy; Johnson, Wesley

    2017-01-01

    The NASA Innovative Advanced Concept (NIAC) program has been funding work at KSC on a novel coating that should allow cryogenic materials to be stored in deep space. The NIAC Symposium will be the last week of September and it is a requirement that the funded material be presented both orally and at a poster session. This DAA submission is requesting approval to go public with both the presentation and the poster.

  7. A compact cryogenic pump

    NASA Astrophysics Data System (ADS)

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  8. Cost effective use of liquid nitrogen in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Mcintosh, Glen E.; Lombard, David S.; Martindale, David L.; Dunn, Robert P.

    1987-01-01

    A method of reliquefying from 12 to 19% of the nitrogen exhaust gas from a cryogenic wind tunnel has been developed. Technical feasibility and cost effectiveness of the system depends on performance of an innovative positive displacement expander which requires scale model testing to confirm design studies. The existing cryogenic system at the 0.3-m transonic cryogenic tunnel has been surveyed and extensive upgrades proposed. Upgrades are generally cost effective and may be implemented immediately since they are based on established technology.

  9. Development of a scintillation light detector for a cryogenic rare-event-search experiment

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; So, J. H.; Kang, C. S.; Kim, G. B.; Kim, S. R.; Lee, J. H.; Lee, M. K.; Yoon, W. S.; Kim, Y. H.

    2015-06-01

    We developed a light detector to measure scintillation light from a crystal utilized in heat and light measurements at low temperatures for a rare-event-search experiment. A 2-in. Ge wafer was used as the light absorber, while a metallic magnetic calorimeter was employed to read out the temperature increase of the absorber. The light detector was tested at 25-100 mK using a cryogen-free adiabatic demagnetization refrigerator. The performance in terms of energy resolution, rise time and signal amplitude was measured using radioactive sources with a consideration of the absorption position on the wafer. The light detector was used to measure the scintillation light of a CaMoO4 crystal at mK temperatures. We also discuss for the potential application of this detector in a neutrinoless double-beta decay experiment.

  10. Cryogenic technology for CMBPol

    NASA Astrophysics Data System (ADS)

    Di Pirro, M.; Johnson, D. L.; Shirron, P.

    2009-03-01

    Future space telescopes such as CMBPol, SAFIR, DARWIN, SPICA and XEUS will require cooling to very low temperatures. Staged cooling is the most efficient means of achieving low temperature in an observatory or instrument with the least cost and mass. The first stage is usually passive radiators taking advantage of views to deep space. In the past stored cryogen systems provided the next lower stagesof cooling. Mechanical cryocoolers represent a significant enabling technology, especially at the lower temperatures where the passive coolers' effectiveness is limited. These coolers are in general lighter, have more cooling capability, and more operationally flexible than stored cryogens. Sub Kelvin cooling is required for many of the most sensitive detectors. For fundamental reasons, microcalorimeters and bolometers must be cooled to extremely low temperature to achieve their ultimate resolution and, eventually, background-limited detection. The state of the art for these cryogenic cooling technologies are presented along with plans to advance the technology readiness level to enable these future missions.

  11. Hybrid Composite Cryogenic Tank Structure

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic

  12. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  13. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  14. Cryogenic Fuel Tank Draining Analysis Model

    NASA Technical Reports Server (NTRS)

    Greer, Donald

    1999-01-01

    One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

  15. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    NASA Technical Reports Server (NTRS)

    Thienel, Lee; Stouffer, Chuck

    1995-01-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  16. Composite aerogel insulation for cryogenic liquid storage

    NASA Astrophysics Data System (ADS)

    Kyeongho, Kim; Hyungmook, Kang; Soojin, Shin; In Hwan, Oh; Changhee, Son; Hyung, Cho Yun; Yongchan, Kim; Sarng Woo, Karng

    2017-02-01

    High porosity materials such as aerogel known as a good insulator in a vacuum range (10-3 ∼ 1 Torr) was widely used to storage and to transport cryogenic fluids. It is necessary to be investigated the performance of aerogel insulations for cryogenic liquid storage in soft vacuum range to atmospheric pressure. A one-dimensional insulating experimental apparatus was designed and fabricated to consist of a cold mass tank, a heat absorber and an annular vacuum space with 5-layer (each 10 mm thickness) of the aerogel insulation materials. Aerogel blanket for cryogenic (used maximum temperature is 400K), aerogel blanket for normal temperature (used maximum temperature is 923K), and combination of the two kinds of aerogel blankets were 5-layer laminated between the cryogenic liquid wall and the ambient wall in vacuum space. Also, 1-D effective thermal conductivities of the insulation materials were evaluated by measuring boil-off rate from liquid nitrogen and liquid argon. In this study, the effective thermal conductivities and the temperature-thickness profiles of the two kinds of insulators and the layered combination of the two different aerogel blankets were presented.

  17. Cryogenics Testbed Laboratory Flange Baseline Configuration

    NASA Technical Reports Server (NTRS)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  18. Precision Cryogenic Dilatometer

    NASA Technical Reports Server (NTRS)

    Dudik, Matthew; Halverson, Peter; Levine-West, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart

    2005-01-01

    A dilatometer based on a laser interferometer is being developed to measure mechanical creep and coefficients of thermal expansion (CTEs) of materials at temperatures ranging from ambient down to 15 K. This cryogenic dilatometer has been designed to minimize systematic errors that limit the best previously available dilatometers. At its prototype stage of development, this cryogenic dilatometer yields a strain measurement error of 35 ppb or 1.7 ppb/K CTE measurement error for a 20-K thermal load, for low-expansion materials in the temperature range from 310 down to 30 K. Planned further design refinements that include a provision for stabilization of the laser and addition of a high-precision sample-holding jig are expected to reduce the measurement error to 5-ppb strain error or 0.3-ppb/K CTE error for a 20-K thermal load. The dilatometer (see figure) includes a common-path, differential, heterodyne interferometer; a dual-frequency, stabilized source bench that serves as the light source for the interferometer; a cryogenic chamber in which one places the material sample to be studied; a cryogenic system for cooling the interior of the chamber to the measurement temperature; an ultra-stable alignment stage for positioning the chamber so that the sample is properly positioned with respect to the interferometer; and a data-acquisition and control system. The cryogenic chamber and the interferometer portion of the dilatometer are housed in a vacuum chamber on top of a vibration isolating optical table in a cleanroom. The sample consists of two pieces a pillar on a base both made of the same material. Using reflections of the interferometer beams from the base and the top of the pillar, what is measured is the change in length of the pillar as the temperature in the chamber is changed. In their fundamental optical and electronic principles of operation, the laser light source and the interferometer are similar to those described in Common-Path Heterodyne

  19. Adhesive Bonding Characterization of Composite Joints for Cryogenic Usage

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Schieleit, Gregory F.; Biggs, Robert

    2000-01-01

    The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future reusable launch vehicles need to minimize the gross liftoff weight (GLOW). This weight reduction is possible due to the large reduction in weight that composite materials can provide over current aluminum technology. In addition to composite technology, adhesively bonded joints potentially have several benefits over mechanically fastened joints, such as weight savings and cryogenic fluid containment. Adhesively bonded joints may be used in several areas of these cryogenic tanks, such as in lobe-to-lobe joints (in a multi-lobe concept), skirt-to-tank joint, strut-to-tank joint, and for attaching stringers and ring frames. The bonds, and the tanks themselves, must be able to withstand liquid cryogenic fuel temperatures that they contain. However, the use of adhesively bonded composite joints at liquid oxygen and hydrogen temperatures is largely unknown and must be characterized. Lockheed Martin Space Systems Company, Michoud Operations performed coupon-level tests to determine effects of material selection, cure process parameters, substrate surface preparation, and other factors on the strength of these composite joints at cryogenic temperatures. This led to the selection of a material and process that would be suitable for a cryogenic tank. KEY WORDS: Composites, Adhesive Bonding, Cryogenics

  20. First Cryogenic Tests with Jlab's New Upgrade cavities

    SciTech Connect

    Peter Kneisel; Gianluigi Ciovati; Juergen Halbritter; Ganapati Rao Myneni; Jacek Sekutowicz; Genfa Wu

    2004-08-01

    Two types of 7-cell cavities have been developed for the upgrade of CEBAF to 12 GeV. The High Gradient type (HG) has been optimized with respect to the ratio of E{sub peak}/E{sub acc}. The Low Loss (LL) type has optimized shunt impedance and improved geometric factor. Each cavity type features four DESY-type coaxial Higher Order Mode (HOM) couplers and a waveguide input coupler. Design goals for these cavities have been set to E{sub acc} = 20 MV/m with an intrinsic Q{sub o} of 8 {center_dot} 10{sup 9} at 2.05 K. A niobium prototype of each cavity has been fabricated at JLab and both cavities have been evaluated at cryogenic temperatures after appropriate surface treatment. In addition, pressure sensitivity as well as Lorentz force detuning were evaluated. The damping of approximately 20 HOMs has been measured to verify the room temperature data. Several single cell cavities were tested in addition to multi cell cavities. We present in this contribution a summary of tests performed on the prototypes of the proposed cavities.

  1. Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.

    2007-01-01

    In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.

  2. Noise performance at cryogenic temperatures at AlGaAs/InGaAs HEMT's with 0.15- mu m T-shaped WSi/sub x/ gates

    NASA Astrophysics Data System (ADS)

    Joshin, K.; Mimino, Y.; Ohmura, S.; Hirachi, Y.

    1992-03-01

    T-shaped 0.15-μm WSix gate HEMTs have been fabricated on AlGaAs/InGaAs MBE wafers. Their S-parameters, output noise spectral density Pno, and noise temperatures T e at cryogenic temperatures, were measured. The current gain cutoff frequency fT increases from 61 GHz at 295 K to 87 GHz at 90 K. Pno and Te measurements indicate that the hot-electron effect is noticeable at low temperatures at high drain current. At 30 GHz, the noise temperature is 19±3 K with an associated gain of 10.4 dB at the physical temperature of 20 K. The results demonstrate the great potential of AlGaAs/InGaAs HEMTs for low-temperature applications.

  3. Capillary acquisition devices for high-performance vehicles: Executive summary. [evaluation of cryogenic propellant management techniques using the centaur launch vehicle

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Bradshaw, R. D.; Risberg, J. A.

    1980-01-01

    Technology areas critical to the development of cryogenic capillary devices were studied. Passive cooling of capillary devices was investigated with an analytical and experimental study of wicking flow. Capillary device refilling with settled fluid was studied using an analytical and experimental program that resulted in successful correlation of a versatile computer program with test data. The program was used to predict Centaur D-1S LO2 and LH2 start basket refilling. Comparisons were made between the baseline Centaur D-1S propellant feed system and feed system alternatives including systems using capillary devices. The preferred concepts from the Centaur D-1S study were examined for APOTV and POTV vehicles for delivery and round trip transfer of payloads between LEO and GEO. Mission profiles were determined to provide propellant usage timelines and the payload partials were defined.

  4. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  5. Photomultiplier Tubes at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Saunders, Nathan

    2016-09-01

    Liquid noble gas scintillators are widely used in experiments searching for physics beyond the Standard Model. Photomultiplier Tubes (PMTs) working at cryogenic temperatures have been developed as the primary light readout device in those experiments. Three PMTs from Hamamatsu Photonics K.K. (R6041, R11065, and R8520) have been systematically characterized at liquid nitrogen temperature. The high voltage dividing circuits for two of the PMTs were custom-built to make sure there is similar performance at both room and liquid nitrogen temperatures. Their dark count rates at both temperatures were measured. Also measured were their single photoelectron responses at both temperatures using 300, 340, 370, and 420 nm LEDs. The intention is to couple these PMTs directly with inorganic scintillators at liquid nitrogen temperature to achieve high light yeilds for rare-event searches.

  6. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  7. A Cryogenic Infrared Calibration Target

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Kinzer, R. E., Jr.; Rinehart, S. A.

    2014-01-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R < or = 0.003, from 800 to 4800/cm (12 - 2 microns ). Upon expanding the spectral range under consideration to 400-10,000/ cm-1 (25 - 1 microns) the observed performance gracefully degrades to R < or = 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to approx.4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented

  8. Cryogenic thermal control technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.

    1974-01-01

    A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  9. Impaired Spatial Memory Performance in Adult Wistar Rats Exposed to Low (5-20 cGy) Doses of 1 GeV/n (56)Fe Particles.

    PubMed

    Britten, Richard A; Jewell, Jessica S; Miller, Vania D; Davis, Leslie K; Hadley, Melissa M; Wyrobek, Andrew J

    2016-03-01

    Prolonged deep space missions to planets and asteroids will expose astronauts to galactic cosmic radiation, comprised of low-linear energy transfer (LET) ionizing radiations, high-energy protons and high-Z and energy (HZE) particles, such as (56)Fe nuclei. In prior studies with rodents exposed to HZE particle radiation at doses likely to be encountered during deep space missions (<20 cGy) investigators reported impaired hippocampal-dependent neurocognitive performance and further observed substantial variation among the irradiated animals in neurocognitive impairment, ranging from no observable effects to severe impairment. These findings point to the importance of incorporating quantitative measures of interindividual variations into next generation risk assessment models of radiation risks on neurocognition. In this study, 269 male proven breeder Wistar rats were exposed to 1 GeV/n (56)Fe at doses of 0, 5, 10, 15 and 20 cGy, and tested for spatial memory performance on the Barnes maze at three months after exposure. The radiation response data were compared using changes in mean cohort performance and by the proportion of poor responders using the performance benchmark of two standard deviations below the mean value among the sham-irradiated cohort. Acute exposures to mission-relevant doses of 1 GeV/n (56)Fe reduced the mean spatial memory performance at three months after exposure (P < 0.002) and increased the proportions of poor performers, 2- to 3-fold. However, a substantial fraction of animals in all exposure cohorts showed no detectable change in performance, compared to the distribution of sham-irradiated animals. Our findings suggest that individualized metrics of susceptibility or resistance to radiation-induce changes in neurocognitive performance will be advantageous to the development of probabilistic risk assessment models for HZE-induced neurocognitive impairment.

  10. The integration of cryogenic cooling systems with superconducting electronic systems

    SciTech Connect

    Green, Michael A.

    2003-07-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  11. Search for 0 νββ with CUORE: experiment and cryogenic systems overview

    NASA Astrophysics Data System (ADS)

    Drobizhev, Alexey; Cuore Collaboration

    2016-03-01

    CUORE--the Cryogenic Underground Observatory for Rare Events--is a search for the neutrinoless double beta decay of 130Te based at the Gran Sasso National Laboratories in Italy. The experiment, currently in its final stages of commissioning, is expected to begin data taking in 2016 and eventually be sensitive to a ~1026 y half life after a 5 y live time. The detector consists of an array of 988 5 ×5 ×5 cm3 TeO2 crystals (204 kg isotope mass) operated as bolometers at ~10 mK temperatures with Ge NTD readout. Running a ~1 t, ~1 m3 detector at such temperatures necessitated the design and construction of the world's largest and most powerful dilution refrigerator, capable of reaching temperatures <10 mK and producing ~ 2 mW of cooling power at 100 mK. The cryostat is optimized for noise and vibration isolation, as well as radiopurity. We report the expected and observed performance of the CUORE experiment and, in particular, its cryogenic systems. This work is supported by the INFN, DOE, NSF, the Alfred P. Sloan Foundation, the University of Wisconsin Foundation, and Yale University.

  12. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  13. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  14. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  15. HESS-II reconstruction strategy and performance in the low-energy (20-150 GeV) domain

    SciTech Connect

    Becherini, Y.; Djannati-Atai, A.; Punch, M.; Bernloehr, K.; Ehlert, S.; Masbou, J.; Moulin, E.

    2008-12-24

    In mid-2009 a notable upgrade of the H.E.S.S. telescope system will take place: a new telescope with a 600 m{sup 2} mirror area and very-high-resolution camera (0.07 deg.) will be positioned at the centre of the present configuration, with the aim of lowering the threshold and enhance its sensitivity in the 100 GeV to several TeV energy range. HESS-II will permit the investigation of the lower energy {gamma}-ray spectra in various cosmic accelerators, giving information on the origin of the {gamma}-rays observed, and will detect AGNs with a redshift greater than 0.2 (being less affected by absorption by Extragalactic Background Light--EBL--in this energy range) and will search for new classes of very high energy {gamma}-ray emitters (pulsars, microquasars, GRB, and dark matter candidates)

  16. Cryogenic support member

    DOEpatents

    Niemann, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1987-01-01

    A cryogenic support member is comprised of a non-metallic rod having a depression in at least one end and a metallic end connection assembled to the rod. The metallic end connection comprises a metallic plug which conforms to the shape and is disposed in the depression and a metallic sleeve is disposed over the rod and plug. The plug and the sleeve are shrink-fitted to the depression in the rod to form a connection good in compression, tension and bending.

  17. FRIB cryogenic distribution system

    SciTech Connect

    Ganni, Venkatarao; Dixon, Kelly D.; Laverdure, Nathaniel A.; Knudsen, Peter N.; Arenius, Dana M.; Barrios, Matthew N.; Jones, S.; Johnson, M.; Casagrande, Fabio

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  18. Cryogenic ribbon-cutting

    NASA Image and Video Library

    2011-03-30

    NASA cut the ribbon on a new cryogenics control center at John C. Stennis Space Center on March 30. The new facility is part of a project to strengthen Stennis facilities to withstand the impacts of future storms like hurricane Katrina in 2005. Participants in the ribbon-cutting included (l to r): Jason Zuckerman, director of project management for The McDonnel Group; Keith Brock, director of the NASA Project Directorate at Stennis; Stennis Deputy Director Rick Gilbrech; Steve Jackson of Jacobs Technology; and Troy Frisbie, Cryo Control Center Construction project manager for NASA Center Operations at Stennis.

  19. Cryogenic ribbon-cutting

    NASA Image and Video Library

    2011-03-30

    NASA cut the ribbon on a new cryogenics control center at John C. Stennis Space Center on March 30. The new facility is part of a project to strengthen Stennis facilities to withstand the impacts of future storms like hurricane Katrina in 2005. Participants in the ribbon-cutting included (l to r): Jason Zuckerman, director of project management for The McDonnel Group; Keith Brock, director of the NASA Project Directorate at Stennis; Stennis Deputy Director Rick Gilbrech; Steve Jackson, outgoing program manager of the Jacobs Technology NASA Test Operations Group; and Troy Frisbie, Cryo Control Center Construction project manager for NASA Center Operations at Stennis.

  20. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  1. Cryogenic Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Louie, B.; Kemp, N. J.; Daney, D. E.

    1985-01-01

    A detailed description of a computer model that has been developed for assessing the feasibility of low g cryogen propellant scavenging from the space shuttle External Tank (ET) is given. Either pump-assisted or pressure-induced propellant transfer may be selected. The program will accept a wide range of input variables, including the fuel to be transferred (LOX or LH2), heat leaks, tank temperatures, and piping and equipment specifications. The model has been parametrically analyzed to determine initial design specification for the system.

  2. Long term cryogenic storage facility systems study

    NASA Technical Reports Server (NTRS)

    Schuster, John R.

    1987-01-01

    The Long Term Cryogenic Storage Facility Systems Study (LTCSFSS) is a Phase A study of a large capacity propellant depot for the space based, cryogenic orbital transfer vehicle. The study is being performed for Marshall Space Flight Center by General Dynamics Space Systems Division and has five principal objectives: (1) Definition of preliminary concept designs for four storage facility concepts; (2) Selection of preferred concepts through the application of trade studies to candidate propellant management system components; (3) Preparation of a conceptual design for an orbital storage facility; (4) Development of supporting research and technology requirements; and (5) Development of a test program to demonstrate facility performance. The initial study has been completed, and continuation activities are just getting under way to provide greater detail in key areas and accommodate changes in study guidelines and assumptions.

  3. Hierarchical Structural Evolution of Zn2GeO4 in Binary Solvent and Its Effect on Li-ion Storage Performance.

    PubMed

    Liu, Wei; Zhou, Tengfei; Zheng, Yang; Liu, Jianwen; Feng, Chuanqi; Shen, Yue; Huang, Yunhui; Guo, Zaiping

    2017-03-22

    Zinc germinate (Zn2GeO4) with a hierarchical structure was successfully synthesized in a binary ethylenediamine/water (En/H2O) solvent system by wet chemistry methods. The morphological evolution process of the Zn2GeO4 was investigated in detail by tuning the ratio of En to H2O in different solvent systems, and a series of compounds with awl-shaped, fascicular, and cross-linked hierarchical structures was obtained and employed as anode materials in lithium-ion batteries. The materials with fascicular structure exhibited excellent electrochemical performance, and a specific reversible capacity of 1034 mA h g(-1) was retained at a current density of 0.5 A g(-1) after 160 cycles. In addition, the as-prepared nanostructured electrode also delivered impressive rate capability of 315 mA h g(-1) at the current density of 10 A g(-1). The remarkable electrochemical performances could be ascribed to the following aspects. First, each unit in the three-dimensional fascicular structure can effectively buffer the volume expansions during the Li(+) extraction/insertion process, accommodate the strain induced by the volume variation, and stabilize its whole configuration. Meanwhile, the small fascicular units can enlarge the electrode/electrolyte contact area and form an integrated interlaced conductive network which provides continuous electron/ion pathways.

  4. Installation and commissioning of a cryogen distribution system for the TPS project

    NASA Astrophysics Data System (ADS)

    Tsai, H. H.; Hsiao, F. Z.; Li, H. C.; Lin, M. C.; Wang, C.; Liao, W. R.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Chuang, P. S. D.

    2016-07-01

    A cryogen distribution system was installed and commissioned to transfer liquid nitrogen (LN2) and liquid helium (LHe) from storage dewars to superconducting radio-frequency (SRF) cavities for the 3-GeV Taiwan Photon Source (TPS) project. The cryogen distribution system comprises one distribution valve box (DVB), four control valve boxes (CVB) and seven sections of multichannel transfer line (MCL). The DVB distributes the LHe and LN2 to the CVB, and then to the SRF cavities through independent vacuum-jacketed transfer lines. The vaporized GHe and GN2 from the cryomodules are collected via the MCL. The cryogen distribution system was installed and commissioned from October 2014 to the end of March 2015. This paper presents the installation, pre-commissioning and commissioning of the cryogen distribution system, and describes the heat load test. Thermal acoustic oscillation (TAO) was found in the GHe process line; this phenomenon and its solution are also presented and discussed.

  5. Biological Applications of Cryogenic Detectors

    SciTech Connect

    Friedrich, S

    2003-12-03

    High energy resolution and broadband efficiency are enabling the use of cryogenic detectors in biological research. Two areas where they have found initial application are X-ray absorption spectroscopy (XAS) and time-of-flight mass spectrometry (TOF-MS). In synchrotron-based fluorescence-detected XAS cryogenic detectors are used to examine the role of metals in biological systems by measuring their oxidation states and ligand symmetries. In time-of-flight mass spectrometry cryogenic detectors increase the sensitivity for biomolecule detection and identification for masses above {approx}50 kDa, and thus enable TOF-MS on large protein complexes or even entire viruses. More recently, cryogenic detectors have been proposed as optical sensors for fluorescence signals from biomarkers. We discuss the potential for cryogenic detectors in biological research, as well as the challenges the technology faces.

  6. Nanotribological behavior of deep cryogenically treated martensitic stainless steel

    PubMed Central

    Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban

    2017-01-01

    Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally. PMID:28904837

  7. Device applications of cryogenic optical refrigeration

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Epstein, Richard I.; Alden, Jay V.; Sheik-Bahae, Mansoor

    2014-02-01

    With the coldest solid-state temperatures (ΔT <185K from 300K) achievable by optical refrigeration, it is now timely to apply this technology to cryogenic devices. Along with thermal management and pump absorption, this work addresses the most key engineering challenge of transferring cooling power to the payload while efficiently rejecting optical waste-heat fluorescence. We discuss our optimized design of such a thermal link, which shows excellent performance in optical rejection and thermal properties.

  8. Cryogenic properties of aluminum alloys and composites

    SciTech Connect

    Hill, M.A.; Rollett, A.D.; Jacobson, L.A.; Borch, N.R.; Gibbs, W.S.; Patterson, R.A.; Carter, D.H.

    1989-01-01

    Several aluminum-based materials have been evaluated for possible application at cryogenic temperatures. These included the Al-Li alloy 2090, a high purity mechanically alloyed Al, SiC whisker reinforced Al 2124, and SiC particulate reinforced Al 6061. Mechanical properties, thermal properties and electrical properties were measured for these materials. Their performance in a radio frequency cavity was also determined. 4 refs., 6 figs.

  9. Neutron Detection with a Cryogenic Spectrometer

    SciTech Connect

    Bell, Z.W.; Lamberti, V.E.; Carpenter, D.A.; Cristy, S.S.

    2003-06-23

    Cryogenic calorimeters are used for x-ray detection because of their exquisite energy resolution and have found application in x-ray astronomy, and the search for dark matter. These devices operate by detecting the heat pulse produced by ionization in an absorber cooled to temperatures below 1 K. Such temperatures are needed to lower the absorber's heat capacity to the point that the deposition of even a few eV results in a measurable temperature excursion. Typical absorbers for dark matter measurements are massive Si or Ge crystals, and, with Ge, have achieved a resolution of 650 eV at 10 keV. Chow, et al., report the measurement of the 60 keV emission from {sup 241}Am with 230 eV resolution using a superconducting tin absorber. Cunningham, et al., also using a superconducting tin absorber, have recently reported a four-fold improvement over Chow. With such results being reported from the x- and gamma-ray world it is natural to examine the possibilities for cryogenic neutron spectroscopy. Such a detector would operate by detecting the heat pulses caused by neutron capture and scattering. To date, {sup 6}LiF has been the absorber of choice because relatively large crystals can be grown, and it is an insulating material with low heat capacity. Silver reports the fabrication of a {sup 6}LiF spectrometer operating at 328 mK and achieving a resolution of 39 keV. De Marcillac reports the fabrication of a spectrometer operating at 80 mK and achieving 16 keV resolution when bombarded with 5 MeV alpha particles. In this paper, we report preliminary results with a TiB{sub 2} absorber exposed to thermal neutrons. In contrast to lithium, whose chemistry selects for LiF as the absorber, boron offers a rich chemistry from which to select materials with high boron content. We will discuss the considerations governing the choice of absorber material as well as the basic considerations needed to understand a cryogenic spectrometer. The capture and scattering reactions in boron and

  10. Computed tomography of cryogenic cells

    SciTech Connect

    Schneider, Gerd; Anderson, E.; Vogt, S.; Knochel, C.; Weiss, D.; LeGros, M.; Larabell, C.

    2001-08-30

    Due to the short wavelengths of X-rays and low numerical aperture of the Fresnel zone plates used as X-ray objectives, the depth of field is several microns. Within the focal depth, imaging a thick specimen is to a good approximation equivalent to projecting the specimen absorption. Therefore, computed tomography based on a tilt series of X-ray microscopic images can be used to reconstruct the local linear absorption coefficient and image the three-dimensional specimen structure. To preserve the structural integrity of biological objects during image acquisition, microscopy is performed at cryogenic temperatures. Tomography based on X-ray microscopic images was applied to study the distribution of male specific lethal 1 (MSL-1), a nuclear protein involved in dosage compensation in Drosophila melanogaster, which ensures that males with single X chromosome have the same amount of most X-linked gene products as females with two X chromosomes. Tomographic reconstructions of X-ray microscopic images were used to compute the local three-dimensional linear absorption coefficient revealing the arrangement of internal structures of Drosophila melanogaster cells. Combined with labelling techniques, nanotomography is a new technique to study the 3D distribution of selected proteins inside whole cells. We want to improve this technique with respect to resolution and specimen preparation. The resolution in the reconstruction can be significantly improved by reducing the angular step size to collect more viewing angles, which requires an automated data acquisition. In addition, fast-freezing with liquid ethane instead of cryogenic He gas will be applied to improve the vitrification of the hydrated samples. We also plan to apply cryo X-ray nanotomography in order to study different types of cells and their nuclear protein distributions.

  11. Upgrading the CEBAF Accelerator to 12 GeV

    SciTech Connect

    Leigh Harwood

    2006-07-01

    Jefferson Lab is preparing to upgrade its 6 GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12 GeV. The doubled energy will significantly extend research reach of the three existing experimental Halls A, B and C, and the upgrade will add scientific capability, with a newly constructed hall, Hall D. Areas of special initial interest are reactions at high xBjorken, GPD's and exotic hybrid mesons. The present linacs will have their acceleration roughly doubled through the addition of 10 new cryomodules which will perform at {approx}5 times the original specification for CEBAF. The cryogenics plant will be roughly doubled and new rf systems will be installed for the new cryomodules. The beam transport system will strongly leverage existing hardware but must be enhanced with new power supplies, one new recirculation arc, and a beamline to the new Hall D. A brief description of the scope for the various accelerator subsystems will be given as well as the status of the project as a whole.

  12. Cryogenic Fluid Technologies for Long Duration In-Space Operations

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Tramel, Terri L.

    2008-01-01

    Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of storage, distribution, and low-gravity propellant management. The Vision for Space Exploration mission objectives will require the use of high performance cryogenic propellants (hydrogen, oxygen, and methane). Additionally, lunar missions will require success in storing and transferring liquid and gas commodities on the surface. The fundamental challenges associated with the in-space use of cryogens are their susceptibility to environmental heat, their complex thermodynamic and fluid dynamic behavior in low gravity and the uncertainty of the position of the liquid-vapor interface if the propellants are not settled. The Cryogenic Fluid Management (CFM) project is addressing these issues through ground testing and analytical model development, and has crosscutting applications and benefits to virtually all missions requiring in-space operations with cryogens. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and on-orbit margins, and simplify vehicle operations. The Cryogenic Fluid Management (CFM) Project is conducting testing and performing analytical evaluation of several areas to enable NASA s Exploration Vision. This paper discusses the content and progress of the technology focus areas within CFM.

  13. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  14. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  15. Cryogenics maintenance strategy

    NASA Astrophysics Data System (ADS)

    Cruzat, Fabiola

    2012-09-01

    ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

  16. Evaluation of COTS SiGe, SOI, and Mixed Signal Electronic Parts for Extreme Temperature Use in NASA Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2010-01-01

    The NASA Electronic Parts and Packaging (NEPP) Program sponsors a task at the NASA Glenn Research Center titled "Reliability of SiGe, SOI, and Advanced Mixed Signal Devices for Cryogenic Space Missions." In this task COTS parts and flight-like are evaluated by determining their performance under extreme temperatures and thermal cycling. The results from the evaluations are published on the NEPP website and at professional conferences in order to disseminate information to mission planners and system designers. This presentation discusses the task and the 2010 highlights and technical results. Topics include extreme temperature operation of SiGe and SOI devices, all-silicon oscillators, a floating gate voltage reference, a MEMS oscillator, extreme temperature resistors and capacitors, and a high temperature silicon operational amplifier.

  17. Industrial x-ray fluorescence analysis new applications and challenges for cryogenic detectors

    SciTech Connect

    Frank, M.

    1997-08-01

    Cryogenic, high-resolution X-ray detectors have potential applications in industrial X-ray fluorescence (XRF) analysis. We discuss various XRF analysis techniques currently used in the semiconductor industry, problems encountered due to limitations of current detectors and the potential benefits of using cryogenic detectors in these applications. We give examples of demonstration experiments, compare the performance of current conventional and cryogenic X-ray spectrometers and present an outlook.

  18. Innovative, High-Pressure, Cryogenic Control Valve: Short Face-to-Face, Reduced Cost

    NASA Technical Reports Server (NTRS)

    Wilkes, Karlin; Larsen, Ed; McCourt, Jackson

    2003-01-01

    A control valve that can throttle high-pressure cryogenic fluid embodies several design features that distinguish it over conventional valves designed for similar applications. Field and design engineers worked together to create a valve that would simplify installation, trim changes, and maintenance, thus reducing overall cost. The seals and plug stem packing were designed to perform optimally in cryogenic temperature ranges. Unlike conventional high-pressure cryogenic valves, the trim size can be changed independent of the body.

  19. Cryogenic Boil-Off Reduction System

    NASA Astrophysics Data System (ADS)

    Plachta, David W.; Guzik, Monica C.

    2014-03-01

    A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.

  20. The effects of strain on indirect absorption in Ge/SiGe quantum wells

    NASA Astrophysics Data System (ADS)

    Lever, L.; Ikonić, Z.; Kelsall, R. W.

    2012-06-01

    We calculate the conduction band electron scattering rates from the Γ-valley into the indirect valleys in germanium, and use this to determine the strength of the indirect absorption in Ge/SiGe quantum well heterostructures. This is done as a function of the in-plane compressive strain in the Ge quantum wells, which results from pseudomorphic growth on a SiGe virtual substrate. This compressive strain results in the Δ valleys becoming available as destination states for scattering, which leads to a reduction in the Γ-valley lifetime. We calculate the indirect absorption and lifetime broadening of excitonic peaks, and show that indirect absorption decreases as the Ge fraction in the virtual substrate increases. We conclude that the Ge fraction of the SiGe virtual substrate should be approximately 95% or larger for optimum electroabsorption performance of Ge/SiGe quantum wells.

  1. Bonding and Sealing Evaluations for Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1997-01-01

    Several different cryogenic tank concepts are being considered for reusable launch vehicles (RLV'S) . Though different tank concepts are being considered, many will require that the cryogenic insulation be evacuated and be bonded to a structure. In this work, an attempt was made to evaluate the effectiveness of maintaining a vacuum on a specimen where foam or honeycomb core was encased within Gr/Ep. In addition to these tests, flatwise adhesion pull off tests were performed at room temperature with PR 1664, EA 9394, FM-300, Crest 3170, and HT 435 adhesives. The materials bonded included Gr/Ep, Gr/BMI, Al, and stainless steel facesheets, and Ti honeycomb, Hexcel honeycomb, and Rohacell foam core materials.

  2. A cryogenic valve for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Salerno, L. J.; Spivak, A. L.

    1982-01-01

    Space-compatible cryogenic valves are now required to operate between room and liquid helium temperatures. A remotely controllable cryogenic valve is described, which is made of bellows-type stainless steel and is operated by a miniature dc motor with integral gearset (485:1) at a nominal voltage of 28 Vdc. The power transmission provides a further reduction of 7.2:1 to give an overall gear ratio of nearly 3500:1, assuring reliability of operation at low temperatures. Valve performance (leak rate) data are presented at LN2, LHe, and SfHe temperatures at delivered torques of 18, 27, 31, and 35 N-m. At a closing torque of 31 N-m, a leak rate of 0.028 scc/sec was achieved at 2 K, while at a torque of 18 N-m the leak rate at 300 K was less than 3 x 10 to the -9th scc/sec.

  3. Demonstration of Microsphere Insulation in Cryogenic Vessels

    NASA Astrophysics Data System (ADS)

    Baumgartner, R. G.; Myers, E. A.; Fesmire, J. E.; Morris, D. L.; Sokalski, E. R.

    2006-04-01

    While microspheres have been recognized as a legitimate insulation material for decades, actual use in full-scale cryogenic storage tanks has not been demonstrated until now. The performance and life-cycle-cost advantages previously predicted have now been proven. Most bulk cryogenic storage tanks are insulated with either multilayer insulation (MLI) or perlite. Microsphere insulation, consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. These properties were proven during recent field testing of two 22,700-L (6,000-gallon) liquid nitrogen tanks, one insulated with microsphere insulation and the other with perlite. Normal evaporation rates (NER) for both tanks were monitored with precision test equipment and insulation levels within the tanks were observed through view ports as an indication of insulation compaction. Specific industrial applications were evaluated based on the test results and beneficial properties of microsphere insulation. Over-the-road trailers previously insulated with perlite will benefit not only from the reduced heat leak, but also the reduced mass of microsphere insulation. Economic assessments for microsphere-insulated cryogenic vessels including life-cycle cost are also presented.

  4. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency

  5. Cryogenics for ground based and space-borne instrumentation

    NASA Astrophysics Data System (ADS)

    Duband, L.

    In many space sciences project cryogenic detectors are essential for the accomplishment of the scientific objectives, offering unique advantages and unmatched performance. In addition several other components such as the optics can benefit from a cryogenic cooling which reduces the radiative loading. The Service des Basses Températ- ures (SBT) of CEA Grenoble has been involved in space cryogenics for over 20 years now and features a dedicated laboratory, the Cryocoolers and Space Cryogenics group. Various cryocoolers have been developed in the past and our fields of activity focus now on four main technologies: sorption coolers, multistage pulse tubes, adiabatic demagnetization refrigerators (ADR), and cryogenic loop heat pipes. In addition work on two new concepts for ground based dilution refrigerators is also ongoing. Finally developments on various key technologies such as the heat switches, the suspension or structural systems are also carried out. These developments are mainly funded by the European Space Agency (ESA) or by the Centre National d'Études Spatiales (CNES). In this paper we mostly give an overview of the developments carried out at SBT along with several examples of other relevant systems. We use space cryogenics as a thread. However these coolers or techniques can be used on ground, particularly on remote locations where liquid cryogen are unavailable and/or where maintenance must be limited to a strict minimum. In this case they can be simplified and take advantage of on ground resources, and their cost can be significantly reduced. For most of these systems the common feature is the absence of any moving parts or any friction, which guarantees a very good reliability and make them very good candidates for space borne instruments requiring cryogenic temperatures.

  6. Non-conventional routes to SiGe:P/Si(100) materials and devices based on -SiH3 and -GeH3 derivatives of phosphorus: synthesis, electrical performance and optical behavior

    NASA Astrophysics Data System (ADS)

    Xu, Chi; Gallagher, J. D.; Sims, P.; Smith, D. J.; Menéndez, J.; Kouvetakis, J.

    2015-04-01

    Ge-Si based n-type films are synthesized using specially designed hydrides P(SiH3)3, Ge3H8 and Ge4H10 for potential applications in next-generation CMOS technologies. The films are grown on Ge buffered Si(100) at 340 °C using two complementary methods. The first employs a gas-source molecular epitaxy approach using Ge4H10 to produce materials with P doping densities varying from 4 × 1018 to a 3.5 × 1019 cm-3 threshold. These materials are co-doped with Si concentrations ranging from 3 × 1019 cm-3 to 3.5%, roughly in proportion with the amount of P(SiH3)3 used in the reactions. The second approach applies an alternative ultra-high vacuum chemical vapor deposition (UHV-CVD) technique and Ge3H8 in place of Ge4H10 to achieve ultra-high carrier concentrations up to ˜6 × 1019 cm-3. The Si content in this case is minimal—in the 2-6 × 1019 cm-3 range—indicating that the growth mechanism allows only ‘impurity’ levels of Si to be incorporated. The active carrier densities in both cases closely reflect the absolute P content, indicating that the P atoms are mostly substitutional. The electron mobilities are significantly higher compared to state-of-the-art prototypes, probably due to superior microstructure and dearth of inactive donors in the lattice. P-I-N diodes fabricated using the P(SiH3)3 compound show I-V characteristics comparable to state-of-the-art results for Ge-on-Si devices and are virtually undistinguishable from similar diodes doped with the P(GeH3)3 precursor. These results confirm P(SiH3)3 as a viable CVD doping source that is practical from a process standpoint and therefore attractive for industrial scale-up.

  7. Recent Advances and Applications in Cryogenic Propellant Densification Technology

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    2000-01-01

    This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.

  8. Theoretical analysis of performance enhancement in GeSn/SiGeSn light-emitting diode enabled by Si3N4 liner stressor technique.

    PubMed

    Zhang, Qingfang; Liu, Yan; Han, Genquan; Shao, Yao; Gao, Xi; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2016-12-01

    We comprehensively investigate the energy band diagrams, carrier distribution, spontaneous emission rate rsp, and the internal quantum efficiency ηIQE in the lattice-matched GeSn/SiGeSn double heterostructure light-emitting diode (LED) wrapped in a Si3N4 liner stressor. The large tensile strain introduced into the device by the expansion of the Si3N4 liner is characterized by numerical simulation. A lower Sn composition required for the indirect to direct bandgap transition and a higher ratio of the electron occupation probability in the Γ conduction valley are achieved in the tensile strained GeSn/SiGeSn LED in comparison with the relaxed device. Analytical calculation shows that the tensile strained LED wrapped in the Si3N4 liner stressor exhibits the improved rsp and ηIQE compared to the relaxed device. rsp and ηIQE also can be enhanced by increasing Sn composition, carrier injection density, and n-type doping concentration in the GeSn active layer.

  9. Repeatability of Cryogenic Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-01-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between multiple identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five GRC provided coupons with 25 layers was shown to be +/- 8.4 whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0. A second group of 10 coupons have been fabricated by Yetispace and tested by Florida State University, through the first 4 tests, the repeatability has been shown to be +/- 16. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  10. Cryogenic expansion machine

    DOEpatents

    Pallaver, Carl B.; Morgan, Michael W.

    1978-01-01

    A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.

  11. Cryogenic Research and Development

    DTIC Science & Technology

    1961-12-31

    8A/8p)TdpT + A*(p,T) - A*(l,T). (14-c) T -8- If A be Helmholtz energy, then (8A/8p) = -RT/p (15) and A*(p,T) = uo0 Q*dpT’ (16) 0 00 where u l/ vI is...respectively, then, are (z - 1)/ u = ( vI -k M-2 /T) +CU + du2 + + klk m+4/T. (5) (z -l)/ u B 1 +CGu + DU + ..... (6) where the conventional virial...r on Cryogenic Research and Development for Quarter Ending December 31, 1960 ~TC94-17400 C 94 6 8017 U . S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF

  12. Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Jones, David

    2011-01-01

    The CPS is an in-space cryogenic propulsive stage based largely on state of the practice design for launch vehicle upper stages. However, unlike conventional propulsive stages, it also contains power generation and thermal control systems to limit the loss of liquid hydrogen and oxygen due to boil-off during extended in-space storage. The CPS provides the necessary (Delta)V for rapid transfer of in-space elements to their destinations or staging points (i.e., E-M L1). The CPS is designed around a block upgrade strategy to provide maximum mission/architecture flexibility. Block 1 CPS: Short duration flight times (hours), passive cryo fluid management. Block 2 CPS: Long duration flight times (days/weeks/months), active and passive cryo fluid management.

  13. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.

    1983-01-01

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

  14. Cryogenic Cam Butterfly Valve

    NASA Technical Reports Server (NTRS)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  15. Cryogenic nuclear gyroscope

    SciTech Connect

    Gallop, J.C.; Potts, S.P.

    1980-09-30

    A cryogenic nuclear gyroscope is described that is comprised of a cylinder of niobium cooled within a helium cryostat so as to be superconducting and to provide a trapped, substantially homogeneous magnetic field, a helium-3 sample contained within a spherical pyrex cell having nuclei possessing a net magnetic moment, coils provided to polarize the sample to provide that net magnetic moment, and a SQUID magnetometer coupled to the sample by a pick-up coil of a transformer and frequency sensitive means coupled to the SQUID to detect changes in the precession of the nuclear moments of the sample caused by rotation of the gyroscope about an axis parallel to the direction of the homogeneous magnetic field. A superconducting lead shield isolates the helium-3 sample from external magnetic fields.

  16. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

    1983-01-04

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

  17. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  18. Design and Operation of Cryogenic Distillation Research Column for Ultra-Low Background Experiments

    NASA Astrophysics Data System (ADS)

    Chiller, Christopher; Alanson Chiller, Angela; Jasinski, Benjamin; Snyder, Nathan; Mei, Dongming

    2013-04-01

    Motivated by isotopically enriched germanium (76Ge and 73Ge) for monocrystalline crystal growth for neutrinoless double-beta decay and dark matter experiments, a cryogenic distillation research column was developed. Without market availability of distillation columns in the temperature range of interest with capabilities necessary for our purposes, we designed, fabricated, tested, refined and operated a two-meter research column for purifying and separating gases in the temperature range from 100-200K. Due to interest in defining stratification, purity and throughput optimization, capillary lines were integrated at four equidistant points along the length of the column such that real-time residual gas analysis could guide the investigation. Interior gas column temperatures were monitored and controlled within 0.1oK accuracy at the top and bottom. Pressures were monitored at the top of the column to four significant figures. Subsequent impurities were measured at partial pressures below 2E-8torr. We report the performance of the column in this paper.

  19. GeOx/Reduced Graphene Oxide Composite as an Anode for Li-ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance

    SciTech Connect

    Lv, Dongping; Gordin, Mikhail; Yi, Ran; Xu, Terrence; Song, Jiangxuan; Jiang, Yingbing; Choi, Daiwon; Wang, Donghai

    2014-09-01

    A self-assembled GeOx/reduced graphene oxide (GeOx/RGO) composite, where GeOx nanoparticles were grown directly on reduced graphene oxide sheets, was synthesized via a facile one-step reduction approach and studied by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, electron energy loss spectroscopy elemental mapping, and other techniques. Electrochemical evaluation indicates that incorporation of reduced graphene oxide enhances both the rate capability and reversible capacity of GeOx, with the latter being due to the RGO enabling reversible utilization of Li2O. The composite delivers a high reversible capacity of 1600 mAhg-1 at a current density of 100 mAg-1, and still maintains a capacity of 410 mAhg-1 at a high current density of 20 Ag-1. Owing to the flexible reduced graphene oxide sheets enwrapping the GeOx particles, the cycling stability of the composite was also improved significantly. To further demonstrate its feasibility in practical applications, the synthesized GeOx/RGO composite anode was successfully paired with a high voltage LiNi0.5Mn1.5O4 cathode to form a full cell, which showed good cycling and rate performance.

  20. Cryogenic Insulation Standard Data and Methodologies Project

    NASA Technical Reports Server (NTRS)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  1. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  2. Cryogenic Systems and Superconductive Power

    DTIC Science & Technology

    subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system; and, Provide a sound...technical basis for subsequent applications of superconductive power in the area of ship propulsion .

  3. Cryogenic Systems and Superconductive Power

    DTIC Science & Technology

    The report defines, investigates, and experimentally evaluates the key elements of a representative crogenic turborefrigerator subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system.

  4. Facile synthesis of Ge@C core-shell nanocomposites for high-performance lithium storage in lithium-ion batteries.

    PubMed

    Wang, Ying; Wang, Guoxiu

    2013-12-01

    Herein, we report a facile and "green" synthetic route for the preparation of Ge@C core-shell nanocomposites by using a low-cost Ge precursor. Field-emission scanning electron microscopy and transmission electron microscopy analyses confirmed the core-shell nanoarchitecture of the Ge@C nanocomposites, with particle sizes ranging from 60 to 100 nm. Individual Ge nanocrystals were coated by a continuous carbon layer, which had an average thickness of 2 nm. When applied as an anode materials for lithium-ion batteries, the Ge@C nanocomposites exhibited a high initial discharge capacity of 1670 mAh g(-1) and superior rate capability. In particular, Ge@C nanocomposite electrodes maintained a reversible capacity of 734 mAh g(-1) after repeated cycling at a current density of 800 mA g(-1) over 100 cycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cryogenic emissivity properties of Ball Infrared Black

    NASA Astrophysics Data System (ADS)

    Franck, Randy; Renbarger, Michael

    2012-06-01

    Ball Aerospace and Technologies Corporation (BATC) developed a unique thermal control coating named Ball InfraRed BlackTM (BIRBTM). The coating generates a highly diffuse surface with a large effective surface area ideal for thermal radiative applications. Independent testing demonstrates excellent emissivity properties across the cryogenic region, especially at temperatures <50K where other products tend to roll off. Emissivity in this region exceeds that of other commercially available thermal control coatings. The proprietary coating was developed for use on spacecraft thermal radiators, but also has application to terrestrial cryogenic and vacuum systems. The coating is qualified for spaceflight, demonstrating outstanding adhesion after thermal cycling and vibration testing. Critical material properties for BIRBTM are characterized. BIRBTM is durable and cleanable with proper handling. BIRBTM has the additional benefit of being static-dissipative, making it ideal for direct exposure to the space environment. Additionally, contamination control properties are optimized, achieving low total outgassing rates and demonstrating particle cleanliness to meet stringent requirements for optical instruments. Thermal systems realize enhanced performance and/or substantial mass savings by applying BIRBTM to the radiator surface. To date, BIRBTM has been applied to several large cryogenic radiators for use on space-based thermal control systems.

  6. Developing NDE Techniques for Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan; Arens, Ellen

    2011-01-01

    The Shuttle Program requires very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing Pads A and B Launch Complex-39 tanks, which will be passed onto future launch programs, are 45 years old and have received minimal refurbishment and only external inspections over the years. The majority of the structure is inaccessible without a full system drain of cryogenic liquid and granular insulation in the annular region. It was previously thought that there was a limit to the number of temperature cycles that the tanks could handle due to possible insulation compaction before undergoing a costly and time consuming complete overhaul; therefore the tanks were not drained and performance issues with these tanks, specifically the Pad B liquid hydrogen tank, were accepted. There is a needind an opportunity, as the Shuttle program ends and work to upgrade the launch pads progresses, to develop innovative non-destructive evaluation (NDE) techniques to analyze the current tanks. Techniques are desired that can aid in determining the extent of refurbishment required to keep the tanks in service for another 20+ years. A nondestructive technique would also be a significant aid in acceptance testing of new and refurbished tanks, saving significant time and money, if corrective actions can be taken before cryogen is introduced to the systems.

  7. Design Tool for Cryogenic Thermal Insulation Systems

    SciTech Connect

    Demko, Jonathan A; Fesmire, J. E.; Augustynowicz, S. D.

    2008-01-01

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  8. High-aperture cryogenic light microscopy.

    PubMed

    Le Gros, M A; McDermott, G; Uchida, M; Knoechel, C G; Larabell, C A

    2009-07-01

    We report here the development of instruments and protocols for carrying out high numerical aperture immersion light microscopy on cryogenic specimens. Imaging by this modality greatly increases the lifetimes of fluorescence probes, including those commonly used for protein localization studies, while retaining the ability to image the specimen with high fidelity and spatial resolution. The novel use of a cryogenic immersion fluid also minimizes the refractive index mismatch between the sample and lens, leading to a more efficient coupling of the light from the sample to the image forming system. This enhancement is applicable to both fluorescence and transmitted light microscopy techniques. The design concepts used for the cryogenic microscope can be applied to virtually any existing light-based microscopy technique. This prospect is particularly exciting in the context of 'super-resolution' techniques, where enhanced fluorescence lifetime probes are especially useful. Thus, using this new modality it is now possible to observe dynamic events in a live cell, and then rapidly vitrify the specimen at a specific time point prior to carrying out high-resolution imaging. The techniques described can be used in conjunction with other imaging modalities in correlated studies. We have also developed instrumentation to perform cryo-light imaging together with soft X-ray tomography on the same cryo-fixed specimen as a means of carrying out high content, quantifiable correlated imaging analyses. These methods are equally applicable to correlated light and electron microscopy of frozen biological objects.

  9. High-aperture cryogenic light microscopy

    PubMed Central

    LE GROS, M.A.; McDERMOTT, G.; UCHIDA, M.; KNOECHEL, C.G.; LARABELL, C.A.

    2012-01-01

    Summary We report here the development of instruments and protocols for carrying out high numerical aperture immersion light microscopy on cryogenic specimens. Imaging by this modality greatly increases the lifetimes of fluorescence probes, including those commonly used for protein localization studies, while retaining the ability to image the specimen with high fidelity and spatial resolution. The novel use of a cryogenic immersion fluid also minimizes the refractive index mismatch between the sample and lens, leading to a more efficient coupling of the light from the sample to the image forming system. This enhancement is applicable to both fluorescence and transmitted light microscopy techniques. The design concepts used for the cryogenic microscope can be applied to virtually any existing light-based microscopy technique. This prospect is particularly exciting in the context of ‘super-resolution’ techniques, where enhanced fluorescence lifetime probes are especially useful. Thus, using this new modality it is now possible to observe dynamic events in a live cell, and then rapidly vitrify the specimen at a specific time point prior to carrying out high-resolution imaging. The techniques described can be used in conjunction with other imaging modalities in correlated studies. We have also developed instrumentation to perform cryo-light imaging together with soft X-ray tomography on the same cryo-fixed specimen as a means of carrying out high content, quantifiable correlated imaging analyses. These methods are equally applicable to correlated light and electron microscopy of frozen biological objects. PMID:19566622

  10. A Rapid Turnaround Cryogenic Detector Characterization System

    NASA Technical Reports Server (NTRS)

    Benford, Dominic j.; Dipirro, Michael J.; Forgione, Joshua B.; Jackson, Clifton E.; Jackson, Michael L.; Kogut, Al; Moseley, S. Harvey; Shirron, Peter J.

    2004-01-01

    Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.

  11. A Rapid Turnaround Cryogenic Detector Characterization System

    NASA Technical Reports Server (NTRS)

    Benford, Dominic j.; Dipirro, Michael J.; Forgione, Joshua B.; Jackson, Clifton E.; Jackson, Michael L.; Kogut, Al; Moseley, S. Harvey; Shirron, Peter J.

    2004-01-01

    Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.

  12. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  13. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  14. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  15. The RHIC cryogenic control system

    SciTech Connect

    Farah, Y.; Sondericker, J.

    1993-08-01

    A cryogenic process control system for the RHIC Project is discussed. It is independent of the main RHIC Control System, consisting of an upgrade of the existing 24.8 Kw helium refrigerator control section with the addition of a ring control section that regulates and monitors all cryogenic signals in the RHIC tunnel. The system is fully automated, which can run without the continuous presence of operators.

  16. Uniaxially stressed Ge:Ga and Ge:Be

    SciTech Connect

    Dubon, O.D. Jr.

    1992-12-01

    The application of a large uniaxial stress to p-type Ge single crystals changes the character of both the valence band and the energy levels associated with the acceptors. Changes include the splitting of the fourfold degeneracy of the valence band top and the reduction of the ionization energy of shallow acceptors. In order to study the effect of uniaxial stress on transport properties of photoexcited holes, a variable temperature photo-Hall effect system was built in which stressed Ge:Ga and Ge:Be could be characterized. Results indicate that stress increases the lifetime and Hall mobility of photoexcited holes. These observations may help further the understanding of fundamental physical processes that affect the performance of stressed Ge photoconductors including the capture of holes by shallow acceptors.

  17. Uniaxially stressed Ge:Ga and Ge:Be

    SciTech Connect

    Dubon, Jr., Oscar Danilo

    1992-12-01

    The application of a large uniaxial stress to p-type Ge single crystals changes the character of both the valence band and the energy levels associated with the acceptors. Changes include the splitting of the fourfold degeneracy of the valence band top and the reduction of the ionization energy of shallow acceptors. In order to study the effect of uniaxial stress on transport properties of photoexcited holes, a variable temperature photo-Hall effect system was built in which stressed Ge:Ga and Ge:Be could be characterized. Results indicate that stress increases the lifetime and Hall mobility of photoexcited holes. These observations may help further the understanding of fundamental physical processes that affect the performance of stressed Ge photoconductors including the capture of holes by shallow acceptors.

  18. Ferromagnetic germanide in Ge nanowire transistors for spintronics application.

    PubMed

    Tang, Jianshi; Wang, Chiu-Yen; Hung, Min-Hsiu; Jiang, Xiaowei; Chang, Li-Te; He, Liang; Liu, Pei-Hsuan; Yang, Hong-Jie; Tuan, Hsing-Yu; Chen, Lih-Juann; Wang, Kang L

    2012-06-26

    To explore spintronics applications for Ge nanowire heterostructures formed by thermal annealing, it is critical to develop a ferromagnetic germanide with high Curie temperature and take advantage of the high-quality interface between Ge and the formed ferromagnetic germanide. In this work, we report, for the first time, the formation and characterization of Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire transistors, in which the room-temperature ferromagnetic germanide was found through the solid-state reaction between a single-crystalline Ge nanowire and Mn contact pads upon thermal annealing. The atomically clean interface between Mn(5)Ge(3) and Ge with a relatively small lattice mismatch of 10.6% indicates that Mn(5)Ge(3) is a high-quality ferromagnetic contact to Ge. Temperature-dependent I-V measurements on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire heterostructure reveal a Schottky barrier height of 0.25 eV for the Mn(5)Ge(3) contact to p-type Ge. The Ge nanowire field-effect transistors built on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) heterostructure exhibit a high-performance p-type behavior with a current on/off ratio close to 10(5), and a hole mobility of 150-200 cm(2)/(V s). Temperature-dependent resistance of a fully germanided Mn(5)Ge(3) nanowire shows a clear transition behavior near the Curie temperature of Mn(5)Ge(3) at about 300 K. Our findings of the high-quality room-temperature ferromagnetic Mn(5)Ge(3) contact represent a promising step toward electrical spin injection into Ge nanowires and thus the realization of high-efficiency spintronic devices for room-temperature applications.

  19. Latest developments in cryogenic safety

    NASA Technical Reports Server (NTRS)

    Webster, T. J.

    1983-01-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  20. Latest developments in cryogenic safety

    NASA Astrophysics Data System (ADS)

    Webster, T. J.

    1983-03-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.