Sample records for cryogenic linear octupole

  1. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions.

    PubMed

    Boyarkin, Oleg V; Kopysov, Vladimir

    2014-03-01

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ~150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrast to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion-He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.

  2. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyarkin, Oleg V., E-mail: oleg.boiarkin@epfl.ch; Kopysov, Vladimir

    2014-03-15

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ∼150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrastmore » to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion–He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.« less

  3. Shape Phase Transition from Octupole Deformation to Octupole Vibrations: The Analytic Quadrupole Octupole Axially Symmetric Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonatsos, Dennis; Lenis, D.; Petrellis, D.

    An analytic collective model in which the relative presence of the quadrupole and octupole deformations is determined by a parameter ({phi}0), while axial symmetry is obeyed, is developed. The model [to be called the Analytic Quadrupole Octupole Axially symmetric model (AQOA)] involves an infinite well potential, provides predictions for energy and B(EL) ratios which depend only on {phi}0, draws the border between the regions of octupole deformation and octupole vibrations in an essentially parameter-independent way, and in the actinide region describes well 226Th and 226Ra, for which experimental energy data are shown to suggest that they lie close to thismore » border. The similarity of the AQOA results with {phi}0 = 45 deg. for ground state band spectra and B(E2) transition rates to the predictions of the X(5) model is pointed out.« less

  4. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Vilenchik, H.; Riabzev, S.; Pundak, N.

    2007-04-01

    Novel tactics employed in carrying out military and antiterrorist operations call for the development of a new generation of warfare, among which sophisticated portable infrared (IR) imagers for surveillance, reconnaissance, targeting and navigation play an important role. The superior performance of such imagers relies on novel optronic technologies and maintaining the infrared focal plane arrays at cryogenic temperatures using closed cycle refrigerators. Traditionally, rotary driven Stirling cryogenic engines are used for this purpose. As compared to their military off-theshelf linear rivals, they are lighter, more compact and normally consume less electrical power. Latest technological advances in industrial development of high-temperature (100K) infrared detectors initialized R&D activity towards developing microminiature cryogenic coolers, both of rotary and linear types. On this occasion, split linearly driven cryogenic coolers appear to be more suitable for the above applications. Their known advantages include flexibility in the system design, inherently longer life time, low vibration export and superior aural stealth. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear drives and driving electronics enable further essential reduction of the cooler size, weight and power consumption. The authors report on the development and project status of a novel Ricor model K527 microminiature split Stirling linear cryogenic cooler designed especially for the portable infrared imagers.

  5. High-reliable linear cryocoolers and miniaturization developments at Thales Cryogenics

    NASA Astrophysics Data System (ADS)

    van der Weijden, H.; Benschop, A.; v. D. Groep, W.; Willems, D.; Mullie, J.

    2010-04-01

    Thales Cryogenics (TCBV) has an extensive background in delivering long life cryogenic coolers for military, civil and space programs. This cooler range is based on two main compressor concepts: close tolerance contact seals (UP) and flexure bearing (LSF/LPT) coolers. Main difference between these products is the Mean Time To Failure (MTTF). In this paper an overview of lifetime parameters will be listed versus the impact in the different cooler types. Also test results from both the installed base and the Thales Cryogenics test lab will be presented. New developments at Thales Cryogenics regarding compact long lifetime coolers will be outlined. In addition new developments for miniature linear cooler drive electronics with high temperature stability and power density will be described.

  6. Cryogenic system configuration for the International Linear Collider (ILC) at mountainous site

    NASA Astrophysics Data System (ADS)

    Nakai, H.; Okamura, T.; Delikaris, D.; Peterson, T.; Yamamoto, A.

    2017-02-01

    The International Linear Collider (ILC) plans to make use of ten cryoplants for its main linacs, each providing 19 kW at 4.5 K equivalent and among of it 3.6 kW at 2 K. Each cryoplant will consist of various cryogenic components such as a 4.5 K refrigerator cold box, a 2 K refrigerator cold box, and helium compressors and so on. In the technical design report (TDR) of the ILC, due to the mountainous topology, almost all cryogenic components would be installed in underground cryogenic caverns next to the main linac tunnels and only cooling towers on surface area. However, we would like to find a more effective and sophisticated configuration of the cryoplant components (cryogenic configuration). Under several constraints of technical, geographical, and environmental points of view, the cryogenic configuration should be considered carefully to satisfy such various conditions. After discussions on this topic conducted at various workshops and conferences, an updated cryogenic configuration is suggested. The proposed updated configuration may affect the total construction cost of the ILC and the entire structure of the ILC conventional facilities. The updated cryogenic configuration is presented and the on-going discussions with the conventional facilities and siting (CFS) colleagues for further improvement of the cryogenic configuration is introduced.

  7. Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Zechtzer, S.; Pundak, N.

    2010-04-01

    Split linear cryocoolers find use in a variety of infrared equipment installed in airborne, heliborne, marine and vehicular platforms along with hand held and ground fixed applications. An upcoming generation of portable, high-definition night vision imagers will rely on the high-temperature infrared detectors, operating at elevated temperatures, ranging from 95K to 200K, while being able to show the performance indices comparable with these of their traditional 77K competitors. Recent technological advances in industrial development of such high-temperature detectors initialized attempts for developing compact split Stirling linear cryogenic coolers. Their known advantages, as compared to the rotary integral coolers, are superior flexibility in the system packaging, constant and relatively high driving frequency, lower wideband vibration export, unsurpassed reliability and aural stealth. Unfortunately, such off-the-shelf available linear cryogenic coolers still cannot compete with rotary integral rivals in terms of size, weight and power consumption. Ricor developed the smallest in the range, 1W@95K, linear split Stirling cryogenic cooler for demanding infrared applications, where power consumption, compactness, vibration, aural noise and ownership costs are of concern.

  8. Quadrupole and octupole shapes in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, D.

    1993-12-31

    The heavy-ion multiple Coulomb excitation technique, which has benefited from many important contributions by Dick Diamond, has developed to the stage where rather complete sets of E1, E2 and E3 matrix elements are being measured. These provide a sensitive measures of quadrupole and octupole deformation in nuclei. The completeness of the E2 data is sufficient to determine directly the centroids and fluctuation widths of the E2 properties in the principal axis frame for low-lying states. The results and model implications of recent Coulomb excitation measurements of the quadrupole shapes in odd and even A nuclei will be presented. Recent measurementsmore » of E1, E2 and E3 matrix elements for collective bands in N=88 and Z=88 nuclei show that octupole correlations play an important role. These results and the implications regarding octupole deformation and reflection asymmetry will be discussed.« less

  9. Octupole deformation in odd-odd nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheline, R.K.

    1988-01-01

    Comparison of the experimental and theoretical ground-state spins of odd-odd nuclei in the region 220less than or equal toAless than or equal to228 generally shows agreement with a folded Yukawa octupole deformed model with epsilon/sub 3/ = 0.08 and some lack of agreement with the same model with epsilon/sub 3/ = 0. Thus in spite of limited spectroscopic information, the ground-state spins suggest the existence of octupole deformation in odd-odd nuclei in the region 220less than or equal toAless than or equal to228.

  10. Octupole deformations in high-K isomeric states of heavy and superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Minkov, N.; Walker, P. M.

    2016-01-01

    We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp) isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS) pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  11. Design of Octupole Channel for Integrable Optics Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergey; Carlson, Kermit; Castellotti, Riccardo

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements onmore » maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.« less

  12. E1 transitions from octupole vibration states

    NASA Astrophysics Data System (ADS)

    Cottle, P. D.

    1993-04-01

    Electric dipole moments are extracted from data for E1 transitions deexciting octupole vibration states in nineteen nuclei. The moments are then compared to values calculated using the droplet model prescription of Dorso, Myers, and Swiatecki. It is found that the E1 moments in quadrupole deformed nuclei can be reproduced with the droplet model using the same model parameters that reproduce atomic masses and fission barriers. This result supports the suggestion of Butler and Nazarewicz that single particle effects are usually much smaller than macroscopic effects in E1 transitions associated with octupole vibrations in reflection symmetric deformed nuclei.

  13. A magnetically suspended linearly driven cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Stolfi, F.; Goldowsky, M.; Ricciardelli, J.; Shapiro, P.

    1983-01-01

    This paper described a novel Stirling cycle cryogenic refrigerator which was designed, fabricated and successfully tested at Philips Laboratories. The prominent features of the machine are an electro-magnetic bearing system, a pair of moving magnet linear motors, and clearance seals with a 25 mu m radial gap. The all-metal and ceramic construction eliminates long-term organic contamination of the helium working fluid. The axial positions of the piston and displacer are electronically controlled, permitting independent adjustment of the amplitude of each and their relative phase relationship during operation. A simple passive counterbalance reduces axial vibrations. The design of the refrigerator system components is discussed and a comparison is made between performance estimates and measured results.

  14. Direct evidence of octupole deformation in neutron-rich 144Ba

    DOE PAGES

    Bucher, B.; Zhu, S.; Wu, C. Y.; ...

    2016-03-17

    Here, the neutron-rich nucleus 144Ba (t 1/2 = 11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers A less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced E1 transitions and interleaving positive- and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multistep Coulomb excitation of a post-accelerated 650-MeV 144Ba beam on a 1.0–mg/cm 2 208Pb target. The measured value of the matrix element, < 3 1–∥M(E3)∥0 1 + >= 0.65( +17 –23) ebmore » 3/2, corresponds to a reduced B(E3) transition probability of 48( +25 –34) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.« less

  15. Microscopic analysis of octupole shape transitions in neutron-rich actinides with relativistic energy density functional

    NASA Astrophysics Data System (ADS)

    Xu, Zhong; Li, Zhi-Pan

    2017-12-01

    Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra, and electric transition rates in eight neutron-rich isotopic chains - Ra, Th, U, Pu, Cm, Cf, Fm, and No - are systematically analyzed using a quadrupole-octupole collective Hamiltonian model, with parameters determined by constrained reflection-asymmetric and axially-symmetric relativistic mean-field calculations based on the PC-PK1 energy density functional. The theoretical results of low-lying negative-parity bands, odd-even staggering, average octupole deformations ⟨β 3⟩, and show evidence of a shape transition from nearly spherical to stable octupole-deformed, and finally octupole-soft equilibrium shapes in the neutron-rich actinides. A microscopic mechanism for the onset of stable octupole deformation is also discussed in terms of the evolution of single-nucleon orbitals with deformation. Supported by National Natural Science Foundation of China (11475140, 11575148)

  16. The design of a small linear-resonant, split Stirling cryogenic refrigerator compressor

    NASA Technical Reports Server (NTRS)

    Ackermann, R. A.

    1985-01-01

    The development of a small linear-resonant compressor for use in a 1/4-watt, 78K, split Stirling cryogenic refrigerator is discussed. The compressor contains the following special features: (1) a permanent-magnet linear motor; (2) resonant dynamics; (3) dynamic balancing; and (4) a close-clearance seal between the compressor piston and cylinder. This paper describes the design of the compressor, and presents component test data and system test data for the compressor driving a 1/4-watt expander.

  17. Superelasticity and cryogenic linear shape memory effects of CaFe 2As 2

    DOE PAGES

    Sypek, John T.; Yu, Hang; Dusoe, Keith J.; ...

    2017-10-20

    Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less

  18. Odd-even parity splittings and octupole correlations in neutron-rich Ba isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Wang, H.; Wang, L.-J.; Yao, J. M.

    2018-02-01

    The odd-even parity splittings in low-lying parity-doublet states of atomic nuclei with octupole correlations have usually been interpreted as rotational excitations on top of octupole vibration in the language of collective models. In this paper, we report a deep analysis of the odd-even parity splittings in the parity-doublet states of neutron-rich Ba isotopes around neutron number N =88 within a full microscopic framework of beyond-mean-field multireference covariant energy density functional theory. The dynamical correlations related to symmetry restoration and quadrupole-octupole shape fluctuation are taken into account with a generator coordinate method combined with parity, particle-number, and angular-momentum projections. We show that the behavior of odd-even parity splittings is governed by the interplay of rotation, quantum tunneling, and shape evolution. Similar to 224Ra, a picture of rotation-induced octupole shape stabilization in the positive-parity states is exhibited in the neutron-rich Ba isotopes.

  19. Octupole Deformation Bands of πh11/2 in Neutron-Rich 145,147La Nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-jiang; S, Zhu J.; Wang, Mu-ge; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; W, Ma C.; Long, Gui-lu; Zhu, Ling-yan; Li, Ming; A, Sakhaee; Gan, Cui-yun; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; Yu, Oganessian Ts; G, Ter-Akopian M.; A, Daniel V.

    1999-03-01

    Octupole deformation bands built on πh11/2 orbital in neutron-rich odd-Z 145,147La nuclei have been investigated by measuring the prompt γ-rays emitted from the 252Cf source. The alternating parity band structures and strong E1 transitions observed between negative- and positive-parity bands in both nuclei indicate the octupole deformation enhanced by the h11/2 single proton coupling. According to observed energy displacements the octupole deformation becomes stable at the intermediate spin states.

  20. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  1. Enhanced E3 Excitations in 144,146Ba and the Evolution of Octupole Collectivity

    NASA Astrophysics Data System (ADS)

    Bucher, B.; Zhu, S.; ANL, LLNL, LBNL, INL, UAM, Rochester, Maryland Collaboration

    2017-09-01

    Recent Coulomb excitation studies on 144,146Ba using the GRETINA-CHICO2 detection system with post-accelerated CARIBU beams have confirmed the existence of enhanced E3 transitions in these isotopes which are centered in a region that has long been predicted to exhibit stable octupole-deformed shapes. Furthermore, the widely-varying E1 strength observed between these isotopes is well-accounted for by models having octupole-deformed potentials, and the variation has been linked to increased occupancies of specific single-particle orbitals in the reflection-asymmetric potential. This talk will summarize the most recent experimental and theoretical results. In addition, data on octupole-related properties in the surrounding isotopes will be discussed in an attempt to better understand the origin and evolution of octupole collectivity in this mass region. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 (ANL), DE-AC02-05CH11231 (LBNL, GRETINA), DOE DE-AC52-07NA27344 (LLNL), DE-AC07-05ID14517 (INL), and MINECO (Spain).

  2. Octupole correlations in the 144Ba nucleus described with symmetry-conserving configuration-mixing calculations

    NASA Astrophysics Data System (ADS)

    Bernard, Rémi N.; Robledo, Luis M.; Rodríguez, Tomás R.

    2016-06-01

    We study the interplay of quadrupole and octupole degrees of freedom in the structure of the isotope 144Ba. A symmetry-conserving configuration-mixing method (SCCM) based on a Gogny energy density functional (EDF) has been used. The method includes particle number, parity, and angular momentum restoration as well as axial quadrupole and octupole shape mixing within the generator coordinate method. Predictions both for excitation energies and electromagnetic transition probabilities are in good agreement with the most recent experimental data.

  3. Update on MTTF figures for linear and rotary coolers of Thales Cryogenics

    NASA Astrophysics Data System (ADS)

    van de Groep, W.; van der Weijden, H.; van Leeuwen, R.; Benschop, T.; Cauquil, J. M.; Griot, R.

    2012-06-01

    Thales Cryogenics has an extensive background in delivering linear and rotary coolers for military, civil and space programs. During the last years several technical improvements have increased the lifetime of all Thales coolers resulting in significantly higher Mean Time To Failure (MTTF) figures. In this paper not only updated MTTF values for most of the products in our portfolio will be presented but also the methodology used to come to these reliability figures will be explained. The differences between rotary and linear coolers will be highlighted including the different failure modes influencing the lifetime under operational conditions. These updated reliability figures are based on extensive test results for both rotary and linear coolers as well as Weibull analysis, failure mode identifications, various types of lifetime testing and field results of operational coolers. The impact of the cooler selection for typical applications will be outlined. This updated reliability approach will enable an improved tradeoff for cooler selection in applications where MTTF and a correct reliability assessment is key. Improbing on cooler selection and an increased insight in cooler reliability will result in a higher uptime and operability of equipment, less risk on unexpected failures and lower costs of ownership.

  4. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to amore » resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.« less

  5. SEARCH FOR TWO-PHONON OCTUPOLE VIBRATIONAL BANDS IN 88, 89, 92, 93, 94, 96Sr AND 95, 96, 97, 98Zr

    NASA Astrophysics Data System (ADS)

    Hwang, J. K.; Hamilton, J. H.; Ramayya, A. V.; Brewer, N. T.; Wang, E. H.; Luo, Y. X.; Zhu, S. J.

    2012-09-01

    Several new gamma transitions were identified in 94Sr, 93Sr, 92Sr, 96Zr and 97Zr from the spontaneous fission of 252Cf. Excited states in 88, 89, 92, 94, 96Sr and 95, 96, 97, 98Zr were reanalyzed and reorganized to propose the new two-phonon octupole vibrational states and bands. The spin and parity of 6+ are assigned to a 4034.5 keV state in 94Sr and 3576.4 keV state in 98Zr. These states are proposed as the two-phonon octupole vibrational states along with the 6+ states at 3483.4 keV in 96Zr, at 3786.0 keV in 92Sr and 3604.2 keV in 96Sr. The positive parity bands in 88, 94, 96Sr and 96, 98Zr are the first two-phonon octupole vibrational bands based on a 6+ state assigned in spherical nuclei. It is thought that in 94, 96Sr and 96, 98Zr a 3- octupole vibrational phonon is weakly coupled to an one-phonon octupole vibrational band to make the two-phonon octupole vibrational band. Also, the high spin states of odd-A95Zr and 97Zr are interpreted to be generated by the neutron 2d5/2 hole and neutron 1g7/2 particle, respectively, weakly coupled to one- and two-phonon octupole vibrational bands of 96Zr. The high spin states of odd-A87Sr are interpreted to be caused by the neutron 1g9/2 hole weakly coupled to 3- and 5- states of 88Sr. New one- and two-POV bands in 95, 97Zr and 87, 89Sr are proposed, for the first time, in the present work.

  6. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    NASA Astrophysics Data System (ADS)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.

  7. Novel concept for driving the linear compressor of a micro-miniature split Stirling cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Maron, V.; Veprik, A.; Finkelstein, L.; Vilenchik, H.; Ziv, I.; Pundak, N.

    2009-05-01

    New methods of carrying out homeland security and antiterrorist operations call for the development of a new generation of mechanically cooled, portable, battery powered infrared imagers, relying on micro-miniature Stirling cryogenic coolers of rotary or linear types. Since split Stirling linearly driven micro-miniature cryogenic coolers have inherently longer life spans, low vibration export and better aural stealth as compared to their rotary driven rivals, they are more suitable for the above applications. The performance of such cryogenic coolers depends strongly on the efficacy of their electronic drivers. In a traditional approach, the PWM power electronics produce the fixed frequency tonal driving voltage/current, the magnitude of which is modulated via a PID control law so as to maintain the desired focal plane array temperature. The disadvantage of such drivers is that they draw high ripple current from the system's power bus. This results in the need for an oversized DC power supply (battery packs) and power electronic components, low efficiency due to excessive conductive losses and high residual electromagnetic interference which in turn degrades the performance of other systems connected to the same power bus. Without either an active line filter or large and heavy passive filtering, other electronics can not be powered from the same power bus, unless they incorporate heavy filtering at their inputs. The authors present the results of a feasibility study towards developing a novel "pumping" driver consuming essentially constant instant battery power/current without making use of an active or passive filter. In the tested setup, the driver relies on a bidirectional controllable bridge, invertible with the driving frequency, and a fast regulated DC/DC converter which maintains a constant level of current consumed from the DC power supply and thus operates in input current control mode. From the experimental results, the steady-state power consumed by the

  8. One-phonon octupole vibrational states in 211At, 212Rn, 213Fr and 214Ra with N = 126

    NASA Astrophysics Data System (ADS)

    Hwang, J. K.; Hamilton, J. H.; Ramayya, A. V.

    2013-12-01

    Excited high spin states in 211At, 212Rn, 213Fr and 214Ra with N = 126 are reorganized and interpreted in terms of the stretched weak coupling of an octupole 3- phonon. Nearly identical sequences of levels with ΔI = 3 and the parity change are found, for the first time, up to 25- for 20 states of 214Ra, up to 35- for 36 states of 212Rn and up to 53/2+ for 16 states of 213Fr. The stretched weak coupling of an octupole phonon is extended up to the highest excitation energy of 11355 keV for 212Rn which has the largest experimental B( E3) value of 44.1(88) W.u. for the 11- → 8{2/+} transition. The stretched weak coupling of an octupole 3- phonon needs to be considered when single particle configurations are assigned to high spin states. Average octupole excitation energies of 657(51) keV for 211At, 1101(28) keV for 212Rn, 667(25) keV for 213Fr, and 709(25) keV for 214Ra are obtained. The calculated level enegies are in a good agreement with the experimental level energies within the error limit of 4.3%.

  9. Spacecraft-borne long life cryogenic refrigeration: Status and trends

    NASA Technical Reports Server (NTRS)

    Johnson, A. L.

    1983-01-01

    The status of cryogenic refrigerator development intended for, or possibly applicable to, long life spacecraft-borne application is reviewed. Based on these efforts, the general development trends are identified. Using currently projected technology needs, the various trends are compared and evaluated. The linear drive, non-contacting bearing Stirling cycle refrigerator concept appears to be the best current approach that will meet the technology projection requirements for spacecraft-borne cryogenic refrigerators. However, a multiply redundant set of lightweight, moderate life, moderate reliability Stirling cycle cryogenic refrigerators using high-speed linear drive and sliding contact bearings may possibly suffice.

  10. Direct evidence for octupole deformation in Ba 146 and the origin of large E 1 moment variations in reflection-asymmetric nuclei

    DOE PAGES

    Bucher, B.; Zhu, S.; Wu, C. Y.; ...

    2017-04-12

    Despite the more than 1 order of magnitude difference between the measured dipole moments in 144Ba and 146Ba, the octupole correlations in 146Ba are found to be as strong as those in 144Ba with a similarly large value of B(E3;3 – → 0 +) determined as 48( +21 –29) W.u. Here, the new results not only establish unambiguously the presence of a region of octupole deformation centered on these neutron-rich Ba isotopes, but also manifest the dependence of the electric dipole moments on the occupancy of different neutron orbitals in nuclei with enhanced octupole strength, as revealed by fully microscopicmore » calculations.« less

  11. Capacitive Sensors for Measuring Masses of Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Youngquist, Robert

    2003-01-01

    An effort is under way to develop capacitive sensors for measuring the masses of cryogenic fluids in tanks. These sensors are intended to function in both microgravitational and normal gravitational settings, and should not be confused with level sensors, including capacitive ones. A sensor of this type is conceptually simple in the sense that (1) it includes only one capacitor and (2) if properly designed, its single capacitance reading should be readily convertible to a close approximation of the mass of the cryogenic fluid in the tank. Consider a pair of electrically insulated electrodes used as a simple capacitive sensor. In general, the capacitance is proportional to the permittivity of the dielectric medium (in this case, a cryogenic fluid) between the electrodes. The success of design and operation of a sensor of the present type depends on the accuracy of the assumption that to a close approximation, the permittivity of the cryogenic fluid varies linearly with the density of the fluid. Data on liquid nitrogen, liquid oxygen, and liquid hydrogen, reported by the National Institute of Standards and Technology, indicate that the permittivities and densities of these fluids are, indeed, linearly related to within a few tenths of a percent over the pressure and temperature regions of interest. Hence, ignoring geometric effects for the moment, the capacitance between two electrodes immersed in the fluid should vary linearly with the density, and, hence, with the mass of the fluid. Of course, it is necessary to take account of the tank geometry. Because most cryogenic tanks do not have uniform cross sections, the readings of level sensors, including capacitive ones, are not linearly correlated with the masses of fluids in the tanks. In a sensor of the present type, the capacitor electrodes are shaped so that at a given height, the capacitance per unit height is approximately proportional to the cross-sectional area of the tank in the horizontal plane at that

  12. Cryocoolers developments at Thales Cryogenics enabling compact remote sensing

    NASA Astrophysics Data System (ADS)

    Benschop, A.; van de Groep, W.; Mullié, J.; Willems, D.; Clesca, O.; Griot, R.; Martin, J.-Y.

    2010-10-01

    Thales Cryogenics (TCBV) has an extensive background in developing and delivering long-life cryogenic coolers for military, civil and space programs. This cooler range is based on three main compressor concepts: rotary compressors (RM), linear close tolerance contact seals (UP), and linear flexure bearing (LSF/LPT) compressors. The main differences - next to the different conceptual designs - between these products are their masses and Mean Time To Failure (MTTF) and the availability prediction of a single unit. New developments at Thales Cryogenics enabling compact long lifetime coolers - with an MTTF up to 50.000 hrs - will be outlined. In addition new developments for miniature cooler drive electronics with high temperature stability and power density will be described. These new cooler developments could be of particular interest for space missions where lower costs and mass are identified as important selection criteria. The developed compressors are originally connected to Stirling cold fingers that can directly be interfaced to different sizes of available dewars. Next to linear coolers, Thales Cryogenics has compact rotary coolers in its product portfolio. Though having a higher exported vibration level and a more limited MTTF of around 8.000 to 10.000 hours, their compactness and high efficiency could provide a good alternative for compact cooling of sensors in specific space missions. In this paper an overview of lifetime parameters will be listed versus the impact in the different cooler types. Tests results from both the installed base and the Thales Cryogenics test lab will be presented as well. Next to this differences in operational use for the different types of coolers as well as the outlook for further developments will be discussed.

  13. Cryogenic Cooling for Myriad Applications-A STAR Is Born

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems, a reversion to old-style liquid propellants. In the late 1980s, NASA wanted a compact linear alternator/motor with reduced size and mass, as well as high efficiency, that had unlimited service life for use in a thermally driven power generator for space power applications. Prior development work with free-piston Stirling converters (a Stirling engine integrated with a linear actuator that produces electrical power output) had shown the promise of that technology for high-power space applications. A dual use for terrestrial applications exists for compact Stirling converters for onsite combined heat and power units. The Stirling cycle is also usable in reverse as a refrigeration cycle suitable for cryogenic cooling, so this Stirling converter work promised double benefits as well as dual uses. The uses for cryogenic coolers within NASA abound; commercial applications are similarly wide-ranging, from cooling liquid oxygen and nitrogen, to cryobiology and bio-storage, cryosurgery, instrument and detector cooling, semiconductor manufacturing, and support service for cooled superconducting power systems.

  14. Cryogenic engineering

    NASA Astrophysics Data System (ADS)

    Beliakov, V. P.

    Recent developments and trends in cryogenic engineering are reviewed, with emphasis on the role of cryogenics in power generation, machine building, chemistry, and metallurgy. Several cryogenic systems are described, including air-separation apparatus, cryogenic storage systems, cryothermovacuum devices, and the cryogenic systems of superconducting devices. The theoretical principles underlying the design of cryogenic systems are examined, along with the theory for the processes involved.

  15. Design details of Intelligent Instruments for PLC-free Cryogenic measurements, control and data acquisition

    NASA Astrophysics Data System (ADS)

    Antony, Joby; Mathuria, D. S.; Chaudhary, Anup; Datta, T. S.; Maity, T.

    2017-02-01

    Cryogenic network for linear accelerator operations demand a large number of Cryogenic sensors, associated instruments and other control-instrumentation to measure, monitor and control different cryogenic parameters remotely. Here we describe an alternate approach of six types of newly designed integrated intelligent cryogenic instruments called device-servers which has the complete circuitry for various sensor-front-end analog instrumentation and the common digital back-end http-server built together, to make crateless PLC-free model of controls and data acquisition. These identified instruments each sensor-specific viz. LHe server, LN2 Server, Control output server, Pressure server, Vacuum server and Temperature server are completely deployed over LAN for the cryogenic operations of IUAC linac (Inter University Accelerator Centre linear Accelerator), New Delhi. This indigenous design gives certain salient features like global connectivity, low cost due to crateless model, easy signal processing due to integrated design, less cabling and device-interconnectivity etc.

  16. Lifetime testing results and diagnostic performance prediction of linear coolers at Thales Cryogenics

    NASA Astrophysics Data System (ADS)

    van der Weijden, H.; Benschop, T.; van de Groep, W.; Willems, D.

    2011-06-01

    Thales Cryogenics (TCBV) has an extensive background in delivering long-life cryogenic coolers for military, civil and space programs. During the last years many technical improvements have increased the lifetime of coolers resulting in significantly higher MTTF's. Lifetime endurance tests are used to validate these performance increases. An update will be given on lifetime test of a selection of TCBV's coolers. MTTF figures indicate the statistical average lifetimes for a large population of coolers. However, for the user of IR camera's and spectrometers a detailed view on the performance of an individual cooler and the possible impact of its performance degradation during its lifetime is very important. Thales Cryogenics is developing Cooler Diagnostic Software (CDS), which can be implemented in the firmware of its DSP based cooler drive electronics. With this implemented software the monitoring of the main cooler parameters during the lifetime in the equipment will be possible, including the prediction of the expected cooler performance availability. Based on this software it will be possible to analyze the status of the cooler inside the equipment and, supported by the lifetime knowledge at Thales Cryogenics, make essential choices on the maintenance of equipment and the replacement of coolers. In the paper, we will give an overview of potential situations in which such a predictive algorithm can be used. We will present the required interaction with future users to make an optimal interaction and interpretation of the generated data possible.

  17. Process simulations for the LCLS-II cryogenic systems

    NASA Astrophysics Data System (ADS)

    Ravindranath, V.; Bai, H.; Heloin, V.; Fauve, E.; Pflueckhahn, D.; Peterson, T.; Arenius, D.; Bevins, M.; Scanlon, C.; Than, R.; Hays, G.; Ross, M.

    2017-12-01

    Linac Coherent Light Source II (LCLS-II), a 4 GeV continuous-wave (CW) superconducting electron linear accelerator, is to be constructed in the existing two mile Linac facility at the SLAC National Accelerator Laboratory. The first light from the new facility is scheduled to be in 2020. The LCLS-II Linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting cryomodules. The Linac cryomodules require cryogenic cooling for the super-conducting niobium cavities at 2.0 K, low temperature thermal intercept at 5.5-7.5 K, and a thermal shield at 35-55 K. The equivalent 4.5 K refrigeration capacity needed for the Linac operations range from a minimum of 11 kW to a maximum of 24 kW. Two cryogenic plants with 18 kW of equivalent 4.5 K refrigeration capacity will be used for supporting the Linac cryogenic cooling requirements. The cryogenic plants are based on the Jefferson Lab’s CHL-II cryogenic plant design which uses the “Floating Pressure” design to support a wide variation in the cooling load. In this paper, the cryogenic process for the integrated LCLS-II cryogenic system and the process simulation for a 4.5 K cryoplant in combination with a 2 K cold compressor box, and the Linac cryomodules are described.

  18. Octupole deformation in neutron-rich actinides and superheavy nuclei and the role of nodal structure of single-particle wavefunctions in extremely deformed structures of light nuclei

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abusara, H.; Agbemava, S. E.

    2018-03-01

    Octupole deformed shapes in neutron-rich actinides and superheavy nuclei as well as extremely deformed shapes of the N∼ Z light nuclei have been investigated within the framework of covariant density functional theory. We confirmed the presence of new region of octupole deformation in neutron-rich actinides with the center around Z∼ 96,N∼ 196 but our calculations do not predict octupole deformation in the ground states of superheavy Z≥slant 108 nuclei. As exemplified by the study of 36Ar, the nodal structure of the wavefunction of occupied single-particle orbitals in extremely deformed structures allows to understand the formation of the α-clusters in very light nuclei, the suppression of the α-clusterization with the increase of mass number, the formation of ellipsoidal mean-field type structures and nuclear molecules.

  19. Quantifying MLI Thermal Conduction in Cryogenic Applications from Experimental Data

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    2015-12-01

    Multilayer Insulation (MLI) uses stacks of low-emittance metalized sheets combined with low-conduction spacer features to greatly reduce the heat transfer to cryogenic applications from higher temperature surrounds. However, as the hot-side temperature decreases from room temperature to cryogenic temperatures, the level of radiant heat transfer drops as the fourth power of the temperature, while the heat transfer by conduction only falls off linearly. This results in cryogenic MLI being dominated by conduction, a quantity that is extremely sensitive to MLI blanket construction and very poorly quantified in the literature. To develop useful quantitative data on cryogenic blanket conduction, multilayer nonlinear heat transfer models are used to analyze extensive heat transfer data measured by Lockheed Palo Alto on their cryogenic dewar MLI and measured by JPL on their spacecraft MLI. The data-fitting aspect of the modeling allows the radiative and conductive thermal properties of the tested blankets to be explicitly quantified. Results are presented showing that MLI conductance varies by a factor of 600 between spacecraft MLI and Lockheed's best cryogenic MLI.

  20. Radiation Requirements and Testing of Cryogenic Thermometers for the Ilc

    NASA Astrophysics Data System (ADS)

    Barnett, T.; Filippov, Yu. P.; Filippova, E. Yu.; Mokhov, N. V.; Nakao, N.; Klebaner, A. L.; Korenev, S. A.; Theilacker, J. C.; Trenikhina, J.; Vaziri, K.

    2008-03-01

    Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15 computer simulations were performed to understand the ILC radiation environment. Simulation results were used to establish radiation dose requirements for commercially available cryogenic thermometers. Two types of thermometers, Cernox® and TVO, were calibrated prior to irradiation using different technique. The sensors were subjected then to up to 200 kGy electron beam irradiation with kinetic energy of 5 MeV, a representative of the situation at the ILC operation. A post-irradiation behavior of the sensors was studied. The paper describes the MARS15 model, simulation results, cryogenic test set-up, irradiation tests, and cryogenic test results.

  1. Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use

    NASA Technical Reports Server (NTRS)

    Morse, S. F.; Roper, A. T.

    1975-01-01

    The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

  2. Specification of the 2nd cryogenic plant for RAON

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Ki, T.; Lee, K. W.; Kim, Y.; Jo, H. C.; Kim, D. G.

    2017-12-01

    RAON is a rare isotope beam facility being built at Daejeon, South Korea. The RAON consists of three linear accelerators, SCL1 (1st SuperConducting LINAC), SCL2, and SCL3. Each LINAC has its own cryogenic plant. The cryogenic plant for SCL2 will provide the cooling for cryomodules, low temperature SC magnets, high temperature SC magnets, and a cryogenic distribution system. This paper describes the specification of the plant including cooling capacity, steady state and transient operation modes, and cooling strategies. In order to reduce CAPEX with the specification, two suppliers will consider no liquid nitrogen pre-cooling, one integrated cold box, and one back-up HP compressor. The detail design of the plant will be started at the end of this year.

  3. Spiral 2 Cryogenic System for The Superconducting LINAC

    NASA Astrophysics Data System (ADS)

    Ghribi, A.; Bernaudin, P.-E.; Bert, Y.; Commeaux, C.; Houeto, M.; Lescalié, G.

    2017-02-01

    SPIRAL 21 is a rare isotope accelerator dedicated to the production of high intensity beams (E = 40 MeV, I = 5 mA). The driver is a linear accelerator (LINAC) that uses bulk Niobium made quarter wave RF cavities. 19 cryomodules inclose one or two cavities respectively for the low and the high energy sections. To supply the 1300 W at 4.2 K required to cool down the LINAC, a cryogenic system has been set up. The heart of the latter is a 3 turbines geared HELIAL®LF (ALAT2) cold box that delivers both the liquid helium for the cavities and the 60 K Helium gaz for the thermal screens. 19 valve-boxes insure cryogenic fluid distribution and management. Key issues like cool down speed or cavity RF frequency stability are closely linked to the cryogenic system management. To overcome these issues, modelling and simulation efforts are being undertaken prior to the first cool down trials. In this paper, we present a status update of the Spiral 2 cryogenic system and the cool down strategy considered for its commissioning.

  4. Cryogen spray cooling: Effects of droplet size and spray density on heat removal.

    PubMed

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  5. Thermodynamic Analyses of the LCLS-II Cryogenic Distribution System

    DOE PAGES

    Dalesandro, Andrew; Kaluzny, Joshua; Klebaner, Arkadiy

    2016-12-29

    The Linac Coherent Light Source (LCLS) at Stanford Linear Accelerator Center (SLAC) is in the process of being upgraded to a superconducting radio frequency (SRF) accelerator and renamed LCLS-II. This upgrade requires thirty-five 1.3 GHz SRF cryomodules (CM) and two 3.9 GHz CM. A cryogenic distribution system (CDS) is in development by Fermi National Accelerator Laboratory to interconnect the CM Linac with the cryogenic plant (CP). The CDS design utilizes cryogenic helium to support the CM operations with a high temperature thermal shield around 55 K, a low temperature thermal intercepts around 5 K, and a SRF cavity liquid heliummore » supply and sub-atmospheric vapor return both around 2 K. Additionally the design must accommodate a Linac consisting of two parallel cryogenic strings, supported by two independent CP utilizing CDS components such as distribution boxes, transfer lines, feed caps and endcaps. In this paper, we describe the overall layout of the cryogenic distribution system and the major thermodynamic factors which influence the CDS design including heat loads, pressure drops, temperature profiles, and pressure relieving requirements. In addition the paper describes how the models are created to perform the analyses.« less

  6. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  7. Cryogenic exciter

    DOEpatents

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  8. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  9. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  10. Octupole Correlations in THORIUM-225

    NASA Astrophysics Data System (ADS)

    Hughes, John Rhys

    Available from UMI in association with The British Library. The nuclear structure of ^{225 }Th has been studied using the reaction ^{226}Ra(alpha,5n) ^{225}Th at a beam energy of 50 MeV. In-beam gamma-gamma , e^{-}-n, e ^{-}-e^{-} and e^{-}- gamma coincidences have been measured, using the TESSA3 array at the Daresbury NSF and the Double Orange spectrometer at the University of Bonn Cyclotron. gamma-ray and electron energies and intensities, gamma-ray angular distribution ratios and electron subshell ratios and conversion coefficients have been used to establish a decay scheme up to spin (39/2) hbar and excitation energy E _{z} ~ 2.5 MeV. The decay scheme is found to be characterised by two Delta J = 1 rotational bands, and these are classified in terms of the simplex quantum number, s, which is expected to be conserved for an octupole nucleus. No band crossings are observed up to a rotational frequency of hbaromega ~ 0.21 and 0.18 MeV in the s = -i and +i bands, respectively. Parity doublets have been observed, with enhanced E1 transitions linking states of opposite parity. gamma -branching ratios have been measured and an average value of | Q_1/Q_2| = (0.51 +/- 0.06) times 10^{-3} fm^{-1} has been deduced. The results are compared with various calculations incorporating odd multiple degrees of freedom in the description of the nuclear shape.

  11. Fundamentals of Cryogenics

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

    2014-01-01

    Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

  12. Development and performance validation of a cryogenic linear stage for SPICA-SAFARI verification

    NASA Astrophysics Data System (ADS)

    Ferrari, Lorenza; Smit, H. P.; Eggens, M.; Keizer, G.; de Jonge, A. W.; Detrain, A.; de Jonge, C.; Laauwen, W. M.; Dieleman, P.

    2014-07-01

    In the context of the SAFARI instrument (SpicA FAR-infrared Instrument) SRON is developing a test environment to verify the SAFARI performance. The characterization of the detector focal plane will be performed with a backilluminated pinhole over a reimaged SAFARI focal plane by an XYZ scanning mechanism that consists of three linear stages stacked together. In order to reduce background radiation that can couple into the high sensitivity cryogenic detectors (goal NEP of 2•10-19 W/√Hz and saturation power of few femtoWatts) the scanner is mounted inside the cryostat in the 4K environment. The required readout accuracy is 3 μm and reproducibility of 1 μm along the total travel of 32 mm. The stage will be operated in "on the fly" mode to prevent vibrations of the scanner mechanism and will move with a constant speed varying from 60 μm/s to 400 μm/s. In order to meet the requirements of large stroke, low dissipation (low friction) and high accuracy a DC motor plus spindle stage solution has been chosen. In this paper we will present the stage design and stage characterization, describing also the measurements setup. The room temperature performance has been measured with a 3D measuring machine cross calibrated with a laser interferometer and a 2-axis tilt sensor. The low temperature verification has been performed in a wet 4K cryostat using a laser interferometer for measuring the linear displacements and a theodolite for measuring the angular displacements. The angular displacements can be calibrated with a precision of 4 arcsec and the position could be determined with high accuracy. The presence of friction caused higher values of torque than predicted and consequently higher dissipation. The thermal model of the stage has also been verified at 4K.

  13. A high excitation magnetic quadrupole lens quadruplet incorporating a single octupole lens for a low spherical aberration probe forming lens system

    NASA Astrophysics Data System (ADS)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi

    2018-03-01

    This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.

  14. Cryogenic motion performances of a piezoelectric single crystal micromotor

    NASA Astrophysics Data System (ADS)

    Li, Xiaotian; Wu, Yuting; Chen, Zhijiang; Wei, Xiaoyong; Luo, Haosu; Dong, Shuxiang

    2014-04-01

    This study investigates the cryogenic performances of a millimeter-size piezoelectric ultrasonic linear micromotor. The piezoelectric vibrator of the micromotor is made of Pb(In1/2Nb1/2)O3 -Pb(Mg1/3Nb2/3)-PbTiO3 single crystal and operated in first-bending wobbling mode. Experiments show that the piezoelectric single crystal micromotor works effectively even at extremely low temperature of -175 °C, although its resonance peaks vary with temperature significantly. This work confirms the feasibility of cryogenic operation of the piezo-micromotor, which is meaningful for aerospace or superconducting microwave application.

  15. Thales Cryogenics rotary cryocoolers for HOT applications

    NASA Astrophysics Data System (ADS)

    Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Freche, Sébastien

    2012-06-01

    Thales Cryogenics has an extensive background in delivering reliable linear and rotary coolers for military, civil and space programs. Recent work carried out at detector level enable to consider a higher operation temperature for the cooled detectors. This has a direct impact on the cooling power required to the cryocooler. In continuation of the work presented last year, Thales cryogenics has studied the operation and optimization of the rotary cryocoolers at high cold regulation temperature. In this paper, the performances of the Thales Cryogenics rotary cryocoolers at elevated cold regulation temperature will be presented. From these results, some trade-offs can be made to combine correct operation of the cryocooler on all the ambient operational range and maximum efficiency of the cryocooler. These trade-offs and the impact on MTTF of elevated cold regulation temperature will be presented and discussed. In correlation with the increase of the cold operation temperature, the cryocooler input power is significantly decreased. As a consequence, the cooler drive electronics own consumption becomes relatively important and must be reduced in order to minimize global input power to the cooling function (cryocooler and cooler drive electronics). Thales Cryogenics has developed a new drive electronics optimized for low input power requirements. In parallel, improvements on RM1 and RM2 cryocoolers have been defined and implemented. The main impacts on performances of these new designs will be presented. Thales cryogenics is now able to propose an efficient cooling function for application requiring a high cold regulation temperature including a range of tuned rotary coolers.

  16. Selected physico-mechanical characteristics of cryogenic and ambient ground turmeric

    NASA Astrophysics Data System (ADS)

    Barnwal, Pradyuman; Mohite, Ashish M.; Singh, Krishna K.; Kumar, Pankaj

    2014-03-01

    In this communication, selected physicomechanical characteristics of ground turmeric (cv. Prabha) were investigated for cryogenic and ambient grinding conditions of turmeric at different moisture contents (4, 6, 8 and 10% w.b.). A cryogenic grinder (Model: 100 UPZ, Hosokawa Alpine, Germany) and a micro pulverizer (hammer mill) were used for cryogenic and ambient grinding, respectively. The ground turmeric was graded in three grades viz. Gr-I, Gr-II and Gr-III with a sieve shaker using BSS Nos. 40, 85 and pan, respectively. Tap densities for cryogenic and ambient ground turmeric decreased from 678.7 (Gr-I) to 546.7 kgm-3 (Gr-III) and from 642.3 (Gr-I) to 468.6 kgm-3 (Gr-III), respectively, with the moisture increase. The angle of repose for cryogenic and ambient ground turmeric increased linearly from 26.85 (Gr-I) to 34.0° (Gr-III) and from 23.10 (Gr-I) to 28.06° (Gr-III), respectively with the increase in moisture content. The static coefficient of friction was the highest on plywood surface followed by mild steel sheet and galvanized iron sheet. The cryoground samples were found better in colour. Thermal conductivity of cryo-ground samples was higher than that of ambient ground samples. These physico-mechanical characteristics of cryogenic and ambient ground turmeric will be helpful for packaging, handling, and storage.

  17. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  18. CryoPAF4: a cryogenic phased array feed design

    NASA Astrophysics Data System (ADS)

    Locke, Lisa; Garcia, Dominic; Halman, Mark; Henke, Doug; Hovey, Gary; Jiang, Nianhua; Knee, Lewis; Lacy, Gordon; Loop, David; Rupen, Michael; Veidt, Bruce; Wierzbicki, Ramunas

    2016-07-01

    Phased array feed (PAF) receivers used on radio astronomy telescopes offer the promise of increased fields of view while maintaining the superlative performance attained with traditional single pixel feeds (SPFs). However, the much higher noise temperatures of room temperature PAFs compared to cryogenically-cooled SPFs have prevented their general adoption. Here we describe a conceptual design for a cryogenically cooled 2.8 - 5.18 GHz dual linear polarization PAF with estimated receiver temperature of 11 K. The cryogenic PAF receiver will comprise a 140 element Vivaldi antenna array and low-noise amplifiers housed in a 480 mm diameter cylindrical dewar covered with a RF transparent radome. A broadband two-section coaxial feed is integrated within each metal antenna element to withstand the cryogenic environment and to provide a 50 ohm impedance for connection to the rest of the receiver. The planned digital beamformer performs digitization, frequency band selection, beam forming and array covariance matrix calibration. Coupling to a 15 m offset Gregorian dual-reflector telescope, cryoPAF4 can expect to form 18 overlapping beams increasing the field of view by a factor of 8x compared to a single pixel receiver of equal system temperature.

  19. Cryogen Safety Course 8876

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, George

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  20. Cryogenic System for the Cryomodule Test Stand at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Michael J.; Hansen, Benjamin; Klebaner, Arkadiy

    This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description ofmore » the heat load measurement plan.« less

  1. Squeezed coherent states of motion for ions confined in quadrupole and octupole ion traps

    NASA Astrophysics Data System (ADS)

    Mihalcea, Bogdan M.

    2018-01-01

    Quasiclassical dynamics of trapped ions is characterized by applying the time dependent variational principle (TDVP) on coherent state orbits, in case of quadrupole and octupole combined (Paul and Penning) or radiofrequency (RF) traps. A dequantization algorithm is proposed, by which the classical Hamilton (energy) function associated to the system results as the expectation value of the quantum Hamiltonian on squeezed coherent states. We develop such method and particularize the quantum Hamiltonian for both combined and RF nonlinear traps, that exhibit axial symmetry. We also build the classical Hamiltonian functions for the particular traps we considered, and find the classical equations of motion.

  2. Cryogenic Moisture Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James; Smith, Trent; Breakfield, Robert; Baughner, Kevin; Heckle, Kenneth; Meneghelli, Barry

    2010-01-01

    The Cryogenic Moisture Apparatus (CMA) is designed for quantifying the amount of moisture from the surrounding air that is taken up by cryogenic-tank-insulating material specimens while under typical conditions of use. More specifically, the CMA holds one face of the specimen at a desired low temperature (e.g., the typical liquid-nitrogen temperature of 77 K) while the opposite face remains exposed to humid air at ambient or near-ambient temperature. The specimen is weighed before and after exposure in the CMA. The difference between the "after" and "before" weights is determined to be the weight of moisture absorbed by the specimen. Notwithstanding the term "cryogenic," the CMA is not limited to cryogenic applications: the low test temperature can be any temperature below ambient, and the specimen can be made of any material affected by moisture in air. The CMA is especially well suited for testing a variety of foam insulating materials, including those on the space-shuttle external cryogenic tanks, on other cryogenic vessels, and in refrigerators used for transporting foods, medicines, and other perishables. Testing is important because absorbed moisture not only adds weight but also, in combination with thermal cycling, can contribute to damage that degrades insulating performance. Materials are changed internally when subjected to large sub-ambient temperature gradients.

  3. Axial to transverse energy mixing dynamics in octupole-based magnetostatic antihydrogen traps

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Fajans, J.; Zukor, A. F.

    2018-05-01

    The nature of the trajectories of antihydrogen atoms confined in an octupole minimum-B trap is of great importance for upcoming spectroscopy, cooling, and gravity experiments. Of particular interest is the mixing time between the axial and transverse energies for the antiatoms. Here, using computer simulations, we establish that almost all trajectories are chaotic, and then quantify the characteristic mixing time between the axial and transverse energies. We find that there are two classes of trajectories: for trajectories whose axial energy is higher than about 20% of the total energy, the axial energy substantially mixes within about 10 s, whereas for trajectories whose axial energy is lower than about 10% of the total energy, the axial energy remains nearly constant for 1000 s or longer.

  4. The acoustic effect of cryogenically treating trumpets

    NASA Astrophysics Data System (ADS)

    Jones, Jesse; Rogers, Chris

    2003-10-01

    The acoustic effect of cryogenically treating trumpets is investigated. Ten Vincent Bach Stradivarious B♭ trumpets are studied, half of which have been cryogenically treated. The trumpets were played by six players of varying proficiency, with sound samples being recorded directly to disk at a sampling rate of 44.1 kHz. Both the steady-state and initial transient portions of the audio samples are analyzed. When comparing the average power spectra of the treated trumpets to the untreated set, no repeatable, statistically independent differences are observed in the data. Differences observed in player-to-player and trumpet-to-trumpet comparisons overshadow any differences that may have been brought on due to the cryogenic treatment. Qualitatively, players established no clear preference between the treated and untreated trumpets regarding tone and playability, and could not differentiate between the two sets of instruments. All data was collected in a double blind fashion. The treatment itself is a three step process, involving an 8 hour linear cool down period, a 10 hour period of sustained exposure to -195°C (-300°F), and a 20-25 hour period of warming back to room temperature. [Work was completed with the support of Steinway & Sons Pianos and Selmer Musical Instruments.

  5. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  6. Possible human endogenous cryogens.

    PubMed

    Shido, Osamu; Sugimoto, Naotoshi

    2011-06-01

    Anapyrexia, which is a regulated fall in core temperature, is beneficial for animals and humans when the oxygen supply is limited, e.g., hypoxic, ischemic, or histotoxic hypoxia, since at low body temperature the tissues require less oxygen due to Q(10). Besides hypoxia, anapyrexia can be induced various exogenous and endogenous substances, named cryogens. However, there are only a few reports investigating endogenous cryogens in mammals. We have experienced one patient who suffered from severe hypothermia. The patient seemed to be excessively producing endogenous peptidergic cryogenic substances the molecular weight of which may be greater than 30 kDa. In animal studies, the patient's cryogen appeared to affect metabolic functions, including thermogenic threshold temperatures, and then to produce hypothermia. Since endogenous cryogenic substances may be regarded as useful tool in human activities, e.g., during brain hypothermia therapy or staying in a space station or spaceship, further studies may be needed to identify human endogenous cryogens.

  7. Three-dimensional analysis for liquid hydrogen in a cryogenic storage tank with heat pipe pump system

    NASA Astrophysics Data System (ADS)

    Ho, Son H.; Rahman, Muhammad M.

    2008-01-01

    This paper presents a study on fluid flow and heat transfer of liquid hydrogen in a zero boil-off cryogenic storage tank in a microgravity environment. The storage tank is equipped with an active cooling system consisting of a heat pipe and a pump-nozzle unit. The pump collects cryogen at its inlet and discharges it through its nozzle onto the evaporator section of the heat pipe in order to prevent the cryogen from boiling off due to the heat leaking through the tank wall from the surroundings. A three-dimensional (3-D) finite element model is employed in a set of numerical simulations to solve for velocity and temperature fields of liquid hydrogen in steady state. Complex structures of 3-D velocity and temperature distributions determined from the model are presented. Simulations with an axisymmetric model were also performed for comparison. Parametric study results from both models predict that as the speed of the cryogenic fluid discharged from the nozzle increases, the mean or bulk cryogenic fluid speed increases linearly and the maximum temperature within the cryogenic fluid decreases.

  8. Variable-Delay Polarization Modulators for Cryogenic Millimeter-Wave Applications

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Eimer, J. R.; Fixsen, D. J.; Hinderks, J.; Kogut, A. J.; Lazear, J.; Mirel, P.; Switzer, E.; Voellmer, G. M.; Wollack, E. J..

    2014-01-01

    We describe the design, construction, and initial validation of the variable-delay polarization modulator (VPM) designed for the PIPER cosmic microwave background polarimeter. The VPM modulates between linear and circular polarization by introducing a variable phase delay between orthogonal linear polarizations. Each VPM has a diameter of 39 cm and is engineered to operate in a cryogenic environment (1.5 K). We describe the mechanical design and performance of the kinematic double-blade flexure and drive mechanism along with the construction of the high precision wire grid polarizers.

  9. PIP-II Cryogenic System and the Evolution of Superfluid Helium Cryogenic Plant Specifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy

    2017-01-01

    PIP-II cryogenic system: Superfluid Helium Cryogenic Plant (SHCP) and Cryogenic Distribution System (CDS) connecting the SHCP and the SC Linac (25 cryomodules) PIP-II Cryogenic System Static and dynamic heat loads for the SC Linac and static load of CDS listed out Simulation study carried out to compute SHe flow requirements for each cryomodule Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation presented From computed heat load and pressure drop values, SHCP basic specifications evolved.

  10. Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi

    2006-01-01

    Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.

  11. Shuttle cryogenic supply system optimization study. Volume 4: Cryogenic cooling in environmental control systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An analysis of cryogenic fluid cooling in the environmental control system of the space shuttle was conducted. The technique for treating the cryogenic fluid storage and supply tanks and subsystems as integrated systems was developed. It was concluded that a basic incompatibility exists between the heat generated and the cryogen usage rate and cryogens cannot be used to absorb the generated heat. The use of radiators and accumulators to provide additional cooling capability is recommended.

  12. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  13. Sources of Cryogenic Data and Information

    NASA Astrophysics Data System (ADS)

    Mohling, R. A.; Hufferd, W. L.; Marquardt, E. D.

    It is commonly known that cryogenic data, technology, and information are applied across many military, National Aeronautics and Space Administration (NASA), and civilian product lines. Before 1950, however, there was no centralized US source of cryogenic technology data. The Cryogenic Data Center of the National Bureau of Standards (NBS) maintained a database of cryogenic technical documents that served the national need well from the mid 1950s to the early 1980s. The database, maintained on a mainframe computer, was a highly specific bibliography of cryogenic literature and thermophysical properties that covered over 100 years of data. In 1983, however, the Cryogenic Data Center was discontinued when NBS's mission and scope were redefined. In 1998, NASA contracted with the Chemical Propulsion Information Agency (CPIA) and Technology Applications, Inc. (TAI) to reconstitute and update Cryogenic Data Center information and establish a self-sufficient entity to provide technical services for the cryogenic community. The Cryogenic Information Center (CIC) provided this service until 2004, when it was discontinued due to a lack of market interest. The CIC technical assets were distributed to NASA Marshall Space Flight Center and the National Institute of Standards and Technology. Plans are under way in 2006 for CPIA to launch an e-commerce cryogenic website to offer bibliography data with capability to download cryogenic documents.

  14. Realization and performance of cryogenic selection mechanisms

    NASA Astrophysics Data System (ADS)

    Aitink-Kroes, Gabby; Bettonvil, Felix; Kragt, Jan; Elswijk, Eddy; Tromp, Niels

    2014-07-01

    Within Infra-Red large wavelength bandwidth instruments the use of mechanisms for selection of observation modes, filters, dispersing elements, pinholes or slits is inevitable. The cryogenic operating environment poses several challenges to these cryogenic mechanisms; like differential thermal shrinkage, physical property change of materials, limited use of lubrication, high feature density, limited space etc. MATISSE the mid-infrared interferometric spectrograph and imager for ESO's VLT interferometer (VLTI) at Paranal in Chile coherently combines the light from 4 telescopes. Within the Cold Optics Bench (COB) of MATISSE two concepts of selection mechanisms can be distinguished based on the same design principles: linear selection mechanisms (sliders) and rotating selection mechanisms (wheels).Both sliders and wheels are used at a temperature of 38 Kelvin. The selection mechanisms have to provide high accuracy and repeatability. The sliders/wheels have integrated tracks that run on small, accurately located, spring loaded precision bearings. Special indents are used for selection of the slider/wheel position. For maximum accuracy/repeatability the guiding/selection system is separated from the actuation in this case a cryogenic actuator inside the cryostat. The paper discusses the detailed design of the mechanisms and the final realization for the MATISSE COB. Limited lifetime and performance tests determine accuracy, warm and cold and the reliability/wear during life of the instrument. The test results and further improvements to the mechanisms are discussed.

  15. RMs1: qualification results of the rotary miniature Stirling cryocooler at Thales Cryogenics

    NASA Astrophysics Data System (ADS)

    Martin, Jean-Yves; Seguineau, Cédric; Van-Acker, Sébastien; Sacau, Mikel; Le Bordays, Julien; Etchanchu, Thierry; Vasse, Christophe; Abadie, Christian; Laplagne, Gilles; Benschop, Tonny

    2017-05-01

    The trend for miniaturized Integrated Dewar and Cooler Assemblies (IDCA) has been confirmed over the past few years with several mentions of a new generation of IR detector working at High Operating Temperature (HOT). This key technology enables the use of cryocooler with reduced needs of cryogenics power. As a consequence, miniaturized IDCA are the combination of a HOT IR detector coupled with a low-size, low-weight and low-power (SWaP) cryocooler. Thales Cryogenics has developed his own line of SWaP products. Qualification results on linear solution where shown last year. The current paper focuses on the latest results obtained on RMs1 prototypes, the new rotary SWaP cryocooler from Thales Cryogenics. Cryogenic performances and induced vibrations are presented. In a second part, progress is discussed on compactness and weight on one side, and on power consumption on the other side. It shows how the trade-off made between weight and power consumption could lead to an optimized solution at system level. At least, an update is made on the qualification status.

  16. Cryogenic Insulation System

    NASA Technical Reports Server (NTRS)

    Davis, Randall C. (Inventor); Taylor, Allan H. (Inventor); Jackson, L. Robert (Inventor); Mcauliffe, Patrick S. (Inventor)

    1988-01-01

    This invention relates to reusable, low density, high temperature cryogenic foam insulation systems and the process for their manufacture. A pacing technology for liquid hydrogen fueled, high speed aircraft is the development of a fully reusable, flight weight cryogenic insulation system for propellant tank structures. In the invention cryogenic foam insulation is adhesively bonded to the outer wall of the fuel tank structure. The cryogenic insulation consists of square sheets fabricated from an array of abutting square blocks. Each block consists of a sheet of glass cloth adhesively bonded between two layers of polymethacrylimide foam. Each block is wrapped in a vapor impermeable membrane, such as Kapton(R) aluminum Kapton(R), to provide a vapor barrier. Very beneficial results can be obtained by employing the present invention in conjunction with fibrous insulation and an outer aeroshell, a hot fuselage structure with an internal thermal protection system.

  17. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  18. Low cost split stirling cryogenic cooler for aerospace applications

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Zechtzer, Semeon; Pundak, Nachman; Riabzev, Sergey; Kirckconnel, C.; Freeman, Jeremy

    2012-06-01

    Cryogenic coolers are used in association with sensitive electronics and sensors for military, commercial or scientific space payloads. The general requirements are high reliability and power efficiency, low vibration export and ability to survive launch vibration extremes and long-term exposure to space radiation. A long standing paradigm of using exclusively space heritage derivatives of legendary "Oxford" cryocoolers featuring linear actuators, flexural bearings, contactless seals and active vibration cancellation is so far the best known practice aiming at delivering high reliability components for the critical and usually expensive space missions. The recent tendency of developing mini and micro satellites for the budget constrained missions has spurred attempts to adapt leading-edge tactical cryogenic coolers to meet the space requirements. The authors are disclosing theoretical and practical aspects of a collaborative effort on developing a space qualified cryogenic refrigerator based on the Ricor model K527 tactical cooler and Iris Technology radiation hardened, low cost cryocooler electronics. The initially targeted applications are cost-sensitive flight experiments, but should the results show promise, some long-life "traditional" cryocooler missions may well be satisfied by this approach.

  19. Study of Cryogenic Complex Plasma

    DTIC Science & Technology

    2008-10-27

    nitrogen or liquid helium) and dust particles are introduced in the plasma. In YD-2, a cryogenic plasma is produced in the vapor of liquid helium above the...cryogenic liquid ( liquid nitrogen or liquid helium) and dust particles are introduced in the plasma. In YD-2, a cryogenic plasma is produced in the vapor...cryogenic liquid ( liquid nitrogen or liquid helium) in the Dewar bottle produces a stable plasma. We have been successful in producing a plasma (1

  20. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  1. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.

    1984-01-01

    The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.

  2. Quadrupole deformed and octupole collective bands in 228Ra

    NASA Astrophysics Data System (ADS)

    Gulda, K.; Mach, H.; Aas, A. J.; Borge, M. J. G.; Burke, D. G.; Fogelberg, B.; Gietz, H.; Grant, I. S.; Hagebo, E.; Hill, P.; Hoff, P.; Kaffrell, N.; Kurcewicz, W.; Lindroth, A.; Løvhøiden, G.; Martinez, T.; Mattsson, S.; Naumann, R. A.; Nybø, K.; Nyman, G.; Rubio, B.; Sanchez-Vega, M.; Tain, J. L.; Taylor, R. B. E.; Tengblad, O.; Thorsteinsen, T. F.; Isolde Collaboration

    1998-06-01

    Spins and parities for collective states in 228Ra have been determined from conversion electron measurements with a mini-orange β spectrometer. The fast-timing βγγ( t) method has been used to measure lifetimes of T {1}/{2} = 550(20) ps and 181 (3) ps for the 2 1+ and 4 1+ aembers of the K = 0 + band, and T {1}/{2} ⩽ 7 ps and ⩽6 ps for the 1 1- and 3 1- members of the K = 0 - band, respectively The quadrupole moments, Q0 deduced from the B (E2; 2 1+ → 0 1+) and B (E2; 4 1+ → 2 1+) rates are in good agreement with the previously measured value and the systematics of the region. However, the B(E1) rates of ⩾4 × 10 -4 e 2 fm 2, which represent the first B(E1) measurements for this nucleus, are at least 25 times larger than the value previously suggested for 228Ra. The new results are consistent with the B(E1) rates recently measured for the neighbouring 227Ra and reveal octupole correlations in 228Ra.

  3. Latest developments in cryogenic safety

    NASA Astrophysics Data System (ADS)

    Webster, T. J.

    1983-03-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  4. Latest developments in cryogenic safety

    NASA Technical Reports Server (NTRS)

    Webster, T. J.

    1983-01-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  5. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  6. Cryogenics and the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management

  7. Silicon Germanium Cryogenic Low Noise Amplifiers

    NASA Astrophysics Data System (ADS)

    Bardin, J. C.; Montazeri, S.; Chang, Su-Wei

    2017-05-01

    Silicon germanium heterojunction bipolar transistors have emerged in the last decade as an excellent option for use in cryogenic low noise amplifiers. This paper begins with a review of the critical developments that have led to today’s cryogenic low noise amplifiers. Next, recent work focused on minimizing the power consumption of SiGe cryogenic amplifiers is presented. Finally, open issues related to the cryogenic noise properties of SiGe HBTs are discussed.

  8. MOSFET's for Cryogenic Amplifiers

    NASA Technical Reports Server (NTRS)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  9. Subcooling Cryogenic Propellants for Long Duration Space Exploration

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Canavan, Edgar; Johnson, Wesley; Kutter, Bernard; Shull, Jeff

    2009-01-01

    The use of cryogenic propellants such as hydrogen and oxygen is crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles with the flexibility to remain in orbit or travel in space for months, necessitating long-term storage of these cryogens. One powerful technique for easing the challenge of cryogenic fluid storage is to remove energy from tlie cryogenic propellant by isobaricly subcooling them below their normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced. After launch, even with the use of the best insulation systems, heat will leak into the cold cryogenic propellant tank. However, the large heat capacity available in highly subcooled cryogenic propellants allows them to absorb the energy that leaks into the tank until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be no loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot many months with minimal mass penalty. Subcooling technologies for cryogenic propellants would thus provide the Exploration Systems Mission Directorate with an enhanced level of mission flexibility. However, there are a few challenges associated with subcooling cryogenic propellants since compact subcooling ground support equipment has not been demonstrated. This paper explores the beneficial impact of subcooling cryogenic propellants on the launch pad for long-term cryogenic propellant storage in space and proposes a novel method for implementing subcooling of cryogenic propellants for spacecraft such as the Ares V Earth Departure Stage (EDS). Analysis indicates that with a careful strategy to handle the

  10. Commissioning results of CERN HIE-ISOLDE and INFN ALPI cryogenic control systems

    NASA Astrophysics Data System (ADS)

    Inglese, V.; Pezzetti, M.; Calore, A.; Modanese, P.; Pengo, R.

    2017-02-01

    The cryogenic systems of both accelerators, namely HIE ISOLDE (High Intensity and Energy Isotope Separator On Line DEvice) at CERN and ALPI (Acceleratore Lineare Per Ioni) at LNL, have been refurbished. HIE ISOLDE is a major upgrade of the existing ISOLDE facilities, which required the construction of a superconducting linear accelerator consisting of six cryomodules, each containing five superconductive RF cavities and superconducting solenoids. The ALPI linear accelerator, similar to HIE ISOLDE, is located at Legnaro National Laboratories (LNL) and became operational in the early 90’s. It is composed of 74 superconducting RF cavities, assembled inside 22 cryostats. The new control systems are equipped with PLC, developed on the CERN UNICOS framework, which include Schneider and Siemens PLCs and various fieldbuses (Profibus DP and PA, WorldFIP). The control systems were developed in synergy between CERN and LNL in order to build, effectively and with an optimized use of resources, control systems allowing to enhance ease of operation, maintainability, and long-term availability. This paper describes (i) the cryogenic systems, with special focus on the design of the control systems hardware and software, (ii) the strategy adopted in order to achieve a synergic approach, and (iii) the commissioning results after the cool-down to 4.5 K of the cryomodules.

  11. Advances in cryogenic engineering. Volume 33 - Proceedings of the Cryogenic Engineering Conference, Saint Charles, IL, June 14-18, 1987

    NASA Technical Reports Server (NTRS)

    Fast, R. W. (Editor)

    1988-01-01

    Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.

  12. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  13. Cryogenic bolometric systems

    NASA Astrophysics Data System (ADS)

    Kangas, Miikka Matias

    The big bang, early galaxy formation, the interstellar medium, and high z galaxy cluster evolution are all science objectives that are studied in the far infrared (FIR). The cosmological parameters that describe the universe are encoded in anisotropies in the Cosmic Microwave Background (CMB), and can be extracted from precision subdegree angular resolution FIR maps. Cryogenic bolometers are well suited for these science objectives, and are evolving rapidly today. A cryogenic bolometric system is made up of a few building blocks, which can be modularized or integrated depending on the maturity of the scientific field they are used for. Integration of systems increases with the maturity of the technology. The basic building blocks are the bolometer, the cryogenics, the dewar, the optics, the filters, and electronics. The electronics can be further subdivided into room temperature back-end and cryogenic front-end electronics. The electronics are often partly integrated into the dewar. The dewar is part of the support structure, and only the subkelvin portion the dewar is referred to as cryogenics here. Each of these can be a sophisticated engineering feat on their own, and this dissertation revolves around the development of several of these elements. The microfabrication sequence for a free standing micromesh detector was developed. Polarization preserving photometer optics and filters were constructed and tested. A test dewar mechanical and optical structure was created to test single pixel photometers prior to mounting in the flight dewar. A modular flight dewar capable of holding an array of photometers and adaptable to a number of different cryogenics schemes and detector arrays was engineered and constructed. A zero gravity dilution refrigerator coil was constructed and tested. A corrugated platelet array concept was designed and tested. Metal mesh filter design and fabrication techniques were developed. Kevlar isolator structures were improved to work in

  14. Measurements of multipolarities in 227Ra as tests of evidence for stable octupole deformation

    NASA Astrophysics Data System (ADS)

    Borge, M. J. G.; Burke, D. G.; Gietz, H.; Hill, P.; Kaffrell, N.; Kurcewicz, W.; Løvhøiden, G.; Mattsson, S.; Naumann, R. A.; Nybø, K.; Nyman, G.; Thorsteinsen, T. F.

    1987-03-01

    Multipolarities of ~30 transitions in 227Ra have been established by measuring conversion electrons following the β - decay of 227Fr. For this purpose a "mini-orange"-type electron spectrometer has been constructed. The 227Fr isotopes were produced by the ISOLDE on-line separator at the CERN Synchro-cyclotron. Internal conversion coefficients were obtained from singles spectra and also from simultaneous γe - and γγ coincidence measurements. The new results support the placement of levels and transitions in the earlier level scheme but require changes in the previously assigned parities for four of the levels. Also, one E0 transition was identified. The results are consistent with previous interpretations for most of the levels that have been used to argue in favour of a small permanent octupole deformation for 227Ra.

  15. ARIEL E-linac Cryogenic System: Commissioning and First Operational Experience

    NASA Astrophysics Data System (ADS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Kishi, D.; Laxdal, R.; Ma, Y.; Nagimov, R.; Yosifov, D.

    2015-12-01

    The Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Isotope Separator and Accelerator (ISAC) facility at TRIUMF. A key part of the ARIEL project is a 10 mA 50 MeV continuous-wave superconducting radiofrequency (SRF) electron linear accelerator (e-linac). The 1.3 GHz SRF cavities are operated at 2 K. HELIAL LL helium liquefier by Air Liquide Advanced Technologies (ALAT) with a tuneable liquid helium (LHe) production was installed and commissioned in Q4’2013 [1]. It provides 4 K liquid helium to one injector and one accelerator cryomodules that were installed and tested in 2014. The 4 K to 2 K liquid helium transition is achieved on-board of each cryomodule. The cryoplant, LHe and LN2 distributions, sub-atmospheric (S/A) system and cryomodules were successfully commissioned and integrated into the e-linac cryogenic system. Required pressure regulation for both 4 K cryoplant in the Dewar and 2 K with the S/A system was achieved under simulated load. Final integration tests confirmed overall stable performance of the cryogenic system with two cryomodules installed. The paper presents details of the cryogenic system commissioning tests as well as highlights of the initial operational experience.

  16. Inferential Framework for Autonomous Cryogenic Loading Operations

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry G.; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara

    2017-01-01

    We address problem of autonomous cryogenic management of loading operations on the ground and in space. As a step towards solution of this problem we develop a probabilistic framework for inferring correlations parameters of two-fluid cryogenic flow. The simulation of two-phase cryogenic flow is performed using nearly-implicit scheme. A concise set of cryogenic correlations is introduced. The proposed approach is applied to an analysis of the cryogenic flow in experimental Propellant Loading System built at NASA KSC. An efficient simultaneous optimization of a large number of model parameters is demonstrated and a good agreement with the experimental data is obtained.

  17. The Effects of Cryogenic Treatment on Cutting Tools

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.

    2017-08-01

    Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.

  18. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    NASA Astrophysics Data System (ADS)

    Thienel, Lee; Stouffer, Chuck

    1995-09-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  19. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    NASA Technical Reports Server (NTRS)

    Thienel, Lee; Stouffer, Chuck

    1995-01-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  20. Heat switch technology for cryogenic thermal management

    NASA Astrophysics Data System (ADS)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  1. Cryogenic Technology, part 1. [conference proceedings; cryogenic wind tunnel design and instrumentation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Different engineering problems associated with the design of mechanisms and systems to operate in a cryogenic environment are discussed. The focal point for the entire engineering effort was the design of the National Transonic Facility, which is a closed-circuit cryogenic wind tunnel. The papers covered a variety of mechanical, structural, and systems design subjects including thermal structures insulation systems, noise, seals, and materials.

  2. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  3. Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Kimmel, W. M.; Kuhn, N. S.; Berry, R. F.; Newman, J. A.

    2001-01-01

    An overview and status of current activities seeking alternatives to 200 grade 18Ni Steel CVM alloy for cryogenic wind tunnel models is presented. Specific improvements in material selection have been researched including availability, strength, fracture toughness and potential for use in transonic wind tunnel testing. Potential benefits from utilizing damage tolerant life-prediction methods, recently developed fatigue crack growth codes and upgraded NDE methods are also investigated. Two candidate alloys are identified and accepted for cryogenic/transonic wind tunnel models and hardware.

  4. Subcooling for Long Duration In-Space Cryogenic Propellant Storage

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff

    2010-01-01

    Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.

  5. Techniques for on-orbit cryogenic servicing

    NASA Astrophysics Data System (ADS)

    DeLee, C. H.; Barfknecht, P.; Breon, S.; Boyle, R.; DiPirro, M.; Francis, J.; Huynh, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; Wegel, D.

    2014-11-01

    NASA (National Aeronautics and Space Administration) has a renewed interest in on-orbit cryogen storage and transfer to support its mission to explore near-earth objects such as asteroids and comets. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission (CPST-TDM), managed by the NASA Glenn Research Center (GRC) and scheduled for launch in 2018, will demonstrate numerous key technologies applicable to a cryopropellant fuel depot. As an adjunct to the CPST-TDM work, experiments at NASA Goddard Space Flight Center (GSFC) will support the development of techniques to manage and transfer cryogens on-orbit and expand these techniques as they may be applicable to servicing science missions using solid cryogens such as the Wide-field Infrared Survey Explorer (WISE). The results of several ground experiments are described, including autogenous pressurization used for transfer of liquid nitrogen and argon, characterization of the transfer and solidification of argon, and development of robotic tools for cryogen transfer.

  6. Cryogenic Integration of the 2-14 GHz Eleven Feed in a Wideband Receiver for VLBI2010

    NASA Technical Reports Server (NTRS)

    Pantaleev, Miroslaw; Jang, Jian; Karadikar, Yogesh; Helldner, Leif; Klein, Benjamin; Haas, Rudiger; Zaman, Ashraf; Zamani, Mojtaba; Kildal, Per-Simon

    2010-01-01

    The next generation VLBI systems require the design of a wideband receiver covering the 2-14 GHz range, necessitating a wideband feed. Presented here are the 2009 development of a cryogenic 2-14 GHz Eleven feed for reflector radio telescope antennas, including its integration into a cryogenic receiver. The Eleven feed is designed for dual linear polarization and consists of four log-periodic folded dipole arrays. Each pair of arrays is fed by a differential two-wire transmission line connected either to balun or a differential LNA. The present configuration has been measured in many configurations, at various independent labs - corresponding simulations have been done. The results show (across the band) a high polarization efficiency for the feed, with a nearly constant beam width, a reflection coefficient below -10dB, and a constant phase center. Electrical parameters under cryogenic conditions and measured receiver noise temperatures are presented.

  7. Ignition and flame characteristics of cryogenic hydrogen releases

    DOE PAGES

    Panda, Pratikash P.; Hecht, Ethan S.

    2017-01-01

    In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen

  8. Spacelab cryogenic propellant management experiment

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1976-01-01

    The conceptual design of a Spacelab cryogen management experiment was performed to demonstrate toe desirability and feasibility of subcritical cryogenic fluid orbital storage and supply. A description of the experimental apparatus, definition of supporting requirements, procedures, data analysis, and a cost estimate are included.

  9. Cryogenic Feedthrough Test Rig

    NASA Technical Reports Server (NTRS)

    Skaff, Antony

    2009-01-01

    The cryogenic feedthrough test rig (CFTR) allows testing of instrumentation feedthroughs at liquid oxygen and liquid hydrogen temperature and pressure extremes (dangerous process fluid) without actually exposing the feedthrough to a combustible or explosive process fluid. In addition, the helium used (inert gas), with cryogenic heat exchangers, exposes the feedthrough to that environment that allows definitive leak rates of feedthrough by typical industry-standard helium mass spectrometers.

  10. Investigation of cryogenic rupture disc design

    NASA Technical Reports Server (NTRS)

    Keough, J. B.; Oldland, A. H.

    1973-01-01

    Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

  11. Cryogenic Fluid Management Technology Development Roadmaps

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Johnson, W. L.

    2017-01-01

    Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.

  12. Quadrupole-octupole coupled states in 112Cd populated in the 111Cd(d ⃗,p ) reaction

    NASA Astrophysics Data System (ADS)

    Jamieson, D. S.; Garrett, P. E.; Bildstein, V.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Ball, G. C.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.

    2014-11-01

    States in 112Cd have been studied with the 111Cd(d ⃗,p ) 12Cd reaction using 22 MeV polarized deuterons. The protons from the reaction were momentum analyzed with a Q3D magnetic spectrograph, and spectra have been recorded with a position-sensitive detector located on the focal plane. Angular distributions of cross sections and analyzing powers have been constructed for the low-lying negative-parity states observed, including the 3-,4-, and 5- members of the previously assigned quadrupole-octupole quintuplet. The 5- member at 2373-keV possess the second largest spectroscopic strength observed, and is reassigned as having the s1/2⊗h11/2 two-quasineutron configuration as the dominate component of its wave function.

  13. Cryogenic fluid management (base R/T): Cryogenic fluid systems, Cryogenic Orbital Nitrogen Experiment (CONE), Cryogenic Orbital Hydrogen Experiment (COHE). (Transportation focused technology)

    NASA Technical Reports Server (NTRS)

    Symons, Pat

    1991-01-01

    The topics presented are covered in viewgraph form. The concluded remarks are: (1) advanced cryogenic fluid systems technology is enhancing or enabling to all known transportation scenarios for space exploration; (2) an integrated/coordinated program involving LeRC/MSFC has been formulated to address all known CFM needs - new needs should they develop, can be accommodated within available skills/facilities; (3) all required/experienced personnel and facilities are finally in place - data from initial ground-based experiments is being collected and analyzed - small scale STS experiments are nearing flight - program is beginning to yield significant results; (4) future proposed funding to primarily come from two sources; and (5) cryogenic fluid experimentation is essential to provide required technology and assure implementation in future NASA missions.

  14. Proceedings of the 26th International Cryogenic Engineering Conference - International Cryogenic Material Conference 2016

    NASA Astrophysics Data System (ADS)

    Datta, T. S.; Sharma, R. G.; Kar, S.

    2017-02-01

    International Conference ICEC 26 - ICMC 2016 was organized at New Delhi, India during March 7-11, 2016. Previous conference ICEC25-ICMC 2014 was held at the University of Twente, The Netherlands in July 2014. Next Conference ICEC 27- ICMC 2018 will be held at Oxford, UK during September 3-7, 2018 1. Introduction This is a biennial international conference on cryogenic engineering and cryogenics materials organized by the International Cryogenic Engineering Committee and the International Cryogenic Material Committee. For some years, the host country has been alternating between Europe and Asia. The present conference was held at the Manekshaw Convention Centre, New Delhi, India during March 7-11, 2016 and hosted jointly by the Indian Cryogenics Council (ICC) and the Inter-University Accelerator Centre (IUAC), New Delhi. Put all together as many as 547 persons participated in the conference. Out of these 218 were foreign delegates coming from 25 countries and the rest from India. 2. Inaugural Session & Course Lectures The pre conference short course lectures on “Cryocoolers” and “Superconducting Materials for Power Applications” were organized on 7th March. Cryocooler course was given jointly by Dr. Chao Wang from M/s. Cryomech, USA and Prof. Milind Atrey from IIT Bombay, India. The Course on Superconducting Materials was given by Prof. Venkat Selvamanickam from the University of Houston, USA. The conference was inaugurated in the morning of March 8th in a typical Indian tradition and in the presence of the Chief Guest, Dr. R Chidambaram (Principle Scientific Adviser to Govt. of India), Guest of Honour, Prof. H Devaraj (Vice Chairman University Grant Commission), Prof Marcel ter Brake ( Chair, ICEC Board), Prof. Wilfried Goldacker (Chair, ICMC board), Dr. D Kanjilal (Director IUAC), Dr R K Bhandari, (President, Indian Cryogenic Council ). Dr. T S Datta, Chair Local Organizing Committee coordinated the proceedings of the inaugural function. 3. Technical

  15. Cryogenic applications of commercial electronic components

    NASA Astrophysics Data System (ADS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Harvey Moseley, S.; Wollack, Edward J.

    2012-10-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2 K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG [1] and in the GISMO [2] camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  16. Cryogenic Applications of Commercial Electronic Components

    NASA Technical Reports Server (NTRS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.

    2012-01-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  17. CRYOGENIC MAGNETS

    DOEpatents

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  18. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost effective approaches to the required on-orbit demonstration are suggested.

  19. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2008-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost-effective approaches to the required on-orbit demonstration are suggested.

  20. Kodak AMSD Cryogenic Test Plans

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)

    2002-01-01

    NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.

  1. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  2. Advances in cryogenic engineering. Vols. 37A & 37B - Proceedings of the 1991 Cryogenic Engineering Conference, Univ. of Alabama, Huntsville, June 11-14, 1991

    NASA Technical Reports Server (NTRS)

    Fast, Ronald W. (Editor)

    1991-01-01

    The present volume on advances in cryogenic engineering discusses heat and mass transfer in helium, heat transfer in cryogenic fluids, thermoacoustic oscillations, and insulation. Attention is given to applications of superconductivity with reference to magnetic stability and coil protection, cryogenic techniques, and refrigeration for electronics and superconducting systems. Topics addressed include compressors, expanders, and pumps for liquid helium, magnetic refrigerators, pulse tube refrigerators, and cryocoolers. Also examined are properties of cryogenic fluids, cryogenic applications in transportion and space science and technology, and cryogenic instrumentation.

  3. ESS Cryogenic System Process Design

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Hees, W.; Jurns, J.; Su, X. T.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility funded and supported in collaboration with 17 European countries in Lund, Sweden. Cryogenic cooling at ESS is vital particularly for the linear accelerator, the hydrogen target moderators, a test stand for cryomodules, the neutron instruments and their sample environments. The paper will focus on specific process design criteria, design decisions and their motivations for the helium cryoplants and auxiliary equipment. Key issues for all plants and their process concepts are energy efficiency, reliability, smooth turn-down behaviour and flexibility. The accelerator cryoplant (ACCP) and the target moderator cryoplant (TMCP) in particular need to be prepared for a range of refrigeration capacities due to the intrinsic uncertainties regarding heat load definitions. Furthermore the paper addresses questions regarding process arrangement, 2 K cooling methodology, LN2 precooling, helium storage, helium purification and heat recovery.

  4. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes ofmore » operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.« less

  5. Gauging Systems Monitor Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

  6. Design and development of a direct injection system for cryogenic engines

    NASA Astrophysics Data System (ADS)

    Mutumba, Angela; Cheeseman, Kevin; Clarke, Henry; Wen, Dongsheng

    2018-04-01

    The cryogenic engine has received increasing attention due to its promising potential as a zero-emission engine. In this study, a new robust liquid nitrogen injection system was commissioned and set up to perform high-pressure injections into an open vessel. The system is used for quasi-steady flow tests used for the characterisation of the direct injection process for cryogenic engines. An electro-hydraulic valve actuator provides intricate control of the valve lift, with a minimum cycle time of 3 ms and a frequency of up to 20 Hz. With additional sub-cooling, liquid phase injections from 14 to 94 bar were achieved. Results showed an increase in the injected mass with the increase in pressure, and decrease in temperature. The injected mass was also observed to increases linearly with the valve lift. Better control of the injection process, minimises the number of variables, providing more comparable and repeatable sets of data. Implications of the results on the engine performance were also discussed.

  7. Automatic control of cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with

  8. On-orbit cryogenic fluid transfer

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Gille, J. P.; Eberhardt, R. N.

    1984-01-01

    A number of future NASA and DOD missions have been identified that will require, or could benefit from resupply of cryogenic liquids in orbit. The most promising approach for accomplishing cryogenic fluid transfer in the weightlessness environment of space is to use the thermodynamic filling technique. This approach involves initially reducing the receiver tank temperature by using several charge hold vent cycles followed by filling the tank without venting. Martin Marietta Denver Aerospace, under contract to the NASA Lewis Research Center, is currently developing analytical models to describe the on orbit cryogenic fluid transfer process. A detailed design of a shuttle attached experimental facility, which will provide the data necessary to verify the analytical models, is also being performed.

  9. Infrared detectors and test technology of cryogenic camera

    NASA Astrophysics Data System (ADS)

    Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long

    2016-10-01

    Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.

  10. Characterization of feedback resistors for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Moseley, S. H.; Silverberg, R. F.

    1989-01-01

    Results are presented on the testing of feedback resistors selected for use in the transimpedance amplifiers (TIAs) in the Diffuse Infrared Background Experiment (DIRBE) to be flown on the NASA's Cosmic Background Explorer satellite planned for a launch in 1989. The resistors without encapsulation were found to be reliable as cryogenic circuit elements. Their resistance is sufficiently high (so that their Johnson noise does not dominate amplifier noise at the signal frequency), and they are sufficiently linear; no correction need to be made for signals up to 1.5 V, the 100,000 signal-to-noise level for the DIRBE, which covers most of the signals expected to be seen on the sky.

  11. Commissioning the cryogenic system of the first LHC sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millet, F.; Claudet, S.; Ferlin, G.

    2007-12-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioningmore » is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.« less

  12. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  13. Advances in cryogenic engineering. Volume 27 - Proceedings of the Cryogenic Engineering Conference, San Diego, CA, August 11-14, 1981

    NASA Technical Reports Server (NTRS)

    Fast, R. W. (Editor)

    1982-01-01

    Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar.

  14. Coupled Cryogenic Thermal and Electrical Models for Transient Analysis of Superconducting Power Devices with Integrated Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.

    2017-12-01

    Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.

  15. Aerogel Blanket Insulation Materials for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  16. Thermal expansion and magnetostriction measurements at cryogenic temperature using the strain gage method

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-03-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra low temperature (<77 K) environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gage method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 K and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  17. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... °F.). (2) The cryogenic liquids of argon, nitrogen, oxygen, helium and neon must be loaded and... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in...

  18. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in cylinders. (a) General requirements. (1) A cylinder may not be loaded with a cryogenic liquid colder than...

  19. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in cylinders. (a) General requirements. (1) A cylinder may not be loaded with a cryogenic liquid colder than...

  20. Method and apparatus of cryogenic cooling for high temperature superconductor devices

    DOEpatents

    Yuan, Xing; Mine, Susumu

    2005-02-15

    A method and apparatus for providing cryogenic cooling to HTS devices, in particular those that are used in high-voltage electric power applications. The method involves pressurizing liquid cryogen to above one atmospheric pressure to improve its dielectric strength, while sub-cooling the liquid cryogen to below its saturation temperature in order to improve the performance of the HTS components of the device. An apparatus utilizing such a cooling method consists of a vessel that contains a pressurized gaseous cryogen region and a sub-cooled liquid cryogen bath, a liquid cryogen heating coupled with a gaseous cryogen venting scheme to maintain the pressure of the cryogen to a value in a range that corresponds to optimum dielectric strength of the liquid cryogen, and a cooling system that maintains the liquid cryogen at a temperature below its boiling point to improve the performance of HTS materials used in the device.

  1. Continuous-Reading Cryogen Level Sensor

    NASA Technical Reports Server (NTRS)

    Barone, F. E.; Fox, E.; Macumber, S.

    1984-01-01

    Two pressure transducers used in system for measuring amount of cryogenic liquid in tank. System provides continuous measurements accurate within 0.03 percent. Sensors determine pressure in liquid and vapor in tank. Microprocessor uses pressure difference to compute mass of cryogenic liquid in tank. New system allows continuous sensing; unaffected by localized variations in composition and density as are capacitance-sensing schemes.

  2. Cryogenic Target-Implosion Experiments on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, D.R.; Meyerhofer, D.D.; Sangster, T.C.

    The University of Rochester’s Laboratory for Laser Energetics has been imploding thick cryogenic targets for six years. Improvements in the Cryogenic Target Handling System and the ability to accurately design laser pulse shapes that properly time shocks and minimize electron preheat, produced high fuel areal densities in deuterium cryogenic targets (202+/-7 mg/cm^2). The areal density was inferred from the energy loss of secondary protons in the fuel (D2) shell. Targets were driven on a low final adiabat (alpha = 2) employing techniques to radially grade the adiabat (the highest adiabat at the ablation surface). The ice layer meets the target-designmore » toughness specification for DT ice of 1-um rms (all modes), while D2 ice layers average 3.0-um-rms roughness. The implosion experiments and the improvements in the quality and understanding of cryogenic targets are presented.« less

  3. Status of the LBNF Cryogenic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, D.; Adamowski, M.; Bremer, J.

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 ton of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team willmore » design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the models of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.« less

  4. Status of the LBNF Cryogenic System

    NASA Astrophysics Data System (ADS)

    Montanari, D.; Adamowski, M.; Bremer, J.; Delaney, M.; Diaz, A.; Doubnik, R.; Haaf, K.; Hentschel, S.; Norris, B.; Voirin, E.

    2017-12-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  5. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... filling density for hydrogen, cryogenic liquid is defined as the percent ratio of the weight of lading in... 49 Transportation 2 2011-10-01 2011-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in...

  6. Dipole, quadrupole, and octupole terms in the long-range hyperfine frequency shift for hydrogen in the presence of inert gases

    NASA Astrophysics Data System (ADS)

    Greenwood, W. G.; Tang, K. T.

    1987-03-01

    The R-6, R-8, and R-10 terms in the long-range expansion for the hyperfine frequency shift are calculated for hydrogen in the presence of He, Ne, Ar, Kr, and Xe. The R-6 terms are based on the dipole oscillator strength sums. For helium, the R-8 and R-10 terms are based on quadrupole and octupole oscillator strength sums. For the heavier inert gases, the results for the R-8 and R-10 terms are obtained from the sum rules and the static polarizabilities. Upper bounds are also determined for the R-8 and R-10 terms.

  7. Advances in cryogenic engineering. Volume 27 - Proceedings of the Cryogenic Engineering Conference, San Diego, CA, August 11-14, 1981

    NASA Astrophysics Data System (ADS)

    Fast, R. W.

    Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250

  8. GMTIFS: cryogenic rotary mechanisms for the GMT Integral-Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Hart, John; Espeland, Brady; Bloxham, Gabe; Boz, Robert; Bundy, Dave; Davies, John; Fordham, Bart; Herald, Nick; Sharp, Rob; Vaccarella, Annino; Vest, Colin

    2016-07-01

    A representative range of the rotary mechanisms proposed for use in GMTIFS is described. All are driven by cryogenically rated stepper motors. For each mechanism, angular position is measured by means of eddy current sensors arranged to function as a resolver. These measure the linear displacement of a decentered aluminum alloy target in two orthogonal directions, from which angular position is determined as a function of the displacement ratio. Resolver function and performance is described. For each mechanism, the mechanical design is described and the adequacy of positioning repeatability assessed. Options for improvement are discussed.

  9. A cryogenic DAC operating down to 4.2 K

    NASA Astrophysics Data System (ADS)

    Rahman, M. T.; Lehmann, T.

    2016-04-01

    This paper presents a 10 bit CMOS current steering digital to analog converter (DAC) that operates from room temperature to as low as 4.2 K. It works as the core part of a cryogenic Silicon quantum computer controller circuit producing rapid control gate voltage pulses for quantum bits (qubits) initialization. An improved analog calibration method with a unique unit current cell design is included in the D/A converter structure to overcome the extended cryogenic nonlinear and mismatch effects. The DAC retains its 10 bit linear monotonic behavior over the wide temperature range and it drives a 50 Ω load to 516 mV with a full scale rise time of 10 ns. The differential non-linearity (DNL) of the converter is 0.35LSB while its average power consumption is 32.18 mW from a 3 V power supply. The complete converter is fabricated using a commercial 0.5 μm 1 poly 3 metal Silicon on Sapphire (SOS) CMOS process. He briefly worked as a Lecturer in the Stamford University Bangladesh prior to starting his Ph.D. in 2012 in the School of Electrical Engineering and Telecommunications, UNSW. His Ph.D. research is focused on cryogenic electronics for Quantum Computer Interface. His main research interests are in designing data converters for ultra-low temperature electronics and biomedical applications. He spent two years as a Research Fellow at the University of Edinburgh, U.K., where he worked with biologically inspired artificial neural systems. From 1997 to 2000, he was an Assistant Professor in electronics at the Technical University of Denmark, working with low-power low-noise low-voltage analog and mixed analog-digital integrated circuits. From 2001 to 2003 he was Principal Engineer with Cochlear Ltd., Australia, where he was involved in the design of the world's first fully implantable cochlear implant. Today he is Associate Professor in microelectronics at the University of New South Wales, Australia. He has authored over 100 journal papers, conference papers, book chapters

  10. Cryogenic insulation standard data and methodologies

    NASA Astrophysics Data System (ADS)

    Demko, J. A.; Fesmire, J. E.; Johnson, W. L.; Swanger, A. M.

    2014-01-01

    Although some standards exist for thermal insulation, few address the sub-ambient temperature range and cold-side temperatures below 100 K. Standards for cryogenic insulation systems require cryostat testing and data analysis that will allow the development of the tools needed by design engineers and thermal analysts for the design of practical cryogenic systems. Thus, this critically important information can provide reliable data and methodologies for industrial efficiency and energy conservation. Two Task Groups have been established in the area of cryogenic insulation systems Under ASTM International's Committee C16 on Thermal Insulation. These are WK29609 - New Standard for Thermal Performance Testing of Cryogenic Insulation Systems and WK29608 - Standard Practice for Multilayer Insulation in Cryogenic Service. The Cryogenics Test Laboratory of NASA Kennedy Space Center and the Thermal Energy Laboratory of LeTourneau University are conducting Inter-Laboratory Study (ILS) of selected insulation materials. Each lab carries out the measurements of thermal properties of these materials using identical flat-plate boil-off calorimeter instruments. Parallel testing will provide the comparisons necessary to validate the measurements and methodologies. Here we discuss test methods, some initial data in relation to the experimental approach, and the manner reporting the thermal performance data. This initial study of insulation materials for sub-ambient temperature applications is aimed at paving the way for further ILS comparative efforts that will produce standard data sets for several commercial materials. Discrepancies found between measurements will be used to improve the testing and data reduction techniques being developed as part of the future ASTM International standards.

  11. Cryogenic wind tunnels: Unique capabilities for the aerodynamicist

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1976-01-01

    The cryogenic wind-tunnel concept as a practical means for improving ground simulation of transonic flight conditions. The Langley 1/3-meter transonic cryogenic tunnel is operational, and the design of a cryogenic National Transonic Facility is undertaken. A review of some of the unique capabilities of cryogenic wind tunnels is presented. In particular, the advantages of having independent control of tunnel Mach number, total pressure, and total temperature are highlighted. This separate control over the three tunnel parameters will open new frontiers in Mach number, Reynolds number, aeroelastic, and model-tunnel interaction studies.

  12. Thermal conductivity of silver loaded conductive epoxy from cryogenic to ambient temperature and its application for precision cryogenic noise measurements

    NASA Astrophysics Data System (ADS)

    Amils, Ricardo I.; Gallego, Juan Daniel; Sebastián, José Luis; Muñoz, Sagrario; Martín, Agustín; Leuther, Arnulf

    2016-06-01

    The pressure to increase the sensitivity of instrumentation has pushed the use of cryogenic Low Noise Amplifier (LNA) technology into a growing number of fields. These areas range from radio astronomy and deep space communications to fundamental physics. In this context manufacturing for cryogenic environments requires a proper thermal knowledge of the materials to be able to achieve adequate design behavior. In this work, we present experimental measurements of the thermal conductivity of a silver filled conductive epoxy (EPO-TEK H20E) which is widely used in cryogenic electronics applications. The characterization has been made using a sample preparation which mimics the practical use of this adhesive in the fabrication of cryogenic devices. We apply the data obtained to a detailed analysis of the effects of the conductive epoxy in a monolithic thermal noise source used for high accuracy cryogenic microwave noise measurements. In this application the epoxy plays a fundamental role since its limited thermal conductivity allows heating the chip with relatively low power. To our knowledge, the cryogenic thermal conductivity data of this epoxy has not been reported before in the literature in the 4-300 K temperature range. A second non-conductive epoxy (Gray Scotch-Weld 2216 B/A), also widely used in cryogenic applications, has been measured in order to validate the method by comparing with previous published data.

  13. The ESS Superconducting RF Cavity and Cryomodule Cryogenic Processes

    NASA Astrophysics Data System (ADS)

    Darve, C.; Elias, N.; Molloy, S.; Bosland, P.; Renard, B.; Bousson, S.; Olivier, G.; Reynet, D.; Thermeau, J. P.

    The European Spallation Source (ESS) is one of Europe's largest research infrastructures, tobring new insights to the grand challenges of science and innovation in fields as diverse as material and life sciences, energy, environmental technology, cultural heritage,solid-state and fundamental physics by the end of the decade. The collaborative project is funded by a collaboration of 17 European countries and is under design and construction in Lund, Sweden. A 5 MW, long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms and the repetition frequency is 14 Hz (4% duty cycle). The choice of SRF technology is a key element in the development of the ESS linear accelerator (linac). The superconducting linacis composed of one section of spoke cavity cryomodules(352.21 MHz) and two sections of elliptical cavity cryomodules (704.42 MHz). These cryomodules contain niobium SRF cavities operating at 2 K, cooled by the accelerator cryoplantthrough the cryogenic distribution system. This paper presents the superconducting RF cavity and cryomodule cryogenic processes, which are developed for the technology demonstrators and to be ultimately integrated for the ESS tunnel operation.

  14. Advanced Devices for Cryogenic Thermal Management

    NASA Astrophysics Data System (ADS)

    Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.

    2006-04-01

    This paper describes six advanced cryogenic thermal management devices/subsystems developed by Swales Aerospace for ground/space-based applications of interest to NASA, DoD, and the commercial sector. The devices/subsystems described herein include the following: (a) a differential thermal expansion cryogenic thermal switch (DTE-CTSW) constructed with high purity aluminum end-pieces and an Ultem support rod for the 6 K Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) (b) a quad-redundant DTE-CTSW assembly for the 35 K science instruments (NIRCam, NIRSpec, and FGS) mounted on the JWST Integrated Science Instrument Module (ISIM) (c) a cryogenic diode heat pipe (CDHP) thermal switching system using methane as the working fluid for the 100 K CRISM hyperspectral mapping instrument on the Mars Reconnaissance Orbiter (MRO) and (d) three additional devices/subsystems developed during the AFRL-sponsored CRYOTOOL program, which include a dual DTE-CTSW/dual cryocooler test bed, a miniaturized neon cryogenic loop heat pipe (mini-CLHP), and an across gimbal cryogenic thermal transport system (GCTTS). For the first three devices/subsystems mentioned above, this paper describes key aspects of the development efforts including concept definition, design, fabrication, and testing. For the latter three, this paper provides brief overview descriptions as key details are provided in a related paper.

  15. Cost-Efficient Storage of Cryogens

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J. P.; Nagy, Z.; Sojoumer, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2007-01-01

    NASA's cryogenic infrastructure that supports launch vehicle operations and propulsion testing is reaching an age where major refurbishment will soon be required. Key elements of this infrastructure are the large double-walled cryogenic storage tanks used for both space vehicle launch operations and rocket propulsion testing at the various NASA field centers. Perlite powder has historically been the insulation material of choice for these large storage tank applications. New bulk-fill insulation materials, including glass bubbles and aerogel beads, have been shown to provide improved thermal and mechanical performance. A research testing program was conducted to investigate the thermal performance benefits as well as to identify operational considerations and associated risks associated with the application of these new materials in large cryogenic storage tanks. The program was divided into three main areas: material testing (thermal conductivity and physical characterization), tank demonstration testing (liquid nitrogen and liquid hydrogen), and system studies (thermal modeling, economic analysis, and insulation changeout). The results of this research work show that more energy-efficient insulation solutions are possible for large-scale cryogenic storage tanks worldwide and summarize the operational requirements that should be considered for these applications.

  16. The Future with Cryogenic Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  17. Cryogenics for LDR

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1988-01-01

    Three cryogenic questions of importance to Large Deployable Reflector (LDR) are discussed: the primary cooling requirement, the secondary cooling requirement, and the instrument changeout requirement.

  18. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  19. Status of the LBNF Cryogenic System

    DOE PAGES

    Montanari, D.; Adamowski, M.; Bremer, J.; ...

    2017-12-30

    We present that the Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An internationalmore » engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. Lastly, the expected performance, the functional requirements and the status of the design are also highlighted.« less

  20. Status of the LBNF Cryogenic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, D.; Adamowski, M.; Bremer, J.

    We present that the Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An internationalmore » engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. Lastly, the expected performance, the functional requirements and the status of the design are also highlighted.« less

  1. Cryogenics Testbed Laboratory Flange Baseline Configuration

    NASA Technical Reports Server (NTRS)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  2. Properties of cryogenically worked metals. [stainless steels

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Kiefer, T. F.

    1975-01-01

    A program was conducted to determine whether the mechanical properties of cryogenically worked 17-7PH stainless steel are suitable for service from ambient to cryogenic temperatures. It was determined that the stress corrosion resistance of the cryo-worked material is quite adequate for structural service. The tensile properties and fracture toughness at room temperature were comparable to titanium alloy 6Al-4V. However, at cryogenic temperatures, the properties were not sufficient to recommend consideration for structural service.

  3. Cryogenic Fluid Management Technology for Moon and Mars Missions

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  4. Latest developments in cryogenic safety

    NASA Astrophysics Data System (ADS)

    Webster, T.

    1982-05-01

    The Cryogenic Safety Manual, published under the auspices of the British Cryogenics Council, is summarized. Since an awareness of the physical properties of the cryogenic fluids being dealt with is considered important in directing attention to hazardous situations which may arise, the manual lists the more important properties, such as molecular weight, boiling point, and freezing point. Since hydrogen and helium are very light, the possibility arises of explosive mixtures being formed at high points in buildings. Since argon is unexpectedly heavy, its removal requires suction rather than blowing. It is also pointed out that the use of inert liquid nitrogen can lead to the creation of a noninert atmosphere which supports combustion because it contains oxygen. Attention is also given to the danger of asphyxiation posed by the growing use of inert gases.

  5. Cryogenic Temperature-Gradient Foam/Substrate Tensile Tester

    NASA Technical Reports Server (NTRS)

    Vailhe, Christophe

    2003-01-01

    The figure shows a fixture for measuring the tensile strength of the bond between an aluminum substrate and a thermally insulating polymeric foam. The specimen is meant to be representative of insulating foam on an aluminum tank that holds a cryogenic liquid. Prior to the development of this fixture, tensile tests of this type were performed on foam/substrate specimens immersed in cryogenic fluids. Because the specimens were cooled to cryogenic temperatures throughout their thicknesses, they tended to become brittle and to fracture at loads below true bond tensile strengths. The present fixture is equipped to provide a thermal gradient from cryogenic temperature at the foam/substrate interface to room temperature on the opposite foam surface. The fixture includes an upper aluminum block at room temperature and a lower aluminum block cooled to -423 F (approx. -253 C) by use of liquid helium. In preparation for a test, the metal outer surface (the lower surface) of a foam/substrate specimen is bonded to the lower block and the foam outer surface (the upper surface) of the specimen is bonded to the upper block. In comparison with the through-the-thickness cooling of immersion testing, the cryogenic-to-room-temperature thermal gradient that exists during testing on this fixture is a more realistic approximation of the operational thermal condition of sprayed insulating foam on a tank of cryogenic liquid. Hence, tensile tests performed on this fixture provide more accurate indications of operational bond tensile strengths. In addition, the introduction of the present fixture reduces the cost of testing by reducing the amount of cryogenic liquid consumed and the time needed to cool a specimen.

  6. Structural damping studies at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Buehrle, Ralph D.

    1994-01-01

    Results of an engineering study to measure changes in structural damping properties of two cryogenic wind tunnel model systems and two metallic test specimens at cryogenic temperatures are presented. Data are presented which indicate overall, a trend toward reduced structural damping at cryogenic temperatures (-250 degrees F) when compared with room temperature damping properties. The study was focused on structures and materials used for model systems tested in the National Transonic Facility (NTF). The study suggests that the significant reductions in damping at extremely cold temperatures are most likely associated with changes in mechanical joint compliance damping rather than changes in material (solid) damping.

  7. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D.

    1981-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  8. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  9. NASA's Cryogenic Fluid Management Technology Project

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  10. Commissioning of cryogenic system for China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  11. Long-Term Cryogenic Propellant Storage for the TOPS Mission

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Francis, John; Li, Xiaoyi; Purves, Lloyd; DeLee, Hudson; Riall, Sara; McGuinness, Dan; Willis, Dewey; Nixon, Conor; Devine Matt; hide

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.

  12. Method of measuring heat influx of a cryogenic transfer system

    DOEpatents

    Niemann, Ralph C.; Zelipsky, Steven A.; Rezmer, Ronald R.; Smelser, Peter

    1981-01-01

    A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

  13. Feasibility study for the Cryogenic Orbital Nitrogen Experiment (CONE)

    NASA Technical Reports Server (NTRS)

    Bell, R. S.; Crouch, M. A.; Hanna, G. J.; Cady, E. C.; Meserole, J. S.

    1991-01-01

    An improved understanding of low gravity subcritical cryogenic fluid behavior is critical for the continued development of space based systems. Although early experimental programs provided some fundamental understanding of zero gravity cryogenic fluid behavior, more extensive flight data are required to design space based cryogenic liquid storage and transfer systems with confidence. As NASA's mission concepts evolve, the demand for optimized in-space cryogenic systems is increasing. Cryogenic Orbital Nitrogen Experiment (CONE) is an attached shuttle payload experiment designed to address major technological issues associated with on-orbit storage and supply of cryogenic liquids. During its 7 day mission, CONE will conduct experiments and technology demonstrations in active and passive pressure control, stratification and mixing, liquid delivery and expulsion efficiency, and pressurant bottle recharge. These experiments, conducted with liquid nitrogen as the test fluid, will substantially extend the existing low gravity fluid data base and will provide future system designers with vital performance data from an orbital environment.

  14. Active Costorage of Cryogenic Propellants for Exploration

    NASA Technical Reports Server (NTRS)

    Canavan, Edgar R.; Boyle, Rob; Mustafi, Shuvo

    2008-01-01

    Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used cryogens to cool instruments. In many cases, the lifetime of the primary cryogen tank has been extended by intercepting much of the heat incident on the tank at an intermediate-temperature shield cooled either by a second cryogen tank or a mechanical cryocooler. For an LH2/LO2 propellant system, a combination of these ideas can be used, in which the shield around the LO2 tank is attached to, and at the same temperature as, the LO2 tank, but is actively cooled so as to remove all heat impinging on the tank and shield. This configuration eliminates liquid oxygen boil-off and cuts the liquid hydrogen boil-off to a small fraction of the unshielded rate. This paper studies the concept of active costorage as a means of long-term cryogenic propellant storage. The paper describes the design impact of an active costorage system for the Crew Exploration Vehicle (CEV). This paper also compares the spacecraft level impact of the active costorage concept with a passive storage option in relation to two different scales of spacecraft that will be used for the lunar exploration effort, the CEV and the Earth Departure Stage (EDS). Spacecraft level studies are performed to investigate the impact of scaling of the costorage technologies for the different components of the Lunar Architecture and for different mission durations.

  15. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery

    2014-01-01

    The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.

  16. Cryogenic support system

    DOEpatents

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  17. Cryogenic support system

    DOEpatents

    Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.

    1988-01-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

  18. Flexible cryogenic conduit

    DOEpatents

    Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  19. Comparison of cryogenic low-pass filters.

    PubMed

    Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  20. Comparison of cryogenic low-pass filters

    NASA Astrophysics Data System (ADS)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  1. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, C.D.

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

  2. Preparation of fine-particles at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Globus, H.

    1970-01-01

    Flash freezing process yields gelling agent for use at cryogenic temperatures. Vaporized material, diluted with an inert gas, is injected below the surface of an agitated cryogenic liquid. This method disperses particles of chlorine trifluoride in liquid oxygen difluoride.

  3. Electromechanical Materials for Cryogenic Use

    NASA Technical Reports Server (NTRS)

    Leidinger, Peter; Pilgrim, Steven M.

    1996-01-01

    Electromechanical materials can be used in smart sensor and actuator devices. Yet none performing at low temperatures are available. To meet this need, Pb((MgNi)(1/3)Ta(2/3))03 was synthesized as an electrostrictive ceramic for applications in cryogenic environments. Employing the columbite precursor route, samples with 0% to 100% Ni substitution for Mg were prepared, but only samples with Ni-substitutions less than or equal to 20% yielded primarily the desired perovskite phase. For these compositions the temperature of highest permittivity decreased linearly with increasing Ni content to yield a minimum value of -124 C for 20% Ni-substitution. This composition showed good relaxor dielectric behavior with a maximum relative permittivity of 5890 at 1 kHz. Additionally, in samples with excess MgO, the magnitude of permittivity doubled. In this effort, Pb((MgNi)(1/3)Ta(2/3))03 (PMNiTa) was fabricated to lower its transition temperature by substituting Ni for Mg successively.

  4. Advances in cryogenic engineering. Vols. 35A & 35B - Proceedings of the 1989 Cryogenic Engineering Conference, University of California, Los Angeles, July 24-28, 1989

    NASA Astrophysics Data System (ADS)

    Fast, R. W.

    The book presents a review of literature on superfluid helium, together with papers under the topics on heat and mass transfer in He II; applications of He II for cooling superconducting devices in space; heat transfer to liquid helium and liquid nitrogen; multilayer insulation; applications of superconductivity, including topics on magnets and other devices, magnet stability and coil protection, and cryogenic techniques; and refrigeration for electronics. Other topics discussed include refrigeration of superconducting systems; the expanders, cold compressors, and pumps for liquid helium; dilution refrigerators; magnetic refrigerators; pulse tube refrigerators; cryocoolers for space applications; properties of cryogenic fluids; cryogenic instrumentation; hyperconducting devices (cryogenic magnets); cryogenic applications in space science and technology and in transportation; and miscellaneous cryogenic techniques and applications.

  5. Study of Cryogenic Complex Plasma

    DTIC Science & Technology

    2010-08-17

    inner diameter of 9.6 cm and the height of 80 cm. The Dewar bottle is filled with liquid helium or liquid nitrogen and is inserted in a liquid ...gas in the glass tube is controlled by the cryogenic liquid , liquid helium or liquid nitrogen , contained in the inner Dewar bottle. The outer Dewar...bottle contains liquid nitrogen to maintain the inner cryogenic temperature. An rf helium plasma with a neutral gas pressure P = 0.1 ~ 100 Pa is

  6. Paint Removal Using Cryogenic Processes

    DTIC Science & Technology

    1992-01-01

    perature. Low-carbon 3 percent nickel steel has impact strength to -100 0 F, low-carbon 9 percent nickel steel and maraging (high nickel) steel to -3201F...by cryogenic meth- ods. Cryogenic methods aie not rccommended for use on ships because of the danger of steel embrittlement by low temperatures. It...not recommended for use on ships because of the danger of steel embrittlement by low temperalures. It was demonstrated that a jet of liquid nitrogen

  7. On-wafer, cryogenic characterization of ultra-low noise HEMT devices

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Laskar, J.; Szydlik, P.

    1995-01-01

    Significant advances in the development of high electron-mobility field-effect transistors (HEMT's) have resulted in cryogenic, low-noise amplifiers (LNA's) whose noise temperatures are within an order of magnitude of the quantum noise limit (hf/k). Further advances in HEMT technology at cryogenic temperatures may eventually lead to the replacement of maser and superconducting insulator superconducting front ends in the 1- to 100-GHz frequency band. Key to identification of the best HEMT's and optimization of cryogenic LNA's are accurate and repeatable device measurements at cryogenic temperatures. This article describes the design and operation of a cryogenic coplanar waveguide probe system for the characterization and modeling of advanced semiconductor transistors at cryogenic temperatures. Results on advanced HEMT devices are presented to illustrate the utility of the measurement system.

  8. Cryopumping in Cryogenic Insulations for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Weiser, Erik S.; Grimsley, Brian W.; Jensen, Brian J.

    2003-01-01

    Testing at cryogenic temperatures was performed to verify the material characteristics and manufacturing processes of reusable propellant tank cryogenic insulations for a Reusable Launch Vehicle (RLV). The unique test apparatus and test methods developed for the investigation of cryopumping in cryogenic insulations are described. Panel level test specimens with various types of cryogenic insulations were subjected to a specific thermal profile where the temperature varied from -262 C to 21 C. Cryopumping occurred if the interior temperature of the specimen exhibited abnormal temperature fluctuations, such as a sudden decrease in temperature during the heating phase.

  9. Investigation of woven composites as potential cryogenic tank materials

    NASA Astrophysics Data System (ADS)

    Islam, Md. S.; Melendez-Soto, E.; Castellanos, A. G.; Prabhakar, P.

    2015-12-01

    In this paper, carbon fiber and Kevlar® fiber woven composites were investigated as potential cryogenic tank materials for storing liquid fuel in spacecraft or rocket. Towards that end, both carbon and Kevlar® fiber composites were manufactured and tested with and without cryogenic exposure. The focus was on the investigation of the influence of initial cryogenic exposure on the degradation of the composite. Tensile, flexural and inter laminar shear strength (ILSS) tests were conducted, which indicate that Kevlar® and carbon textile composites are potential candidates for use under cryogenic exposure.

  10. Adhesive Bonding Characterization of Composite Joints for Cryogenic Usage

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Schieleit, Gregory F.; Biggs, Robert

    2000-01-01

    The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future reusable launch vehicles need to minimize the gross liftoff weight (GLOW). This weight reduction is possible due to the large reduction in weight that composite materials can provide over current aluminum technology. In addition to composite technology, adhesively bonded joints potentially have several benefits over mechanically fastened joints, such as weight savings and cryogenic fluid containment. Adhesively bonded joints may be used in several areas of these cryogenic tanks, such as in lobe-to-lobe joints (in a multi-lobe concept), skirt-to-tank joint, strut-to-tank joint, and for attaching stringers and ring frames. The bonds, and the tanks themselves, must be able to withstand liquid cryogenic fuel temperatures that they contain. However, the use of adhesively bonded composite joints at liquid oxygen and hydrogen temperatures is largely unknown and must be characterized. Lockheed Martin Space Systems Company, Michoud Operations performed coupon-level tests to determine effects of material selection, cure process parameters, substrate surface preparation, and other factors on the strength of these composite joints at cryogenic temperatures. This led to the selection of a material and process that would be suitable for a cryogenic tank. KEY WORDS: Composites, Adhesive Bonding, Cryogenics

  11. Development of a distributed-parameter mathematical model for simulation of cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Tripp, J. S.

    1983-01-01

    A one-dimensional distributed-parameter dynamic model of a cryogenic wind tunnel was developed which accounts for internal and external heat transfer, viscous momentum losses, and slotted-test-section dynamics. Boundary conditions imposed by liquid-nitrogen injection, gas venting, and the tunnel fan were included. A time-dependent numerical solution to the resultant set of partial differential equations was obtained on a CDC CYBER 203 vector-processing digital computer at a usable computational rate. Preliminary computational studies were performed by using parameters of the Langley 0.3-Meter Transonic Cryogenic Tunnel. Studies were performed by using parameters from the National Transonic Facility (NTF). The NTF wind-tunnel model was used in the design of control loops for Mach number, total temperature, and total pressure and for determining interactions between the control loops. It was employed in the application of optimal linear-regulator theory and eigenvalue-placement techniques to develop Mach number control laws.

  12. Design and testing of a coaxial linear magnetic spring with integral linear motor. [for spacecraft energy storage

    NASA Technical Reports Server (NTRS)

    Patt, P. J.

    1985-01-01

    The design of a coaxial linear magnetic spring which incorporates a linear motor to control axial motion and overcome system damping is presented, and the results of static and dynamic tests are reported. The system has nominal stiffness 25,000 N/m and is designed to oscillate a 900-g component over a 4.6-mm stroke in a Stirling-cycle cryogenic refrigerator being developed for long-service (5-10-yr) space applications (Stolfi et al., 1983). Mosaics of 10 radially magnetized high-coercivity SmCO5 segments enclosed in Ti cans are employed, and the device is found to have quality factor 70-100, corresponding to energy-storage efficiency 91-94 percent. Drawings, diagrams, and graphs are provided.

  13. Mechanical testing of large cryogenic structures

    NASA Technical Reports Server (NTRS)

    Newkirk, Roger; Burriesci, Larry

    1990-01-01

    The mechanical testing performed on the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument installed on the Upper Atmosphere Research Satellite is discussed. The CLAES determines temperatures and concentrations of stratospheric minor species as a function of altitude by measuring the atmospheric infrared emission spectra. CLAES is based on a telescope optical system and infrared spectrometer which are cooled with cryogens.

  14. Foam vessel for cryogenic fluid storage

    DOEpatents

    Spear, Jonathan D [San Francisco, CA

    2011-07-05

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  15. Long-term cryogenic space storage system

    NASA Technical Reports Server (NTRS)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  16. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  17. Cryogenic mirror analysis

    NASA Technical Reports Server (NTRS)

    Nagy, S.

    1988-01-01

    Due to extraordinary distances scanned by modern telescopes, optical surfaces in such telescopes must be manufactured to unimaginable standards of perfection of a few thousandths of a centimeter. The detection of imperfections of less than 1/20 of a wavelength of light, for application in the building of the mirror for the Space Infrared Telescope Facility, was undertaken. Because the mirror must be kept very cold while in space, another factor comes into effect: cryogenics. The process to test a specific morror under cryogenic conditions is described; including the follow-up analysis accomplished through computer work. To better illustrate the process and analysis, a Pyrex Hex-Core mirror is followed through the process from the laser interferometry in the lab, to computer analysis via a computer program called FRINGE. This analysis via FRINGE is detailed.

  18. Expected thermal deformation and wavefront preservation of a cryogenic Si monochromator for Cornell ERL beamlines

    PubMed Central

    Huang, Rong; Bilderback, Donald H.; Finkelstein, Kenneth

    2014-01-01

    Cornell energy-recovery linac (ERL) beamlines will have higher power density and higher fractional coherence than those available at third-generation sources; therefore the capability of a monochromator for ERL beamlines has to be studied. A cryogenic Si monochromator is considered in this paper because the perfect atomic structure of Si crystal is needed to deliver highly coherent radiation. Since neither the total heat load nor the power density alone can determine the severity of crystal deformation, a metric called modified linear power density is used to gauge the thermal deformation. For all ERL undulator beamlines, crystal thermal deformation profiles are simulated using the finite-element analysis tool ANSYS, and wavefront propagations are simulated using Synchrotron Radiation Workshop. It is concluded that cryogenic Si monochromators will be suitable for ERL beamlines in general. PMID:24562557

  19. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  20. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  1. A Piezoelectric Cryogenic Heat Switch

    NASA Technical Reports Server (NTRS)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  2. Use of PROFIBUS for cryogenic instrumentation at XFEL

    NASA Astrophysics Data System (ADS)

    Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.

    2017-12-01

    The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.

  3. Rapid-Chill Cryogenic Coaxial Direct-Acting Solenoid Valve

    NASA Technical Reports Server (NTRS)

    Richard, James; Castor, Jim; Sheller, Richard

    2006-01-01

    A commercially available cryogenic direct- acting solenoid valve has been modified to incorporate a rapid-chill feature. The net effect of the modifications is to divert some of the cryogenic liquid to the task of cooling the remainder of the cryogenic liquid that flows to the outlet. Among the modifications are the addition of several holes and a gallery into a valve-seat retainer and the addition of a narrow vent passage from the gallery to the atmosphere.

  4. 21 CFR 882.4250 - Cryogenic surgical device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cryogenic surgical device. 882.4250 Section 882.4250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4250 Cryogenic surgical device...

  5. 21 CFR 882.4250 - Cryogenic surgical device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cryogenic surgical device. 882.4250 Section 882.4250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4250 Cryogenic surgical device...

  6. Across-Gimbal and Miniaturized Cryogenic Loop Heat Pipes

    NASA Astrophysics Data System (ADS)

    Bugby, D.; Marland, B.; Stouffer, C.; Kroliczek, E.

    2003-01-01

    This paper describes the development status of three advanced cryogenic loop heat pipes (CLHP) for solving important problems in cryogenic integration. The three devices described herein are: (1) an across-gimbal CLHP; (2) a short transport length miniaturized CLHP; and (3) a long transport length miniaturized CLHP. The across-gimbal CLHP, which is baselined for operation from 80-100 K with nitrogen, provides a low weight, low torque, high conductance solution for gimbaled cryogenic systems wishing to mount their cryocoolers off-gimbal. The short transport length miniaturized CLHP, which is baselined for operation near 35 K with neon, combines localized thermal transport, flexibility, and thermal switching into one device that can be directly mounted to a cryocooler cold head and a cryogenic component just a short distance (10-20 cm) away. The long transport length miniaturized CLHP, which is also baselined for operation near 35 K with neon, adds to the capabilities of the short transport length miniaturized CLHP by increasing the transport length to over 250 cm to meet cryogenic heat transport device requirements of future NASA and DoD spacecraft.

  7. Computing Thermal Effects of Cavitation in Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Ahuja, Vineet; Dash, Sanford M.

    2005-01-01

    A computer program implements a numerical model of thermal effects of cavitation in cryogenic fluids. The model and program were developed for use in designing and predicting the performances of turbopumps for cryogenic fluids. Prior numerical models used for this purpose do not account for either the variability of properties of cryogenic fluids or the thermal effects (especially, evaporative cooling) involved in cavitation. It is important to account for both because in a cryogenic fluid, the thermal effects of cavitation are substantial, and the cavitation characteristics are altered by coupling between the variable fluid properties and the phase changes involved in cavitation. The present model accounts for both thermal effects and variability of properties by incorporating a generalized representation of the properties of cryogenic fluids into a generalized compressible-fluid formulation for a cavitating pump. The model has been extensively validated for liquid nitrogen and liquid hydrogen. Using the available data on the properties of these fluids, the model has been shown to predict accurate temperature-depression values.

  8. Large-Scale Cryogen Systems and Test Facilities

    NASA Technical Reports Server (NTRS)

    Johnson, R. G.; Sass, J. P.; Hatfield, W. H.

    2007-01-01

    NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.

  9. Development of dual solid cryogens for high reliability refrigeration system

    NASA Technical Reports Server (NTRS)

    Caren, R. P.; Coston, R. M.

    1967-01-01

    High reliability solid cryogen refrigeration system consists of a container initially filled with a solid cryogen which is coupled thermally to an infrared detector by means of a link of high thermal conductivity extending from a heat exchanger within the cryogen container.

  10. Membrane-augmented cryogenic methane/nitrogen separation

    DOEpatents

    Lokhandwala, Kaaeid

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  11. Cryogenics and its application with reference to spice grinding: a review.

    PubMed

    Balasubramanian, S; Gupta, Manoj Kumar; Singh, K K

    2012-01-01

    Cryogenics is the study of very low temperature and its application on different materials including biological products. Cryogenics has numerous applications in space science, electronics, automobiles, the manufacturing industry, sports and musical instruments, biological science and agriculture, etc. Cryogenic freezing finds pivotal application in food, that is, spices and condiments. Although there is a wide range of cryogens to produce the desired low temperature, generally liquid nitrogen (LN₂) is used in food grinding. The application of low temperature shows a promising pathway to produce higher quality end product with higher flavor and volatile oil retention. Cryogenic grinders generally consist of precoolers and grinder with the cryogen distribution system. In such grinding systems, cryogens subject the raw material up to or lower than glass transition temperature before it is ground, thus eliminating much of the material and quality hassles of traditional grinding. At present, the capital investment including cryogen and handling costs escalate the final cost of the product. Thus, for large-scale production, a proper design to optimize and make it feasible is the need of the hour and understanding the behavior of different food materials at these low temperature conditions. This article reviews the scenario and application of cryogenics in different sectors, especially to spice grinding.

  12. Energy Efficient Cryogenics on Earth and in Space

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2012-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for energy-efficient cryogenics on Earth and in space.

  13. Cryogenic fluid management program flight concept definition

    NASA Technical Reports Server (NTRS)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  14. Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission

    NASA Astrophysics Data System (ADS)

    Mustafi, S.; DeLee, C.; Francis, J.; Li, X.; McGuinness, D.; Nixon, C. A.; Purves, L.; Willis, W.; Riall, S.; Devine, M.; Hedayat, A.

    2016-03-01

    Liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic propellants can dramatically enhance NASA's ability to explore the solar system due to their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LO2 as propellants, and the resulting spacecraft design was able to achieve a 43% launch mass reduction over a TOPS mission, that utilized a traditional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission that requires the cryogenics propellants to be stored for 8.5 years.

  15. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  16. Carbon fiber composites for cryogenic filament-wound vessels

    NASA Technical Reports Server (NTRS)

    Larsen, J. V.; Simon, R. A.

    1972-01-01

    Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.

  17. Cryogenic Quenching Process for Electronic Part Screening

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.; Cressler, John

    2011-01-01

    The use of electronic parts at cryogenic temperatures (less than 100 C) for extreme environments is not well controlled or developed from a product quality and reliability point of view. This is in contrast to the very rigorous and well-documented procedures to qualify electronic parts for mission use in the 55 to 125 C temperature range. A similarly rigorous methodology for screening and evaluating electronic parts needs to be developed so that mission planners can expect the same level of high reliability performance for parts operated at cryogenic temperatures. A formal methodology for screening and qualifying electronic parts at cryogenic temperatures has been proposed. The methodology focuses on the base physics of failure of the devices at cryogenic temperatures. All electronic part reliability is based on the bathtub curve, high amounts of initial failures (infant mortals), a long period of normal use (random failures), and then an increasing number of failures (end of life). Unique to this is the development of custom screening procedures to eliminate early failures at cold temperatures. The ability to screen out defects will specifically impact reliability at cold temperatures. Cryogenic reliability is limited by electron trap creation in the oxide and defect sites at conductor interfaces. Non-uniform conduction processes due to process marginalities will be magnified at cryogenic temperatures. Carrier mobilities change by orders of magnitude at cryogenic temperatures, significantly enhancing the effects of electric field. Marginal contacts, impurities in oxides, and defects in conductor/conductor interfaces can all be magnified at low temperatures. The novelty is the use of an ultra-low temperature, short-duration quenching process for defect screening. The quenching process is designed to identify those defects that will precisely (and negatively) affect long-term, cryogenic part operation. This quenching process occurs at a temperature that is at least

  18. Cryogenic optical tests of a lightweight HIP beryllium mirror

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Miller, Jacob H.; Young, J. A.; Howard, Steven D.; Pryor, G. Mark

    1989-01-01

    Five interferometric tests were conducted at cryogenic temperatures on a lightweight, 50 cm diameter, hot isostatic pressed (HIP) beryllium mirror in the Ames Research Center (ARC) Cryogenic Optics Test Facility. The purpose of the tests was to determine the stability of the mirror's figure when cooled to cryogenic temperatures. Test temperatures ranged from room ambient to 8 K. One cycle to 8 K and five cycles to 80 K were performed. Optical and thermal test methods are described. Data is presented to show the amount of cryogenic distortion and hysteresis present in the mirror when measured with an earlier, Shack interferometer, and with a newly-acquired, phase-measuring interferometer.

  19. Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent

    2013-01-01

    Objectives: 1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration. 2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment. 3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment.

  20. Development of Advanced Tools for Cryogenic Integration

    NASA Astrophysics Data System (ADS)

    Bugby, D. C.; Marland, B. C.; Stouffer, C. J.; Kroliczek, E. J.

    2004-06-01

    This paper describes four advanced devices (or tools) that were developed to help solve problems in cryogenic integration. The four devices are: (1) an across-gimbal nitrogen cryogenic loop heat pipe (CLHP); (2) a miniaturized neon CLHP; (3) a differential thermal expansion (DTE) cryogenic thermal switch (CTSW); and (4) a dual-volume nitrogen cryogenic thermal storage unit (CTSU). The across-gimbal CLHP provides a low torque, high conductance solution for gimbaled cryogenic systems wishing to position their cryocoolers off-gimbal. The miniaturized CLHP combines thermal transport, flexibility, and thermal switching (at 35 K) into one device that can be directly mounted to both the cooler cold head and the cooled component. The DTE-CTSW, designed and successfully tested in a previous program using a stainless steel tube and beryllium (Be) end-pieces, was redesigned with a polymer rod and high-purity aluminum (Al) end-pieces to improve performance and manufacturability while still providing a miniaturized design. Lastly, the CTSU was designed with a 6063 Al heat exchanger and integrally welded, segmented, high purity Al thermal straps for direct attachment to both a cooler cold head and a Be component whose peak heat load exceeds its average load by 2.5 times. For each device, the paper will describe its development objective, operating principles, heritage, requirements, design, test data and lessons learned.

  1. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell

    1998-01-01

    Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  2. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.

    2005-01-01

    Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  3. Selected Aspects of Cryogenic Tank Fatigue Calculations for Offshore Application

    NASA Astrophysics Data System (ADS)

    Skrzypacz, J.; Jaszak, P.

    2018-02-01

    The paper presents the way of the fatigue life calculation of a cryogenic tank dedicated for the carriers ship application. The independent tank type C was taken into consideration. The calculation took into account a vast range of the load spectrum resulting in the ship accelerations. The stress at the most critical point of the tank was determined by means of the finite element method. The computation methods and codes used in the design of the LNG tank were presented. The number of fatigue cycles was determined by means of S-N curve. The cumulated linear damage theory was used to determine life factor.

  4. Robust Multilayer Insulation for Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Scholtens, B. F.; Augustynowicz, S. D.

    2007-01-01

    New requirements for thermal insulation include robust Multilayer insulation (MU) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

  5. Research of the cold shield in cryogenic liquid storage

    NASA Astrophysics Data System (ADS)

    Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.

    2017-12-01

    To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.

  6. The cryogenics design of the SuperCDMS SNOLAB experiment

    NASA Astrophysics Data System (ADS)

    Hollister, M. I.; Bauer, D. A.; Dhuley, R. C.; Lukens, P.; Martin, L. D.; Ruschman, M. K.; Schmitt, R. L.; Tatkowski, G. L.

    2017-12-01

    The Super Cryogenic Dark Matter Search (SuperCDMS) experiment is a direct detection dark matter experiment intended for deployment to the SNOLAB underground facility in Ontario, Canada. With a payload of up to 186 germanium and silicon crystal detectors operating below 15 mK, the cryogenic architecture of the experiment is complex. Further, the requirement that the cryostat presents a low radioactive background to the detectors limits the materials and techniques available for construction, and heavily influences the design of the cryogenics system. The resulting thermal architecture is a closed cycle (no liquid cryogen) system, with stages at 50 and 4 K cooled with gas and fluid circulation systems and stages at 1 K, 250 mK and 15 mK cooled by the lower temperature stages of a large, cryogen-free dilution refrigerator. This paper describes the thermal design of the experiment, including details of the cooling systems, mechanical designs and expected performance of the system under operational conditions.

  7. Cryogenic hydrogen-induced air-liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  8. Some General Principles in Cryogenic Design, Implementation, and Testing

    NASA Technical Reports Server (NTRS)

    Dipirro, Michael James

    2015-01-01

    Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.

  9. Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.

    2017-01-01

    To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.

  10. Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI)

    NASA Technical Reports Server (NTRS)

    Swenson, Charles; Hunter, Roger C.; Baker, Christopher E.

    2018-01-01

    The Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI) project will demonstrate an advanced thermal control system for CubeSats and enable the use of cryogenic electro-optical instrumentation on small satellite platforms. Specifically, the project focuses on the development of a deployable solar tracking radiator, a rotationally flexible rotary union fluid joint, and a thermal/vibrational isolation system for miniature cryogenic detectors. This technology will represent a significant improvement over the current state of the art for CubeSat thermal control, which generally relies on simple passive and conductive methods.

  11. Superconducting Meissner Effect Bearings for Cryogenic Turbomachines

    DTIC Science & Technology

    1993-05-01

    Maximum 200 words) This report describes the second year efforts to develop a Meissner bearing system for miniature cryogenic turboexpanders used in... Turboexpander ....................................................................... 6 4.3. Task 7-Management and Reporting...The program is aimed at the development of a Meissner bearing system for miniature cryogenic turboexpanders used in Brayton cycle cryocoolers. "TIM

  12. Development of a cryogenic capillary pumped loop

    NASA Astrophysics Data System (ADS)

    Kroliczek, Edward J.; Cullimore, Brent

    1996-03-01

    This paper describes the initial development of a promising new cryogenic technology. Room temperature capillary pumped loops (CPLs), a derivative of heat pipe technology, have been under development for almost two decades and are emerging as a design solution for many spacecraft thermal control problems. While cryogenic capillary pumped loops have application to passive spacecraft radiators and to long term storage of cryogenic propellants and open-cycle coolants, their application to the integration of spacecraft cryocoolers has generated the most excitement. Without moving parts or complex controls, they are able to thermally connect redundant cryocoolers to a single remote load, eliminating thermal switches and providing mechanical isolation at the same time. Development of a cryogenic CPL (CCPL) presented some unique challenges including start-up from a super-critical state, the management of parasitic heat leaks and pressure containment at ambient temperatures. These challenges have been overcome with a novel design that requires no additional devices or preconditioning for start-up. This paper describes the design concept and development and results conducted under SBIR Phase I and Phase II.

  13. Membrane-augmented cryogenic methane/nitrogen separation

    DOEpatents

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  14. Cryogenic structural support

    DOEpatents

    Niemann, Ralph C.; Mataya, Karl F.; Gonczy, John D.

    1982-01-01

    A tensile support member is provided for use in a cryogenic environment. The member is in the form of a link formed of an epoxy glass laminate with at least one ply of the laminate having its fibers aligned circumferentially about the link.

  15. Cryogenic fluid management in space

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1988-01-01

    Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.

  16. Cryogenic Fluid Technologies for Long Duration In-Space Operations

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Tramel, Terri L.

    2008-01-01

    Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of storage, distribution, and low-gravity propellant management. The Vision for Space Exploration mission objectives will require the use of high performance cryogenic propellants (hydrogen, oxygen, and methane). Additionally, lunar missions will require success in storing and transferring liquid and gas commodities on the surface. The fundamental challenges associated with the in-space use of cryogens are their susceptibility to environmental heat, their complex thermodynamic and fluid dynamic behavior in low gravity and the uncertainty of the position of the liquid-vapor interface if the propellants are not settled. The Cryogenic Fluid Management (CFM) project is addressing these issues through ground testing and analytical model development, and has crosscutting applications and benefits to virtually all missions requiring in-space operations with cryogens. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and on-orbit margins, and simplify vehicle operations. The Cryogenic Fluid Management (CFM) Project is conducting testing and performing analytical evaluation of several areas to enable NASA s Exploration Vision. This paper discusses the content and progress of the technology focus areas within CFM.

  17. A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene

    PubMed Central

    Pawlak, Ryszard; Lebioda, Marcin; Rymaszewski, Jacek; Szymanski, Witold; Kolodziejczyk, Lukasz; Kula, Piotr

    2016-01-01

    Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common −65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications—superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide) or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor). PMID:28036036

  18. A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene.

    PubMed

    Pawlak, Ryszard; Lebioda, Marcin; Rymaszewski, Jacek; Szymanski, Witold; Kolodziejczyk, Lukasz; Kula, Piotr

    2016-12-28

    Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common -65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications-superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide) or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor).

  19. Contracting/expanding self-sealing cryogenic tube seals

    NASA Technical Reports Server (NTRS)

    Jia, Lin X. (Inventor)

    1997-01-01

    Contracting/expanding self-sealing cryogenic tube seals are disclosed which use the different properties of thermal contraction and expansion of selected dissimilar materials in accord with certain design criteria to yield self-tightening seals via sloped-surface sealing. The seals of the subject invention are reusable, simple to assemble, adaptable to a wide variety of cryogenic applications.

  20. Contracting/expanding self-sealing cryogenic tube seals

    NASA Technical Reports Server (NTRS)

    Jia, Lin X. (Inventor)

    1997-01-01

    Contracting/expanding self-sealing cryogenic tube seals are disclosed which use the different properties of thermal contraction and expansion of selected dissimilar materials in accord with certain design criteria to yield self-tightening seals via sloped-surface sealing. The seals of the subject invention are reusable, simple to assemble, and adaptable to a wide variety of cryogenic applications.

  1. Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures. [transonic flow in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Hall, R. M.; Adcock, J. B.

    1981-01-01

    The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas.

  2. Space cryogenics at CEA-SBT

    NASA Astrophysics Data System (ADS)

    Duband, Lionel; Charles, Ivan; Duval, Jean-Marc; Ercolani, Eric; Gully, Philippe; Luchier, Nicolas; Prouve, Thomas; Thibault, Pierre

    2017-11-01

    The "Service des Basses Températures" (SBT) of CEA Grenoble has been involved in space cryogenics for over 20 years now. In fact a dedicated laboratory was created within SBT to carry out these developments, the "Cryocoolers and Space Cryogenics" group, which comprises about 20 persons as of today. Various cryocoolers have been developed in the past and our fields of activity focus now on four main technologies: sorption coolers, multistage pulse tubes, adiabatic demagnetization refrigerators (ADR), and cryogenic loop heat pipes. In addition work on two new concepts for ground based dilution refrigerators is also ongoing. Finally developments on various key technologies such as the heat switches, the suspension or structural systems are also carried out. These developments are mainly funded by the European Space Agency (ESA) or by the Centre National d'Etudes Spatiales (CNES). For most of these systems the common feature is the absence of any moving parts or any friction, which guarantees a very good reliability and make them very good candidates for space borne instruments requiring cryogenic temperatures. In this paper we give an overview of these developments with a particular focus on the sub Kelvin coolers. Based on the HERSCHEL heritage for which we developed the flight sorption coolers, we are now proposing an original concept featuring the association of a 300 mK sorption unit with a miniature adiabatic demagnetization refrigerator. This combination will allow to provide temperature as low as 50 mK with a system weighting less than 5 kg. This development may have direct application for the XEUS and SPICA missions.

  3. Cryogenic Liquid Sample Acquisition System for Remote Space Applications

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John

    2013-01-01

    There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.

  4. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  5. Surface tension confined liquid cryogen cooler

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)

    1989-01-01

    A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.

  6. Below-Ambient and Cryogenic Thermal Testing

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  7. Cryogenic High-Sensitivity Magnetometer

    NASA Technical Reports Server (NTRS)

    Day, Peter; Chui, Talso; Goodstein, David

    2005-01-01

    A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.

  8. Cryogenic line insulation made from prefabricated polyurethane shells

    NASA Technical Reports Server (NTRS)

    Lerma, G.

    1975-01-01

    Prefabricated polyurethane foam insulation is inexpensive and easily installed on cryogenic lines. Insulation sections are semicircular half shells. Pair of half shells is placed to surround cryogenic line. Cylindrically-shaped knit sock is pulled over insulation then covered with polyurethane resin to seal system.

  9. PREFACE: Advances in Cryogenic Engineering: Proceedings of the Cryogenic Engineering Conference (CEC) 2015

    NASA Astrophysics Data System (ADS)

    Kittel, Peter; Sumption, Michael

    2015-12-01

    The 2015 joint Cryogenic Engineering and International Cryogenic Materials Conferences were held from June 28 through July 2 at the JW Marriott Starr Pass Resort & Spa in Tucson, Arizona. As at past conferences, the international scope of these meetings was strongly maintained with 26 countries being represented by 561 attendees who gathered to enjoy the joint technical programs, industrial exhibits, special events, and natural beauty of the surrounding Sonoran Desert. The program for the joint conferences included a total of 363 presentations in the plenary, oral, and poster sessions. Four plenary talks gave in-depth discussions of the readiness of bulk superconductors for applications, the role of cryogenics in the development of the hydrogen bomb and vice versa, superconducting turboelectric aircraft propulsion and UPS's uses and plans for LNG fuel. Contributed papers covered a wide range of topics including large-scale and small-scale cryogenics, advances in superconductors and their applications. In total, 234 papers were submitted for publication of which 224 are published in these proceedings. The CEC/ICMC Cryo Industrial Expo displayed the products and services of 38 industrial exhibitors and provided a congenial venue for a reception and refreshments throughout the week as well as the conference poster sessions. Spectacular panoramic views of Saguaro National Park, the Sonoran Desert and the night time lights of Tucson set the stage for a memorable week in the American Southwest. Conference participants enjoyed scenic hikes and bike rides, exploring Old Town Tucson, hot and spicy southwestern cuisine, a nighttime lightning display and a hailstorm. Conference Chairs for 2015 were Peter Kittel, Consultant, for CEC and Michael Sumption from The Ohio State University, Materials Science Department for ICMC. Program Chairs were Jonathan Demko from the LeTourneau University for CEC and Timothy Haugan from AFRL/RQQM for ICMC, assisted by the CEC Program Vice Chair

  10. Reusable cryogenic foam insulation for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Mcauliffe, Patrick S.; Taylor, Allan H.; Sparks, Larry L.; Dube, William P.

    1991-01-01

    Future high-speed aircraft and aerospace vehicles using cryogenic propellants will require an advanced reusable insulation system for the propellant tank structure. This cryogenic insulation system must be lightweight, structurally and thermally efficient, and capable of multiple reuse without cracking or degraded performance. This paper presents recent progress in the development of a reusable cryogenic foam insulation system having a maximum service temperature of 400 F. The system consists of preshaped, precut blocks of rigid polymethacrylimide foam insulation, wrapped with a high-temperature Kapton and aluminum foil vapor barrier which is adhesively bonded to the propellant tank wall.

  11. Cryogenic wind tunnels for high Reynolds number testing

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Kilgore, R. A.; Mcguire, P. D.

    1986-01-01

    A compilation of lectures presented at various Universities over a span of several years is discussed. A central theme of these lectures has been to present the research facility in terms of the service it provides to, and its potential effect on, the entire community, rather than just the research community. This theme is preserved in this paper which deals with the cryogenic transonic wind tunnels at Langley Research Center. Transonic aerodynamics is a focus both because of its crucial role in determining the success of aeronautical systems and because cryogenic wind tunnels are especially applicable to the transonics problem. The paper also provides historical perspective and technical background for cryogenic tunnels, culminating in a brief review of cryogenic wind tunnel projects around the world. An appendix is included to provide up to date information on testing techniques that have been developed for the cryogenic tunnels at Langley Research Center. In order to be as inclusive and as current as possible, the appendix is less formal than the main body of the paper. It is anticipated that this paper will be of particular value to the technical layman who is inquisitive as to the value of, and need for, cryogneic tunnels.

  12. Low Mn alloy steel for cryogenic service

    DOEpatents

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  13. High-pressure cryogenic seals for pressure vessels

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1977-01-01

    This investigation of the problems associated with reliably containing gaseous helium pressurized to 1530 bars (22 500 psi) between 4.2 K and 150 K led to the following conclusions: (1) common seal designs used in existing elevated-temperature pressure vessels are unsuitable for high-pressure cryogenic operation, (2) extrusion seal-ring materials such as Teflon, tin, and lead are not good seal materials for cryogenic high-pressure operation; and (3) several high-pressure cryogenic seal systems suitable for large-pressure vessel applications were developed; two seals required prepressurization, and one seal functioned repeatedly without any prepressurization. These designs used indium seal rings, brass or 304 stainless-steel anvil rings, and two O-rings of silicone rubber or Kel-F.

  14. Cryogenic Amplifier Based Receivers at Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Reck, Theodore and; Schlecht, Erich; Lin, Robert; Deal, William

    2012-01-01

    The operating frequency of InP high electron mobility transistor (HEMT) based amplifiers has moved well in the submillimeter-wave frequencies over the last couple of years. Working amplifiers with usable gain in waveguide packages has been reported beyond 700 GHz. When cooled cryogenically, they have shown substantial improvement in their noise temperature. This has opened up the real possibility of cryogenic amplifier based heterodyne receivers at submillimeter wavelengths for ground-based, air-borne, and space-based instruments for astrophysics, planetary, and Earth science applications. This paper provides an overview of the science applications at submillimeter wavelengths that will benefit from this technology. It also describes the current state of the InP HEMT based cryogenic amplifier receivers at submillimeter wavelengths.

  15. Measuring the Densities of Aqueous Glasses at Cryogenic Temperatures.

    PubMed

    Shen, Chen; Julius, Ethan F; Tyree, Timothy J; Dan, Ritwik; Moreau, David W; Thorne, Robert

    2017-06-28

    We demonstrate a method for determining the vitreous phase cryogenic temperature densities of aqueous mixtures, and other samples that require rapid cooling, to prepare the desired cryogenic temperature phase. Microliter to picoliter size drops are cooled by projection into a liquid nitrogen-argon (N2-Ar) mixture. The cryogenic temperature phase of the drop is evaluated using a visual assay that correlates with X-ray diffraction measurements. The density of the liquid N2-Ar mixture is adjusted by adding N2 or Ar until the drop becomes neutrally buoyant. The density of this mixture and thus of the drop is determined using a test mass and Archimedes principle. With appropriate care in drop preparation, management of gas above the liquid cryogen mixture to minimize icing, and regular mixing of the cryogenic mixture to prevent density stratification and phase separation, densities accurate to <0.5% of drops as small as 50 pL can readily be determined. Measurements on aqueous cryoprotectant mixtures provide insight into cryoprotectant action, and provide quantitative data to facilitate thermal contraction matching in biological cryopreservation.

  16. Method of measuring heat influx of a cryogenic transfer system. [Patent application

    DOEpatents

    Niemann, R.C.; Zelipsky, S.A.; Rezmer, R.R.; Smelser, P.

    1980-10-29

    A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

  17. Digital control of magnetic bearings in a cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Feeley, J.; Law, A.; Lind, F.

    1990-01-01

    This paper describes the design of a digital control system for control of magnetic bearings used in a spaceborne cryogenic cooler. The cooler was developed by Philips Laboratories for the NASA Goddard Space Flight Center. Six magnetic bearing assemblies are used to levitate the piston, displacer, and counter-balance of the cooler. The piston and displacer are driven by linear motors in accordance with Stirling cycle thermodynamic principles to produce the desired cooling effect. The counter-balance is driven by a third linear motor to cancel motion induced forces that would otherwise be transmitted to the spacecraft. An analog control system is currently used for bearing control. The purpose of this project is to investigate the possibilities for improved performance using digital control. Areas for potential improvement include transient and steady state control characteristics, robustness, reliability, adaptability, alternate control modes, size, weight, and cost. The present control system is targeted for the Intel 80196 microcontroller family. The eventual introduction of application specific integrated circuit (ASIC) technology to this problem may produce a unique and elegant solution both here and in related industrial problems.

  18. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  19. Recent Advances and Applications in Cryogenic Propellant Densification Technology

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    2000-01-01

    This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.

  20. Sequential cryogen spraying for heat flux control at the skin surface

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.

  1. Cryogenic reactant storage for lunar base regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    1989-01-01

    There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.

  2. Filament-wound, fiberglass cryogenic tank supports

    NASA Technical Reports Server (NTRS)

    Carter, J. S.; Timberlake, T. E.

    1971-01-01

    The design, fabrication, and testing of filament-wound, fiberglass cryogenic tank supports for a LH2 tank, a LF2/FLOX tank and a CH4 tank. These supports consist of filament-wound fiberglass tubes with titanium end fittings. These units were satisfactorily tested at cryogenic temperatures, thereby offering a design that can be reliably and economically produced in large or small quantities. The basic design concept is applicable to any situation where strong, lightweight axial load members are desired.

  3. SR&DB Cryogenic Research & Development for Space Applications

    NASA Astrophysics Data System (ADS)

    Bondarenko, S. I.; Arkhipov, V. T.; Logvinenko, S. P.; Solodovnik, L. L.; Rusanov, K. V.; Shcherbakova, N. S.

    The Special Research and Development Bureau (SR&DB) for Cryogenic Technology of the B. Verkin Institute for Low Temperature Physics & Engineering was founded in 1971 and is located in Kharkov, Ukraine. Its primary focus has been in the area of applied r&d in the field of cryogenic technology for space applications. Within this field SR&DB has had many successful accomplishments, especially in the development of satellite based cryogenic cooling systems, mass spectrometer measurement devices, resistence thermometers, and cryogenically cooled optical systems. We have developed very advanced technology in the fields of fluids, heat transfer and hydrodynamics under micro-gravity conditions. Many of the SR&DB cryogenic products have been successfully implemented for former Soviet space applications, both near-earth and deep space. The SR&DB unique experience in many R&D areas can be and are being used for a new generation of space applications which have a requirement for planetary and deep-space missions. Systems we have developed have been proven to have a 5-year life in orbit. Recently we have focused much of our attention, as well, to the requirement low-weight and low-power systems which are mandatory requirements for outerspace missions. The funtionality of the exterior surfaces of a spacecraft are mainly dependent on the composition of its internally generated local atmosphere. In order to continually assess the content and concentration of components of this atmosphere we have developed space based mass spectrometric measuring devices. Devices which require such continual measurement are optical devices, emission receivers, solar cells, etc. A significant technology advance in the field of cryogenics is the application of cryoagents in systems of life support and spacecraft engine operation. We have studied and have an in-depth comprehension of unique phase-transition for these cryoagents such as oxygen, hydrogen, et al. under microgravity conditions. Currently

  4. Cryogenic Two-Phase Flight Experiment: Results overview

    NASA Technical Reports Server (NTRS)

    Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.

    1995-01-01

    This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.

  5. Composite aerogel insulation for cryogenic liquid storage

    NASA Astrophysics Data System (ADS)

    Kyeongho, Kim; Hyungmook, Kang; Soojin, Shin; In Hwan, Oh; Changhee, Son; Hyung, Cho Yun; Yongchan, Kim; Sarng Woo, Karng

    2017-02-01

    High porosity materials such as aerogel known as a good insulator in a vacuum range (10-3 ∼ 1 Torr) was widely used to storage and to transport cryogenic fluids. It is necessary to be investigated the performance of aerogel insulations for cryogenic liquid storage in soft vacuum range to atmospheric pressure. A one-dimensional insulating experimental apparatus was designed and fabricated to consist of a cold mass tank, a heat absorber and an annular vacuum space with 5-layer (each 10 mm thickness) of the aerogel insulation materials. Aerogel blanket for cryogenic (used maximum temperature is 400K), aerogel blanket for normal temperature (used maximum temperature is 923K), and combination of the two kinds of aerogel blankets were 5-layer laminated between the cryogenic liquid wall and the ambient wall in vacuum space. Also, 1-D effective thermal conductivities of the insulation materials were evaluated by measuring boil-off rate from liquid nitrogen and liquid argon. In this study, the effective thermal conductivities and the temperature-thickness profiles of the two kinds of insulators and the layered combination of the two different aerogel blankets were presented.

  6. Cryogenic Boil-Off Reduction System

    NASA Astrophysics Data System (ADS)

    Plachta, David W.; Guzik, Monica C.

    2014-03-01

    A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.

  7. Miniature cryocooler developments for high operating temperatures at Thales Cryogenics

    NASA Astrophysics Data System (ADS)

    Arts, R.; Martin, J.-Y.; Willems, D.; Seguineau, C.; Van Acker, S.; Mullié, J. C.; Göbel, A.; Tops, M.; Le Bordays, J.; Etchanchu, T.; Benschop, A. A. J.

    2015-05-01

    In recent years there has been a drive towards miniaturized cooled IDCA solutions for low-power, low-mass, low-size products (SWaP). To support this drive, coolers are developed optimized for high-temperature, low heat load dewar-detector assemblies. In this paper, Thales Cryogenics development activities supporting SWaP are presented. Design choices are discussed and compared to various key requirements. Trade-off analysis results are presented on drive voltage, cold finger definition (length, material, diameter and sealing concept), and other interface considerations, including cold finger definition. In parallel with linear and rotary cooler options, designs for small-size high-efficiency drive electronics based on state-of-the-art architectures are presented.

  8. Usaf Space Sensing Cryogenic Considerations

    NASA Astrophysics Data System (ADS)

    Roush, F.

    2010-04-01

    Infrared (IR) space sensing missions of the future depend upon low mass components and highly capable imaging technologies. Limitations in visible imaging due to the earth's shadow drive the use of IR surveillance methods for a wide variety of applications for Intelligence, Surveillance, and Reconnaissance (ISR), Ballistic Missile Defense (BMD) applications, and almost certainly in Space Situational Awareness (SSA) and Operationally Responsive Space (ORS) missions. Utilization of IR sensors greatly expands and improves mission capabilities including target and target behavioral discrimination. Background IR emissions and electronic noise that is inherently present in Focal Plane Arrays (FPAs) and surveillance optics bench designs prevents their use unless they are cooled to cryogenic temperatures. This paper describes the role of cryogenic coolers as an enabling technology for generic ISR and BMD missions and provides ISR and BMD mission and requirement planners with a brief glimpse of this critical technology implementation potential. The interaction between cryogenic refrigeration component performance and the IR sensor optics and FPA can be seen as not only mission enabling but also as mission performance enhancing when the refrigeration system is considered as part of an overall optimization problem.

  9. ZERODUR TAILORED for cryogenic application

    NASA Astrophysics Data System (ADS)

    Jedamzik, R.; Westerhoff, T.

    2014-07-01

    ZERODUR® glass ceramic from SCHOTT is known for its very low thermal expansion coefficient (CTE) at room temperature and its excellent CTE homogeneity. It is widely used for ground-based astronomical mirrors but also for satellite applications. Many reference application demonstrate the excellent and long lasting performance of ZERODUR® components in orbit. For space application a low CTE of the mirror material is required at cryogenic temperatures together with a good match of the thermal expansion to the supporting structure material. It is possible to optimize the coefficient of thermal expansion of ZERODUR® for cryogenic applications. This paper reports on measurements of thermal expansion of ZERODUR® down to cryogenic temperatures of 10 K performed by the PTB (Physikalisch Technische Bundesanstallt, Braunschweig, Germany, the national metrology laboratory). The ZERODUR® TAILORED CRYO presented in this paper has a very low coefficient of thermal expansion down to 70 K. The maximum absolute integrated thermal expansion down to 10 K is only about 20 ppm. Mirror blanks made from ZERODUR® TAILORED CRYO can be light weighted to almost 90% with our modern processing technologies. With ZERODUR® TAILORED CRYO, SCHOTT offers the mirror blank material for the next generation of space telescope applications.

  10. Chemiluminescence in cryogenic matrices

    NASA Astrophysics Data System (ADS)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  11. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  12. Quantum-limited Terahertz detection without liquid cryogens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under this contract, we have successfully designed, fabricated and tested a revolutionary new type of detector for Terahertz (THz) radiation, the tunable antenna-coupled intersubband Terahertz (TACIT) detector. The lowest-noise THz detectors used in the astrophysics community require cooling to temperatures below 4K. This deep cryogenic requirement forces satellites launched for THz- observing missions to include either large volumes of liquid Helium, complex cryocoolers, or both. Cryogenic requirements thus add significantly to the cost, complexity and mass of satellites and limit the duration of their missions. It hence desirable to develop new detector technologies with less stringent cryogenic requirements. Such detectors will not only be important in space-based astrophysics, but also respond to a growing demand for THz technology for earth-based scientific and commercial applications.

  13. Cryogenic Insulation Standard Data and Methodologies Project

    NASA Technical Reports Server (NTRS)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  14. Super-light-weighted HB-Cesic® mirror cryogenic test

    NASA Astrophysics Data System (ADS)

    Devilliers, Christophe; Krödel, Matthias R.; Sodnik, Zoran; Robert, Patrick

    2017-11-01

    Future scientific space missions require ever more demanding large optics that work at cryogenic temperatures. In the frame of a Darwin assessment study conducted under ESA contract by TAS, the need of future very lightweight cryogenic mirrors with superior optical quality has been identified. Such mirrors need to be of size up to 3.5 m in diameter, with a mass of less than 250 kg (i.e. 25 kg/m2) and possess excellent optical quality at cryogenic temperature down to 40 K.

  15. Sorption cryogenic refrigeration - Status and future

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    The operation principles of sorption cryogenic refrigeration are discussed. Sorption refrigerators have virtually no wear-related moving parts, have negligible vibration, and offer extremely long life (at least ten years), making it possible to obtain efficient, long life and low vibration cooling to as low as 7 K for cryogenic sensors. The physisorption and chemisorption systems recommended for various cooling ranges down to 7 K are described in detail. For long-life cooling at 4-5 K temperatures, a hybrid chemisorption-mechanical refrigeration system is recommended.

  16. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  17. Cryogenic Research

    DTIC Science & Technology

    1952-05-01

    needed work lies in the ultra low- temperature range available only through use of the demagnetization cycle. SUPERCONDUCTIVITY BELOW 10 ABSOLUTE In...In Figure 1 is plotted, as a function of temperature, the magnetic field required to change hafnium from the superconducting to the normal state. For...fields of crystal physics, properties of metals, and magnetism and magnetic resonance. This article discusses the work of one group, the Cryogenics

  18. Study on static and dynamic characteristics of moving magnet linear compressors

    NASA Astrophysics Data System (ADS)

    Chen, N.; Tang, Y. J.; Wu, Y. N.; Chen, X.; Xu, L.

    2007-09-01

    With the development of high-strength NdFeB magnetic material, moving magnet linear compressors have been gradually introduced in the fields of refrigeration and cryogenic engineering, especially in Stirling and pulse tube cryocoolers. This paper presents simulation and experimental investigations on the static and dynamic characteristics of a moving magnet linear motor and a moving magnet linear compressor. Both equivalent magnetic circuits and finite element approaches have been used to model the moving magnet linear motor. Subsequently, the force and equilibrium characteristics of the linear motor have been predicted and verified by detailed static experimental analyses. In combination with a harmonic analysis, experimental investigations were conducted on a prototype of a moving magnet linear compressor. A voltage-stroke relationship, the effect of charging pressure on the performance and dynamic frequency response characteristics are investigated. Finally, the method to identify optimal points of the linear compressor has been described, which is indispensable to the design and operation of moving magnet linear compressors.

  19. Lessons learned: design, start-up, and operation of cryogenic systems

    NASA Astrophysics Data System (ADS)

    Bell, W. M.; Bagley, R. E.; Motew, S.; Young, P.-W.

    2014-11-01

    Cryogenic systems involving a pumped cryogenic fluid, such as liquid nitrogen (LN2), require careful design since the cryogen is close to its boiling point and cold. At 1 atmosphere, LN2 boils at 77.4 K (-320.4 F). These systems, typically, are designed to transport the cryogen, use it for process heat removal, or for generation of gas (GN2) for process use. As the design progresses, it is important to consider all aspects of the design including, cryogen storage, pressure control and safety relief systems, thermodynamic conditions, equipment and instrument selection, materials, insulation, cooldown, pump start-up, maximum design and minimum flow rates, two phase flow conditions, heat flow, process control to meet and maintain operating conditions, piping integrity, piping loads on served equipment, warm-up, venting, and shut-down. "Cutting corners" in the design process can result in stalled start-ups, field rework, schedule hits, or operational restrictions. Some of these "lessoned learned" are described in this paper.

  20. Effect of cryogenic treatment on nickel-titanium endodontic instruments

    PubMed Central

    Kim, J. W.; Griggs, J. A.; Regan, J. D.; Ellis, R. A.; Cai, Z.

    2005-01-01

    Aim To investigate the effects of cryogenic treatment on nickel-titanium endodontic instruments. The null hypothesis was that cryogenic treatment would result in no changes in composition, microhardness or cutting efficiency of nickel-titanium instruments. Methodology Microhardness was measured on 30 nickel-titanium K-files (ISO size 25) using a Vicker’s indenter. Elemental composition was measured on two instruments using X-ray spectroscopy. A nickel-titanium bulk specimen was analysed for crystalline phase composition using X-ray diffraction. Half of the specimens to be used for each analysis were subjected to a cryogenic treatment in liquid nitrogen (−196 °C) for either 3 s (microhardness specimens) or 10 min (other specimens). Cutting efficiency was assessed by recording operator choice using 80 nickel-titanium rotary instruments (ProFile® 20, .06) half of which had been cryogenically treated and had been distributed amongst 14 clinicians. After conditioning by preparing four corresponding canals, each pair of instruments were evaluated for cutting efficiency by a clinician during preparation of one canal system in vitro. A Student’s t-test was used to analyse the microhardness data, and a binomial test was used to analyse the observer choice data. Composition data were analysed qualitatively. Results Cryogenically treated specimens had a significantly higher microhardness than the controls (P < 0.001; β > 0.999). Observers showed a preference for cryogenically treated instruments (61%), but this was not significant (P = 0.21). Both treated and control specimens were composed of 56% Ni, 44% Ti, 0% N (by weight) with a majority in the austenite phase. Conclusions Cryogenic treatment resulted in increased microhardness, but this increase was not detected clinically. There was no measurable change in elemental or crystalline phase composition. PMID:15910471

  1. Miniature Cryogenic Valves for a Titan Lake Sampling System

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Zimmerman, Wayne; Takano, Nobuyuki; Avellar, Louisa

    2014-01-01

    The Cassini mission has revealed Titan to be one of the most Earthlike worlds in the Solar System complete with many of the same surface features including lakes, river channels, basins, and dunes. But unlike Earth, the materials and fluids on Titan are composed of cryogenic organic compounds with lakes of liquid methane and ethane. One of the potential mission concepts to explore Titan is to land a floating platform on one of the Titan Lakes and determine the local lake chemistry. In order to accomplish this within the expected mass volume and power budgets there is a need to pursue the development for a low power lightweight cryogenic valves which can be used along with vacuum lines to sample lake liquid and to distribute to various instruments aboard the Lander. To meet this need we have initiated the development of low power cryogenic valves and actuators based on a single crystal piezoelectric flextensional stacks produced by TRS Ceramics Inc. Since the origin of such high electromechanical properties of Relaxor-PT single crystals is due to the polarization rotation effect, (i.e., intrinsic contributions), the strain per volt decrease at cryogenic temperatures is much lower than in standard Lead Zirconate Titanate (PZT) ceramics. This makes them promising candidates for cryogenic actuators with regards to the stroke for a given voltage. This paper will present our Titan Lake Sampling and Sample Handling system design and the development of small cryogenic piezoelectric valves developed to meet the system specifications.

  2. Solid-cryogen-stabilized, cable-in-conduit (CIC) superconducting cables

    NASA Astrophysics Data System (ADS)

    Voccio, J. P.; Michael, P. C.; Bromberg, L.; Hahn, S.

    2015-12-01

    This paper considers the use of a solid cryogen as a means to stabilize, both mechanically and thermally, magnesium diboride (MgB2) superconducting strands within a dual-channel cable-in-conduit (CIC) cable for use in AC applications, such as a generator stator winding. The cable consists of two separate channels; the outer channel contains the superconducting strands and is filled with a fluid (liquid or gas) that becomes solid at the device operating temperature. Several options for fluid will be presented, such as liquid nitrogen, hydrocarbons and other chlorofluorocarbons (CFCs) that have a range of melting temperatures and volumetric expansions (from solid at operating temperature to fixed volume at room temperature). Implications for quench protection and conductor stability, enhanced through direct contact with the solid cryogen, which has high heat capacity and thermal conductivity (compared with helium gas), will be presented. Depending on the cryogen, the conductor will be filled initially either with liquid at atmospheric conditions or a gas at high pressure (∼100 atm). After cooldown, the cryogen in the stranded-channel will be solid, essentially locking the strands in place, preventing strand motion and degradation due to mechanical deformation while providing enhanced thermal capacity for stability and protection. The effect of cryogen porosity is also considered. The relatively high heat capacity of solid cryogens at these lower temperatures (compared to gaseous helium) enhances the thermal stability of the winding. During operation, coolant flow through the open inner channel will minimize pressure drop.

  3. Satellite Testbed for Evaluating Cryogenic-Liquid Behavior in Microgravity

    NASA Technical Reports Server (NTRS)

    Putman, Philip Travis (Inventor)

    2017-01-01

    Provided is a testbed for conducting an experiment on a substance in a cryogenic liquid state in a microgravity environment. The testbed includes a frame with rectangular nominal dimensions, and a source section including a supply of the substance to be evaluated in the cryogenic liquid state. An experiment section includes an experiment vessel in fluid communication with the storage section to receive the substance from the storage section and condense the substance into the cryogenic liquid state. A sensor is adapted to sense a property of the substance in the cryogenic liquid state in the experiment vessel as part of the experiment. A bus section includes a controller configured to control delivery of the substance from the storage section to the experiment vessel, and receive property data indicative of the property sensed by the sensor for subsequent evaluation on Earth.

  4. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  5. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.

    2015-01-01

    Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.

  6. Mass flow meter using the triboelectric effect for measurement in cryogenics

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Henry; Cunningham, Jock; Wolff, Steve

    1987-01-01

    The use of triboelectric charge to measure the mass flow rate of cryogens for the Space Shuttle Main Engine was investigated. Cross correlation of the triboelectric charge signals was used to determine the transit time of the cryogen between two sensor locations in a .75-in tube. The ring electrode sensors were mounted in a removable spool piece. Three spool pieces were constructed for delivery, each with a different design. One set of electronics for implementation of the cross correlation and flow calculation was constructed for delivery. Tests were made using a laboratory flow loop using liquid freon and transformer oil. The measured flow precision was 1 percent and the response was linear. The natural frequency distribution of the triboelectric signal was approximately 1/f. The sensor electrodes should have an axial length less than approximately one/tenth pipe diameter. The electrode spacing should be less than approximately one pipe diameter. Tests using liquid nitrogen demonstrated poor tribo-signal to noise ratio. Most of the noise was microphonic and common to both electrode systems. The common noise rejection facility of the correlator was successful in compensating for this noise but the signal was too small to enable reliable demonstration of the technique in liquid nitrogen.

  7. Cryogenic Yb: YAG Thin-Disk Laser

    DTIC Science & Technology

    2016-09-09

    AFRL-RD-PS- TP-2016-0004 AFRL-RD-PS- TP-2016-0004 CRYOGENIC Yb: YAG THINN-DISK LASER N . Vretenar, et al. 19 August 2011 Technical Paper...Cryogenic Yb: YAG Thin-Disk Laser 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) * N . Vretenar, R. Carson, ***T. Lucas, T. Newell, W.P. Latham...Thin-Disk Laser N . Vretenar,1 T. Carson,2 T. Lucas,3T. Newell,2 W. P. Latham,2 and P. Peterson,3 H. Bostanci,4 J. J. Lindauer4, B. A. Saarloos,4

  8. Cryogenic system for COMET experiment at J-PARC

    NASA Astrophysics Data System (ADS)

    Ki, Taekyung; Yoshida, Makoto; Yang, Ye; Ogitsu, Toru; Iio, Masami; Makida, Yasuhiro; Okamura, Takahiro; Mihara, Satoshi; Nakamoto, Tatsushi; Sugano, Michinaka; Sasaki, Ken-ichi

    2016-07-01

    Superconducting conductors and cryogenic refrigeration are key factors in the accelerator science because they enable the production of magnets needed to control and detect the particles under study. In Japan, a system for COMET (Coherent Muon to Electron Transition), which will produce muon beam lines, is under the construction at J-PARC (Japan Proton Accelerator Research Complex). The system consists of three superconducting magnets; the first is a pion-capture solenoid, the second is a muon-transport solenoid, and the third is a detector solenoid. It is necessary to cool down the magnets efficiently using two-phase helium and maintain them securely at 4.5 K. For stable cryogenic refrigeration of the magnets, a suitable cooling method, structures, and the irradiation effect on materials should be investigated. In this paper, we focus on the development of an overall cryogenic system for cooling the capture and transport solenoids. A conduction-cooling method is considered for cooling the capture and transport solenoids because of the advantages such as the reduction of total heat load, fewer components, and simplified structure. To supply cryogenic fluids (4.5 K liquid helium and 58 K gas helium) and currents to the conduction-cooled magnets subjected to high irradiation, cryogenic components (cooling paths in the magnets, transfer tubes, and a current lead box) are developed. Based on the environment of high irradiation, the conditions (temperature and pressure) of helium in cooling paths are estimated, as well as the temperature of the capture magnet. We develop a dynamic model for quench simulation and estimate the maximum pressure in the cooling pipe when the capture magnet quenches. We conclude with a discussion of the next steps and estimated challenges for the cryogenic system.

  9. Centaur Test Bed (CTB) for Cryogenic Fluid Management

    NASA Technical Reports Server (NTRS)

    Sakla, Steven; Kutter, Bernard; Wall, John

    2006-01-01

    Future missions such as NASA s space exploration vision and DOD satellite servicing will require significant increases in the understanding and knowledge of space based cryogenic fluid management (CFM), including the transfer and storage of cryogenic fluids. Existing CFM capabilities are based on flight of upper stage cryogenic vehicles, scientific dewars, a few dedicated flight demonstrations and ground testing. This current capability is inadequate to support development of the CEV cryogenic propulsion system, other aspects of robust space exploration or the refueling of satellite cryo propulsion systems with reasonable risk. In addition, these technologies can provide significant performance increases for missions beyond low-earth orbit to enable manned missions to the Moon and beyond. The Centaur upper-stage vehicle can provide a low cost test platform for performing numerous flight demonstrations of the full breadth of required CFM technologies to support CEV development. These flight demonstrations can be performed as secondary mission objectives using excess LH2 and/or LO2 from the main vehicle propellant tanks following primary spacecraft separation at minimal cost and risk.

  10. Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems

    NASA Astrophysics Data System (ADS)

    Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana

    2017-12-01

    At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.

  11. Cryogenic treatment of gas

    DOEpatents

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  12. Pathway to Cryogen Free Production of Hyperpolarized Krypton-83 and Xenon-129

    PubMed Central

    Six, Joseph S.; Hughes-Riley, Theodore; Stupic, Karl F.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2012-01-01

    Hyperpolarized (hp) 129Xe and hp 83Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp 129Xe MRI cumbersome. For hp 83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For 129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized 129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm3/min. For hp 83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D1 transition was observed and taken into account for the qualitative description of the SEOP process. PMID:23209620

  13. Thermography to Inspect Insulation of Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; Youngquist, Robert

    2011-01-01

    Thermography has been used in the past to monitor active, large, cryogenic storage tanks. This approach proposes to use thermography to monitor new or refurbished tanks, prior to filling with cryogenic liquid, to look for insulation voids. Thermography may provide significant cost and schedule savings if voids can be detected early before a tank is returned to service.

  14. Unlined Reuseable Filament Wound Composite Cryogenic Tank Testing

    NASA Technical Reports Server (NTRS)

    Murphy, A. W.; Lake, R. E.; Wilkerson, C.

    1999-01-01

    An unlined reusable filament wound composite cryogenic tank was tested at the Marshall Space Flight Center using LH2 cryogen and pressurization to 320 psig. The tank was fabricated by Phillips Laboratory and Wilson Composite Group, Inc., using an EnTec five-axis filament winder and sand mandrels. The material used was IM7/977-2 (graphite/epoxy).

  15. A versatile laboratory cryogenic plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrov, V.M.; Marevichev, I.P.; Petrova, Y.B.

    1983-07-01

    The Institute of Theoretical and Experimental physics has designed a versatile cryogenic plant (VCP) which can liquefy helium, hydrogen, neon, and can extract neon from a gaseous neon-helium mixture. It can also be used as a refrigerator for cryostating external objects. The versatile cryogenic plant is schematicized and the refrigerating capacity and VCP control panel are detailed. Characteristic features which distinguish the VCP from other plants are specified. The processes involved in the liquefaction of helium, hydrogen, or neon, and the cryostating and cooling of an external object are explained. The use of the plant showed it to be economic,more » reliable, and convenient to operate.« less

  16. Cryogenic optics for space application

    NASA Astrophysics Data System (ADS)

    Fappani, Denis; Robert, Patrick

    2017-11-01

    For space born Astronomy as well as Earth Observation from space, more and more focal plane instruments are operating in the near or mid infrared and require therefore optics operating at cryogenic temperature (down to liquid nitrogen temperature or less). Through several examples of typical past or on-going realizations for different projects requiring such cryogenics optics (e.g. MTG=Meteosat Third Generation program for ESA), the presentation will point out the main technical issues and corresponding solutions for design, manufacturing and testing of necessary lens assemblies, mirrors and relevant optical coatings. A brief review of the corresponding existing "state of the art" for these technologies in Thales Seso will conclude the presentation.

  17. Nanotribological behavior of deep cryogenically treated martensitic stainless steel

    PubMed Central

    Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban

    2017-01-01

    Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally. PMID:28904837

  18. Nanotribological behavior of deep cryogenically treated martensitic stainless steel.

    PubMed

    Prieto, Germán; Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban

    2017-01-01

    Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic-plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.

  19. Developments in advanced and energy saving thermal isolations for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Shu, Q. S.; Demko, J. A.; Fesmire, J. E.

    2015-12-01

    The cooling power consumption in large scale superconducting systems is huge and cryogenic devices used in space applications often require an extremely long cryogen holding time. To economically maintain the device at its operating temperature and minimize the refrigeration losses, high performance of thermal isolation is essential. The radiation from warm surrounding surfaces and conducting heat leaks through supports and penetrations are the dominant heat loads to the cold mass under vacuum condition. The advanced developments in various cryogenic applications to successfully reduce the heat loads through radiation and conduction are briefly and systematically discussed and evaluated in this review paper. These include: (1) thermal Insulation for different applications (foams, perlites, glass bubbles, aerogel and MLI), (2) sophisticated low-heat-leak support (cryogenic tension straps, trolley bars and posts with dedicated thermal intercepts), and (3) novel cryogenic heat switches.

  20. The Cryogenic, High-Accuracy, Refraction Measuring System (CHARMS): A New Facility for Cryogenic Infrared through Vacuum Far-Ultraviolet Refractive Index Measurements

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2004-01-01

    The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.

  1. NTF: Soldering Technology Development for Cryogenics

    NASA Technical Reports Server (NTRS)

    Hall, E. T., Jr.

    1985-01-01

    The advent of the National Transonic Facility (NTF) brought about a new application for an old joining method, soldering. Soldering for use at cryogenic temperatures requires that solders remain ductile and free from tin-pest (grey tin), have toughness to withstand aerodynamic loads associated with flight research, and maintain their surface finishes. Solders are used to attach 347 Stainless-Steel tubing in surface grooves of models. The solder must fill up the gap and metallurgically bound to the tubing and model. Cryogenic temperatures require that only specific materials for models can be used, including: Vasco Max 200 CVM, lescalloy A-286 Vac Arc, pH 13-8 Mo. Solders identified for testing at this time are: 50% Sn - 49.5% Pb - 0.5% Sb, 95% Sn - 5% Sb, 50% In 50% Pb, and 37.5% Sn - 37.5% Pb - 25% In. With these materials and solders, it is necessary to determine their solderability. After solderability is determined, tube/groove specimens are fabricated and stressed under cryogenic temperatures. Compatible solders are then used for acutual models.

  2. Effect of Nuclear Radiation on Materials at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Schwanbeck, C. A.

    1965-01-01

    The tensile properties for 33 polycrystalline structural materials including aluminum, titanium, nickel and iron alloys were obtained at -256.5 C (30 deg R) after irradiation exposure at this temperature to 10(exp 17) nvt (E greater than 0.5 Mev), at -256.5 C without previous irradiation, and at approximately 27 C (540 deg R) without previous irradiation. The data were evaluated statistically to permit identification of cryogenic effects and nuclear-cryogenic effects. A number of conclusions were drawn regarding suitability of certain of the materials for use in nuclear-cryogenic applications and regarding the need for further investigation.

  3. Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; ScholtensCoffman, Brekke E.; Sass, Jared P.; Williams, Martha K.; Smith, Trent M.; Meneghelli, Barrry J.

    2008-01-01

    Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed.

  4. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  5. Zero Boil Off Cryogen Storage for Future Launchers

    NASA Technical Reports Server (NTRS)

    Valentian, D.; Plachta, D.; Kittel, P.; Hastings, L. J.; Salerno, Louis J.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Zero boil off (ZBO) cryogen storage using both cryocoolers and passive insulation technologies will enable long-term exploration missions by allowing designers to optimize tankage without the need for excess cryogen storage to account for boil off. Studies of ZBO (zero boil off) have been on-going in the USA for several years. More recently, a review of the needs of advanced space propulsion took place in Europe. This showed the interest of the European community in cryogenic propulsion for planetary missions as well as the use of liquid hydrogen for large power electric propulsion (manned Mars missions). Although natural boiling could be acceptable for single leg missions, passive insulation techniques yield roughly a I% per month cryogen loss and this would not be cost effective for robotic planetary missions involving storage times greater than one year. To make economic sense, long-term exploration missions require lower tank capacity and longer storage times. Recent advances in cryocooler technology, resulting in vast improvements in both cooler efficiency and reliability, make ZBO is a clear choice for planetary exploration missions. Other, more near term applications of ZBO include boil-off reduction or elimination applied to first and upper stages of future earth-to-orbit (ETO) launchers. This would extend launch windows and reduce infrastructure costs. Successors to vehicles like Ariane 5 could greatly benefit by implementing ZBO. Zero Boil Off will only be successful in ETO launcher applications if it makes economic sense to implement. The energy cost is only a fraction of the total cost of buying liquid cryogen, the rest being transportation and other overhead. Because of this, higher boiling point cryogens will benefit more from on-board liquefaction, thus reducing the infrastructure costs. Since hydrogen requires a liquefier with at least a 17% efficiency just to break even from a cost standpoint, one approach for implementing ZBO in upper stages would

  6. Cryogenic distribution box for Fermi National Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Svehla, M. R.; Bonnema, E. C.; Cunningham, E. K.

    2017-12-01

    Meyer Tool & Mfg., Inc (Meyer Tool) of Oak Lawn, Illinois is manufacturing a cryogenic distribution box for Fermi National Accelerator Laboratory (FNAL). The distribution box will be used for the Muon-to-electron conversion (Mu2e) experiment. The box includes twenty-seven cryogenic valves, two heat exchangers, a thermal shield, and an internal nitrogen separator vessel, all contained within a six-foot diameter ASME coded vacuum vessel. This paper discusses the design and manufacturing processes that were implemented to meet the unique fabrication requirements of this distribution box. Design and manufacturing features discussed include: 1) Thermal strap design and fabrication, 2) Evolution of piping connections to heat exchangers, 3) Nitrogen phase separator design, 4) ASME code design of vacuum vessel, and 5) Cryogenic valve installation.

  7. A highly reliable cryogenic mixing pump with no mechanical moving parts

    NASA Astrophysics Data System (ADS)

    Chen, W.; Niblick, A. L.

    2017-12-01

    This paper presents the design and preliminary test results of a novel cryogenic mixing pump based on magnetocaloric effect. The mixing pump is developed to enable long-term cryogenic propellant storage in space by preventing thermal stratification of cryogens in storage tanks. The mixing pump uses an innovative thermodynamic process to generate fluid jets to promote fluid mixing, eliminating the need for mechanical pumps. Its innovative mechanism uses a solid magnetocaloric material to alternately vaporize and condense the cryogen in the pumping chamber, and thus control the volume of the fluid inside the pumping chamber to produce pumping action. The pump is capable of self-priming and can generate a high-pressure rise. This paper discusses operating mechanism and design consideration of the pump, introduces the configuration of a brassboard cryogenic pump, and presents the preliminary test results of the pump with liquid nitrogen.

  8. Cost effective use of liquid nitrogen in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Mcintosh, Glen E.; Lombard, David S.; Martindale, David L.; Dunn, Robert P.

    1987-01-01

    A method of reliquefying from 12 to 19% of the nitrogen exhaust gas from a cryogenic wind tunnel has been developed. Technical feasibility and cost effectiveness of the system depends on performance of an innovative positive displacement expander which requires scale model testing to confirm design studies. The existing cryogenic system at the 0.3-m transonic cryogenic tunnel has been surveyed and extensive upgrades proposed. Upgrades are generally cost effective and may be implemented immediately since they are based on established technology.

  9. Testing Tensile and Shear Epoxy Strength at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Alberts, S. J.; Doehne, C. J.; Johnson, W. L.

    2017-01-01

    This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass..

  10. Testing Tensile and Shear Epoxy Strength at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Alberts, S. J.; Doehne, C. J.; Johnson, W. L.

    2017-01-01

    This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass.

  11. Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.

    2007-01-01

    In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.

  12. MCP-based photodetectors for cryogenic applications

    DOE PAGES

    Dharmapalan, R.; Mane, A.; Byrum, K.; ...

    2016-02-08

    The Argonne MCP-based photo detector is an offshoot of the Large Area Pico-second Photo Detector (LAPPD) project, wherein 6 cm × 6 cm sized detectors are made at Argonne National Laboratory. We have successfully built and tested our first detectors for pico-second timing and few mm spatial resolution. We discuss our efforts to customize these detectors to operate in a cryogenic environment. Initial plans aim to operate in liquid argon. As a result, we are also exploring ways to mitigate wave length shifting requirements and also developing bare-MCP photodetectors to operate in a gaseous cryogenic environment.

  13. JWST NIRSpec Cryogenic Light Shield Mechanism

    NASA Technical Reports Server (NTRS)

    Hale, Kathleen; Sharma, Rajeev

    2006-01-01

    The focal plane detectors for the Near-Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST) require a light tight cover for calibration along with an open field-of-view during ground performance testing within a cryogenic dewar. In order to meet the light attenuation requirements and provide open and closed fields of view without breaking vacuum, a light shield mechanism was designed. This paper describes the details of the light shield mechanism design and test results. Included is information on the labyrinth light path design, motor capability and performance, dry film lubrication, mechanism control, and mechanism cryogenic performance results.

  14. Adjustable expandable cryogenic piston and ring

    DOEpatents

    Mazur, Peter O.; Pallaver, Carl B.

    1980-01-01

    The operation of a reciprocating expansion engine for cryogenic refrigeration is improved by changing the pistons and rings so that the piston can be operated from outside the engine to vary the groove in which the piston ring is located. This causes the ring, which is of a flexible material, to be squeezed so that its contact with the wall is subject to external control. This control may be made manually or it may be made automatically in response to instruments that sense the amount of blow-by of the cryogenic fluid and adjust for an optimum blow-by.

  15. HTS cryogenic current comparator for non-invasive sensing of charged-particle beams

    NASA Astrophysics Data System (ADS)

    Hao, L.; Gallop, J. C.; Macfarlane, J. C.; Carr, C.

    2002-03-01

    The principle of the superconducting cryogenic direct-current comparator (CCC) is applied to the non-invasive sensing of charged-particle beams (ions, electrons). With the use of HTS components it is feasible to envisage applications, for example, in precision mass spectrometry, in real-time monitoring of ion-beam implantation currents and for the determination of the Faraday fundamental constant. We have developed a novel current concentrating technique using HTS thick-film material, to increase the sensitivity of the CCC. Recent simulations and experimental measurements of the flux and current concentration ratios, frequency response and linearity of a prototype HTS-CCC operating at 77 K are described.

  16. Miniature Stirling cryocoolers at Thales Cryogenics: qualification results and integration solutions

    NASA Astrophysics Data System (ADS)

    Arts, R.; Martin, J.-Y.; Willems, D.; Seguineau, C.; de Jonge, G.; Van Acker, S.; Mullié, J.; Le Bordays, J.; Benschop, T.

    2016-05-01

    During the 2015 SPIE-DSS conference, Thales Cryogenics presented new miniature cryocoolers for high operating temperatures. In this paper, an update is given regarding the qualification programme performed on these new products. Integration aspects are discussed, including an in-depth examination of the influence of the dewar cold finger on sizing and performance of the cryocooler. The UP8197 will be placed in the reference frame of the Thales product range of high-reliability linear cryocoolers, while the rotary solution will be considered as the most compact solution in the Thales portfolio. Compatibility of the cryocoolers design with new and existing 1/4" dewar designs is examined, and potential future developments are presented.

  17. Preliminary Thermal Design of Cryogenic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  18. Czech cryogenic fluid dynamics inspired by Russ Donnelly

    NASA Astrophysics Data System (ADS)

    Skrbek, Ladislav

    2015-11-01

    Following nearly five years of work along with Russ in Eugene on cryogenic turbulent convection and quantum grid turbulence, two laboratories in Prague and in Brno have been established to continue experimental research in cryogenic fluid dynamics using all three forms of cryogenic 4He - cold helium gas, normal liquid He I and superfluid He - as excellent multi-purpose working fluids. We review some of our investigations of very high Rayleigh number cryogenic thermal convection and classical and quantum turbulence in liquid helium. In particular, we discuss heat transfer efficiency of turbulent Rayleigh-Benard convection and the role of non-Oberbeck-Boussinesq conditions on possible transition to its ultimate regime; our second sound attenuation experiments probing both steady state and decaying coflow, counterflow and pure superflow of He II through channels of square cross-section including the concept of effective kinematic viscosity. We then introduce visualization experiments of classical and quantum flows of liquid helium using micron-size hydogen/deuterium particles and our recent results on transition to quantum turbulence based on the revisited experiments with a torsionally oscillating disc. Supported by GACR P203/11/0442 and 203/14/02005S.

  19. G2 Autonomous Control for Cryogenic Delivery Systems

    NASA Technical Reports Server (NTRS)

    Dito, Scott J.

    2014-01-01

    The Independent System Health Management-Autonomous Control (ISHM-AC) application development for cryogenic delivery systems is intended to create an expert system that will require minimal operator involvement and ultimately allow for complete autonomy when fueling a space vehicle in the time prior to launch. The G2-Autonomous Control project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to a rocket for testing purposes. To develop this application, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through training classes and subsequent application development, and are now in the process of building the application that will soon be used to test on cryogenic loading equipment here at the Kennedy Space Center Cryogenics Test Laboratory (CTL). The G2 ISHM-AC application will bring with it a safer and more efficient propellant loading system for the future launches at Kennedy Space Center and eventually mobile launches from all over the world.

  20. Electromagnetic dampers for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Dirusso, Eliseo

    1988-01-01

    Cryogenic turbomachinery of the type used to pump high-pressure liquid hydrogen at -423 F and liquid oxygen at -297 F to the main engines of the Space Shuttle are subjected to lateral rotor vibrations from unbalance forces and transient loads. Conventional dampers which utilize viscous fluids such as lubricating oil cannot be used in turbopumps because the bearing components are filled with either liquid hydrogen or liquid oxygen, which have viscosity comparable to air and, therefore, are not effective in viscous dampers. Electromagentic dampers are currently being explored as a means of providing damping in cryogenic turbopumps because their damping effectiveness increases as temperature decreases and because they are compatible with the liquid hydrogen or liquid oxygen in the turbopumps.

  1. PREFACE: Advances in Cryogenic Engineering - Materials: Proceedings of the International Cryogenic Materials Conference (ICMC) 2015

    NASA Astrophysics Data System (ADS)

    Kittel, Peter; Sumption, Michael

    2015-12-01

    The 2015 joint Cryogenic Engineering and International Cryogenic Materials Conferences were held from June 28 through July 2 at the JW Marriott Starr Pass Resort & Spa in Tucson, Arizona. As at past conferences, the international scope of these meetings was strongly maintained with 26 countries being represented by 561 attendees who gathered to enjoy the joint technical programs, industrial exhibits, special events, and natural beauty of the surrounding Sonoran Desert. The program for the joint conferences included a total of 363 presentations in the plenary, oral, and poster sessions. Four plenary talks gave in-depth discussions of the readiness of bulk superconductors for applications, the role of cryogenics in the development of the hydrogen bomb and vice versa, superconducting turboelectric aircraft propulsion and UPS's uses and plans for LNG fuel. Contributed papers covered a wide range of topics including large-scale and small-scale cryogenics, advances in superconductors and their applications. In total, 234 papers were submitted for publication of which 224 are published in these proceedings. The CEC/ICMC Cryo Industrial Expo displayed the products and services of 38 industrial exhibitors and provided a congenial venue for a reception and refreshments throughout the week as well as the conference poster sessions. Spectacular panoramic views of Saguaro National Park, the Sonoran Desert and the night time lights of Tucson set the stage for a memorable week in the American Southwest. Conference participants enjoyed scenic hikes and bike rides, exploring Old Town Tucson, hot and spicy southwestern cuisine, a nighttime lightning display and a hailstorm. Conference Chairs for 2015 were Peter Kittel, Consultant, for CEC and Michael Sumption from The Ohio State University, Materials Science Department for ICMC. Program Chairs were Jonathan Demko from the LeTourneau University for CEC and Timothy Haugan from AFRL/RQQM for ICMC, assisted by the CEC Program Vice Chair

  2. Validation and performance of the LHC cryogenic system through commissioning of the first sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serio, L.; Bouillot, A.; Casas-Cubillos, J.

    2007-12-01

    The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was establishedmore » and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.« less

  3. Gas-Surface Interactions in Cryogenic Whole Air Sampling.

    DTIC Science & Technology

    1981-05-01

    analysis using electron paramagnetic resonance (EPR) for the cryofrost in the solid phase, and gas chromatography for samples desorbed to the gas...e.g. cryogenic-fraction (used on occasion), and/or controlled vaporization, followed by analysis using NO xchemiluminescence, gas chromatography , and...CS202 closed cycle cryogenic refrigerator, which employs helium as the working fluid . This refrigerator is comprised of two basic sections - an

  4. Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage

    DOEpatents

    Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.

    2004-03-23

    A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.

  5. Experimental study on cryogenic moisture uptake in polyurethane foam insulation material

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Yao, L.; Qiu, L. M.; Gan, Z. H.; Yang, R. P.; Ma, X. J.; Liu, Z. H.

    2012-12-01

    Rigid foam is widely used to insulate cryogenic tanks, in particular for space launch vehicles due to its lightweight, mechanical strength and thermal-insulating performance. Up to now, little information is available on the intrusion of moisture into the material under cryogenic conditions, which will bring substantial additional weight for the space vehicles at lift-off. A cryogenic moisture uptake apparatus has been designed and fabricated to measure the amount of water uptake into the polyurethane foam. One side of the specimen is exposed to an environment with high humidity and ambient temperature, while the other with cryogenic temperature at approximately 78 K. A total of 16 specimens were tested for up to 24 h to explore the effects of the surface thermal protection layer, the foam thickness, exposed time, the butt joints, and the material density on water uptake of the foam. The results are constructive for the applications of the foam to the cryogenic insulation system in space launch vehicles.

  6. Performance of Power Converters at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2001-01-01

    Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.

  7. Decay of quadrupole-octupole 1- states in 40Ca and 140Ce

    NASA Astrophysics Data System (ADS)

    Derya, V.; Tsoneva, N.; Aumann, T.; Bhike, M.; Endres, J.; Gooden, M.; Hennig, A.; Isaak, J.; Lenske, H.; Löher, B.; Pietralla, N.; Savran, D.; Tornow, W.; Werner, V.; Zilges, A.

    2016-03-01

    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E 1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the γ -decay behavior of candidates for the (21+⊗31-)1- state in the doubly magic nucleus 40Ca and in the heavier and semimagic nucleus 140Ce is investigated. Methods: (γ ⃗,γ') experiments have been carried out at the High Intensity γ -ray Source (HI γ S ) facility in combination with the high-efficiency γ -ray spectroscopy setup γ3 consisting of HPGe and LaBr3 detectors. The setup enables the acquisition of γ -γ coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40Ca the decay into the 31- state was observed, while for 140Ce the direct decays into the 21+ and the 02+ state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N =82 isotones. In addition, negative parities for two J =1 states in 44Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 11- excitation in the light-to-medium-mass nucleus 40Ca as well as in the stable even-even N =82 nuclei.

  8. Experimental Thermal Performance Testing of Cryogenic Tank Systems and Materials

    NASA Technical Reports Server (NTRS)

    Myers, Wesley C.; Fesmire, J. E.

    2018-01-01

    A comparative study was conducted to collect and analyze thermal conductivity data on a wide variety of low density materials, as well as thermal performance data on a number of vacuum-jacketed cryogenic tank systems. Although a vast number of these types of materials and cryogenic tank systems exist, the thermal conductivity of insulation materials and the thermal performance of cryogenic tank systems is often difficult to compare because many industrial methods and experimental conditions are available and utilized. The availability of a new thermal conductivity measurement device, the Macroflash Cup Cryostat, which is applicable for assessing a variety of materials, is accessible at NASA's Cryogenic Test Laboratory (CTL) at the Kennedy Space Center (KSC). The convenience of this device has resulted in the ability to rapidly measure the thermal conductivity properties of these materials by using a flat-plate liquid nitrogen (LN2) boiloff technique that employs a guarded heat flow test methodology in order to determine the effective thermal conductivity (ke) of a test specimen. As the thermal conductivities are measured at cryogenic temperatures, materials suitable for both future space missions and cryogenic tank systems can be identified and experimentally analyzed. Also recognizable are materials which may help increase energy efficiency by limiting the thermal losses encountered under various environmental conditions. The overall focus of this work consisted of two parts. One part, was to produce and analyze thermal conductivity data on a wide variety of materials with suitable properties conducive to those needed to aid in the production of a calibration curve for the "low end" of the Macroflash instrument. (Low end meaning materials with a thermal conductivity rating below 100 milliwatts per meter-Kelvin). The second part was to collect and analyze heat transfer data for a variety of small vacuum-jacketed vessels (cryogenic tank systems) in order to compare

  9. The Redundant Compressor System for the Helium Cryogenic Plant at TPS

    NASA Astrophysics Data System (ADS)

    Li, H. C.; Tsai, H. H.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Hsiao, F. Z.; Liao, W. R.; Chuang, P. S. D.

    2017-02-01

    Recommissioning the 700-W helium cryogenic system was completed in 2014 and it entered service in 2015. The main target of this system is a stable supply of liquid helium to the superconducting RF cavities at Taiwan Photo Source. The annual maintenance of the compressor of the plant causes operation of the system to be suspended at least two weeks. To avoid such a long suspension for the cryogenic plant, we installed a redundant compressor system for the cryogenic plant in 2015. We can switch to this redundant compressor system and restart the cryogenic system in a few minutes. In this paper we present the configuration, local testing and long-term operation of this redundant compressor system.

  10. Astrium Preparation of Future Cryogenic Thrust Chamber Development

    NASA Astrophysics Data System (ADS)

    Nicolay, Rolf

    2002-01-01

    The scenarios for future cryogenic propulsion in Europe are mainly governed by cost issues on the one side and performance issues on the other. Certain relationships of the different issues exist to either the application for ELVs or RLVs respectively. Taking into account the limited budgets of the Europeans Agency Market, flexible development strategies are and have to be defined to fulfill both applications requirements. Investigations aiming at identifying the optimum development strategy serving both applications have been performed. Based on the experience of the different cryogenic thrust chamber developments already performed, Astrium worked out a flexible development strategy for future cryogenic thrust chambers in order to: This paper is going to report about this development strategy and the associated derived needs for technological investigations and development work.

  11. Cryogenic Orbital Nitrogen Experiment (CONE): Phase A/B design study

    NASA Technical Reports Server (NTRS)

    Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.

    1991-01-01

    Subcritical cryogenic fluid management (CFM) has long been recognized as an enabling technology for future space missions. Subcritical liquid storage and supply are two of the five CFM technology areas that need to be studied in the low gravity on-orbit environment. The Cryogenic Orbital Nitrogen Experiment (CONE) is a LN2 cryogenic storage and supply system demonstration placed in orbit by the National Space Transportation System (NSTS) Orbiter and operated as an in-bay payload. In-space demonstration of CFM using LN2 with a few well defined areas of focus would provide the confidence level required to implement subcritical cryogen use and is the first step towards the more far reaching issue of cryogen transfer and tankage resupply. A conceptual approach for CONE was developed and an overview of the program is described including the following: (1) a description of the background and scope of the technology objectives; (2) a description of the payload design and operation; and (3) the justification for CONE relating to potential near term benefits and risk mitigation for future systems. Data and criteria is provided to correlate in-space performance with analytical and numerical modeling of CFM systems.

  12. Experimentation for the Maturation of Deep Space Cryogenic Refueling Technologies

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2008-01-01

    This report describes the results of the "Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology" study. This study identifies cryogenic fluid management technologies that require low-gravity flight experiments bring technology readiness levels to 5 to 6; examines many possible flight experiment options; and develops near-term low-cost flight experiment concepts to mature the core technologies. A total of 25 white papers were prepared by members of the project team in the course of this study. The full text of each white paper is included and 89 relevant references are cited. The team reviewed the white papers that provided information on new or active concepts of experiments to pursue and assessed them on the basis of technical need, cost, return on investment, and flight platform. Based on on this assessment the "Centaur Test Bed for Cryogenic Fluid Management" was rated the highest. "Computational Opportunities for Cryogenics for Cryogenic and Low-g Fluid Systems" was ranked second, based on its high scores in state of the art and return on investment, even though scores in cost and time were second to last. "Flight Development Test Objective Approach for In-space Propulsion Elements" was ranked third.

  13. Positronium production in cryogenic environments

    NASA Astrophysics Data System (ADS)

    Cooper, B. S.; Alonso, A. M.; Deller, A.; Liszkay, L.; Cassidy, D. B.

    2016-03-01

    We report measurements of positronium (Ps) formation following positron irradiation of mesoporous SiO2 films and Ge(100) single crystals at temperatures ranging from 12-700 K. As both of these materials generate Ps atoms via nonthermal processes, they are able to function as positron-positronium converters at cryogenic temperatures. Our data show that such Ps formation is possibly provided the targets are not compromised by adsorption of residual gas. In the case of SiO2 films, we observe a strong reduction in the Ps formation efficiency following irradiation with UV laser light (λ =243.01 nm) below 250 K, in accordance with previous observations of radiation-induced surface paramagnetic centers. Conversely, Ps emission from Ge is enhanced by irradiation with visible laser light (λ =532 nm) via a photoemission process that persists at cryogenic temperatures. Both mesoporous SiO2 films and Ge crystals were found to produce Ps efficiently in cryogenic environments. Accordingly, these materials are likely to prove useful in several areas of research, including Ps mediated antihydrogen formation conducted in the cold bore of a superconducting magnet, the production of Rydberg Ps for experiments in which the effects of black-body radiation must be minimized, and the utilization of mesoporous structures that have been modified to produce cold Ps atoms.

  14. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  15. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    NASA Technical Reports Server (NTRS)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  16. Miniature thermo-electric cooled cryogenic pump

    DOEpatents

    Keville, R.F.

    1997-11-18

    A miniature thermo-electric cooled cryogenic pump is described for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a {Delta}T=100 C characteristic. The pump operates under vacuum pressures of 5{times}10{sup {minus}4} Torr to ultra high vacuum (UHV) conditions in the range of 1{times}10{sup {minus}7} to 3{times}10{sup {minus}9} Torr and will typically remove partial pressure, 2{times}10{sup {minus}7} Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5{degree}, and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof. 2 figs.

  17. Miniature thermo-electric cooled cryogenic pump

    DOEpatents

    Keville, Robert F.

    1997-01-01

    A miniature thermo-electric cooled cryogenic pump for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a .DELTA.T=100.degree. C. characteristic. The pump operates under vacuum pressures of 5.times.10.sup.-4 Torr to ultra high vacuum (UHV) conditions in the range of 1.times.10.sup.-7 to 3.times.10.sup.-9 Torr and will typically remove partial pressure, 2.times.10.sup.-7 Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5.degree., and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof.

  18. Material Damping Experiments at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Levine, Marie; White, Christopher

    2003-01-01

    A unique experimental facility has been designed to measure damping of materials at cryogenic temperatures. The test facility pays special attention to removing other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device; Damping data is obtained for materials (AI, GrEp, Be, Fused Quartz), strain amplitudes (less than 10-6 ppm), frequencies (20Hz-330Hz) and temperatures (20K-293K) relevant to future precision optical space missions. The test data shows a significant decrease in viscous damping at cryogenic temperatures and can be as low as 10-4%, but the amount of the damping decrease is a function of frequency and material. Contrary to the other materials whose damping monotonically decreased with temperature, damping of Fused Quartz increased substantially at cryo, after reaching a minimum at around l50 K. The damping is also shown to be insensitive to strain for low strain levels. At room temperatures, the test data correlates well to the analytical predictions of the Zener damping model. Discrepancies at cryogenic temperatures between the model predictions and the test data are observed.

  19. X-ray metal film filters at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.

    1989-01-01

    Thin aluminum foil filters have been evaluated at cryogenic temperatures. The results of the test program, including cold cycling and vibration testing, indicate that these filters are fully successful at cryogenic temperatures and can provide the high X-ray transmittance and high background rejection required for the blocking filters which are being developed for the X-Ray Spectrometer, one of the focal plane instruments on the Advanced X-Ray Astrophysics Facility.

  20. Cryogenic and radiation hard ASIC design for large format NIR/SWIR detector

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses

    2014-10-01

    An ASIC is developed to control and data quantization for large format NIR/SWIR detector arrays. Both cryogenic and space radiation environment issue are considered during the design. Therefore it can be integrated in the cryogenic chamber, which reduces significantly the vast amount of long wires going in and out the cryogenic chamber, i.e. benefits EMI and noise concerns, as well as the power consumption of cooling system and interfacing circuits. In this paper, we will describe the development of this prototype ASIC for image sensor driving and signal processing as well as the testing in both room and cryogenic temperature.

  1. Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.

    1996-01-01

    A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.

  2. Cryogenic Hydrogen Fuel for Controlled Inertial Confinement Fusion (Cryogenic Target Factory Concept Based on FST-Layering Method)

    NASA Astrophysics Data System (ADS)

    Aleksandrova, I. V.; Koresheva, E. R.; Koshelev, I. E.; Krokhin, O. N.; Nikitenko, A. I.; Osipov, I. E.

    2017-12-01

    A central element of a power plant based on inertial confinement fusion (ICF) is a target with cryogenic hydrogen fuel that should be delivered to the center of a reactor chamber with a high accuracy and repetition rate. Therefore, a cryogenic target factory (CTF) is an integral part of any ICF reactor. A promising way to solve this problem consists in the FST layering method developed at the Lebedev Physical Institute (LPI). This method (rapid fuel layering inside moving free-standing targets) is unique, having no analogs in the world. The further development of FST-layering technologies is implemented in the scope of the LPI program for the creation of a modular CTF and commercialization of the obtained results. In this report, we discuss our concept of CTF (CTF-LPI) that exhibits the following distinctive features: using a FST-layering technology for the elaboration of an in-line production of cryogenic targets, using an effect of quantum levitation of high-temperature superconductors (HTSCs) in magnetic field for noncontacting manipulation, transport, and positioning of the free-standing cryogenic targets, as well as in using a Fourier holography technique for an on-line characterization and tracking of the targets flying into the reactor chamber. The results of original experimental and theoretical investigations performed at LPI indicate that the existing and developing target fabrication capabilities and technologies can be applied to ICF target production. The unique scientific, engineering, and technological base developed in Russia at LPI allows one to make a CTFLPI prototype for mass production of targets and delivery thereof at the required velocity into the ICF reactor chamber.

  3. The cryogenic wind tunnel for high Reynolds number testing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1974-01-01

    Experiments performed at the NASA Langley Research Center in a cryogenic low-speed continuous-flow tunnel and in a cryogenic transonic continuous-flow pressure tunnel have demonstrated the predicted changes in Reynolds number, drive power, and fan speed with temperature, while operating with nitrogen as the test gas. The experiments have also demonstrated that cooling to cryogenic temperatures by spraying liquid nitrogen directly into the tunnel circuit is practical and that tunnel temperature can be controlled within very close limits. Whereas most types of wind tunnel could operate with advantage at cryogenic temperatures, the continuous-flow fan-driven tunnel is particularly well suited to take full advantage of operating at these temperatures. A continuous-flow fan-driven cryogenic tunnel to satisfy current requirements for test Reynolds number can be constructed and operated using existing techniques. Both capital and operating costs appear acceptable.

  4. Laser-induced damage of coatings on Yb:YAG crystals at cryogenic condition

    NASA Astrophysics Data System (ADS)

    Wang, He; Zhang, Weili; Chen, Shunli; Zhu, Meiping; He, Hongbo; Fan, Zhengxiu

    2011-12-01

    As large amounts of heat need to be dissipated during laser operation, some diode pumped solid state lasers (DPSSL), especially Yb:YAG laser, operate at cryogenic condition. This work investigated the laser induced damage of coatings (high-reflective and anti-reflective coatings) on Yb:YAG crystals at cryogenic temperature and room temperature. The results show that the damage threshold of coatings at cryogenic temperature is lower than the one at room temperature. Field-emission scanning electron microscopy (FESEM), optical profiler, step profiler and Atomic force microscope (AFM) were used to obtain the damage morphology, size and depth. Taking alteration of physical parameters, microstructure of coatings and the environmental pollution into consideration, we analyzed the key factor of lowering the coating damage threshold at cryogenic conditions. The results are important to understand the mechanisms leading to damage at cryogenic condition.

  5. Long-Term Cryogenic Propellant Storage for the Titan Orbiter Polar Surveyor (TOPS) Mission

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Francis, John; Li, Xiaoyi; DeLee, Hudson; Purves, Lloyd; Willis, Dewey; Nixon, Conor; Mcguinness, Dan; Riall, Sara; Devine, Matt; hide

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.

  6. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  7. Low Thermal Loss Cryogenic Transfer Line with Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Shu, Quan-Sheng; Cheng, Guangfeng; Yu, Kun; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.

    2004-06-01

    An energy efficient, cost effective cryogenic distribution system (up to several miles) is crucial for spaceport and in-space cryogenic systems. The conduction heat loss from the supports that connect the cold inner lines to the warm support structure is ultimately the most serious heat leak after thermal radiation has been minimized. The use of magnetic levitation by permanent magnets and high temperature superconductors provides support without mechanical contact and thus, the conduction part of the heat leak can be reduced to zero. A stop structure is carefully designed to hold the center tube when the system is warm. The novel design will provide the potential of extending many missions by saving cryogens, or reducing the overall launch mass.

  8. Cryogenics for the MuCool Test Area (MTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darve, Christine; Norris, Barry; Pei, Liu-Jin

    2005-09-01

    MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R&D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH{sub 2}) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN{sub 2} and LH{sub 2}. The latter dictates stringent system design for hazardous locations.more » The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R&D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.« less

  9. Cryogenics for the MuCool Test Area (MTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darve, Christine; Norris, Barry; Pei, Liujin

    2006-03-20

    MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. Themore » cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.« less

  10. Testing of Prototype Magnetic Suspension Cryogenic Transfer Line

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Shu, Q. S.; Cheng, G.; Susta, J. T.

    2006-04-01

    A 6-meter prototype cryogenic transfer line with magnetic suspension was tested for its mechanical and thermal performance at the Cryogenics Test Laboratory of NASA Kennedy Space Center (KSC). A test facility with two cryogenic end-boxes was designed and commissioned for the testing. Suspension mechanisms were verified through a series of tests with liquid nitrogen. The thermal performance of the prototype was determined using the new test apparatus. The tested prototype has incorporated temperature and vacuum pressure data acquisition ports, customized interfaces to cryogenic end-boxes, and instrumentation. All tests were conducted under simulated onsite transfer line working conditions. A static (boiloff rate measurement) testing method was employed to demonstrate the gross heat leak in the tested article. The real-time temperature distribution, vacuum level, levitation distance, and mass flow rate were measured. The main purpose of this paper is to summarize the testing facility design and preparation, test procedure, and primary test results. Special arrangements (such as turning on/off mechanical support units, observing levitation gap, and setting up the flowmeter) in testing of such a magnetically levitated transfer line are also discussed. Preliminary results show that the heat leak reduction of approximately one-third to one-half is achievable through such transfer lines with a magnetic suspension system.

  11. Conceptual Design and Analysis of Orbital Cryogenic Liquid Storage and Supply Systems.

    DTIC Science & Technology

    1981-05-01

    MCR -79-561, Martin Marietta Corporation, June 1979. 5. Tegart, J. R.: Hydrodynamic Analysis Report - Cryogenic Fluid Management...Experiment, MCR -79-563, Martin Marietta Corporation, June 1979, (Contract NAS3-2 1591). 6. Gille, J. P.: Thermal Analysis Report - Cryogenic Fluid Management...Analysis Report - Cryogenic Fluid Management Experiment, MCR -79-567, Martin Marietta Corporation, June 1979, (Contract NAS3-21591). 8. "Low

  12. Cryogenic storage tank thermal analysis

    NASA Technical Reports Server (NTRS)

    Wright, J. P.

    1976-01-01

    Parametric study discusses relationship between cryogenic boil-off and factors such as tank size, insulation thickness and performance, structural-support heat leaks and use of vapor-cooled shields. Data presented as series of nomographs and curves.

  13. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    NASA Astrophysics Data System (ADS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-01

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  14. Simulation and experimental research of heat leakage of cryogenic transfer lines

    NASA Astrophysics Data System (ADS)

    Deng, B. C.; Xie, X. J.; Pan, W.; Jiang, R. X.; Li, J.; Yang, S. Q.; Li, Q.

    2017-12-01

    The heat leakage of cryogenic transfer lines directly influences the performance of large-scale helium refrigerator. In this paper, a thermal model of cryogenic transfer line considering numerical simulation of support coupled with MLI was established. To validate the model, test platform of cryogenic transfer lines with the merits of disassembly outer pipe and changeable easily multi-layer insulation has been built. The experimental results of heat leakage through overall length of cryogenic transfer lines, support and multi-layer insulation were obtained. The heat leakages of multi-layer insulation, a support and the overall leakage are 1.02 W/m, 0.44 W and 1.46 W/m from experimental data, respectively. The difference of heat leakage of MLI between experiment and simulation were less than 5%. The temperature distribution of support and MLI obtained in presented model in good agreement with experimental data. It is expected to reduce the overall heat leakage of cryogenic transfer lines further by optimizing structure of support based on the above thermal model and test platform in this paper.

  15. The scope of additive manufacturing in cryogenics, component design, and applications

    NASA Astrophysics Data System (ADS)

    Stautner, W.; Vanapalli, S.; Weiss, K.-P.; Chen, R.; Amm, K.; Budesheim, E.; Ricci, J.

    2017-12-01

    Additive manufacturing techniques using composites or metals are rapidly gaining momentum in cryogenic applications. Small or large, complex structural components are now no longer limited to mere design studies but can now move into the production stream thanks to new machines on the market that allow for light-weight, cost optimized designs with short turnaround times. The potential for cost reductions from bulk materials machined to tight tolerances has become obvious. Furthermore, additive manufacturing opens doors and design space for cryogenic components that to date did not exist or were not possible in the past, using bulk materials along with elaborate and expensive machining processes, e.g. micromachining. The cryogenic engineer now faces the challenge to design toward those new additive manufacturing capabilities. Additionally, re-thinking designs toward cost optimization and fast implementation also requires detailed knowledge of mechanical and thermal properties at cryogenic temperatures. In the following we compile the information available to date and show a possible roadmap for additive manufacturing applications of parts and components typically used in cryogenic engineering designs.

  16. A surface flow visualisation technique for use in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Kell, D. M.

    1978-01-01

    A method of surface flow visualization for use in cryogenic wind tunnels is described which requires injection of a cryogenic liquid onto the model while the tunnel is running. This necessitates the use of a substance that remains liquid over a large range of cryogenic wind tunnel operating temperatures. It is found that propane (C3H8) is a suitable substance. Experiments are conducted in a subsonic cryogenic wind tunnel to assess the practical application of liquid propane flow visualization. The propane is stored in a chamber cooled by liquid nitrogen and when required is pumped through pipes to a gallery inside the model and then out onto the surface through small holes. To color the liquid a suspension of pigment particles is used. Propane is supplied to the cooled chamber in gaseous form from a standard liquefied gas cylinder. The sequence of events is illustrated on a propane temperature-entropy diagram. The use of liquefied propane for flow visualization in a cryogenic tunnel operating at pressures up to 40 atm appears to be feasible. Illustrative examples are provided.

  17. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    NASA Astrophysics Data System (ADS)

    Delruelle, N.; Inglese, V.; Leclercq, Y.; Pirotte, O.; Williams, L.

    2015-12-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for each cryo-module. This paper describes the whole cryogenic system and presents the commissioning results including the preliminary operation at 4.5 K of the first cryo- module in the experimental hall.

  18. Computing the Thermodynamic State of a Cryogenic Fluid

    NASA Technical Reports Server (NTRS)

    Willen, G. Scott; Hanna, Gregory J.; Anderson, Kevin R.

    2005-01-01

    The Cryogenic Tank Analysis Program (CTAP) predicts the time-varying thermodynamic state of a cryogenic fluid in a tank or a Dewar flask. CTAP is designed to be compatible with EASY5x, which is a commercial software package that can be used to simulate a variety of processes and equipment systems. The mathematical model implemented in CTAP is a first-order differential equation for the pressure as a function of time.

  19. High-resolution, cryogenic, side-entry type specimen stage

    DOEpatents

    King, Wayne E.; Merkle, Karl L.

    1979-01-01

    A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.

  20. Ricor's anniversary of 50 innovative years in cryogenic technology

    NASA Astrophysics Data System (ADS)

    Filis, Avishai; Segal, Victor; Pundak, Nachman; Bar Haim, Zvi; Danziger, Menachem

    2017-05-01

    Ricor cryogenics was founded in 1967 and since then it has focused on innovative technologies in the cryogenic field. The paper reviews the initial research and development efforts invested in various technologies that have yielded products such as Cryostats for Mossbauer Effect measurement, Liquid gas Dewar containers, Liquid helium vacuum transfer tubes, Cryosurgery and other innovative products. The major registered patents that matured to products such as a magnetic vacuum valve operator, pumped out safety valve and other innovations are reviewed here. As a result of continuous R and D investment, over the years a new generation of innovative Stirling cryogenic products has developed. This development began with massive split slip-on coolers and has progressed as far as miniature IDDCA coolers mainly for IR applications. The accumulated experience in Stirling technology is used also as a platform for developing self-contained water vapor pumps known as MicroStar and NanoStar. These products are also used in collaboration with a research institute in the field of High Temperature Superconductors. The continuous growth in the cryogenic products range and the need to meet market demands have motivated the expansion, of Ricor's manufacturing facility enabling it to become a world leader in the cryocooler field. To date Ricor has manufactured more than 120,000 cryocoolers. The actual cryogenic development efforts and challenges are also reviewed, mainly in the field of long life cryocoolers, ruggedized products, miniaturization and products for space applications.

  1. Eddy Current Damper for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Starin, Scott; Crosno, Fred

    2002-09-01

    This presentation considers the following topics: the need for cryogenic energy absorption, high speed damper characteristics, gearbox characteristics, composite assembly characteristics, performance tests, simulation models.

  2. POLOCAM: a millimeter wavelength cryogenic polarimeter prototype for MUSIC-POL

    NASA Astrophysics Data System (ADS)

    Laurent, Glenn T.; Vaillancourt, John E.; Savini, Giorgio; Ade, Peter A. R.; Beland, Stephane; Glenn, Jason; Hollister, Matthew I.; Maloney, Philip R.; Sayers, Jack

    2012-09-01

    As a proof-of-concept, we have constructed and tested a cryogenic polarimeter in the laboratory as a prototype for the MUSIC instrument (Multiwavelength Sub/millimeter Kinetic Inductance Camera). The POLOCAM instrument consists of a rotating cryogenic polarization modulator (sapphire half-waveplate) and polarization analyzer (lithographed copper polarizers deposited on a thin film) placed into the optical path at the Lyot stop (4K cold pupil stop) in a cryogenic dewar. We present an overview of the project, design and performance results of the POLOCAM instrument (including polarization efficiencies and instrumental polarization), as well as future application to the MUSIC-POL instrument.

  3. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.

  4. Aerospace Coolers: A 50-Year Quest for Long-Life Cryogenic Cooling in Space

    NASA Astrophysics Data System (ADS)

    Ross, R. G.

    Cryogenic temperatures are critical to allow infrared, gamma-ray and X-ray detectors to operate with low background noise and high sensitivity. As a result, the world's aerospace industry has long dreamed of having the means for multiyear cryogenic cooling in space to enable long-life sensors of various forms for scientific, missile defense, and reconnaissance observations. Not long after the first Sputnik was launched into space in October 1957, engineers and scientists were actively seeking means of providing cryogenic cooling for evermore sophisticated and sensitive detectors in a variety of spectral regions. Although both passive cryoradiators and stored cryogens have provided a source of cryogenic cooling for many missions, the consistent dream of scientists and mission planners was always for a mechanical refrigerator that could achieve the temperatures of the coldest cryogens (vastly colder than possible with passive radiators) and have multiyear life without the finite life limitations of stored cryogens. The first cryocoolers in space were short-life Joule-Thomson and Stirling cryocoolers flown on both US and USSR missions around 1970. Since that time, extensive research and development of evermore sophisticated cryocoolers (Stirling, Vuilleumier, Brayton, magnetic, sorption, and pulse tube) has taken place in the world's aerospace industry. This chapter examines the enormous progress made by the aerospace industry over the past 50 years in developing both cryostats and cryocoolers to enable the widespread use of cryogenic temperatures in space.

  5. Temperature Stratification in a Cryogenic Fuel Tank

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  6. Tensile Properties of Polymeric Matrix Composites Subjected to Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.

    2004-01-01

    Polymer matrix composites (PMC s) have seen limited use as structural materials in cryogenic environments. One reason for the limited use of PMC s in cryogenic structures is a design philosophy that typically requires a large, validated database of material properties in order to ensure a reliable and defect free structure. It is the intent of this paper to provide an initial set of mechanical properties developed from experimental data of an advanced PMC (IM7/PETI-5) exposed to cryogenic temperatures and mechanical loading. The application of this data is to assist in the materials down-select and design of cryogenic fuel tanks for future reusable space vehicles. The details of the material system, test program, and experimental methods will be outlined. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different laminates. These properties were also tested after aging at -186 C with and without loading applied. Microcracking was observed in one laminate.

  7. Valve for cryogenic service

    DOEpatents

    Worwetz, H.A.

    1975-09-02

    This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)

  8. Cryogenic Moisture Analysis of Spray-On Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions. The lab tested NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68 (acreage foam with the flame retardant removed). Specimens of all three materials were placed at a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (Atmospheric Exposure Test Site [beach site]). After aging/ weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their ability to absorb moisture under conditions similar to those experienced by the Space Shuttle External Tank (ET) during the loading of cryogenic propellants.

  9. Low-noise cryogenic transmission line

    NASA Technical Reports Server (NTRS)

    Norris, D.

    1987-01-01

    New low-noise cryogenic input transmission lines have been developed for the Deep Space Network (DSN) at 1.668 GHz for cryogenically cooled Field Effect Transistors (FET) and High Electron Mobility Transistor (HEMT) amplifiers. These amplifiers exhibit very low noise temperatures of 5 K to 15 K, making the requirements for a low-noise input transmission line critical. Noise contribution to the total amplifier system from the low-noise line is less than 0.5 K for both the 1.668-GHz and 2.25-GHz FET systems. The 1.668-GHz input line was installed in six FET systems which were implemented in the DSN for the Venus Balloon Experiment. The 2.25-GHz input line has been implemented in three FET systems for the DSN 34-m HEF antennas, and the design is currently being considered for use at higher frequencies.

  10. Wall mounted heat exchanger characterization. [cryogenic propellant tanks

    NASA Technical Reports Server (NTRS)

    Bullard, B. R.

    1975-01-01

    Analytical models are presented for describing the heat and mass transfer and the energy distribution in the contents of a cryogenic propellant tank, under varying gravity levels. These models are used to analytically evaluate the effectiveness of a wall heat exchanger as a means of controlling the pressure in the tank during flight and during fill operations. Pressure and temperature histories are presented for tanks varying in size from 4 to 22.5 feet in diameter and gravity levels from 0-1. Results from the subscale test program, utilizing both non-cryogenic and cryogenic fluid, designed to evaluate a tank wall heat exchanger are described and compared with the analytical models. Both the model and test results indicate that a passive tank wall heat exchanger can effectively control tank pressure. However, the weight of such a system is considerably higher than that of an active mixer system.

  11. Self-contained cryogenic gas sampling apparatus and method

    DOEpatents

    McManus, G.J.; Motes, B.G.; Bird, S.K.; Kotter, D.K.

    1996-03-26

    Apparatus for obtaining a whole gas sample, is composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method is described for obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant. 3 figs.

  12. Self-contained cryogenic gas sampling apparatus and method

    DOEpatents

    McManus, Gary J.; Motes, Billy G.; Bird, Susan K.; Kotter, Dale K.

    1996-01-01

    Apparatus for obtaining a whole gas sample, composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method of obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant.

  13. Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Barry; Bremer, Johan; Chalifour, Michel

    2017-01-01

    The Short-Baseline Neutrino (SBN) physics program will involve three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. The Program will be composed of an existing and operational detector known as Micro Boone (170 ton LAr mass) plus two new experiments known as the SBN Near Detector (SBND, ~ 260more » ton) and the SBN Far Detector (SBN-FD, ~ 600 tons). Fermilab is now building two new facilities to house the experiments and incorporate all cryogenic and process systems to operate these detectors beginning in the 2018-2019 time frame. The SBN cryogenics are a collaborative effort between Fermilab and CERN. The SBN cryogenic systems for both detectors are composed of several sub-systems: External/Infrastructure (or LN2), Proximity (or LAr), and internal cryogenics. For each detector the External/Infrastructure cryogenics includes the equipment used to store and the cryogenic fluids needed for the operation of the Proximity cryogenics, including the LN2 and LAr storage facilities. The Proximity cryogenics consists of all the systems that take the cryogenic fluids from the external/infrastructure cryogenics and deliver them to the internal at the required pressure, temperature, purity and mass flow rate. It includes the condensers, the LAr and GAr purification systems, the LN2 and LAr phase separators, and the interconnecting piping. The Internal cryogenics is comprised of all the cryogenic equipment located within the cryostats themselves, including the GAr and LAr distribution piping and the piping required to cool down the cryostats and the detectors. These cryogenic systems will be engineered, manufactured, commissioned

  14. Fastener load tests and retention systems tests for cryogenic wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Wallace, J. W.

    1984-01-01

    A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.

  15. Predicted thermal response of a cryogenic fuel tank exposed to simulated aerodynamic heating profiles with different cryogens and fill levels

    NASA Technical Reports Server (NTRS)

    Hanna, Gregory J.; Stephens, Craig A.

    1991-01-01

    A two dimensional finite difference thermal model was developed to predict the effects of heating profile, fill level, and cryogen type prior to experimental testing the Generic Research Cryogenic Tank (GRCT). These numerical predictions will assist in defining test scenarios, sensor locations, and venting requirements for the GRCT experimental tests. Boiloff rates, tank-wall and fluid temperatures, and wall heat fluxes were determined for 20 computational test cases. The test cases spanned three discrete fill levels and three heating profiles for hydrogen and nitrogen.

  16. Resistance of Metallic Screens in a Cryogenic Flow

    NASA Astrophysics Data System (ADS)

    Fischer, Alexander; Stief, Malte

    The propellant behaviour in cryogenic upper stages tanks imposes challenging requirements on the design, especially for future upper stages designed for multiple restarts and long ballistic flight phases. The main challenge is the supply of the propellants to the feed system prior to the engine reignition. During the entire mission the engine requires a gaseous and bubble free liquid supply of propellant at the required thermodynamic conditions. The current research focus is to prepare the initial steps for the maturation of the Propellant Management Device (PMD) technology for cryogenic tank systems. Main components of such a PMD are metallic screens. The metallic screens are used as barrier for any gas bubbles within the fluid stream approaching the space craft engines. The screen characteristics are of fundamental importance for the PMD and feed system design. The paper presents a summary on available experimental screen data with regard to the flow resistance and gives a comparison with theoretical and empirical predictions found in literature. The lack on comparable data with regard to space craft applications and the need on further research with cryogenic flows is demonstrated. The DLR Institute of Space Systems is preparing various cryogenic tests to collect the desired information about the flow properties of such metallic screens. The planned test setup and the foreseen experiments will be presented.

  17. Cryogenic colocalization microscopy for nanometer-distance measurements.

    PubMed

    Weisenburger, Siegfried; Jing, Bo; Hänni, Dominik; Reymond, Luc; Schuler, Benjamin; Renn, Alois; Sandoghdar, Vahid

    2014-03-17

    The main limiting factor in spatial resolution of localization microscopy is the number of detected photons. Recently we showed that cryogenic measurements improve the photostability of fluorophores, giving access to Angstrom precision in localization of single molecules. Here, we extend this method to colocalize two fluorophores attached to well-defined positions of a double-stranded DNA. By measuring the separations of the fluorophore pairs prepared at different design positions, we verify the feasibility of cryogenic distance measurement with sub-nanometer accuracy. We discuss the important challenges of our method as well as its potential for further improvement and various applications.

  18. Design, Construction and Test of Cryogen-Free HTS Coil Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hocker, H.; Anerella, M.; Gupta, R.

    2011-03-28

    This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconductingmore » magnets.« less

  19. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  20. Cryogenics for HL-LHC

    NASA Astrophysics Data System (ADS)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  1. Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ray, E. J.; Ladson, C. L.; Adcock, J. B.; Lawing, P. L.; Hall, R. M.

    1979-01-01

    The fundamentals of cryogenic testing are validated both analytically and experimentally employing the 0.3-m transonic cryogenic tunnel. The tunnel with its unique Reynolds number capability has been used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects have been developed and cryogenic tunnel conditions are set and maintained accurately. It is shown that cryogenic cooling, by injecting nitrogen directly into the tunnel circuit, imposes no problems with temperature distribution or dynamic response characteristics.

  2. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Benner, W. Henry

    1999-01-01

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  3. Thermal-Mechanical Cyclic Test of a Composite Cryogenic Tank for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Messinger, Ross; Pulley, John

    2003-01-01

    This viewgraph presentation provides an overview of thermal-mechanical cyclic tests conducted on a composite cryogenic tank designed for reusable launch vehicles. Topics covered include: a structural analysis of the composite cryogenic tank, a description of Marshall Space Flight Center's Cryogenic Structure Test Facility, cyclic test plans and accomplishments, burst test and analysis and post-testing evaluation.

  4. Thermal acoustic oscillations, volume 2. [cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Sims, W. H.; Fan, C.

    1975-01-01

    A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions.

  5. Investigation of 112Cd via the (d,p) Reaction and a Reassessment of the Quadrupole-Octupole Coupled Excitation

    NASA Astrophysics Data System (ADS)

    Jamieson, D. S.; Garrett, P. E.; Ball, G. C.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.

    The single-particle neutron states in 112Cd have been probed with the 111Cd(d,p) reaction. Beams of up to 1.2 µA of polarized 22 MeV deuterons bombarded 111Cd targets. The reaction protons were momentum analyzed with a Q3D magnetic spectrograph, with spectra were recorded at 10 angles between 10 and 60° with a resolution of 6-7 keV FWHM. In addition to the (d,p) transfer data, (d,d) elastic-scattering data were also obtained and used to ascertain the proper optical model parameters. Cross sections and analyzing powers for all levels observed to be populated were fit to results of DWBA and ADWA calculations, and spectroscopic factors were determined. The 5- level at 2373 keV, previously assigned as a member on the quadrupole-octupole quintuplet set of states because of its enhanced B(E2;5 - to 31 - ) value, was observed to be one of the strongest peaks in the spectrum, and is reassigned as the s1/2 otimes h11/2 two-quasineutron configuration.

  6. Compensation for 6.5 K cryogenic distortion of a fused quartz mirror by refiguring

    NASA Technical Reports Server (NTRS)

    Augason, Gordon C.; Young, Jeffrey A.; Melugin, Ramsey K.; Clarke, Dana S.; Howard, Steven D.; Scanlan, Michael; Wong, Steven; Lawton, Kenneth C.

    1993-01-01

    A 46 cm diameter, lightweight, Amersil TO8E, fused-natural-quartz mirror with a single-arch cross section was tested at the NASA-Ames Research Center Cryogenic Optical Test Facility to measure its cryogenic distortion at 6.5 K. Then the mirror was refigured with the inverse of the measured cryogenic distortion to compensate for this figure defect. The mirror was retested at 6.5 K and found to have a significantly improved figure. The compensation for cryogenic distortion was not complete, but preliminary analysis indicates that the compensation was better than 0.25 waves P-V if edge effects are ignored. The feasibility of compensating for cryogenic distortion by refiguring has thus been verified.

  7. Cryogenic Peltier Cooling

    DTIC Science & Technology

    2017-04-06

    William Cooley, Chief of the Space Vehicles Directorate, AFRL ; Douglas Dudis, WPAFB; Keith Avery, Kirtland AFB; William Byrne, Kirtland AFB. MURI team... AFRL -AFOSR-VA-TR-2017-0084 CRYOGENIC PELTIER COOLING Joseph Heremans OHIO STATE UNIVERSITY THE 190 N OVAL MALL COUMBUS, OH 43210-1321 04/06/2017...ACRONYM(S) AFRL /AFOSR RTB1 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -AFOSR-VA-TR-2017-0084  12. DISTRIBUTION/AVAILABILITY STATEMENT DISTRIBUTION A

  8. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark; Gibson, Tracy; Johnson, Wesley

    2017-01-01

    The NASA Innovative Advanced Concept (NIAC) program has been funding work at KSC on a novel coating that should allow cryogenic materials to be stored in deep space. The NIAC Symposium will be the last week of September and it is a requirement that the funded material be presented both orally and at a poster session. This DAA submission is requesting approval to go public with both the presentation and the poster.

  9. Fiber glass prevents cracking of polyurethane foam insulation on cryogenic vessels

    NASA Technical Reports Server (NTRS)

    Forge, D. A.

    1968-01-01

    Fiber glass material, placed between polyurethane foam insulation and the outer surfaces of cryogenic vessels, retains its resilience at cryogenic temperatures and provides an expansion layer between the metal surfaces and the polyurethane foam, preventing cracking of the latter.

  10. Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices

    NASA Technical Reports Server (NTRS)

    Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

    2012-01-01

    Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

  11. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    PubMed

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  12. SPICA sub-Kelvin cryogenic chains

    NASA Astrophysics Data System (ADS)

    Duband, L.; Duval, J. M.; Luchier, N.; Prouve, T.

    2012-04-01

    SPICA, a Japanese led mission, is part of the JAXA future science program and is planned for launch in 2018. SPICA will perform imaging and spectroscopic observations in the mid- and far-IR waveband, and is developing instrumentation spanning the 5-400 μm range. The SPICA payload features several candidate instruments, some of them requiring temperature down to 50 mK. This is currently the case for SAFARI, a core instrument developed by a European-based consortium, and BLISS proposed by CALTECH/JPL in the US. SPICA's distinctive feature is to actively cool its telescope to below 6 K. In addition, SPICA is a liquid cryogen free satellite and all the cooling will be provided by radiative cooling (L2 orbit) down to 30 K and by mechanical coolers for lower temperatures. The satellite will launch warm and slowly equilibrate to its operating temperatures once in orbit. This warm launch approach makes it possible to eliminate a large liquid cryogen tank and to use the mass saved to launch a large diameter telescope (3.2 m). This 4 K cooled telescope significantly reduces its own thermal radiation, offering superior sensitivity in the infrared region. The cryogenic system that enables this warm launch/cooled telescope concept is a key issue of the mission. This cryogenic chain features a number of cooling stages comprising passive radiators, Stirling coolers and several Joule Thomson loops, offering cooling powers at typically 20, 4.5, 2.5 and 1.7 K. The SAFARI and BLISS detectors require cooling to temperatures as low as 50 mK. The instrument coolers will be operated from these heat sinks. They are composed of a small demagnetization refrigerator (ADR) pre cooled by either a single or a double sorption cooler, respectively for SAFARI and BLISS. The BLISS cooler maintains continuous cooling at 300 mK and thus suppresses the thermal equilibrium time constant of the large focal plane. These hybrid architectures allow designing low weight coolers able to reach 50 mK. Because

  13. ngVLA Cryogenic Subsystem Concept

    NASA Astrophysics Data System (ADS)

    Wootten, Al; Urbain, Denis; Grammer, Wes; Durand, S.

    2018-01-01

    The VLA’s success over 35 years of operations stems in part from dramatically upgraded components over the years. The time has come to build a new array to lead the radio astronomical science into its next 40 years. To accomplish that, a next generation VLA (ngVLA) is envisioned to have 214 antennas with diameters of 18m. The core of the array will be centered at the current VLA location, but the arms will extend out to 1000km.The VLA cryogenic subsystem equipment and technology have remained virtually unchanged since the early 1980s. While adequate for a 27-antenna array, scaling the current system for an array of 214 antennas would be prohibitively expensive in terms of operating cost and maintenance. The overall goal is to limit operating cost to within three times the current level, despite having 8 times the number of antennas. To help realize this goal, broadband receivers and compact feeds will be utilized to reduce both the size and number of cryostats required. The current baseline front end concept calls for just two moderately-sized cryostats for the entire 1.2-116 GHz frequency range, as opposed to 8 in the VLA.For the ngVLA cryogenics, our objective is a well-optimized and efficient system that uses state-of-the-art technology to minimize per-antenna power consumption and maximize reliability. Application of modern technologies, such as variable-speed operation for the scroll compressors and cryocooler motor drives, allow the cooling capacity of the system to be dynamically matched to thermal loading in each cryostat. Significantly, power savings may be realized while the maintenance interval of the cryocoolers is also extended.Finally, a receiver designed to minimize thermal loading can produce savings directly translating to lower operating cost when variable-speed drives are used. Multi-layer insulation (MLI) on radiation shields and improved IR filters on feed windows can significantly reduce heat loading.Measurements done on existing cryogenic

  14. New Process Controls for the Hera Cryogenic Plant

    NASA Astrophysics Data System (ADS)

    Böckmann, T.; Clausen, M.; Gerke, Chr.; Prüß, K.; Schoeneburg, B.; Urbschat, P.

    2010-04-01

    The cryogenic plant built for the HERA accelerator at DESY in Hamburg (Germany) is now in operation for more than two decades. The commercial process control system for the cryogenic plant is in operation for the same time period. Ever since the operator stations, the control network and the CPU boards in the process controllers went through several upgrade stages. Only the centralized Input/Output system was kept unchanged. Many components have been running beyond the expected lifetime. The control system for one at the three parts of the cryogenic plant has been replaced recently by a distributed I/O system. The I/O nodes are connected to several Profibus-DP field busses. Profibus provides the infrastructure to attach intelligent sensors and actuators directly to the process controllers which run the open source process control software EPICS. This paper describes the modification process on all levels from cabling through I/O configuration, the process control software up to the operator displays.

  15. Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration For Long Duration In-Space Missions

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    (1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration; (2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment; and (3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment

  16. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  17. Probing the non-linear transient response of a carbon nanotube mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Tang, Xiaowu Shirley; Baugh, Jonathan

    2017-11-01

    Carbon nanotube (CNT) electromechanical resonators have demonstrated unprecedented sensitivities for detecting small masses and forces. The detection speed in a cryogenic setup is usually limited by the CNT contact resistance and parasitic capacitance of cabling. We report the use of a cold heterojunction bipolar transistor amplifying circuit near the device to measure the mechanical amplitude at microsecond timescales. A Coulomb rectification scheme, in which the probe signal is at much lower frequency than the mechanical drive signal, allows investigation of the strongly non-linear regime. The behaviour of transients in both the linear and non-linear regimes is observed and modeled by including Duffing and non-linear damping terms in a harmonic oscillator equation. We show that the non-linear regime can result in faster mechanical response times, on the order of 10 μs for the device and circuit presented, potentially enabling the magnetic moments of single molecules to be measured within their spin relaxation and dephasing timescales.

  18. Cryogen spray cooling during laser tissue welding.

    PubMed

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p < 0.05). Cryogen cooling of the tissue surface during laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing.

  19. Cryogenic photodetectors

    NASA Astrophysics Data System (ADS)

    Chardin, G.

    2000-03-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  20. Improved Cryogenic Optical Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Haight, Harlan; Hogue, William; Carpenter, Jay; Siler, Richard; Wright, Ernie; Eng, Ron; Baker, Mark; McCracken, Jeff

    2005-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing optical wavefront testing and thermal structural deformation testing at subliquid nitrogen cryogenic temperatures since 1999. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The test article envelope and the chamber's refrigeration capacity have both been increased. A new larger helium-cooled enclosure has been added to the existing enclosure increasing both the cross-sectional area and the length. This new enclosure is capable of supporting six JWST Primary Mirror Segment Assemblies. A second helium refrigeration system has been installed essentially doubling the cooling capacity available at the facility. Modifications have also been made to the optical instrumentation area. Improved access is now available for both the installation and operation of optical instrumentation outside the vacuum chamber. Chamber configuration, specifications, and performance data will be presented.

  1. Cryogenic Fluid Management Technology Workshop. Volume 2: Roundtable Discussion of Technology Requirements

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Cryogenic Fluid Management Technology Workshop was held April 28 to 30, 1987, at the NASA Lewis Research Center in Cleveland, Ohio. The major objective of the workshop was to identify future NASA needs for technology concerning the management of subcritical cryogenic fluids in the low-gravity space environment. In addition, workshop participants were asked to identify those technologies which will require in-space experimentation and thus are candidates for inclusion in the flight experiment being defined at Lewis. The principal application for advanced fluid management technology is the Space-Based Orbit Transfer Vehicle (SBOTV) and its servicing facility, the On-Orbit Cryogenic Fuel Depot (OOCFD). Other potential applications include the replenishment of cryogenic coolants (with the exception of superfluid helium), reactants, and propellants on board a variety of spacecraft including the space station and space-based weapon systems. The last day was devoted to a roundtable discussion of cryogenic fluid management technology requirements by 30 representatives from NASA, industry, and academia. This volume contains a transcript of the discussion of the eight major technology categories.

  2. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Svaasand, Lars O.; Aguilar, Guillermo; Nelson, J. Stuart

    2002-09-01

    Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.

  3. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment.

    PubMed

    Majaron, Boris; Svaasand, Lars O; Aguilar, Guillermo; Nelson, J Stuart

    2002-09-21

    Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.

  4. Modeling Dynamic Fracture of Cryogenic Pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, Paul

    This work is part of an investigation with the long-range objective of predicting the size distribution function and velocity dispersion of shattered pellet fragments after a large cryogenic pellet impacts a solid surface at high velocity. The study is vitally important for the shattered pellet injection (SPI) technique, one of the leading technologies being implemented at ORNL for the mitigation of disruption damage on current tokamaks and ITER. The report contains three parts that are somewhat interwoven. In Part I we formulated a self-similar model for the expansion dynamics and velocity dispersion of the debris cloud following pellet impact againstmore » a thick (rigid) target plate. Also presented in Part I is an analytical fracture model that predicts the nominal or mean size of the fragments in the debris cloud and agrees well with known SPI data. The aim of Part II is to gain an understanding of the pellet fracturing process when a pellet is shattered inside a miter tube with a sharp bend. Because miter tubes have a thin stainless steel (SS) wall a permanent deformation (dishing) of the wall is produced at the site of the impact. A review of the literature indicates that most projectile impact on thin plates are those for which the target is deformed and the projectile is perfectly rigid. Such impacts result in “projectile embedding” where the projectile speed is reduced to zero during the interaction so that all the kinetic energy (KE) of the projectile goes into the energy stored in plastic deformation. Much of the literature deals with perforation of the target. The problem here is quite different; the softer pellet easily undergoes complete material failure causing only a small transfer of KE to stored energy of wall deformation. For the real miter tube, we derived a strain energy function for the wall deflection using a non-linear (plastic) stress-strain relation for 304 SS. Using a dishing profile identical to the linear Kirchkoff-Love profile

  5. Main improvements of LHC Cryogenics Operation during Run 2 (2015-2018)

    NASA Astrophysics Data System (ADS)

    Delprat, L.; Bradu, B.; Brodzinski, K.; Ferlin, G.; Hafi, K.; Herblin, L.; Rogez, E.; Suraci, A.

    2017-12-01

    After the successful Run 1 (2010-2012), the LHC entered its first Long Shutdown period (LS1, 2013-2014). During LS1 the LHC cryogenic system went under a complete maintenance and consolidation program. The LHC resumed operation in 2015 with an increased beam energy from 4 TeV to 6.5 TeV. Prior to the new physics Run 2 (2015-2018), the LHC was progressively cooled down from ambient to the 1.9 K operation temperature. The LHC has resumed operation with beams in April 2015. Operational margins on the cryogenic capacity were reduced compared to Run 1, mainly due to the observed higher than expected electron-cloud heat load coming from increased beam energy and intensity. Maintaining and improving the cryogenic availability level required the implementation of a series of actions in order to deal with the observed heat loads. This paper describes the results from the process optimization and update of the control system, thus allowing the adjustment of the non-isothermal heat load at 4.5 - 20 K and the optimized dynamic behaviour of the cryogenic system versus the electron-cloud thermal load. Effects from the new regulation settings applied for operation on the electrical distribution feed-boxes and inner triplets will be discussed. The efficiency of the preventive and corrective maintenance, as well as the benefits and issues of the present cryogenic system configuration for Run 2 operational scenario will be described. Finally, the overall availability results and helium management of the LHC cryogenic system during the 2015-2016 operational period will be presented.

  6. Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures

    DOEpatents

    Gonczy, J.D.; Markley, F.W.; McCaw, W.R.; Niemann, R.C.

    1992-04-21

    An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample. 7 figs.

  7. Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures

    DOEpatents

    Gonczy, John D.; Markley, Finley W.; McCaw, William R.; Niemann, Ralph C.

    1992-01-01

    An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.

  8. Precision mechanisms for optics in a vacuum cryogenic environment

    NASA Astrophysics Data System (ADS)

    Navarro, R.; Elswijk, E.; Tromp, N.; Kragt, J.; Kroes, G.; Hanenburg, H.; de Haan, M.; Schuil, M.; Teuwen, M.; Janssen, H.; Venema, L.

    2017-11-01

    To achieve superb stability in cryogenic optical systems, NOVA-ASTRON generally designs optical instruments on the basis of a 'no adjustments' philosophy. This means that in principle no corrections are possible after assembly. The alignment precision and consequently the performance of the instrument is guaranteed from the design, the tolerance analysis and the detailed knowledge of the material behavior and manufacturing process. This resulted in a higher degree of integrated optomechanical-cryogenic design with fewer parts, but with a higher part complexity. The 'no adjustments' strategy is successful because in the end the risk on instrument performance and project delays is much reduced. Astronomical instrument specifications have become more challenging over the years. Recent designs of the European Southern Observatory Very Large Telescope Interferometer (ESO VLTI) 4 Telescope combiner MATISSE include hundreds of optical components in a cryogenic environment. Despite the large number of optical components the alignment accuracy and stability requirements are in the order of nanometers. The 'no adjustments' philosophy would be too costly in this case, because all components would need to meet extremely tight manufacturing specifications. These specifications can be relaxed dramatically if cryogenic mechanisms are used for alignment. Several mechanisms have been developed: a tip-tilt mirror mechanism, an optical path distance mechanism, a slider mechanism, a bistable cryogenic shutter and a mirror mounting clip. Key aspects of these mechanisms are that the optical element and mechanism are combined in a compact single component, driven by e.g. self braking piezo actuators in order to hold position without power. The design, realization and test results of several mechanisms are presented in this paper.

  9. A sub-Kelvin cryogen-free EPR system.

    PubMed

    Melhuish, Simon J; Stott, Chloe; Ariciu, Ana-Maria; Martinis, Lorenzo; McCulloch, Mark; Piccirillo, Lucio; Collison, David; Tuna, Floriana; Winpenny, Richard

    2017-09-01

    We present an EPR instrument built for operation at Q band below 1K. Our cryogen-free Dewar integrates with a commercial electro-magnet and bridge. A description of the cryogenic and RF systems is given, along with the adaptations to the standard EPR experiment for operation at sub-Kelvin temperatures. As a first experiment, the EPR spectra of powdered Cr 12 O 9 (OH) 3 [Formula: see text] were measured. The sub-Kelvin EPR spectra agree well with predictions, and the performance of the sub-Kelvin system at 5K is compared to that of a commercial spectrometer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Crack Initiation and Growth in Rigid Polymeric Closed-Cell Foam Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Sayyah, Tarek; Steeve, Brian; Wells, Doug

    2006-01-01

    Cryogenic vessels, such as the Space Shuttle External Tank, are often insulated with closed-cell foam because of its low thermal conductivity. The coefficient of thermal expansion mismatch between the foam and metallic substrate places the foam under a biaxial tension gradient through the foam thickness. The total foam thickness affects the slope of the stress gradient and is considered a significant contributor to the initiation of subsurface cracks. Rigid polymeric foams are brittle in nature and any subsurface cracks tend to propagate a finite distance toward the surface. This presentation investigates the relationship between foam thickness and crack initiation and subsequent crack growth, using linear elastic fracture mechanics, in a rigid polymeric closed-cell foam through analysis and comparison with experimental results.

  11. Cryogenic Thermal Management Advances during the CRYOTOOL Program

    NASA Astrophysics Data System (ADS)

    Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.; Roberts, T.; Davis, T.

    2006-04-01

    This paper describes the cryogenic thermal management advances made during the AFRL-sponsored CRYOTOOL program. Advances occurred as a result of conducting four technology development tasks: (1) development of a differential thermal expansion cryogenic thermal switch (DTE-CTSW) made with high purity Al end-pieces and an Ultem support rod; (2) carrying out of a dual DTE-CTSW/dual cryocooler performance test to quantify CTSW benefits in a redundant cryocooler system; (3) development of a miniaturized cryogenic loop heat pipe (mini-CLHP) that combines flex link, conduction bar, and CTSW functionalities; and (4) development of an across-gimbal cryogenic thermal transport system (GCTTS) with large diameter transport line coils for optics cooling. The results are as follows. The DTE-CTSW achieved an ON conductance of 2-3.6 W/K (from 35-90 K) and an OFF resistance of 1100-2300 K/W (300-230 K warm end). The redundant cryocooler test showed modest parasitic heat leak savings when dual DTE-CTSWs were used versus when they were not used. The mini-CLHP, using neon as the working fluid, transported 2.5 W at 35 K, achieved an OFF resistance of 1555 K/W, and had cross/axial flexibilities of 100-450 N/m. Lastly, GCTTS, using nitrogen as the working fluid, transported 20 W at 100 K in a flat configuration. Additional work is needed to verify GCTTS operation in an elevated orientation.

  12. Use of Thermoset Composite Materials in Cryogenic Tanks

    NASA Astrophysics Data System (ADS)

    Diaz, V.; Cardone, T.; Ramusat, G.

    2014-06-01

    To improve the performances of Future Expendable Launchers, one of the key aspects to be considered is the mass optimization of the cryogenic upper stage of the launcher, where a mass saving of one Kg, is directly transferred to one more Kg of payload.This optimization is inherently linked to the use of composite materials in all the structures that conforms the upper stage of the launcher.Currently, most of the upper stage structures of the operational launchers, like Ariane 5, are made in composite materials, with the exception of the cryogenic (LH2 and LOX) tanks which remain metallic.So, from a structural point of view, the next qualitative step in the development of new expendable launcher, would be the manufacturing of the upper stage cryogenic tanks in composite materials.To reach this objective important concerns mainly related to the potential for leaks and the compatibility with the LOX need to be resolved.In the frame of the FLPP (Future Launcher Preparatory Program) funded by ESA, an activity related to the use of thermoset composite material in the cryogenic tanks has been included.This paper presents a summary of the performed work which includes:* The selection and characterization of the most suitable candidate materials for the considered application* The design and analysis of a subscale demonstrator representative of the LH2 compartment* The design, manufacturing and testing of some test articles representatives of the selected design solutions* The manufacturing and testing of the selected subscale demonstrator.

  13. An FPGA-based instrumentation platform for use at deep cryogenic temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway Lamb, I. D.; Colless, J. I.; Hornibrook, J. M.

    2016-01-15

    We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.

  14. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G. P.; Zhang, Y.; Xiao, J.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat loadmore » from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.« less

  15. Cryogenic system options for a superconducting aircraft propulsion system

    NASA Astrophysics Data System (ADS)

    Berg, F.; Palmer, J.; Bertola, L.; Miller, Paul; Dodds, Graham

    2015-12-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution.

  16. Horizontal cryogenic bushing for the termination of a superconducting power-transmission line

    DOEpatents

    Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

    1982-07-29

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  17. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    DOEpatents

    Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  18. Low-cost measurement and monitoring system for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Tubío Araújo, Óscar; Hernández Suárez, Elvio; Gracia Temich, Félix

    2016-07-01

    Cryostats are closed chambers that hinder the monitoring of materials, structures or systems installed therein. This paper presents a webcam-based measurement and monitoring system, which can operate under vacuum and cryogenic conditions to be mainly used in astrophysical applications. The system can be configured in two different assemblies: wide field that can be used for mechanism monitoring and narrow field, especially useful in cryogenic precision measurements with a resolution up to 4 microns/pixel.

  19. Hybrid Cryogenic Tank Construction and Method of Manufacture Therefor

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2011-01-01

    A lightweight, high-pressure cryogenic tank construction includes an inner layer comprising a matrix of fiber and resin suitable for cryogenic use. An outer layer in intimate contact with the inner layer provides support of the inner layer, and is made of resin composite. The tank is made by placing a fiber preform on a mandrel and infusing the preform with the resin. The infused preform is then encapsulated within the outer layer.

  20. Low-Heat-Leak Electrical Leads For Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Hooker, Matthew W.

    1994-01-01

    Electrical leads offering high electrical conductivity and low thermal conductivity developed for use in connecting electronic devices inside cryogenic systems to power supplies, signal-processing circuits, and other circuitry located in nearby warmer surroundings. Strip of superconductive leads on ceramic substrate, similar to ribbon cable, connects infrared detectors at temperature of liquid helium with warmer circuitry. Electrical leads bridging thermal gradient at boundary of cryogenic system designed both to minimize conduction of heat from surroundings through leads into system and to minimize resistive heating caused by electrical currents flowing in leads.

  1. Thallous halide materials for use in cryogenic applications

    NASA Technical Reports Server (NTRS)

    Lawless, William N. (Inventor)

    1981-01-01

    Thallous halides, either alone or in combination with other ceramic materials, are used in cryogenic applications such as heat exchange material for the regenerator section of a closed-cycle cryogenic refrigeration section, as stabilizing coatings for superconducting wires, and as dielectric insulating materials. The thallous halides possess unusually large specific heats at low temperatures, have large thermal conductivities, are nonmagnetic, and are nonconductors of electricity. They can be formed into a variety of shapes such as spheres, bars, rods, or the like and can be coated onto substrates.

  2. Vapor cooled current lead for cryogenic electrical equipment

    DOEpatents

    Vansant, James H.

    1983-01-01

    Apparatus and method are provided for conducting electric current to cryogenic electrical equipment devices. A combination of inner and outer tubes together form a plurality of hollow composite tubes housed in a sheath. Top and bottom block mounting means are fitted to hold the composite tubes and are affixed to the ends of the sheath. This combination forms a current lead. The current lead is attached to a cryogenic device housing a fluid coolant which moves through the current lead, cooling the current lead as the fluid travels.

  3. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  4. Simulations of Cavitating Cryogenic Inducers

    NASA Technical Reports Server (NTRS)

    Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.

    2004-01-01

    Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.

  5. Cryogenic Flange and Seal Evaluation

    NASA Technical Reports Server (NTRS)

    Ramirez, Adrian

    2014-01-01

    The assembly of flanges, seals, and pipes are used to carry cryogenic fluid from a storage tank to the vehicle at launch sites. However, after a certain amount of cycles these raised face flanges with glass-filled Teflon gaskets have been found to have torque relaxation and are as a result susceptible to cryogenic fluid leakage if not re-torqued. The intent of this project is to identify alternate combinations of flanges and seals which may improve thermal cycle performance and decrease re-torque requirements. The general approach is to design a test fixture to evaluate leak characteristics between spiral and concentric serrations and to test alternate flange and seal combinations. Due to insufficient time, it was not possible to evaluate these different types of combinations for the combination that improved thermal cycle performance the most. However, the necessary drawings for the test fixture were designed and assembled along with the collection of the necessary parts.

  6. Cryogenics maintenance strategy

    NASA Astrophysics Data System (ADS)

    Cruzat, Fabiola

    2012-09-01

    ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

  7. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  8. Mixed cryogen cooling systems for HTS power applications: A status report of progress in Korea University

    NASA Astrophysics Data System (ADS)

    Song, Jung-Bin; Lee, Haigun

    2012-12-01

    A cooling system employing a solid cryogen (SC), such as solid nitrogen (SN2), was recently reported for high-temperature superconducting (HTS) applications. However, thermal contact between the SC and the HTS can be degraded by repeated overcurrent runs, resulting in 'thermal dry-out'. Novel cryogens, SC with small amounts of liquid cryogen, have been suggested to overcome this problem. Such cooling systems rely on the small amount of liquid cryogen to facilitate heat exchange so as to fully exploit the heat capacity of the solid cryogen. This paper presents a description and summary of recent activities at Korea University related to cooling systems employing mixed cryogens of solid-liquid nitrogen, solid argon-liquid nitrogen, and solid nitrogen-liquid neon.

  9. Report on the status of linear drive coolers for the Department of Defense Standard Advanced Dewar Assembly (SADA)

    NASA Astrophysics Data System (ADS)

    Salazar, William

    2003-01-01

    The Standard Advanced Dewar Assembly (SADA) is the critical module in the Department of Defense (DoD) standardization effort of scanning second-generation thermal imaging systems. DoD has established a family of SADA's to address requirements for high performance (SADA I), mid-to-high performance (SADA II), and compact class (SADA III) systems. SADA's consist of the Infrared Focal Plane Array (IRFPA), Dewar, Command and Control Electronics (C&CE), and the cryogenic cooler. SADA's are used in weapons systems such as Comanche and Apache helicopters, the M1 Abrams Tank, the M2 Bradley Fighting Vehicle, the Line of Sight Antitank (LOSAT) system, the Improved Target Acquisition System (ITAS), and Javelin's Command Launch Unit (CLU). DOD has defined a family of tactical linear drive coolers in support of the family of SADA's. The Stirling linear drive cryo-coolers are utilized to cool the SADA's Infrared Focal Plane Arrays (IRFPAs) to their operating cryogenic temperatures. These linear drive coolers are required to meet strict cool-down time requirements along with lower vibration output, lower audible noise, and higher reliability than currently fielded rotary coolers. This paper will (1) outline the characteristics of each cooler, (2) present the status and results of qualification tests, and (3) present the status and test results of efforts to increase linear drive cooler reliability.

  10. Cryogen-free dilution refrigerators

    NASA Astrophysics Data System (ADS)

    Uhlig, K.

    2012-12-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  11. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Nurge, Mark A.

    2015-01-01

    Under our NASA Innovative Advanced Concepts (NIAC) project we have theoretically demonstrated a novel selective surface that reflects roughly 100 times more solar radiation than any other known coating. If this prediction holds up under experimental tests it will allow cryogenic temperatures to be reached in deep space even in the presence of the sun. It may allow LOX to be carried to the Moon and Mars. It may allow superconductors to be used in deep space without a refrigeration system.

  12. Cryogenic Wind Tunnels.

    DTIC Science & Technology

    1980-07-01

    CRYOGENIC ENGINEERING - II by R.G.Scurlock 3 PROPERTIES OF MATERIALS: THE PHYSICAL PROPERTIES OF METALS AND NON- METALS by D.A.Wigley 4 REAL GAS EFFECTS - i...atmosphere. Examples include plastics and synthetic polymers in solid, foam, woven or sheet form, lubricating oils and metal powders. DO NOT think that...obtained with non- metals . TABLE 5 Ultimate Yield Thermal Figure Material tensile stress cond strength mega od.t _ i t y of mega N/m 2 N/m 2 Wm K Merit

  13. Cryogenic support member

    DOEpatents

    Niemann, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1987-01-01

    A cryogenic support member is comprised of a non-metallic rod having a depression in at least one end and a metallic end connection assembled to the rod. The metallic end connection comprises a metallic plug which conforms to the shape and is disposed in the depression and a metallic sleeve is disposed over the rod and plug. The plug and the sleeve are shrink-fitted to the depression in the rod to form a connection good in compression, tension and bending.

  14. Cryogenic Tank Technology Program (CTTP)

    NASA Technical Reports Server (NTRS)

    Vaughn, T. P.

    2001-01-01

    The objectives of the Cryogenic Tank Technology Program were to: (1) determine the feasibility and cost effectiveness of near net shape hardware; (2) demonstrate near net shape processes by fabricating large scale-flight quality hardware; and (3) advance state of current weld processing technologies for aluminum lithium alloys.

  15. Scanning Quantum Cryogenic Atom Microscope

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  16. Online helium inventory monitoring of JLab cryogenic systems

    NASA Astrophysics Data System (ADS)

    Hasan, N.; Knudsen, P.; Wright, M.

    2017-12-01

    There are five cryogenic plants at Jefferson Lab which support the LINAC, experiment hall end-stations and test facility. The majority of JLab’s helium inventory, which is around 15 tons, is allocated in the LINAC cryo-modules, with the majority of the balance of helium distributed at the cryogenic-plant level mainly as stored gas and liquid for stable operation. Due to the organic evolution of the five plants and independent actions within the experiment halls, the traditional inventory management strategy suffers from rapid identification of potential leaks. This can easily result in losses many times higher than the normally accepted (average) loss rate. A real-time program to quickly identify potential excessive leakage was developed and tested. This program was written in MATLAB© for portability, easy diagnostics and modification. It interfaces directly with EPICS to access the cryogenic system state, and with and NIST REFPROP© for real fluid properties. This program was validated against the actual helium offloaded into the system. The present paper outlines the details of the inventory monitoring program, its validation and a sample of the achieved results.

  17. Development of a Flexible Seal for a 60 psi Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1998-01-01

    A cryogenic pressure box test facility has been designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 5 ft x 6 ft curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20 K) with 54 psig maximum pressure. The key challenge in the design and fabrication of the pressure box was the development of a seal that could remain flexible at -423 F and contain 60 psi gaseous helium as the pressurization gas. A C-shaped seal was developed using a Gore-tex woven fabric. Mechanical testing of the fabric at room and elevated temperature, liquid nitrogen temperature, and liquid helium temperature demonstrated the strength and creep resistance of the material over the desired operating range. A small scale cryogenic pressure box was used to test prototype seals at cryogenic temperatures up to 60 psi. Preliminary tests indicated that excessive leakage was present through the seal. As a result, an aluminized mylar liner was placed inside the Gore-tex seal to reduce leakage through the seal. The final seal configuration resulted in minimal pressure loss during seal testing.

  18. Periodic flow hydrodynamic resistance parameters for woven screen matrices at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Perrella, M. D.; Ghiaasiaan, S. M.

    2017-12-01

    The regenerator is a critical component in all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. Accurate modelling of the hydrodynamic and thermal behaviour of different regenerator materials is crucial to the successful design of cryogenic systems. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations were mostly performed at ambient conditions and their results are assumed to be appropriate for cryogenic temperatures. In this study, a regenerator filled with woven screen matrices such as 400 mesh T316 stainless steel were assembled and experimentally tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data were analysed using CFD to determine the dimensionless friction factor, Darcy Permeability and Forchheimer coefficients. These results are compared to previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.

  19. A study of cryogenic tissue-engineered liver slices in calcium alginate gel for drug testing.

    PubMed

    Chen, Ruomeng; Wang, Bo; Liu, Yaxiong; Lin, Rong; He, Jiankang; Li, Dichen

    2018-06-01

    To address issues such as transportation and the time-consuming nature of tissue-engineered liver for use as an effective drug metabolism and toxicity testing model, "ready-to-use" cryogenic tissue-engineered liver needs to be studied. The research developed a cryogenic tissue-engineered liver slice (TELS), which comprised of HepG2 cells and calcium alginate gel. Cell viability and liver-specific functions were examined after different cryopreservation and recovery culture times. Then, cryogenic TELSs were used as a drug-testing model and treated with Gefitinib. Cryogenic TELSs were stored at -80 °C to ensure high cell viability. During recovery in culture, the cells in the cryogenic TELS were evenly distributed, massively proliferated, and then formed spheroid-like aggregates from day 1 to day 13. The liver-specific functions in the cryogenic TELS were closely related to cryopreservation time and cell proliferation. As a reproducible drug-testing model, the cryogenic TELS showed an obvious drug reaction after treatment with the Gefitinib. The present study shows that the cryopreservation techniques can be used in drug-testing models. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Preliminary design of the cryogenic cooled limb scanning interferometer radiometer (CLIR)

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1978-01-01

    The preliminary design of the cryogenic cooling system for the Cryogenic Cooled Limb Scanning Interferometer Radiometer (CLIR) instrument to be flown on the Atmospheric Magnetospheric Physics Satellite (AMPS) was studied. The top level trade studies were extensive due to the instrument requirement for cooling at three temperature levels as opposed to the two levels initially described for the instrument. Approximately 12 different combinations of cryogens were investigated. The basic lifetime requirement for the instrument was 30 days. However, studies were also conducted for a follow-up mission requiring a 1 year lifetime. The top level trades led to the selection of a single stage supercritical helium baseline.

  1. Development of the Los Alamos National Laboratory Cryogenic Pressure Loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebey, Peter S.; Dole, James M.; Hoffer, James K.

    2003-05-15

    Targets for inertial fusion research and ignition at OMEGA, the National Ignition Facility, LMJ, and future facilities rely on beta-radiation-driven layering of spherical cryogenic DT ice layers contained within plastic or metal shells. Plastic shells will be permeation filled at room temperature then cooled to cryogenic temperatures before removal of the overpressure. The cryogenic pressure loader (CPL) was recently developed at Los Alamos National Laboratory as a testbed for studying the filling and layering of plastic target shells with DT. A technical description of the CPL is provided. The CPL consists of a cryostat, which contains a high-pressure permeation cell,more » and has optical access for investigating beta layering. The cryostat is housed within a tritium glovebox that contains manifolds for supplying high-pressure DT. The CPL shares some design elements with the cryogenic target handling system at the OMEGA facility to allow testing of tritium issues related to that system. The CPL has the capability to fill plastic targets by permeation to pressures up to 100 MPa and to cool them to 15 K. The CPL will accommodate a range of targets and may be modified for future experiments.« less

  2. Operational Experience of the Upgraded Cryogenic Systems at the Nscl

    NASA Astrophysics Data System (ADS)

    McCartney, A. H.; Laumer, H. L.; Jones, S. A.

    2010-04-01

    The National Superconducting Cyclotron Laboratory (NSCL) is a NSF-supported facility, with additional support from Michigan State University (MSU) for conducting research in nuclear and accelerator science. The facility consists of two superconducting cyclotrons and over fifty individual cryostats, each containing several superconducting magnets that are used in the beam transport system. Beginning in 1999 a major facility upgrade was started. New, larger magnets were added, increasing the total 4.5 K loads, necessitating an increase of the cryogenic capacity. A helium plant (nominal 1750-Watt at 4.5 K) was acquired from the United States Bureau of Mines where it had been operating as a pure liquefier since the early 1980's. It was refurbished for the NSCL with extensive support from the cryogenics group at Thomas Jefferson National Laboratory. The new cryogenic system came online early in 2001. The cold-mass is relatively high in relation to the installed capacity, presenting challenges during cool downs. Reliability over the last five years has been greater than 99%. An overview of the last seven years of operations of our cryogenic systems is presented that includes normal operations, testing of new equipment, noteworthy breakdowns, routine maintenance, and system reliability.

  3. The 26th Space Cryogenic Workshop: Overview, Description of Presentations, and List of Abstracts

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason; Plachta, David; Shirron, Peter; Huget, Laurie

    2016-01-01

    This is a summary of the 2015 Space Cryogenics Workshop that was held in Phoenix, Arizona, June 24 to 26, 2015. The workshop was organized by David Plachta and Jason Hartwig of the Cryogenics and Fluid Systems Branch at NASA Glenn Research Center, and continued the tradition of bringing together specialists in the field of space cryogenics to discuss upcoming and potential space missions, and the development of technologies that support or-more often-are enabling for the science and exploration goals of the world's space agencies. The workshop consisted of two days of talks and poster sessions, and provided ample opportunity for more informal discussions that foster collaborations and cooperation in the space cryogenics community. Selected papers from the workshop are published in a special issue of Cryogenics, which is expected to be published by the end of 2015.

  4. Development of a space qualified Surface Tension Confined Liquid Cryogen Cooler (STCLCC)

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1988-01-01

    The Surface Tension Confined Liquid Cryogen Cooler (STCLCC), a new type of cryogenic cooler which is being developed by the NASA-GSFC for spaceflight payloads, is described. The STCLCC will be capable of maintaining instrumentation within the temperature range of 10-120 K and will allow liquid cryogens to be flown in space without the risk of liquid being entrained in the vent gas. A low-density open-cell material in the STCLCC acts as a 'sponge', with the surface tension trapping the liquid cryogen within its pores and keeping the liquid away from the cooler's vent during launch, zero-g operations, and landing. It is emphasized that the STCLCC concept is amenable to a wide variety of applications, whenever a passive low-cost cooler is required or when the on-orbit service of a cooler would increase a mission's lifetime.

  5. Bonding and Sealing Evaluations for Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1997-01-01

    Several different cryogenic tank concepts are being considered for reusable launch vehicles (RLV'S) . Though different tank concepts are being considered, many will require that the cryogenic insulation be evacuated and be bonded to a structure. In this work, an attempt was made to evaluate the effectiveness of maintaining a vacuum on a specimen where foam or honeycomb core was encased within Gr/Ep. In addition to these tests, flatwise adhesion pull off tests were performed at room temperature with PR 1664, EA 9394, FM-300, Crest 3170, and HT 435 adhesives. The materials bonded included Gr/Ep, Gr/BMI, Al, and stainless steel facesheets, and Ti honeycomb, Hexcel honeycomb, and Rohacell foam core materials.

  6. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  7. Mechanical Behavior of A Metal Composite Vessels Under Pressure At Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Tsaplin, A. I.; Bochkarev, S. V.

    2016-01-01

    Results of an experimental investigation into the deformation and destruction of a metal composite vessel with a cryogenic gas are presented. Its structure is based on basalt, carbon, and organic fibers. The vessel proved to be serviceable at cryogenic temperatures up to a burst pressure of 45 MPa, and its destruction was without fragmentation. A mathematical model adequately describing the rise of pressure in the cryogenic vessel due to the formation of a gaseous phase upon boiling of the liquefied natural gas during its storage without drainage at the initial stage is proposed.

  8. Cryogenic gear technology for an orbital transfer vehicle engine and tester design

    NASA Technical Reports Server (NTRS)

    Calandra, M.; Duncan, G.

    1986-01-01

    Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.

  9. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  10. A simplified method for calculating temperature time histories in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.; Lamb, M.

    1976-01-01

    Average temperature time history calculations of the test media and tunnel walls for cryogenic wind tunnels have been developed. Results are in general agreement with limited preliminary experimental measurements obtained in a 13.5-inch pilot cryogenic wind tunnel.

  11. Foam shell cryogenic ICF target

    DOEpatents

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  12. A cryogenic waveplate rotator for polarimetry at mm and submm wavelengths

    NASA Astrophysics Data System (ADS)

    Salatino, M.; de Bernardis, P.; Masi, S.

    2011-04-01

    Context. Polarimetry at mm and submm wavelengths is the new frontier of research in cosmic microwave background and interstellar dust studies. Polarimeters working in the IR to MM range need to be operated at cryogenic temperatures to limit the systematic effects related to the emission of the polarization analyzer. Aims: We study the effect of the temperature of the different components of a waveplate polarimeter and describe a system able to rotate a birefringent crystal at 4 K in a completely automated way. Methods: We simulate the main systematic effects related to the temperature and non-ideality of the optical components in a Stokes polarimeter. To limit these effects, a cryogenic implementation of the polarimeter is mandatory. In our system, the rotation produced by a step motor running at room temperature is transmitted down to cryogenic temperatures by means of a long shaft and gears running on custom cryogenic bearings. Results: Our system is able to rotate a birefringent crystal at 4 K in a completely automated way and dissipates only a few mW in the cold environment. A readout system based on optical fibers allows us to control the rotation of the crystal to better than 0.1°. Conclusions: This device fulfills the stringent requirements for operations in cryogenic space experiments, such as the forthcoming PILOT, BOOMERanG and LSPE.

  13. Cryogenic optical testing results of JWST aspheric test plate lens

    NASA Astrophysics Data System (ADS)

    Smith, Koby Z.; Towell, Timothy C.

    2011-09-01

    The James Webb Space Telescope (JWST) Secondary Mirror Assembly (SMA) is a circular 740mm diameter beryllium convex hyperboloid that has a 23.5nm-RMS (λ/27 RMS) on-orbit surface figure error requirement. The radius of curvature of the SMA is 1778.913mm+/-0.45mm and has a conic constant of -1.6598+/-0.0005. The on-orbit operating temperature of the JWST SMA is 22.5K. Ball Aerospace & Technologies Corp. (BATC) is under contract to Northrop Grumman Aerospace Systems (NGAS) to fabricate, assemble, and test the JWST SMA to its on-orbit requirements including the optical testing of the SMA at its cryogenic operating temperature. BATC has fabricated and tested an Aspheric Test Plate Lens (ATPL) that is an 870mm diameter fused silica lens used as the Fizeau optical reference in the ambient and cryogenic optical testing of the JWST Secondary Mirror Assembly (SMA). As the optical reference for the SMA optical test, the concave optical surface of the ATPL is required to be verified at the same 20K temperature range required for the SMA. In order to meet this objective, a state-of-the-art helium cryogenic testing facility was developed to support the optical testing requirements of a number of the JWST optical testing needs, including the ATPL and SMA. With the implementation of this cryogenic testing facility, the ATPL was successfully cryogenically tested and performed to less than 10nm-RMS (λ/63 RMS) surface figure uncertainty levels for proper reference backout during the SMA optical testing program.

  14. A water blown urethane insulation for use in cryogenic environments

    NASA Technical Reports Server (NTRS)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  15. Cryogenic filter wheel design for an infrared instrument

    NASA Astrophysics Data System (ADS)

    Azcue, Joaquín.; Villanueva, Carlos; Sánchez, Antonio; Polo, Cristina; Reina, Manuel; Carretero, Angel; Torres, Josefina; Ramos, Gonzalo; Gonzalez, Luis M.; Sabau, Maria D.; Najarro, Francisco; Pintado, Jesús M.

    2014-09-01

    In the last two decades, Spain has built up a strong IR community which has successfully contributed to space instruments, reaching Co-PI level in the SPICA mission (Space Infrared Telescope for Cosmology and Astrophysics). Under the SPICA mission, INTA, focused on the SAFARI instrument requirements but highly adaptable to other missions has designed a cryogenic low dissipation filter wheel with six positions, taking as starting point the past experience of the team with the OSIRIS instrument (ROSETTA mission) filter wheels and adapting the design to work at cryogenic temperatures. One of the main goals of the mechanism is to use as much as possible commercial components and test them at cryogenic temperature. This paper is focused on the design of the filter wheel, including the material selection for each of the main components of the mechanism, the design of elastic mount for the filter assembly, a positioner device designed to provide positional accuracy and repeatability to the filter, allowing the locking of the position without dissipation. In order to know the position of the wheel on every moment a position sensor based on a Hall sensor was developed. A series of cryogenic tests have been performed in order to validate the material configuration selected, the ball bearing lubrication and the selection of the motor. A stepper motor characterization campaign was performed including heat dissipation measurements. The result is a six position filter wheel highly adaptable to different configurations and motors using commercial components. The mechanism was successfully tested at INTA facilities at 20K at breadboard level.

  16. Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1996-01-01

    Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.

  17. Problems associated with operations and measurement in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Blanchard, A.; Delcourt, V.; Plazanet, M.

    1986-01-01

    Cryogenic wind tunnel T'3 under continuous blower operation has been the object of improvements and the installation of auxiliary equipment, dealing in particular with the enlargement of the liquid nitrogen injection reservoir and the hook-up to a fast data acquisition system. Following a brief description of the installation and its functioning, we present the main experimental techniques and the instrumentation used in the cryogenic environment.

  18. Safety Aspects of Big Cryogenic Systems Design

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Fydrych, J.; Poliński, J.

    2010-04-01

    Superconductivity and helium cryogenics are key technologies in the construction of large scientific instruments, like accelerators, fusion reactors or free electron lasers. Such cryogenic systems may contain more than hundred tons of helium, mostly in cold and high-density phases. In spite of the high reliability of the systems, accidental loss of the insulation vacuum, pipe rupture or rapid energy dissipation in the cold helium can not be overlooked. To avoid the danger of over-design pressure rise in the cryostats, they need to be equipped with a helium relief system. Such a system is comprised of safety valves, bursting disks and optionally cold or warm quench lines, collectors and storage tanks. Proper design of the helium safety relief system requires a good understanding of worst case scenarios. Such scenarios will be discussed, taking into account different possible failures of the cryogenic system. In any case it is necessary to estimate heat transfer through degraded vacuum superinsulation and mass flow through the valves and safety disks. Even if the design of the helium relief system does not foresee direct helium venting into the environment, an occasional emergency helium spill may happen. Helium propagation in the atmosphere and the origins of oxygen-deficiency hazards will be discussed.

  19. Expandable Purge Chambers Would Protect Cryogenic Fittings

    NASA Technical Reports Server (NTRS)

    Townsend, Ivan I., III

    2004-01-01

    Expandable ice-prevention and cleanliness-preservation (EIP-CP) chambers have been proposed to prevent the accumulation of ice or airborne particles on quick-disconnect (QD) fittings, or on ducts or tubes that contain cryogenic fluids. In the original application for which the EIP-CP chambers were conceived, there is a requirement to be able to disconnect and reconnect the QD fittings in rapid succession. If ice were to form on the fittings by condensation and freezing of airborne water vapor on the cold fitting surfaces, the ice could interfere with proper mating of the fittings, making it necessary to wait an unacceptably long time for the ice to thaw before attempting reconnection. By keeping water vapor away from the cold fitting surfaces, the EIP-CP chambers would prevent accumulation of ice, preserving the ability to reconnect as soon as required. Basically, the role of an EIP-CP chamber would be to serve as an enclosure for a flow of dry nitrogen gas that would keep ambient air away from QD cryogenic fittings. An EIP-CP chamber would be an inflatable device made of a fabriclike material. The chamber would be attached to an umbilical plate holding a cryogenic QD fitting.

  20. Demonstration of Microsphere Insulation in Cryogenic Vessels

    NASA Astrophysics Data System (ADS)

    Baumgartner, R. G.; Myers, E. A.; Fesmire, J. E.; Morris, D. L.; Sokalski, E. R.

    2006-04-01

    While microspheres have been recognized as a legitimate insulation material for decades, actual use in full-scale cryogenic storage tanks has not been demonstrated until now. The performance and life-cycle-cost advantages previously predicted have now been proven. Most bulk cryogenic storage tanks are insulated with either multilayer insulation (MLI) or perlite. Microsphere insulation, consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. These properties were proven during recent field testing of two 22,700-L (6,000-gallon) liquid nitrogen tanks, one insulated with microsphere insulation and the other with perlite. Normal evaporation rates (NER) for both tanks were monitored with precision test equipment and insulation levels within the tanks were observed through view ports as an indication of insulation compaction. Specific industrial applications were evaluated based on the test results and beneficial properties of microsphere insulation. Over-the-road trailers previously insulated with perlite will benefit not only from the reduced heat leak, but also the reduced mass of microsphere insulation. Economic assessments for microsphere-insulated cryogenic vessels including life-cycle cost are also presented.

  1. A Rapid Turnaround Cryogenic Detector Characterization System

    NASA Technical Reports Server (NTRS)

    Benford, Dominic j.; Dipirro, Michael J.; Forgione, Joshua B.; Jackson, Clifton E.; Jackson, Michael L.; Kogut, Al; Moseley, S. Harvey; Shirron, Peter J.

    2004-01-01

    Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.

  2. Miniature cryogenic expansion turbines - A review

    NASA Astrophysics Data System (ADS)

    Sixsmith, H.

    Lord Rayleigh (1898) has first suggested the use of a turbine instead of a piston expander for the liquification of air. The development of expansion turbines is discussed, taking into account the first successful commercial application for cryogenic expansion turbines in Germany, Kapitza's turbine, work on much smaller turbines conducted in England, the development of a helium expansion turbine at the National Bureau of Standards, the development of small turboexpanders in Switzerland, the development of gas bearing expansion turbines, and the development of a small turboexpander similar to designs developed at the National Bureau of Standards. The reliability of cryogenic expansion turbines is discussed. It is found that applications for helium refrigerators and the demand for them would greatly increase if the reliability of these devices could be improved. Such a development would be crucial for the adoption of superconducting machinery by industry.

  3. Design of a magnetic circuit for a cryogenic undulator in Taiwan photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jui-Che, E-mail: huang.juiche@nsrrc.org.tw; Kuo, Cheng-Ying; Yang, Chin-Kang

    2016-07-27

    The plan for beamlines in Phase II at Taiwan Photon Source is to construct two new BioSAXS and nano-ARPES beamlines. A highly brilliant light source can be produced with a cryogenic undulator, and many synchrotron facilities have been developed and operated with these in their storage rings. The development of a cryogenic undulator became a target for a light source in TPS phase II. A cryogenic undulator with period of length 15 mm will be made in a hybrid magnetic structure, and use PrFeB permanent-magnet materials. A maximum magnetic field 1.31 T is estimated at gap 4 mm and temperaturemore » about 100 K. The spectral performance of a TPS cryogenic undulator is presented in this paper.« less

  4. Irradiation effect of the insulating materials for fusion superconducting magnets at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Kobayashi, Koji; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    In ITER, superconducting magnets should be used in such severe environment as high fluence of fast neutron, cryogenic temperature and large electromagnetic forces. Insulating material is one of the most sensitive component to radiation. So radiation resistance on mechanical properties at cryogenic temperature are required for insulating material. The purpose of this study is to evaluate irradiation effect of insulating material at cryogenic temperature by gamma-ray irradiation. Firstly, glass fiber reinforced plastic (GFRP) and hybrid composite were prepared. After irradiation at room temperature (RT) or liquid nitrogen temperature (LNT, 77 K), interlaminar shear strength (ILSS) and glass-transition temperature (Tg) measurement were conducted. It was shown that insulating materials irradiated at room temperature were much degraded than those at cryogenic temperature.

  5. A high-performance wave guide cryogenic thermal break

    NASA Astrophysics Data System (ADS)

    Melhuish, S. J.; McCulloch, M. A.; Piccirillo, L.; Stott, C.

    2016-10-01

    We describe a high-performance wave guide cryogenic thermal break. This has been constructed both for Ka band, using WR28 wave guide, and Q band, using WR22 wave guide. The mechanical structure consists of a hexapod (Stewart platform) made from pultruded carbon fibre tubing. We present a tentative examination of the cryogenic Young's modulus of this material. The thermal conductivity is measured at temperatures above the range explored by Runyan and Jones, resulting in predicted conductive loads through our thermal breaks of 3.7 mW to 3 K and 17 μK to 1 K.

  6. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto Fast Flyby mission was evaluated at JPL. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers.

  7. Cryogenic piping material selection for the Component Test Facility (CTF)

    NASA Technical Reports Server (NTRS)

    St. Cyr, William W.

    1991-01-01

    The anticipated high cost of the 8500 psi cryogenic and 15,000 psi gas piping systems used in the CTF at NASA's John C. Stennis Space Center led to the consideration of high-strength materials for these piping systems. Based on years of satisfactory service using austenitic stainless steels in cryogenic applications, particularly for hydrogen service, consideration was limited to the austenitic stainless steels. Attention was focused on alternatives to the 304/304L grades of stainless steel traditionally used in these applications. This paper discusses the various considerations that resulted in the decision to continue using 304/304L for the cryogenic piping and the selection of the nitrogen-strengthened 21Cr-6Ni-9Mn alloy (UNS S21903) for the high-pressure gas systems at the CTF.

  8. Thermal Modeling and Analysis of a Cryogenic Tank Design Exposed to Extreme Heating Profiles

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hanna, Gregory J.

    1991-01-01

    A cryogenic test article, the Generic Research Cryogenic Tank, was designed to qualitatively simulate the thermal response of transatmospheric vehicle fuel tanks exposed to the environment of hypersonic flight. One-dimensional and two-dimensional finite-difference thermal models were developed to simulate the thermal response and assist in the design of the Generic Research Cryogenic Tank. The one-dimensional thermal analysis determined the required insulation thickness to meet the thermal design criteria and located the purge jacket to eliminate the liquefaction of air. The two-dimensional thermal analysis predicted the temperature gradients developed within the pressure-vessel wall, estimated the cryogen boiloff, and showed the effects the ullage condition has on pressure-vessel temperatures. The degree of ullage mixing, location of the applied high-temperature profile, and the purge gas influence on insulation thermal conductivity had significant effects on the thermal behavior of the Generic Research Cryogenic Tank. In addition to analysis results, a description of the Generic Research Cryogenic Tank and the role it will play in future thermal structures and transatmospheric vehicle research at the NASA Dryden Flight Research Facility is presented.

  9. Thermocryogenic buckling and stress analyses of a partially filled cryogenic tank subjected to cylindrical strip heating

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1994-01-01

    Thermocryogenic buckling and stress analyses were conducted on a horizontally oriented cryogenic tank using the finite element method. The tank is a finite-length circular cylindrical shell with its two ends capped with hemispherical shells. The tank is subjected to cylindrical strip heating in the region above the liquid-cryogen fill level and to cryogenic cooling below the fill level (i.e., under thermocryogenic loading). The effects of cryogen fill level on the buckling temperature and thermocryogenic stress field were investigated in detail. Both the buckling temperature and stress magnitudes were relatively insensitive to the cryogen fill level. The buckling temperature, however, was quite sensitive to the radius-to-thickness ratio. A mechanical stress analysis of the tank also was conducted when the tank was under: (1) cryogen liquid pressure loading; (2) internal pressure loading; and (3) tank-wall inertia loading. Deformed shapes of the cryogenic tanks under different loading conditions were shown, and high-stress domains were mapped on the tank wall for the strain-gage installations. The accuracies of solutions from different finite element models were compared.

  10. Ames Research Center cryogenics program

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1987-01-01

    Viewgraphs describe the Ames Research Center's cryogenics program. Diagrams are given of a fluid management system, a centrifugal pump, a flow meter, a liquid helium test facility, an extra-vehicular activity coupler concept, a dewar support with passive orbital disconnect, a pulse tube refrigerator, a dilution refrigerator, and an adiabatic demagnetization cooler.

  11. Status Of Sorption Cryogenic Refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.

  12. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  13. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature SiO2 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  14. High Performance COPVs for In-Space Storage of High Pressure Cryogenic Fuels

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Dyess, Mark; Hastings, Chad; Wang, Jun

    2008-01-01

    Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. As part of this study, material tests of candidate fiber and resin systems were used as the basis for the selection of the material combinations for evaluation in a COPV at cryogenic conditions. This comprehensive approach has also been expanded to address issues with impact damage tolerance and material degradation due to environmental factors. KEY WORDS: Cryogenic testing, evaluation and applications for pressure vessels, COPVs, tanks, or storage vessels.

  15. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    DTIC Science & Technology

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and...3. DATES COVERED (From - To) August 2014 4. TITLE AND SUBTITLE Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by

  16. Low Mn alloy steel for cryogenic service and method of preparation

    DOEpatents

    Morris, Jr., John W.; Niikura, Masakazu

    1981-01-01

    A ferritic cryogenic steel which has a relatively low (about 4-6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4-6% manganese, 0.02-0.06% carbon, 0.1-0.4% molybdenum and 0-3% nickel.

  17. Laser-induced fluorescence of phosphors for remote cryogenic thermometry

    NASA Technical Reports Server (NTRS)

    Beshears, D. L.; Capps, G. J.; Cates, M. R.; Simmons, C. M.; Schwenterly, S. W.

    1990-01-01

    Remote cryogenic temperature measurements can be made by inducing fluorescence in phosphors with temperature-dependent emissions and measuring the emission lifetimes. The thermographic phosphor technique can be used for making precision, noncontact, cryogenic-temperature measurements in electrically hostile environments, such as high dc electric or magnetic fields. The National Aeronautics and Space Administration is interested in using these thermographic phosphors for mapping hot spots on cryogenic tank walls. Europium-doped lanthanum oxysulfide (La2O2S:Eu) and magnesium fluorogermanate doped with manganese (Mg4FGeO6:Mn) are suitable for low-temperature surface thermometry. Several emission lines, excited by a 337-nm ultraviolet laser, provide fluorescence lifetimes having logarithmic dependence with temperature from 4 to above 125 K. A calibration curve for both La2O2S:Eu and Mg4FGeO6:Mn is presented, as well as emission spectra taken at room temperature and 11 K.

  18. Overview of RICOR tactical cryogenic refrigerators for space missions

    NASA Astrophysics Data System (ADS)

    Riabzev, Sergey; Filis, Avishai; Livni, Dorit; Regev, Itai; Segal, Victor; Gover, Dan

    2016-05-01

    Cryogenic refrigerators represent a significant enabling technology for Earth and Space science enterprises. Many of the space instruments require cryogenic refrigeration to enable the use of advanced detectors to explore a wide range of phenomena from space. RICOR refrigerators involved in various space missions are overviewed in this paper, starting in 1994 with "Clementine" Moon mission, till the latest ExoMars mission launched in 2016. RICOR tactical rotary refrigerators have been incorporated in many space instruments, after passing qualification, life time, thermal management testing and flight acceptance. The tactical to space customization framework includes an extensive characterization and qualification test program to validate reliability, the design of thermal interfacing with a detector, vibration export control, efficient heat dissipation in a vacuum environment, robustness, mounting design, compliance with outgassing requirements and strict performance screening. Current RICOR development is focused on dedicated ultra-long-life, highly reliable, space cryogenic refrigerator based on a Pulse Tube design

  19. Cryogenic materials selection, availability, and cost considerations

    NASA Technical Reports Server (NTRS)

    Rush, H. F.

    1983-01-01

    The selection of structural alloys, composite materials, solder alloys, and filler materials for use in cryogenic models is discussed. In particular, materials testing programs conducted at Langley are described.

  20. Development of COPVS for High pressure, In-Space, Cryogenic Fuel Storage

    NASA Technical Reports Server (NTRS)

    DeLay, Tom; Schneider, Judy; Dyess, Mark; Hastings, Chad; Noorda, Ryan; Noorda, Jared; Patterson, James

    2008-01-01

    Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. To evaluate the ultimate performance, various polymeric COPV's have been statically burst tested at cryogenic conditions before and after exposure to irradiation. Materials selected for these COPVs were based on the measured mechanical properties of candidate resin systems and fibers that were also tested at cryogenic conditions before and after exposure to irradiation. The correlation of COPV burst pressures with the constituent material properties has proven to be a valuable screening method for selection of suitable candidate materials with resistance to material degradation due to exposure to temperature and radiation.

  1. Experimental research and numerical simulation on cryogenic line chill-down process

    NASA Astrophysics Data System (ADS)

    Jin, Lingxue; Cho, Hyokjin; Lee, Cheonkyu; Jeong, Sangkwon

    2018-01-01

    The empirical heat transfer correlations are suggested for the fast cool down process of the cryogenic transfer line from room temperature to cryogenic temperature. The correlations include the heat transfer coefficient (HTC) correlations for single-phase gas convection and film boiling regimes, minimum heat flux (MHF) temperature, critical heat flux (CHF) temperature and CHF. The correlations are obtained from the experimental measurements. The experiments are conducted on a 12.7 mm outer diameter (OD), 1.25 mm wall thickness and 7 m long stainless steel horizontal pipe with liquid nitrogen (LN2). The effect of the lengthwise position is verified by measuring the temperature profiles in near the inlet and the outlet of the transfer line. The newly suggested heat transfer correlations are applied to the one-dimensional homogeneous transient model to simulate the cryogenic line chill-down process, and the chill-down time and the cryogen consumption are well predicted in the mass flux range from 26.0 kg/m2 s to 73.6 kg/m2 s through the correlations.

  2. Multiparameter Flowfield Measurements in High-Pressure, Cryogenic Environments Using Femtosecond Lasers

    NASA Technical Reports Server (NTRS)

    Burns, Ross A.; Danehy, Paul M.; Peters, Christopher J.

    2016-01-01

    Femtosecond laser electronic excitation tagging (FLEET) and Rayleigh scattering (RS) from a femtosecond laser are demonstrated in the NASA Langley 0.3-m Transonic Cryogenic Tunnel (TCT). The measured signals from these techniques are examined for their thermodynamic dependencies in pure nitrogen. The FLEET signal intensity and signal lifetimes are found to scale primarily with the gas density, as does the RS signal. Several models are developed, which capture these physical behaviors. Notably, the FLEET and Rayleigh scattering intensities scale linearly with the flow density, while the FLEET signal decay rates are a more complex function of the thermodynamic state of the gas. The measurement of various flow properties are demonstrated using these techniques. While density was directly measured from the signal intensities and FLEET signal lifetime, temperature and pressure were measured using the simultaneous FLEET velocity measurements while assuming the flow had a constant total enthalpy. Measurements of density, temperature, and pressure from the FLEET signal are made with accuracies as high as 5.3 percent, 0.62 percent, and 6.2 percent, respectively, while precisions were approximately 10 percent, 0.26 percent, and 11 percent for these same quantities. Similar measurements of density from Rayleigh scattering showed an overall accuracy of 3.5 percent and a precision of 10.2 percent over a limited temperature range (T greater than 195 K). These measurements suggest a high degree of utility at using the femtosecond-laser based diagnostics for making multiparameter measurements in high-pressure, cryogenic environments such as large-scale TCT facilities.

  3. A compact cryogenic pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gang; Caldwell, Shane; Clark, Jason A.

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  4. Cryogenic Test Technology 1984.

    DTIC Science & Technology

    1985-04-01

    requirements. The material selection for the Pathfinder I was further restricted by long delivery times before Nitronic 40 was chosen. The alloys under...severe requirements of cryogenic model building. A detailed study of the characteristics of Nitronic 40 is reported in reference 36. This paper, and...remarks elsewhere about experience with Pathfinder I (made from Nitronic 40 ), suggest that quality control problems were encountered with at least one batch

  5. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  6. Design and Testing of a Cryogenic Capillary Pumped Loop Flight Experiment

    NASA Technical Reports Server (NTRS)

    Bugby, David C.; Kroliczek, Edward J.; Ku, Jentung; Swanson, Ted; Tomlinson, B. J.; Davis, Thomas M.; Baumann, Jane; Cullimore, Brent

    1998-01-01

    This paper details the flight configuration and pre-flight performance test results of the fifth generation cryogenic capillary pumped loop (CCPL-5). This device will fly on STS-95 in October 1998 as part of the CRYOTSU Flight Experiment. This flight represents the first in-space demonstration of a CCPL, a miniaturized two-phase fluid circulator for thermally linking cryogenic cooling sources to remote cryogenic components. CCPL-5 utilizes N2 as the working fluid and has a practical operating range of 75-110 K. Test results indicate that CCPL-5, which weighs about 200 grams, can transport over 10 W of cooling a distance of 0.25 m (or more) with less than a 5 K temperature drop.

  7. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    DTIC Science & Technology

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  8. Temperature-Dependent Refractive Index of Cleartran® ZnS to Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Leviton, Doug; Frey, Brad

    2013-01-01

    First, let's talk about the CHARMS facility at NASA's Goddard Space Flight Center: Cryogenic, High-Accuracy Refraction Measuring System (CHARMS); design features for highest accuracy and precision; technologies we rely on; data products and examples; optical materials for which we've measured cryogenic refractive index.

  9. Sensitivity of the Geomagnetic Octupole to a Stably Stratified Layer in the Earth's Core

    NASA Astrophysics Data System (ADS)

    Yan, C.; Stanley, S.

    2017-12-01

    The presence of a stably stratified layer at the top of the core has long been proposed for Earth, based on evidence from seismology and geomagnetic secular variation. Geodynamo modeling offers a unique window to inspect the properties and dynamics in Earth's core. For example, numerical simulations have shown that magnetic field morphology is sensitive to the presence of stably stratified layers in a planet's core. Here we use the mMoSST numerical dynamo model to investigate the effects of a thin stably stratified layer at the top of the fluid outer core in Earth on the resulting large-scale geomagnetic field morphology. We find that the existence of a stable layer has significant influence on the octupolar component of the magnetic field in our models, whereas the quadrupole doesn't show an obvious trend. This suggests that observations of the geomagnetic field can be applied to provide information of the properties of this plausible stable layer, such as how thick and how stable this layer could be. Furthermore, we have examined whether the dominant thermal signature from mantle tomography at the core-mantle boundary (CMB) (a degree & order 2 spherical harmonic) can influence our results. We found that this heat flux pattern at the CMB has no outstanding effects on the quadrupole and octupole magnetic field components. Our studies suggest that if there is a stably stratified layer at the top of the Earth's core, it must be limited in terms of stability and thickness, in order to be compatible with the observed paleomagnetic record.

  10. Appearance of the octupole ordered phase IV in CexLa1 -x B6

    NASA Astrophysics Data System (ADS)

    Sera, M.; Kunimori, K.; Matsumura, T.; Kondo, A.; Tanida, H.; Tou, H.; Iga, F.

    2018-05-01

    We investigated the physical properties of CexLa1 -xB6 at x ˜0.8 , below which the Tβ-type antiferro-octupole (AFO) ordered phase IV appears as a result of the larger suppression rate of TQ than TN by La doping. The most important result is that while the peak of the specific heat at TQ is rapidly suppressed and broadened by La doping, that at TIV is sharp and large. This indicates that although the Tβ-AFO order in the phase IV is robust against the local lattice distortion induced by La doping, the Ox y-type antiferroquadrupole (AFQ) ordered phase II is very weak. The Tx y z-AFO interaction is robust against La doping from the observation of the pronounced enhancement of TQ even in a small x region. Based on these La-doping effect of the multipole interactions, we carried out the mean-field calculation for the four-sublattice model to reproduce the magnetic phase diagrams of CexLa1 -xB6 . Based on the calculated results, we propose that the small splitting of the quartet is induced by La doping in phase I to explain the magnetic phase diagram for x <0.65 . We could obtain the calculated results roughly consistent with the experimental results, although there appear new problems. We classified the mechanisms of the four different types of the competition among the four interactions with roughly the same magnitude, which induce the interesting and complicated properties in CexLa1 -xB6 .

  11. The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown.

    PubMed

    Darr, Samuel; Dong, Jun; Glikin, Neil; Hartwig, Jason; Majumdar, Alok; Leclair, Andre; Chung, Jacob

    2016-01-01

    Manned deep space exploration will require cryogenic in-space propulsion. Yet, accurate prediction of cryogenic pipe flow boiling heat transfer is lacking, due to the absence of a cohesive reduced gravity data set covering the expected flow and thermodynamic parameter ranges needed to validate cryogenic two-phase heat transfer models. This work provides a wide range of cryogenic chilldown data aboard an aircraft flying parabolic trajectories to simulate reduced gravity. Liquid nitrogen is used to quench a 1.27 cm diameter tube from room temperature. The pressure, temperature, flow rate, and inlet conditions are reported from 10 tests covering liquid Reynolds number from 2,000 to 80,000 and pressures from 80 to 810 kPa. Corresponding terrestrial gravity tests were performed in upward, downward, and horizontal flow configurations to identify gravity and flow direction effects on chilldown. Film boiling heat transfer was lessened by up to 25% in reduced gravity, resulting in longer time and more liquid to quench the pipe to liquid temperatures. Heat transfer was enhanced by increasing the flow rate, and differences between reduced and terrestrial gravity diminished at high flow rates. The new data set will enable the development of accurate and robust heat transfer models of cryogenic pipe chilldown in reduced gravity.

  12. Operational present status and reliability analysis of the upgraded EAST cryogenic system

    NASA Astrophysics Data System (ADS)

    Zhou, Z. W.; Y Zhang, Q.; Lu, X. F.; Hu, L. B.; Zhu, P.

    2017-12-01

    Since the first commissioning in 2005, the cryogenic system for EAST (Experimental Advanced Superconducting Tokamak) has been cooled down and warmed up for thirteen experimental campaigns. In order to promote the refrigeration efficiencies and reliability, the EAST cryogenic system was upgraded gradually with new helium screw compressors and new dynamic gas bearing helium turbine expanders with eddy current brake to improve the original poor mechanical and operational performance from 2012 to 2015. Then the totally upgraded cryogenic system was put into operation in the eleventh cool-down experiment, and has been operated for the latest several experimental campaigns. The upgraded system has successfully coped with various normal operational modes during cool-down and 4.5 K steady-state operation under pulsed heat load from the tokamak as well as the abnormal fault modes including turbines protection stop. In this paper, the upgraded EAST cryogenic system including its functional analysis and new cryogenic control networks will be presented in detail. Also, its operational present status in the latest cool-down experiments will be presented and the system reliability will be analyzed, which shows a high reliability and low fault rate after upgrade. In the end, some future necessary work to meet the higher reliability requirement for future uninterrupted long-term experimental operation will also be proposed.

  13. The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown

    PubMed Central

    Darr, Samuel; Dong, Jun; Glikin, Neil; Hartwig, Jason; Majumdar, Alok; Leclair, Andre; Chung, Jacob

    2016-01-01

    Manned deep space exploration will require cryogenic in-space propulsion. Yet, accurate prediction of cryogenic pipe flow boiling heat transfer is lacking, due to the absence of a cohesive reduced gravity data set covering the expected flow and thermodynamic parameter ranges needed to validate cryogenic two-phase heat transfer models. This work provides a wide range of cryogenic chilldown data aboard an aircraft flying parabolic trajectories to simulate reduced gravity. Liquid nitrogen is used to quench a 1.27 cm diameter tube from room temperature. The pressure, temperature, flow rate, and inlet conditions are reported from 10 tests covering liquid Reynolds number from 2,000 to 80,000 and pressures from 80 to 810 kPa. Corresponding terrestrial gravity tests were performed in upward, downward, and horizontal flow configurations to identify gravity and flow direction effects on chilldown. Film boiling heat transfer was lessened by up to 25% in reduced gravity, resulting in longer time and more liquid to quench the pipe to liquid temperatures. Heat transfer was enhanced by increasing the flow rate, and differences between reduced and terrestrial gravity diminished at high flow rates. The new data set will enable the development of accurate and robust heat transfer models of cryogenic pipe chilldown in reduced gravity. PMID:28725740

  14. Design concepts for the ASTROMAG cryogenic system

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Castles, S.

    1987-01-01

    Described is a proposed cryogenic system used to cool the superconducting magnet for the Space Station based ASTROMAG Particle Astrophysics Facility. This 2-meter diameter superconducting magnet will be cooled using stored helium II. The paper presents a liquid helium storage concept which would permit cryogenic lifetimes of up to 3 years between refills. It is proposed that the superconducting coil be cooled using superfluid helium pumped by the thermomechanical effect. It is also proposed that the storage tank be resupplied with helium in orbit. A method for charging and discharging the magnet with minimum helium loss using split gas-cooled leads is discussed. A proposal to use a Stirling cycle cryocooler to extend the storage life of the cryostat will also be presented.

  15. Laser ``M'egajoule'' cryogenic target program: from target fabrication to conformation of the deuterium-tritium ice layer

    NASA Astrophysics Data System (ADS)

    Collier, Rémy; Durut, Frédéric; Reneaume, Benoît; Chicane, Cédric; Théobald, Marc; Breton, Olivier; Martin, Michel; Fleury, Emmanuel; Vincent-Viry, Olivier; Bachelet, Franck; Jeannot, Laurent; Geoffray, Isabelle; Botrel, Ronan; Dauteuil, Christophe; Hermerel, Cyril; Choux, Alexandre; Bednarczyk, Sophie; Legaie, Olivier

    2008-11-01

    For the French inertial confinement fusion (ICF) experiments, cryogenic target assemblies (CTAs) for the LMJ program are manufactured and filled at CEA Valduc (Dijon) in the cryogenic targets filling station (IRCC). They will be moved at about 20 K into a transport cryostat for cryogenic targets and will be driven from CEA/Valduc to CEA/CESTA (Bordeaux). Cryogenic targets will then be transferred by several cryogenic grippers on the cryogenic target positioner before shots. The CTA has to meet severe specifications and involves a lot of challenging tasks for its manufacture. To fill CTAs by permeation with deuterium-tritium (DT), the IRCC need to meet strict thermal, mechanical and dimensional specifications. To obtain a good combustion yield, a very homogenous DT ice layer and very smooth roughness at 1.5 K below the DT triple point are also required. This paper deals with the up to date main issues in the different fields of the LMJ cryogenic target program.

  16. Cyclic Cryogenic Thermal-Mechanical Testing of an X-33/RLV Liquid Oxygen Tank Concept

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin

    1999-01-01

    An important step in developing a cost-effective, reusable, launch vehicle is the development of durable, lightweight, insulated, cryogenic propellant tanks. Current cryogenic tanks are expendable so most of the existing technology is not directly applicable to future launch vehicles. As part of the X-33/Reusable Launch Vehicle (RLV) Program, an experimental apparatus developed at the NASA Langley Research Center for evaluating the effects of combined, cyclic, thermal and mechanical loading on cryogenic tank concepts was used to evaluate cryogenic propellant tank concepts for Lockheed-Martin Michoud Space Systems. An aluminum-lithium (Al 2195) liquid oxygen tank concept, insulated with SS-1171 and PDL-1034 cryogenic insulation, is tested under simulated mission conditions, and the results of those tests are reported. The tests consists of twenty-five simulated Launch/Abort missions and twenty-five simulated flight missions with temperatures ranging from -320 F to 350 F and a maximum mechanical load of 71,300 lb. in tension.

  17. Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ray, E. J.; Ladson, C. L.; Adcock, J. B.; Lawing, P. L.; Hall, R. M.

    1979-01-01

    The past 6 years of operation with the NASA Langley 0.3 m transonic cryogenic tunnel (TCT) show that there are no insurmountable problems associated with cryogenic testing with gaseous nitrogen at transonic Mach numbers. The fundamentals of the concept were validated both analytically and experimentally and the 0.3 m TCT, with its unique Reynolds number capability, was used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects were developed and cryogenic tunnel conditions can be set and maintained accurately. Cryogenic cooling by injecting liquid nitrogen directly into the tunnel circuit imposes no problems with temperature distribution or dynamic response characteristics. Experience with the 0.3 m TCT, indicates that there is a significant learning process associated with cryogenic, high Reynolds number testing. Many of the questions have already been answered; however, factors such as tunnel control, run logic, economics, instrumentation, and model technology present many new and challenging problems.

  18. Analysis and Design of the NASA Langley Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.

    1999-01-01

    A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.

  19. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  20. Influence of cryogenic treatment on microstructure and mechanical properties of high strength AISI D2 tool steel =

    NASA Astrophysics Data System (ADS)

    Ghasemi Nanesa, Hadi

    Cryogenic treatment, known as treating materials at sub-zero temperatures, has been added to conventional heat treatment cycle of high alloyed steels where martensitic transformation is incomplete after quenching to room temperature. Incomplete martensitic transformation occurs due to the effect of high content of alloying elements on pushing down martensite start and finish temperatures to very low values, specifically, on tool steels. In spite of obtaining significant improvements in mechanical and wear properties after cryogenic treatment, there is no cohesive picture about what exactly modifies the microstructure of tool steels during cryogenic treatment and therefore divergent opinions on the influence of process parameters are still reported. For example, the suggested time length for cryogenic treatment starts from few seconds to several days indicating the lack of understanding about micromechanisms responsible for microstructural evolution while holding at cryogenic temperatures. In this regard, the main objective of this project is to develop a better understanding on the fundamental micromechanisms operating during cryogenic treatment. To attain this objective, the following milestones are pursued. - To study the conventional cryogenic treatment and finding challenges. - To identify and characterize the optimum starting microstructure before cryogenic treatment. - To determine the important processing parameters those control the evolution of microstructure and hardness. - To investigate the interaction between carbide precipitation and martensitic transformation in the AISI D2 steel. - To propose an optimal cryogenic treatment for AISI D2 steel.