Science.gov

Sample records for cryogenic scintillation module

  1. Cryogenic phonon-scintillation detectors with PMT readout for rare event search experiments

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Lin, J.; Mikhailik, V. B.; Kraus, H.

    2016-06-01

    Cryogenic phonon-scintillation detectors (CPSD) for rare event search experiments require reliable, efficient and robust photon detectors that can resolve individual photons in a scintillation event. We report on a cryogenic detector containing a scintillating crystal, equipped with an NTD-Ge phonon sensor and a photon detector based on a low-temperature photomultiplier tube (PMT) that is powered by a Cockcroft-Walton generator. Here we present results from the characterisation of two detector modules, one with CaWO4, the other with CaMoO4 as scintillator. The energy resolutions (FWHM) at 122.1 keV for the scintillation/PMT channel are 19.9% and 29.7% respectively for CaWO4 and CaMoO4 while the energy resolutions (FWHM) for the phonon channels are 2.17 keV (1.8%) and 0.97 keV (0.79%). These characteristics compare favourably with other CPSDs currently used in cryogenic rare-event search experiments. The detection module with PMT readout benefits from the implementation of a well-understood, reliable, and commercially available component and improved time resolution, while retaining the major advantages of conventional CPSD, such as high sensitivity, resolving power and discrimination ability.

  2. Sensitivity of sodium iodide cryogenic scintillation-phonon detectors to WIMP signals

    NASA Astrophysics Data System (ADS)

    Clark, M.; Nadeau, P.; Di Stefano, P. C. F.; Lanfranchi, J.-C.; Roth, S.; von Sivers, M.; Yavin, I.

    2016-05-01

    There is great interest in performing dark matter direct detection experiments using alkali halides such as NaI to test the DAMA/LIBRA claim. Cryogenic scintillation-phonon detectors measure both scintillation light and phonons to provide event-by-event discrimination between particles interacting with nuclei and particles interacting with electrons. An alkali halide scintillation-phonon detector could test the DAMA/LIBRA claim in a model-independent way using a similar material with added background discrimination. We present simulations of such detectors to determine their possible sensitivity to both annual modulation and particle interaction signals. We find that a 5 kg detector array could test the modulation reported by DAMA/LIBRA within 2 years using a likelihood-ratio test.

  3. A cryogenic multichannel electronically scanned pressure module

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Fox, Robert L.; Adcock, Edward E.; Kahng, Seun K.

    1992-01-01

    Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.

  4. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  5. Development of a scintillation light detector for a cryogenic rare-event-search experiment

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; So, J. H.; Kang, C. S.; Kim, G. B.; Kim, S. R.; Lee, J. H.; Lee, M. K.; Yoon, W. S.; Kim, Y. H.

    2015-06-01

    We developed a light detector to measure scintillation light from a crystal utilized in heat and light measurements at low temperatures for a rare-event-search experiment. A 2-in. Ge wafer was used as the light absorber, while a metallic magnetic calorimeter was employed to read out the temperature increase of the absorber. The light detector was tested at 25-100 mK using a cryogen-free adiabatic demagnetization refrigerator. The performance in terms of energy resolution, rise time and signal amplitude was measured using radioactive sources with a consideration of the absorption position on the wafer. The light detector was used to measure the scintillation light of a CaMoO4 crystal at mK temperatures. We also discuss for the potential application of this detector in a neutrinoless double-beta decay experiment.

  6. A hybrid electronically scanned pressure module for cryogenic environments

    NASA Technical Reports Server (NTRS)

    Chapman, J. J.; Hopson, P., Jr.; Kruse, N.

    1995-01-01

    Pressure is one of the most important parameters measured when testing models in wind tunnels. For models tested in the cryogenic environment of the National Transonic Facility at NASA Langley Research Center, the technique of utilizing commercially available multichannel pressure modules inside the models is difficult due to the small internal volume of the models and the requirement of keeping the pressure transducer modules within an acceptable temperature range well above the -173 degrees C tunnel temperature. A prototype multichannel pressure transducer module has been designed and fabricated with stable, repeatable sensors and materials optimized for reliable performance in the cryogenic environment. The module has 16 single crystal silicon piezoresistive pressure sensors electrostatically bonded to a metalized Pyrex substrate for sensing the wind tunnel model pressures. An integral temperature sensor mounted on each silicon micromachined pressure sensor senses real-time temperature fluctuations to within 0.1 degrees C to correct for thermally induced non-random sensor drift. The data presented here are from a prototype sensor module tested in the 0.3 M cryogenic tunnel and thermal equilibrium conditions in an environmental chamber which approximates the thermal environment (-173 degrees C to +60 degrees C) of the National Transonic Facility.

  7. The features of electronics structure of the multichannel scintillation module for the EMMA experiment

    NASA Astrophysics Data System (ADS)

    Volchenko, V.; Volchenko, G.; Akhrameev, E.; Bezrukov, L.; Dzaparova, I.; Enqvist, T.; Inzhechik, L.; Izmaylov, A.; Joutsenvaara, J.; Khabibullin, M.; Khotjantsev, A.; Kuusiniemi, P.; Lubsandorzhiev, B.; Mineev, O.; Petkov, V.; Poleshuk, R.; Shaibonov, B.; Sarkamo, J.; Shaykhiev, A.; Trzaska, W.; Yanin, A.; Yershov, N.

    2011-05-01

    A brief description of the developed structural electric diagrams of 16-channel scintillation module for the underground EMMA experiment, the basic characteristics and parameters of the electrical diagrams of this module are presented. Multi-pixel photodiodes operating in a limited Geiger mode are used for photoreadout of the scintillator detectors in 16-channel scintillation module. The method of the automatic tuning of the photosensors gain based on the stabilization of an average counting rate of the scintillation detectors from gamma rays of a natural radioactive background is described.

  8. Effects of variation in modulator temperature during cryogenic modulation in comprehensive two-dimensional gas chromatography.

    PubMed

    Begnaud, Frédéric; Debonneville, Christian; Probst, Jean-Pierre; Chaintreau, Alain; Morrison, Paul D; Adcock, Jacqui L; Marriott, Philip J

    2009-09-01

    Many modulation systems in comprehensive 2D GC (GC x GC) are based on cryogenic methods. High trapping temperatures in these systems can result in ineffective trapping of the more volatile compounds, whilst temperatures that are too low can prevent efficient remobilisation of some compounds. To better understand the trapping and release of compounds over a wide range of volatilities, we have investigated a number of different constant temperature modulator settings, and have also examined a constant temperature differential between the cryo-trap and the chromatographic oven. These investigations have led us to modify the temperature regulation capabilities of the longitudinally modulated cryogenic system (LMCS). In contrast to the current system, where the user sets a constant temperature for the cooling chamber, the user now sets the temperature difference between the cryo-trap and the chromatographic oven. In this configuration, the cooling chamber temperature increases during the chromatographic run, tracking the oven temperature ramp. This produces more efficient, volatility-dependent modulation, and increases the range of volatile compounds that can be analysed under optimal trap-and-release conditions within a single analytical run. This system also reduces cryogenic fluid consumption.

  9. James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Cryogenic Component Test Facility

    NASA Technical Reports Server (NTRS)

    Packard, Edward A.

    2004-01-01

    This viewgraph presentation provides information on the design, construction, and operation of a cryogenic chamber, and its use in testing the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST).

  10. Cryogenic THGEM-GPM for the readout of scintillation light from liquid argon

    NASA Astrophysics Data System (ADS)

    Xie, Wenqing; Fu, Yidong; Li, Yulan; Li, Jin; Li, Yuanjing; Yue, Qian

    2015-02-01

    A GPM (Gaseous Photo Multiplier) based on GEMs (Gas Electron Multipliers) and THGEMs (Thick Gas Electron Multipliers) is a promising detector for VUV (Vacuum Ultra Violet) photon readouts in rare event experiments which use cryogenic two-phase detectors with detection media of Ar and Xe. A GPM based on THGEM made of PTFE (herein named PTFE-THGEM) was developed inspired by the wide use of PTFE (polytetrafluoroethene) boards as low radioactive background PCB in rare event experiments. The efficiencies of the THGEM, a CsI photocathode, and finally a GPM are presented here. At low temperature (113 K) and 1.1 atm, the quantum efficiency of the GPM for VUV photons from liquid Ar in a two-phase detector is estimated to be 8.1% and the low threshold of the detector system for initial electrons prior to multiplication is 12 using 5 N purity Ar (0.99999).

  11. Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations

    NASA Astrophysics Data System (ADS)

    Méry, Yoann; Hakim, Layal; Scouflaire, Philippe; Vingert, Lucien; Ducruix, Sébastien; Candel, Sébastien

    2013-01-01

    The present investigation is focused on high-frequency combustion instabilities coupled by transverse acoustic modes. This phenomenon has been observed during the development of many liquid rocket engines and other high performance devices. Such instabilities induce an unsteady heat release which leads in many cases to a rapid intensification of heat fluxes to the thrust chamber walls, causing fatal damage and a spectacular destruction of the propulsion system. One central objective of this effort is to observe and understand the physical processes leading the coupling between acoustics and combustion, and resulting in the growth of such instabilities. Experiments carried out on the Mascotte testbed at ONERA serve to identify the main processes involved and bring forth mechanisms taking place when an engine becomes unstable. Hot fire experiments are carried out in a model scale combustor reproducing many of the conditions prevailing in unstable rocket engines. Subcritical and transcritical cryogenic jets are injected in a multiple injector combustion chamber (MIC). This system is fed with LOx and methane through five injection units. The flames formed in this configuration are modulated by an acoustic wave with an amplitude of several bars. This is obtained with a new Very Large Amplitude Modulator (VHAM) capable of generating acoustic mode amplitudes representative of those found in actual engine undergoing HF instabilities. It is shown first that the strength of the acoustic field and the frequency range of oscillation (1 kHz-3.5 kHz) are consistent with rocket instability observations. Conditions where a feedback of the flame on the acoustic field occurs are obtained. High speed diagnostics indicates that the velocity field dramatically enhances the atomization process. The liquid core length is strongly reduced. At moderate amplitudes, the liquid jets are flattened in the spanwise direction and heat release takes place in two sheets neighboring the dense core

  12. Status of LUMINEU program to search for neutrinoless double beta decay of {sup 100}Mo with cryogenic ZnMoO{sub 4} scintillating bolometers

    SciTech Connect

    Danevich, F. A. Boiko, R. S.; Chernyak, D. M.; Kobychev, V. V.; Bergé, L.; Chapellier, M.; Drillien, A.-A.; Dumoulin, L.; Humbert, V.; Marcillac, P. de; Marnieros, S.; Marrache-Kikuchi, C.; Olivieri, E.; Plantevin, O.; Tenconi, M.; Devoyon, L.; Koskas, F.; and others

    2015-10-28

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of {sup 100}Mo using radiopure ZnMoO{sub 4} crystals enriched in {sup 100}Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO{sub 4} crystal scintillators (∼ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in {sup 100}Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ∼ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.

  13. Cryogenic Pressure Calibrator for Wide Temperature Electronically Scanned (ESP) Pressure Modules

    NASA Technical Reports Server (NTRS)

    Faulcon, Nettie D.

    2001-01-01

    Electronically scanned pressure (ESP) modules have been developed that can operate in ambient and in cryogenic environments, particularly Langley's National Transonic Facility (NTF). Because they can operate directly in a cryogenic environment, their use eliminates many of the operational problems associated with using conventional modules at low temperatures. To ensure the accuracy of these new instruments, calibration was conducted in a laboratory simulating the environmental conditions of NTF. This paper discusses the calibration process by means of the simulation laboratory, the system inputs and outputs and the analysis of the calibration data. Calibration results of module M4, a wide temperature ESP module with 16 ports and a pressure range of +/- 4 psid are given.

  14. Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function.

    PubMed

    Bok, Jan; Schauer, Petr

    2014-01-01

    In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. PMID:24323770

  15. Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function.

    PubMed

    Bok, Jan; Schauer, Petr

    2014-01-01

    In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF.

  16. Scintillation counter and wire chamber front end modules for high energy physics experiments

    SciTech Connect

    Baldin, Boris; DalMonte, Lou; /Fermilab

    2011-01-01

    This document describes two front-end modules developed for the proposed MIPP upgrade (P-960) experiment at Fermilab. The scintillation counter module was developed for the Plastic Ball detector time and charge measurements. The module has eight LEMO 00 input connectors terminated with 50 ohms and accepts negative photomultiplier signals in the range 0.25...1000 pC with the maximum input voltage of 4.0 V. Each input has a passive splitter with integration and differentiation times of {approx}20 ns. The integrated portion of the signal is digitized at 26.55 MHz by Analog Devices AD9229 12-bit pipelined 4-channel ADC. The differentiated signal is discriminated for time measurement and sent to one of the four TMC304 inputs. The 4-channel TMC304 chip allows high precision time measurement of rising and falling edges with {approx}100 ps resolution and has internal digital pipeline. The ADC data is also pipelined which allows deadtime-less operation with trigger decision times of {approx}4 {micro}s. The wire chamber module was developed for MIPP EMCal detector charge measurements. The 32-channel digitizer accepts differential analog signals from four 8-channel integrating wire amplifiers. The connection between wire amplifier and digitizer is provided via 26-wire twist-n-flat cable. The wire amplifier integrates input wire current and has sensitivity of 275 mV/pC and the noise level of {approx}0.013 pC. The digitizer uses the same 12-bit AD9229 ADC chip as the scintillator counter module. The wire amplifier has a built-in test pulser with a mask register to provide testing of the individual channels. Both modules are implemented as a 6Ux220 mm VME size board with 48-pin power connector. A custom europack (VME) 21-slot crate is developed for housing these front-end modules.

  17. Characterization of MRI-compatible PET detector modules by optical excitation of the scintillator material

    NASA Astrophysics Data System (ADS)

    Játékos, Balázs; Kolozsi, Zoltán; Lorincz, Emoke; Ujhelyi, Ferenc; Barócsi, Attila; Erdei, Gábor

    2012-04-01

    In the field of biomedical imaging there is a strong interest in combining modalities of positron emission tomography (PET) and magnetic resonance imaging (MRI). An MRI-compatible PET detector module has to be insensitive to the magnetic field that is why it needs to incorporate avalanche photodiodes (APD) or silicon photomultipliers (SiPM). We propose a new purely optical characterization method for these devices where no nuclear source is needed. In our method we use LED sources for both the direct illumination of silicon sensors and fluorescent excitation of the scintillator material. With this method we can measure the response characteristic and uniformity of pixels in sensor arrays as well as the optical cross-talk between neighboring pixels. In the same experimental setup we can also emulate the pulse response of the detector module (i.e. light-spread over the sensor array from a point source in the scintillator material). We present the detailed construction of the experimental setup and analyze the benefits and drawbacks of this method compared to the nuclear measurements. The viability of the idea is proven through the characterization of a SiPM array and a block detector module based on it.

  18. Alignment of the Near Detector scintillator modules using cosmic ray muons

    SciTech Connect

    Ospanov, Rustem; Lang, Karol; /Texas U.

    2008-05-01

    The authors describe the procedures and the results of the first alignment of the Near Detector. Using 15.5 million cosmic ray muon tracks, collected from October, 2004 through early january, 2005, they derive the effective transverse positions of the calorimeter scintillator modules. The residuals from straight line fits indicate that the current alignment has achieved better than 1 mm precision. They estimate the size of the remaining misalignment and using tracks recorded with a magnetic field test the effect of the magnetic field on the alignment.

  19. A Cryogenic Half-Wave Plate Module to Measure Polarization at Multiple FIR Passbands

    NASA Technical Reports Server (NTRS)

    Rennick, Timothy S.; Vaillancourt, John E.; Hildebrand, Roger H.; Heimsath, Stephen J.

    2002-01-01

    One of the key components in a far-infrared polarimeter that is being designed at the University of Chicago is a locally-powered half-wave plate module. This compact, lightweight, and reliable module will operate at cryogenic temperatures, rotating a half-wave plate about its axis within the optical path. By doing so, polarization measurements can be made. Further, by utilizing multiple half-wave plate modules within the polarimeter, multiple wavelengths or passbands can be studied. In this paper, we describe the design and performance of a relatively inexpensive prototype module that was assembled and tested successfully, outline the difficulties that had to be overcome, and recommend improvements to future modules. This effort now lays some of the groundwork for a next-generation polarimeter for far-infrared astronomy.

  20. Variable-Delay Polarization Modulators for Cryogenic Millimeter-Wave Applications

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Eimer, J. R.; Fixsen, D. J.; Hinderks, J.; Kogut, A. J.; Lazear, J.; Mirel, P.; Switzer, E.; Voellmer, G. M.; Wollack, E. J..

    2014-01-01

    We describe the design, construction, and initial validation of the variable-delay polarization modulator (VPM) designed for the PIPER cosmic microwave background polarimeter. The VPM modulates between linear and circular polarization by introducing a variable phase delay between orthogonal linear polarizations. Each VPM has a diameter of 39 cm and is engineered to operate in a cryogenic environment (1.5 K). We describe the mechanical design and performance of the kinematic double-blade flexure and drive mechanism along with the construction of the high precision wire grid polarizers.

  1. Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard

    2003-01-01

    DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.

  2. Experimental Study of Novel Materials and Module for Cryogenic (4K) Superconducting Multi-Chip Modules

    NASA Astrophysics Data System (ADS)

    John, Ranjith Samuel E.

    Niobium based superconducting electronics (SCE) are the fastest known digital logic which operate at 100GHz and greater. Nevertheless, the performance of the SCE device depends on the temperature of the SCE integrated circuits being maintained between 4.2 -- 4.25 K. Additionally, as semiconductors are slowly approaching their performance limitations the SCE devices are viewed as a viable alternative for high end computing and commercial wireless applications. However, the successful commercialization of SCE's requires the demonstration of these devices in multichip module (MCM) architecture. Thus the stringent thermal constraint and the complex MCM architecture require an innovative method for thermal management. This research addressed the above challenges by using a nano-engineered polymer adhesive, namely, single walled carbon nanotube (SWCNT) integrated epoxy as underfill for the packaging of SCE in MCM architecture. The current research distinguished itself by (1) examining the thermal management issues across a single chip SCE-MCM and developing a thermal model based on literature and experimental analysis, (2) developing a new material, namely SWCNT-integrated epoxy whose thermal and electrical performance were analyzed as a function of SWCNT loading and (3) demonstrating the thermal and electrical performance of single chip SCE-MCM test structure and 2D SCE-MCM test structure with SWCNT-epoxy as underfill. The thermal analysis of the single chip SCE-MCM was studied by modeling, which illustrated that cryogenic underfill with thermal conductivity of 0.04 W/mK plays a vital role in thermal management of SCE-MCMs. A SWCNT-epoxy underfill material which was thermally conductive but electrically insulating was developed and the experimental verification of the thermal model was completed by studying the thermal performance of single chip SCE MCMs with and without SWCNT-epoxy as underfill. It was determined that the heat transport between the SCE chip and SCE

  3. Time-resolved cryogenic modulation reveals isomer interconversion profiles in dynamic chromatography.

    PubMed

    Mariott, P; Trapp, O; Shellie, R; Schurig, V G

    2001-06-01

    The dynamic chromatographic study of interconversion of E and Z forms of oximes has been investigated by using a novel cryogenic modulation method in a two-dimensional gas chromatographic array. The primary column is a conventional capillary GC column on which the molecular interconversion proceeds. In this case, the molecular dynamical process leads to a peak profile describing the kinetics and thermodynamics of the interconverting molecules during its chromatographic elution. Thus an interconversion region intercedes the elution of the individual stereoisomers of the reaction. Since the molecules are isomers, classical molecular identification methods such as gas chromatography-mass spectrometry are unable to study the individual instantaneous amounts of each of the compounds. Hence the infinitesimal profiles of interconversion along the entire column have never been experimentally observed; rather the total profile is normally subjected to mathematical modelling studies in order to match experiment with theory, and to gain the kinetic parameters of the process. In the present study, an instantaneous ratio of the individual isomers can be found during the chromatographic elution by direct measurement. This is achieved by using a cryogenic zone focussing process, with rapid longitudinal modulation of a cold trap and continual pulsing of collected zones into a fast-analysis high-resolution capillary column on which isomer interconversion is minimized. The data can be displayed as a two-dimensional contour plot to demonstrate the individual isomer profiles. The two-dimensional analysis also allows easy measurement of the peak ratios of the two isomers which is an indicator of the extent of interconversion that has taken place. Two model systems, acetaldoxime and butyraldoxime, were chosen to illustrate the use of the cryogenic modulation procedure. It is anticipated that the procedure could be applied to other molecules which exhibit gas-phase isomerizations or

  4. The high Beta cryo-modules and the associated cryogenic system for the HIE-ISOLDE upgrade at CERN

    NASA Astrophysics Data System (ADS)

    Delruelle, N.; Leclercq, Y.; Pirotte, O.; Ramos, D.; Tibaron, P.; Vandoni, G.; Williams, L.

    2014-01-01

    The major upgrade of the energy and intensity of the existing ISOLDE and REX-ISOLDE radioactive ion beam facilities at CERN requires the replacement of most of the existing ISOLDE post-acceleration equipment by a superconducting linac based on quarter-wave resonators housed together with superconducting solenoids in a series of four high-β and two low-β cryo-modules. As well as providing optimum conditions for physics, the cryo-modules need to function under stringent vacuum and cryogenic conditions. We present the detail design and expected cryogenic performance of the high- β cryo-module together with the cryogenic supply and distribution system destined to service the complete superconducting linac.

  5. The high Beta cryo-modules and the associated cryogenic system for the HIE-ISOLDE upgrade at CERN

    SciTech Connect

    Delruelle, N.; Leclercq, Y.; Pirotte, O.; Ramos, D.; Tibaron, P.; Vandoni, G.; Williams, L.

    2014-01-29

    The major upgrade of the energy and intensity of the existing ISOLDE and REX-ISOLDE radioactive ion beam facilities at CERN requires the replacement of most of the existing ISOLDE post-acceleration equipment by a superconducting linac based on quarter-wave resonators housed together with superconducting solenoids in a series of four high-β and two low-β cryo-modules. As well as providing optimum conditions for physics, the cryo-modules need to function under stringent vacuum and cryogenic conditions. We present the detail design and expected cryogenic performance of the high- β cryo-module together with the cryogenic supply and distribution system destined to service the complete superconducting linac.

  6. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    SciTech Connect

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-07-15

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter.

  7. Plastic scintillation dosimetry: optimal selection of scintillating fibers and scintillators.

    PubMed

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Beddar, A Sam; Roy, René; Beaulieu, Luc

    2005-07-01

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter.

  8. Comparative study of differential flow and cryogenic modulators comprehensive two-dimensional gas chromatography systems for the detailed analysis of light cycle oil.

    PubMed

    Semard, G; Gouin, C; Bourdet, J; Bord, N; Livadaris, V

    2011-05-27

    The modulator is the key point of comprehensive two-dimensional gas chromatography (GC×GC). This interface ensures the sampling and transfer of the sample from the first to the second dimension. Many systems based on different principles have been developed. However, to our knowledge, almost only cryogenic modulators are used in the petroleum industry. Nevertheless cryogenic fluids represent some disadvantages in term of safety, cost and time consuming. This paper reports a comparative study between differential flow and cryogenic liquid modulators for the detailed analysis of hydrocarbons in middle distillates type light cycle oil (LCO). Optimization of geometrical dimensions of a set of columns was carried out on the differential flow modulator system in order to reproduce the quality of separation of cryogenic modulation. Then a comparative study was investigated on sensibility and resolution (separation space and peak capacity) between the two systems.

  9. Cryogenic metrology for the James Webb Space Telescope Integrated Science Instrument Module alignment target fixtures using laser radar through a chamber window

    NASA Astrophysics Data System (ADS)

    Hadjimichael, T.; Kubalak, D.; Slotwinski, A.; Davila, P.; Eegholm, B.; Eichhorn, W.; Hayden, J.; Mentzell, E.; Ohl, R.; Scharfstein, G.; Telfer, R.

    2010-08-01

    The James Webb Space Telescope Integrated Science Instrument Module utilizes two fixtures to align the Optical Telescope Element Simulator (OSIM) to the coordinate systems established on the ISIM and the ISIM Test Platform (ITP). These fixtures contain targets which are visible to the OSIM Alignment Diagnostics Module (ADM). Requirements on these fixtures must be met under ambient and cryogenic conditions. This paper discusses the cryogenic metrology involving Laser Radar measurements through a chamber window that will be used to link photogrammetry target measurements used during ISIM structure cryogenic verification and the ADM targets, including evaluation of distortion introduced from the window.

  10. Development and Design of a Single-Stage Cryogenic Modulator for Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Mostafa, Ahmed; Górecki, Tadeusz

    2016-05-17

    A new liquid nitrogen-based single-stage cryogenic modulator was developed and characterized. In addition, a dedicated liquid nitrogen delivery system was developed. A well-defined restriction placed inside a deactivated fused silica capillary was used to increase the cooling surface area and provide very efficient trapping. At the same time, it enabled modulation of the carrier gas flow owing to changes in gas viscosity with temperature. Gas flow is almost unimpeded at the trapping temperature but reduced to nearly zero at the desorption temperature, which prevents analyte breakthrough. Peak widths for n-alkanes of 30-40 ms at half height were obtained. Most importantly, even the solvent peak could be modulated, which is not feasible with any commercially available thermal modulator. Evaluation of the newly developed system in two-dimensional gas chromatography (GC × GC) separations of some real samples such as regular gasoline and diesel fuel showed that the analytical performance of this single-stage modulator is fully competitive to those of the more complicated dual-stage modulators.

  11. Semi-Technical Cryogenic Molecular Sieve Bed for the Tritium Extraction System of the Test Blanket Module for ITER

    SciTech Connect

    Beloglazov, S.; Bekris, N.; Glugla, M.; Wagner, R.

    2005-07-15

    The tritium extraction from the ITER Helium Cooled Pebble Bed (HCPB) Test Blanket Module purge gas is proposed to be performed in a two steps process: trapping water in a cryogenic Cold Trap, and adsorption of hydrogen isotopes (H{sub 2}, HT, T{sub 2}) as well as impurities (N{sub 2}, O{sub 2}) in a Cryogenic Molecular Sieve Bed (CMSB) at 77K. A CMSB in a semi-technical scale (one-sixth of the flow rate of the ITER-HCPB) was design and constructed at the Forschungszentrum Karlsruhe. The full capacity of CMSB filled with 20 kg of MS-5A was calculated based on adsorption isotherm data to be 9.4 mol of H{sub 2} at partial pressure 120 Pa. The breakthrough tests at flow rates up to 2 Nm{sup 3}h{sup -1} of He with 110 Pa of H{sub 2} conformed with good agreement the adsorption capacity of the CMSB. The mass-transfer zone was found to be relatively narrow (12.5 % of the MS Bed height) allowing to scale up the CMSB to ITER flow rates.

  12. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  13. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  14. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  15. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  16. James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Cryogenic Component Test Facility

    NASA Technical Reports Server (NTRS)

    Packard, Edward A.; Tolson, Julius; Or, Tak; Skocik, Christopher; Glazer, Stuart

    2004-01-01

    Contents include the following: James Webb Space Telescope/Integrated Science Instrument Module (JWST/ISIM) Overview. ISIM Thermal Verification Requirements. Emittance Test Objectives. Cryochamber Design Requirements. Cryochamber Construction. Emittance Test Sample Selection and Configuration. Error Sources and Error Mitigation. Cryochamber Operation. Cryochamber and Emittance Sample Test Results.

  17. Measuring the cryogenic optical alignment between the telescope element and the instruments module of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Whitman, Tony; Olczak, Eugene

    2011-09-01

    The alignment between the Aft Optical Subsystem (AOS) and the Integrated Science Instruments Module (ISIM) is non-adjustable in orbit, so the alignment must be carefully verified in a cryogenic vacuum environment prior to launch. Optical point source locations calibrated by optical metrology instruments are imaged through the AOS onto the Science Instruments to determine focal, lateral, and clock angle alignment. The pupil image of the AOS is overlaid onto the pupil image of the NIRCam to determine the tip and tilt alignment. In addition, an image from fiducial lights at the Primary Mirror checks the pupil alignment between the telescope entrance pupil, the telescope pupil mask, and the NIRCam aperture stop. The image positions are combined to determine the relative alignment between the Optical Telescope Element (OTE) and the ISIM in all six degrees of freedom with corresponding alignment uncertainties. Uncertainties in the position of focused images of the test sources and images from the pupils are derived from sensitivities of an optical model of the system and the Science Instrument sensing capability. Additional uncertainty in the pupil alignment measurement is due to uncertainty in the analytical removal of gravity effects that simulate the on-orbit alignment environment.

  18. Scintillation Counters

    NASA Astrophysics Data System (ADS)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  19. Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi

    2006-01-01

    Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.

  20. Cryogenic exciter

    SciTech Connect

    Bray, James William; Garces, Luis Jose

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  1. Modeling and Commissioning of a Cold Compressor String for the Superfluid Cryogenic Plant at Fermilab's Cryo-module Test Facility

    NASA Astrophysics Data System (ADS)

    Ueresin, C.; Decker, L.; Treite, P.

    In 2011, Linde Cryogenics, a division of Linde Process Plants, Tulsa, Oklahoma, was awarded the contract to deliver a 500 W at 2 K superfluid cryogenic plant to Fermi National Accelerator Laboratory (FNAL) in Batavia, Illinois, USA. This system includes a cold compressor string with three centrifugal compressors and a vacuum pump skid with five volumetric pumps in parallel used to pump down helium to its saturation pressure corresponding to 2 K. Linde Kryotechnik AG, Pfungen Switzerland engineered and supplied the cold compressor system and commissioned it with its control logic to cover the complete range of system operation. The paper outlines issues regarding compressor design, compressor string modeling, control algorithms, controller performance, and surge protection.

  2. SABRE: A search for dark matter and a test of the DAMA/LIBRA annual-modulation result using thallium-doped sodium-iodide scintillation detectors

    NASA Astrophysics Data System (ADS)

    Shields, Emily Kathryn

    Ample evidence has been gathered demonstrating that the majority of the mass in the universe is composed of non-luminous, non-baryonic matter. Though the evidence for dark matter is unassailable, its nature and properties remain unknown. A broad effort has been undertaken by the physics community to detect dark-matter particles through direct-detection techniques. For over a decade, the DAMA/LIBRA experiment has observed a highly significant (9.3sigma) modulation in the scintillation event rate in their highly pure NaI(Tl) detectors, which they use as the basis of a claim for the discovery of dark-matter particles. However, the dark-matter interpretation of the DAMA/LIBRA modulation remains unverified. While there have been some recent hints of dark matter in the form of a light Weakly-Interacting Massive Particle (WIMP) from the CoGeNT and CDMS-Si experiments, when assuming a WIMP dark-matter model, several other experiments, including the LUX and XENON noble-liquid experiments, the KIMS CsI(Tl) experiment, and several bubble chamber experiments, conflict with DAMA/LIBRA. However, these experiments use different dark-matter targets and cannot be compared with DAMA/LIBRA in a model-independent way. The uncertainty surrounding the dark-matter model, astrophysical model, and nuclear-physics effects makes it necessary for a new NaI(Tl) experiment to directly test the DAMA/LIBRA result. The Sodium-iodide with Active Background REjection (SABRE) experiment seeks to provide a much-needed model-independent test of the DAMA/LIBRA modulation by developing highly pure crystal detectors with very low radioactivity and deploying them in an active veto detector that can reject key backgrounds in a dark-matter measurement. This work focuses on the efforts put forward by the SABRE collaboration in developing low-background, low-threshold crystal detectors, designing and fabricating a liquid-scintillator veto detector, and simulating the predicted background spectrum for a dark

  3. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  4. Studies of scintillation properties of CaMoO{sub 4} at millikelvin temperatures

    SciTech Connect

    Zhang, X.; Lin, J.; Kraus, H.; Mikhailik, V. B.

    2015-06-15

    Application of CaMoO{sub 4} as a scintillation target in cryogenic rare event searches relies on the understanding of scintillation properties of the material at the temperatures at which these detectors operate. We devised and implemented a detection module with a low-temperature photomultiplier from Hamamatsu (model R8520-06) powered by a Cockcroft-Walton generator. The detector module containing the CaMoO{sub 4} crystal was placed in a {sup 3}He/{sup 4}He dilution refrigerator and used to measure scintillation characteristics of CaMoO{sub 4} in the millikelvin temperature range. At the lowest temperature achieved, the energy resolution of CaMoO{sub 4} for 122 keV γ from a {sup 57}Co source is found to be 30%, and the fast and slow decay constants are 40.6 ± 0.8 μs and 3410 ± 50 μs, respectively. The temperature variation of the CaMoO{sub 4} decay kinetics is discussed in terms of a three-level model of the emission center.

  5. The design of the TASD (totally active scintillator detector) prototype

    SciTech Connect

    Mefodiev, A. V. Kudenko, Yu. G.

    2015-12-15

    Totally active and magnetic segmented scintillation neutrino detectors are developed for the nextgeneration accelerator neutrino experiments. Such detectors will incorporate scintillation modules with scintillation counters that form X and Y planes. A single counter is a 7 × 10 × 90 mm{sup 3} scintillation bar with gluedin wavelength-shifting fibers and micropixel avalanche photodiodes. The results of measurements of the parameters of these detectors are presented.

  6. In-situ study of light production and transport in phonon/light detector modules for dark matter search

    NASA Astrophysics Data System (ADS)

    Kiefer, M.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F. v.; Ferreiro Iachellini, N.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kluck, H.; Kraus, H.; Lanfranchi, J.-C.; Loebell, J.; Münster, A.; Petricca, F.; Potzel, W.; Pröbst, F.; Reindl, F.; Roth, S.; Rottler, K.; Sailer, C.; Schäffner, K.; Schieck, J.; Schönert, S.; Seidel, W.; Sivers, M. v.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Türkoğlu, C.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A.

    2016-06-01

    The CRESST experiment (Cryogenic Rare Event Search with Superconducting Thermometers) searches for dark matter via the phonon and light signals of elastic scattering processes in scintillating crystals. The discrimination between a possible dark matter signal and background is based on the light yield. We present a new method for evaluating the two characteristics of a phonon/light detector module that determine how much of the deposited energy is converted to scintillation light and how efficiently a module detects the produced light. In contrast to former approaches with dedicated setups, we developed a method which allows us to use data taken with the cryogenic setup, during a dark matter search phase. In this way, we accounted for the entire process that occurs in a detector module, and obtained information on the light emission of the crystal as well as information on the performance of the module (light transport and detection). We found that with the detectors operated in CRESST-II phase 1, about 20% of the produced scintillation light is detected. A part of the light is likely absorbed by creating meta-stable excitations in the scintillating crystals. The light not detected is not absorbed entirely, as an additional light detector can help to increase the fraction of detected light.

  7. Effects of temperature and flow regulated carbon dioxide cooling in longitudinally modulated cryogenic systems for comprehensive two-dimensional gas chromatography.

    PubMed

    Haglund, Peter; Harju, Mikael; Danielsson, Conny; Marriott, Philip

    2002-07-12

    Two different modes of temperature regulation in longitudinally modulated cryogenic systems (LMCSs) for comprehensive two-dimensional gas chromatography (GC x GC) were compared. Carbon dioxide was used as coolant. In the first mode of operation, the temperature of the trap was regulated to pre-set temperature using a digital temperature controller ("the constant temperature mode"). In the second, the temperature was regulated to a fixed negative offset to the oven temperature by using a constant flow of CO2 ("the constant flow mode"). A number of problems were occasionally observed using the constant temperature mode: (1) severe band broadening of high boiling analytes in the second dimension; (2) non-Gaussian reconstructed first-dimension peak profiles; (3) high background due to modulation of first-dimension column bleed. It was concluded that these problems were associated with inefficient solute remobilization at low LMCS trap temperatures (1 and 2) or large trap temperature fluctuations (3). These problems could be avoided or significantly reduced by using the constant flow mode. Best results were obtained as the trap temperature was kept about 70 degrees C below the oven temperature.

  8. Cryogenic Detectors for Rare Alpha Decay Search: A New Approach

    NASA Astrophysics Data System (ADS)

    Casali, N.; Dubovik, A.; Nagorny, S.; Nisi, S.; Orio, F.; Pattavina, L.; Pirro, S.; Schäffner, K.; Tupitsyna, I.; Yakubovskaya, A.

    2016-08-01

    The detection of ^{148}Sm alpha decay with a precise measured half-life of ( {6.4_{-1.3}^{+1.2} }) × 10^{15}y and a Q-value of 1987.3 ± 0.5 keV was achieved by a new experimental approach, where a conventional ZnWO4 scintillating crystal doped with enriched ^{148}Sm isotope is operated as a cryogenic scintillating bolometer (phonon and light channel) at mK-temperatures.

  9. Cryogenic Control System

    SciTech Connect

    Goloborod'ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  10. CRYOGENIC MAGNETS

    DOEpatents

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  11. Comparison of cryogenic and differential flow (forward and reverse fill/flush) modulators and applications to the analysis of heavy petroleum cuts by high-temperature comprehensive gas chromatography.

    PubMed

    Duhamel, Chloé; Cardinael, Pascal; Peulon-Agasse, Valérie; Firor, Roger; Pascaud, Laurent; Semard-Jousset, Gaëlle; Giusti, Pierre; Livadaris, Vincent

    2015-03-27

    The development of new efficient conversion processes to transform heavy petroleum fractions into valuable products, such as diesel, requires improved chemical knowledge of the latter. High-temperature comprehensive gas chromatography (HT-GC × GC) has proven to be a powerful technique for characterizing such complex samples. This paper reports on an evaluation of the performances of four different differential flow modulators, including two original ones that have not been previously described in the literature, in terms of dispersion, peak intensity, peak capacity and overloading. These modulators, all of which are based on Agilent capillary flow technology (CFT), are forward fill/flush (FFF) differential flow modulators with an integrated collection channel or an adjustable channel (new) and reverse fill/flush (RFF) differential flow modulators with an integrated collection channel (new) or an adjustable channel. First, the optimization of the collection channel dimensions is described. Second, an RFF and an FFF differential flow modulator possessing the same collection channel were compared. The reverse differential flow modulation significantly reduced band broadening compared to forward differential flow modulation, and the peak intensity doubled for every modulated peak when an RFF differential flow modulator was used. Then, an RFF differential flow modulator and CO2 dual-jet modulator were compared. Whereas the percentages of separation space used were similar (61% with the HT-GC × GC method using a cryogenic modulator and 59% with the method using an RFF differential flow modulator), the peak capacities were at least three times more important with differential flow modulation due to the greater length of the column used in the second dimension. The results demonstrate that the RFF differential flow modulator is an excellent tool for studying heavy petroleum cuts. It demonstrates the best performances and it is the most versatile modulator. In its two

  12. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2015-09-01

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  13. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2014-07-15

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  14. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  15. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  16. Thermal conductivity of the cryoprotective cocktail DP6 in cryogenic temperatures, in the presence and absence of synthetic ice modulators.

    PubMed

    Ehrlich, Lili E; Malen, Jonathan A; Rabin, Yoed

    2016-10-01

    The thermal conductivity of the cryoprotective agent (CPA) cocktail DP6 in combination with synthetic ice modulators (SIMs) is measured in this study, using a transient hot-wire method. DP6 is a mixture of 3 M dimethyl sulfoxide (DMSO) and 3 M propylene glycol, which received significant attention in the cryobiology community in recent years. Tested SIMs include 6% 1,3Cyclohexanediol, 6% 2,3Butanediol, and 12% PEG400 (percentage by volume). This study integrates the scanning cryomacroscope for visual verification of crystallization and vitrification events. It is demonstrated that the thermal conductivity of the vitrifying CPA cocktail decreases monotonically with the decreasing temperature down to -180 °C. By contrast, the thermal conductivity of the crystalline material increases with decreasing temperature in the same temperature range. Results of this study demonstrate that the thermal conductivity may vary by three fold between the amorphous and crystalline phases of DP6 below the glass transition temperature of DP6 (Tg = -119 °C). The selected SIMs demonstrate the ability to inhibit crystallization in DP6, even at subcritical cooling rates. An additional ice suppression capability is observed by the Euro-Collins as a vehicle solution, disproportionate to its volume ratio in the cocktail. The implication of the observed thermal conductivity differences between the amorphous and crystalline phases of the same cocktail on cryopreservation simulations is significant in some cases and must be taken into account in thermal analyses of cryopreservation protocols.

  17. CRYOGENIC DEWAR

    DOEpatents

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  18. Shifting scintillator neutron detector

    SciTech Connect

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  19. Study of equatorial scintillations

    NASA Technical Reports Server (NTRS)

    Pomalaza, J.; Woodman, R.; Tisnado, G.; Nakasone, E.

    1972-01-01

    Observations of the amplitude scintillations produced by the F-region in equatorial areas are presented. The equipment used for conducting the observations is described. The use of transmissions from the ATS-1, ATS-3, and ATS-5 for obtaining data is described. The two principal subjects discussed are: (1) correlation between satellite and incoherent radar observations of scintillations and (2) simultaneous observations of scintillations at 136 MHz and 1550 MHz.

  20. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  1. Development of a Cryogenic Thermal Distortion Measurement Facility for Testing the James Webb Space Telescope Instrument Support Integration Module 2-D Test Assemblies

    NASA Technical Reports Server (NTRS)

    Miller, Franklin; Bagdanove, paul; Blake, Peter; Canavan, Ed; Cofie, Emmanuel; Crane, J. Allen; Dominquez, Kareny; Hagopian, John; Johnston, John; Madison, Tim; Miller, Dave; Oaks, Darrell; Williams, Pat; Young, Dan; Zukowski, Barbara; Zukowski, Tim

    2007-01-01

    The James Webb Space Telescope Instrument Support Integration Module (ISIM) is being designed and developed at the Goddard Space Flight Center. The ISM Thermal Distortion Testing (ITDT) program was started with the primary objective to validate the ISM mechanical design process. The ITDT effort seeks to establish confidence and demonstrate the ability to predict thermal distortion in composite structures at cryogenic temperatures using solid element models. This-program's goal is to better ensure that ISIM meets all the mechanical and structural requirements by using test results to verify or improve structural modeling techniques. The first step to accomplish the ITDT objectives was to design, and then construct solid element models of a series 2-D test assemblies that represent critical building blocks of the ISIM structure. Second, the actual test assemblies consisting of composite tubes and invar end fittings were fabricated and tested for thermal distortion. This paper presents the development of the GSFC Cryo Distortion Measurement Facility (CDMF) to meet the requirements of the ISIM 2-D test. assemblies, and other future ISIM testing needs. The CDMF provides efficient cooling with both a single, and two-stage cryo-cooler. Temperature uniformity of the test assemblies during thermal transients and at steady state is accomplished by using sapphire windows for all of the optical ports on the radiation shields and by using .thermal straps to cool the test assemblies. Numerical thermal models of the test assemblies were used to predict the temperature uniformity of the parts during cooldown and at steady state. Results of these models are compared to actual temperature data from the tests. Temperature sensors with a 0.25K precision were used to insure that test assembly gradients did not exceed 2K lateral, and 4K axially. The thermal distortions of two assemblies were measured during six thermal cycles from 320K to 35K using laser interferometers. The standard

  2. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  3. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  4. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  5. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  6. Novel design of an all-cryogenic RF pound circuit

    NASA Technical Reports Server (NTRS)

    Basu, Ronni; Wang, Rabi T.; Dick, G. John

    2005-01-01

    We report on the design, construction and test of a new all-cryogenic RF Pound circuit used to stabilize a 100 MHz VCXO. Here, all active and passive RF components used to accomplish the phase modulation and detect a PM to AM conversion have been installed into the cryogenic environment.

  7. Outward atmospheric scintillation effects and inward atmospheric scintillation effects comparisons for direct detection ladar applications

    NASA Astrophysics Data System (ADS)

    Youmans, Douglas G.

    2014-06-01

    Atmospheric turbulence produces intensity modulation or "scintillation" effects on both on the outward laser-mode path and on the return backscattered radiation path. These both degrade laser radar (ladar) target acquisition, ranging, imaging, and feature estimation. However, the finite sized objects create scintillation averaging on the outgoing path and the finite sized telescope apertures produce scintillation averaging on the return path. We expand on previous papers going to moderate to strong turbulence cases by starting from a 20kft altitude platform and propagating at 0° elevation (with respect to the local vertical) for 100km range to a 1 m diameter diffuse sphere. The outward scintillation and inward scintillation effects, as measured at the focal plane detector array of the receiving aperture, will be compared. To eliminate hard-body surface speckle effects in order to study scintillation, Goodman's M-parameter is set to 106 in the analytical equations and the non-coherent imaging algorithm is employed in Monte Carlo realizations. The analytical equations of the signal-to-noise ratio (SNRp), or mean squared signal over a variance, for a given focal plane array pixel window of interest will be summarized and compared to Monte Carlo realizations of a 1m diffuse sphere.

  8. Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism Used in the Testing and Calibration of the Integrated Science Instrument Module (ISIM) on the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina

    2014-01-01

    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.

  9. Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism used in the Testing and Calibration of the Integrated Science Instrument Module (ISIM) on the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina

    2014-01-01

    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.

  10. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and

  11. The COSINUS project: perspectives of a NaI scintillating calorimeter for dark matter search

    NASA Astrophysics Data System (ADS)

    Angloher, G.; Carniti, P.; Cassina, L.; Gironi, L.; Gotti, C.; Gütlein, A.; Hauff, D.; Maino, M.; Nagorny, S. S.; Pagnanini, L.; Pessina, G.; Petricca, F.; Pirro, S.; Pröbst, F.; Reindl, F.; Schäffner, K.; Schieck, J.; Seidel, W.

    2016-08-01

    The R&D project COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) aims to develop a cryogenic scintillating calorimeter using an undoped NaI-crystal as target for direct dark matter search. Dark matter particles interacting with the detector material generate both a phonon signal and scintillation light. While the phonon signal provides a precise determination of the deposited energy, the simultaneously measured scintillation light allows for particle identification on an event-by-event basis, a powerful tool to study material-dependent interactions, and to suppress backgrounds. Using the same target material as the DAMA/LIBRA collaboration, the COSINUS technique may offer a unique possibility to investigate and contribute information to the presently controversial situation in the dark matter sector. We report on the dedicated design planned for the NaI proof-of-principle detector and the objectives of using this detection technique in the light of direct dark matter detection.

  12. Cryogenics program overview

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.

    1987-01-01

    An overview of the cryogenics program of the Goddard Space Flight Center is given in viewgraph form. Goddard's role and the flight programs requiring cryogenics are outlined. Diagrams are given of the Cosmic Background Explorer, the Broad Band X-Ray Telescope, the Hubble Space Telescope, an adiabatic demagnetization refrigerator, a liquid cryogenic cooler for the Shuttle Glow Experiment, a liquid helium dewar, and the X-ray spectrometer on the Advanced X-Ray Astrophysics Facility.

  13. Fundamentals of Cryogenics

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

    2014-01-01

    Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

  14. Scintillator Measurements for SNO+

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, Tanner; SNO+ Collaboration

    2016-03-01

    SNO+ is a neutrino detector located 2km underground in the SNOLAB facility with the primary goal of searching for neutrinoless double beta decay. The detector will be filled with a liquid scintillator target primarily composed of linear alkyl benzene (LAB). As charged particles travel through the detector the LAB produces scintillation light which is detected by almost ten thousand PMTs. The LAB is loaded with Te130, an isotope known to undergo double beta decay. Additionally, the LAB is mixed with an additional fluor and wavelength shifter to improve the light output and shift the light to a wavelength regime in which the PMTs are maximally efficient. The precise scintillator optics drastically affect the ultimate sensitivity of SNO+. I will present work being done to measure the optical properties of the SNO+ scintillator cocktail. The measured properties are used as input to a scintillation model that allows us to extrapolate to the SNO+ scale and ultimately predict the sensitivity of the experiment. Additionally, I will present measurements done to characterize the R5912 PMT, a candidate PMT for the second phase of SNO+ that provides better light collection, improved charge resolution, and a narrower spread in timing.

  15. Liquid Scintillator Purification

    SciTech Connect

    Kishimoto, Y.

    2005-09-08

    The KamLAND collaboration has studied background requirements and purification methods needed to observe the 7Be neutrino from the sun. First we will discuss the present background situation in KamLAND where it is found that the main background components are 210Pb and 85Kr. It is then described how to purify the liquid scintillator. The present status and results on how to remove 210Pb from the liquid scintillator are discussed. Specifically, the detailed analysis of the effects of distillation and adsorption techniques are presented.

  16. Testing Scintillators for Homeland Security

    NASA Astrophysics Data System (ADS)

    Bourbeau, James; Brandt, Andrew; Kenarangui, Rasool; Weiss, Alex; Chen, Wei

    2011-10-01

    Scintillating nanoparticles have a bright future in radiation detection, especially in the area of detecting nuclear devices. As part of a UTA nanoparticle scintillator development team funded by the Department of Homeland Security, I have been developing a scintillator test stand using various radioactive sources and a Hamamatsu S3590 photodiode. I will present initial test results.

  17. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  18. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  19. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  20. Polysiloxane scintillator composition

    DOEpatents

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  1. Boron loaded scintillator

    DOEpatents

    Bell, Zane William [Oak Ridge, TN; Brown, Gilbert Morris [Knoxville, TN; Maya, Leon [Knoxville, TN; Sloop, Jr., Frederick Victor; Sloop, Jr., Frederick Victor [Oak Ridge, TN

    2009-10-20

    A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carbonate units can either be a carborane molecule dispersed in the rubber with the aid of a compatibilization agent or can be covalently bound to the silicone.

  2. Polysiloxane scintillator composition

    DOEpatents

    Walker, James K.

    1992-01-01

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  3. Scintillator requirements for medical imaging

    SciTech Connect

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  4. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder; Paul L.

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  5. Using AN Organic Scaffold to Modulate the Quantum Structure of AN Intramolecular Proton Bond: Cryogenic Vibrational Predissociation Spectroscopy of H2 on Protonated 8-NAPHTHALENE-1-AMINE

    NASA Astrophysics Data System (ADS)

    Deblase, Andrew F.; Guasco, Timothy L.; Leavitt, Christopher M.; Johnson, Mark A.; Lectka, Thomas

    2011-06-01

    The quantum structure of the intermolecular proton bond is a key aspect in understanding proton transfer events that govern the efficiency of fuel cells and various biological membranes. Previously, we have constructed a soft binding motif, that consists of a "point contact" between the lone pairs of two small molecules (combinations of ethers, alcohols, ammonia, and water) that are linked by a shared proton [Science 2007, 613, 249]. Although the frequency of the shared proton vibration has been correlated with effects of acid and base structure, such as proton affinities and dipole moments, the spatial arrangement of the proton donor and acceptor remains unexplored. Towards this aim, we have obtained a molecule of rigid topology that contains a proton donor and acceptor capable of intramolecular proton-bonding (protonated 8-flouronaphthalene-1-amine). Using electrospray ionization coupled with a novel cryogenic mass spectrometry scheme, we employ vibrational predissociation spectroscopy of H2 tagged ions to elucidate how a forced spatial configuration of the acid and base perturbs the energetics of the proton bond.

  6. Sillicon Photomultiplier and Scintillator Bar Systems

    NASA Astrophysics Data System (ADS)

    Shelor, Mark; Elizondo, Leonardo; Ritt, Stefan

    2016-03-01

    To analyze extraterrestrial cosmic rays via precise measurements of airshower axes directions of penetrating particles such as muons, we constructed a model detector consisting of two 1-meter long scintillator bars. Each bar is fitted with green wavelength shifting fibers to modulate input for two silicon photomultiplier (SiPM) light detectors to record light produced by cosmic rays via scintillation. The purpose of the experiment is to determine the performance of these devices. Two makes of SiPMs were evaluated - from AdvanSiD and Hamamatsu. In order to filter out noise, timing measurements of the apparatus were performed under several trigger conditions such as coincidence trigger with 2 photomultiplier detectors, as well as SiPM detector arrays in self-triggered mode. The DRS4 Digitizer 4-channel fast waveform sampler digitized SiPM detector waveforms. Signals were analyzed with the CERN PAW package. The speed of light in the scintillator using the SiPM modules was found to be approximately 66% of the speed of light in a vacuum which is in accordance with the index of refraction for the fibers given by the manufacturer's specifications. The results of our timing measurements would be presented. Dept. of Ed. Title V Grant PO31S090007.

  7. Cryogenic test technology, 1984

    NASA Astrophysics Data System (ADS)

    North, R. J.; Schimanski, D.; Hartzuiker, J. P.

    1985-04-01

    This report reviews the new information available on cryogenic test technology since the report of the Converters' Group on Cryogenic Test Technology was written in 1981. The present position is summarized. The major events since the Converters' report have been the completion and commissioning of the National Transonic Facility (NTF), the suspension of further work on the Douglas 4-WT blowdown tunnel, the conversion of ONERA T2 for cryogenic operation, the steady progress with the DF-LP KKK, and the slow but positive progress with the ETW project, including installation of the pilot tunnel PETW.

  8. FRIB Cryogenic Plant Status

    NASA Astrophysics Data System (ADS)

    Dixon, K.; Ganni, V.; Knudsen, P.; Casagrande, F.

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  9. SNS Cryogenic Systems Commissioning

    SciTech Connect

    D. Hatfield; F. Casagrande; I. Campisi; P. Gurd; M. Howell; D. Stout; H. Strong; D. Arenius; J. Creel; K. Dixon; V. Ganni; and P. Knudsen

    2005-08-29

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  10. SNS Cryogenic Systems Commissioning

    SciTech Connect

    Hatfield, D.; Casagrande, F.; Campisi, I.; Gurd, P.; Howell, M.; Stout, D.; Strong, H.; Arenius, D.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2006-04-27

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  11. Cerium compounds as scintillators

    SciTech Connect

    Wojtowicz, A.J.; Berman, E.; Koepke, C.; Lempicki, A.

    1991-01-01

    Stoichiometric Ce-materials with negligible Ce-Ce interactions should have superior scintillator properties. We present two materials: CeF{sub 3} and Ce{sub x}La{sub 1-x}P{sub 5}O{sub 14}. While cerium trifluoride is a known scintillator, pentaphosphate is of a limited usefulness, except as a remarkable model material. We show that quenching in fluoride is responsible for loss of 50% of the light output and is the cause of the, so-called, ultra fast component (2 ns). Light output of fluoride (about 50% of BGO) could be significantly improved. Deeper understanding of Ce-systems is needed to fully exploit their potentials. 10 figs., 6 refs.

  12. Cerium compounds as scintillators

    SciTech Connect

    Wojtowicz, A.J.; Berman, E.; Koepke, C.; Lempicki, A.

    1991-12-31

    Stoichiometric Ce-materials with negligible Ce-Ce interactions should have superior scintillator properties. We present two materials: CeF{sub 3} and Ce{sub x}La{sub 1-x}P{sub 5}O{sub 14}. While cerium trifluoride is a known scintillator, pentaphosphate is of a limited usefulness, except as a remarkable model material. We show that quenching in fluoride is responsible for loss of 50% of the light output and is the cause of the, so-called, ultra fast component (2 ns). Light output of fluoride (about 50% of BGO) could be significantly improved. Deeper understanding of Ce-systems is needed to fully exploit their potentials. 10 figs., 6 refs.

  13. CRYOGENICS IN BEPCII UPGRADE.

    SciTech Connect

    JIA,L.; WANG,L.; LI,S.

    2002-07-22

    THIS PAPER PRESENTS A CRYOGENIC DESIGN FOR UPGRADING THE BEIJING ELECTRON POSITRON COLLIDER AT THE INSTITUTE OF HIGH ENERGY PHYSICS IN BEIJING. THE UPGRADE INVOLVES 3 NEW SUPERCONDUCTING FACILITIES, THE INTERACTION REGION QUADRUPOLE MAGNETS, THE DETECTOR SOLENOID MAGNETS AND THE SRF CAVITIES. FOR COOLING OF THESE DEVICES, A NEW CRYPLANT WITH A TOTAL CAPACITY OF 1.0KW AT 4.5K IS TO BE BUILT AT IHEP. AN INTEGRATED CRYOGENIC DESIGN TO FIT THE BEPCII CRYOGENIC LOADS WITH HIGH EFFICIENCY IS CARRIEDOUT USING COMPUTATIONAL PROCESS ANALYSIS SOFTWARE WITH THE EMPHASES ON ECONOMICS AND SAFETY IN BOTH CONSTRUCTION AND OPERATION OF THE PLANT. THIS PAPER DESCRIBES THE CRYOGENIC CHARACTERISTICS OF EACH SUPERCONDUCTING DEVICE, THEIR COOLING SCHEMES AND THE OVERALL CRYOPLANT.

  14. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  15. Composite scintillator screen

    DOEpatents

    Zeman, Herbert D.

    1994-01-01

    A scintillator screen for an X-ray system includes a substrate of low-Z material and bodies of a high-Z material embedded within the substrate. By preselecting the size of the bodies embedded within the substrate, the spacial separation of the bodies and the thickness of the screen, the sensitivity of the screen to X-rays within a predetermined energy range can be predicted.

  16. Settled Cryogenic Propellant Transfer

    NASA Technical Reports Server (NTRS)

    Kutter, Bernard F.; Zegler, Frank; Sakla, Steve; Wall, John; Hopkins, Josh; Saks, Greg; Duffey, Jack; Chato, David J.

    2006-01-01

    Cryogenic propellant transfer can significantly benefit NASA s space exploration initiative. LMSSC parametric studies indicate that "Topping off" the Earth Departure Stage (EDS) in LEO with approx.20 mT of additional propellant using cryogenic propellant transfer increases the lunar delivered payload by 5 mT. Filling the EDS to capacity in LEO with 78 mT of propellants increases the delivered payload by 20 mT. Cryogenic propellant transfer is directly extensible to Mars exploration in that it provides propellant for the Mars Earth Departure stage and in-situ propellant utilization at Mars. To enable the significant performance increase provided by cryogenic propellant transfer, the reliability and robustness of the transfer process must be guaranteed. By utilizing low vehicle acceleration during the cryogenic transfer the operation is significantly simplified and enables the maximum use of existing, reliable, mature upper stage cryogenic-fluid-management (CFM) techniques. Due to settling, large-scale propellant transfer becomes an engineering effort, and not the technology development endeavor required with zero-gravity propellant transfer. The following key CFM technologies are all currently implemented by settling on both the Centaur and Delta IV upper stages: propellant acquisition, hardware chilldown, pressure control, and mass gauging. The key remaining technology, autonomous rendezvous and docking, is already in use by the Russians, and must be perfected for NASA whether the use of propellant transfer is utilized or not.

  17. Cryogenic Moisture Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James; Smith, Trent; Breakfield, Robert; Baughner, Kevin; Heckle, Kenneth; Meneghelli, Barry

    2010-01-01

    The Cryogenic Moisture Apparatus (CMA) is designed for quantifying the amount of moisture from the surrounding air that is taken up by cryogenic-tank-insulating material specimens while under typical conditions of use. More specifically, the CMA holds one face of the specimen at a desired low temperature (e.g., the typical liquid-nitrogen temperature of 77 K) while the opposite face remains exposed to humid air at ambient or near-ambient temperature. The specimen is weighed before and after exposure in the CMA. The difference between the "after" and "before" weights is determined to be the weight of moisture absorbed by the specimen. Notwithstanding the term "cryogenic," the CMA is not limited to cryogenic applications: the low test temperature can be any temperature below ambient, and the specimen can be made of any material affected by moisture in air. The CMA is especially well suited for testing a variety of foam insulating materials, including those on the space-shuttle external cryogenic tanks, on other cryogenic vessels, and in refrigerators used for transporting foods, medicines, and other perishables. Testing is important because absorbed moisture not only adds weight but also, in combination with thermal cycling, can contribute to damage that degrades insulating performance. Materials are changed internally when subjected to large sub-ambient temperature gradients.

  18. Lunar components in Lunping scintillations

    SciTech Connect

    Koster, J.R.; Lue, H.Y.; Wu, Hsi-Shu; Huang, Yinn-Nien

    1993-08-01

    The authors report on an anlysis of a 14 year data set of ionospheric scintillation data for 136 MHz signals transmitted from a Japanese satellite. They use a lunar age superposition method to analyze this data, breaking the data into blocks by seasons of the year. They observe a number of different scintillation types in the record, as well as impacts of lunar tides on the time record. They attempt to provide an origin for the different scintillation types.

  19. Statistical analysis of scintillation data

    SciTech Connect

    Chua, S.; Noonan, J.P.; Basu, S.

    1981-09-01

    The Nakagami-m distribution has traditionally been used successfully to model the probability characteristics of ionospheric scintillations at UHF. This report investigates the distribution properties of scintillation data in the L-band range. Specifically, the appropriateness of the Nakagami-m and lognormal distributions is tested. Briefly the results confirm that the Nakagami-m is appropriate for UHF but not for L-band scintillations. The lognormal provides a better fit to the distribution of L-band scintillations and is an adequate model allowing for an error of + or - 0.1 or smaller in predicted probability with a sample size of 256.

  20. Neutron crosstalk between liquid scintillators

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-09-01

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  1. Neutron crosstalk between liquid scintillators

    SciTech Connect

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-05-01

    We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  2. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  3. Lithium-loaded liquid scintillators

    DOEpatents

    Dai, Sheng; Kesanli, Banu; Neal, John S.

    2012-05-15

    The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

  4. Hybrid scintillators for neutron discrimination

    DOEpatents

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  5. Free liquid scintillation counting bibliography

    SciTech Connect

    1996-12-31

    Packard Instrument Company announces the availability of its newly updated Bibliography of Packard Tri-Carb Liquid Scintillation Analyzers. This unique new booklet lists 628 references in which Packard Tri-Carb{reg_sign} liquid scintillation analyzers have been used in life science, environmental, nuclear power and archaeological measurements. All listings are cross-referenced by radionuclide, specific field of study and author.

  6. Extruding plastic scintillator at Fermilab

    SciTech Connect

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  7. Scintillation detector for carbon-14

    NASA Technical Reports Server (NTRS)

    Knoll, G. F.; Rogers, W. L.

    1971-01-01

    Detector consists of plastic, cylindrical double-wall scintillation cell, which is filled with gas to be analyzed. Thin, inner cell wall is isolated optically from outer (guard) scintillator wall by evaporated-aluminum coating. Bonding technique provides mechanical support to cell wall when device is exposed to high temperatures.

  8. Development of intrinsic IPT scintillator

    SciTech Connect

    Bross, A.D.

    1989-07-31

    We report on the development of a new polystyrene based plastic scintillator. Optical absorption, fluorescence and light output measurements are presented. Preliminary results of radiation damage effects are also given and compared to the effects on a commercial plastic scintillator, NE 110. 6 refs., 12 figs.

  9. Preliminary Thermal Design of Cryogenic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  10. CRYOGENICS FOR FUSION

    SciTech Connect

    Dauguet, P.; Bonneton, M.; Fauve, E.; Bernhardt, J. M.; Beauvisage, J.; Andrieu, F.; Gistau-Baguer, G. M.; Boissin, J. C.

    2008-03-16

    Fusion of Hydrogen to produce energy is one of the technologies under study to meet the mankind raising need in energy and as a substitute to fossil fuels for the future. This technology is under investigation for more than 30 years already, with, for example, the former construction of the experimental reactors Tore Supra, DIII-D and JET. With the construction of ITER to start, the next step to 'fusion for energy' will be done. In these projects, an extensive use of cryogenic systems is requested. Air Liquide has been involved as cryogenic partner in most of former and presently constructed fusion reactors. In the present paper, a review of the cryogenic systems we delivered to Tore Supra, JET, IPR and KSTAR will be presented.

  11. Cryogenic process simulation

    SciTech Connect

    Panek, J.; Johnson, S.

    1994-01-01

    Combining accurate fluid property databases with a commercial equation-solving software package running on a desktop computer allows simulation of cryogenic processes without extensive computer programming. Computer simulation can be a powerful tool for process development or optimization. Most engineering simulations to date have required extensive programming skills in languages such as Fortran, Pascal, etc. Authors of simulation code have also usually been responsible for choosing and writing the particular solution algorithm. This paper describes a method of simulating cryogenic processes with a commercial software package on a desktop personal computer that does not require these traditional programming tasks. Applications include modeling of cryogenic refrigerators, heat exchangers, vapor-cooled power leads, vapor pressure thermometers, and various other engineering problems.

  12. Scintillator based beta batteries

    NASA Astrophysics Data System (ADS)

    Rensing, Noa M.; Tiernan, Timothy C.; Shirwadkar, Urmila; O'Dougherty, Patrick; Freed, Sara; Hawrami, Rastgo; Squillante, Michael R.

    2013-05-01

    Some long-term, remote applications do not have access to conventional harvestable energy in the form of solar radiation (or other ambient light), wind, environmental vibration, or wave motion. Radiation Monitoring Devices, Inc. (RMD) is carrying out research to address the most challenging applications that need power for many months or years and which have undependable or no access to environmental energy. Radioisotopes are an attractive candidate for this energy source, as they can offer a very high energy density combined with a long lifetime. Both large scale nuclear power plants and radiothermal generators are based on converting nuclear energy to heat, but do not scale well to small sizes. Furthermore, thermo-mechanical power plants depend on moving parts, and RTG's suffer from low efficiency. To address the need for compact nuclear power devices, RMD is developing a novel beta battery, in which the beta emissions from a radioisotope are converted to visible light in a scintillator and then the visible light is converted to electrical power in a photodiode. By incorporating 90Sr into the scintillator SrI2 and coupling the material to a wavelength-matched solar cell, we will create a scalable, compact power source capable of supplying milliwatts to several watts of power over a period of up to 30 years. We will present the latest results of radiation damage studies and materials processing development efforts, and discuss how these factors interact to set the operating life and energy density of the device.

  13. Characterization of SiPM for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Cervi, T.; Bonesini, M.; Falcone, A.; Menegolli, A.; Raselli, G. L.; Rossella, M.; Simonetta, M.; Torti, M.

    2016-07-01

    The development of detectors based on liquefied noble gas (LAr, LXe) is mandatory for experiments dedicated to study physics beyond the Standard Model. For this purpose, it is fundamental to detect the Vacuum Ultra Violet (VUV) scintillation light, produced after the passage of ionizing particles inside the detector sensitive volume, to be used for trigger, timing and calorimetric purposes. Besides the traditional cryogenic Photo-Multiplier Tubes (PMTs), one possibility is to adopt Silicon Photo-Multipliers (SiPMs). We present a comparison of the performance of a SiPM (mod. ASD-NUV3S-P Low Afterpulse) at various cryogenic temperatures, from 60 K up to room temperature, with particular emphasis on the LAr and LXe temperatures. SiPM were characterized in terms of breakdown voltage, gain, pulse shape response, dark count rate and correlated noise.

  14. Cryogenic Propellant Densification Study

    NASA Technical Reports Server (NTRS)

    Ewart, R. O.; Dergance, R. H.

    1978-01-01

    Ground and vehicle system requirements are evaluated for the use of densified cryogenic propellants in advanced space transportation systems. Propellants studied were slush and triple point liquid hydrogen, triple point liquid oxygen, and slush and triple point liquid methane. Areas of study included propellant production, storage, transfer, vehicle loading and system requirements definition. A savings of approximately 8.2 x 100,000 Kg can be achieved in single stage to orbit gross liftoff weight for a payload of 29,484 Kg by utilizing densified cryogens in place of normal boiling point propellants.

  15. Cryogenic generator cooling

    NASA Astrophysics Data System (ADS)

    Eckels, P. W.; Fagan, T. J.; Parker, J. H., Jr.; Long, L. J.; Shestak, E. J.; Calfo, R. M.; Hannon, W. F.; Brown, D. B.; Barkell, J. W.; Patterson, A.

    The concept for a hydrogen cooled aluminum cryogenic generator was presented by Schlicher and Oberly in 1985. Following their lead, this paper describes the thermal design of a high voltage dc, multimegawatt generator of high power density. The rotor and stator are cooled by saturated liquid and supercritical hydrogen, respectively. The brushless exciter on the same shaft is also cooled by liquid hydrogen. Component development testing is well under way and some of the test results concerning the thermohydraulic performance of the conductors are reported. The aluminum cryogenic generator's characteristics are attractive for hydrogen economy applications.

  16. Unique Cryogenic Welded Structures

    NASA Astrophysics Data System (ADS)

    Yushchenko, K. A.; Monko, G. G.

    2004-06-01

    For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

  17. Unique Cryogenic Welded Structures

    SciTech Connect

    Yushchenko, K.A.; Monko, G.G.

    2004-06-28

    For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

  18. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  19. Coherence properties of wideband satellite signals caused by ionospheric scintillation

    NASA Technical Reports Server (NTRS)

    Rufenach, C. L.

    1975-01-01

    Radio scintillation on satellite signals caused by small-scale irregularities in F-region ionospheric electron density can be an important limitation on earth-satellite communication and navigation systems. Scintillation imposes distortion in both amplitude and phase on wideband signals. In the present work, the shallow-modulated phase screen theory is developed in terms of coherence bandwidth including a model based on a turbulent-like power-law description of the irregularities. The model results usually show a greater coherence bandwidth in the signal phase than in the signal amplitude. Therefore, systems that require phase coherence over a large bandwidth should be less affected than those requiring amplitude coherence.

  20. Performance and Reliability of Solid Tantalum Capacitors at Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2006-01-01

    Performance of different types of solid tantalum capacitors was evaluated at room and low temperatures, down to 15 K. The effect of temperature on frequency dependencies of capacitance, effective series resistances (ESR), leakage currents, and breakdown voltages has been investigated and analyzed. To assess thermo-mechanical robustness of the parts, several groups of loose capacitors and those soldered on FR4 boards were subjected to multiple (up to 500) temperature cycles between room temperature and 77 K. Experiments and mathematical modeling have shown that degradation in tantalum capacitors at low temperatures is mostly due to increasing resistance of the manganese cathode layer, resulting in substantial decrease of the roll-off frequency. Absorption currents follow a power law, I approximately t(sup -m), with the exponent m varying from 0.8 to 1.1. These currents do not change significantly at cryogenic conditions and the value of the exponent remains the same down to 15 K. Variations of leakage currents with voltage can be described by Pool-Frenkel and Schottky mechanisms of conductivity, with the Schottky mechanism prevailing at cryogenic conditions. Breakdown voltages of tantalum capacitors increase and the probability of scintillations decreases at cryogenic temperatures. However, breakdown voltages measured during surge current testing decrease at liquid nitrogen (LN) compared to room-temperature conditions. Results of temperature cycling suggest that tantalum capacitors are capable of withstanding multiple exposures to cryogenic conditions, but the probability of failures varies for different part types.

  1. Performance characterization of photonic links in cryogenic environments for advanced signal processing applications. Revision 1

    SciTech Connect

    McCammon, K.; Morse, J.; Masquelier, D.; McConaghey, C.; Garrett, H.; Hugenberg, K.; Lowry, M.; Track, E.; Bunz, L.

    1994-01-01

    Low temperature experiments have been conducted to characterize the performance of high speed photodetectors and LiNbO{sub 3} optical modulators in cryogenic environments down to 4.2 K. Metal-semiconductor-metal (MSM) photodiodes fabricated from GaAs and InGaAs have been characterized. Results demonstrate that both the responsivity and bandwidth depend on temperature. Specific modulator parameters quantified at cryogenic temperatures include bandwidth, V{pi} (half wave voltage), optical loss and package stability. The successful operation of MSM photodiodes and LiNbO{sub 3} modulators at cryogenic temperatures enables a high sensitivity fiber optic approach to superconducting circuit interfaces.

  2. Cryogenics Research and Engineering Experience

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  3. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  4. Compact cryogenic inductors

    SciTech Connect

    Singh, S.K.; Carr, W.J. Jr.; Fagan, T.J. Jr.; Hordubay, T.D.; Chuboy, H.L. . Science and Technology Center)

    1994-07-01

    Power systems requiring power levels as high as a few megawatts to a few gigawatts for periods of several microseconds to several milliseconds with repetitive frequencies of a few hertz to a few kilohertz are being considered for potential space applications. The impulsive nature of the power presents the opportunity to use inductive energy storage techniques for pulse duty to enhance economic and practical considerations. An inductors must be efficient, lightweight, and reliable, and it must have high energy density if it is to be used in space based power systems. Cryogenic inductors are best studied for such an application. Parametric analyses of the two potential types of cryogenic inductors (superconducting and hyperconducting reveal that the hyperconducting (high purity aluminum)) inductor would be significantly lighter and achieve higher energy densities without the added penalty of a helium refrigeration system, thus resulting in improved overall system reliability. The lightweight hyperconducting cryogenic inductor technology is, however, in its infancy. This paper describes the required technology base which would allow the eventual application of the lightweight cryogenic inductor in space power systems, and also conclusively demonstrates the underlying principles.

  5. Valve for cryogenic service

    DOEpatents

    Worwetz, H.A.

    1975-09-02

    This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)

  6. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  7. James Webb Space Telescope Integrated Science Instrument Module Calibration and Verification of High-Accuracy Instrumentation to Measure Heat Flow in Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Comber, Brian; Glazer, Stuart

    2012-01-01

    The James Webb Space Telescope (JWST) is an upcoming flagship observatory mission scheduled to be launched in 2018. Three of the four science instruments are passively cooled to their operational temperature range of 36K to 40K, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. The requirement for multiple thermal zoned results in the instruments being thermally connected to five external radiators via individual high purity aluminum heat straps. Thermal-vacuum and thermal balance testing of the flight instruments at the Integrated Science Instrument Module (ISIM) element level will take place within a newly constructed shroud cooled by gaseous helium inside Goddard Space Flight Center's (GSFC) Space environment Simulator (SES). The flight external radiators are not available during ISIM-level thermal vacuum/thermal testing, so they will be replaced in test with stable and adjustable thermal boundaries with identical physical interfaces to the flight radiators. Those boundaries are provided by specially designed test hardware which also measures the heat flow within each of the five heat straps to an accuracy of less than 2 mW, which is less than 5% of the minimum predicted heat flow values. Measurement of the heat loads to this accuracy is essential to ISIM thermal model correlation, since thermal models are more accurately correlated when temperature data is supplemented by accurate knowledge of heat flows. It also provides direct verification by test of several high-level thermal requirements. Devices that measure heat flow in this manner have historically been referred to a "Q-meters". Perhaps the most important feature of the design of the JWST Q-meters is that it does not depend on the absolute accuracy of its temperature sensors, but rather on knowledge of precise heater power required to maintain a constant temperature difference between sensors on two stages, for which a table is empirically developed during a

  8. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  9. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, William W.

    1991-01-01

    An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

  10. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, W.W.

    1991-05-14

    An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

  11. A modular scintillation camera for use in nuclear medicine

    SciTech Connect

    Milster, T.D.; Arendt, J.; Barrett, H.H.; Easton, R.L.; Rossi, G.R.; Selberg, L.A.; Simpson, R.G.

    1984-02-01

    A ''modular'' scintillation camera is discussed as an alternative to using Anger cameras for gamma-ray imaging in nuclear medicine. Each module is an independent gamma camera and consists of a scintillation crystal, light pipe and mask plane, PMT's, and processing electronics. Groups of modules efficiently image radionuclide distributions by effectively utilizing crystal area. Performance of each module is maximized by using Monte-Carlo computer simulations to determine the optical design of the camera, optimizing the signal processing of the PMT signals using maximum-likelihood (ML) estimators, and incorporating digital lookup tables. Each event is completely processed in 2 ..mu..sec, and FWHM of the PSF over the crystal area is expected to be 3 mm. Both one-dimensional and two-dimensional prototypes are tested for spatial and energy resolution

  12. Deep Space Network, Cryogenic HEMT LNAs

    NASA Technical Reports Server (NTRS)

    Bautista, J. Javier

    2006-01-01

    Exploration of the Solar System with automated spacecraft that are more than ten astronomical units (1 AU = 149,597,870.691 km) from earth requires very large antennae employing extremely sensitive receivers. A key figure of merit in the specification of the spacecraft-to-earth telecommunications link is the ratio of the antenna gain to operatio nal noise temperature (G/Top) of the system. The Deep Space Network (DSN) receivers are cryogenic, low-noise amplifiers (LNAs) which addres s the need to maintain Top as low as technology permits. Historicall y, the extra-ordinarily sensitive receive systems operated by the DSN have required ctyogenically cooled, ruby masers, operating at a physi cal temperature near the boiling point of helium, as the LNA. Althoug h masers continue to be used today, they are hand crafted at JPL and expensive to manufacture and maintain. Recent advances in the developm ent of indium phosphide (InP) based high electron mobility transistor s (HEMTs) combined with cryogenic cooling near the boiling point of h ydrogen have made this alternate technology comparable with and a fraction of the cost of maser technology. InP HEMT LNA modules are demons trating noise temperatures less than ten times the quantum noise limi t (10hf/k) from 1 to 100 GHz. To date, the lowest noise LNA modules developed for the DSN have demonstrated noise temperatures of 3.5 K and 8.5 K at 8.5 K at 32 GHz, respectively. Front-end receiver packages employing these modules have demonstrated operating system noise temperatures of 17 K at 8.4 GHz (on a 70m antenna at zenith) and 39 K at 3 2 GHz (on a 34m antenna at zenith). The development and demonstration of cryogenic, InP HEMT based front-end amplifiers for the DSN requir es accurate component and module characterization, and modeling from 1 to 100 GHz at physical temperatures down to 12 K. The characterizati on and modeling begins with the HEMT chip, proceeds to the multi-stag e HEMT LNA module, and culminates with the

  13. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom; Spector, Garry B.

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  14. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  15. Neutron crosstalk between liquid scintillators

    DOE PAGES

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-05-01

    We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators wasmore » modeled to illustrate the improvement of the mass reconstruction.« less

  16. About NICADD extruded scintillating strips

    SciTech Connect

    Dyshkant, A.; Beznosko, D.; Blazey, G.; Chakraborty, D.; Francis, K.; Kubik, D.; Lima, J.G.; Rykalin, V.; Zutshi, v.; Baldina, E.; Bross, A.; Deering, P.; Nebel, T.; Pla-Dalmau, A.; Schellpfeffer, J.; Serritella, C.; Zimmerman, J.; /Fermilab

    2005-04-01

    The results of control measurements of extruded scintillating strip responses to a radioactive source Sr-90 are provided, and details of strip choice, preparation, and method of measurement are included. About four hundred one meter long extruded scintillating strips were measured at four different points. These results were essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  17. Physics Based Model for Cryogenic Chilldown and Loading. Part IV: Code Structure

    NASA Technical Reports Server (NTRS)

    Luchinsky, D. G.; Smelyanskiy, V. N.; Brown, B.

    2014-01-01

    This is the fourth report in a series of technical reports that describe separated two-phase flow model application to the cryogenic loading operation. In this report we present the structure of the code. The code consists of five major modules: (1) geometry module; (2) solver; (3) material properties; (4) correlations; and finally (5) stability control module. The two key modules - solver and correlations - are further divided into a number of submodules. Most of the physics and knowledge databases related to the properties of cryogenic two-phase flow are included into the cryogenic correlations module. The functional form of those correlations is not well established and is a subject of extensive research. Multiple parametric forms for various correlations are currently available. Some of them are included into correlations module as will be described in details in a separate technical report. Here we describe the overall structure of the code and focus on the details of the solver and stability control modules.

  18. Ionospheric Scintillation Effects on GPS

    NASA Astrophysics Data System (ADS)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  19. Novel method of producing nanoparticles for gadolinium-scintillator-based digital radiography.

    PubMed

    Lee, Young Kyu; Park, Sung Kwang; Shin, Jung Wook; Oh, Kyung Min; Heo, Seung Uk; Cho, Gyu Seok; Kim, Jin Young; Nam, Sang Hee

    2013-10-01

    Radiation image sensor properties affect the dose of radiation that patients are exposed to in a clinical setting. Numerous radiation imaging systems use scintillators as materials that absorb radiation. Rare-earth scintillators produced from elements such as gadolinium, yttrium, lutetium, and lanthanum have been investigated to improve the properties of radiation imaging systems. Although such rare-earth scintillators are manufactured with a bulk structure, they exhibit low resolution and low efficiency when they are used as conversion devices. Nanoscintillators have been proposed and researched as a possible solution to these problems. According to the research, the optical properties and size of fine scintillators are affected by the sintering temperature used to produce nanoscintillators instead of the existing bulk-structured scintillators. Therefore, the main purpose of this research is to develop radiation-imaging sensors based on nanoscintillators in order to evaluate the quantitative properties of various scintillators produced under various conditions such as sintering temperature. This is accomplished by measuring acquired phantom images, and modulation transfer functions (MTFs) for complementary-symmetry metal-oxide-semiconductor (CMOS) image sensors under the same X-ray conditions. Low-temperature solution combustion was used to produce fine scintillators consisting of 5 wt% of europium as an activator dopant in a Gd2O3 scintillator host. Variations in the characteristics of the fine scintillators were investigated. The characteristics of fine scintillators produced at various sintering temperatures (i.e., 600, 800, or 1000 degrees C) and with a europium concentration of 0.5 wt% were also analyzed to determine the optimal conditions for synthesizing the fine scintillators.

  20. Flexible cryogenic conduit

    DOEpatents

    Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  1. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  2. Stirling cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P.

    1983-06-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  3. Cryogenic support system

    DOEpatents

    Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.

    1988-01-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

  4. Cryogenic treatment of gas

    SciTech Connect

    Bravo, Jose Luis; Harvey, III, Albert Destrehan; Vinegar, Harold J.

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  5. Cryogenic support system

    DOEpatents

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  6. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Nurge, Mark A.

    2015-01-01

    Under our NASA Innovative Advanced Concepts (NIAC) project we have theoretically demonstrated a novel selective surface that reflects roughly 100 times more solar radiation than any other known coating. If this prediction holds up under experimental tests it will allow cryogenic temperatures to be reached in deep space even in the presence of the sun. It may allow LOX to be carried to the Moon and Mars. It may allow superconductors to be used in deep space without a refrigeration system.

  7. Extruded plastic scintillator including inorganic powders

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  8. Advances in Helium Cryogenics

    NASA Astrophysics Data System (ADS)

    Sciver, S. W. Van

    This review provides a survey of major advances that have occurred in recent years in the area of helium cryogenics. Helium-temperature cryogenics is the enabling technology for a substantial and growing number of low-temperature systems from superconducting magnets to space-based experimental facilities. In recent years there have been many advances in the technology of low-temperature helium, driven mostly by new applications. However, to keep the review from being too broad, this presentation focuses mainly on three of the most significant advances. These are: (1) the development of large-scale recuperative refrigeration systems mainly for superconducting magnet applications in accelerators and other research facilities; (2) the use of stored superfluid helium (He II) as a coolant for spacebased astrophysics experiments; and (3) the application of regenerative cryocoolers operating at liquid helium temperatures primarily for cooling superconducting devices. In each case, the reader should observe that critical technologies were developed to facilitate these applications. In addition to these three primary advances, other significant helium cryogenic technologies are briefly reviewed at the end of this chapter, along with some vision for future developments in these areas.

  9. Cryogenic Treatment of Metal Parts

    SciTech Connect

    Chillar, Rahul; Agrawal, S. C.

    2006-03-31

    Cryogenic treatment and its variables have been described. Results of eight engineering tests carried out on cryotreated parts have been presented. Cryogenic treatment of metal parts enhances useful properties which in turn, improves various strengths. Our tests viz. Abrasion, Torsion, Fatigue, Tensile, Shear, Hardness and Impact on Mild steel, Cast Iron, Brass and Copper show that the cryogenic treatment improved useful properties of mild steel parts appreciably but did not show promise with brass and copper parts.

  10. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  11. FNAL-NICADD extruded scintillator

    SciTech Connect

    Beznosko, D.; Bross, A.; Dyshkant, A.; Pla-Dalmau, A.; Rykalin, V.; /Northern Illinois U.

    2005-09-01

    The possibility to produce a scintillator that satisfies the demands of physicists from different science areas has emerged with the installation of an extrusion line at Fermi National Accelerator Laboratory (FNAL). The extruder is the product of the fruitful collaboration between FNAL and Northern Illinois Center for Accelerator and Detector Development (NICADD) at Northern Illinois University (NIU). The results from the light output, light attenuation length and mechanical tolerance indicate that FNAL-NICADD scintillator is of high quality. Improvements in the extrusion die will yield better scintillator profiles and decrease the time needed for initial tuning. This paper will present the characteristics of the FNAL-NICADD scintillator based on the measurements performed. They include the response to MIPs from cosmic rays for individual extruded strips and irradiation studies where extruded samples were irradiated up to 1 Mrad. We will also discuss the results achieved with a new die design. The attractive perspective of using the extruded scintillator with MRS (Metal Resistive Semiconductor) photodetector readout will also be shown.

  12. Radiopure metal-loaded liquid scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-08-17

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  13. Radiopure Metal-Loaded Liquid Scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  14. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  15. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  16. Scintillation at two optical frequencies.

    PubMed

    Hubbard, W B; Reitsema, H J

    1981-09-15

    Stellar scintillation data were obtained on a single night at a variety of zenith distances and azimuths, using a photon-counting photometer recording at 100 Hz simultaneously at wavelengths of 0.475 microm and 0.870 microm. Orientable apertures of 42-cm diam separated by 1 m were used to establish the average upper atmosphere wind direction and velocity. Dispersion in the earth's atmosphere separate the average optical paths at the two wavelengths, permitting a reconstruction of the spatial cross-correlation function for scintillations, independent of assumptions about differential fluid motions. Although there is clear evidence of a complicated velocity field, scintillation power was predominantly produced by levels at pressures of 130 +/- 30 mbar. The data are not grossly inconsistent with layers of isotropic Kolmogorov turbulence, but there is some evidence for deviation from the Kolmogorov spectral index and/or anisotropy.

  17. Fracture-resistant lanthanide scintillators

    DOEpatents

    Doty, F. Patrick

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  18. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  19. Development of radiation hard scintillators

    SciTech Connect

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G. ); Blackburn, R. )

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro.

  20. Vibration dampers for cryogenic turbomachinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Olan, Emmanuel; Ibrahim, Azman Syed; Kascak, Albert F.

    1990-01-01

    This paper describes the development of effective and reliable minimum-weight and minimum-envelope vibration dampers for cryogenic turbines. To meet this objective, a high speed test rig was designed and fabricated, which is currently used to test a curved beam type damper. The operation, capacity, structural characteristics, measurement system, and safety features of the cryogenic damper test rig are discussed.

  1. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  2. Cryogenic container compound suspension strap

    NASA Technical Reports Server (NTRS)

    Vorreiter, J. W. (Inventor)

    1980-01-01

    A support strap for use in a cryogenic storage vessel for supporting the inner shell from the outer shell with a minimum heat leak is presented. The compound suspension strap is made from a unidirectional fiberglass epoxy composite material with an ultimate tensile strength and fatigue strength which are approximately doubled when the material is cooled to a cryogenic temperature.

  3. Cryogenic insulation development

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1972-01-01

    Multilayer insulations for long term cryogenic storage are described. The development effort resulted in an insulation concept using lightweight radiation shields, separated by low conductive Dacron fiber tufts. The insulation is usually referred to as Superfloc. The fiber tufts are arranged in a triangular pattern and stand about .040 in. above the radiation shield base. Thermal and structural evaluation of Superfloc indicated that this material is a strong candidate for the development of high performance thermal protection systems because of its high strength, purge gas evacuation capability during boost, its density control and easy application to a tank.

  4. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  5. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  6. Cryogenic support member

    DOEpatents

    Niemann, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1987-01-01

    A cryogenic support member is comprised of a non-metallic rod having a depression in at least one end and a metallic end connection assembled to the rod. The metallic end connection comprises a metallic plug which conforms to the shape and is disposed in the depression and a metallic sleeve is disposed over the rod and plug. The plug and the sleeve are shrink-fitted to the depression in the rod to form a connection good in compression, tension and bending.

  7. FRIB cryogenic distribution system

    SciTech Connect

    Ganni, Venkatarao; Dixon, Kelly D.; Laverdure, Nathaniel A.; Knudsen, Peter N.; Arenius, Dana M.; Barrios, Matthew N.; Jones, S.; Johnson, M.; Casagrande, Fabio

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  8. FRIB cryogenic distribution system

    SciTech Connect

    Ganni, V.; Dixon, K.; Laverdure, N.; Knudsen, P.; Arenius, D.; Barrios, M.; Jones, S.; Johnson, M.; Casagrande, F.

    2014-01-29

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  9. Three-dimensional printing of scintillating materials.

    PubMed

    Mishnayot, Y; Layani, M; Cooperstein, I; Magdassi, S; Ron, G

    2014-08-01

    We demonstrate, for the first time, the applicability of three-dimensional printing techniques to the manufacture of scintillation detectors. We report on the development of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various applications.

  10. Nanophosphor composite scintillator with a liquid matrix

    DOEpatents

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  11. Biological Applications of Cryogenic Detectors

    SciTech Connect

    Friedrich, S

    2003-12-03

    High energy resolution and broadband efficiency are enabling the use of cryogenic detectors in biological research. Two areas where they have found initial application are X-ray absorption spectroscopy (XAS) and time-of-flight mass spectrometry (TOF-MS). In synchrotron-based fluorescence-detected XAS cryogenic detectors are used to examine the role of metals in biological systems by measuring their oxidation states and ligand symmetries. In time-of-flight mass spectrometry cryogenic detectors increase the sensitivity for biomolecule detection and identification for masses above {approx}50 kDa, and thus enable TOF-MS on large protein complexes or even entire viruses. More recently, cryogenic detectors have been proposed as optical sensors for fluorescence signals from biomarkers. We discuss the potential for cryogenic detectors in biological research, as well as the challenges the technology faces.

  12. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  13. Composite scintillators for detection of ionizing radiation

    DOEpatents

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  14. Photonic crystal scintillators and methods of manufacture

    SciTech Connect

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  15. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  16. Cryogenic magnet systems

    SciTech Connect

    Sarwinski, R.E.; Purcell, J.R.; Parker, J.W.; Burnett, S.C.

    1987-07-21

    This patent describes a cryogenic superconducting magnet system for use in magnetic resonance imaging (MRI) devices, the system comprising: an evacuated container, a first tank mounted within the evacuated container and thermally insulated; boiling liquid helium disposed in the first tank and exhausted to the outside of the container; a cryogenic superconducting magnet disposed in the first tank, a metallic heat radiation shield disposed in the evacuated container and substantially surrounding the first tank, the shield being thermally insulated from both the container and the first tank; and a neon refrigeration system external to the shield for cooling the shield, the neon refrigeration system including neon refrigerant. A second tank contains the neon refrigerant in its liquid state, at least one thermal siphon for circulating the neon refrigerant by convection from the second tank to the shield. The boiling of the neon refrigerant at the shield acts to circulate the neon refrigerant in the thermal siphon and cool the shield. A mechanical cryoccooler is remote from the container for condensing the neon refrigerant from the gaseous to the liquid state, and thermally insulated transfer means for transferring the neon refrigerant in its gaseous state from the second tank to the cryocooler. The neon refrigerant is in its liquid state from the cryocooler to the second tank.

  17. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  18. Cryogenics maintenance strategy

    NASA Astrophysics Data System (ADS)

    Cruzat, Fabiola

    2012-09-01

    ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

  19. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  20. SNO+ Scintillator Purification and Assay

    SciTech Connect

    Ford, R.; Vazquez-Jauregui, E.; Chen, M.; Chkvorets, O.; Hallman, D.

    2011-04-27

    We describe the R and D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O{sub 2}, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed ''natural'' radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  1. Scintillation materials for medical applications

    SciTech Connect

    Lempicki, A.; Wojtowicz, A.J.

    1992-01-01

    Scintillators are beginning to attract renewed attention because modern High Energy Physics accelerators are placing unprecedented demands of quantity and quality of detector materials and Positron Emission Tomography (PET), used by the medical field. Both applications required materials for scintillator detectors with properties beyond those delivered by traditional scintillators. Thallium doped halides are very efficient, but slow and chemically unstable. Two modern developments, namely the very fast BaF[sub 2], which owed its success to the newly discovered crossover transitions, and CeF[sub 3], which carried a promise of fast components, more practical wavelengths and attractive efficiency. Since traditional scintillators (Tl doped halides) are very efficient, and could be even more efficient at larger concentrations of Tl, if it were not for concentration quenching. However Tl transitions are spin forbidden and slow. Both ills could be remedied by replacing Tl with Ce, whose transitions are allowed and which is known to form fully concentrated compounds of high photoluminescent efficiency and no quenching. These materials, plus new Ce-doped materials, exhibiting highly promising properties for medical applications, became the target of our studies.

  2. Method of making a scintillator waveguide

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    2000-01-01

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  3. Extruded plastic scintillator for MINERvA

    SciTech Connect

    Pla-Dalmau, Anna; Bross, Alan D.; Rykalin, Victor V.; Wood, Brian M.; /NICADD, DeKalb

    2005-11-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here.

  4. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency

  5. Energy resolution of scintillation detectors

    NASA Astrophysics Data System (ADS)

    Moszyński, M.; Syntfeld-Każuch, A.; Swiderski, L.; Grodzicka, M.; Iwanowska, J.; Sibczyński, P.; Szczęśniak, T.

    2016-01-01

    According to current knowledge, the non-proportionality of the light yield of scintillators appears to be a fundamental limitation of energy resolution. A good energy resolution is of great importance for most applications of scintillation detectors. Thus, its limitations are discussed below; which arise from the non-proportional response of scintillators to gamma rays and electrons, being of crucial importance to the intrinsic energy resolution of crystals. The important influence of Landau fluctuations and the scattering of secondary electrons (δ-rays) on intrinsic resolution is pointed out here. The study on undoped NaI and CsI at liquid nitrogen temperature with a light readout by avalanche photodiodes strongly suggests that the non-proportionality of many crystals is not their intrinsic property and may be improved by selective co-doping. Finally, several observations that have been collected in the last 15 years on the influence of the slow components of light pulses on energy resolution suggest that more complex processes are taking place in the scintillators. This was observed with CsI(Tl), CsI(Na), ZnSe(Te), and undoped NaI at liquid nitrogen temperature and, finally, for NaI(Tl) at temperatures reduced below 0 °C. A common conclusion of these observations is that the highest energy resolution, and particularly intrinsic resolution measured with the scintillators, characterized by two or more components of the light pulse decay, is obtainable when the spectrometry equipment integrates the whole light of the components. In contrast, the slow components observed in many other crystals degrade the intrinsic resolution. In the limiting case, afterglow could also be considered as a very slow component that spoils the energy resolution. The aim of this work is to summarize all of the above observations by looking for their origin.

  6. Scintillators for positron emission tomography

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ``ultimate`` scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length ({le} 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times {le} 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so {le}5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ``fully-3D`` cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm.

  7. Scintillation of VHF/UHF and L band satellite signals at Guam

    NASA Astrophysics Data System (ADS)

    Paulson, M. R.

    1981-10-01

    An investigation of the equatorial scintillation of satellite signals at 257.55 and 1541.5 MHz for about 10 and 50 deg elevation angles is reported. Diurnal and seasonal variations are shown for the two frequencies and the two elevation angles. A periodicity in the occurrence of the scintillation was observed and is attributed to the gravitational field of the moon. It is proposed that the moon's gravity may affect the occurrence and intensity of equatorial scintillation by modulating the velocity of the zonal winds at ionospheric heights. An additional possible contribution to the periodic variation in the scintillation is a periodic variation which occurred in the geomagnetic activity during the first half of the year.

  8. Cryogenic expansion machine

    DOEpatents

    Pallaver, Carl B.; Morgan, Michael W.

    1978-01-01

    A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.

  9. Cryogenic nuclear gyroscope

    SciTech Connect

    Gallop, J.C.; Potts, S.P.

    1980-09-30

    A cryogenic nuclear gyroscope is described that is comprised of a cylinder of niobium cooled within a helium cryostat so as to be superconducting and to provide a trapped, substantially homogeneous magnetic field, a helium-3 sample contained within a spherical pyrex cell having nuclei possessing a net magnetic moment, coils provided to polarize the sample to provide that net magnetic moment, and a SQUID magnetometer coupled to the sample by a pick-up coil of a transformer and frequency sensitive means coupled to the SQUID to detect changes in the precession of the nuclear moments of the sample caused by rotation of the gyroscope about an axis parallel to the direction of the homogeneous magnetic field. A superconducting lead shield isolates the helium-3 sample from external magnetic fields.

  10. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

    1983-01-04

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

  11. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.

    1983-01-01

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

  12. Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Jones, David

    2011-01-01

    The CPS is an in-space cryogenic propulsive stage based largely on state of the practice design for launch vehicle upper stages. However, unlike conventional propulsive stages, it also contains power generation and thermal control systems to limit the loss of liquid hydrogen and oxygen due to boil-off during extended in-space storage. The CPS provides the necessary (Delta)V for rapid transfer of in-space elements to their destinations or staging points (i.e., E-M L1). The CPS is designed around a block upgrade strategy to provide maximum mission/architecture flexibility. Block 1 CPS: Short duration flight times (hours), passive cryo fluid management. Block 2 CPS: Long duration flight times (days/weeks/months), active and passive cryo fluid management.

  13. Improved cryogenic aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Vukobratovich, Daniel; Don, Ken; Sumner, Richard E.

    1998-09-01

    Optical surface deformation of metal mirrors used at cryogenic temperatures is reduced through the use of a new process of plating amorphous aluminum on aluminum. The AlumiPlateTM process (produced by AlumiPlate, Inc. in Minneapolis, MN) plates a layer of 99.9+% high purity aluminum about 125 micrometers thick atop the substrate. Very good surface finishes are produced by direct diamond turning of the plating, with some samples below 40 angstroms RMS. Optical testing of a 175-mm diameter, 550-mm optical radius of curvature 6061-T651/AlumiPlateTM aluminum sphere was performed at 65 K to determine cryogenic optical surface figure stability. In five cycles from 300 to 65 K, an average optical surface change of 0.047 wave RMS (1 wave equals 633 nm) was observed. A total optical figure change of 0.03 wave RMS at 65 K was observed from the first to last cycle. The cause of this relatively small long-term change is not yet determined. The test mirror is bi-concave, with a semi- kinematic toroidal mount, and is machined from the axis of a billet. An `uphill quench' heat treatment consisting of five cycles from liquid nitrogen to boiling water temperatures is used to minimize residual stress in the test mirror. Initial diamond turning of the mirror by the Optical Filter Corp., Keene, NH, produced a 300 K unmounted optical surface figure of 0.380 wave peak-to-valley and 0.059 wave RMS. A second effort at diamond turning by II-VI, Inc., Saxonburg, PA produced a 300 K optical figure of 0.443 wave peak-to-valley and 0.066 wave RMS, with a surface roughness varying from 29 to 42 angstroms.

  14. Lithium indium diselenide: A new scintillator for neutron imaging

    NASA Astrophysics Data System (ADS)

    Lukosi, Eric; Herrera, Elan; Hamm, Daniel; Lee, Kyung-Min; Wiggins, Brenden; Trtik, Pavel; Penumadu, Dayakar; Young, Stephen; Santodonato, Louis; Bilheux, Hassina; Burger, Arnold; Matei, Liviu; Stowe, Ashley C.

    2016-09-01

    Lithium indium diselenide, 6LiInSe2 or LISe, is a newly developed neutron detection material that shows both semiconducting and scintillating properties. This paper reports on the performance of scintillating LISe crystals for its potential use as a converter screen for cold neutron imaging. The spatial resolution of LISe, determined using a 10% threshold of the Modulation Transfer Function (MTF), was found to not scale linearly with thickness. Crystals having a thickness of 450 μm or larger resulted in an average spatial resolution of 67 μm, and the thinner crystals exhibited an increase in spatial resolution down to the Nyquist frequency of the CCD. The highest measured spatial resolution of 198 μm thick LISe (27 μm) outperforms a commercial 50 μm thick ZnS(Cu):6LiF scintillation screen by more than a factor of three. For the LISe dimensions considered in this study, it was found that the light yield of LISe did not scale with its thickness. However, absorption measurements indicate that the 6Li concentration is uniform and the neutron absorption efficiency of LISe as a function of thickness follows general nuclear theory. This suggests that the differences in apparent brightness observed for the LISe samples investigated may be due to a combination of secondary charged particle escape, scintillation light transport in the bulk and across the LISe-air interface, and variations in the activation of the scintillation mechanism. Finally, it was found that the presence of 115In and its long-lived 116In activation product did not result in ghosting (memory of past neutron exposure), demonstrating potential of LISe for imaging transient systems.

  15. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  16. Hydrothermal vent flow and turbulence measurements with acoustic scintillation instrumentation

    NASA Astrophysics Data System (ADS)

    di Iorio, D.; Xu, G.

    2009-12-01

    Acoustically derived measurements of hydrothermal vent flow and turbulence were obtained from the active black smoker Dante in the Main Endeavour vent field, using scintillation analysis from one-way transmissions. The scintillation transmitter and receiver array formed a 93 m acoustic path through the buoyant plume 20 m above the structure. The acoustic path was parallel to the valley sidewall where the M2 tidal currents are approximately aligned along ridge due to topographic steering by the valley walls and hence most of the plume displacement is expected to occur along the acoustic path. On one deployment, data were collected for 6.5 weeks and vertical velocities range from 0.1 to 0.2 m/s showing a strong dependence on the spring/neap tidal cycle. The refractive index fluctuations which can be paramaterized in terms of the root-mean-square temperature fluctuations also shows a strong tidal modulation during spring tide.

  17. POLOCAM: a millimeter wavelength cryogenic polarimeter prototype for MUSIC-POL

    NASA Astrophysics Data System (ADS)

    Laurent, Glenn T.; Vaillancourt, John E.; Savini, Giorgio; Ade, Peter A. R.; Beland, Stephane; Glenn, Jason; Hollister, Matthew I.; Maloney, Philip R.; Sayers, Jack

    2012-09-01

    As a proof-of-concept, we have constructed and tested a cryogenic polarimeter in the laboratory as a prototype for the MUSIC instrument (Multiwavelength Sub/millimeter Kinetic Inductance Camera). The POLOCAM instrument consists of a rotating cryogenic polarization modulator (sapphire half-waveplate) and polarization analyzer (lithographed copper polarizers deposited on a thin film) placed into the optical path at the Lyot stop (4K cold pupil stop) in a cryogenic dewar. We present an overview of the project, design and performance results of the POLOCAM instrument (including polarization efficiencies and instrumental polarization), as well as future application to the MUSIC-POL instrument.

  18. A Piezoelectric Cryogenic Heat Switch

    NASA Technical Reports Server (NTRS)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  19. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  20. Latest developments in cryogenic safety

    NASA Technical Reports Server (NTRS)

    Webster, T. J.

    1983-01-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  1. Latest developments in cryogenic safety

    NASA Astrophysics Data System (ADS)

    Webster, T. J.

    1983-03-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  2. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, M. J.; Sorce, A.; Sorce, C.; Sangster, T. C.; Weiner, D.

    2016-05-01

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium-tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ˜16 m to a streak camera in a well-shielded location. An ˜200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ˜40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

  3. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    DOE PAGES

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, III, M. J.; et al

    2016-05-10

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  4. Silicon photomultipliers for scintillating trackers

    NASA Astrophysics Data System (ADS)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  5. LHCb Upgrade: Scintillating Fibre Tracker

    NASA Astrophysics Data System (ADS)

    Tobin, Mark

    2016-07-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  6. Scintillation Monitoring Using Asymmetry Index

    NASA Astrophysics Data System (ADS)

    Shaikh, Muhammad Mubasshir; Mahrous, Ayman; Abdallah, Amr; Notarpietro, Riccardo

    Variation in electron density can have significant effect on GNSS signals in terms of propagation delay. Ionospheric scintillation can be caused by rapid change of such delay, specifically, when they last for a longer period of time. Ionospheric irregularities that account for scintillation may vary significantly in spatial range and drift with the background plasma at speeds of 45 to 130 m/sec. These patchy irregularities may occur several times during night, e.g. in equatorial region, with the patches move through the ray paths of the GNSS satellite signals. These irregularities are often characterized as either ‘large scale’ (which can be as large as several hundred km in East-West direction and many times that in the North-South direction) or ‘small scale’ (which can be as small as 1m). These small scale irregularities are regarded as the main cause of scintillation [1,2]. In normal solar activity conditions, the mid-latitude ionosphere is not much disturbed. However, during severe magnetic storms, the aurora oval extends towards the equator and the equator anomaly region may stretched towards poles extending the scintillation phenomena more typically associated with those regions into mid-latitudes. In such stormy conditions, the predicted TEC may deviate largely from the true value of the TEC both at low and mid-latitudes due to which GNSS applications may be strongly degraded. This work is an attempt to analyze ionospheric scintillation (S4 index) using ionospheric asymmetry index [3]. The asymmetry index is based on trans-ionospheric propagation between GPS and LEO satellites in a radio occultation (RO) scenario, using background ionospheric data provided by MIDAS [4]. We attempted to simulate one of the recent geomagnetic storms (NOAA scale G4) occurred over low/mid-latitudes. The storm started on 26 September 2011 at UT 18:00 and lasted until early hours of 27 September 2011. The scintillation data for the storm was taken from an ionospheric

  7. Detecting scintillations in liquid helium

    NASA Astrophysics Data System (ADS)

    Huffman, P. R.; McKinsey, D. N.

    2013-09-01

    We review our work in developing a tetraphenyl butadiene (TPB)-based detection system for a measurement of the neutron lifetime using magnetically confined ultracold neutrons (UCN). As part of the development of the detection system for this experiment, we studied the scintillation properties of liquid helium itself, characterized the fluorescent efficiencies of different fluors, and built and tested three detector geometries. We provide an overview of the results from these studies as well as references for additional information.

  8. Multi-PSPMT scintillation camera

    SciTech Connect

    Pani, R.; Pellegrini, R.; Trotta, G.; Scopinaro, F.; Soluri, A.; Vincentis, G. de; Scafe, R.; Pergola, A.

    1999-06-01

    Gamma ray imaging is usually accomplished by the use of a relatively large scintillating crystal coupled to either a number of photomultipliers (PMTs) (Anger Camera) or to a single large Position Sensitive PMT (PSPMT). Recently the development of new diagnostic techniques, such as scintimammography and radio-guided surgery, have highlighted a number of significant limitations of the Anger camera in such imaging procedures. In this paper a dedicated gamma camera is proposed for clinical applications with the aim of improving image quality by utilizing detectors with an appropriate size and shape for the part of the body under examination. This novel scintillation camera is based upon an array of PSPMTs (Hamamatsu R5900-C8). The basic concept of this camera is identical to the Anger Camera with the exception of the substitution of PSPMTs for the PMTs. In this configuration it is possible to use the high resolution of the PSPMTs and still correctly position events lying between PSPMTs. In this work the test configuration is a 2 by 2 array of PSPMTs. Some advantages of this camera are: spatial resolution less than 2 mm FWHM, good linearity, thickness less than 3 cm, light weight, lower cost than equivalent area PSPMT, large detection area when coupled to scintillating arrays, small dead boundary zone (< 3 mm) and flexibility in the shape of the camera.

  9. IAL SPACE: A test laboratory for the ISO cryogenic payload

    NASA Technical Reports Server (NTRS)

    Cucchiaro, A.; Henrist, M.; Macau, J. P.; Ninane, N.; Blanpain, R.

    1990-01-01

    The ESA Infrared Space Observatory (ISO) satellite is a 3 axes pointed platform designed to make accurate pointed observations of astronomical objects and sources in the wavelength range between 2.5 and 200 microns. ISO is composed of a service module and a payload module which is a large cylindrical vacuum vessel. The vessel is in fact a cryostat (capacity of 2250 l of liquid He II) which contains the telescope and the four focal scientific instruments. The latter being cooled up to a temperature less than 4 K. The qualification of the payload requires the measurement respectively of: the image quality of the telescope through wave front error (WFE) measurements; and the optical alignment of the scientific instruments with respect to the telescope axis and the telescope focus, and this under cryogenic conditions. Consequently, since 1988, the FOCAL 5 IAL Space facility has been upgraded in order to perform the cryogenic optical tests of the ISO optical subsystems.

  10. Morphology of auroral zone radio wave scintillation

    SciTech Connect

    Rino, C.L.; Matthews, S.J.

    1980-08-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effect due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation.

  11. Power control electronics for cryogenic instrumentation

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.

  12. Cryogenic Electric Motor Tested

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  13. Cryogenic Permanent Magnet Undulators

    SciTech Connect

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-06-23

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm{sub 2}Co{sub 17} or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  14. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of

  15. Neutron position-sensitive scintillation detector

    DOEpatents

    Strauss, Michael G.; Brenner, Raul

    1984-01-01

    A device is provided for mapping one- and two-dimensional distributions of neutron-positions in a scintillation detector. The device consists of a lithium glass scintillator coupled by an air gap and a light coupler to an array of photomultipliers. The air gap concentrates light flashes from the scintillator, whereas the light coupler disperses this concentrated light to a predetermined fraction of the photomultiplier tube array.

  16. Dual Cryogenic Capacitive Density Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Mata, Carlos; Vokrot, Peter; Cox, Robert

    2009-01-01

    A dual cryogenic capacitive density sensor has been developed. The device contains capacitive sensors that monitor two-phase cryogenic flow density to within 1% accuracy, which, if temperature were known, could be used to determine the ratio of liquid to gas in the line. Two of these density sensors, located a known distance apart, comprise the sensor, providing some information on the velocity of the flow. This sensor was constructed as a proposed mass flowmeter with high data acquisition rates. Without moving parts, this device is capable of detecting the density change within a two-phase cryogenic flow more than 100 times a second. Detection is enabled by a series of two sets of five parallel plates with stainless steel, cryogenically rated tubing. The parallel plates form the two capacitive sensors, which are measured by electrically isolated digital electronics. These capacitors monitor the dielectric of the flow essentially the density of the flow and can be used to determine (along with temperature) the ratio of cryogenic liquid to gas. Combining this information with the velocity of the flow can, with care, be used to approximate the total two-phase mass flow. The sensor can be operated at moderately high pressures and can be lowered into a cryogenic bath. The electronics have been substantially improved over the older sensors, incorporating a better microprocessor, elaborate ground loop protection and noise limiting circuitry, and reduced temperature sensitivity. At the time of this writing, this design has been bench tested at room temperature, but actual cryogenic tests are pending

  17. Radio wave scintillations at equatorial regions

    NASA Technical Reports Server (NTRS)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  18. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  19. Waveshifters and Scintillators for Ionizing Radiation Detection

    SciTech Connect

    B.Baumgaugh; J.Bishop; D.Karmgard; J.Marchant; M.McKenna; R.Ruchti; M.Vigneault; L.Hernandez; C.Hurlbut

    2007-12-11

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments.

  20. Latest developments in cryogenic safety

    SciTech Connect

    Webster, T.J.

    1983-03-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of crygenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  1. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  2. Improving detector spatial resolution using pixelated scintillators with a barrier rib structure

    NASA Astrophysics Data System (ADS)

    Liu, Langechuan; Lu, Minghui; Cao, Wanqing; Peng, Luke; Chen, Arthur

    2016-03-01

    Indirect conversion flat panel detectors (FPDs) based on amorphous silicon (a-Si) technology are widely used in digital X-ray imaging. In such FPDs a scintillator layer is used for converting X-rays into visible light photons. However, the lateral spread of these photons inside the scintillator layer reduces spatial resolution of the FPD. In this study, FPDs incorporating pixelated scintillators with a barrier rib structure were developed to limit lateral spread of light photons thereby improving spatial resolution. For the pixelated scintillator, a two-dimensional barrier rib structure was first manufactured on a substrate layer, coated with reflective materials, and filled to the rim with the scintillating material of gadolinium oxysulfide (GOS). Several scintillator samples were fabricated, with pitch size varying from 160 to 280 μm and rib height from 200 to 280 μm. The samples were directly coupled to an a-Si flat panel photodiode array with a pitch of 200 μm to convert optical photons to electronic signals. With the pixelated scintillator, the detector modulation transfer function was shown to improve significantly (by 94% at 2 cycle/mm) compared to a detector using an unstructured GOS layer. However, the prototype does show lower sensitivity due to the decrease in scintillator fill factor. The preliminary results demonstrated the feasibility of using the barrier-rib structure to improve the spatial resolution of FPDs. Such an improvement would greatly benefit nondestructive testing applications where the spatial resolution is the most important parameter. Further investigation will focus on improving the detector sensitivity and exploring its medical applications.

  3. Timing Measurements of Scintillator Bars with Silicon Phtotomultiplier Light Detectors

    NASA Astrophysics Data System (ADS)

    Shelor, Mark; Elizondo, Leonardo; Ritt, Stefan

    2016-03-01

    To track and analyze cosmic rays via precise measurements of muon and similarly penetrating particle's airshower axes directions, we constructed a prototype consisting of two 1-meter long scintillator bars. Each bar is embedded with green wavelength shifting fibers to increase detection rate of two silicon photomultiplier, SiPM, light detectors to record light produced by cosmic rays via scintillation. The focus of the experiment was to determine the performance of these devices. Evaluation was performed for two makes of SiPM models - from AdvanSiD and Hamamatsu. Timing measurements of the apparatus were performed under several trigger conditions to filter out noise such as coincidence trigger with 2 photomultiplier detectors, as well as SiPM detectors in self-triggered mode. The SiPM detector waveforms were digitized using a 4-channel fast waveform sampler, the DRS4 digitizer. Signals were analyzed with the CERN PAW package. From our results, we deduced the speed of light in the scintillator using the SiPM modules to be about 66% of the speed of light in a vacuum which is in accordance with the specifications of the index of refraction for the fibers given by the manufacturer's specifications. The results of our timing measurements would be presented. Dept. of Ed. Title V Grant PO31S090007.

  4. Scintillation reduction in pseudo Multi-Gaussian Schell Model beams in the maritime environment

    NASA Astrophysics Data System (ADS)

    Nelson, C.; Avramov-Zamurovic, S.; Korotkova, O.; Guth, S.; Malek-Madani, R.

    2016-04-01

    Irradiance fluctuations of a pseudo Multi-Gaussian Schell Model beam propagating in the maritime environment is explored as a function of spatial light modulator cycling rate and estimated atmospheric turnover rate. Analysis of the data demonstrates a strong negative correlation between the scintillation index of received optical intensity and cycling speed for the estimated atmospheric turnover rate.

  5. 64-element photodiode array for scintillation detection of x-rays

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Wolski, Dariusz; Bar, Jan; Budzyński, Tadeusz; Chłopik, Arkadiusz; Grabiec, Piotr; Kłos, Helena; Panas, Andrzej; Piotrowski, Tadeusz; Słysz, Wojciech; Stolarski, Maciej; Szmigiel, Dariusz; Wegrzecka, Iwona; Zaborowski, Michał

    2014-08-01

    The paper presents the design, technology and parameters of a new, silicon 64-element linear photodiode array developed at the Institute of Electron Technology (ITE) for the detection of scintillations emitted by CsI scintillators (λ≈550 nm). The arrays are used in a device for examining the content of containers at border crossings under development at the National Centre for Nuclear Research. Two arrays connected with a scintillator block (128 CsI scintillators) form a 128-channel detection module. The array consists of 64 epiplanar photodiode structures (5.1 × 7.2 mm) and a 5.3 mm module. p+-ν-n+ photodiode structures are optimised for the detection of radiation of λ≈ 550 nm wavelength with no voltage applied (photovoltaic mode). The structures are mounted on an epoxy-glass laminate substrate, copper-clad on both sides, on which connections with a common anode and separate cathode leads are located. The photosensitive surface of photodiodes is covered with a special silicone gel, which protects photodiodes against the mechanical impact of scintillators

  6. Scintillation properties of lead sulfate

    SciTech Connect

    Moses, W.W.; Derenzo, S.E. ); Shlichta, P.J. )

    1991-11-01

    We report on the scintillation properties of lead sulfate (PbSO{sub 4}), a scintillator that show promise as a high energy photon detector. It physical properties are well suited for gamma detection, as its has a density of 6.4 gm/cm{sup 3}, a 1/e attenuation length for 511 keV photons of 1.2 cm, is not affected by air or moisture, and is cut and polished easily. In 99.998% pure PbSO{sub 4} crystals at room temperature excited by 511 keV annihilation photons, the fluorescence decay lifetime contains significant fast components having 1.8 ns (5%) and 19 ns (36%) decay times, but with longer components having 95 ns (36%) and 425 ns (23%) decays times. The peak emission wavelength is 335 nm, which is transmitted by borosilicate glass windowed photomultiplier tubes. The total scintillation light output increases with decreasing temperature fro 3,200 photons/MeV at +45{degrees}C to 4, 900 photons/MeV at room temperature (+25{degrees}C) and 68,500 photons/MeV at {minus}145{degrees}C. In an imperfect, 3 mm cube of a naturally occurring mineral form of PbSO{sub 4} (anglesite) at room temperature, a 511 keV photopeak is seen with a total light output of 60% that BGO. There are significant sample to sample variations of the light output among anglesite samples, so the light output of lead sulfate may improve when large synthetic crystals become available. 10 refs.

  7. Latest developments in cryogenic safety

    NASA Astrophysics Data System (ADS)

    Webster, T.

    1982-05-01

    The Cryogenic Safety Manual, published under the auspices of the British Cryogenics Council, is summarized. Since an awareness of the physical properties of the cryogenic fluids being dealt with is considered important in directing attention to hazardous situations which may arise, the manual lists the more important properties, such as molecular weight, boiling point, and freezing point. Since hydrogen and helium are very light, the possibility arises of explosive mixtures being formed at high points in buildings. Since argon is unexpectedly heavy, its removal requires suction rather than blowing. It is also pointed out that the use of inert liquid nitrogen can lead to the creation of a noninert atmosphere which supports combustion because it contains oxygen. Attention is also given to the danger of asphyxiation posed by the growing use of inert gases.

  8. Other cryogenic wind tunnel projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1989-01-01

    The first cryogenic tunnel was built in 1972. Since then, many cryogenic wind-tunnel projects were started at aeronautical research centers around the world. Some of the more significant of these projects are described which are not covered by other lecturers at this Special Course. Described are cryogenic wind-tunnel projects in five countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Royal Aerospace Establishment-Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign and NASA Langley); and U.S.S.R. (Central Aero-Hydronamics Institute (TsAGI), Institute of Theoretical and Applied Mechanics (ITAM), and Physical-Mechanical Institute at Kharkov (PMI-K).

  9. Other Cryogenic Wind Tunnel Projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1997-01-01

    The first cryogenic tunnel was built at the NASA Langley Research Center in 1972. Since then, many cryogenic wind-tunnels have been built at aeronautical research centers around the world. In this lecture some of the more interesting and significant of these projects that have not been covered by other lecturers at this Special Course are described. In this lecture authors describe cryogenic wind-tunnel projects at research centers in four countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Defence Research Agency - Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); and United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign, and NASA Langley).

  10. Testing the equipment for the cryogenic optical test of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Whitman, Tony L.; Dziak, K. J.; Huguet, Jesse; Knight, J. Scott; Reis, Carl; Wilson, Erin

    2014-08-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the JWST optics are tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. Tens of trucks full of custom test equipment are being delivered to the JSC, in addition to the large pieces built at the Center, and the renovation of the chamber itself. The facility is tested for the thermal stability control for optical measurements and contamination control during temperature transitions. The support for the OTIS is also tested for thermal stability control, load tested in the cryogenic environment, and tested for isolation of the background vibration for the optical measurements. The Center of Curvature Optical Assembly (COCOA) is tested for the phasing and wavefront error (WFE) measurement of an 18 segment mirror and for cryogenic operation. A photogrammetry system is tested for metrology performance and cryogenic operation. Test mirrors for auto-collimation measurements are tested for optical performance and cryogenic operation. An assembly of optical test sources are calibrated and tested in a cryogenic environment. A Pathfinder telescope is used as a surrogate telescope for cryogenic testing of the OTIS optical test configuration. A Beam Image Analyzer (BIA) is used as a surrogate ISIM with the Pathfinder in this test. After briefly describing the OTIS optical test configuration, the paper will overview the list and configuration of significant tests of the equipment leading up to the OTIS test.

  11. Photodetectors for Scintillator Proportionality Measurement

    SciTech Connect

    Moses, William W.; Choong, Woon-Seng; Hull, Giulia; Payne, Steve; Cherepy, Nerine; Valentine, J.D.

    2010-10-18

    We evaluate photodetectors for use in a Compton Coincidence apparatus designed for measuring scintillator proportionality. There are many requirements placed on the photodetector in these systems, including active area, linearity, and the ability to accurately measure low light levels (which implies high quantum efficiency and high signal-to-noise ratio). Through a combination of measurement and Monte Carlo simulation, we evaluate a number of potential photodetectors, especially photomultiplier tubes and hybrid photodetectors. Of these, we find that the most promising devices available are photomultiplier tubes with high ({approx}50%) quantum efficiency, although hybrid photodetectors with high quantum efficiency would be preferable.

  12. Gauging Systems Monitor Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

  13. Cryogenic Thermal Distortion Model Validation for the JWST ISIM Structure

    NASA Technical Reports Server (NTRS)

    Johnston, John; Cofie, Emmanuel

    2011-01-01

    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope consisting of an Optical telescope element (OTE), Integrated science instrument module (ISIM), a Spacecraft, and a Sunshield. The Integrated Science Instrument Module (ISIM) consists of the JWST science instruments (NIRCam, MIRI, NIRSpec), a fine guidance sensor (FGS), the ISIM Structure, and thermal and electrical subsystems. JWST's instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, and the instruments and telescope operate at cryogenic temperatures (approximately 35 K for the instruments).

  14. Characterization of large area PMTs at cryogenic temperature for rare event physics experiments

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Raselli, G. L.; Rossella, M.

    2014-03-01

    We carried out a careful evaluation of the behaviour of the large cathode area Hamamatsu R5912-MOD and R5912-2-MOD photomultiplier tubes operating at cryogenic temperature. The measurements were focused on evaluating the parameters which mainly characterize the operating performances of the devices down to 77K. The results that we obtained demonstrate that both photomultipliers models are suited, with some distinguishing characteristics, for light detection in such unconventional operating conditions, certifying the devices for the direct measurement of scintillation light coming from noble-gas liquids in detectors dedicated to neutrino physics and Dark Matter research.

  15. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  16. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  17. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  18. Epoxy resins produce improved plastic scintillators

    NASA Technical Reports Server (NTRS)

    Markley, F. W.

    1967-01-01

    Plastic scintillator produced by the substitution of epoxy resins for the commonly used polystyrene is easy to cast, stable at room temperature, and has the desirable properties of a thermoset or cross-linked system. Such scintillators can be immersed directly in strong solvents, an advantage in many chemical and biological experiments.

  19. Binderless composite scintillator for neutron detection

    DOEpatents

    Hodges, Jason P [Knoxville, TN; Crow, Jr; Lowell, M [Oak Ridge, TN; Cooper, Ronald G [Oak Ridge, TN

    2009-03-10

    Composite scintillator material consisting of a binderless sintered mixture of a Lithium (Li) compound containing .sup.6Li as the neutron converter and Y.sub.2SiO.sub.5:Ce as the scintillation phosphor, and the use of this material as a method for neutron detection. Other embodiments of the invention include various other Li compounds.

  20. Extruded scintillator for the Calorimetry applications

    SciTech Connect

    Dyshkant, A.; Rykalin, V.; Pla-Dalmau, A.; Beznosko, D.

    2006-10-27

    An extrusion line has been installed and successfully operated at FNAL (Fermi National Accelerator Laboratory) in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new Facility will serve to further develop and improve extruded plastic scintillator. Recently progress has been made in producing co-extruded plastic scintillator, thus increasing the potential HEP applications of this Facility. The current R and D work with extruded and co-extruded plastic scintillator for a potential ALICE upgrade, the ILC calorimetry program and the MINERvA experiment show the attractiveness of the chosen strategy for future experiments and calorimetry. We extensively discuss extruded and co-extruded plastic scintillator in calorimetry in synergy with new Solid State Photomultipliers. The characteristics of extruded and co-extruded plastic scintillator will be presented here as well as results with non-traditional photo read-out.

  1. Extruded scintillator for the calorimetry applications

    SciTech Connect

    Dyshkant, A.; Rykalin, V.; Pla-Dalmau, A.; Beznosko, D.; /SUNY, Stony Brook

    2006-08-01

    An extrusion line has been installed and successfully operated at FNAL (Fermi National Accelerator Laboratory) in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new Facility will serve to further develop and improve extruded plastic scintillator. Recently progress has been made in producing co-extruded plastic scintillator, thus increasing the potential HEP applications of this Facility. The current R&D work with extruded and co-extruded plastic scintillator for a potential ALICE upgrade, the ILC calorimetry program and the MINERvA experiment show the attractiveness of the chosen strategy for future experiments and calorimetry. We extensively discuss extruded and co-extruded plastic scintillator in calorimetry in synergy with new Solid State Photomultipliers. The characteristics of extruded and co-extruded plastic scintillator will be presented here as well as results with non-traditional photo read-out.

  2. Scintillation proximity assay using polymeric membranes

    SciTech Connect

    Mansfield, R.K.

    1992-01-01

    Liquid scintillation counting (LSC) is typically used to quantify electron emitting isotopes. In LSC, radioactive samples are dissolved in an organic fluor solution (scintillation cocktail) to ensure that the label is close enough to the fluor molecules to be detected. Although efficient, scintillation cocktail is neither specific or selective for samples labeled with the same radioisotope. Scintillation cocktail is flammable posing significant health risks to the user and is expensive to purchase and discard. Scintillation Proximity Assay (SPA) is a radioanalytical technique where only those radiochemical entities (RCE's) bound to fluor containing matrices are detected. Only bound RCE's are in close enough proximity the entrapped fluor molecules to induce scintillations. Unbound radioligands are too far removed from the fluor molecules to be detected. The research in this dissertation focused on the development and evaluation of fluor-containing membranes (scintillation proximity membranes, SP membranes) to be used for specific radioanalytical techniques without using scintillation cocktail. Polysulfone and PVC SP membranes prepared in our laboratory were investigated for radioimmunossay (RIA) where only bound radioligand is detected, thereby eliminating the separation step impeding the automation of RIA. These SP membranes performed RIA where the results were nearly identical to commercial SP microbeads. SP membranes functionalized with quaternary ammonium hydroxide moieties were able to trap and quantify [sup 14]CO[sub 2] without using liquid scintillation cocktail. RCE's bound in the pore structure of SP membranes are intimate with the entrapped fluor providing the geometry needed for high detection efficiencies. Absorbent SP membranes were used in radiation surveys and were shown to be as effective as conventional survey techniques using filter paper and scintillation cocktail.

  3. Scintillation Effects on Space Shuttle GPS Data

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Kramer, Leonard

    2001-01-01

    Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.

  4. The improved scintillation crystal lead tungstate scintillation for PET

    NASA Astrophysics Data System (ADS)

    Wan, Youbao; WU, Rurong; Xiao, Linrong; Zhang, Jianxin; Yang, Peizhi; Yan, Hui

    2009-07-01

    As a valuable material for the detecting of γ-ray, PbWO4 and BaF2:PbWO4 crystals were grown by a novel multi-crucible temperature gradient system developed by ourselves. Utilizing a topical partial heating method, this system can form a topical partial high temperature in its hearth. Thus this system could melt raw materials in step by step as requirement. The advantage of this method is that there would be solid obstruct left on the melt in the procedure of the crystal growing up. The left obstruct could prevent the volatilization of the component in the melt. Hence it is helpful for the composition homogenization in the crystal. The system also offers a sustaining device for multi-crucibles and thus it can grow many crystals simultaneity. The optical properties and scintillation properties of the crystals were studied. The results reveal that the ions doping improves the scintillation properties of the crystal. The transmittance spectra show that the transmittance of BaF2:PbWO4 crystals are better than that of PbWO4 crystals. For the PbWO4 crystals, their absorption edge is at 325nm, and their maximum transmittance is 68%. For the BaF2:PbWO4 crystals, their absorption edge is at 325nm and their maximum transmittance is upto76%. The X-ray excited luminescence spectra shows that the luminescence peak is at 420nm for the samples of PbWO4 crystal while the peak is at 430nm for the samples of BaF2:PbWO4 crystal respectively. The luminescence intensity of the samples of BaF2:PbWO4 crystal is about two times than that of PbWO4 crystal. And their peak shape is different for the two kind of crystal. The light yield of BaF2:PbWO4 crystals is about 2.9 times than that of PbWO4 crystal Analyzing these scintillation properties, we find that the VPb 3+ and VO- defects do harm for the optical properties of the crystal. Ions doping method could reduce the defect concentration and improving its illumination performance of the crystal. Specially, the doped F- ions in O2- site can

  5. Filling an Unvented Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Beck, Phillip; Willen, Gary S.

    1987-01-01

    Slow-cooling technique enables tank lacking top vent to be filled with cryogenic liquid. New technique: pressure buildup prevented through condensation of accumulating gas resulting in condensate being added to bulk liquid. Filling method developed for vibration test on vacuum-insulated spherical tank containing liquid hydrogen.

  6. Survey of cryogenic semiconductor devices

    SciTech Connect

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  7. Cryogenics Testbed Technology Focus Areas

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2000-01-01

    Our mission is to bring together the mutual elements of research, industry, and training in the field of cryogenics to advance technology development for the spaceports of the future. Successful technology and productive collaboration comes from these three ingredients working together in a triangle of interaction.

  8. Status Of Sorption Cryogenic Refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.

  9. Background Reduction in Cryogenic Detectors

    SciTech Connect

    Bauer, Daniel A.

    2005-09-08

    This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

  10. Foam shell cryogenic ICF target

    DOEpatents

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  11. Dust Charge in Cryogenic Environment

    SciTech Connect

    Kubota, J.; Kojima, C.; Sekine, W.; Ishihara, O.

    2008-09-07

    Dust charges in a complex helium gas plasma, surrounded by cryogenic liquid, are studied experimentally. The charge is determined by frequency and equilibrium position of damped dust oscillation proposed by Tomme et al.(2000) and is found to decrease with ion temperature of the complex plasma.

  12. Background reduction in cryogenic detectors

    SciTech Connect

    Bauer, Daniel A.; /Fermilab

    2005-04-01

    This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

  13. Operation of large cryogenic systems

    SciTech Connect

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab.

  14. Sources of Cryogenic Data and Information

    NASA Astrophysics Data System (ADS)

    Mohling, R. A.; Hufferd, W. L.; Marquardt, E. D.

    It is commonly known that cryogenic data, technology, and information are applied across many military, National Aeronautics and Space Administration (NASA), and civilian product lines. Before 1950, however, there was no centralized US source of cryogenic technology data. The Cryogenic Data Center of the National Bureau of Standards (NBS) maintained a database of cryogenic technical documents that served the national need well from the mid 1950s to the early 1980s. The database, maintained on a mainframe computer, was a highly specific bibliography of cryogenic literature and thermophysical properties that covered over 100 years of data. In 1983, however, the Cryogenic Data Center was discontinued when NBS's mission and scope were redefined. In 1998, NASA contracted with the Chemical Propulsion Information Agency (CPIA) and Technology Applications, Inc. (TAI) to reconstitute and update Cryogenic Data Center information and establish a self-sufficient entity to provide technical services for the cryogenic community. The Cryogenic Information Center (CIC) provided this service until 2004, when it was discontinued due to a lack of market interest. The CIC technical assets were distributed to NASA Marshall Space Flight Center and the National Institute of Standards and Technology. Plans are under way in 2006 for CPIA to launch an e-commerce cryogenic website to offer bibliography data with capability to download cryogenic documents.

  15. A Magnetically Coupled Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  16. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE PAGES

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  17. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    SciTech Connect

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % and 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.

  18. 3D Printed Scintillators For Use in Field Emission Detection and Other Nuclear Physics Experiments

    NASA Astrophysics Data System (ADS)

    Ficenec, Karen

    2015-10-01

    In accelerator cavities, field emission electrons - electrons that get stripped away from the cavity walls due to the high electromagnetic field necessary to accelerate the main beam - are partially accelerated and can crash into the cavity walls, adding to the heat-load of the cryogenic system. Because these field electrons emit gamma rays when bent by the electromagnetic field, a scintillator, if made to fit the cavity enclosure, can detect their presence. Eliminating the waste of subtractive manufacturing techniques and allowing for the production of unique, varied shapes, 3D printing of scintillators may allow for an efficient detection system. UV light is used to start a chemical polymerization process that links the monomers of the liquid resin together into larger, intertwined molecules, forming the solid structure. Each shape requires slightly different calibration of its optimal printing parameters, such as slice thickness and exposure time to UV light. Thus far, calibration parameters have been optimized for cylinders of 20 mm diameter, cones of 30 mm diameter and 30 mm height, rectangular prisms 30 by 40 by 10 mm, and square pyramids 20 mm across. Calibration continues on creating holes in the prints (for optical fibers), as well as shapes with overhangs. Scintill This work was supported in part by the National Science Foundation under Grant No. PHY-1405857.

  19. Study and design of a cryogenic propellant acquisition system

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    The development of an acquisition system for supplying subcooled liquid hydrogen and liquid oxygen under in-orbit conditions is discussed. The system will be applied to the integrated cryogenic feed requirements for space systems such as a space shuttle cryogenic auxiliary propulsion system (APS) and main propulsion for an advanced spacecraft propulsion module (ASPM). Concepts that use the favorable surface tension characteristics of fine mesh screens are emphasized. The specific objectives of the program are: (1) to evolve conceptual designs for candidate acquisition systems, (2) to formulate the analytical models needed to analyze the systems, and (3) to generate parametric data on overall candidate system performance, characteristics, and operational features in sufficient depth to establish critical design problems and criteria to support a sound system design and evaluation.

  20. Equatorial scintillations: advances since ISEA-6

    SciTech Connect

    Not Available

    1985-01-01

    Our understanding of the morphology of equatorial scintillations has advanced due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the controlling the magnitude of scintillations has been recognized by interpreting scintillation observations inthe light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation. A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type was identified. These irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (approx. several hours) of uninterrrupted scintillations.

  1. Scintillation Breakdowns in Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Scintillations in solid tantalum capacitors are momentarily local breakdowns terminated by a self-healing or conversion to a high-resistive state of the manganese oxide cathode. This conversion effectively caps the defective area of the tantalum pentoxide dielectric and prevents short-circuit failures. Typically, this type of breakdown has no immediate catastrophic consequences and is often considered as nuisance rather than a failure. Scintillation breakdowns likely do not affect failures of parts under surge current conditions, and so-called "proofing" of tantalum chip capacitors, which is a controllable exposure of the part after soldering to voltages slightly higher than the operating voltage to verify that possible scintillations are self-healed, has been shown to improve the quality of the parts. However, no in-depth studies of the effect of scintillations on reliability of tantalum capacitors have been performed so far. KEMET is using scintillation breakdown testing as a tool for assessing process improvements and to compare quality of different manufacturing lots. Nevertheless, the relationship between failures and scintillation breakdowns is not clear, and this test is not considered as suitable for lot acceptance testing. In this work, scintillation breakdowns in different military-graded and commercial tantalum capacitors were characterized and related to the rated voltages and to life test failures. A model for assessment of times to failure, based on distributions of breakdown voltages, and accelerating factors of life testing are discussed.

  2. A fast profile monitor with scintillating fiber hodoscopes for high-intensity photon beams

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Fujimura, H.; Hamano, H.; Hashimoto, R.; Honda, Y.; Ishida, T.; Kaida, S.; Kanda, H.; Kido, S.; Matsumura, Y.; Miyabe, M.; Mizutani, K.; Nagasawa, I.; Nakamura, A.; Nanbu, K.; Nawa, K.; Ogushi, S.; Shibasaki, Y.; Shimizu, H.; Sugai, H.; Suzuki, K.; Takahashi, K.; Takahashi, S.; Taniguchi, Y.; Tokiyasu, A. O.; Tsuchikawa, Y.; Yamazaki, H.

    2016-03-01

    A fast beam-profile monitor has been developed for high-energy photon beamlines at the Research Center for Electron Photon Science, Tohoku University. The position of the photon converted into an electron-positron pair in a 0.5 mm-thick aluminum plate is measured with two hodoscopes made of scintillating fibers with cross-sections of 3 × 3mm2. Events in which charged particles are produced upstream are rejected with a charge veto plastic scintillator placed in front of the plate, and pair-production events are identified with a trigger plastic scintillator placed behind the plate. The position is determined by a developed logic module with a field-programmable gate array. The dead time for processing an event is 35 ns, and a high data acquisition efficiency (~ 100 %) can be achieved with this monitor for high-intensity photon beams corresponding to 20 MHz tagging signals.

  3. Scintillation observations near the sun

    NASA Technical Reports Server (NTRS)

    Coles, W. A.; Rickett, B. J.; Scott, S. L.

    1978-01-01

    Results on the electron density spectrum, the random velocity and the mean velocity of the solar wind in the region from 5 to 100 solar radii are presented. Results are based on intensity scintillations of incoherent radio sources at different locations and different radio frequencies. The shape of the electron density irregularity spectrum is shown to be well modeled by a power law in wavenumber with a slope that abruptly steepens at higher wavenumbers. This two slope power law model is shown to have a break (defined as the wavenumber of the change of slope) that increases with decreasing distance from the Sun. The fractional random velocity is shown to be insignificant at distances of greater than 40 solar radii, but shows a steady increase with decreasing solar distance inside of 40 solar radii.

  4. New Organic Scintillators for Neutron Detection

    SciTech Connect

    Iwanowska, Joanna; Szczeniak, Tomasz

    2010-01-05

    This paper present the current work on neutron detection in Soltan Institute for Nuclear Studies. Lately, we have focused our research on the development of new organic scintillators including liquid scintillators for neutron detection and associated measurements. We measured liquid scintillators (also {sup 10}B-doped for thermal neutron detection){sup 3}He tubes, composites, etc. Response of the following detectors on thermal neutrons, fast neutrons and gamma radiation - the pulse shape discrimination (PSD)- has been mainly performed by means of a zero-crossing (ZC) method.

  5. Photodiode scintillation detector for radiac instrumentation

    NASA Astrophysics Data System (ADS)

    Nirschl, Joseph C.

    1984-10-01

    Scintillation detectors have traditionally employed photomultiplier tubes (PMTs), with the attendant drawback of relatively high cost and need for a high voltage supply. This article reviews evaluation of a photodiode type scintillation detector, which exhibits promising features (small size and low power) for radiation survey meter application. Gamma radiation response characteristics, both for pulse and dc-mode of detector operation are presented, along with an example of a simple, high-range digital radiacmeter (breadboard design), utilizing this photodiode scintillation detector in conjunction with a single-chip A/D converter/LCD display driver and featuring low power demand (15 mW).

  6. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  7. Measurement of light emission in scintillation vials

    SciTech Connect

    Duran Ramiro, M. Teresa; Garcia-Torano, Eduardo

    2005-09-15

    The efficiency and energy resolution of liquid scintillation counting (LSC) systems are strongly dependent on the optical characteristics of scintillators, vials, and reflectors. This article presents the results of measurements of the light-emission profile of scintillation vials. Two measurement techniques, autoradiographs and direct measurements with a photomultiplier tube, have been used to obtain light-emission distribution for standard vials of glass, etched glass and polyethylene. Results obtained with both techniques are in good agreement. For the first time, the effect of the meniscus in terms of light contribution has been numerically estimated. These results can help design LSC systems that are more efficient in terms of light collection.

  8. Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations

    SciTech Connect

    Sótér, A.; Todoroki, K.; Kobayashi, T.; Barna, D.; Horváth, D.; Hori, M.

    2014-02-15

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 × 1 mm{sup 2}. The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ≈ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen at high annihilation rates of the antiprotons.

  9. Cryogenics and the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management

  10. Zero Boil Off Cryogen Storage for Future Launchers

    NASA Technical Reports Server (NTRS)

    Valentian, D.; Plachta, D.; Kittel, P.; Hastings, L. J.; Salerno, Louis J.; Arnold, James O. (Technical Monitor)

    2001-01-01

    be to actively cool the shield in the hydrogen tank to reduce the parasitic losses. This would allow the use of less expensive, presently available coolers (80 K vs. 20 K) and potentially simplify the system by requiring only a single compressor on the pad amd a single disconnect line. The compressor could be a hefty commercial unit, with only the cold head requiring expensive flight development and qualification. While this is actually a reduced boil off configuration rather than a zero-boil off case, if the cryogen loss could be cut significantly, the increase in hold time and reduced need for draining and refilling the propellant tanks could meet the vehicle operations needs in the majority of instances.Bearing in mind the potential benefits of ZBO, NASA AMES and SNECMA Moteurs decided to exchange their technical views on the subject. This paper will present a preliminary analysis for a multi-mission module using a fairly low thrust cryogenic engine and ZBO during cruise. Initial mass is 5.5. tons (in ETO). The cryogenic engine will be used near each periapsis in order to minimize the AV requirement. The payload obtained by this propulsion system is compared to a classical storable bipropellant propulsion system for several cases (e. g. Mars lander, Jupiter orbiter, Saturn orbiter). For the Jupiter and Saturn cases, the power source could be an RTG or a large parabolic mirror illuminating a solar panel. It is shown -that - due to its much larger specific impulse - the cryogenic ZBO solution provides much higher payloads, especially for exploration missions involving landing on planets, asteroids, comets, or other celestial bodies.

  11. New observations of scintillation climatology from the Scintillation Network Decision Aid (SCINDA)

    NASA Astrophysics Data System (ADS)

    Su, Y.; Caton, R. G.; Wiens, K.; Groves, K. M.

    2012-12-01

    The Scintillation Network Decision Aid (SCINDA) was established with three ground sites in the mid-1990's by the Air Force Research Laboratory and has continued to grow into a global scintillation observation network. This system consists of an array of VHF and GPS receivers which continually measure scintillation in the equatorial region. In the past few years, the extended network of ground stations has expanded into the African sector. Initial results from yearly scintillation data obtained from two VHF receivers in Narobi, Kenya and Bahir Dar, Ethiopia in 2011 indicate the presence of scintillation activity throughout the June-July -August (northern summer) season which is inconsistent with current state-of-the-art ionospheric climatology models. It is well known that seasonal equatorial scintillation patterns vary with longitude based on geographical location. For example, the scintillation activity at VHF frequencies are absent in the Pacific sector during the months of November to February while observations from South America show nearly continuous scintillation during this same time period. With little to no ground-based observations, the scintillation climatology over the African region has not been well understood. In the paper, we will present S4 measurements various longitudinal sectors, including the first look at solar maximum type conditions over the African sector, and provide comparisons with output from a global climatology model.

  12. Equatorial scintillation of satellite signals at uhf and l-band for two different elevation angles. Technical report 1 Jan 79-1 May 80

    SciTech Connect

    Paulson, M.R.

    1980-05-01

    An investigation of the equatorial scintillation of satellite signals at uhf and L-band for 10-and 50-degree elevation angles is reported. diurnal and seasonal variations of scintillation, as well as solar cycle dependence, are given. The occurrence and intensity of scintillations are compared for the two frequencies and for the two elevation angles. A number of fade duration distributions for fades greater than 6 and greater than 12 dB below the undisturbed signal are shown for each frequency and each satellite. A periodicity in the occurrence of scintillation is reported and is attributed to the gravitation field of the moon. It is proposed that the moon's gravity affects the occurrence and intensity of equatorial scintillation by modulating the velocity of the zonal winds at ionospheric heights.

  13. Scintillations of partially coherent Laguerre Gaussian beams

    NASA Astrophysics Data System (ADS)

    Yüceer, M.; Eyyuboğlu, H. T.; Lukin, I. P.

    2010-12-01

    Scintillations of Laguerre-Gaussian (LG) beams for weak atmospheric turbulence conditions are derived for on-axis receiver positions by using Huygens-Fresnel (HF) method in semi-analytic fashion. Numerical evaluations indicate that at the fully coherent limit, higher values of radial mode numbers will give rise to more scintillations, at medium and low partial coherence levels, particularly at longer propagation distances, scintillations will fall against rises in radial mode numbers. At small source sizes, the scintillations of LG beams having full coherence will initially rise, reaching saturation at large source sizes. For LG beams with low partial coherence levels, a steady fall toward the larger source sizes is observed. Partially coherent beams of medium levels generally exhibit a rising trend toward the large source sizes, also changing the respective positions of the related curves. Beams of low coherence levels will be less affected by the variations in the refractive index structure constant.

  14. Cryogenic High-Sensitivity Magnetometer

    NASA Technical Reports Server (NTRS)

    Day, Peter; Chui, Talso; Goodstein, David

    2005-01-01

    A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.

  15. A cryogenic receiver for EPR.

    PubMed

    Narkowicz, R; Ogata, H; Reijerse, E; Suter, D

    2013-12-01

    Cryogenic probes have significantly increased the sensitivity of NMR. Here, we present a compact EPR receiver design capable of cryogenic operation. Compared to room temperature operation, it reduces the noise by a factor of ≈2.5. We discuss in detail the design and analyze the resulting noise performance. At low microwave power, the input noise density closely follows the emission of a cooled 50Ω resistor over the whole measurement range from 20K up to room temperature. To minimize the influence of the microwave source noise, we use high microwave efficiency (≈1.1-1.7mTW(-1/2)) planar microresonators. Their efficient conversion of microwave power to magnetic field permits EPR measurements with very low power levels, typically ranging from a few μW down to fractions of nW.

  16. Advanced cryogenic tank development status

    NASA Astrophysics Data System (ADS)

    Braun, G. F.; Tack, W. T.; Scholz, E. F.

    1993-06-01

    Significant advances have been made in the development of materials, structures, and manufacturing technologies for the next generation of cryogenic propellant tanks under the auspices of a joint U.S. Air Force/NASA sponsored advanced development program. This paper summarizes the achievements of this three-year program, particularly in the evolution and properties of Weldalite 049, net shape component technology, Al-Li welding technology, and efficient manufacturing concepts. Results of a recent mechanical property characterization of a full-scale integrally stiffened barrel panel extrusion are presented, as well as plans for an additional weld process optimization program using response surface design of experiment techniques. A further discussion is given to the status of hardware completed for the Advanced Manufacturing Development Center and Martin Marietta's commitment to the integration of these technologies into the production of low-cost, light-weight cryogenic propellant tanks.

  17. Cryogenic VPH grisms for MOIRCS

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takashi; Ichiyama, Kotaro; Ebizuka, Noboru; Murata, Chihiro; Taniguchi, Yuichiro; Okura, Tsutomu; Harashima, Masakazu; Uchimoto, Yuka Katsuno; Maruyama, Miyoko; Iye, Masanori; Shimasaku, Kazuhiro

    2008-07-01

    We present the development and first astronomical applications of VPH grisms which are now operated at cryogenic temperature in MOIRCS, a Cassegrain near-infrared instrument of the Subaru Telescope. We designed and fabricated the VPH grisms with a resolving power ~3000 for the use in near-infrared bands. The VPH grating, encapsulated in BK7 glass, is glued between two ZnSe prisms with vertex angle of 20 deg. After repeating several thermal cycles down to ~100 K carefully enough not to cause irreparable damage on the grism during cooling, we evaluated the performance at cryogenic temperature in the laboratory and found no deterioration and no large difference in the performance from that measured in room temperature. Based on commissioning observations with MOIRCS, we have confirmed the high efficiency (~0.8) and the resolving power of the original design. Common use of the grisms is due to start in the second semester of 2008.

  18. The Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Sander, Joel

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) is an experiment to search for Weakly Interacting Massive Particles (WIMPs). The experiment initially was deployed at a shallow underground site, and is currently deployed at a deep underground site at the Soudan Mine in Minnesota. The detectors operate at cryogenic temperature, and are capable of distinguishing nuclear recoils from WIMP interactions from various backgrounds. The detectors are shielded from background by both active and passive elements. We will describe the components of the overall experiment, and focus on the novel data acquisition system that has been develop to control and monitor the experiment via the World Wide Web. Preliminary signals from the operation at Soudan will be discussed.

  19. Electromagnetic dampers for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Dirusso, Eliseo

    1988-01-01

    Cryogenic turbomachinery of the type used to pump high-pressure liquid hydrogen at -423 F and liquid oxygen at -297 F to the main engines of the Space Shuttle are subjected to lateral rotor vibrations from unbalance forces and transient loads. Conventional dampers which utilize viscous fluids such as lubricating oil cannot be used in turbopumps because the bearing components are filled with either liquid hydrogen or liquid oxygen, which have viscosity comparable to air and, therefore, are not effective in viscous dampers. Electromagentic dampers are currently being explored as a means of providing damping in cryogenic turbopumps because their damping effectiveness increases as temperature decreases and because they are compatible with the liquid hydrogen or liquid oxygen in the turbopumps.

  20. Cryogenic Flange and Seal Evaluation

    NASA Technical Reports Server (NTRS)

    Ramirez, Adrian

    2014-01-01

    The assembly of flanges, seals, and pipes are used to carry cryogenic fluid from a storage tank to the vehicle at launch sites. However, after a certain amount of cycles these raised face flanges with glass-filled Teflon gaskets have been found to have torque relaxation and are as a result susceptible to cryogenic fluid leakage if not re-torqued. The intent of this project is to identify alternate combinations of flanges and seals which may improve thermal cycle performance and decrease re-torque requirements. The general approach is to design a test fixture to evaluate leak characteristics between spiral and concentric serrations and to test alternate flange and seal combinations. Due to insufficient time, it was not possible to evaluate these different types of combinations for the combination that improved thermal cycle performance the most. However, the necessary drawings for the test fixture were designed and assembled along with the collection of the necessary parts.

  1. Cryogenic moderator simulations : confronting reality.

    SciTech Connect

    Iverson, E. B.

    1999-01-06

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities.

  2. Cryogenic properties of unidirectional composites

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Golda, M.

    The tensile, compressive, fatigue, thermal expansion, thermal conductivity and specific heat of unidirectional laminates reinforced with boron, alumina, aramid, S-glass, E-glass, and high strength, high modulus and medium modulus carbon fibres are reviewed. The ratio of strength to thermal conductivity is used to assess the suitability of various fibre-reinforced laminates for supporting struts (experiencing compression) or straps (experiencing tension) at cryogenic temperatures. The relationships between laminate properties and reinforcement fibres are discussed.

  3. Insulating Cryogenic Pipes With Frost

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Bova, J. A.

    1985-01-01

    Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

  4. Ternary liquid scintillator for optical fiber applications

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  5. Current status on plastic scintillators modifications.

    PubMed

    Bertrand, Guillaume H V; Hamel, Matthieu; Sguerra, Fabien

    2014-11-24

    Recent developments of plastic scintillators are reviewed, from 2000 to March 2014, distributed in two different chapters. First chapter deals with the chemical modifications of the polymer backbone, whereas modifications of the fluorescent probe are presented in the second chapter. All examples are provided with the scope of detection of various radiation particles. The main characteristics of these newly created scintillators and their detection properties are given. PMID:25335882

  6. Liquid scintillators for optical fiber applications

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2, 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudo-cumene. The use of BIBUQ as an additional or primary solute is also disclosed.

  7. Multi-GNSS for Ionospheric Scintillation Studies

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2015-12-01

    GNSS have been widely used for ionospheric monitoring. We anticipate over 160 GNSS satellites broadcasting 400 signals by 2023, nearly double the number today. With their well-defined signal structures, high spatial density and spectral diversity, GNSS offers low cost and distributed passive sensing of ionosphere effects. There are, however, many challenges to utilize GNSS resources to characterize and forecast ionospheric scintillation. Originally intended for navigation purposes, GNSS receivers are designed to filter out nuisance effects due to ionosphere effects. GNSS measurements are plagued with errors from multipath, oscillator jitters, processing artifacts, and neutral atmosphere effects. Strong scintillation events are often characterized by turbulent structures in ionosphere, causing simultaneous deep amplitude fading and abrupt carrier phase changes. The combined weak signal and high carrier dynamics imposes conflicting requirements for GNSS receiver design. Therefore, GNSS receivers often experience cycle slips and loss of lock of signals during strong scintillation events. High quality, raw GNSS signals bearing space weather signatures and robust receiver algorithms designed to capture these signatures are needed in order for GNSS to be a reliable and useful agent for scintillation monitoring and forecasting. Our event-driven, reconfigurable data collection system is designed to achieve this purpose. To date, our global network has collected ~150TB of raw GNSS data during space weather events. A suite of novel receiver processing algorithms has been developed by exploitating GNSS spatial, frequency, temporal, and constellation diversity to process signals experiencing challenging scintillation impact. The algorithms and data have advanced our understanding of scintillation impact on GNSS, lead to more robust receiver technologies, and enabled high spatial and temporal resolution depiction of ionosphere responses to solar and geomagnetic conditions. This

  8. GNSS station characterisation for ionospheric scintillation applications

    NASA Astrophysics Data System (ADS)

    Romano, Vincenzo; Spogli, Luca; Aquino, Marcio; Dodson, Alan; Hancock, Craig; Forte, Biagio

    2013-10-01

    Ionospheric scintillations are fluctuations in the phase and amplitude of the signals from GNSS (Global Navigation Satellite Systems) occurring when they cross regions of electron density irregularities in the ionosphere. Such disturbances can cause serious degradation of several aspects of GNSS system performance, including integrity, accuracy and availability. The two indices adopted worldwide to characterise ionospheric scintillations are: the amplitude scintillation index, S4, which is the standard deviation of the received power normalised by its mean value, and the phase scintillation index, σΦ, which is the standard deviation of the de-trended carrier phase. Collaborative work between NGI and INGV supports a permanent network of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers that covers a wide range of latitudes in the northern European sector. Data from this network has contributed significantly to several papers during the past few years (see e.g. De Franceschi et al., 2008; Aquino et al., 2009; Spogli et al., 2009, 2010; Alfonsi et al., 2011). In these investigations multipath effects and noise that contaminate the scintillation measurements are largely filtered by applying an elevation angle threshold. A deeper analysis of the data quality and the development of a more complex filtering technique can improve the results obtained so far. The structures in the environment of each receiver in the network which contaminate scintillation measurements should be identified in order to improve the quality of the scintillation and TEC data by removing error sources due to the local environment. The analysis in this paper considers a data set characterised by quiet ionospheric conditions of the mid-latitude station located in Nottingham (UK), followed by a case study of the severe geomagnetic storm, which occurred in late 2003, known generally as the "Halloween Storm".

  9. Crystal growth and scintillation properties of strontium iodide scintillators

    SciTech Connect

    van Loef, Edgar; Wilson, Cody; Cherepy, Nerine; Payne, Steven; Choong, Woon-Seng; Moses, William W.; Shah, Kanai

    2009-06-01

    Single crystals of SrI{sub 2}:Eu and SrI{sub 2}:Ce/Na were grown from anhydrous iodides by the vertical Bridgman technique in evacuated silica ampoules. Growth rates were of the order of 5-30 mm/day. Radioluminescence spectra of SrI{sub 2}:Eu and SrI{sub 2}:Ce/Na exhibit a broad band due to Eu{sup 2+} and Ce{sup 3+} emission, respectively. The maximum in the luminescence spectrum of SrI{sub 2}:Eu is found at 435 nm. The spectrum of SrI{sub 2}:Ce/Na exhibits a doublet peaking at 404 and 435 nm attributed to Ce{sup 3+} emission, while additional impurity - or defected - related emission is present at approximately 525 nm. The strontium iodide scintillators show very high light yields of up to 120,000 photons/MeV, have energy resolutions down to 3% at 662 keV (Full Width Half Maximum) and exhibit excellent light yield proportionality with a standard deviation of less than 5% between 6 and 460 keV.

  10. Positronium production in cryogenic environments

    NASA Astrophysics Data System (ADS)

    Cooper, B. S.; Alonso, A. M.; Deller, A.; Liszkay, L.; Cassidy, D. B.

    2016-03-01

    We report measurements of positronium (Ps) formation following positron irradiation of mesoporous SiO2 films and Ge(100) single crystals at temperatures ranging from 12-700 K. As both of these materials generate Ps atoms via nonthermal processes, they are able to function as positron-positronium converters at cryogenic temperatures. Our data show that such Ps formation is possibly provided the targets are not compromised by adsorption of residual gas. In the case of SiO2 films, we observe a strong reduction in the Ps formation efficiency following irradiation with UV laser light (λ =243.01 nm) below 250 K, in accordance with previous observations of radiation-induced surface paramagnetic centers. Conversely, Ps emission from Ge is enhanced by irradiation with visible laser light (λ =532 nm) via a photoemission process that persists at cryogenic temperatures. Both mesoporous SiO2 films and Ge crystals were found to produce Ps efficiently in cryogenic environments. Accordingly, these materials are likely to prove useful in several areas of research, including Ps mediated antihydrogen formation conducted in the cold bore of a superconducting magnet, the production of Rydberg Ps for experiments in which the effects of black-body radiation must be minimized, and the utilization of mesoporous structures that have been modified to produce cold Ps atoms.

  11. Cryogenic fluid management in space

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1988-01-01

    Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.

  12. Cryogenic microwave anisotropic artificial materials

    NASA Astrophysics Data System (ADS)

    Trang, Frank

    This thesis addresses analysis and design of a cryogenic microwave anisotropic wave guiding structure that isolates an antenna from external incident fields from specific directions. The focus of this research is to design and optimize the radome's constituent material parameters for maximizing the isolation between an interior receiver antenna and an exterior transmitter without significantly disturbing the transmitter antenna far field characteristics. The design, characterization, and optimization of high-temperature superconducting metamaterials constitutive parameters are developed in this work at X-band frequencies. A calibrated characterization method for testing arrays of split-ring resonators at cryogenic temperature inside a TE10 waveguide was developed and used to back-out anisotropic equivalent material parameters. The artificial material elements (YBCO split-ring resonators on MgO substrate) are optimized to improve the narrowband performance of the metamaterial radome with respect to maximizing isolation and minimizing shadowing, defined as a reduction of the transmitted power external to the radome. The optimized radome is fabricated and characterized in a parallel plate waveguide in a cryogenic environment to demonstrate the degree of isolation and shadowing resulting from its presence. At 11.12 GHz, measurements show that the HTS metamaterial radome achieved an isolation of 10.5 dB and the external power at 100 mm behind the radome is reduced by 1.9 dB. This work demonstrates the feasibility of fabricating a structure that provides good isolation between two antennas and low disturbance of the transmitter's fields.

  13. ZERODUR TAILORED for cryogenic application

    NASA Astrophysics Data System (ADS)

    Jedamzik, R.; Westerhoff, T.

    2014-07-01

    ZERODUR® glass ceramic from SCHOTT is known for its very low thermal expansion coefficient (CTE) at room temperature and its excellent CTE homogeneity. It is widely used for ground-based astronomical mirrors but also for satellite applications. Many reference application demonstrate the excellent and long lasting performance of ZERODUR® components in orbit. For space application a low CTE of the mirror material is required at cryogenic temperatures together with a good match of the thermal expansion to the supporting structure material. It is possible to optimize the coefficient of thermal expansion of ZERODUR® for cryogenic applications. This paper reports on measurements of thermal expansion of ZERODUR® down to cryogenic temperatures of 10 K performed by the PTB (Physikalisch Technische Bundesanstallt, Braunschweig, Germany, the national metrology laboratory). The ZERODUR® TAILORED CRYO presented in this paper has a very low coefficient of thermal expansion down to 70 K. The maximum absolute integrated thermal expansion down to 10 K is only about 20 ppm. Mirror blanks made from ZERODUR® TAILORED CRYO can be light weighted to almost 90% with our modern processing technologies. With ZERODUR® TAILORED CRYO, SCHOTT offers the mirror blank material for the next generation of space telescope applications.

  14. Scintillation Hole Observed by FORMOSAT-3/COSMIC

    NASA Astrophysics Data System (ADS)

    Chen, Shih Ping; Yenq Liu, Jann; Krishnanunni Rajesh, Panthalingal

    2013-04-01

    Ionospheric scintillations can significantly disturb satellite positioning, navigation, and communication. FORMOSAT-3/COSMIC provides the first 3-D global observation by solo instrument (radio occultation experiment, GOX). The GPS L-band amplitude fluctuation from 50Hz signal is received and recorded by F3/C GOX to calculate S4-index from 50-800km altitude. The global F3/C S4 index are subdivided and examined in various latitudes, longitudes, altitudes, and seasons during 2007-2012. The F-region scintillations in the equatorial and low-latitude ionosphere start around post-sunset period and often persist till post-midnight hours (0300 MLT, magnetic local time) during the March and September equinox as well as December Solstice seasons. The E-region scintillations reveal a clear solar zenith effect and yield pronounced intensities in mid-latitudes during the Summer Solstice seasons, which are well correlated with occurrences of the sporadic E-layer. It is interesting to find there is no scintillation, which is termed "scintillation hole", in the E region ranging from 80 to 130km altitude over the South Africa region, and become the most pronounced in November-January (December Solstice seasons or summer months). Other space-borne and ground based observations are use to confirm the existence of the scintillation hole.

  15. Ionospheric scintillation effects on single frequency GPS

    NASA Astrophysics Data System (ADS)

    Steenburgh, R. A.; Smithtro, C. G.; Groves, K. M.

    2008-04-01

    Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active within, although not limited to, a belt encircling the Earth within 20 degrees of the geomagnetic equator. As GPS applications and users increase, so does the potential for degraded precision and availability from scintillation. We examined amplitude scintillation data spanning 7 years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/American longitudinal sector as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K. in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at 1 min resolution. We examine diurnal, seasonal, and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  16. Design considerations for a scintillating plate calorimeter

    NASA Astrophysics Data System (ADS)

    Job, P. K.; Price, L. E.; Proudfoot, J.; Handler, T.; Gabriel, T. A.

    1992-06-01

    Results of the simulation studies for the design of a scintillating plate calorimeter for an SSC detector are presented. These simulation studies have been carried out with the CALOR89 code. The results show that both lead and uranium can yield good compensation in practical sampling geometries. However, the significant delayed energy release in the uranium systems can lead to a serious pile up problem at high rates. In the energy range under consideration, an iron-scintillator system is not compensating at any absorber to scintillator ratio. An inhomogeneous calorimeter with 4γ of lead-scintillator in a compensating configuration followed by 4γ of iron-scintillator with moderate sampling is found to perform as well as a homogeneous lead-scintillator compensating calorimeter. In such inhomogeneous systems the hadronic signal from different segments are weighted by a scheme based on minimum ionizing d E/d X. We show that, in a properly optimised three segment, compensation and good hadronic resolution can be achieved by appropriately weighting the signal from the segments.

  17. Shuttle cryogenic supply system optimization study. Volume 4: Cryogenic cooling in environmental control systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An analysis of cryogenic fluid cooling in the environmental control system of the space shuttle was conducted. The technique for treating the cryogenic fluid storage and supply tanks and subsystems as integrated systems was developed. It was concluded that a basic incompatibility exists between the heat generated and the cryogen usage rate and cryogens cannot be used to absorb the generated heat. The use of radiators and accumulators to provide additional cooling capability is recommended.

  18. Properties of cryogenically worked metals. [stainless steels

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Kiefer, T. F.

    1975-01-01

    A program was conducted to determine whether the mechanical properties of cryogenically worked 17-7PH stainless steel are suitable for service from ambient to cryogenic temperatures. It was determined that the stress corrosion resistance of the cryo-worked material is quite adequate for structural service. The tensile properties and fracture toughness at room temperature were comparable to titanium alloy 6Al-4V. However, at cryogenic temperatures, the properties were not sufficient to recommend consideration for structural service.

  19. Investigation of cryogenic rupture disc design

    NASA Technical Reports Server (NTRS)

    Keough, J. B.; Oldland, A. H.

    1973-01-01

    Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

  20. Wavelength-Shifting-Fiber Scintillation Detectors for Thermal Neutron Imaging at SNS

    SciTech Connect

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Lowell; Diawara, Yacouba; Ellis, E Darren; Funk, Loren L; Hannan, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A; Wang, Cai-Lin

    2012-01-01

    We have developed wavelength-Shifting-fiber Scintillator Detector (SSD) with 0.3 m2 area per module. Each module has 154 x 7 pixels and a 5 mm x 50 mm pixel size. Our goal is to design a large area neutron detector offering higher detection efficiency and higher count-rate capability for Time-Of-Flight (TOF) neutron diffraction in Spallation Neutron Source (SNS). A ZnS/6LiF scintillator combined with a novel fiber encoding scheme was used to record the neutron events. A channel read-out-card (CROC) based digital-signal processing electronics and position-determination algorithm was applied for neutron imaging. Neutron-gamma discrimination was carried out using pulse-shape discrimination (PSD). A sandwich flat-scintillator detector can have detection efficiency close to He-3 tubes (about 10 atm). A single layer flat-scintillator detector has count rate capability of 6,500 cps/cm2, which is acceptable for powder diffractometers at SNS.

  1. Cryogenics at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Weisend, J. G., II; Arnold, P.; Hees, J. Fydrych. W.; Jurns, J. M.; Wang, X. L.

    Cryogenics plays an important role at the European Spallation Source, a world class neutron science center, currently under construction in Lund, Sweden. Three principal applications of cryogenics are found at ESS. The SRF cryomodules of the ESS proton linac require cooling at 2 K, 4.5 K and 40 K; the hydrogenmoderator surrounding the target that produces neutrons, requires cooling via 16.5 K helium and LHe is required for many of the scientific instruments. These needs will be met by a set of three cryogenic refrigeration/liquefaction plants and an extensive cryogenic distribution system. Significant progress has been made on the ESS cryogenic system in preparation for the expected first beam on target in 2019. This work includes: funding of industry studies for the accelerator cryoplant, preliminary design of the cryogenic distribution system, investigation of possible in kind contributors and release of the invitation to tender for the accelerator cryoplant.This paper describes the requirements, design solutions and current status of the ESS cryogenic system. The planned recovery of waste heat from the cryogenic plants, a unique aspect of ESS, is described. The procurement of the cryogenic system, expected to be done via a combination of purchase via competitive bids and in kind contributions is also discussed.

  2. Eddy Current Damper for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Starin, Scott; Crosno, Fred

    2002-09-01

    This presentation considers the following topics: the need for cryogenic energy absorption, high speed damper characteristics, gearbox characteristics, composite assembly characteristics, performance tests, simulation models.

  3. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  4. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.

    1997-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splutters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX based on a high power YAG laser, is also given.

  5. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.; White, S.; Woody, C.; Bazilevsky, A.; Belikov, S.; Chernichenkov, S.; Denisov, A.; Gilitzky, Y.; Kochetkov, V.; Melnikov, Y.; Onuchin, V.; Semenov, A.; Shelikhov, V.; Soldatov, A.

    1998-11-09

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splitters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX, based on a high power YAG laser, is also given.

  6. The COLD-SAT Experiment for Cryogenic Fluid Management Technology

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Wachter, J. P.; Vento, D. M.

    1990-01-01

    Future national space transportation missions will depend on the use of cryogenic fluid management technology development needs for these missions. In-space testing will be conducted in order to show low gravity cryogenic fluid management concepts and to acquire a technical data base. Liquid H2 is the preferred test fluid due to its propellant use. The design of COLD-SAT (Cryogenic On-orbit Liquid Depot Storage, Acquisition, and Transfer Satellite), an Expendable Launch Vehicle (ELV) launched orbital spacecraft that will perform subcritical liquid H2 storage and transfer experiments under low gravity conditions is studied. An Atlas launch vehicle will place COLD-SAT into a circular orbit, and the 3-axis controlled spacecraft bus will provide electric power, experiment control, and data management, attitude control, and propulsive accelerations for the experiments. Low levels of acceleration will provide data on the effects that low gravity might have on the heat and mass transfer processes used. The experiment module will contain 3 liquid H2 tanks; fluid transfer, pressurization and venting equipment; and instrumentation.

  7. Design and performance of a cryogenic iris aperture mechanism

    NASA Astrophysics Data System (ADS)

    de Jonge, C.; Laauwen, W. M.; de Vries, E. A.; Smit, H. P.; Detrain, A.; Eggens, M. J.; Ferrari, L.; Dieleman, P.

    2014-07-01

    A cryogenic iris mechanism is under development as part of the ground calibration source for the SAFARI instrument. The iris mechanism is a variable aperture used as an optical shutter to fine-tune and modulate the absolute power output of the calibration source. It has 4 stainless steel blades that create a near-circular aperture in every position. The operating temperature is 4.5 Kelvin to provide a negligible background to the SAFARI detectors, and `hot spots' above 9K should be prevented. Cryogenic testing proved that the iris works at 4K. It can be used in a broad range of cryogenic optical instruments where optical throughput needs to be controlled. Challenges in the design include the low cooling power available (5mW) and low friction at cryogenic temperatures. The actuator is an `arc-type' rotary voice-coil motor. The use of flexural pivots creates a mono-stable mechanism with a resonance frequency at 26Hz. Accurate and fast position control with disturbance rejection is managed by a PID servo loop using a hall-sensor as input. At 4 Kelvin, the frequency is limited to 4Hz to avoid excess dissipation and heating. In this paper, the design and performance of the iris are discussed. The design was optimized using a thermal, magnetic and mechanical model made with COMSOL Finite Element Analysis software. The dynamical and state-space modeling of the mechanism and the concept of the electrical control are presented. The performance of the iris show good agreement to the analytical and COMSOL modeling.

  8. Conservation Strategies in the Genus Hypericum via Cryogenic Treatment

    PubMed Central

    Bruňáková, Katarína; Čellárová, Eva

    2016-01-01

    In the genus Hypericum, cryoconservation offers a strategy for maintenance of remarkable biodiversity, emerging from large inter- and intra-specific variability in morphological and phytochemical characteristics. Long-term cryostorage thus represents a proper tool for preservation of genetic resources of endangered and threatened Hypericum species or new somaclonal variants with unique properties. Many representatives of the genus are known as producers of pharmacologically important polyketides, namely naphthodianthrones and phloroglucinols. As a part of numerous in vitro collections, the nearly cosmopolitan Hypericum perforatum – Saint John’s wort – has become a suitable model system for application of biotechnological approaches providing an attractive alternative to the traditional methods for secondary metabolite production. The necessary requirements for efficient cryopreservation include a high survival rate along with an unchanged biochemical profile of plants regenerated from cryopreserved cells. Understanding of the processes which are critical for recovery of H. perforatum cells after the cryogenic treatment enables establishment of cryopreservation protocols applicable to a broad number of Hypericum species. Among them, several endemic taxa attract a particular attention due to their unique characteristics or yet unrevealed spectrum of bioactive compounds. In this review, recent advances in the conventional two-step and vitrification-based cryopreservation techniques are presented in relation to the recovery rate and biosynthetic capacity of Hypericum spp. The pre-cryogenic treatments which were identified to be crucial for successful post-cryogenic recovery are discussed. Being a part of genetic predisposition, the freezing tolerance as a necessary precondition for successful post-cryogenic recovery is pointed out. Additionally, a beneficial influence of cold stress on modulating naphthodianthrone biosynthesis is outlined. PMID:27200032

  9. Conservation Strategies in the Genus Hypericum via Cryogenic Treatment.

    PubMed

    Bruňáková, Katarína; Čellárová, Eva

    2016-01-01

    In the genus Hypericum, cryoconservation offers a strategy for maintenance of remarkable biodiversity, emerging from large inter- and intra-specific variability in morphological and phytochemical characteristics. Long-term cryostorage thus represents a proper tool for preservation of genetic resources of endangered and threatened Hypericum species or new somaclonal variants with unique properties. Many representatives of the genus are known as producers of pharmacologically important polyketides, namely naphthodianthrones and phloroglucinols. As a part of numerous in vitro collections, the nearly cosmopolitan Hypericum perforatum - Saint John's wort - has become a suitable model system for application of biotechnological approaches providing an attractive alternative to the traditional methods for secondary metabolite production. The necessary requirements for efficient cryopreservation include a high survival rate along with an unchanged biochemical profile of plants regenerated from cryopreserved cells. Understanding of the processes which are critical for recovery of H. perforatum cells after the cryogenic treatment enables establishment of cryopreservation protocols applicable to a broad number of Hypericum species. Among them, several endemic taxa attract a particular attention due to their unique characteristics or yet unrevealed spectrum of bioactive compounds. In this review, recent advances in the conventional two-step and vitrification-based cryopreservation techniques are presented in relation to the recovery rate and biosynthetic capacity of Hypericum spp. The pre-cryogenic treatments which were identified to be crucial for successful post-cryogenic recovery are discussed. Being a part of genetic predisposition, the freezing tolerance as a necessary precondition for successful post-cryogenic recovery is pointed out. Additionally, a beneficial influence of cold stress on modulating naphthodianthrone biosynthesis is outlined. PMID:27200032

  10. A Lifting Ball Valve for cryogenic fluid applications

    NASA Astrophysics Data System (ADS)

    Cardin, Joseph M.; Reinicke, Robert H.; Bruneau, Stephen D.

    1993-11-01

    Marotta Scientific Controls, Inc. has designed a Lifting Ball Valve (LBV) capable of both flow modulation and tight shutoff for cryogenic and other applications. The LBV features a thin-walled visor valving element that lifts off the seal with near axial motion before rotating completely out of the flow path. This is accomplished with a simple, robust mechanism that minimizes cost and weight. Conventional spherical rotating seats ar plagued by leakage due to 'scuffing' as the seal and seat slide against one another while opening. Cryogenic valves, which typically utilize plastic seals, are particularly susceptible to this type of damage. The seat in the LBV lifts off the seal without 'scuffing' making it immune to this failure mode. In addition, the LBV lifting mechanism is capable of applying the very high seating loads required to seal at cryogenic temperatures. These features make the LBV ideally suited for cryogenic valve applications. Another major feature of the LBV is the fact that the visor rotates completely out of the flow path. This allows for a smaller, lighter valve for a given flow capacity, especially for line sizes above one inch. The LBV is operated by a highly integrated 'wetted' DC brushless motor. The motor rotor is 'wetted' ion that it is immersed in the fluid. To ensure compatibility, the motor rotor is encased in a thin-walled CRES weldment. The motor stator is outside the fluid containment weldment and therefore is not in direct contact with the fluid. To preclude the potential for external leakage there are no static or dynamic seals or bellows across the pressure boundary. The power required to do the work of operating the valving mechanism is transmitted across the pressure boundary by electromagnetic interaction between the motor rotor and the stator. Commutation of the motor is accomplished using the output of a special 'wetted' resolver. This paper describes the design, operation, and element testing of the LBV.

  11. Ionosphere scintillations associated with features of equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.; Murthy, B. S.

    1979-01-01

    Amplitude scintillations of radio beacons aboard the ATS-6 satellite on 40 MHz, 140 MHz and 360 MHz recorded during the ATS-6 phase II at an equatorial station Ootacamund (dip 4 deg N) and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for scintillation activity. Only sporadic E events, other than Es-q, Es-c or normal E are found to be associated with intense daytime scintillations. Scintillations are also observed during night Es conditions. The amplitude spread is associated with strong scintillations on all frequencies while frequency spread causes weaker scintillations and that mainly at 40 MHz.

  12. Performance characterization of a new high resolution PET scintillation detector

    PubMed Central

    Foudray, A M K; Olcott, P D

    2013-01-01

    Performance of a new high resolution PET detection concept is presented. In this new concept, annihilation radiation enters the scintillator detectors edge-on. Each detector module comprises two 8 × 8 LYSO scintillator arrays of 0.91 × 0.91 × 1 mm3 crystals coupled to two position-sensitive avalanche photodiodes (PSAPDs) mounted on a flex circuit. Appropriate crystal segmentation allows the recording of all three spatial coordinates of the interaction(s) simultaneously with submillimeter resolution. We report an average energy resolution of 14.6 ± 1.7% for 511 keV photons at FWHM. Coincident time resolution was determined to be 2.98 ± 0.13 ns FWHM on average. The coincidence point spread function (PSF) has an average FWHM of 0.837 ± 0.049 mm (using a 500 μm spherical source) and is uniform across the arrays. Both PSF and coincident time resolution degrade when Compton interactions are included in the data. Different blurring factors were evaluated theoretically, resulting in a calculated PSF of 0.793 mm, in good agreement with the measured value. PMID:20844332

  13. Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.

  14. Cryogenic fluid management program flight concept definition

    NASA Technical Reports Server (NTRS)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  15. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery

    2014-01-01

    The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.

  16. Continuous-Reading Cryogen Level Sensor

    NASA Technical Reports Server (NTRS)

    Barone, F. E.; Fox, E.; Macumber, S.

    1984-01-01

    Two pressure transducers used in system for measuring amount of cryogenic liquid in tank. System provides continuous measurements accurate within 0.03 percent. Sensors determine pressure in liquid and vapor in tank. Microprocessor uses pressure difference to compute mass of cryogenic liquid in tank. New system allows continuous sensing; unaffected by localized variations in composition and density as are capacitance-sensing schemes.

  17. Neutron Detection with Cryogenics and Semiconductors

    SciTech Connect

    bell, Z.W.; Carpenter, D.A.; Cristy, S.S.; Lamberti, V.E.

    2005-03-10

    The common methods of neutron detection are reviewed with special attention paid to the application of cryogenics and semiconductors to the problem. The authors' work with LiF- and boron-based cryogenic instruments is described as well as the use of CdTe and HgI{sub 2} for direct detection of neutrons.

  18. Foam vessel for cryogenic fluid storage

    DOEpatents

    Spear, Jonathan D

    2011-07-05

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  19. Low Mn alloy steel for cryogenic service

    DOEpatents

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  20. Radar detection during scintillation. Technical report

    SciTech Connect

    Knepp, D.L.; Reinking, J.T.

    1990-04-01

    Electromagnetic signals that propagate through a disturbed region of the ionosphere can experience scattering which can cause fluctuations in the received amplitude, phase, and angle-of-arrival. This report considers the performance of a radar that must operate through a disturbed propagation environment such as might occur during strong equatorial scintillation, during a barium release experiment or after a high altitude nuclear detonation. The severity of the channel disturbance is taken to range from weak scattering where the signal quadrature components are uncorrelated Gaussian variates. The detection performance of noncoherent combining is compared to that of double threshold (M out of N) combining under various levels of scintillation disturbance. Results are given for detection sensitivity as a function of the scintillation index and the ratio of the radar hopping bandwidth to the channel bandwidth. It is shown that both types of combining can provide mitigation of fading, and that noncoherent combining generally enjoys an advantage in detection sensitivity of about 2 dB. This work serves as a quantitative guideline to the advantages and disadvantages of certain types of detection strategies during scintillation and is, therefore, useful in the radar design process. However, a detailed simulation of the radar detection algorithms is necessary to evaluate a radar design strategy to predict performance under scintillation conditions.

  1. Thallium bromide photodetectors for scintillation detection

    NASA Astrophysics Data System (ADS)

    Hitomi, K.; Muroi, O.; Shoji, T.; Hiratate, Y.; Ishibashi, H.; Ishii, M.

    2000-07-01

    A wide bandgap compound semiconductor, TlBr, has been investigated as a blue sensitive photodetector material for scintillation detection. The TlBr photodetectors have been fabricated from the TlBr crystals grown by the TMZ method using materials purified by many pass zone refining. The performance of the photodetectors has been evaluated by measuring their leakage current, quantum efficiency, spatial uniformity, direct X-ray detection and scintillation detection characteristics. The photodetectors have shown high quantum efficiency for the blue wavelength region and high spatial uniformity for their optical response. In addition, good direct X-ray detection characteristics with an energy resolution of 4.5 keV FWHM for 22 keV X-rays from a 109Cd radioactive source have been obtained. Detection of blue scintillation from GSO and LSO scintillators irradiated with a 22Na radioactive source has been done successfully by using the photodetectors at room temperature. A clear full-energy peak for 511 keV γ-rays has been obtained with the TlBr photodetector coupled to the LSO scintillator with an energy resolution of 40% FWHM.

  2. Self-Sealing Cryogenic Fitting

    NASA Technical Reports Server (NTRS)

    Jia, Lin Xiang; Chow, Wen Lung; Moslemian, Davood; Lin, Gary; Melton, Greg

    1994-01-01

    Self-sealing fitting for cryogenic tubes remains free of leakage from room temperature to liquid-helium temperature even at internal pressure as high as 2.7 MPa. Fitting comprises parts made of materials with different coefficients of thermal expansion to prevent leakage gaps from forming as temperature decreases. Consists of coupling nut, two flared tube ends, and flared O-ring spacer. Spacer contracts more than tube ends do as temperature decreases. This greater contraction seals tube ends more tightly, preventing leakage.

  3. Fiberglass supports for cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Keller, C. W.

    1972-01-01

    Analysis, design, fabrication, and test activities were conducted to develop additional technology needed for application of filament-wound fiberglass struts to cryogenic flight tankage. It was conclusively verified that monocoque cylinder or ogive struts are optimum or near-optimum for the range of lengths and loads studied, that a higher strength-to-weight ratio can be achieved for fiberglass struts than for any metallic struts, and that integrally-wrapped metallic end fittings can be used to achieve axial load transfer without reliance on bond strength or mechanical fasteners.

  4. Residual contact restraints in cryogenics

    NASA Astrophysics Data System (ADS)

    Cretegny, J. F.; Demonicault, J. M.

    The use of residual stress measurements to evaluate the state of cryogenic turbomachines, whose surfaces are worn by the working conductions in dry contact, is addressed. Their contribution to the understanding of the reasons of possible ruptures is considered. It is stated that residual stress measurements should be used as a complementary tool rather than as input data for models. It is shown, thanks to two examples concerning the ball bearings and splines of the liquid hydrogen turbopump of the Vulcain engine, what can be expected from such techniques. Total exploitation of the results has still to be done, but preliminary results are quite encouraging.

  5. ISOCAM experiment cryogenic test results

    NASA Astrophysics Data System (ADS)

    de Sa, L.; Collaudin, B.

    The thermal requirements for ISOCAM, an IR camera to be mounted aboard the ISO satellite, are reviewed, and model predictions are matched with test results. The degree of model validation suggested by analytical prediction vs test results is described. Predictions of thermal conduction through mounting screws, from ball bearings, and of the heat distribution in the rotor and stator of a cryogenic stepper motor correlate well with actual test results. It is shown that ISOCAM meets the thermal requirements necessary for successful on-orbit operation. The model predicted such phenomena as 'chopped' motor function and the twofold increase in temperature resulting from continuous motor operation.

  6. Techniques for on-orbit cryogenic servicing

    NASA Astrophysics Data System (ADS)

    DeLee, C. H.; Barfknecht, P.; Breon, S.; Boyle, R.; DiPirro, M.; Francis, J.; Huynh, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; Wegel, D.

    2014-11-01

    NASA (National Aeronautics and Space Administration) has a renewed interest in on-orbit cryogen storage and transfer to support its mission to explore near-earth objects such as asteroids and comets. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission (CPST-TDM), managed by the NASA Glenn Research Center (GRC) and scheduled for launch in 2018, will demonstrate numerous key technologies applicable to a cryopropellant fuel depot. As an adjunct to the CPST-TDM work, experiments at NASA Goddard Space Flight Center (GSFC) will support the development of techniques to manage and transfer cryogens on-orbit and expand these techniques as they may be applicable to servicing science missions using solid cryogens such as the Wide-field Infrared Survey Explorer (WISE). The results of several ground experiments are described, including autogenous pressurization used for transfer of liquid nitrogen and argon, characterization of the transfer and solidification of argon, and development of robotic tools for cryogen transfer.

  7. Numerical simulations of cryogenic cavitating flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunji; Kim, Hyeongjun; Min, Daeho; Kim, Chongam

    2015-12-01

    The present study deals with a numerical method for cryogenic cavitating flows. Recently, we have developed an accurate and efficient baseline numerical scheme for all-speed water-gas two-phase flows. By extending such progress, we modify the numerical dissipations to be properly scaled so that it does not show any deficiencies in low Mach number regions. For dealing with cryogenic two-phase flows, previous EOS-dependent shock discontinuity sensing term is replaced with a newly designed EOS-free one. To validate the proposed numerical method, cryogenic cavitating flows around hydrofoil are computed and the pressure and temperature depression effect in cryogenic cavitation are demonstrated. Compared with Hord's experimental data, computed results are turned out to be satisfactory. Afterwards, numerical simulations of flow around KARI turbopump inducer in liquid rocket are carried out under various flow conditions with water and cryogenic fluids, and the difference in inducer flow physics depending on the working fluids are examined.

  8. Observations of the solar plasma using radio scattering and scintillation methods

    NASA Technical Reports Server (NTRS)

    Hewish, A.

    1972-01-01

    Observations of the solar plasma using the interplanetary scintillation technique have been made at radial distances of 0.03 to 1.2 AU. The solar wind is found to be independent of ecliptic latitude and radial distance, except close to the sun where acceleration is observed. Plasma density irregularities on a scale near the proton gyro radius, which modulate the mean density by about 1 percent, are present throughout the observed range of radial distance.

  9. Performance of VUV-sensitive MPPC for liquid argon scintillation light

    NASA Astrophysics Data System (ADS)

    Igarashi, T.; Tanaka, M.; Washimi, T.; Yorita, K.

    2016-10-01

    A new multi-pixel photon counter (MPPC) sensitive to vacuum ultra-violet (VUV) light (wavelength λ < 150 nm) has recently been developed and produced by Hamamatsu Photonics K.K. In this study, the basic properties of the new MPPC are measured at the cryogenic facility of the Waseda University using liquid nitrogen. The temperature dependence of the breakdown voltage, capacitance, and dark count rate of the MPPCs are also evaluated. Using an 241Am α-ray source, the absolute photon detection efficiency (PDE) of the liquid argon (LAr) scintillation light (λ=128 nm) for the latest MPPC model is estimated to be 13%. Based on these basic measurements a possible application of the new MPPC to LAr detectors in dark matter search is suggested.

  10. Characterization of ionospheric scintillation at a geomagnetic equatorial region station

    NASA Astrophysics Data System (ADS)

    Seba, Ephrem Beshir; Gogie, Tsegaye Kassa

    2015-11-01

    In this study, we analyzed ionospheric scintillation at Bahir Dar station, Ethiopia (11.6°N, 37.38°E) using GPS-SCINDA data between August 2010 and July 2011. We found that small scale variation in TEC caused high ionospheric scintillation, rather than large scale variation. We studied the daily and monthly variations in the scintillation index S4 during this year, which showed that scintillation was a post-sunset phenomenon on equinoctial days, with high activity during the March equinox. The scintillation activity observed on solstice days was relatively low and almost constant throughout the day with low post-sunset activity levels. Our analysis of the seasonal and annual scintillation characteristics showed that intense activity occurred in March and April. We also studied the dependence of the scintillation index on the satellite elevation angle and found that scintillation was high for low angles but low for high elevation angles.

  11. Isotopic response with small scintillator based gamma-ray spectrometers

    DOEpatents

    Madden, Norman W.; Goulding, Frederick S.; Asztalos, Stephen J.

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  12. Testing Gravity Using Pulsar Scintillation Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Nishizawa, Atsushi; Pen, Ue-Li

    2016-03-01

    We propose to use pulsar scintillation measurements to test predictions of alternative theories of gravity. Comparing to single-path pulsar timing measurements, the scintillation measurements can achieve a factor of 104 ~105 improvement in timing accuracy, due to the effect of multi-path interference. The self-noise from pulsar also does not affect the interference pattern, where the data acquisition timescale is 103 seconds instead of years. Therefore it has unique advantages in measuring gravitational effect or other mechanisms (at mHz and above frequencies) on light propagation. We illustrate its application in constraining scalar gravitational-wave background and measuring gravitational-wave speed, in which cases the sensitivities are greatly improved with respect to previous limits. We expect much broader applications in testing gravity with existing and future pulsar scintillation observations.

  13. Scintillating-glass-fiber neutron sensors

    NASA Astrophysics Data System (ADS)

    Abel, K. H.; Arthur, R. J.; Bliss, M.; Brite, D. W.; Brodzinski, R. L.; Craig, R. A.; Geelhood, B. D.; Goldman, D. S.; Griffin, J. W.; Perkins, R. W.; Reeder, P. L.; Richey, W. R.; Stahl, K. A.; Sunberg, D. S.; Warner, R. A.; Wogman, N. A.; Weber, M. J.

    1994-12-01

    Cerium-doped lithium-silicate glass fibers have been developed at Pacific Northwest Laboratory (PNL) for use as thermal neutron detectors. By using highly-enriched 6Li, these fibers efficiently capture thermal neutrons and produce scintillation light that can be detected at the ends of the fibers. Advantages of scintillating fibers over 3He or BF 3 proportional tubes include flexibility in geometric configuration, ruggedness in high-vibration environments, and less detector weight for the same neutron sensitivity. This paper describes the performance of these scintillating fibers with regard to count rates, pulse height spectra, absolute efficiencies, and neutron/gamma discrimination. Fibers with light transmission lengths ( {1}/{e}) of greater than 2 m have been produced at PNL. Neutron sensors in fiber form allow development of a variety of neutron detectors packaged in previously unavailable configurations. Brief descriptions of some of the devices already produced are included to illustrate these possibilities.

  14. New Efficient Organic Scintillators Derived from Pyrazoline.

    PubMed

    Bliznyuk, Valery N; Seliman, Ayman F; Ishchenko, Alexander A; Derevyanko, Nadezhda A; DeVol, Timothy A

    2016-05-25

    We report on the synthesis, spectroscopic and scintillation properties of three new pyrazoline core based fluorophores. Fluorescence properties of the fluorophores have been studied both in a solution state and in a solid polyvinyltoluene (PVT) resin matrix of different porosity. The synthesized fluorophores were found to be promising candidates for application in plastic scintillators for detection of ionizing radiation (alpha, beta particles, γ rays and neutrons) and demonstrated superior efficiency in comparison to the existing commercially used fluorophores (2-(1-naphthyl)-5-phenyloxazole (αNPO), 9,10-diphenylanthracene, etc.). Moreover, the suggested synthetic route allows functionalization of the fluorophores with a vinyl group for further covalent bound to the PVT or other vinyl polymer matrices, which dramatically improves chemical stability of the system simultaneously improving the photoluminescence quantum yield. Possible mechanisms of the enhanced scintillation properties are discussed based on preliminary quantum mechanical calculations and spectroscopic characteristics of the fluorophores under study. PMID:27163887

  15. Refractive scintillation in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Coles, W. A.; Rickett, B. J.; Codona, J. L.; Frehlich, R. G.

    1987-04-01

    The slow variation in the apparent intensity of pulsars on time scales of days to months was recently shown to be due to a large-scale component of interstellar scintillation (Rickett, Coles, and Bourgois). These variations are greater than one would expect if the turbulence spectrum were a simple Kolmogorov power law. It is shown that this large-scale component can be greatly enhanced when the turbulence spectrum has a limiting "inner scale" of the order of 109m. The authors present a solution for the covariance of refractive scintillation of an extended source in an extended medium. The results show that refractive scintillations are also responsible for slow variations in "low-frequency variables".

  16. On the scintillation efficiency of carborane-loaded liquid scintillators for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Okoye, Nkemakonam C.; Urffer, Matthew J.; Green, Alexander D.; Childs, Kyle E.; Miller, Laurence F.

    2015-01-01

    The scintillation efficiency in response to thermal neutrons was studied by loading different concentrations of carborane (0-8.5 wt%) and naphthalene (0 and 100 g/L) in five liquid organic scintillators. The sample was characterized in Pb and Cd shields under the irradiation of the thermal neutrons from a 252Cf source. A method was developed to extract the net neutron response from the pulse-height spectra. It was found that the order of scintillation efficiencies for both γ-rays and thermal neutrons is as follows: diisopropylnaphthalene>toluene (concentrated solutes)>toluene~pseudocumene~m-xylene. The quench constants, obtained by fitting the Stern-Volmer model to the plots of light output versus carborane concentration, are in the range of 0.35-1.4 M-1 for all the scintillators. The Birks factors, estimated using the specific energy loss profiles of the incident particles, are in the range of 9.3-14 mg cm-2 MeV-1 for all the samples. The light outputs are in the range of 63-86 keV electron equivalents (keVee) in response to thermal neutrons. Loading naphthalene generally promotes the scintillation efficiency of the scintillator with a benzene derivative solvent. Among all the scintillators tested, the diisopropylnaphthalene-based scintillator shows the highest scintillation efficiency, lowest Birks factor, and smallest quench constants. These properties are primarily attributed to the double fused benzene-ring structure of the solvent, which is more efficient to populate to the excited singlet state under ionizing radiation and to transfer the excitation energy to the fluorescent solutes.

  17. Simulations of Cavitating Cryogenic Inducers

    NASA Technical Reports Server (NTRS)

    Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.

    2004-01-01

    Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.

  18. CRYOTE (Cryogenic Orbital Testbed) Concept

    NASA Technical Reports Server (NTRS)

    Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie

    2009-01-01

    Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.

  19. Cryogenic Capillary Screen Heat Entrapment

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L.G.; Hastings, L.J.; Stathman, G.

    2007-01-01

    Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of sub-cooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: "To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs.?"Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, "200x1400" and "325x2300", both with Twill Dutch Weave. Upon consideration of both the water and LN2 data it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.

  20. Cryogenics for HL-LHC

    NASA Astrophysics Data System (ADS)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  1. Models for cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1989-01-01

    Model requirements, types of model construction methods, and research in new ways to build models are discussed. The 0.3-m Transonic Cryogenic Tunnel was in operation for 16 years and many 2-D airfoil pressure models were tested. In addition there were airfoil models dedicated to transition detection techniques and other specialized research. There were also a number of small 3-D models tested. A chronological development in model building technique is described which led to the construction of many successful models. The difficulties of construction are illustrated by discussing several unsuccessful model fabrication attempts. The National Transonic Facility, a newer and much larger tunnel, was used to test a variety of models including a submarine, transport and fighter configurations, and the Shuttle Orbiter. A new method of building pressure models was developed and is described. The method is centered on the concept of bonding together plates with pressure channels etched into the bond planes, which provides high density pressure instrumentation with minimum demand on parent model material. With care in the choice of materials and technique, vacuum brazing can be used to produce strong bonds without blocking pressure channels and with no bonding voids between channels. Using multiple plates, a 5 percent wing with 96 orifices was constructed and tested in a transonic cryogenic wind tunnel. Samples of test data are presented and future applications of the technology are suggested.

  2. Shadowgraphy of transcritical cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Woodward, R. D.; Talley, D. G.; Anderson, T. J.; Winter, M.

    1994-01-01

    The future of liquid-rocket propulsion depends heavily on continued development of high pressure liquid oxygen/hydrogen systems that operate near or above the propellant critical states; however, current understanding of transcritical/supercritical injection and combustion is yet lacking. The Phillips Laboratory and the United Technologies Research Center are involved in a collaborative effort to develop diagnostics for and make detailed measurements of transcritical droplet vaporization and combustion. The present shadowgraph study of transcritical cryogenic fluids is aimed at providing insight into the behavior of liquid oxygen or cryogenic stimulants as they are injected into a supercritical environment of the same or other fluids. A detailed history of transcritical injection of liquid nitrogen into gaseous nitrogen at reduced pressures of 0.63 (subcritical) to 1.05 (supercritical) is provided. Also, critical point enhancement due to gas phase solubility and mixture effects is investigated by adding helium to the nitrogen system, which causes a distinct liquid phase to re-appear at supercritical nitrogen pressures. Liquid oxygen injection into supercritical argon or nitrogen, however, does not indicate an increase in the effective critical pressure of the system.

  3. The cryogenic storage ring CSR.

    PubMed

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  4. The cryogenic storage ring CSR

    NASA Astrophysics Data System (ADS)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  5. A new cryogenic diode thermometer

    NASA Astrophysics Data System (ADS)

    Courts, S. S.; Swinehart, P. R.; Yeager, C. J.

    2002-05-01

    While the introduction of yet another cryogenic diode thermometer is not earth shattering, a new diode thermometer, the DT-600 series, recently introduced by Lake Shore Cryotronics, possesses three features that make it unique among commercial diode thermometers. First, these diodes have been probed at the chip level, allowing for the availability of a bare chip thermometer matching a standard curve-an important feature in situations where real estate is at a premium (IR detectors), or where in-situ calibration is difficult. Second, the thermometry industry has assumed that interchangeability should be best at low temperatures. Thus, good interchangeability at room temperatures implies a very good interchangeability at cryogenic temperature, resulting in a premium priced sensor. The DT-600 series diode thermometer is available in an interchangeability band comparable to platinum RTDs with the added advantage of interchangeability to 2 K. Third, and most important, the DT-600 series diode does not exhibit an instability in the I-V characteristic in the 8 K to 20 K temperature range that is observed in other commercial diode thermometer devices [1]. This paper presents performance characteristics for the DT-600 series diode thermometer along with a comparison of I-V curves for this device and other commercial diode thermometers exhibiting an I-V instability.

  6. The cryogenic storage ring CSR.

    PubMed

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams. PMID:27370434

  7. 3D tomodosimetry using long scintillating fibers: A feasibility study

    SciTech Connect

    Goulet, Mathieu; Archambault, Louis; Beaulieu, Luc; Gingras, Luc

    2013-10-15

    Purpose: 3D dosimetry is recognized as an ideal for patient-specific quality assurance (QA) of highly conformal radiotherapy treatments. However, existing 3D dosimeters are not straightforward to implement in the clinic, as their read-out procedure is often tedious and their accuracy, precision, and/or sample size exhibit limitations. The purpose of this work is to develop a 3D dosimeter based on the concept of tomodosimetry inside concentric cylindrical planes using long scintillating fibers for the QA of modern radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) or intensity-modulated arc therapy (IMAT).Methods: Using a model-based simulation, scintillating fibers were modeled on three concentric cylindrical planes of radii 2.5, 5.0, and 7.5 cm, inside a 10 cm radius water-equivalent cylinder phantom. The phantom was set to rotate around its central axis, made parallel to the linac gantry axis of rotation. Light acquisitions were simulated using the calculated dose from the treatment planning software and reconstructed in each cylindrical plane at a resolution of 1 mm{sup 2} using a total-variation minimization iterative reconstruction algorithm. The 3D dose was then interpolated from the reconstructed cylindrical plane doses at a resolution of 1 mm{sup 3}. Different scintillating fiber patterns were compared by varying the angle of each fiber in its cylindrical plane and introducing a light-tight cut in each fiber. The precision of the reconstructed cylindrical dose distribution was evaluated using a Poisson modeling of the acquired light signals and the accuracy of the interpolated 3D dose was evaluated using an IMRT clinical plan for a prostate case.Results: Straight scintillating fiber patterns with light-tight cuts were the most accurate in cylindrical dose reconstruction, showing less than 0.5 mm distance-to-agreement in dose gradients and a mean local dose difference of less than 0.2% in the high dose region for a 10 × 10 cm{sup 2

  8. Superconducting THz Camera with GaAs-JFET Cryogenic Readout Electronics

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi; Hibi, Yasunori; Suzuki, Toyoaki; Naruse, Masato; Noguchi, Takashi; Sekimoto, Yutaro; Uzawa, Yoshinori; Nagata, Hirohisa; Ikeda, Hirokazu; Ariyoshi, Seiichiro; Otani, Chiko; Nitta, Tom; Qi-jun, Yao, Fujiwara, Mikio

    2009-12-01

    We describe the development of large format array of superconducting tunnel junction detectors that is readout by SONY GaAs-JFET cryogenic integrated circuits. High quality SIS photon detectors have high dynamic impedance that can be readout by low gate leakage GaAs-JFET circuits. Our imaging array design, with niobium SIS photon detectors and GaAs-JFET cryogenics electronics, uses integrating amplifiers, multiplexers and shift-registers to readout large number of pixels that is similar to CMOS digital cameras. We have designed and fabricated GaAs-JFET cryogenic integrated circuits, such as AC-coupled capacitive trans-impedance amplifier, multiplexers with sample-and-holds and shift-registers, for 32-channel readout module. The Advanced Technology Center of National Astronomical Observatory of Japan have started extensive development program for large format array of SIS photon detectors.

  9. The evolution of scintillating medical detectors

    NASA Astrophysics Data System (ADS)

    Hell, E.; Knüpfer, W.; Mattern, D.

    2000-11-01

    The principle of scintillation detectors has been among the first realizations of radiation detectors. Despite ongoing attempts to switch to direct converting detectors, scintillators have shown great persistence in the field of medical imaging. In radiography, computer tomography and nuclear medicine, a variety of scintillating devices are the 'workhorses' of the clinician today. For radiography, flat X-ray detectors (FDs) with evaporated scintillation layers are at the level of product introduction. However, X-ray image intensifier tubes (XIIs) are competitive and still have features that will be hard to beat in the near future. Although XIIs have disadvantages, they have experienced a significant evolution in robust image quality and cost reduction over the decades. The so-called 'offline' detectors from film to storage phosphors seemed to have reached a plateau since the late 1970s. However, the distinction between on- and offline may soften in the future, because of new readout concepts. Detectors in computer tomography (CT) have evolved from scintillators to gaseous direct converters back to scintillators. Extreme timing requirements and detector modularity have ruled out designs that would rank as `high performance' in other fields. Modern ultra-fast ceramic scintillation detectors are a prerequisite of subsecond CT and leave breathing room for future scan times even below 0.5 s. The field of nuclear medicine is a good example of how difficult it is, to replace a cheap and reliable technology. Since many years, direct converters like CdTe and the likes are discussed to overthrow the regime of NaI:Tl in combination with photomultipliers (PMTs). Both components are well known since the 1950s and have shown remarkable staying power. Still the scintillator with the highest light output, NaI:Tl in combination with the basically noiseless PMT is almost unbeatable in low cost. In combination with modern digital electronics, drawbacks of analog circuitry like

  10. Scintillation index in strong oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Baykal, Yahya

    2016-09-01

    Scintillation index of spherical wave in strongly turbulent oceanic medium is evaluated. In the evaluation, modified Rytov solution and our recent formulation that expresses the oceanic turbulence parameters by the atmospheric turbulence structure constant, are employed. Variations of the scintillation index in strong oceanic turbulence are examined versus the oceanic turbulence parameters such as the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature, viscosity, wavelength, the link length, and the ratio of temperature to salinity contributions to the refractive index spectrum.

  11. The homestake surface-underground scintillations: Description

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Corbato, S.; Daily, T.; Fenyves, E. J.; Kieda, D.; Lande, K.; Lee, C. K.

    1985-01-01

    Two new detectors are currently under construction at the Homestake Gold Mine a 140-ton Large Area Scintillation Detector (LASD) with an upper surface area of 130 square meters, a geometry factor (for an isotropic flux) of 1200 square meters, sr, and a depth of 4200 m.w.e.; and a surface air shower array consisting of 100 scintillator elements, each 3 square meters, spanning an area of approximately square kilometers. Underground, half of the LASD is currently running and collecting muon data; on the surface, the first section of the air shower array will begin operation in the spring of 1985. The detectors and their capabilities are described.

  12. New Structured Scintillators for Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Nagarkar, V. V.; Ovechkina, E. E.; Bhandari, H. B.; Soundara-Pandian, L.; More, M. J.; Riedel, R. A.; Miller, S. R.

    We report on the development of novel neutron scintillators fabricated in microcolumnar formats using the physical vapour deposition (PVD) method. Such structures mitigate the conventional trade-off between spatial resolution and detection efficiency by channelling the scintillation light towards the detector while minimizing lateral spread in the film. Consequently, high resolution and high contrast neutron images can be acquired in a time efficient manner. In this paper, we discuss methods and characterization for scintillator films made from three distinct compositions, Thallium (Tl) or Europium (Eu) doped Lithium CesiumIodide (Li3Cs2I5:Tl,Eu, referred to as LCI), Tl or Eudoped Lithium Sodium Iodide (LixNa1-xI:Tl,Eu, referred to as LNI), and Cerium (Ce)-doped Gadolinium Iodide (GdI3:Ce, referred to as GDI). LCI and LNI scintillators are derived from the well-known CsI and NaI scintillators by the incorporation of 6Li into their lattice. Based on our measurements reported here, LCI/LNI scintillators have shown to exhibit bright emissions, fast, sub-microsecond decay, and an ability to effectively discriminate between neutron and gamma interactions using pulse shape (PSD) and/or pulse height (PHD) discrimination. LCI has a density of 4.5 g/cm3, a measured peak emission wavelength of 460 nm (doped with Eu), and a light yield of ∼50,000 photons/thermal neutron. LNI has a density of 3.6 g/cm3, an emission peak measured at 420 nm, and a light yield of ∼100,000 photons/thermal neutron. The recently discovered GDI exhibits excellent scintillation properties including a bright emission of up to 5,000 photons/thermal neutron interaction, 550 nm green emission, a rise time of ∼0.5 ns and a primary decay time of ∼38 ns (Glodo et al., 2006). Its high thermal neutron cross-section of ∼255 kb makes it an attractive candidate for neutron detection and imaging. Although it has high density of 5.2 gm/cm3 and effective atomic number of 57, its gamma sensitivity can be

  13. Cryogenic test of the 4 K / 2 K insert for the ARIEL e-Linac cryomodule

    NASA Astrophysics Data System (ADS)

    Laxdal, R. E.; Ma, Y.; Harmer, P.; Kishi, D.; Koveshnikov, A.; Muller, N.; Vrielink, A.; O'Brien, M.; Ahammed, M.

    2014-01-01

    The ARIEL project at TRIUMF requires a 50 MeV superconducting electron linac consisting of five nine cell 1.3 GHz cavities divided into three cryomodules with one, two and two cavities in each module respectively. LHe is distributed in parallel to each module at 4 K and at ˜1.2 bar. Each module has a cryogenic insert on board that receives the 4 K liquid and produces 2 K into a cavity phase separator. The module combines a 4 K phase separator, a plate and fin heat exchanger from DATE and a J-T valve expanding into the 2 K phase separator. The unit also supplies 4 K liquid to thermal intercepts in the module in siphon loops that return the vaporized liquid to the 4 K reservoir. For testing purposes the unit is outfitted with a dummy 2 K phase separator and thermal intercepts with variable heaters that mimic the final heat loads in order to test the cryogenic performance. The design of the 4 K / 2 K insert, the results of the cold tests and a summary of the test infrastructure including cryogenics services will be presented.

  14. Cryogenic test of the 4 K / 2 K insert for the ARIEL e-Linac cryomodule

    SciTech Connect

    Laxdal, R. E.; Ma, Y.; Harmer, P.; Kishi, D.; Koveshnikov, A.; Muller, N.; Vrielink, A.; O'Brien, M.; Ahammed, M.

    2014-01-29

    The ARIEL project at TRIUMF requires a 50 MeV superconducting electron linac consisting of five nine cell 1.3 GHz cavities divided into three cryomodules with one, two and two cavities in each module respectively. LHe is distributed in parallel to each module at 4 K and at ∼1.2 bar. Each module has a cryogenic insert on board that receives the 4 K liquid and produces 2 K into a cavity phase separator. The module combines a 4 K phase separator, a plate and fin heat exchanger from DATE and a J-T valve expanding into the 2 K phase separator. The unit also supplies 4 K liquid to thermal intercepts in the module in siphon loops that return the vaporized liquid to the 4 K reservoir. For testing purposes the unit is outfitted with a dummy 2 K phase separator and thermal intercepts with variable heaters that mimic the final heat loads in order to test the cryogenic performance. The design of the 4 K / 2 K insert, the results of the cold tests and a summary of the test infrastructure including cryogenics services will be presented.

  15. Nonintrusive cryogenic propellant sensing with millimeter-wave/EM beams

    NASA Astrophysics Data System (ADS)

    Osterwalder, J. M.; Nyland, T. W.

    1993-07-01

    In this paper experimental results of cryogenic tankage mass measurements and descriptions of level sensors using optical and millimeter wave signal beams are presented. The discussed results are based on a 100 GHz frequency modulated radar mass sensor. Test results are compared with a similar system which makes use of a laser beam and a frequency modulated microwave subcarrier. In addition the performance of a laser triangulation level sensor is presented which is suitable for normal gravity applications. Performance prediction in terms of the resolution and measurement accuracy are discussed with emphasis on the measurement difficulties encountered while using liquid hydrogen under normal gravity conditions. For a mass sensor the small 11% refractive index change between an empty and a filled tank of hydrogen causes a loss of measurement accuracy by a factor of ten, as compared to a level sensor. This loss is common to all mass propellant sensing systems, including the conventional capacitance probe sensor. Special processing techniques are indicated. Extensions of the presented millimeter wave mass sensor concept for micro and zero gravity cryogenic systems and for other special space related propellant conditions such as slush hydrogen are discussed.

  16. New liquid scintillators for fiber-optic applications

    SciTech Connect

    Lutz, S.S.; Franks, L.A.; Flournoy, J.M.; Lyons, P.B.

    1981-01-01

    New long-wavelength-emitting, high-speed, liquid scintillators have been developed and tailored specifically for plasma diagnostic experiments employing fiber optics. These scintillators offer significant advantages over commercially available plastic scintillators in terms of sensitivity and bandwidth. FWHM response times as fast as 350 ps have been measured. Emission spectra, time response data, and relative sensitivity information are presented.

  17. Upconverting nanoparticles for optimizing scintillator based detection systems

    DOEpatents

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  18. 49 CFR 173.318 - Cryogenic liquids in cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... not be installed on any cargo tank used to transport oxygen, cryogenic liquid unless the parts are... installed on any cargo tank used to transport oxygen, cryogenic liquid or any flammable cryogenic liquid. (6) A cargo tank used to transport oxygen, cryogenic liquid must be provided with a manhole (see §...

  19. 49 CFR 173.318 - Cryogenic liquids in cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... not be installed on any cargo tank used to transport oxygen, cryogenic liquid unless the parts are... installed on any cargo tank used to transport oxygen, cryogenic liquid or any flammable cryogenic liquid. (6) A cargo tank used to transport oxygen, cryogenic liquid must be provided with a manhole (see §...

  20. 49 CFR 173.318 - Cryogenic liquids in cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... not be installed on any cargo tank used to transport oxygen, cryogenic liquid unless the parts are... installed on any cargo tank used to transport oxygen, cryogenic liquid or any flammable cryogenic liquid. (6) A cargo tank used to transport oxygen, cryogenic liquid must be provided with a manhole (see §...

  1. Throttling Cryogen Boiloff To Control Cryostat Temperature

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas

    2003-01-01

    An improved design has been proposed for a cryostat of a type that maintains a desired low temperature mainly through boiloff of a liquid cryogen (e.g., liquid nitrogen) at atmospheric pressure. (A cryostat that maintains a low temperature mainly through boiloff of a cryogen at atmospheric pressure is said to be of the pour/fill Dewar-flask type because its main component is a Dewar flask, the top of which is kept open to the atmosphere so that the liquid cryogen can boil at atmospheric pressure and cryogenic liquid can be added by simply pouring it in.) The major distinguishing feature of the proposed design is control of temperature and cooling rate through control of the flow of cryogen vapor from a heat exchanger. At a cost of a modest increase in complexity, a cryostat according to the proposal would retain most of the compactness of prior, simpler pour/fill Dewar-flask cryostats, but would utilize cryogen more efficiently (intervals between cryogen refills could be longer).

  2. Hybrid Composite Cryogenic Tank Structure

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic

  3. The SNO+ Scintillator Purification Plant and Projected Sensitivity to Solar Neutrinos in the Pure Scintillator Phase

    NASA Astrophysics Data System (ADS)

    Pershing, Teal; SNO+ Collaboration

    2016-03-01

    The SNO+ detector is a neutrino and neutrinoless double-beta decay experiment utilizing the renovated SNO detector. In the second phase of operation, the SNO+ detector will contain 780 tons of organic liquid scintillator composed of 2 g/L 2,5-diphenyloxazole (PPO) in linear alkylbenzene (LAB). In this phase, SNO+ will strive to detect solar neutrinos in the sub-MeV range, including CNO production neutrinos and pp production neutrinos. To achieve the necessary detector sensitivity, a four-part scintillator purification plant has been constructed in SNOLAB for the removal of ionic and radioactive impurities. We present an overview of the SNO+ scintillator purification plant stages, including distillation, water extraction, gas stripping, and metal scavenger columns. We also give the projected SNO+ sensitivities to various solar-produced neutrinos based on the scintillator plant's projected purification efficiency.

  4. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains

    NASA Astrophysics Data System (ADS)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Izaki, Kenji; Tsubota, Youichi; Higuchi, Mikio; Nishiyama, Shusuke

    2014-01-01

    A scintillator plate with high energy resolution was developed to produce an alpha particle monitor used in nuclear fuel reprocessing plants and mixed plutonium-uranium oxide (MOX) fuel plants. Grains of a Gd2Si2O7 (GPS) scintillator of several 10 to 550 μm were fixed on a glass substrate and were then mechanically polished. By increasing the size of scintillator grains and removing fine powders, the collected light yield and energy resolution for alpha particles were drastically improved. Energy resolution of 9.3% was achieved using average grain size of 91 μm. Furthermore, the ratios between counts in a peak and total counts were improved by more than 60% by the further increase of grain size and adoption of mechanically polished surfaces on both sides. Beta and gamma ray influences were suppressed sufficiently by the thin 100 μm scintillator plates.

  5. Structural damping studies at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Buehrle, Ralph D.

    1994-01-01

    Results of an engineering study to measure changes in structural damping properties of two cryogenic wind tunnel model systems and two metallic test specimens at cryogenic temperatures are presented. Data are presented which indicate overall, a trend toward reduced structural damping at cryogenic temperatures (-250 degrees F) when compared with room temperature damping properties. The study was focused on structures and materials used for model systems tested in the National Transonic Facility (NTF). The study suggests that the significant reductions in damping at extremely cold temperatures are most likely associated with changes in mechanical joint compliance damping rather than changes in material (solid) damping.

  6. Cryogenic denervation of the intermetatarsal space neuroma.

    PubMed

    Hodor, L; Barkal, K; Hatch-Fox, L D

    1997-01-01

    Cryoanalgesia is commonly used by pain management specialists to alleviate painful nerve disorders of the back, face, and thoracic region. While cryogenic denervation results in pain relief, there is little to no incidence of neuritis or amputation-neuroma formation. The authors have used the Neurostat unit (Westco Medical Corporation), which was designed for cryogenic denervation of sensory and motor nerves, in the treatment of the intermetatarsal space neuroma. The authors present an overview of cryoanalgesic therapy, including a discussion of history, mechanism of action, indications, and description of the apparatus. The authors submit a case study of cryogenic denervation of the third intermetatarsal space.

  7. Nanosecond cryogenic Yb:YAG disk laser

    SciTech Connect

    Perevezentsev, E A; Mukhin, I B; Kuznetsov, I I; Vadimova, O L; Palashov, O V

    2014-05-30

    A cryogenic Yb:YAG disk laser is modernised to increase its average and peak power. The master oscillator unit of the laser is considerably modified so that the pulse duration decreases to several nanoseconds with the same pulse energy. A cryogenic disk laser head with a flow-through cooling system is developed. Based on two such laser heads, a new main amplifier is assembled according to an active multipass cell scheme. The total small-signal gain of cryogenic cascades is ∼10{sup 8}. (lasers)

  8. Other cryogenic wind-tunnel projects

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1985-01-01

    Following the development of the cryogenic wind tunnel at the NASA Langley Research Center in 1972, a large number of cryogenic wind-tunnel projects have been undertaken at various research establishments around the world. Described in this lecture are cryogenic wind-tunnel projects in China (Chinese Aeronautical Research and Development Center), England (College of Aeronautics at Cranfield, Royal Aircraft Establishment - Bedford, and University of Southampton), Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy), Sweden (Rollab), and the United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign, and NASA Langley).

  9. Cryogenic denervation of the intermetatarsal space neuroma.

    PubMed

    Hodor, L; Barkal, K; Hatch-Fox, L D

    1997-01-01

    Cryoanalgesia is commonly used by pain management specialists to alleviate painful nerve disorders of the back, face, and thoracic region. While cryogenic denervation results in pain relief, there is little to no incidence of neuritis or amputation-neuroma formation. The authors have used the Neurostat unit (Westco Medical Corporation), which was designed for cryogenic denervation of sensory and motor nerves, in the treatment of the intermetatarsal space neuroma. The authors present an overview of cryoanalgesic therapy, including a discussion of history, mechanism of action, indications, and description of the apparatus. The authors submit a case study of cryogenic denervation of the third intermetatarsal space. PMID:9298449

  10. Progress in studying scintillator proportionality: Phenomenological model

    SciTech Connect

    Bizarri, Gregory; Cherepy, Nerine; Choong, Woon-Seng; Hull, Giulia; Moses, William; Payne, Sephen; Singh, Jai; Valentine, John; Vasilev, Andrey; Williams, Richard

    2009-04-30

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  11. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  12. Temperature dependence of BCF plastic scintillation detectors

    PubMed Central

    Wootton, Landon; Beddar, Sam

    2013-01-01

    We examined temperature dependence in plastic scintillation detectors (PSDs) made of BCF-60 or BCF-12 scintillating fiber coupled to optical fiber with cyanoacrylate. PSDs were subjected to a range of temperatures using a temperature-controlled water bath and irradiated at each temperature while either the dose was measured using a CCD camera or the spectral output was measured using a spectrometer. The spectrometer was used to examine the intensity and spectral distribution of scintillation light emitted by the PSDs, Cerenkov light generated within the PSD, and light transmitted through an isolated optical coupling. BCF-60 PSDs exhibited a 0.50% decrease and BCF-12 PSDs a 0.09% decrease in measured dose per °C increase, relative to dose measured at 22°C. Spectrometry revealed that the total intensity of the light generated by BCF-60 and BCF-12 PSDs decreased by 0.32% and 0.13%, respectively, per °C increase. The spectral distribution of the light changed slightly with temperature for both PSDs, accounting for the disparity between the change in measured dose and total light output. The generation of Cerenkov light was temperature independent. However, light transmitted through optical coupling between the scintillator and the optical fiber also exhibited temperature dependence. PMID:23574889

  13. Apollo cryogenic integrated systems program

    NASA Technical Reports Server (NTRS)

    Seto, R. K. M.; Cunningham, J. E.

    1971-01-01

    The integrated systems program is capable of simulating both nominal and anomalous operation of the Apollo cryogenics storage system (CSS). Two versions of the program exist; one for the Apollo 14 configuration and the other for J Type Mission configurations. The program consists of two mathematical models which are dynamically coupled. A model of the CSS components and lines determines the oxygen and hydrogen flowrate from each storage tank given the tank pressures and temperatures, and the electrical power subsystem and environmental control subsystem flow demands. Temperatures and pressures throughout the components and lines are also determined. A model of the CSS tankage determines the pressure and temperatures in the tanks given the flowrate from each tank and the thermal environment. The model accounts for tank stretch and includes simplified oxygen tank heater and stratification routines. The program is currently operational on the Univac 1108 computer.

  14. ESS Cryogenic System Process Design

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Hees, W.; Jurns, J.; Su, X. T.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility funded and supported in collaboration with 17 European countries in Lund, Sweden. Cryogenic cooling at ESS is vital particularly for the linear accelerator, the hydrogen target moderators, a test stand for cryomodules, the neutron instruments and their sample environments. The paper will focus on specific process design criteria, design decisions and their motivations for the helium cryoplants and auxiliary equipment. Key issues for all plants and their process concepts are energy efficiency, reliability, smooth turn-down behaviour and flexibility. The accelerator cryoplant (ACCP) and the target moderator cryoplant (TMCP) in particular need to be prepared for a range of refrigeration capacities due to the intrinsic uncertainties regarding heat load definitions. Furthermore the paper addresses questions regarding process arrangement, 2 K cooling methodology, LN2 precooling, helium storage, helium purification and heat recovery.

  15. Cryogenic Magnetostrictive Materials and Devices

    NASA Astrophysics Data System (ADS)

    Joshi, C. H.; Mavanur, A.; Tai, C.-Y.; Han, Z.-X.; Rodenbush, A. J.; Wong, Y.

    2004-06-01

    Energen has patented KelvinAll™, the first material, to exhibit magnetostrictive properties from elevated temperatures to near absolute zero, opening up a new range of applications for magnetostrictive devices. Magnetostrictive materials change their shape in the presence of a magnetic field. This elongation is precise, predictable, reversible and repeatable thereby enabling practical electromechanical devices. KelvinAll has magnetostriction comparable to Terfenol-D at room temperature and its magnetostriction increases at cryogenic temperatures. Energen has developed and prototyped practical electromechanical devices using KelvinAll. These devices include tuners for superconducting radio frequency (SRF) cavities, components for magnetic refrigerators, flow control valves and precision translation stages some of which will be discussed in greater detail. Energen's KelvinAll products enhance performance, increase reliability and reduce development costs.

  16. Cryogenic vacuumm RF feedthrough device

    DOEpatents

    Wu, Genfa; Phillips, Harry Lawrence

    2008-12-30

    A cryogenic vacuum rf feedthrough device comprising: 1) a probe for insertion into a particle beam; 2) a coaxial cable comprising an inner conductor and an outer conductor, a dielectric/insulating layer surrounding the inner conductor, the latter being connected to the probe for the transmission of higher mode rf energy from the probe; and 3) a high thermal conductivity stub attached to the coaxial dielectric about and in thermal contact with the inner conductor which high thermal conductivity stub transmits heat generated in the vicinity of the probe efficiently and radially from the area of the probe and inner conductor all while maintaining useful rf transmission line characteristics between the inner and outer coaxial conductors.

  17. Cryogenic thermal control technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.

    1974-01-01

    A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  18. A Cryogenic Infrared Calibration Target

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Kinzer, R. E., Jr.; Rinehart, S. A.

    2014-01-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R < or = 0.003, from 800 to 4800/cm (12 - 2 microns ). Upon expanding the spectral range under consideration to 400-10,000/ cm-1 (25 - 1 microns) the observed performance gracefully degrades to R < or = 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to approx.4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented

  19. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  20. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  1. Ionospheric scintillations associated with equatorial E-region

    NASA Technical Reports Server (NTRS)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.

    1978-01-01

    Amplitude scintillations at 40, 140, and 360 MHz recorded at an equatorial station Ootacamund (dip 4 deg N) during the ATS-6 phase II and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for the scintillation activity. Various sporadic E events, but not the Es-q, are associated with intense daytime scintillations. There are no scintillations at times of normal E-layer or cusp type of Es. Scintillations are also present at times of night Es.

  2. Liquid Scintillator Production for the NOvA Experiment

    SciTech Connect

    Mufson, S.; Baugh, B.; Bower, C.; Coan, T.; Cooper, J.; Corwin, L.; Karty, J.; Mason, P.; Messier, M. D.; Pla-Dalmau, A.; Proudfoot, M.

    2015-04-15

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  3. Computed tomography of cryogenic cells

    SciTech Connect

    Schneider, Gerd; Anderson, E.; Vogt, S.; Knochel, C.; Weiss, D.; LeGros, M.; Larabell, C.

    2001-08-30

    Due to the short wavelengths of X-rays and low numerical aperture of the Fresnel zone plates used as X-ray objectives, the depth of field is several microns. Within the focal depth, imaging a thick specimen is to a good approximation equivalent to projecting the specimen absorption. Therefore, computed tomography based on a tilt series of X-ray microscopic images can be used to reconstruct the local linear absorption coefficient and image the three-dimensional specimen structure. To preserve the structural integrity of biological objects during image acquisition, microscopy is performed at cryogenic temperatures. Tomography based on X-ray microscopic images was applied to study the distribution of male specific lethal 1 (MSL-1), a nuclear protein involved in dosage compensation in Drosophila melanogaster, which ensures that males with single X chromosome have the same amount of most X-linked gene products as females with two X chromosomes. Tomographic reconstructions of X-ray microscopic images were used to compute the local three-dimensional linear absorption coefficient revealing the arrangement of internal structures of Drosophila melanogaster cells. Combined with labelling techniques, nanotomography is a new technique to study the 3D distribution of selected proteins inside whole cells. We want to improve this technique with respect to resolution and specimen preparation. The resolution in the reconstruction can be significantly improved by reducing the angular step size to collect more viewing angles, which requires an automated data acquisition. In addition, fast-freezing with liquid ethane instead of cryogenic He gas will be applied to improve the vitrification of the hydrated samples. We also plan to apply cryo X-ray nanotomography in order to study different types of cells and their nuclear protein distributions.

  4. The cryogenic readout system with GaAs JFETs for multi-pixel cameras

    NASA Astrophysics Data System (ADS)

    Hibi, Y.; Matsuo, H.; Nagata, H.; Ikeda, H.; Fujiwara, M.

    2010-11-01

    Our purpose is to realize a multi-pixel sub-millimeter/terahertz camera with the superconductor - insulator - superconductor photon detectors. These detectors must be cooled below 1 K. Since these detectors have high impedance, signal amplifiers of each pixel must be setting aside of them for precise signal readout. Therefore, it is desirable that the readout system work well even in cryogenic temperature. We selected the n-type GaAs JFETs as cryogenic circuit elements. From our previous studies, the n-type GaAs JFETs have good cryogenic properties even when those power dissipations are low. We have designed several kinds of integration circuits (ICs) and demonstrated their performance at cryogenic temperature. Contents of ICs are following; AC coupled trans-impedance amplifiers, voltage distributors for suppressing input offset voltage of AC coupled CTIAs, multiplexers with sample-and holds, and shift-registers for controlling multiplex timing. The power dissipation of each circuit is 0.5 to 3 micro watts per channel. We also have designed and manufactured 32-channel multi-chip-modules with these ICs. These modules can make 32- channel input photo current signals into one or two serial output voltage signal(s). Size of these is 40mm x 30mm x 2mm and estimated total power dissipation is around 400 micro watts.

  5. Monte Carlo investigations of the effect of beam divergence on thick, segmented crystalline scintillators for radiotherapy imaging

    PubMed Central

    Wang, Yi; El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua

    2010-01-01

    The use of thick segmented scintillators in electronic portal imagers offers the potential for significant improvement in x-ray detection efficiency compared to conventional phosphor screens. Such improvement substantially increases the detective quantum efficiency (DQE), leading to the possibility of achieving soft-tissue visualization at clinically-practical (i.e. low) doses using megavoltage (MV) cone-beam computed tomography. While these DQE increases are greatest at zero spatial frequency, they are diminished at higher frequencies as a result of degradation of spatial resolution due to lateral spreading of secondary radiation within the scintillator – an effect that is more pronounced for thicker scintillators. The extent of this spreading is even more accentuated for radiation impinging the scintillator at oblique angles of incidence due to beam divergence. In this paper, Monte Carlo simulations of radiation transport, performed to investigate and quantify the effects of beam divergence on the imaging performance of MV imagers based on two promising scintillators (BGO and CsI:T1), are reported. In these studies, 10 – 40 mm thick scintillators, incorporating low-density polymer, or high-density tungsten septal walls were examined for incident angles corresponding to that encountered at locations up to ~15 cm from the central beam axis (for an imager located 130 cm from a radiotherapy x-ray source). The simulations demonstrate progressively more severe spatial resolution degradation (quantified in terms of the effect on modulation transfer function) as a function of increasing angle of incidence (as well as of scintillator thickness). Since the noise power behavior was found to be largely independent of incident angle, the dependence of the DQE on incident angle is therefore primarily determined by the spatial resolution. The observed DQE degradation suggests that 10 mm thick scintillators are not strongly affected by beam divergence for detector areas up

  6. Cross beam scintillations in non-Kolmogorov medium.

    PubMed

    Baykal, Yahya

    2014-10-01

    For the collimated and focused cross beams, the on-axis scintillation index is evaluated when these beams propagate in weak non-Kolmogorov turbulence. In the limiting cases, our solution correctly reduces to the known Gaussian beam scintillations in Kolmogorov turbulence. For both the collimated and the focused cross beams, large power law exponent of the non-Kolmogorov turbulence is found to result in larger scintillations. Evaluating at a fixed power law exponent, the scintillation index of the collimated (focused) cross beam is higher (lower) than the collimated (focused) Gaussian beam scintillation index. When the asymmetry of the collimated (focused) cross beam increases, the scintillations increase (decrease). At a given cross beam configuration, change in the turbulence parameters varies the scintillations in the same manner for all power law exponent values.

  7. Non-Carbon Dyes For Platic Scintillators- Report

    SciTech Connect

    Teprovich, J.; Colon-Mercado, H.; Gaillard, J.; Sexton, L.; Washington, A.; Ward, P.; Velten, J.

    2015-10-19

    Scintillation based detectors are desirable for many radiation detection applications (portal and border monitoring, safeguards verification, contamination detection and monitoring). The development of next generation scintillators will require improved detection sensitivity for weak gamma ray sources, and fast and thermal neutron quantification. Radiation detection of gamma and neutron sources can be accomplished with organic scintillators, however, the single crystals are difficult to grow for large area detectors and subject to cracking. Alternatives to single crystal organic scintillators are plastic scintillators (PS) which offer the ability to be shaped and scaled up to produce large sized detectors. PS is also more robust than the typical organic scintillator and are ideally suited for deployment in harsh real-world environments. PS contain a mixture of dyes to down-convert incident radiation into visible light that can be detected by a PMT. This project will evaluate the potential use of nano-carbon dyes in plastic scintillators.

  8. Advances in cryogenic engineering. Volume 33 - Proceedings of the Cryogenic Engineering Conference, Saint Charles, IL, June 14-18, 1987

    NASA Technical Reports Server (NTRS)

    Fast, R. W. (Editor)

    1988-01-01

    Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.

  9. Active Co-Storage of Cryogenic Propellants for Lunar Explortation

    NASA Technical Reports Server (NTRS)

    Mustafi, S.; Canavan, E. R.; Boyle, R. F.; Panek, J. S.; Riall, S. M.; Miller, F. K.

    2008-01-01

    Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used dual cryogens with different temperatures to cool instruments. This technology utilizes a higher temperature cryogen to provide a stage that efficiently intercepts a large fraction of the heat that would otherwise be incident on the lower temperature cryogen. This interception reduces the boil-off of the lower temperature cryogen and increasing the overall life-time of the mission. The Active Co-Storage concept is implemented similarly; the 101 K liquid oxygen thermally shields the 24 K liquid hydrogen. A thermal radiation shield that is linked to the liquid oxygen tank shrouds the liquid hydrogen tank, thereby preventing the liquid hydrogen tank from being directly exposed to the 300 K external environment. Modern cryocooler technology can eliminate the liquid oxygen boil-off and also cool the thermal radiation shield thereby reducing the liquid hydrogen boil-off to a small fraction of the unshielded rate. The thermal radiation shield can be a simple conductive shroud or a more sophisticated but lighter Broad Area Cooling (BAC) shroud. The paper describes the design impact of an active co-storage system for the Altair Descent Vehicle. This paper also compares the spacecraft-level impacts of the conductive shroud and the BAC shroud active co-storage concepts with a passive storage option in the context of the different scales of spacecraft that will be used for the lunar exploration effort - the Altair Ascent and Descent Vehicles, the Orion, and the Ares V Earth

  10. Internal strain gage balances for cryogenic windtunnels

    NASA Astrophysics Data System (ADS)

    Hufnagel, K.; Ewald, B.; Graewe, E.

    The five cryogenic wind-tunnel balances which were built and calibrated as part of the cryogenic balance program initiated in 1979 by the German Ministry of Research and Technology are described. Particular attention is given to factors affecting the calibration of cryogenic balances, such as the changes in the temperature and temperature gradients in the balance body caused by changes in the tunnel temperature. It is shown that it is possible to have a cryogenic wind-tunnel balance with the same accuracy and repeatability as a conventional balance. The effect of temperature gradients can be minimized by a new design of the axial-force element and an advanced calibration, and the zero shift can be reduced by matching procedures and calibration.

  11. Aerogel Blanket Insulation Materials for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2010-04-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost-effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailorable array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given.

  12. The cryogenic control system of BEPCII

    NASA Astrophysics Data System (ADS)

    Li, Gang; Wang, Ke-Xiang; Zhao, Ji-Jiu; Yue, Ke-Juan; Dai, Ming-Hui; Huang, Yi-Ling; Jiang, Bo

    2008-04-01

    A superconducting cryogenic system has been designed and deployed in the Beijing Electron- Positron Collider Upgrade Project (BEPCII). The system consists of a Siemens PLC (S7-PLC, Programmable Logic Controller) for the compressor control, an Allen Bradley (AB) PLC for the cryogenic equipments, and the Experimental Physics and Industrial Control System (EPICS) that integrates the PLCs. The system fully automates the superconducting cryogenic control with process control, PID (Proportional-Integral-Differential) control loops, real-time data access and data storage, alarm handler and human machine interface. It is capable of automatic recovery as well. This paper describes the BEPCII cryogenic control system, data communication between S7-PLC and EPICS Input/Output Controllers (IOCs), and the integration of the flow control, the low level interlock, the AB-PLC, and EPICS.

  13. Evaluation of two designs for cryogenic insulation

    NASA Technical Reports Server (NTRS)

    Getty, R. C.

    1970-01-01

    Shingle-type, crinkled, aluminized polyethylene ester is thermally and structurally tested for cryogenic insulation. Insulation systems require thermal efficiency with minimum weight, and the ability to withstand vibration, acceleration, and rapid pressure drops.

  14. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, C.D.

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

  15. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D.

    1981-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  16. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  17. The Fast Alternative Cryogenic Experiment Testbed

    NASA Technical Reports Server (NTRS)

    Nash, Alfred; Holmes, Warren

    2000-01-01

    One of the challenges in the area of cryogenics for space exploration in the next millennium is providing the capability for inexpensive, frequent, access to space. Faced with this challenge during the International Space Station (ISS) build era, when other Space Shuttle manifesting opportunities are unavailable, a "proof of concept" cryostat has been developed to demonstrate the ability to accommodate low temperature science investigations within the constraints of the Hitchhiker siderail carrier. The Hitchhiker siderail carrier is available on a "mass available" basis during the ISS build era. In fact, several hitchhiker payloads flew with the deployment of the Unity module. Hitchhiker siderail carrier payloads have historically flown an average of about four times a year. A hybrid Solid Neon - Superfluid Helium cryostat has been developed with Janis Research Company to accommodate instruments of 16.5 cm diameter and 30 cm. length. This hybrid approach was taken in part to provide adequate on-orbit lifetime for instruments with high (conducted) heat loads from the instrumentation wiring. Mass, volume, lifetime and the launch hold scenario were all design drivers. In addition, with Ball Aerospace and Technologies Corporation, a multichannel VME architecture Germanium Resistance Thermometer (GRT) readout and heater control servo system has been developed. In a flight system, the cryostat and electronics payloads would be umbilically attached in a paired Hitchhiker siderail mount, and permit on-orbit command and telemetry capability. The results of performance tests of both the cryostat, and a helium sample instrument will be presented. The instrument features a self contained, miniaturized, nano-Kelvin resolution High Resolution Thermometer (HRT). This high level of thermal resolution is achieved through the utilization of a dc Superconducting Quantum Interference Device (SQUID). Although developed for the Low Temperature Microgravity Fundamental Physics

  18. Evaluation of different scintillators for 1MV NDE x-ray imaging

    NASA Astrophysics Data System (ADS)

    Zentai, George; Ganguly, Arundhuti; Visrshup, Gary

    2014-03-01

    X-ray radiography is an important and frequently used NDE method of testing metal structures, such as tube welding quality, cracks and voids in cast iron or other metals. It gives fast and visible answer for structural defects. The Varian high energy portal imagers on Clinacs used in cancer treatment were tested for this purpose. We compared the traditional Gadox (LANEX) screen with and without a 1mm Cu buildup plate as used clinically. We also tested different hybrid scintillators, which consisted of different phosphor layers deposited onto fiberoptic plates. The last screen tested was a 2cm thick fiberoptic plate which contained scintillating fibers. The sensitivity (ADU = number of digital counts per a given X-ray dose), the resolution (MTF - modulation transfer function) and the DQE (detective quantum efficiency) were compared, with a 1 MV source, for these X-ray conversion screens. We found that the additional 1mm Cu plate, which improves the absorption and the contrast at 6 or higher energy MeV imaging, does not improve the image quality at 1MV. Rather it attenuates the X-rays, resulting in lower sensitivity and a lower DQE(0) of 2.2% with the additional Cu plate compared to DQE(0) of ~4% without the Cu plate. The hybrid scintillators with evaporated phosphors on fiberoptic plates tested were too thin resulting in low sensitivity. The best results were obtained from the thick scintillating fiberoptic screens, which provided the best DQE and high resolution with the 1MV X-ray beam. Further optimization is planned by changing the thickness of the scintillating fiber optic plate.

  19. Below-Ambient and Cryogenic Thermal Testing

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  20. Filament-wound, fiberglass cryogenic tank supports

    NASA Technical Reports Server (NTRS)

    Carter, J. S.; Timberlake, T. E.

    1971-01-01

    The design, fabrication, and testing of filament-wound, fiberglass cryogenic tank supports for a LH2 tank, a LF2/FLOX tank and a CH4 tank. These supports consist of filament-wound fiberglass tubes with titanium end fittings. These units were satisfactorily tested at cryogenic temperatures, thereby offering a design that can be reliably and economically produced in large or small quantities. The basic design concept is applicable to any situation where strong, lightweight axial load members are desired.

  1. Progress in Cryogenic Target Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    McCrory, R. L.; Meyerhofer, D. D.; Betti, R.; Boehly, T. R.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Glebov, V. Yu; Goncharov, V. N.; Harding, D. R.; Hu, S. X.; Knauer, J. P.; Marshall, F. J.; McKenty, P. W.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Short, R. W.; Shvarts, D.; Skupsky, S.; Smalyuk, V. A.; Soures, J. M.; Stoeckl, C.; Theobald, W.; Yaakobi, B.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H.; Casey, D. T.

    2016-10-01

    Cryogenic deuterium-tritium targets are imploded on the OMEGA Laser System in a direct-drive configuration. Areal densities of approximately 200 mg/cm2 have been measured with implosion velocities of 3 × 107 cm/s. These implosions are used to study the dynamics of cryogenic target compression and to develop areal-density diagnostics that will be used as part of the ignition campaign on the National Ignition Facility.

  2. Large Cryogenic Germanium Detector. Final Report

    SciTech Connect

    Mandic, Vuk

    2013-02-13

    The goal of this project was to investigate possible ways of increasing the size of cryogenic Ge detectors. This project identified two possible approaches to increasing the individual cryogenic Ge detector size. The first approach relies on using the existing technology for growing detector-grade (high-purity) germanium crystals of dislocation density 100-7000 cm{sup -2}. The second approach is to consider dislocation-free Ge crystals.

  3. FET's Perform Well At Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Sclar, N.

    1992-01-01

    New metal-oxide-semiconductor field-effect transistors designed for source-follower preamplifiers operating at liquid-helium temperatures in conjunction with infrared detectors. Lower thresholds and offset give CryoFET's greater dynamic range and linearity than conventional MOSFET's at low temperatures and facilitates pair balancing to reduce offsets in output. Reduces heat loading of cryogenic system, extending life, reliability, and performance of cryogenic infrared instruments.

  4. D0 Cryogenic System Operator Training

    SciTech Connect

    Markley, D.; /Fermilab

    1991-11-30

    D0 is a collider detector. It will be operating and doing physics at the same time as CDP, therefore it has been decided to train CDP operators to operate and respond to the D0 cryogenic control system. A cryogenic operator will be required to be in residence at D0, during the cooldown and liquid Argon fill of any of the calorimeters. The cryogenic system at D0 is designed to be unmanned during steady state operation. CDP operations has 2 man cryogenic shifts 24 hours a day. It is intended that CDP operators monitor the D0 cryogenic systems, evaluate and respond to alarms, and notify a D0 cryo expert in the event of an unusual problem. A D0 cryogenic system view node has been installed at CDP to help facilitate these goals. It should be noted that even though the CDP view node is a fully operational node it is intended that it be more of an information node and is therefore password protected. The D0 cryo experts may reassess the use of the CDP node at a later date based on experience and operating needs. This engineering note outlines the format of the training and testing given to the CDP operators to make them qualified D0 operators.

  5. High quantum efficiency megavoltage imaging with thick scintillator detectors for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gopal, Arun

    In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and

  6. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  7. Neutron spectroscopy with scintillation detectors using wavelets

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica

    The purpose of this research was to study neutron spectroscopy using the EJ-299-33A plastic scintillator. This scintillator material provided a novel means of detection for fast neutrons, without the disadvantages of traditional liquid scintillation materials. EJ-299-33A provided a more durable option to these materials, making it less likely to be damaged during handling. Unlike liquid scintillators, this plastic scintillator was manufactured from a non-toxic material, making it safer to use, as well as easier to design detectors. The material was also manufactured with inherent pulse shape discrimination abilities, making it suitable for use in neutron detection. The neutron spectral unfolding technique was developed in two stages. Initial detector response function modeling was carried out through the use of the MCNPX Monte Carlo code. The response functions were developed for a monoenergetic neutron flux. Wavelets were then applied to smooth the response function. The spectral unfolding technique was applied through polynomial fitting and optimization techniques in MATLAB. Verification of the unfolding technique was carried out through the use of experimentally determined response functions. These were measured on the neutron source based on the Van de Graff accelerator at the University of Kentucky. This machine provided a range of monoenergetic neutron beams between 0.1 MeV and 24 MeV, making it possible to measure the set of response functions of the EJ-299-33A plastic scintillator detector to neutrons of specific energies. The response of a plutonium-beryllium (PuBe) source was measured using the source available at the University of Nevada, Las Vegas. The neutron spectrum reconstruction was carried out using the experimentally measured response functions. Experimental data was collected in the list mode of the waveform digitizer. Post processing of this data focused on the pulse shape discrimination analysis of the recorded response functions to remove the

  8. Nonproportionality of Scintillator Detectors: Theory and Experiment

    SciTech Connect

    Payne, Stephen; Cherepy, Nerine; Hull, Giulia; Valentine, John; Moses, William; Choong, Woon-Seng

    2009-08-17

    On the basis of nonproportionality data obtained for several scintillators, we have developed a theory to describe the carrier dynamics to fit the light yield versus electron energy. The theory of Onsager was adapted to explain how the carriers form excitons or sequentially arrive at the activators to promote the ion to an excited state, and the theory of Birks was employed to allow for exciton-exciton annihilation. We then developed a second theory to deduce the degradation in resolution that results from nonproportionality by evoking Landau fluctuations, which are essentially variations in the deposited energy density that occur as the high energy electron travels along its trajectory. In general there is good agreement with the data, in terms of fitting the nonproportionality curves and reproducing the literature values of nonproportionality's contribution to the scintillator resolution. With the resurgence of interest in developing scintillator detectors that have good energy resolution, an improved understanding of nonproportionality has become a crucial matter since it presents the fundamental limit to the achievable resolution. In order to hasten an improved understanding of scintillator nonproportionality, we have constructed an instrument referred to as SLYNCI (Scintillator Light Yield Nonproportionality Compton Instrument). This is a second-generation instrument to the original device developed by Valentine and coworkers, wherein several new principles of operation have served to increase the data rate by an order of magnitude as discussed in detail in References. In the present article, the focus is on a theory to describe the measured electron response, which is the light yield as a function of the electron energy. To do this, we account for transport of carriers and excitons, in terms of how they transfer their energy to the activators with competition from nonradiative decay pathways. This work builds on the original work of Murray and coworkers, and

  9. Cryogenic ion chemistry and spectroscopy.

    PubMed

    Wolk, Arron B; Leavitt, Christopher M; Garand, Etienne; Johnson, Mark A

    2014-01-21

    The use of mass spectrometry in macromolecular analysis is an incredibly important technique and has allowed efficient identification of secondary and tertiary protein structures. Over 20 years ago, Chemistry Nobelist John Fenn and co-workers revolutionized mass spectrometry by developing ways to non-destructively extract large molecules directly from solution into the gas phase. This advance, in turn, enabled rapid sequencing of biopolymers through tandem mass spectrometry at the heart of the burgeoning field of proteomics. In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. This is accomplished by first cooling the ions close to 10 K and condensing onto them weakly bound, chemically inert small molecules or rare gas atoms. This assembly can then be used as a medium in which to quench reactive encounters by rapid evaporation of the adducts, as well as provide a universal means for acquiring highly resolved vibrational action spectra of the embedded species by photoinduced mass loss. Moreover, the spectroscopic measurements can be obtained with readily available, broadly tunable pulsed infrared lasers because absorption of a single photon is sufficient to induce evaporation. We discuss the implementation of these methods with a new type of hybrid photofragmentation mass spectrometer involving two stages of mass selection with two laser excitation regions interfaced to the cryogenic ion source. We illustrate several capabilities of the cryogenic ion spectrometer by presenting recent applications to peptides, a biomimetic catalyst, a large antibiotic molecule (vancomycin), and reaction intermediates pertinent to the chemistry of the ionosphere. First, we demonstrate how site-specific isotopic substitution can be used to identify bands due to local functional groups in a protonated tripeptide designed to

  10. A totally active scintillator calorimeter for the Muon Ionization Cooling Experiment (MICE). Design and construction

    NASA Astrophysics Data System (ADS)

    Asfandiyarov, Ruslan

    2013-12-01

    The Electron-Muon Ranger (EMR) is a totally active scintillator detector to be installed in the muon beam of the Muon Ionization Cooling Experiment (MICE) [1] - the main R&D project for the future neutrino factory. It is aimed at measuring the properties of the low energy beam composed of muons, electrons and pions, performing the identification particle by particle. The EMR is made of 48 stacked layers alternately measuring the X- and the Y-coordinate. Each layer consists of 59 triangular scintillator bars. It is shown that the granularity of the detector permits to identify tracks and to measure particle ranges and shower shapes. The read-out is based on FPGA custom made electronics and commercially available modules. Currently it is being built at the University of Geneva.

  11. C and L band transionospheric scintillation experiment - Some results for applications to satellite radio systems

    NASA Astrophysics Data System (ADS)

    Banerjee, P. K.; Dabas, R. S.; Reddy, B. M.

    1992-12-01

    The signal statistics of some scintillation events at the C/L bands are estimated for the high solar activity period of solar cycle 22 at a low-latitude station in the Indian zone. In addition to the morphology at 4 Ghz, data on signal statistics such as the cumulative amplitude distribution function, fade rate distribution, and signal reliability for different message lengths for some events of scintillations, both at C and L band, are presented. The theoretical Nakagami m distribution is found to be the best for describing various levels of fade. Autocorrelation and power-spectrum analysis are used to estimate average fade rates and ground correlation distances. Performance evaluation of satellite earth terminals using small antennas is carried out to show the vulnerability of the system in the hostile ionospheric environment, notwithstanding the advanced modulation systems being employed.

  12. Potential for SPECT cameras utilizing photodiode readout of scintillator crystals

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.; Gruber, G.J.; Huesman, R.H.

    1997-05-01

    We present a conceptual design for a SPECT detector consisting of an array of 3x3x5 mm CsI(Tl) scintillator crystals individually read out by an array of 3 mm square silicon photodiodes. The interaction position is not determined by Anger logic, but by the location of the individual crystal/photodiode element in which the gamma ray is observed. Since the design is modular (each module typically having 64 crystals, photodiodes, and charge amplifiers, and one multiplexer circuit to reduce the number of readout channels), a large variety of camera geometries can be realized. Advantages of this design over conventional cameras (NaI(Tl) scintillator/photomultiplier tube) are lower gain drift (i.e. higher stability), smaller size, significantly higher count rate capability, and potentially lower cost. For the 141 keV emissions of Tc-99m, both CsI(Tl) and NaI(Tl) have 85-90% photoelectric fraction, but CsI(TI) has an attenuation length of 3.0 mm as compared to 4.5 mm for NaI(Tl). Thus, a 5 mm thick CsI(Tl) camera has singular efficiency to a Nal(Tl) camera with a 7.5 mm thickness (between 1/4 and 3/8 inch). The light output of CsI(Tl) is 25% higher than that of Nal(Tl), and while its 565 nm emissions are not efficiently detected with photomultiplier tubes, they are well matched to photodiode detection.

  13. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    DOE PAGES

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, John S.

    2015-02-21

    Initially, the alkaline-earth scintillator, CaI2:Eu2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, atmore » least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI2:Eu2+ and pure CaI2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.« less

  14. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    SciTech Connect

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, John S.

    2015-02-21

    Initially, the alkaline-earth scintillator, CaI2:Eu2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the

  15. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, John S.

    2015-06-01

    The alkaline-earth scintillator, CaI2:Eu2+, was initially discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. As in the case of the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles-so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI2:Eu2+ and pure CaI2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.

  16. The cryogenics analysis program for Apollo mission planning and analysis

    NASA Technical Reports Server (NTRS)

    Scott, W.; Williams, J.

    1971-01-01

    The cryogenics analysis program was developed as a simplified tool for use in premission planning operations for the Apollo command service module. Through a dynamic development effort, the program has been extended to include real time and postflight analysis capabilities with nominal and contingency planning features. The technical aspects of the program and a comparison of ground test and mission data with data generated by using the cryogenics analysis program are presented. The results of the program capability to predict flight requirements also are presented. Comparisons of data from the program with data from flight results, from a tank qualifications program, and from various system anomalies that have been encountered are discussed. Future plans and additional considerations for the program also are included. Among these plans are a three tank management scheme for hydrogen, venting profile generation for Skylab, and a capability for handling two gas atmospheres. The plan for two gas atmospheres will involve the addition of the capability to handle nitrogen as well as oxygen and hydrogen.

  17. Engineering and fabrication cost considerations for cryogenic wind tunnel models

    NASA Technical Reports Server (NTRS)

    Boykin, R. M., Jr.; Davenport, J. B., Jr.

    1983-01-01

    Design and fabrication cost drivers for cryogenic transonic wind tunnel models are defined. The major cost factors for wind tunnel models are model complexity, tolerances, surface finishes, materials, material validation, and model inspection. The cryogenic temperatures require the use of materials with relatively high fracture toughness but at the same time high strength. Some of these materials are very difficult to machine, requiring extensive machine hours which can add significantly to the manufacturing costs. Some additional engineering costs are incurred to certify the materials through mechanical tests and nondestructive evaluation techniques, which are not normally required with conventional models. When instrumentation such as accelerometers and electronically scanned pressure modules is required, temperature control of these devices needs to be incorporated into the design, which requires added effort. Additional thermal analyses and subsystem tests may be necessary, which also adds to the design costs. The largest driver to the design costs is potentially the additional static and dynamic analyses required to insure structural integrity of the model and support system.

  18. Plastic fiber scintillator response to fast neutrons

    SciTech Connect

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.

    2014-11-15

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  19. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  20. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  1. Fast scintillation counter system and performance

    NASA Technical Reports Server (NTRS)

    Sasaki, H.; Nishioka, A.; Ohmori, N.; Kusumose, M.; Nakatsuka, T.; Horiki, T.; Hatano, Y.

    1985-01-01

    An experimental study of the fast scintillation counter (FS) system to observe a shower disk structure at Mt. Norikura is described, especially the system performance and a pulse wave-form by a single charge particles. The photomultiplier tube (PT) pulse appears at the leading edge of the main pulse. To remove this PT-pulse from the main pulse, the frame of the scintillator vessel was changed. The fast triggering system was made to decrease the dead time which came from the use of the function of the self triggering of the storage oscilloscope (OSC). To provide a new field on the multi-parameter study of the cosmic ray showers, the system response of the FS system also improved as a result of many considerations.

  2. Internet access to data for scintillation compounds

    SciTech Connect

    Moses, W.W.; West, A.C.; Derenzo, S.E.

    1995-09-01

    The LBL Pulsed X-Ray Facility has scintillation data on a large variety of inorganic scintillators. We offer this information on all compounds that we have tested. The only restrictions/favors that we ask users of this data are: (1) The data is intended for research use and may not be sold; (2) If any portion of the data is used in a publication, that the following text appear somewhere in the publication: {open_quotes}This work was supported in part by the Director, Office of Energy Research, Office of Health and Environmental Research, Medical Applications and Biophysical Research Division of the U.S. Department of Energy under contract No. DE-AC03-76SF00098, and in part by Public Health Service Grant No. R01 CA48002 awarded by the National Cancer Institutes, Department of Health and Human Services.{close_quotes}.

  3. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen Edward; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  4. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  5. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    SciTech Connect

    Cherepy, N J; Kuntz, J D; Roberts, J J; Hurst, T A; Drury, O B; Sanner, R D; Tillotson, T M; Payne, S A

    2008-08-24

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed.

  6. Development of a cryogenic microcalorimeter

    NASA Astrophysics Data System (ADS)

    Junkin, David Stuart

    The motivation for this project has been to measure β-decay using a low background detector which encapsulated the β source (4π coverage). It was realized that the ideal detector for this measurement was a microcalorimeter (a small cryogenic detector consisting of an absorber, thermistor and thermal link). Presently microcalorimeters are an active area of research and development because of possible applications in weak interaction physics, x-ray astronomy and dark matter searches. The development of such a detector requires an interdisciplinary effort involving nuclear physics, solid state physics, electronics, and statistical mechanics. We have designed, constructed and characterized microcalorimeters employing two types of thermistors (AuxGe(x-1) and P:Si). In the process we constructed a dilution refrigerator, assembled the necessary electronics, and built a data acquisition and analysis system based on networked desktop computers. This stage of the project has concluded by characterizing the performance of the AuxGe(x-1) based microcalorimeters by measuring /alpha s and low energy /gamma s. The measured energy spectra have been compared to theoretical predictions, and the linearity of the devices has been tested. Future work will permit these devices to be used to measure β spectra.

  7. The future of cryogenic propulsion

    NASA Astrophysics Data System (ADS)

    Palerm, S.; Bonhomme, C.; Guelou, Y.; Chopinet, J. N.; Danous, P.

    2015-07-01

    As the French Space Agency, CNES is funding an ambitious program to identify, develop and evaluate the technologies and skills that will enable to design cost efficient future launchers. This program deals together with, researches for mastering complex physical phenomena, set ups of robust and efficient numerical tools for design and justification, and identification of innovative manufacturing processes and hardware. It starts from low Technical Readiness Level (TRL 2) up to a maturation of TRL 6 with the use of demonstrators, level that allows to be ready for a development. This paper focuses on cryogenic propulsion activities conducted with SNECMA and French laboratories to prepare next generation engines. The physics in that type of hardware addresses a large range of highly complex phenomena, among them subcritical and supercritical combustion and possible associated High Frequency oscillations in combustion devices, tribology in bearings and seals, cavitation and rotordynamics in turbopump. The research activities conducted to master those physical phenomena are presented. Moreover, the operating conditions of these engines are very challenging, both thermally and mechanically. The innovative manufacturing processes and designs developed to cope with these conditions while filling cost reduction requirements are described. Finally, the associated demonstrators put in place to prepare the implementation of these new technologies on future engines are presented.

  8. A cryogenic infrared calibration target.

    PubMed

    Wollack, E J; Kinzer, R E; Rinehart, S A

    2014-04-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R ⩽ 0.003, from 800 to 4800 cm(-1) (12 - 2 μm). Upon expanding the spectral range under consideration to 400-10,000 cm(-1) (25 - 1 μm) the observed performance gracefully degrades to R ⩽ 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to ∼4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented.

  9. A cryogenic infrared calibration target

    NASA Astrophysics Data System (ADS)

    Wollack, E. J.; Kinzer, R. E.; Rinehart, S. A.

    2014-04-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R ⩽ 0.003, from 800 to 4800 cm-1 (12 - 2 μm). Upon expanding the spectral range under consideration to 400-10 000 cm-1 (25 - 1 μm) the observed performance gracefully degrades to R ⩽ 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to ˜4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials—Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder—are characterized and presented.

  10. Nanophosphor composite scintillators comprising a polymer matrix

    DOEpatents

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  11. Simulating Silicon Photomultiplier Response to Scintillation Light

    PubMed Central

    Jha, Abhinav K.; van Dam, Herman T.; Kupinski, Matthew A.; Clarkson, Eric

    2015-01-01

    The response of a Silicon Photomultiplier (SiPM) to optical signals is affected by many factors including photon-detection efficiency, recovery time, gain, optical crosstalk, afterpulsing, dark count, and detector dead time. Many of these parameters vary with overvoltage and temperature. When used to detect scintillation light, there is a complicated non-linear relationship between the incident light and the response of the SiPM. In this paper, we propose a combined discrete-time discrete-event Monte Carlo (MC) model to simulate SiPM response to scintillation light pulses. Our MC model accounts for all relevant aspects of the SiPM response, some of which were not accounted for in the previous models. We also derive and validate analytic expressions for the single-photoelectron response of the SiPM and the voltage drop across the quenching resistance in the SiPM microcell. These analytic expressions consider the effect of all the circuit elements in the SiPM and accurately simulate the time-variation in overvoltage across the microcells of the SiPM. Consequently, our MC model is able to incorporate the variation of the different SiPM parameters with varying overvoltage. The MC model is compared with measurements on SiPM-based scintillation detectors and with some cases for which the response is known a priori. The model is also used to study the variation in SiPM behavior with SiPM-circuit parameter variations and to predict the response of a SiPM-based detector to various scintillators. PMID:26236040

  12. Studies of NICADD Extruded Scintillator Strips

    SciTech Connect

    Dychkant, Alexandre; et al.

    2005-03-01

    About four hundred one meter long, 10 cm wide and 5 mm thick extruded scintillating strips were measured at four different points. The results of measurements strip responses to a radioactive source {sup 90}Sr are provided, and details of strip choice, preparation, and method of measurement are included. This work was essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  13. Sorohalide scintillators, phosphors, and uses thereof

    DOEpatents

    Yang, Pin; Deng, Haoran; Doty, F. Patrick; Zhou, Xiaowang

    2016-05-10

    The present invention relates to sorohalide compounds having formula A.sub.3B.sub.2X.sub.9, where A is an alkali metal, B is a rare earth metal, and X is a halogen. Optionally, the sorohalide includes a dopant D. Such undoped and doped sorohalides are useful as scintillation materials or phosphors for any number of uses, including for radiation detectors, solid-state light sources, gamma-ray spectroscopy, medical imaging, and drilling applications.

  14. Characteristics of Yerevan High Transparency Scintillators

    SciTech Connect

    Zorn, Carl; Asryan, Gegham; Egiyan, Kim; Tarverdyan, M.; Amaryan, Moscov; Amaryan, Moskov; Demirchyan, Raphael; Stepanyan, Stepan; Burkert, Volker; Sharabian, Youri

    1992-08-01

    Optical transmission, light output and time characteristics are given for long scintillator strips fabricated at the Yerevan Physics Institute using the extrusion method. It is shown that at 45% relative (to anthracene) light output, good transmission (2.5/2.9 m attenuation length with photomultiplier direct readout and 3/3.5 m attenuation length fiber readout) and time characteristics (average decay time 2.8 nsec) were obtained.

  15. Improved Neutron Scintillators Based on Nanomaterials

    SciTech Connect

    Dennis Friesel, PhD

    2008-06-30

    The development work conducted in this SBIR has so far not supported the premise that using nano-particles in LiFZnS:Ag foils improves their transparency to 420 (or other frequency) light. This conclusion is based solely on the light absorption properties of LiFZnS foils fabricated from nano- and from micro-particles. Furthermore, even for the case of the Gd{sub 2}O{sub 3} foils, the transmission of 420 nm light gained by using nano-particles all but disappears as the foil thickness is increased beyond about 0.2 mm, a practical scintillator thickness. This was not immediately apparent from the preliminary study since no foils thicker than about 0.04 mm were produced. Initially it was believed that the failure to see an improvement by using nano-particles for the LiFZnS foils was caused by the clumping of the particles in Toluene due to the polarity of the ZnS particles. However, we found, much to our surprise, that nano-particle ZnS alone in polystyrene, and in Epoxy, had worse light transmission properties than the micro-particle foils for equivalent thickness and density foils. The neutron detection measurements, while disappointing, are attributable to our inability to procure or fabricate Bulk Doped ZnS nanoparticles. The cause for the failure of nano-particles to improve the scintillation light, and hence improved neutron detection efficiency, is a fundamental one of light scattering within the scintillator. A consequence of PartTec's documentation of this is that several concepts for the fabrication of improved {sup 6}LiFZnS scintillators were formulated that will be the subject of a future SBIR submission.

  16. Active Costorage of Cryogenic Propellants for Exploration

    NASA Astrophysics Data System (ADS)

    Canavan, E. R.; Boyle, R. F.; Mustafi, S.

    2008-01-01

    Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used cryogens to cool instruments. In many cases, the lifetime of the primary cryogen tank has been extended by intercepting much of the heat incident on the tank at an intermediate-temperature shield cooled either by a second cryogen tank or a mechanical cryocooler. For an LH2/LO2 propellant system, a combination of these ideas can be used, in which the shield around the LO2 tank is attached to, and at the same temperature as, the LO2 tank, but is actively cooled so as to remove all heat impinging on the tank and shield. This configuration eliminates liquid oxygen boil-off and cuts the liquid hydrogen boil-off to a small fraction of the unshielded rate. This paper studies the concept of active costorage as a means of long-term cryogenic propellant storage. The paper describes the design impact of an active costorage system for the Crew Exploration Vehicle (CEV). This paper also compares the spacecraft level impact of the active costorage concept with a passive storage option in relation to two different scales of spacecraft that will be used for the lunar exploration effort, the CEV and the Earth Departure Stage (EDS). Spacecraft level studies are performed to investigate the impact of scaling of the costorage technologies for the different components of the Lunar Architecture and for different mission durations.

  17. Boron-Loaded Silicone Rubber Scintillators

    SciTech Connect

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  18. GPS scintillations over Vietnam on April 2006

    NASA Astrophysics Data System (ADS)

    Alfonsi, Lucilla; Spogli, Luca; Tong, Jenna R.; de Franceschi, Giorgiana; Romano, Vincenzo; Bourdillon, Alain; Le Huy, Minh; Mitchell, Cathryn N.

    2010-05-01

    In Vietnam, at Hue (16.4°N, 107.6°E) and Hoc Mon (10.9°N, 106.6°E), are located two GPS receivers specially modified for recording, at a sampling rate of 50 Hz, the phase and the amplitude of the L1 signal and the Total Electron Content (TEC) from L1 and L2. In April 2006 both the receivers have observed post-sunset scintillation inhibition when moderate magnetic storms occurred. These measurements together with a 3D plus time imaging of the ionosphere produced by the Multi-Instrument Data Analysis System (MIDAS) have revealed interesting features that will be described in the present paper. In particular, the results confirm the role of the ring current on the generation of the equatorial F layer irregularities of scale size from less than a hundred meters to a few kilometers, highlighting also its important role in inhibiting scintillation during the storm. The characterization of the different conditions of the Interplanetary Magnetic Field (IMF) will be illustrated, as well, to attempt a description of the scintillation effects over a region scarcely investigated in the open literature.

  19. Scintillators with potential to supersede lanthanum bromide

    SciTech Connect

    Cherepy, Nerine; Payne, Steven; Aszatlos, Steve; Hull, Giulia; Kuntz, J.; Niedermayr, Tom; Pimputkar, S.; Roberts, J.; Sanner, R.; Tillotson, T.; van Loef, Edger; Wilson, Cody; Shah, Kanai; Roy, U.; Hawrami, R.; Burger, Arnold; Boatner, Lynn; Choong, Woon-Seng; Moses, William

    2009-06-01

    New scintillators for high-resolution gamma ray spectroscopy have been identified, grown and characterized. Our development efforts have focused on two classes of high light yield materials: Europium-doped alkaline earth halides and Cerium-doped garnets. Of the halide single crystals we have grown by the Bridgman method - SrI{sub 2}, CaI{sub 2}, SrBr{sub 2}, BaI{sub 2} and BaBr{sub 2} - SrI{sub 2} is the most promising. SrI{sub 2}(Eu) emits into the Eu{sup 2+} band, centered at 435 nm, with a decay time of 1.2 {micro}s and a light yield of up to 115,000 photons/MeV. It offers energy resolution better than 3% FWHM at 662 keV, and exhibits excellent light yield proportionality. Transparent ceramics fabrication allows production of Gadolinium- and Terbium-based garnets which are not growable by melt techniques due to phase instabilities. While scintillation light yields of Cerium-doped ceramic garnets are high, light yield non-proportionality and slow decay components appear to limit their prospects for high energy resolution. We are developing an understanding of the mechanisms underlying energy dependent scintillation light yield non-proportionality and how it affects energy resolution. We have also identified aspects of optical design that can be optimized to enhance energy resolution.

  20. Detecting dark matter with scintillating bubble chambers

    NASA Astrophysics Data System (ADS)

    Zhang, Jianjie; Dahl, C. Eric; Jin, Miaotianzi; Baxter, Daniel

    2016-03-01

    Threshold based direct WIMP dark matter detectors such as the superheated bubble chambers developed by the PICO experiment have demonstrated excellent electron-recoil and alpha discrimination, excellent scalability, ease of change of target fluid, and low cost. However, the nuclear-recoil like backgrounds have been a limiting factor in their dark matter sensitivity. We present a new type of detector, the scintillating bubble chamber, which reads out the scintillation pulse of the scattering events as well as the pressure, temperature, acoustic traces, and bubble images as a conventional bubble chamber does. The event energy provides additional handle to discriminate against the nuclear-recoil like backgrounds. Liquid xenon is chosen as the target fluid in our prototyping detector for its high scintillation yield and suitable vapor pressure which simplifies detector complexity. The detector can be used as an R&D tool to study the backgrounds present in the current PICO bubble chambers or as a prototype for standalone dark matter detectors in the future. Supported by DOE Grant DE-SC0012161.

  1. Chloride, bromide and iodide scintillators with europium

    DOEpatents

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  2. Interstellar Scintillation of Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Rickett, Barney

    1998-05-01

    Interstellar scintillation (ISS) causes a Galactic seeing problem for radio astronomy. Thus the flux density from a very compact radio source appears to scintillate on a time scale that ranges from days to minutes depending on the wavelength and Galactic path length. I will review the observed variations from various sources, which are among the most compact cores of active galactic nuclei (AGN). An ISS interpretation of the observed variations yields estimates of the source sizes in the range 0.01 to 10 milliarcsec, often much smaller than the resolution from earth-based VLBI. The recognition of such variations as apparent reduces the implied brightness temperature by a factor as large as one million, compared to the extreme values deduced by interpreting the variations as intrinsic. Some such intraday variable sources also exhibit partially correlated variations in their polarized flux and angle. The changes in interstellar Faradya rotation are too slow to cause such variations by many orders of magnitude. I will report on attempts to model the polarized flux variations as due to independent ISS from polarized components with intrinsic polarization structure in the source at a level of tens of microarcseconds. I will also discuss how Frail et al. (Nature, 389, 261, 1997) used interstellar scintillation to estimate the size of the expanding fireball in the radio afterglow of gamma-ray burst 970508.

  3. Characterization of Ionospheric Scintillation Using Simultaneous Formosat-3/COSMIC Radio Occultation Observations and AFRL SCINDA Ground Scintillation Measurements

    NASA Astrophysics Data System (ADS)

    Starks, M. J.; Lin, C. S.; Groves, K. M.; Pedersen, T. R.; Basu, S.; Syndergaard, S.; Rocken, C.

    2007-05-01

    Ionospheric scintillation at low latitudes has been studied using ionospheric radio occultation (RO) measurements by the FORMOSAT-3/COSMIC micro-satellites in conjunction with ground-based data from the Scintillation Network Decision Aid (SCINDA) station at Kwajalein Atoll. The Air Force Research Laboratory has developed the SCINDA network for monitoring low-latitude ionospheric total electron content (TEC) and scintillation associated with equatorial spread F. The network currently consists of sixteen stations distributed around the globe and the data have been used to conduct numerous studies on the characteristics and climatology of equatorial scintillation. The present study focuses on COSMIC RO and SCINDA data during the three COSMIC campaigns in 2006. Radio occultation events are selected by requiring that ionospheric scintillation was detected by the SCINDA VHF scintillation monitor at Kwajalein, and that the occultation ray path intersected the Kwajalein longitude below the satellite altitude, which varied from 500 to 800 km for the six FORMOSAT-3 satellites. In order to exclude tropospheric effects, only GPS signal amplitudes from FORMOSAT-3 with ray path tangent altitudes above 100 km are considered. Locations of ionospheric scintillation are estimated by triangulation using the satellites and the SCINDA ground station. Airglow images at Kwajalein are also used to confirm occurrence of equatorial ionospheric scintillations. For the selected events, large amplitude L1 and L2 scintillations tend to occur at altitudes below 200 km at frequencies around 0.5 Hz. The results are discussed as a potential path toward better specifying the occurrence of equatorial scintillations.

  4. Phase and coherence analysis of VHF scintillation over Christmas Island

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Mannucci, A. J.; Caton, R.

    2014-03-01

    This short paper presents phase and coherence data from the cross-wavelet transform applied on longitudinally separated very high frequency (VHF) equatorial ionospheric scintillation observations over Christmas Island. The phase and coherence analyses were employed on a pair of scintillation observations, namely, the east-looking and west-looking VHF scintillation monitors at Christmas Island. Our analysis includes 3 years of peak season scintillation data from 2008, 2009 (low solar activity), and 2011 (moderate solar activity). In statistically significant and high spectral coherence regions of the cross-wavelet transform, scintillation observations from the east-looking monitor lead those from the west-looking monitor by about 20 to 60 (40 ± 20) min (most frequent lead times). Using several years (seasons and solar cycle) of lead (or lag) and coherence information of the cross-wavelet transform, we envisage construction of a probability model for forecasting scintillation in the nighttime equatorial ionosphere.

  5. Metal-loaded organic scintillators for neutrino physics

    NASA Astrophysics Data System (ADS)

    Buck, Christian; Yeh, Minfang

    2016-09-01

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.

  6. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    NASA Astrophysics Data System (ADS)

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2016-09-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7 ± 3.0) ns and (36.6 ± 2.4) ns , respectively, while the full width [-3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. The scintillation light yield was measured to be (1.01 ± 0.12) ×103 photons / MeV .

  7. Methods for the continuous production of plastic scintillator materials

    DOEpatents

    Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry

    1999-10-19

    Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.

  8. The Future with Cryogenic Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  9. A Superconducting Tunnel Junction X-ray Spectrometer without Liquid Cryogens

    SciTech Connect

    Friedrich, S; Hertrich, T; Drury, O B; Cherepy, N J; Hohne, J

    2008-06-15

    Superconducting tunnel junctions (STJs) are being developed as X-ray detectors because they combine the high energy resolution of cryogenic detector technologies with the high count rate capabilities of athermal devices. We have built STJ spectrometers for chemical analysis of dilute samples by high-resolution soft X-ray spectroscopy at the synchrotron. The instruments use 36 pixels of 200 {micro}m x 200 {micro}m Nb-Al-AlOx-Al-Nb STJs with 165 nm thick Nb absorber films. They have achieved an energy resolution of {approx}10-20 eV FWHM for X-ray energies below 1 keV, and can be operated at a total count rate of {approx}10{sup 6} counts/s. For increased user-friendliness, we have built a liquid-cryogen-free refrigerator based on a two-stage pulse tube cryocooler in combination with a two-stage adiabatic demagnetization stage. It holds the STJ detector at the end of a 40-cm-long cold finger, and attains the required operating temperature of {approx}0.3 K at the push of a button. We describe the instrument performance and present speciation measurements on Eu dopant activators in the novel scintillator material SrI{sub 2} to illustrate the potential for STJ spectrometers at the synchrotron.

  10. Development of Advanced Tools for Cryogenic Integration

    NASA Astrophysics Data System (ADS)

    Bugby, D. C.; Marland, B. C.; Stouffer, C. J.; Kroliczek, E. J.

    2004-06-01

    This paper describes four advanced devices (or tools) that were developed to help solve problems in cryogenic integration. The four devices are: (1) an across-gimbal nitrogen cryogenic loop heat pipe (CLHP); (2) a miniaturized neon CLHP; (3) a differential thermal expansion (DTE) cryogenic thermal switch (CTSW); and (4) a dual-volume nitrogen cryogenic thermal storage unit (CTSU). The across-gimbal CLHP provides a low torque, high conductance solution for gimbaled cryogenic systems wishing to position their cryocoolers off-gimbal. The miniaturized CLHP combines thermal transport, flexibility, and thermal switching (at 35 K) into one device that can be directly mounted to both the cooler cold head and the cooled component. The DTE-CTSW, designed and successfully tested in a previous program using a stainless steel tube and beryllium (Be) end-pieces, was redesigned with a polymer rod and high-purity aluminum (Al) end-pieces to improve performance and manufacturability while still providing a miniaturized design. Lastly, the CTSU was designed with a 6063 Al heat exchanger and integrally welded, segmented, high purity Al thermal straps for direct attachment to both a cooler cold head and a Be component whose peak heat load exceeds its average load by 2.5 times. For each device, the paper will describe its development objective, operating principles, heritage, requirements, design, test data and lessons learned.

  11. NASA's Cryogenic Fluid Management Technology Project

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  12. Aerogel Blanket Insulation Materials for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  13. Advanced cryogenics for cutting tools. Final report

    SciTech Connect

    Lazarus, L.J.

    1996-10-01

    The purpose of the investigation was to determine if cryogenic treatment improved the life and cost effectiveness of perishable cutting tools over other treatments or coatings. Test results showed that in five of seven of the perishable cutting tools tested there was no improvement in tool life. The other two tools showed a small gain in tool life, but not as much as when switching manufacturers of the cutting tool. The following conclusions were drawn from this study: (1) titanium nitride coatings are more effective than cryogenic treatment in increasing the life of perishable cutting tools made from all cutting tool materials, (2) cryogenic treatment may increase tool life if the cutting tool is improperly heat treated during its origination, and (3) cryogenic treatment was only effective on those tools made from less sophisticated high speed tool steels. As a part of a recent detailed investigation, four cutting tool manufacturers and two cutting tool laboratories were queried and none could supply any data to substantiate cryogenic treatment of perishable cutting tools.

  14. Cryogenic Applications of Commercial Electronic Components

    NASA Technical Reports Server (NTRS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.

    2012-01-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  15. Status of the ESS cryogenic system

    SciTech Connect

    Weisend II, J. G.; Darve, C.; Gallimore, S.; Hees, W.; Jurns, J.; Köttig, T.; Ladd, P.; Molloy, S.; Parker, T.; Wang, X. L.

    2014-01-29

    The European Spallation Source (ESS) is a neutron science facility funded by a collaboration of 17 European countries currently under design and construction in Lund, Sweden. The centerpiece of ESS is a 2.5 GeV proton linac utilizing superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used at ESS in the liquid hydrogen moderators surrounding the target. ESS also uses both liquid helium and liquid nitrogen in a number of the planned neutron instruments. There is also a significant cryogenic installation associated with the site acceptance testing of the ESS cryomodules. The ESS cryogenic system consists of 3 separate helium refrigeration/liquefaction plants supplying the accelerator, target moderators and instruments. An extensive cryogenic distribution system connects the accelerator cryoplant with the cryomodules. This paper describes the preliminary design of the ESS cryogenic system including the expected heat loads. Challenges associated with the required high reliability and turn-down capability will also be discussed. A unique feature of ESS is its commitment to sustainability and energy recovery. A conceptual design for recovering waste heat from the helium compressors for use in the Lund district heating system will also be described.

  16. Cryogenic System for the Spallation Neutron Source

    SciTech Connect

    Arenius, D.; Chronis, W.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2004-06-23

    The Spallation Neutron Source (SNS) is a neutron-scattering facility being built at Oak Ridge, TN for the US Department of Energy. The SNS accelerator linac consists of superconducting radio-frequency (SRF) cavities in cryostats (cryomodules). The linac cryomodules are cooled to 2.1 K by a 2300 watt cryogenic refrigeration system. As an SNS partner laboratory, Jefferson Lab is responsible for the installed integrated cryogenic system design for the SNS linac accelerator consisting of major subsystem equipment engineered and procured from industry. Jefferson Lab's work included developing the major vendor subsystem equipment procurement specifications, equipment procurement, and the integrated system engineering support of the field installation and commissioning. The major cryogenic system components include liquid nitrogen storage, gaseous helium storage, cryogen distribution transfer line system, 2.1-K cold box consisting of four stages of cold compressors, 4.5-K cold box, warm helium compressors with its associated oil removal, gas management, helium purification, gas impurity monitoring systems, and the supportive utilities of electrical power, cooling water and instrument air. The system overview, project organization, the important aspects, and the capabilities of the cryogenic system are described.

  17. Cryogenic applications of commercial electronic components

    NASA Astrophysics Data System (ADS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Harvey Moseley, S.; Wollack, Edward J.

    2012-10-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2 K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG [1] and in the GISMO [2] camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  18. Wrapped multilayer insulation for cryogenic piping

    NASA Astrophysics Data System (ADS)

    Dye, Scott; Kopelove, Alan; Mills, Gary L.

    2012-06-01

    Many cryogenic systems require thermal insulation on piping and tubing containing cryogenic fluids. The lowest heat leak is typically achieved with conventional multilayer insulation (MLI) wrapped around the tubing and contained in a vacuum. However, because of inherent insulation compression and its effect on conventional netting spacer MLI, MLI performance on piping and tubing is four to ten times worse than MLI on a cryogenic tank or flat surface. Wrapped Multilayer Insulation (WMLI) is a high performance multilayer insulation designed for cryogenic piping that uses an innovative discrete spacer technology to control layer spacing/density and reduce heat leak. This paper reports on the initial development of WMLI and its demonstration as a feasible technology. The WMLI design was estimated in thermal models to provide four times better thermal insulation than conventional MLI on cryogenic piping. A WMLI prototype was built and had a measured heat leak 37% of the heat leak of conventional MLI insulating tubing. Test results for WMLI are presented, and plans for continued development of this insulation are discussed.

  19. CALDER: Cryogenic light detectors for background-free searches

    SciTech Connect

    Cardani, L.; Bellini, F.; Casali, N.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; Vignati, M.; Castellano, M. G.; Colantoni, I.; Di Domizio, S.; Tomei, C.

    2015-08-17

    The development of background-free detectors is essential for experiments searching for rare events. Bolometers, that are among the most competitive devices for the study of neutrino-less double beta decay (0νDBD) and Dark Matter interactions, suffer from the absence of techniques that allow to identify the nature of the interacting particles. This limit can be overcome by coupling the bolometer to an independent device for the measurement of the light emitted by interactions, as the combined read-out of the bolometric and light signals allows to identify and reject particles different from those of interest. CUORE, the most advanced bolometric experiment for 0νDBD searches, could disentangle the electrons produced by 0νDBD from the dangerous background due to α particles, by measuring the (tiny) Cherenkov light emitted by electrons and not by α’s. LUCIFER, a project based on ZnSe scintillating bolometers for the study of {sup 82}Se 0νDBD, would be competitive also in the search of Dark Matter interactions if equipped with light detectors that allow to distinguish and reject the background due to electrons and γ’s. These advances require cryogenic detectors characterized by noise lower than 20 eV, large active area, wide temperature range of operation, high radio-purity and ease in fabricating hundreds of channels. The CALDER collaboration aims to develop such detectors by exploiting the superb energy resolution and natural multiplexed read-out provided by Kinetic Inductance Detectors.

  20. Energy Efficient Cryogenics on Earth and in Space

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2012-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for energy-efficient cryogenics on Earth and in space.

  1. Apparatus permits flexure testing of specimens at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Denaburg, C. R.; Reece, O. Y.

    1965-01-01

    Cryostat with support structure for test specimen allows flexure fatigue testing of honeycomb composite sandwich structures at cryogenic temperatures. The cryostat consists of a cryogen container enclosing two pairs of yokes which support two rotating end clamps.

  2. Preparation of fine-particles at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Globus, H.

    1970-01-01

    Flash freezing process yields gelling agent for use at cryogenic temperatures. Vaporized material, diluted with an inert gas, is injected below the surface of an agitated cryogenic liquid. This method disperses particles of chlorine trifluoride in liquid oxygen difluoride.

  3. Lanthanide doped strontium-barium cesium halide scintillators

    SciTech Connect

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  4. Scintillation near the F-layer trough over Northern Europe

    SciTech Connect

    Kersley, L.; Pryse, S.E.; Russell, C.D.

    1990-05-03

    Results are presented of scintillation observations made during a two and a half year period at Lerwick in the Shetland Islands using more than 19000 passes of NNSS satellites. Examples of scintillation morphology, in the region near the scintillation boundary and the F-layer trough, for both amplitude and phase are discussed using exceedence levels for the S sub 4 and sigma sub psi indices respectively. The equatorwards advancement of the scintillation boundary in response to enhanced solar activity during the increasing phase of the solar cycle is shown to be a dominant feature in the observations.

  5. Chaotic behavior of ionospheric turbulence from scintillation measurements

    SciTech Connect

    Bhattacharyya, A. )

    1990-05-01

    Ionospheric amplitude and phase scintillation data have been analyzed to estimate the information dimension associated with the attractor of the system. For weak scintillations, both amplitude and phase data yield identical results which demonstrate that spatial fluctuations of electron density in the ionosphere may be characterized by a few degrees of freedom. Stronger scintillations are attributed to steepened density irregularities which cause focusing of the incident radio wave. This results in the amplitude scintillations exhibiting higher dimensional chaos but spatial fluctuations in ionospheric density still involve low dimensional chaos.

  6. Plasmonic light yield enhancement of a liquid scintillator

    SciTech Connect

    Bignell, Lindsey J.; Jackson, Timothy W.; Mume, Eskender; Lee, George P.

    2013-05-27

    We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications.

  7. Phase and coherence of longitudinally separated equatorial ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Mannucci, A. J.

    2013-12-01

    This paper presents the first calculation of phase and coherence of cross-wavelet transform applied on longitudinally separated VHF and L-band equatorial ionospheric scintillation. The cross-wavelet analysis has utilized scintillation observations made over equatorial South America and Christmas Island. Part of the results of this study has been reported recently in the Geophysical Research Letters by Shume and Mannucci (2013). The phase and coherence analysis were employed on pairs of scintillation observations separated by longitudes thereby to develop VHF and L-band scintillation (and equatorial spread F) forecast tools west of observation sites.

  8. Energy Transfer Based Nanocomposite Scintillator for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Aslam, Soha; Sahi, Sunil; Chen, Wei; Ma, Lun; Kenarangui, Rasool

    2014-09-01

    Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum

  9. Composite solid-state scintillators for neutron detection

    DOEpatents

    Dai, Sheng; Im, Hee-Jung; Pawel, Michelle D.

    2006-09-12

    Applicant's present invention is a composite scintillator for neutron detection comprising a matrix material fabricated from an inorganic sol-gel precursor solution homogeneously doped with a liquid scintillating material and a neutron absorbing material. The neutron absorbing material yields at least one of an electron, a proton, a triton, an alpha particle or a fission fragment when the neutron absorbing material absorbs a neutron. The composite scintillator further comprises a liquid scintillating material in a self-assembled micelle formation homogeneously doped in the matrix material through the formation of surfactant-silica composites. The scintillating material is provided to scintillate when traversed by at least one of an electron, a proton, a triton, an alpha particle or a fission fragment. The scintillating material is configured such that the matrix material surrounds the micelle formation of the scintillating material. The composite scintillator is fabricated and applied as a thin film on substrate surfaces, a coating on optical fibers or as a glass material.

  10. Ionospheric scintillation observations over Kenyan region - Preliminary results

    NASA Astrophysics Data System (ADS)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  11. Development of polystyrene-based scintillation materials and its mechanisms

    NASA Astrophysics Data System (ADS)

    Nakamura, Hidehito; Kitamura, Hisashi; Shinji, Osamu; Saito, Katashi; Shirakawa, Yoshiyuki; Takahashi, Sentaro

    2012-12-01

    Scintillation materials based on polystyrene (PS) have been investigated. Para-terphenyl was employed as a fluorescent molecule (fluor) that functions as a wavelength shifter. A clear increase in photon yield of the scintillation materials relative to the pure PS was observed, which cannot be explained by the conventional theory of scintillation mechanism. Furthermore, the photon yield increased with flour concentration in accordance with a power-law. Here we reveal the emergence of a luminescence of PS-based scintillation materials and demonstrate that their photon yields can be controlled by the fluor concentration.

  12. Plasmonic light yield enhancement of a liquid scintillator

    NASA Astrophysics Data System (ADS)

    Bignell, Lindsey J.; Mume, Eskender; Jackson, Timothy W.; Lee, George P.

    2013-05-01

    We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications.

  13. Fabrication of cryogenic inertial-confinement-fusion targets using target free-fall technique. Report No. 2-82

    SciTech Connect

    Kim, K.; Murphy, M.J.

    1982-04-01

    Techniques for fabricating cryogenic inertial confinement fusion targets (i.e., spherical shells containing a uniform layer of DT ice) are investigated using target free-fall concept. Detection and characterization of the moving targets are effected by optoelectronic means, of which the principal is an RF ac-interferometer. This interferometer system demonstrates, for the first time, the speed capabilities of the phase-modulation ac-interferometry. New techiques developed for handling, holding, launching, and transporting targets are also described. Results obtained at both room and cryogenic temperatures are presented.

  14. Measurements of the Fuel Distribution in Cryogenic D-T Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Forrest, Chad J.

    In direct-drive inertial confinement fusion (ICF) experiments, a capsule filled with a mixture of deuterium and tritium ice at cryogenic temperature is irradiated by a symmetric arrangements of laser beams to compress and heat the fuel to conditions required for thermonuclear reactions. The areal density (rhoR) of the compressed fuel assembly in a cryogenic implosion is one of the fundamental parameters required to assess the target performance. The rhoR measurements presented here are achieved by measuring the complex neutron energy spectrum resulting from primary and secondary nuclear reactions within the compressed fuel assembly. Advances in neutron time-of-flight diagnostics have made it possible to infer the neutron fraction that elastically scatters off the tritons in the compressed fuel in the energy range from 3.5 -5.5 MeV which is directly proportional to the areal density. In these OMEGA cryogenic campaigns from January 2013 to August 2014, measured low-mode modulations show good agreement with Monte Carlo simulations. Deviations up to 40% in the cold-fuel distribution from spherical symmetry have been inferred from the scattered neutron spectrum. Understanding the mechanism for anisotropic areal density measurements is crucial to improve hydrodynamically equivalent ignition-relevant direct-drive cryogenic implosions on OMEGA.

  15. Operational modes and control philosophy of the SSCL Magnet Test Lab. (MTL) cryogenic system

    SciTech Connect

    Ganni, V.; Than, R.; Thirumaleshwar, M.

    1993-05-01

    The MTL`s function is to test prototype and industrially manufactured magnets for the Superconducting Super Collider Laboratory (SSCL). The cryogenic system of the MTL has a main refrigeration system consisting of a two-stage compression system, a refrigerator/liquefier coldbox, a liquid helium dewar, warm gas storage, and a regeneration skid. The MTL cryogenic system also includes the following auxiliary equipment: two cleaning, cooling, warmup and purification (CCWP) coldbox modules with a regeneration skid for the charcoal beds, two CCWP compressors, a dehydration skid with its own regeneration system, a pump box, a refrigeration recovery unit, and five distribution boxes. At any given time, the refrigeration system has the capacity to simultaneously test at least six magnets under normally required testing conditions. Every magnet will undergo cleaning, cooldown, and filling prior to general testing, conditioning, quench testing, and other experiments. At the completion of general testing, etc., the magnet must be emptied prior to warming it up to ambient temperature. Furthermore, conditioning, training, and testing of the magnets can be carried out at different temperatures between 4.5 K and 2.5 K. The cryogenic system is designed to test multiple magnets, not all of which are necessarily in the same preparational or operational stage. This paper describes the different operational modes and the behavior and control of the total cryogenic system during multiple magnet tests.

  16. Cryogenic Amplifier Based Receivers at Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Reck, Theodore and; Schlecht, Erich; Lin, Robert; Deal, William

    2012-01-01

    The operating frequency of InP high electron mobility transistor (HEMT) based amplifiers has moved well in the submillimeter-wave frequencies over the last couple of years. Working amplifiers with usable gain in waveguide packages has been reported beyond 700 GHz. When cooled cryogenically, they have shown substantial improvement in their noise temperature. This has opened up the real possibility of cryogenic amplifier based heterodyne receivers at submillimeter wavelengths for ground-based, air-borne, and space-based instruments for astrophysics, planetary, and Earth science applications. This paper provides an overview of the science applications at submillimeter wavelengths that will benefit from this technology. It also describes the current state of the InP HEMT based cryogenic amplifier receivers at submillimeter wavelengths.

  17. On-orbit cryogenic fluid transfer

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Gille, J. P.; Eberhardt, R. N.

    1984-01-01

    A number of future NASA and DOD missions have been identified that will require, or could benefit from resupply of cryogenic liquids in orbit. The most promising approach for accomplishing cryogenic fluid transfer in the weightlessness environment of space is to use the thermodynamic filling technique. This approach involves initially reducing the receiver tank temperature by using several charge hold vent cycles followed by filling the tank without venting. Martin Marietta Denver Aerospace, under contract to the NASA Lewis Research Center, is currently developing analytical models to describe the on orbit cryogenic fluid transfer process. A detailed design of a shuttle attached experimental facility, which will provide the data necessary to verify the analytical models, is also being performed.

  18. Cryogenic Current Lead Analysis Model Program

    1992-01-01

    CCLAMP was developed to provide a tool for tha analysis of superconducting or normal current leads used to supply electricity from a warm interface (usually room temperature) to a device at cryogenic temperatures. It determines the heat leak to the cryogenic connection and the mass flow of the cryogen (typically helium) for the lead and installation modelled. It may be used to thermally optimize a lead design for a particular application. The user provides relevantmore » geometry details to model the electrical (length, diameter, superconducting length) and heat exchanger design of the lead (heat transfer coefficient, heat transfer area). It has a transient analysis capability so that lead transients such as cool down, current ramping, flow disruptions, and control simulations can be performed.« less

  19. A survey of cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Dress, D. A.

    1985-01-01

    Following the development of the cryogenic wind tunnel at the NASA Langley Research Center in 1972, a large number of cryogenic wind-tunnel projects have been undertaken at various research establishments around the world. The purpose of this paper is to describe some of the more significant of these projects. Described in this paper are cryogenic wind-tunnel projects in China (CARDC), England (College of Aeronautics at Cranfield, RAE-Bedford, and University of Southampton), 'Europe' (Pilot European Transonic Windtunnel at NAL-Amsterdam, and the European Transonic Windtunnel proposed for DFVLR-Koeln), France (ONERA-CERT), Germany (DFVLR-Koeln, and DFVLR-Goettingen), Japan (NAL, University of Tsukuba, and National Defense Academy), Sweden (Rollab), and the United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign, and NASA-Langley).

  20. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  1. Performance of Power Converters at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2001-01-01

    Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.

  2. Conceptual design of the FRIB cryogenic system

    SciTech Connect

    Weisend II, J G; Bull, Brad; Burns, Chris; Fila, Adam; Kelley, Patrick; Laumer, Helmut; Mann, Thomas; McCartney, Allyn; Jones, S; Zeller, A

    2012-06-01

    The Facility for Rare Isotope Beams (FRIB) is a new nuclear science facility funded by the DOE Office of Science and Michigan State University (MSU). FRIB is currently under design and will be located on the MSU campus. The centerpiece of FRIB is a heavy ion linac utilizing superconducting RF cavities and magnets which in turn requires a large cryogenic system. The cryogenic system consists of a commercially produced helium refrigeration plant and an extensive distribution system. Superconducting components will operate at both 4.5 K and 2 K. This paper describes the conceptual design of the system including the expected heat loads and operating modes. The strategy for procuring a custom turnkey helium refrigeration plant from industry, an overview of the distribution system, the interface of the cryogenic system to the conventional facilities and the project schedule are also described.

  3. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  4. Cryogenic insulation standard data and methodologies

    NASA Astrophysics Data System (ADS)

    Demko, J. A.; Fesmire, J. E.; Johnson, W. L.; Swanger, A. M.

    2014-01-01

    Although some standards exist for thermal insulation, few address the sub-ambient temperature range and cold-side temperatures below 100 K. Standards for cryogenic insulation systems require cryostat testing and data analysis that will allow the development of the tools needed by design engineers and thermal analysts for the design of practical cryogenic systems. Thus, this critically important information can provide reliable data and methodologies for industrial efficiency and energy conservation. Two Task Groups have been established in the area of cryogenic insulation systems Under ASTM International's Committee C16 on Thermal Insulation. These are WK29609 - New Standard for Thermal Performance Testing of Cryogenic Insulation Systems and WK29608 - Standard Practice for Multilayer Insulation in Cryogenic Service. The Cryogenics Test Laboratory of NASA Kennedy Space Center and the Thermal Energy Laboratory of LeTourneau University are conducting Inter-Laboratory Study (ILS) of selected insulation materials. Each lab carries out the measurements of thermal properties of these materials using identical flat-plate boil-off calorimeter instruments. Parallel testing will provide the comparisons necessary to validate the measurements and methodologies. Here we discuss test methods, some initial data in relation to the experimental approach, and the manner reporting the thermal performance data. This initial study of insulation materials for sub-ambient temperature applications is aimed at paving the way for further ILS comparative efforts that will produce standard data sets for several commercial materials. Discrepancies found between measurements will be used to improve the testing and data reduction techniques being developed as part of the future ASTM International standards.

  5. Development of dual solid cryogens for high reliability refrigeration system

    NASA Technical Reports Server (NTRS)

    Caren, R. P.; Coston, R. M.

    1967-01-01

    High reliability solid cryogen refrigeration system consists of a container initially filled with a solid cryogen which is coupled thermally to an infrared detector by means of a link of high thermal conductivity extending from a heat exchanger within the cryogen container.

  6. 49 CFR 173.318 - Cryogenic liquids in cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... methane or natural gas, cryogenic liquids must be loaded and shipped in accordance with the following... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.318 Cryogenic liquids in cargo....338-15). (3) The jacket covering the insulation on a tank used to transport a cryogenic liquid must...

  7. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in cylinders. (a) General requirements. (1) A cylinder may not be loaded with a cryogenic liquid colder...

  8. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in cylinders. (a) General requirements. (1) A cylinder may not be loaded with a cryogenic liquid colder...

  9. 49 CFR 173.319 - Cryogenic liquids in tank cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mercury. (c) Temperature. A flammable cryogenic liquid must be loaded into a tank car at such a... 49 Transportation 2 2014-10-01 2014-10-01 false Cryogenic liquids in tank cars. 173.319 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.319 Cryogenic liquids in...

  10. 49 CFR 173.320 - Cryogenic liquids; exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids; exceptions. 173.320 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.320 Cryogenic liquids; exceptions. (a) Atmospheric gases and helium, cryogenic liquids, in Dewar flasks, insulated...

  11. 49 CFR 173.320 - Cryogenic liquids; exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Cryogenic liquids; exceptions. 173.320 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.320 Cryogenic liquids; exceptions. (a) Atmospheric gases and helium, cryogenic liquids, in Dewar flasks, insulated...

  12. 49 CFR 173.320 - Cryogenic liquids; exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Cryogenic liquids; exceptions. 173.320 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.320 Cryogenic liquids; exceptions. (a) Atmospheric gases and helium, cryogenic liquids, in Dewar flasks, insulated...

  13. 49 CFR 173.320 - Cryogenic liquids; exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cryogenic liquids; exceptions. 173.320 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.320 Cryogenic liquids; exceptions. (a) Atmospheric gases and helium, cryogenic liquids, in Dewar flasks, insulated...

  14. 49 CFR 173.320 - Cryogenic liquids; exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cryogenic liquids; exceptions. 173.320 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.320 Cryogenic liquids; exceptions. (a) Atmospheric gases and helium, cryogenic liquids, in Dewar flasks, insulated...

  15. Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent

    2013-01-01

    Objectives: 1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration. 2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment. 3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment.

  16. 21 CFR 882.4250 - Cryogenic surgical device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4250 Cryogenic surgical device. (a) Identification. A cryogenic surgical device is a device used to destroy nervous tissue or produce... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cryogenic surgical device. 882.4250 Section...

  17. 49 CFR 173.319 - Cryogenic liquids in tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cars. (a) General requirements. (1) A tank car containing a flammable cryogenic liquid may not be... notify the Federal Railroad Administration whenever a tank car containing any flammable cryogenic liquid....330 of this subchapter. (b) When a tank car containing a flammable cryogenic liquid is offered...

  18. 49 CFR 173.319 - Cryogenic liquids in tank cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cars. (a) General requirements. (1) A tank car containing a flammable cryogenic liquid may not be... notify the Federal Railroad Administration whenever a tank car containing any flammable cryogenic liquid....330 of this subchapter. (b) When a tank car containing a flammable cryogenic liquid is offered...

  19. 49 CFR 173.319 - Cryogenic liquids in tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cars. (a) General requirements. (1) A tank car containing a flammable cryogenic liquid may not be... notify the Federal Railroad Administration whenever a tank car containing any flammable cryogenic liquid....330 of this subchapter. (b) When a tank car containing a flammable cryogenic liquid is offered...

  20. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in cylinders. (a) General requirements. (1) A cylinder may not be loaded with a cryogenic liquid colder...