Sample records for cryostats

  1. NASA WISE Cryostat

    NASA Image and Video Library

    2009-10-13

    Initial assembly of NASA Wide-field Infrared Survey Explorer cryostat. The cryostat is a 2-stage solid hydrogen dewar that is used to cool the WISE optics and detectors. Here the cryostat internal structures are undergoing their initial vacuum pumpdown.

  2. Superconducting generators and motors and methods for employing same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomsic, Michael J.; Long, Larry

    A superconducting electrical generator or motor having a plurality of cryostats is described. The cryostats contain coolant and a first cryostat encloses at least one of a plurality of superconducting coils. A first coil is in superconducting electrical communication with a second coil contained in a second cryostat through a superconducting conduction cooling cable enclosing a conductor. The first cryostat and the second cryostat may be in fluid communication through at least one cryogen channel within the at least one superconducting conduction cooling cable. In other embodiments, none of the plurality of cryostats may be in fluid communication and themore » cable may be cooled by conduction along the conductor from the first or second cryostat, or from both. The conductor may have different segments at temperatures equal to or above the temperature of the coolant and the superconducting conduction cooling cables may be connected through quick connect fittings.« less

  3. Design of the Cryostat for HT-7U Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Wu, Song-tao; Song, Yun-tao; Weng, Pei-de

    2002-06-01

    The cryostat of HT-7U tokamak is a large vacuum vessel surrounding the entire basic machine with a cylindrical shell, a dished top and a flat bottom. The main function of HT-7U cryostat is to provide a thermal barrier between an ambient temperature test hall and a liquid helium-cooled superconducting magnet. The loads applied to the cryostat are from sources of vacuum pressure, dead weight, seismic events and electromagnetic forces originated by eddy currents. It also provides feed-through penetrations for all the connecting elements inside and outside the cryostat. The main material selected for the cryostat is stainless steel 304L. The structural analyses including buckling for the cryostat vessel under the plasma operation condition have been carried out by using a finite element code. Stress analysis results show that the maximum stress intensity was below the allowable value. In this paper, the structural analyses and design of HT-7U cryostat are emphasized.

  4. Variable-Temperature Cryostat For Radiation-Damage Testing Of Germanium Detectors

    NASA Technical Reports Server (NTRS)

    Floyd, Samuel R.; Puc, Bernard P.

    1992-01-01

    Variable-temperature cryostats developed to study radiation damage to, and annealing of, germanium gamma-ray detectors. Two styles: one accommodates large single detector and one accommodates two medium-sized detectors. New cryostats allow complete testing of large-volume germanium gamma-ray detectors without breaking cryostat vacuum and removing detectors for annealing.

  5. HFE and Spherical Cryostats MC Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Jason P.

    2016-09-26

    The copper vessel containing the nEXO TPC is surrounded by a buffer of HFE, a liquid refrigerant with very low levels of radioactive element contamination. The HFE is contained within the cryostat’s inner vessel, which is in turn inside the outer vessel. While some HFE may be necessary for stable cooling of nEXO, it is possible that using substantially more than necessary for thermal reasons will help reduce backgrounds originating in the cryostats. Using a larger amount of HFE is accomplished by making the cryostat vessels larger. By itself, increasing the cryostat size somewhat increases the background rate, as themore » thickness of the cryostat wall must increase at larger sizes. However, the additional space inside the cryostat will be filled with HFE which can absorb gamma rays headed for the TPC. As a result, increasing the HFE reduces the number of backgrounds reaching the TPC. The aim of this study was to determine the relationship between HFE thickness and background rate. Ultimately, this work should support choosing a cryostat and HFE size that satisfies nEXO’s background budget. I have attempted to account for every consequence of changing the cryostat size, although naturally this remains a work in progress until a final design is achieved. At the moment, the scope of the study includes only the spherical cryostat design. This study concludes that increasing cryostat size reduces backgrounds, reaching neglible backgrounds originating from the cryostat at the largest sizes. It also shows that backgrounds originating from the inherent radioactivity of the HFE plateau quickly, so may be considered essentially fixed at any quantity of HFE.« less

  6. Cryogenic upgrade of the low heat load liquid helium cryostat used to house the Cryogenic Current Comparator in the Antiproton Decelerator at CERN

    NASA Astrophysics Data System (ADS)

    Lees, A.; Koettig, T.; Fernandes, M.; Tan, J.

    2017-12-01

    The Cryogenic Current Comparator (CCC) and its purpose built cryostat were installed in the low-energy Antiproton Decelerator (AD) at CERN in 2015. A pulse-tube cryocooler recondenses evaporated helium to liquid at 4.2 K filling the helium vessel of the cryostat at an equivalent cooling power of 0.69 W. To reduce the transmission of vibration to the highly sensitive CCC, the titanium support systems of the cryostat were optimized to be as stiff as possible while limiting the transmission of heat to the liquid helium vessel. During operation the liquid helium level in the cryostat was seen to reduce, indicating that heat load was higher than intended. To verify the reason for this additional heat load and improve the cryogenic performance of the cryostat, an upgrade was undertaken during the 2016 technical stop of the AD. This article presents the studies undertaken to understand the thermal performance of the cryostat and details the improvements made to reduce heat load on the liquid helium vessel. Also discussed are the procedures used to reduce the diffusion of helium to the vacuum space through ceramic insulators. Finally the upgraded cryogenic performance of the cryostat is presented.

  7. The design of the new LHC connection cryostats

    NASA Astrophysics Data System (ADS)

    Vande Craen, A.; Barlow, G.; Eymin, C.; Moretti, M.; Parma, V.; Ramos, D.

    2017-12-01

    In the frame of the High Luminosity upgrade of the LHC, improved collimation schemes are needed to cope with the superconducting magnet quench limitations due to the increasing beam intensities and particle debris produced in the collision points. Two new TCLD collimators have to be installed on either side of the ALICE experiment to intercept heavy-ion particle debris. Beam optics solutions were found to place these collimators in the continuous cryostat of the machine, in the locations where connection cryostats, bridging a gap of about 13 m between adjacent magnets, are already present. It is therefore planned to replace these connection cryostats with two new shorter ones separated by a bypass cryostat allowing the collimators to be placed close to the beam pipes. The connection cryostats, of a new design when compared to the existing ones, will still have to ensure the continuity of the technical systems of the machine cryostat (i.e. beam lines, cryogenic and electrical circuits, insulation vacuum). This paper describes the functionalities and the design solutions implemented, as well as the plans for their construction.

  8. High-power closed-cycle 4He cryostat with top-loading sample exchange

    NASA Astrophysics Data System (ADS)

    Piegsa, F. M.; van den Brandt, B.; Kirch, K.

    2017-10-01

    We report on the development of a versatile cryogen-free laboratory cryostat based upon a commercial pulse tube cryocooler. It provides enough cooling power for continuous recondensation of circulating 4He gas at a condensation pressure of approximately 250 mbar. Moreover, the cryostat allows for exchange of different cryostat-inserts as well as fast and easy ;wet; top-loading of samples directly into the 1 K pot with a turn-over time of less than 75 min. Starting from room temperature and using a 4He cryostat-insert, a base temperature of 1.0 K is reached within approximately seven hours and a cooling power of 250 mW is established at 1.24 K.

  9. Cryostat system for investigation on new neutron moderator materials at reactor TRIGA PUSPATI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dris, Zakaria bin, E-mail: zakariadris@gmail.com; Centre for Nuclear Energy, Universiti Tenaga Nasional; Mohamed, Abdul Aziz bin

    2016-01-22

    A simple continuous flow (SCF) cryostat was designed to investigate the neutron moderation of alumina in high temperature co-ceramic (HTCC) and polymeric materials such as Teflon under TRIGA neutron environment using a reflected neutron beam from a monochromator. Cooling of the cryostat will be carried out using liquid nitrogen. The cryostat will be built with an aluminum holder for moderator within stainless steel cylinder pipe. A copper thermocouple will be used as the temperature sensor to monitor the moderator temperature inside the cryostat holder. Initial measurements of neutron spectrum after neutron passing through the moderating materials have been carried outmore » using a neutron spectrometer.« less

  10. Preliminary test of the prototype modular cryostat for a 10 MW offshore superconducting wind turbine

    NASA Astrophysics Data System (ADS)

    Sun, Jiuce; Ramalingam, R.; Sanz, Santiago; Neumann, Holger

    2017-02-01

    The SUPerconducting Reliable lightweight And more POWERful offshore wind turbine (SUPRAPOWER), an EU FP7 funded research project, are under development for an innovative superconducting 10 MW class offshore wind turbine. Due to the requirements of handling, maintenance, reliability of long term and offshore operation, the cryostats are divided in two major parts: the modular cryostat able to accommodate a single coil and a thermal collector that links all the modules. The prototype modular cryostat was designed, manufactured and assembled in Karlsruhe Institute of Technology (KIT). The paper reports preliminary test results of proto-type modular cryostat with a two-stage Gifford-McMahon (GM) cryocooler.

  11. Preliminary Design of the Vacuum System for FAIR Super FRS Quadrupole Magnet Cryostat

    NASA Astrophysics Data System (ADS)

    Akhter, J.; Pal, G.; Datta, A.; Sarma, P. R.; Bhunia, U.; Roy, S.; Bhattacharyya, S.; Nandi, C.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The Super-Conducting Fragment Separator (Super FRS) of the Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt is a large-acceptance superonducting fragment separator. The separator consists of large dipole, quadrupole and hexapole superconducting magnets. The long quadrupole magnet cryostat houses the helium chamber, which has the magnet iron and NbTi superconducting coil. The magnet weighs about 30 tons. The helium chamber is enclosed in vacuum inside the magnet cryostat. Multilayer Insulation (MLI) will be wrapped around the thermal shield to reduce radiation loss. Polyster of MLI comprises the major component responsible for outgassing. In order to reduce outgassing, pumping at elevated temperatures has to be carried out. In view of the large size and weight of the magnet, a seal off approach might not be operationally feasible. Continuous pumping of the cryostat has also been examined. Pump has been kept at a distance from the magnet considering the effect of stray magnetic fields. Oil free turbo molecular pump and scroll pump combination will be used to pump down the cryostat. The ultimate heat load of the cryostat will be highly dependent on the pressure attained. Radiation and conduction plays an important role in the heat transfer at low temperatures. This paper presents the vacuum design of the long quadrupole magnet cryostat and estimates the heat load of the cryostat.

  12. Deep Cryogenic Low Power 24 Bits Analog to Digital Converter with Active Reverse Cryostat

    NASA Astrophysics Data System (ADS)

    Turqueti, Marcos; Prestemon, Soren; Albright, Robert

    LBNL is developing an innovative data acquisition module for superconductive magnets where the front-end electronics and digitizer resides inside the cryostat. This electronic package allows conventional electronic technologies such as enhanced metal-oxide-semiconductor to work inside cryostats at temperatures as low as 4.2 K. This is achieved by careful management of heat inside the module that keeps the electronic envelop at approximately 85 K. This approach avoids all the difficulties that arise from changes in carrier mobility that occur in semiconductors at deep cryogenic temperatures. There are several advantages in utilizing this system. A significant reduction in electrical noise from signals captured inside the cryostat occurs due to the low temperature that the electronics is immersed in, reducing the thermal noise. The shorter distance that signals are transmitted before digitalization reduces pickup and cross-talk between channels. This improved performance in signal-to-noise rate by itself is a significant advantage. Another important advantage is the simplification of the feedthrough interface on the cryostat head. Data coming out of the cryostat is digital and serial, dramatically reducing the number of lines going through the cryostat feedthrough interface. It is important to notice that all lines coming out of the cryostat are digital and low voltage, reducing the possibility of electric breakdown inside the cryostat. This paper will explain in details the architecture and inner workings of this data acquisition system. It will also provide the performance of the analog to digital converter when the system is immersed in liquid helium, and in liquid nitrogen. Parameters such as power dissipation, integral non-linearity, effective number of bits, signal-to-noise and distortion, will be presented for both temperatures.

  13. Deep Cryogenic Low Power 24 Bits Analog to Digital Converter with Active Reverse Cryostat

    DOE PAGES

    Turqueti, Marcos; Prestemon, Soren; Albright, Robert

    2015-07-15

    LBNL is developing an innovative data acquisition module for superconductive magnets where the front-end electronics and digitizer resides inside the cryostat. This electronic package allows conventional electronic technologies such as enhanced metal–oxide–semiconductor to work inside cryostats at temperatures as low as 4.2 K. This is achieved by careful management of heat inside the module that keeps the electronic envelop at approximately 85 K. This approach avoids all the difficulties that arise from changes in carrier mobility that occur in semiconductors at deep cryogenic temperatures. There are several advantages in utilizing this system. A significant reduction in electrical noise from signalsmore » captured inside the cryostat occurs due to the low temperature that the electronics is immersed in, reducing the thermal noise. The shorter distance that signals are transmitted before digitalization reduces pickup and cross-talk between channels. This improved performance in signal-to-noise rate by itself is a significant advantage. Another important advantage is the simplification of the feedthrough interface on the cryostat head. Data coming out of the cryostat is digital and serial, dramatically reducing the number of lines going through the cryostat feedthrough interface. It is important to notice that all lines coming out of the cryostat are digital and low voltage, reducing the possibility of electric breakdown inside the cryostat. This paper will explain in details the architecture and inner workings of this data acquisition system. It will also provide the performance of the analog to digital converter when the system is immersed in liquid helium, and in liquid nitrogen. Parameters such as power dissipation, integral non-linearity, effective number of bits, signal-to-noise and distortion, will be presented for both temperatures.« less

  14. Analysis of the cooling of continuous flow helium cryostats

    NASA Astrophysics Data System (ADS)

    Pust, L.

    A mathematical model of the cooling of a continuous-flow cryostat which takes into account real values of the specific and latent heat of the cryogenic fluid and of the specific heat of the cryostat material is presented. The amount of liquid in the cooling fluid and four parasitic heat flows, caused by radiation and heat conduction in the construction materials and in the rest gas in the vacuum insulation, are also taken into account. The influence of different model parameters on performance, particularly in the non-stationary regime, is demonstrated by means of numerical solutions of the modelling equations. A quantitative criterion which assesses the properties of the planned cryostat, is formulated. The theoretical conclusions are compared with measurements performed on a continuous flow helium cryostat.

  15. A new cryostat for precise temperature control

    NASA Astrophysics Data System (ADS)

    Dong, B.; Zhou, G.; Liu, L. Q.; Zhang, X.; Xiong, L. Y.; Li, Q.

    2013-09-01

    Gifford-McMahon (GM) cryocoolers are often used in cryostat as cold sources. It has advantages of simple structure and low operating cost as well as disadvantages of vibration and temperature oscillation, which are fatal for some applications that are very sensitive to temperature stability at low temperature. To solve the problem, a thermal analysis model which is used to simulate heat transfer in the cryostat is built and discussed. According to the analysis results, a cryostat that can provide variable temperature (4-20 K) for the accurate temperature control experiments is designed and manufactured. In this cryostat, a polytetrafluoroethylene (PTFE) sheet is used as a thermal damper to reduce the temperature oscillation, with which, the temperature oscillation of the sample cooling holder is less than 4 mK at the 20 K region.

  16. Performance and results of the LBNE 35 ton membrane cryostat prototype

    DOE PAGES

    Montanari, David; Adamowski, Mark; Hahn, Alan; ...

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the puritymore » requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.« less

  17. First scientific application of the membrane cryostat technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, David; Adamowski, Mark; Baller, Bruce R.

    2014-01-29

    We report on the design, fabrication, performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with IHI Corporation (IHI). Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon, and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the purity requirements in a membrane cryostat without evacuation and using only a controlled gaseous argon purge; to demonstrate that we canmore » achieve and maintain the purity requirements of the liquid argon during filling, purification, and maintenance mode using mole sieve and copper filters from the Liquid Argon Purity Demonstrator (LAPD) R and D project. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion oxygen equivalent. This paper gives the requirements, design, construction, and performance of the LBNE membrane cryostat prototype, with experience and results important to the development of the LBNE detector.« less

  18. A second-generation superconducting undulator cryostat for the APS

    NASA Astrophysics Data System (ADS)

    Fuerst, J.; Hasse, Q.; Ivanyushenkov, Y.; Kasa, M.; Shiroyanagi, Y.

    2017-12-01

    A second-generation cryocooler-based cryostat has been designed and built to support a new helically wound superconducting undulator (SCU) magnet for the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The design represents an evolution of existing SCU cryostats currently in operation in the APS storage ring. Value engineering and lessons learned have resulted in a smaller, cheaper, and simpler cryostat design compatible with existing planar magnets as well as the new helically wound device. We describe heat load and quench response results, design and operational details, and the “build-to-spec” procurement strategy.

  19. Dual-stage trapped-flux magnet cryostat for measurements at high magnetic fields

    DOEpatents

    Islam, Zahirul; Das, Ritesh K.; Weinstein, Roy

    2015-04-14

    A method and a dual-stage trapped-flux magnet cryostat apparatus are provided for implementing enhanced measurements at high magnetic fields. The dual-stage trapped-flux magnet cryostat system includes a trapped-flux magnet (TFM). A sample, for example, a single crystal, is adjustably positioned proximate to the surface of the TFM, using a translation stage such that the distance between the sample and the surface is selectively adjusted. A cryostat is provided with a first separate thermal stage provided for cooling the TFM and with a second separate thermal stage provided for cooling sample.

  20. Cryostat and CCD for MEGARA at GTC

    NASA Astrophysics Data System (ADS)

    Castillo-Domínguez, E.; Ferrusca, D.; Tulloch, S.; Velázquez, M.; Carrasco, E.; Gallego, J.; Gil de Paz, A.; Sánchez, F. M.; Vílchez Medina, J. M.

    2012-09-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.

  1. Design of horizontal test cryostat for testing two 650 MHz cavities: cryogenic considerations

    NASA Astrophysics Data System (ADS)

    Khare, P.; Gilankar, S.; Kush, P. K.; Lakshminarayanan, A.; Choubey, R.; Ghosh, R.; Jain, A.; Patel, H.; Gupta, P. D.; Hocker, A.; Ozelis, J. P.; Geynisman, M.; Reid, C.; Poloubotko, V.; Mitchell, D.; Peterson, T. J.; Nicol, T. H.

    2017-02-01

    Horizontal Test Cryostat has been designed for testing two 650 MHz "dressed" Superconducting Radio Frequency (SCRF) cavities in a single testing cycle at Raja Ramanna Centre for Advanced Technology, India (RRCAT) in collaboration with Fermi National Accelerator Laboratory, USA (FNAL). This cryostat will facilitate testing of two 5-cell 650 MHz SCRF cavities, in CW or pulsed regime, for upcoming High Intensity Superconducting Proton Accelerator projects at both countries. Two such HTS facilities are planned, one at RRCAT for Indian Spallation Neutron Source project (ISNS), which is on the horizon, and the other at FNAL, USA. A test cryostat, a part of horizontal test stand-2 (HTS-2) will be set up at RRCAT for Indian project. In order to maximize the utility of this facility, it can also be used to test two dressed 9-cell 1.3 GHz cavities and other similarly-sized devices. The facility assumes, as an input, the availability of liquid nitrogen at 80 K and liquid helium at 4.5 K and 2 K, with a refrigeration capacity of approximately 50 W at 2 K. Design work of cryostat has been completed and now procurement process is in progress. This paper discusses salient features of the cryostat. It also describes different design calculations and ANSYS analysis for cool down of few subsystems like cavity support system and liquid nitrogen cooled thermal radiation shield of horizontal test cryostat..

  2. Dynamic PID loop control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, L.; Klebaner, A.; Theilacker, J.

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  3. Vibration Isolation for a Pulse-Tube Research Cryostat

    NASA Astrophysics Data System (ADS)

    Boyd, S. T. P.

    2007-03-01

    Commercial pulse-tube refrigerators (PTRs) now provide base temperatures < 3K, low vibration, and long life. However, vibration levels are still often too large for LT and ULT measurements. One highly successful approach to vibration isolation in very small cryostats has been the use of 1-atm He exchange gas, in an envelope with a flexible element, interposed between the cold head and the cryostat. A design study to scale up this technique for a PTR research cryostat has previously been presented. However, some questions remained, given the violation of ``adiabaticity'' of the ``pulse tubes'' in the PTR and the potential for convective flow and Taconis oscillations of the exchange gas in the open geometry. We present experimental results obtained on the cryostat with a rigid exchange-gas volume, which permitted the variation of exchange-gas pressure. The news is all good so far: the heat exchangers perform well and in reasonable agreement with calculations, no evidence is seen of deleterious effects due to convection or Taconis oscillations or gas permeation, and the 2.8K PTR base temperature is only raised by 0.1K or less. Work to implement the fully-vibration-isolated cryostat is now underway.

  4. Design of a horizonal liquid helium cryostat for refrigerating a flying superconducting magnet in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Wu, Y. Y.

    1982-01-01

    The design of a horizontal liquid helium cryostat for refrigerating a flying superconducting magnet in a wind tunnel is presented. The basic principles of magnetic suspension theory are described and theoretical calculations of the superconducting magnet are provided. The experimental results of the boil-off of liquid nitrogen and liquid helium in the cryostat are reported.

  5. Insulation-Testing Cryostat With Lifting Mechanism

    NASA Technical Reports Server (NTRS)

    Fesmire, James; Dokos, Adam; Scholtens, Brekke; Nagy, Zoltan; Augustynowicz, Stanislaw

    2010-01-01

    The figure depicts selected aspects of an apparatus for testing thermal-insulation materials for cryogenic systems at temperatures and under vacuum or atmospheric conditions representative of those encountered in use. This apparatus, called "Cryostat-100," is based on the established cryogen-boil-off calorimeter method, according to which the amount of heat that passes through an insulation specimen to a cryogenic fluid in a container, and thus the effective thermal conductance of the specimen, is taken to be proportional to the amount of the cryogenic fluid that boils off from the container. The design of Cryostat-100 is based partly on, and incorporates improvements over, the design of a similar prior apparatus called "Cryostat-1" described in "Improved Methods of Testing Cryogenic Insulation Materials" (KSC-12107 & KSC- 12108), NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 46. The design of Cryostat-100 also incorporates the best features of two other similar prior apparatuses called "Cryostat-2" (also described in the cited prior article) and "Cryostat- 4." Notable among the improvements in Cryostat-100 is the addition of a lifting mechanism that enables safe, rapid, reliable insertion and removal of insulation specimens and facilitates maintenance operations that involve lifting. As in Cryostat-1, the cold mass is a vertical stainless-steel cylindrical vessel subdivided into a larger measurement vessel with smaller thermal-guard vessels at both ends. During operation, all three vessels are kept filled with liquid nitrogen near saturation at ambient pressure (temperature .77.4 K). The cold mass of Cryostat-100 has a length of 1 m and diameter of 168 mm. Each specimen has a corresponding nominal length and inner diameter and a nominal thickness of 25.4 mm. Specimens that are shorter and have thicknesses between 0 and 50 mm are also acceptable. Bulk-fill, foam, clam-shell, multilayer insulation, and layered materials can be tested over a very wide range of thermal transmission: apparent thermal conductivity from 0.01 to 60 mW/m-K and heat flux from 0.1 to 500 W/sq m. A test in Cryostat-100 can be conducted at any desired gas pressure between ambient atmospheric pressure at one extreme and a vacuum with residual pressure <10(exp -5) torr (<1.33 10(exp -3) Pa) at the other extreme. The residual gas (and purge gas) is typically nitrogen, but can be any suitable purge gas (e.g., helium, argon, or carbon dioxide). Usually, the temperature on the warm boundary of the insulation specimen is maintained near the ambient value (approximately 293 K), while the boiling of liquid nitrogen at atmospheric pressure in the cold mass maintains the temperature on the cold boundary of the specimen at approximately 77 K.

  6. Portable Radiation Detectors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through a Small Business Innovation Research (SBIR) contract from Kennedy Space Center, General Pneumatics Corporation's Western Research Center satisfied a NASA need for a non-clogging Joule-Thomson cryostat to provide very low temperature cooling for various sensors. This NASA-supported cryostat development played a key part in the development of more portable high-purity geranium gamma-ray detectors. Such are necessary to discern between the radionuclides in medical, fuel, weapon, and waste materials. The outcome of the SBIR project is a cryostat that can cool gamma-ray detectors, without vibration, using compressed gas that can be stored compactly and indefinitely in a standby mode. General Pneumatics also produces custom J-T cryostats for other government, commercial and medical applications.

  7. SIELETERS: A Static Fourier Transform Infrared Imaging Spectrometer for Airborne Hyperspectral Measurements

    DTIC Science & Technology

    2009-10-01

    cryostat and cooled at a temperature under 77K by a Stirling cryocooler , as represented on the following Figure 5 : Cryostat...Figure 5. Detector cryostat and cryocooler The read-out frequency of the detectors is adapted to the ground speed of the plane above...Cold shield Detector plane Cryocoole r Cryocoole r compresso r Fixed frame Roll frame Pitch frame Yaw frame SIELETERS: a Static Fourier

  8. Development of the cryogenic system of AEgIS at CERN

    NASA Astrophysics Data System (ADS)

    Derking, J. H.; Bremer, J.; Burghart, G.; Doser, M.; Dudarev, A.; Haider, S.

    2014-01-01

    The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is located at the antiproton decelerator complex of CERN. The main goal of the experiment is to perform the first direct measurement of the Earth's gravitational acceleration on antihydrogen atoms within 1% precision. The antihydrogen is produced in a cylindrical Penning trap by combining antiprotons with positrons. To reach the precision of 1%, the antihydrogen has to be cooled to 100 mK to reduce its random velocity. A dilution refrigerator is selected to deliver the necessary cooling capacity of 100 μW at 50 mK. The AEgIS cryogenic system basically consists of cryostats for a 1-T and for a 5-T superconducting magnet, a central region cryostat, a dilution refrigerator cryostat and a measurement cryostat with a Moiré deflectometer to measure the gravitational acceleration. In autumn 2012, the 1-T cryostat, 5-T cryostat and central region cryostat were assembled and commissioned. The apparatus is cooled down in eight days using 2500 L of liquid helium and liquid nitrogen. During operation, the average consumption of liquid helium is 150 Lṡday-1 and of liquid nitrogen 5 Lṡday-1. The temperature sensors at the Penning traps measured 12 K to 18 K, which is higher than expected. Simulations show that this is caused by a bad thermalization of the trap wiring. The implementation of the sub-kelvin region is foreseen for mid-2015. The antihydrogen will be cooled down to 100 mK in an ultra-cold trap consisting of multiple high-voltage electrodes made of sapphire with gold plated electrode sectors.

  9. Matrix isolation apparatus with extended sample collection capability

    DOEpatents

    Reedy, Gerald T.

    1987-01-01

    A gas-sample collection device provides for the matrix isolation of increased amounts of a sample material for spectrographic analysis from a gas chromatographic separation. The device includes an evacuated sample collection chamber containing a disc-like specular carousel having a generally circular lateral surface upon which the sample is deposited in an inert gas matrix for infrared (IR) spectral analysis. The evacuated sample chamber is mounted in a fixed manner and is coupled to and supports a rotating cryostatic coupler which, in turn, supports the specular carousel within the collection chamber. A rotational drive system connected to the cryostatic coupler provides for its rotational displacement as well as that of the sample collecting carousel. In addition, rotation of the cryostatic coupler effects vertical displacement of the carousel to permit the collection of an extended sample band in a helical configuration on the entire lateral surface of the carousel. The various components of the carousel's angular/linear displacement drive system are located exterior to the cryostatic coupler for easy access and improved operation. The cryostatic coupler includes a 360.degree. rotary union assembly for permitting the delivery of a high pressure working fluid to the cryostatic coupler in a continuous flow manner for maintaining the specular carousel at a low temperature, e.g., 10.degree.-20.degree. K., for improved uninterrupted gas sample collection and analysis.

  10. Development of the Facet Cryostat

    NASA Technical Reports Server (NTRS)

    Nash, A.; Shields, P.; Jirmanus, M.

    1999-01-01

    A proof of concept prototype cryostat has been developed to demonstrate the ability to accommodate low temperature science investigations within the constraints of the Hitchhiker siderail carrier on the Space Shuttle.

  11. Visible camera cryostat design and performance for the SuMIRe Prime Focus Spectrograph (PFS)

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Gunn, James E.; Golebiowski, Mirek; Hope, Stephen C.; Madec, Fabrice; Gabriel, Jean-Francois; Loomis, Craig; Le fur, Arnaud; Dohlen, Kjetil; Le Mignant, David; Barkhouser, Robert; Carr, Michael; Hart, Murdock; Tamura, Naoyuki; Shimono, Atsushi; Takato, Naruhisa

    2016-08-01

    We describe the design and performance of the SuMIRe Prime Focus Spectrograph (PFS) visible camera cryostats. SuMIRe PFS is a massively multi-plexed ground-based spectrograph consisting of four identical spectrograph modules, each receiving roughly 600 fibers from a 2394 fiber robotic positioner at the prime focus. Each spectrograph module has three channels covering wavelength ranges 380 nm - 640 nm, 640 nm - 955 nm, and 955 nm - 1.26 um, with the dispersed light being imaged in each channel by a f/1.07 vacuum Schmidt camera. The cameras are very large, having a clear aperture of 300 mm at the entrance window, and a mass of 280 kg. In this paper we describe the design of the visible camera cryostats and discuss various aspects of cryostat performance.

  12. Evaluating cryostat performance for naval applications

    NASA Astrophysics Data System (ADS)

    Knoll, David; Willen, Dag; Fesmire, James; Johnson, Wesley; Smith, Jonathan; Meneghelli, Barry; Demko, Jonathan; George, Daniel; Fowler, Brian; Huber, Patti

    2012-06-01

    The Navy intends to use High Temperature Superconducting Degaussing (HTSDG) coil systems on future Navy platforms. The Navy Metalworking Center (NMC) is leading a team that is addressing cryostat configuration and manufacturing issues associated with fabricating long lengths of flexible, vacuum-jacketed cryostats that meet Navy shipboard performance requirements. The project includes provisions to evaluate the reliability performance, as well as proofing of fabrication techniques. Navy cryostat performance specifications include less than 1 Wm-1 heat loss, 2 MPa working pressure, and a 25-year vacuum life. Cryostat multilayer insulation (MLI) systems developed on the project have been validated using a standardized cryogenic test facility and implemented on 5-meterlong test samples. Performance data from these test samples, which were characterized using both LN2 boiloff and flow-through measurement techniques, will be presented. NMC is working with an Integrated Project Team consisting of Naval Sea Systems Command, Naval Surface Warfare Center-Carderock Division, Southwire Company, nkt cables, Oak Ridge National Laboratory (ORNL), ASRC Aerospace, and NASA Kennedy Space Center (NASA-KSC) to complete these efforts. Approved for public release; distribution is unlimited. This material is submitted with the understanding that right of reproduction for governmental purposes is reserved for the Office of Naval Research, Arlington, Virginia 22203-1995.

  13. LHC interaction region quadrupole cryostat design

    NASA Astrophysics Data System (ADS)

    Nicol, T. H.; Darve, Ch.; Huang, Y.; Page, T. M.

    2002-05-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems.

  14. Development of a Compact Eleven Feed Cryostat for the Patriot 12-m Antenna System

    NASA Technical Reports Server (NTRS)

    Beaudoin, Christopher; Kildal, Per-Simon; Yang, Jian; Pantaleev, Miroslav

    2010-01-01

    The Eleven antenna has constant beam width, constant phase center location, and low spillover over a decade bandwidth. Therefore, it can feed a reflector for high aperture efficiency (also called feed efficiency). It is equally important that the feed efficiency and its subefficiencies not be degraded significantly by installing the feed in a cryostat. The MIT Haystack Observatory, with guidance from Onsala Space Observatory and Chalmers University, has been working to integrate the Eleven antenna into a compact cryostat suitable for the Patriot 12-m antenna. Since the analysis of the feed efficiencies in this presentation is purely computational, we first demonstrate the validity of the computed results by comparing them to measurements. Subsequently, we analyze the dependence of the cryostat size on the feed efficiencies, and, lastly, the Patriot 12-m subreflector is incorporated into the computational model to assess the overall broadband efficiency of the antenna system.

  15. A 1.8K refrigeration cryostat with 100 hours continuous cooling

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Li, Jian; Huang, Rongjin; Li, Laifeng

    2017-02-01

    A refrigeration cryostat has been developed to produce continuous cooling to a sample below 1.8 K over 100 hours by using a cryocooler. A two-stage 4K G-M cryocooler is used to liquefy helium gas from evacuated vapor and cylinder helium bottle which can be replaced during the cooling process. The liquid helium transfer into superfluid helium in a Joule-Thomson valve in connection with a 1000 m3/h pumping unit. The pressure of evacuated helium vapor is controlled by air bag and valves. A copper decompression chamber, which is designed as a cooling station to control the superfluid helium, is used to cool the sample attached on it uniformly. The sample connects to the copper chamber in cryostat with screw thread. The cryostat can reach the temperature of 1.7 K without load and the continuous working time is more than 100 hours.

  16. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  17. ATHENA X-IFU 300 K-50 mK cryochain demonstrator cryostat

    NASA Astrophysics Data System (ADS)

    Prouvé, T.; Duval, J. M.; Charles, I.; Yamasaki, N. Y.; Mitsuda, K.; Nakagawa, T.; Shinozaki, K.; Tokoku, C.; Yamamoto, R.; Minami, Y.; Le Du, M.; Andre, J.; Daniel, C.; Linder, M.

    2018-01-01

    In the framework of the ESA X-ray mission ATHENA, scheduled for launch in 2028, an ESA Core Technology Program (CTP) was started in 2016 to build a flight like cryostat demonstrator in parallel with the phase A studies of the ATHENA/X-IFU instrument [1,2]. As part of this CTP, called the Detector Cooling System (DCS), design, manufacturing and test of a cryostat including existing space coolers will be done. In addition to the validation of thermal performance, a Focal Plan Assembly (FPA) demonstrator using Transition Edge Sensors (TES) detector technology will be also integrated and its performance characterized versus the environment provided by the cryostat. This is a unique opportunity to validate many crucial issues of the cryogenic part of such a sensitive instrument. A dedicated activity within this CTP-DCS is the demonstration of the 300 K-50 mK cooling chain in a Ground System Equipment (GSE) cryostat. The studies are focused on the operation of the space coolers, which is made possible by the use of a ground cooler for cooling cryogenic shields and mechanical supports. Thanks to the modularity of the cryostat, several cooling chains could be tested. In the base line configuration described here, the low temperature stage is the CEA hybrid sorption/ADR 50 mK cooler with thermal interfaces at 4 K and 2 K. 4 K cooling is accomplished by a 4 K Joule-Thomson (JT) cryocooler and its Stirling precooler provided by JAXA. Regarding the 2 K stage, at first a 2 K JT from JAXA will be used. Alternatively, a 2 K JT cooler from RAL could replace the JAXA 2 K JT. In both cases new prototype(s) of a 2 K JT will be implemented, precooled by the EM 15 K pule tube cooler from Air Liquide. This test program is also the opportunity to validate the operation of the cryochain with respect to various requirements, such as time constant and temperature stabilities. This would bring us valuable inputs to integrate the cryochain in DCS cryostat or for the X-IFU phase A studies. This cryochain demonstration is also a critical milestone for the SPICA mission [3]. The design of the cryostat and first thermal validations both before and after integration of the JAXA JT coolers are presented in this paper.

  18. New vertical cryostat for the high field superconducting magnet test station at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vande Craen, A.; Atieh, S.; Bajko, M.

    2014-01-29

    In the framework of the R and D program for new superconducting magnets for the Large Hadron Collider accelerator upgrades, CERN is building a new vertical test station to test high field superconducting magnets of unprecedented large size. This facility will allow testing of magnets by vertical insertion in a pressurized liquid helium bath, cooled to a controlled temperature between 4.2 K and 1.9 K. The dimensions of the cryostat will allow testing magnets of up to 2.5 m in length with a maximum diameter of 1.5 m and a mass of 15 tons. To allow for a faster insertionmore » and removal of the magnets and reducing the risk of helium leaks, all cryogenics supply lines are foreseen to remain permanently connected to the cryostat. A specifically designed 100 W heat exchanger is integrated in the cryostat helium vessel for a controlled cooling of the magnet from 4.2 K down to 1.9 K in a 3 m{sup 3} helium bath. This paper describes the cryostat and its main functions, focusing on features specifically developed for this project. The status of the construction and the plans for assembly and installation at CERN are also presented.« less

  19. Development of the cryogenic system of AEgIS at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derking, J. H.; Bremer, J.; Burghart, G.

    2014-01-29

    The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is located at the antiproton decelerator complex of CERN. The main goal of the experiment is to perform the first direct measurement of the Earth’s gravitational acceleration on antihydrogen atoms within 1% precision. The antihydrogen is produced in a cylindrical Penning trap by combining antiprotons with positrons. To reach the precision of 1%, the antihydrogen has to be cooled to 100 mK to reduce its random velocity. A dilution refrigerator is selected to deliver the necessary cooling capacity of 100 μW at 50 mK. The AEgIS cryogenic system basically consists of cryostatsmore » for a 1-T and for a 5-T superconducting magnet, a central region cryostat, a dilution refrigerator cryostat and a measurement cryostat with a Moiré deflectometer to measure the gravitational acceleration. In autumn 2012, the 1-T cryostat, 5-T cryostat and central region cryostat were assembled and commissioned. The apparatus is cooled down in eight days using 2500 L of liquid helium and liquid nitrogen. During operation, the average consumption of liquid helium is 150 L⋅day{sup −1} and of liquid nitrogen 5 L⋅day{sup −1}. The temperature sensors at the Penning traps measured 12 K to 18 K, which is higher than expected. Simulations show that this is caused by a bad thermalization of the trap wiring. The implementation of the sub-kelvin region is foreseen for mid-2015. The antihydrogen will be cooled down to 100 mK in an ultra-cold trap consisting of multiple high-voltage electrodes made of sapphire with gold plated electrode sectors.« less

  20. Cryogenic system for the ArTeMiS large sub millimeter camera

    NASA Astrophysics Data System (ADS)

    Ercolani, E.; Relland, J.; Clerc, L.; Duband, L.; Jourdan, T.; Talvard, M.; Le Pennec, J.; Martignac, J.; Visticot, F.

    2014-07-01

    A new photonic camera has been developed in the framework of the ArTéMis project (Bolometers architecture for large field of view ground based telescopes in the sub-millimeter). This camera scans the sky in the sub-millimeter range at simultaneously three different wavelengths, namely 200 μm, 350 μm, 450 μm, and is installed inside the APEX telescope located at 5100m above sea level in Chile. Bolometric detectors cooled to 300 mK are used in the camera, which is integrated in an original cryostat developed at the low temperature laboratory (SBT) of the INAC institut. This cryostat contains filters, optics, mirrors and detectors which have to be implemented according to mass, size and stiffness requirements. As a result the cryostat exhibits an unusual geometry. The inner structure of the cryostat is a 40 K plate which acts as an optical bench and is bound to the external vessel through two hexapods, one fixed and the other one mobile thanks to a ball bearing. Once the cryostat is cold, this characteristic enabled all the different elements to be aligned with the optical axis. The cryogenic chain is built around a pulse tube cooler (40 K and 4 K) coupled to a double stage helium sorption cooler (300 mK). The cryogenic and vacuum processes are managed by a Siemens PLC and all the data are showed and stored on a CEA SCADA system. This paper describes the mechanical and thermal design of the cryostat, its command control, and the first thermal laboratory tests. This work was carried out in collaboration with the Astrophysics laboratory SAp of the IRFU institut. SAp and SBT have installed the camera in July 2013 inside the Cassegrain cabin of APEX.

  1. Low-cost insulation system for cryostats eliminates need for a vacuum

    NASA Technical Reports Server (NTRS)

    Calvert, H. F.

    1964-01-01

    In order to eliminate the hazard caused by residual air trapped between the concentric shells of a cryostat, these annular spaces are pressurized with helium gas. This system is more economical than the use of powdered insulation maintained at low vacuums.

  2. Deformation mechanism of the Cryostat in the CADS Injector II

    NASA Astrophysics Data System (ADS)

    Yuan, Jiandong; Zhang, Bin; Wan, Yuqin; Sun, Guozhen; Bai, Feng; Zhang, Juihui; He, Yuan

    2018-01-01

    Thermal contraction and expansion of the Cryostat will affect its reliability and stability. To optimize and upgrade the Cryostat, we analyzed the heat transfer in a cryo-vacuum environment from the theoretical point first. The simulation of cryo-vacuum deformation based on a finite element method was implemented respectively. The completed measurement based on a Laser Tracker and a Micro Alignment Telescope was conducted to verify its correctness. The monitored deformations were consistent with the simulated ones. After the predictable deformations in vertical direction have been compensated, the superconducting solenoids and Half Wave Resonator cavities approached the ideal "zero" position under liquid helium conditions. These guaranteed the success of 25 MeV@170 uA continuous wave protons of Chinese accelerator driven subcritical system Injector II. By correlating the vacuum and cryo-deformation, we have demonstrated that the complete deformation was the superposition effect of the atmospheric pressure, gravity and thermal stress during both the process of cooling down and warming up. The results will benefit to an optimization for future Cryostat's design.

  3. The development of a containment vessel and Dewar for the particle astrophysics magnet facility (ASTROMAG)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The ASTROMAG facility is the heart of a large charged particle detection and resolution system. ASTROMAG utilizes a superconducting magnet consisting of a large superconducting magnet coil with a stored magnetic energy of approximately 15 MJ. The active coil will have a mass of 1200 kg. This magnet will be cooled by a cryostat using a liquid helium Dewar for storage. The cryostat will have a series of gas-cooled shields with an external guard vacuum shield and an internal Dewar. The magnet and cryostat will be designed for shuttle or Delta launch and will be designed to withstand the internal pressure of expanded helium under full quench conditions when venting is prevented. The external guard vacuum shell is required to maintain a vacuum for Earth based testing and for cold launch of the cryostat and magnet. The magnet is designed to operate at 4.4 K with a peak field of 7.0 tesla. The superconducting material within the magnet is niobium titanium in a conductive matrix.

  4. Identification of radiopure titanium for the LZ dark matter experiment and future rare event searches

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Akerlof, C. W.; Akimov, D. Yu.; Alsum, S. K.; Araújo, H. M.; Arnquist, I. J.; Arthurs, M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Balashov, S.; Barry, M. J.; Belle, J.; Beltrame, P.; Benson, T.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boast, K. E.; Bolozdynya, A.; Boxer, B.; Bramante, R.; Brás, P.; Buckley, J. H.; Bugaev, V. V.; Bunker, R.; Burdin, S.; Busenitz, J. K.; Carels, C.; Carlsmith, D. L.; Carlson, B.; Carmona-Benitez, M. C.; Chan, C.; Cherwinka, J. J.; Chiller, A. A.; Chiller, C.; Cottle, A.; Coughlen, R.; Craddock, W. W.; Currie, A.; Dahl, C. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edberg, T. K.; Edwards, W. R.; Emmet, W. T.; Faham, C. H.; Fiorucci, S.; Fruth, T.; Gaitskell, R. J.; Gantos, N. J.; Gehman, V. M.; Gerhard, R. M.; Ghag, C.; Gilchriese, M. G. D.; Gomber, B.; Hall, C. R.; Hans, S.; Hanzel, K.; Haselschwardt, S. J.; Hertel, S. A.; Hillbrand, S.; Hjemfelt, C.; Hoff, M. D.; Holbrook, B.; Holtom, E.; Hoppe, E. W.; Hor, J. Y.-K.; Horn, M.; Huang, D. Q.; Hurteau, T. W.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kaboth, A.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Khazov, A.; Khromov, A. V.; Konovalov, A. M.; Korolkova, E. V.; Koyuncu, M.; Kraus, H.; Krebs, H. J.; Kudryavtsev, V. A.; Kumpan, A. V.; Kyre, S.; Lee, C.; Lee, H. S.; Lee, J.; Leonard, D. S.; Leonard, R.; Lesko, K. T.; Levy, C.; Liao, F.-T.; Lin, J.; Lindote, A.; Linehan, R. E.; Lippincott, W. H.; Liu, X.; Lopes, M. I.; Lopez Paredes, B.; Lorenzon, W.; Luitz, S.; Majewski, P.; Manalaysay, A.; Manenti, L.; Mannino, R. L.; Markley, D. J.; Martin, T. J.; Marzioni, M. F.; McConnell, C. T.; McKinsey, D. N.; Mei, D.-M.; Meng, Y.; Miller, E. H.; Mizrachi, E.; Mock, J.; Monzani, M. E.; Morad, J. A.; Mount, B. J.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; Nikkel, J. A.; O'Dell, J.; O'Sullivan, K.; Olcina, I.; Olevitch, M. A.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Piepke, A.; Powell, S.; Preece, R. M.; Pushkin, K.; Ratcliff, B. N.; Reichenbacher, J.; Reichhart, L.; Rhyne, C. A.; Richards, A.; Rodrigues, J. P.; Rose, H. J.; Rosero, R.; Rossiter, P.; Saba, J. S.; Sarychev, M.; Schnee, R. W.; Schubnell, M.; Scovell, P. R.; Shaw, S.; Shutt, T. A.; Silva, C.; Skarpaas, K.; Skulski, W.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sosnovtsev, V. V.; Stancu, I.; Stark, M. R.; Stephenson, S.; Stiegler, T. M.; Stifter, K.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Temples, D.; Terman, P. A.; Thomas, K. J.; Thomson, J. A.; Tiedt, D. R.; Timalsina, M.; To, W. H.; Tomás, A.; Tope, T. E.; Tripathi, M.; Tvrznikova, L.; Va'Vra, J.; Vacheret, A.; van der Grinten, M. G. D.; Verbus, J. R.; Vuosalo, C. O.; Waldron, W. L.; Wang, R.; Watson, R.; Webb, R. C.; Wei, W.-Z.; While, M.; White, D. T.; Whitis, T. J.; Wisniewski, W. J.; Witherell, M. S.; Wolfs, F. L. H.; Woodward, D.; Worm, S.; Xu, J.; Yeh, M.; Yin, J.; Zhang, C.; Lux-Zeplin (LZ) Collaboration

    2017-11-01

    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238Ue < 1.6 mBq/kg, 238Ul < 0.09 mBq/kg, 232The = 0.28 ± 0.03 mBq/kg, 232Thl = 0.25 ± 0.02 mBq/kg, 40K < 0.54 mBq/kg, and 60Co < 0.02 mBq/kg (68% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160 ± 0.001(stat) ± 0.030(sys) counts.

  5. Development of a Cryostat to Characterize Nano-scale Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Longo, Mathew; Matheny, Matthew; Knudsen, Jasmine

    2016-03-01

    We have designed and constructed a low-noise vacuum cryostat to be used for the characterization of nano-scale superconducting quantum interference devices (SQUIDs). Such devices are very sensitive to magnetic fields and can measure changes in flux on the order of a single electron magnetic moment. As a part of the design process, we calculated the separation required between the cryogenic preamplifier and superconducting magnet, including a high-permeability magnetic shield, using a finite-element model of the apparatus. The cryostat comprises a vacuum cross at room temperature for filtered DC and shielded RF electrical connections, a thin-wall stainless steel support tube, a taper-sealed cryogenic vacuum can, and internal mechanical support and wiring for the nanoSQUID. The Dewar is modified with a room-temperature flange with a sliding seal for the cryostat. The flange supports the superconducting 3 Tesla magnet and thermometry wiring. Upon completion of the cryostat fabrication and Dewar modifications, operation of the nanoSQUIDs as transported from our collaborator's laboratory in Israel will be confirmed, as the lead forming the SQUID is sensitive to oxidation and the SQUIDs must be shipped in a vacuum container. After operation of the nanoSQUIDs is confirmed, the primary work of characterizing their high-speed properties will begin. This will include looking at the measurement of relaxation oscillations at high bandwidth in comparison to the theoretical predictions of the current model.

  6. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  7. Conceptual design and thermal analysis of a modular cryostat for one single coil of a 10 MW offshore superconducting wind turbine

    NASA Astrophysics Data System (ADS)

    Sun, Jiuce; Sanz, Santiago; Neumann, Holger

    2015-12-01

    Superconducting generators show the potential to reduce the head mass of large offshore wind turbines. A 10 MW offshore superconducting wind turbine has been investigated in the SUPRAPOWER project. The superconducting coils based on MgB2 tapes are supposed to work at cryogenic temperature of 20 K. In this paper, a novel modular rotating cryostat was presented for one single coil of the superconducting wind turbine. The modular concept and cryogen-free cooling method were proposed to fulfil the requirements of handling, maintenance, reliability of long term and offshore operations. Two stage Gifford-McMahon cryocoolers were used to provide cooling source. Supporting rods made of titanium alloy were selected as support structures of the cryostat in aim of reducing the heat load. The thermal performance in the modular cryostat was carefully investigated. The heat load applied to the cryocooler second stage was 2.17 W@20 K per coil. The corresponding temperature difference along the superconducting coil was only around 1 K.

  8. Does one need a 4.5 K screen in cryostats of superconducting accelerator devices operating in superfluid helium? lessons from the LHL

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Parma, Vittorio; Tavian, Laurent

    2014-01-01

    Superfluid helium is increasingly used as a coolant for superconducting devices in particle accelerators: the lower temperature enhances the performance of superconductors in high-field magnets and reduces BCS losses in RF acceleration cavities, while the excellent transport properties of superfluid helium can be put to work in efficient distributed cooling systems. The thermodynamic penalty of operating at lower temperature however requires careful management of the heat loads, achieved inter alia through proper design and construction of the cryostats. A recurrent question appears to be that of the need and practical feasibility of an additional screen cooled by normal helium at around 4.5 K surrounding the cold mass at about 2 K, in such cryostats equipped with a standard 80 K screen. We introduce the issue in terms of first principles applied to the configuration of the cryostats, discuss technical constraints and economical limitations, and illustrate the argumentation with examples taken from large projects confronted with this issue, i.e. CEBAF, SPL, ESS, LHC, TESLA, European X-FEL, ILC.

  9. A probe for neutron activation analysis in a drill hole using 252Cf, and a Ge(Li) detector cooled by a melting cryogen

    USGS Publications Warehouse

    Tanner, A.B.; Moxham, R.M.; Senftle, F.E.; Baicker, J.A.

    1972-01-01

    A sonde has been built for high-resolution measurement of natural or neutron-induced gamma rays in boreholes. The sonde is 7.3 cm in diameter and about 2.2 m in length and weighs about 16 kg. The lithium-compensated germanium semiconductor detector is stabilized at -185 to -188??C for as much as ten hours by a cryostatic reservoir containing melting propane. During periods when the sonde is not in use the propane is kept frozen by a gravity-fed trickle of liquid nitrogen from a reservoir temporarily attached to the cryostat section. A 252Cf source, shielded from the detector, may be placed in the bottom section of the sonde for anlysis by measurement of neutron-activation or neutron-capture gamma rays. Stability of the cryostat with changing hydrostatic pressure, absence of vibration, lack of need for power to the cryostat during operation, and freedom of orientation make the method desirable for borehole, undersea, space, and some laboratory applications. ?? 1972.

  10. Low vibration cooling using a pulse tube cooler and cryostat for the GRAVITY beam combiner instrument at the VLTI

    NASA Astrophysics Data System (ADS)

    Haug, M.; Haussmann, F.; Kellner, S.; Kern, L.; Eisenhauer, F.; Lizon, J.-L.; Dietrich, M.; Thummes, G.

    2014-07-01

    GRAVITY is a second generation VLTI instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band. The cryostat of the beam combiner instrument provides the required temperatures for the various subunits ranging from 40K to 290K with a milli-Kelvin temperature stability for some selected units. The bath cryostat is cooled with liquid nitrogen and makes use of the exhaust gas to cool the main optical bench to an intermediate temperature of 240K. The fringe tracking detector will be cooled separately by a single-stage pulse tube cooler to a temperature of 40K. The pulse tube cooler is optimized for minimum vibrations. In particular its warm side is connected to the 80K reservoir of the LN2 cryostat to minimize the required input power. All temperature levels are actively stabilized by electric heaters. The cold bench is supported separately from the vacuum vessel and the liquid nitrogen reservoir to minimize the transfer of acoustic noise onto the instrument.

  11. High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity

    DOE PAGES

    Xu, Luyao; Curwen, Christopher A.; Reno, John L.; ...

    2017-09-04

    A terahertz quantum-cascade (QC) vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated with over 5 mW power in continuous-wave and single-mode operation above 77 K, in combination with a near-Gaussian beam pattern with full-width half-max divergence as narrow as ~5° × 5°, with no evidence of thermal lensing. This is realized by creating an intra-cryostat VECSEL cavity to reduce the cavity loss and designing an active focusing metasurface reflector with low power dissipation for efficient heat removal. Compared with a conventional quantumcascade laser based on a metal-metal waveguide, the intra-cryostat QC-VECSEL exhibits significant improvements in both output power level and beam pattern. Also,more » the intra-cryostat configuration newly allows evaluation of QC-VECSEL operation vs. temperature, showing a maximum pulsed mode operating temperature of 129 K. While the threshold current density in the QC-VECSEL is worse in comparison to a conventional edge-emitting metal-metal waveguide QClaser, the beam quality, slope efficiency, maximum power, and thermal resistance are all significantly improved.« less

  12. Alternate Design of ITER Cryostat Skirt Support System

    NASA Astrophysics Data System (ADS)

    Pandey, Manish Kumar; Jha, Saroj Kumar; Gupta, Girish Kumar; Bhattacharya, Avik; Jogi, Gaurav; Bhardwaj, Anil Kumar

    2017-04-01

    The skirt support of ITER cryostat is a support system which takes all the load of cryostat cylinder and dome during normal and operational condition. The present design of skirt support has full penetration weld joints at the bottom (shell to horizontal plate joint). To fulfil the requirements of tolerances and control the welding distortions, we have proposed to change the full penetration weld into fillet weld. A detail calculation is done to check the feasibility and structural impact due to proposed design. The calculations provide the size requirements of fillet weld. To verify the structural integrity during most severe load case, finite element analysis (FEA) has been done in line with ASME section VIII division 2 [1]. By FEA ‘Plastic Collapse’ and ‘Local Failure’ modes has been assessed. 5° sector of skirt clamp has been modelled in CATIA V5 R21 and used in FEA. Fillet weld at shell to horizontal plate joint has been modelled and symmetry boundary condition at ± 2.5° applied. ‘Elastic Plastic Analysis’ has been performed for the most severe loading case i.e. Category IV loading. The alternate design of Cryostat Skirt support system has been found safe by analysis against Plastic collapse and Local Failure Modes with load proportionality factor 2.3. Alternate design of Cryostat skirt support system has been done and validated by FEA. As per alternate design, the proposal of fillet weld has been implemented in manufacturing.

  13. Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, D. S.

    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities ofmore » $$^{238}$$U$$_{e}$$~$<$1.6~mBq/kg, $$^{238}$$U$$_{l}$$~$<$0.09~mBq/kg, $$^{232}$$Th$$_{e}$$~$$=0.28\\pm 0.03$$~mBq/kg, $$^{232}$$Th$$_{l}$$~$$=0.25\\pm 0.02$$~mBq/kg, $$^{40}$$K~$<$0.54~mBq/kg, and $$^{60}$$Co~$<$$0.02~mBq/kg (68\\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of $$0.160\\pm0.001$(stat)$$\\pm0.030$$(sys) counts.« less

  14. Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

    DOE PAGES

    Akerib, D. S.

    2017-09-25

    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities ofmore » $$^{238}$$U$$_{e}$$~$<$1.6~mBq/kg, $$^{238}$$U$$_{l}$$~$<$0.09~mBq/kg, $$^{232}$$Th$$_{e}$$~$$=0.28\\pm 0.03$$~mBq/kg, $$^{232}$$Th$$_{l}$$~$$=0.25\\pm 0.02$$~mBq/kg, $$^{40}$$K~$<$0.54~mBq/kg, and $$^{60}$$Co~$<$$0.02~mBq/kg (68\\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of $$0.160\\pm0.001$(stat)$$\\pm0.030$$(sys) counts.« less

  15. SU-F-J-149: Beam and Cryostat Scatter Characteristics of the Elekta MR-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duglio, M; Towe, S; Roberts, D

    2016-06-15

    Purpose: The Elekta MR-Linac combines a digital linear accelerator system with a 1.5T Philips MRI machine. This study aimed to determine key characteristic information regarding the MR-Linac beam and in particular it evaluated the effect of the MR cryostat on the out of field scatter dose. Methods: Tissue phantom ratios, profiles and depth doses were acquired in plastic water with an IC-profiler or with an MR compatible water tank using multiple system configurations (Full (B0= 1.5T), Full (B0=0T) and No cryostat). Additionally, an in-house CAD based Monte Carlo code based on Penelope was used to provide comparative data. Results: Withmore » the cryostat in place and B0=0T, the measured TPR for the MR Linac system was 0.702, indicating an energy of around 7MV. Without the cryostat, the measured TPR was 0.669. For the Full (B0=0T) case, out of field dose at a depth of 10 cm in the isocentric plane, 5 cm from the field edge was 0.8%, 3.1% and 5.4% for 3×3 cm{sup 2}, 10×10 cm{sup 2} and 20×20 cm{sup 2} fields respectively.The out of field dose (averaged between 5 cm and 10 cm beyond the field edges) in the “with cryostat” case is 0.78% (absolute difference) higher than without the cryostat for clinically relevant field sizes (i.e. 10×10 cm{sup 2}) and comparable to measured conventional 6MV treatment beams at a depth of 10 cm (within 0.1% between 5 cm and 6 cm from field edge). At dose maximum and at 5 cm from the field edge, the “with cryostat” out of field scatter for a 10×10 cm{sup 2} field is 1.5% higher than “without cryostat', with a modest increase (0.9%) compared to Agility 6MV in the same conditions. Conclusion: The study has presented typical characteristics of the MR-Linac beam and determined that out of field dose is comparable to conventional treatment beams. All authors are employed by Elekta Ltd., who are developing an MR-Linac.« less

  16. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  17. In situ hybridization and immunofluorescence on resin-embedded tissue to identify the components of Nissl substance.

    PubMed

    Singhrao, Sim K; Nair-Roberts, Radha G

    2010-05-01

    It is not clear whether the Nissl substance is present at the axon hillock. To clarify this gap in knowledge, we conducted in situ hybridization (ISH) on mouse brain tissue using 30-microm cryostat and 1-3-microm acrylic resin sections. Cryostat and rehydrated resin sections were exposed to digoxygenin-labeled glutamic acid decarboxylase 1 sense and antisense riboprobes. Consecutive sections from tissue embedded in resin were subjected to the ribosomal protein L26 primary antibody to determine the distribution of the ribo/polysomes. ISH results from the antisense riboprobe in both cryostat and resin-embedded tissue sections demonstrated an abundance of message in the neurons from the substantia nigra pars reticulate. In addition, the resin sections demonstrated hybridization signal in the axon hillock of some neurons. Immunofluorescence labeling of consecutive sections using an antibody to the most abundant ribosomal protein L26 confirmed their distribution in the cell body and the axon hillock of similar neurons. Compared with the 30-microm cryostat sections, the most striking feature of ISH in the thinner resin (2-3 microm) sections was that there was a phenomenal improvement in the overall clarity and spatial resolution. Reexamination of the axon hillock when continuous with the cell body in cryostat sections revealed that the same message was also present, except it was overlooked initially because of overlapping cell populations in thick tissue slices. As ribosomes are a component of Nissl substance, we propose that the axon hillock, like other parts of the neuron, does contain Nissl substance. (c) 2009 Wiley-Liss, Inc.

  18. Superconducting magnet and cryostat for a space application

    NASA Technical Reports Server (NTRS)

    Pope, W. L.; Smoot, G. F.; Smith, L. H.; Taylor, C. E.

    1975-01-01

    The paper describes the design concepts, development, and testing of a superconducting coil and cryostat for an orbiting superconducting magnetic spectrometer. Several coils were subject to overall thermal performance and coil charging tests. The coils have low but persistent currents and have proven themselves to be rugged and reliable for mobile balloon flights. Satellite experiments will be conducted on a new, similar design.

  19. Testing Devices Garner Data on Insulation Performance

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To develop a test instrument that could garner measurements of the thermal performance of insulation under extreme conditions, researchers at Kennedy Space Center devised the Cryostat 1 and then Cryostat 2. McLean, Virginia-based QinetiQ North America licensed the technology and plans to market it to organizations developing materials for things like piping and storage tank insulation, refrigeration, appliances, and consumer goods.

  20. Design and Fabrication of Cryostat Interface and Electronics for High Performance Antimatter Trap (HI-PAT)

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1999-01-01

    Included in Appendix I to this report is a complete set of design and assembly schematics for the high vacuum inner trap assembly, cryostat interfaces and electronic components for the MSFC HI-PAT. Also included in the final report are summaries of vacuum tests, and electronic tests performed upon completion of the assembly.

  1. Conceptual design of the cryostat for the new high luminosity (HL-LHC) triplet magnets

    NASA Astrophysics Data System (ADS)

    Ramos, D.; Parma, V.; Moretti, M.; Eymin, C.; Todesco, E.; Van Weelderen, R.; Prin, H.; Berkowitz Zamora, D.

    2017-12-01

    The High Luminosity LHC (HL-LHC) is a project to upgrade the LHC collider after 2020-2025 to increase the integrated luminosity by about one order of magnitude and extend the physics production until 2035. An upgrade of the focusing triplets insertion system for the ATLAS and CMS experiments is foreseen using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. This will require the design and construction of four continuous cryostats, each about sixty meters in length and one meter in diameter, for the final beam focusing quadrupoles, corrector magnets and beam separation dipoles. The design is constrained by the dimensions of the existing tunnel and accessibility restrictions imposing the integration of cryogenic piping inside the cryostat, thus resulting in a very compact integration. As the alignment and position stability of the magnets is crucial for the luminosity performance of the machine, the magnet support system must be carefully designed in order to cope with parasitic forces and thermo-mechanical load cycles. In this paper, we present the conceptual design of the cryostat and discuss the approach to address the stringent and often conflicting requirements of alignment, integration and thermal aspects.

  2. Thermal Insulation Test Apparatuses

    NASA Technical Reports Server (NTRS)

    Berman, Brion

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks to license its Thermal Insulation Test Apparatuses. Designed by the Cryogenics Test Laboratory at the John F. Kennedy Space Center (KSC) in Florida, these patented technologies (U.S. Patent Numbers: Cryostat 1 - 6,742,926, Cryostat 2 - 6,487,866, and Cryostat 4 - 6,824,306) allow manufacturers to fabricate and test cryogenic insulation at their production and/or laboratory facilities. These new inventions allow for the thermal performance characterization of cylindrical and flat specimens (e.g., bulk-fill, flat-panel, multilayer, or continuously rolled) over the full range of pressures, from high vacuum to no vacuum, and over the full range of temperatures from 77K to 300K. In today's world, efficient, low-maintenance, low-temperature refrigeration is taking a more significant role, from the food industry, transportation, energy, and medical applications to the Space Shuttle. Most countries (including the United States) have laws requiring commercially available insulation materials to be tested and rated by an accepted methodology. The new Cryostat methods go beyond the formal capabilities of the ASTM methods to provide testing for real systems, including full-temperature differences plus full-range vacuum conditions.

  3. Design analysis of a Helium re-condenser

    NASA Astrophysics Data System (ADS)

    Muley, P. K.; Bapat, S. L.; Atrey, M. D.

    2017-02-01

    Modern helium cryostats deploy a cryocooler with a re-condenser at its II stage for in-situ re-condensation of boil-off vapor. The present work is a vital step in the ongoing research work of design of cryocooler based 100 litre helium cryostat with in-situ re-condensation. The cryostat incorporates a two stage Gifford McMahon cryocooler having specified refrigerating capacity of 40 W at 43 K for I stage and 1 W at 4.2 K for II stage. Although design of cryostat ensures thermal load for cryocooler below its specified refrigerating capacity at the second stage, successful in-situ re-condensation depends on proper design of re-condenser which forms the objective of this work. The present work proposes design of helium re-condenser with straight rectangular fins. Fins are analyzed for optimization of thermal performance parameters such as condensation heat transfer coefficient, surface area for heat transfer, re-condensing capacity, efficiency and effectiveness. The present work provides design of re-condenser with 19 integral fins each of 10 mm height and 1.5 mm thickness with a gap of 1.5 mm between two fins, keeping in mind the manufacturing feasibility, having efficiency of 80.96 % and effectiveness of 10.34.

  4. Recirculating 1-K-Pot for Pulse-Tube Cryostats

    NASA Technical Reports Server (NTRS)

    Paine, Christopher T.; Naylor, Bret J.; Prouve, Thomas

    2013-01-01

    A paper describes a 1-K-pot that works with a commercial pulse tube cooler for astrophysics instrumentation testbeds that require temperatures <1.7 K. Pumped liquid helium-4 cryostats were commonly used to achieve this temperature. However, liquid helium-4 cryostats are being replaced with cryostats using pulse tube coolers. The closed-cycle 1K-pot system for the pulse tube cooler requires a heat exchanger on the pulse tube, a flow restriction, pump-out line, and pump system that recirculates helium-4. The heat exchanger precools and liquefies helium- 4 gas at the 2.5 to 3.5 K pulse tube cold head. This closed-cycle 1-K-pot system was designed to work with commercially available laboratory pulse tube coolers. It was built using common laboratory equipment such as stainless steel tubing and a mechanical pump. The system is self-contained and requires only common wall power to operate. The lift of 15 mW at 1.1 K and base temperature of 0.97 K are provided continuously. The system can be scaled to higher heat lifts of .30 to 50 mW if desired. Ground-based telescopes could use this innovation to improve the efficiency of existing cryo

  5. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    NASA Astrophysics Data System (ADS)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-06-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions.

  6. A method for eliminating Faraday rotation in cryostat windows in longitudinal magneto-optical Kerr effect measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polewko-Klim, A., E-mail: anetapol@uwb.edu.pl; Uba, S.; Uba, L.

    2014-07-15

    A solution to the problem of disturbing effect of the background Faraday rotation in the cryostat windows on longitudinal magneto-optical Kerr effect (LMOKE) measured under vacuum conditions and/or at low temperatures is proposed. The method for eliminating the influence of Faraday rotation in cryostat windows is based on special arrangement of additional mirrors placed on sample holder. In this arrangement, the orientation of the cryostat window is perpendicular to the light beam direction and parallel to an external magnetic field generated by the H-frame electromagnet. The operation of the LMOKE magnetometer with the special sample holder based on polarization modulationmore » technique with a photo-elastic modulator is theoretically analyzed with the use of Jones matrices, and formulas for evaluating of the actual Kerr rotation and ellipticity of the sample are derived. The feasibility of the method and good performance of the magnetometer is experimentally demonstrated for the LMOKE effect measured in Fe/Au multilayer structures. The influence of imperfect alignment of the magnetometer setup on the Kerr angles, as derived theoretically through the analytic model and verified experimentally, is examined and discussed.« less

  7. Note: control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron.

    PubMed

    Bhattacharyya, T K; Pal, G

    2015-02-01

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.

  8. Thermal Performance of Aged and Weathered Spray-On Foam Insulation (SOFI) Materials Under Cryogenic Vacuum Conditions (Cryostat-4)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.

  9. Building Bigger, Better Instruments with Dry Cryostats

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Voellmer, George

    2010-01-01

    The cylindrical instrument volume allowable n SOFIA is large, comprising perhaps 400 liters at 4K. However, the cryogen accommodation to enable this environment consumes roughly 20% of the volume, and worsens rues, airworthiness/safety, and handling/operation, Present-day pulse tube coolers have negligible cold volumes, provide adequate cooling powers, and reach colder temperatures than stored cryogen. In addition, they permit safer, more reliable, lower maintenance instrument operation. While the advantages of dry cryostats are well-known and commonly used in labs and ground-based astronomical facilities, SOFIA would require some charges in accommodations to permit a pulse tube cooler to operate on board, Whil e these changes are not negligible, we present our investigation into the feasibility and desirability of making SOFIA a dry cryostat-capable observatory

  10. Tailoring magnetic field gradient design to magnet cryostat geometry.

    PubMed

    Trakic, A; Liu, F; Lopez, H S; Wang, H; Crozier, S

    2006-01-01

    Eddy currents induced within a magnetic resonance imaging (MRI) cryostat bore during pulsing of gradient coils can be applied constructively together with the gradient currents that generate them, to obtain good quality gradient uniformities within a specified imaging volume over time. This can be achieved by simultaneously optimizing the spatial distribution and temporal pre-emphasis of the gradient coil current, to account for the spatial and temporal variation of the secondary magnetic fields due to the induced eddy currents. This method allows the tailored design of gradient coil/magnet configurations and consequent engineering trade-offs. To compute the transient eddy currents within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using total-field scattered-field (TFSF) scheme has been performed and validated.

  11. Thermal Modeling and Cryogenic Design of a Helical Superconducting Undulator Cryostat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiroyanagi, Y.; Fuerst, J.; Hasse, Q.

    A conceptual design for a helical superconducting undulator (HSCU) for the Advanced Photon Source (APS) at Argonne National Laboratory (ANL) has been completed. The device differs sufficiently from the existing APS planar superconducting undulator (SCU) design to warrant development of a new cryostat based on value engineering and lessons learned from the existing planar SCU. Changes include optimization of the existing cryocooler-based refrigeration system and thermal shield as well as cost reduction through the use of standard vacuum hardware. The end result is a design that provides significantly larger 4.2 K refrigeration margin in a smaller package for greater installationmore » flexibility in the APS storage ring. This paper presents ANSYS-based thermal analysis of the cryostat, including estimated static and dynamic« less

  12. CAT 2 - An improved version of Cryogenic Analysis Tools for online and offline monitoring and analysis of large size cryostats

    NASA Astrophysics Data System (ADS)

    Pagliarone, C. E.; Uttaro, S.; Cappelli, L.; Fallone, M.; Kartal, S.

    2017-02-01

    CAT, Cryogenic Analysis Tools is a software package developed using LabVIEW and ROOT environments to analyze the performances of large size cryostats, where many parameters, input, and control variables need to be acquired and studied at the same time. The present paper describes how CAT works and which are the main improvements achieved in the new version: CAT 2. New Graphical User Interfaces have been developed in order to make the use of the full package more user-friendly as well as a process of resource optimization has been carried out. The offline analysis of the full cryostat performances is available both trough ROOT line command interface band also by using the new graphical interfaces.

  13. Acquisition of He3 Cryostat Insert for Experiments on Topological Insulators

    DTIC Science & Technology

    2016-02-03

    facilitated transport experiments on topological insulators and Dirac and Weyl semimetals. These experiments resulted in several notable achievements and...Approved for Public Release; Distribution Unlimited Final Report: Acquisition of He3 Cryostat Insert for Experiments on Topological Insulators . The views...Experiments on Topological Insulators . Report Title The award enabled the PI to acquire a complete cryogenic system with a 9-Tesla superconducting magnet. The

  14. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    NASA Astrophysics Data System (ADS)

    Pathan, F. S.; Khan, Z.; Semwal, P.; Raval, D. C.; Joshi, K. S.; Thankey, P. L.; Dhanani, K. R.

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN2 panels during sniffer test and pressure drop test using helium gas.

  15. Note: Control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, T. K., E-mail: tamal@vecc.gov.in; Pal, G.

    2015-02-15

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these threemore » cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.« less

  16. Short Nissl staining for incubated cryostat sections of the brain.

    PubMed

    Lindroos, O F

    1991-01-01

    Nissl stain often binds poorly to cryostat sections which have been incubated in solutions of radiolabeled ligands. Such incubation is used in receptor autoradiography of the brain when using the in vitro method. We have developed a rapid (16 min) modification of Nissl staining for sections that bind stain poorly, e.g., incubated sections. The method stains well sections which cannot be stained with other rapid Nissl staining methods.

  17. Insulation Testing Using Cryostat Apparatus with Sleeve

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.

    1999-01-01

    The method and equipment of testing continuously rolled insulation materials is presented in this paper. Testing of blanket and molded products is also facilitated. Materials are installed around a cylindrical copper sleeve using a wrapping machine. The sleeve is slid onto the vertical cold mass of the cryostat. The gap between the cold mass and the sleeve measures less than 1 mm. The cryostat apparatus is a liquid nitrogen boiloff calorimeter system that enables direct measurement of the apparent thermal conductivity (k-value) of the insulation system at any vacuum level between 5 x 10(exp -5) and 760 torr. Sensors are placed between layers of the insulation to provide complete temperature-thickness profiles. The temperatures of the cold mass (maintained at 77.8 kelvin (K)), the sleeve (cold boundary temperature (CBT)), the insulation outer surface (warm boundary temperature (WBT)), and the vacuum can (maintained at 313 K by a thermal shroud) are measured. Plots of CBT, WBT, and layer temperature profiles as functions of vacuum level show the transitions between the three dominant heat transfer modes. For this cryostat apparatus, the measureable heat gain is from 0.2 to 20 watts. The steady-state measurement of k-value is made when all temperatures and the boiloff rate are stable.

  18. Cryogenic setup for trapped ion quantum computing.

    PubMed

    Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-11-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40 Ca + and 88 Sr + ions. The instability of the laser manipulating the optical qubits in 40 Ca + is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10 -15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40 Ca + ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

  19. A vector fetal magnetocardiogram system with high sensitivity

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Miyashita, Tsuyoshi; Tsukada, Keiji; Horigome, Hitoshi; Asaka, Mitsuhiro; Shigemitsu, Sadahiko; Takahashi, Miho; Terada, Yasushi; Mitsui, Toshio; Chiba, Yoshihide

    1999-12-01

    The vector fetal magnetocardiogram (V-FMCG) system that measures the three orthogonal components of the magnetic field from a fetal heart has been developed to clearly observe fetal cardiac activity during pregnancy by using the superconducting quantum interference device. To detect a clear V-FMCG signal, the bottom of the cryostat was made of thin glass-fiber-reinforced plastic and the total length between the pickup coil to the outer surface is 12 mm. Because the cryostat bottom was made thinner, the area of the cryostat's top and bottom could be made smaller, thus a low evaporation loss (<1.2 l per day) and a long refilling interval (>10 days) were obtained. The gantry was able to tilt the cryostat and the bed could move in three axis directions, which made it possible to easily locate the vector pickup coil at an optimum position to obtain the maximum magnetic field from a fetal heart. We obtained V-FMCGs from 21 normal fetuses with gestation periods of 27-38 weeks. Using these vector signals, the dipoles were estimated and the relationship between the strength of the dipole moments and the number of gestation weeks could be obtained. Thus, V-FMCG seems to represent a new noninvasive tool for clearly detecting the electrophysiological activity of a fetal heart.

  20. The Zwicky Transient Facility Camera

    NASA Astrophysics Data System (ADS)

    Dekany, Richard; Smith, Roger M.; Belicki, Justin; Delacroix, Alexandre; Duggan, Gina; Feeney, Michael; Hale, David; Kaye, Stephen; Milburn, Jennifer; Murphy, Patrick; Porter, Michael; Reiley, Daniel J.; Riddle, Reed L.; Rodriguez, Hector; Bellm, Eric C.

    2016-08-01

    The Zwicky Transient Facility Camera (ZTFC) is a key element of the ZTF Observing System, the integrated system of optoelectromechanical instrumentation tasked to acquire the wide-field, high-cadence time-domain astronomical data at the heart of the Zwicky Transient Facility. The ZTFC consists of a compact cryostat with large vacuum window protecting a mosaic of 16 large, wafer-scale science CCDs and 4 smaller guide/focus CCDs, a sophisticated vacuum interface board which carries data as electrical signals out of the cryostat, an electromechanical window frame for securing externally inserted optical filter selections, and associated cryo-thermal/vacuum system support elements. The ZTFC provides an instantaneous 47 deg2 field of view, limited by primary mirror vignetting in its Schmidt telescope prime focus configuration. We report here on the design and performance of the ZTF CCD camera cryostat and report results from extensive Joule-Thompson cryocooler tests that may be of broad interest to the instrumentation community.

  1. Characterisation of a cryostat using simultaneous, single-beam multiple-surface laser vibrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissinger, Thomas; Charrett, Thomas O. H.; James, Stephen W.

    2016-06-28

    A novel range-resolved interferometric signal processing technique that uses sinusoidal optical frequency modulation is applied to multi-surface vibrometry, demonstrating simultaneous optical measurements of vibrations on two surfaces using a single, collimated laser beam, with a minimum permissible distance of 3.5 cm between surfaces. The current system, using a cost-effective laser diode and a fibre-coupled, downlead insensitive setup, allows an interferometric fringe rate of up to 180 kHz to be resolved with typical displacement noise levels of 8 pm · Hz{sup −05}. In this paper, the system is applied to vibrometry measurements of a table-top cryostat, with concurrent measurements of the optical widowmore » and the sample holder target inside. This allows the separation of common-mode vibrations of the whole cryostat from differential vibrations between the window and the target, allowing any resonances to be identified.« less

  2. KSC-04pd1386

    NASA Image and Video Library

    2004-06-17

    KENNEDY SPACE CENTER, FLA. - James E. Fesmire (right), NASA lead engineer for the KSC Cryogenics Testbed, works on Cryostat-1, the Methods of Testing Thermal Insulation and Association Test Apparatus, which he developed. At left is co-inventor Dr. Stan Augustynowicz, chief scientist with Sierra Lobo Inc. in Milan, Ohio. Cryostat-1 provides absolute thermal performance values of cryogenic insulation systems under real-world conditions. Cryogenic liquid is supplied to a test chamber and two guard chambers, and temperatures are sensed within the vacuum chamber to test aerogels, foams or other materials. The Cryostat-1 machine can detect the absolute heat leakage rates through materials under the full range of vacuum conditions. Fesmire recently acquired three patents for testing thermal insulation materials for cryogenic systems. The research team of the Cryogenics Testbed offers testing and support for a number of programs and initiatives for NASA and commercial customers.

  3. KSC-04pd1387

    NASA Image and Video Library

    2004-06-17

    KENNEDY SPACE CENTER, FLA. - James E. Fesmire (right), NASA lead engineer for the KSC Cryogenics Testbed, works on Cryostat-1, the Methods of Testing Thermal Insulation and Association Test Apparatus, which he developed. At left is co-inventor Dr. Stan Augustynowicz, chief scientist with Sierra Lobo Inc. in Milan, Ohio. Cryostat-1 provides absolute thermal performance values of cryogenic insulation systems under real-world conditions. Cryogenic liquid is supplied to a test chamber and two guard chambers, and temperatures are sensed within the vacuum chamber to test aerogels, foams or other materials. The Cryostat-1 machine can detect the absolute heat leakage rates through materials under the full range of vacuum conditions. Fesmire recently acquired three patents for testing thermal insulation materials for cryogenic systems. The research team of the Cryogenics Testbed offers testing and support for a number of programs and initiatives for NASA and commercial customers.

  4. Liquid helium cryostat with internal fluorescence detection for x-ray absorption studies in the 2-6 keV energy region

    NASA Astrophysics Data System (ADS)

    McFarlane Holman, Karen L.; Latimer, Matthew J.; Yachandra, Vittal K.

    2004-06-01

    X-ray absorption spectroscopy (XAS) in the intermediate x-ray region (2-6 keV) for dilute biological samples has been limited because of detector/flux limitations and inadequate cryogenic instrumentation. We have designed and constructed a new tailpiece/sample chamber for a commercially available liquid helium cooled cryostat which overcomes difficulties related to low fluorescence signals by using thin window materials and incorporating an internal photodiode detector. With the apparatus, XAS data at the Cl, S, and Ca K edges have been collected on frozen solutions and biological samples at temperatures down to 60 K. A separate chamber has been incorporated for collecting room-temperature spectra of standard compounds (for energy calibration purposes) which prevents contamination of the cryostat chamber and allows the sample to remain undisturbed, both important concerns for studying dilute and radiation-sensitive samples.

  5. A Low-Noise Germanium Ionization Spectrometer for Low-Background Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Colaresi, Jim; Collar, Juan I.

    2016-12-01

    Recent progress on the development of very low energy threshold high purity germanium ionization spectrometers has produced an instrument of 1.2 kg mass and excellent noise performance. The detector was installed in a low-background cryostat intended for use in a low mass, WIMP dark matter direct detection search. The integrated detector and low background cryostat achieved noise performance of 98 eV full-width half-maximum of an input electronic pulse generator peak and gamma-ray energy resolution of 1.9 keV full-width half-maximum at the 60Co gamma-ray energy of 1332 keV. This Transaction reports the thermal characterization of the low-background cryostat, specifications of themore » newly prepared 1.2 kg p-type point contact germanium detector, and the ionization spectroscopy – energy resolution and energy threshold – performance of the integrated system.« less

  6. Low-temperature THz time domain waveguide spectrometer with butt-coupled emitter and detector crystal.

    PubMed

    Qiao, W; Stephan, D; Hasselbeck, M; Liang, Q; Dekorsy, T

    2012-08-27

    A compact high-resolution THz time-domain waveguide spectrometer that is operated inside a cryostat is demonstrated. A THz photo-Dember emitter and a ZnTe electro-optic detection crystal are directly attached to a parallel copper-plate waveguide. This allows the THz beam to be excited and detected entirely inside the cryostat, obviating the need for THz-transparent windows or external THz mirrors. Since no external bias for the emitter is required, no electric feed-through into the cryostat is necessary. Using asynchronous optical sampling, high resolution THz spectra are obtained in the frequency range from 0.2 to 2.0 THz. The THz emission from the photo-Dember emitter and the absorption spectrum of 1,2-dicyanobenzene film are measured as a function of temperature. An absorption peak around 750 GHz of 1,2-dicyanobenzene displays a blue shift with increasing temperature.

  7. Cryostat including heater to heat a target

    DOEpatents

    Pehl, Richard H.; Madden, Norman W.; Malone, Donald F.

    1990-01-01

    A cryostat is provided which comprises a vacuum vessel; a target disposed within the vacuum vessel; a heat sink disposed within the vacuum vesssel for absorbing heat from the detector; a cooling mechanism for cooling the heat sink; a cryoabsorption mechanism for cryoabsorbing residual gas within the vacuum vessel; and a heater for maintaining the target above a temperature at which the residual gas is cryoabsorbed in the course of cryoabsorption of the residual gas by the cryoabsorption mechanism.

  8. A Closed-Cycle Optical Cryostat and Improved Optical Elements for Studies of Dissipation at the Molecular Scale

    DTIC Science & Technology

    2016-02-05

    diode laser, Raman spectroscopy REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...this project supported the acquisition of a closed-cycle optical cryostat from Montana Instruments, as well as a new 785 nm diode laser and ultrahigh...planned experiments on inelastic electron tunneling spectroscopy that require TɝK for optimal resolution. Additionally, the spatial position of

  9. Conceptual study of the cryostats for the cold powering system for the triplets of the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Ballarino, A.; Giannelli, S.; Jacquemod, A.; Leclercq, Y.; Ortiz Ferrer, C.; Parma, V.

    2017-12-01

    The High Luminosity LHC (HL-LHC) is a project aiming to upgrade the Large Hadron Collider (LHC) after 2020-2025 in order to increase the integrated luminosity by about one order of magnitude and extend the operational capabilities until 2035. The upgrade of the focusing triplet insertions for the Atlas and CMS experiments foresees using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. The increased radiation levels from the particle debris produced by particle collisions in the experiments require that the power converters are placed in radiation shielded zones located in a service gallery adjacent to the main tunnel. The powering of the magnets from the gallery is achieved by means of MgB2 superconducting cables in a 100-m long flexible cryostat transfer line, actively cooled by 4.5 K to 20 K gaseous helium generated close to the magnets. At the highest temperature end, the helium flow cools the High Temperature Superconducting (HTS) current leads before being recovered at room temperature. At the magnet connection side, a dedicated connection box allows connection to the magnets and a controlled boil-off production of helium for the cooling needs of the powering system. This paper presents the overall concept of the cryostat system from the magnet connection boxes, through the flexible cryostat transfer line, to the connection box of the current leads.

  10. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    NASA Technical Reports Server (NTRS)

    Bard, Steven (Inventor); Wu, Jiunn-Jeng (Inventor); Trimble, Curtis A. (Inventor)

    1992-01-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  11. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    NASA Astrophysics Data System (ADS)

    Bard, Steven; Wu, Jiunn-Jeng; Trimble, Curtis A.

    1992-06-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  12. Changes made on a 2.7-m long superconducting solenoid magnet cryogenic system that allowed the magnet to be kept cold using 4 K pulse tube coolers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, M. A.; Pan, H.; Preece, R. M.

    2014-01-29

    Two 2.7-m long solenoid magnets with a cold mass of 1400 kg were fabricated in between 2007 and 2010. The magnet cryostat outside diameter is ∼1.4 meters and the cryostat length is ∼2.73 meters. The magnet warm bore is 0.4 meters. The magnet was designed to be cooled using three 1.5 W two-stage coolers. In both magnets, three coolers could not keep the cryostat filled with liquid helium. The temperatures of the shield and the tops of the HTS leads were too warm. A 140 W single stage cooler was added to magnet 2 to cool the HTS leads, themore » shield and the cold mass support intercepts. When the magnet 2 was retested in 2010, the net cooling at 4.2 K was −1.5 W with first-stage temperatures of the four coolers at ∼42 K. The tops of the HTS leads were <50 K, but the shield and cold mass support intercepts remained too warm. The solenoid cryostat and shield were modified during 2011 and 2012 to reduce the 4.2 K heat load and increase the cooling. This magnet was tested in 2012, with five 1.5 W two-stage coolers and the single stage cooler. The changes made in the magnet are described in this report. As a result of the cryostat and shield changes, and adding 3.0 W of cooling at 4.2 K, the net 4.2 K cooling changed from −1.6 W to +5.0 W. About half of the change in net cooling to this magnet was due changes that reduced the shield temperature. This report demonstrates the importance of running the shield cold (∼40 K) and reducing the heat loads from all sources on both the shield and the cold mass.« less

  13. Cryostat including heater to heat a target

    DOEpatents

    Pehl, R.H.; Madden, N.W.; Malone, D.F.

    1990-09-11

    A cryostat is provided which comprises a vacuum vessel; a target disposed within the vacuum vessel; a heat sink disposed within the vacuum vessel for absorbing heat from the detector; a cooling mechanism for cooling the heat sink; a cryoabsorption mechanism for cryoabsorbing residual gas within the vacuum vessel; and a heater for maintaining the target above a temperature at which the residual gas is cryoabsorbed in the course of cryoabsorption of the residual gas by the cryoabsorption mechanism. 2 figs.

  14. Small Business Innovations (Cryostat)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    General Pneumatics Corporation, Scottsdale, AZ, developed an anti- clogging cryostat that liquifies gases by expansion for high pressure through a nozzle to produce cryorefrigeration based on their Kennedy Space Center Small Business Innovation Research (SBIR) work to develop a Joule-Thomson (JT) expansion valve that is less susceptible to clogging by particles or condensed contaminants in the flow than a non-contaminating compressor in a closed cycle Linde-Hampson cryocooler used to generate cryogenic cooling for infrared sensors, super conductors, supercooled electronics and cryosurgery.

  15. CEBAF Upgrade Cryomodule Component Testing in the Horizontal Test Bed (HTB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I.E. Campisi; B. Carpenter; G.K. Davis

    2001-06-01

    The planned upgrade of the CEBAF electron accelerator includes the development of an improved cryomodule. Several components differ substantially from the original CEBAF cryomodule; these include: the new 7-cell, 1.5 GHz cavities with integral helium vessel, a new, backlash-free cavity tuner, the waveguide coupler with its room-temperature ceramic window, and the HOM damping filters. In order to test the design features and performance of the new components, a horizontal cryostat (Horizontal Test Bed) has been constructed which allows testing with a turn around time of less than three weeks. This cryostat provides the environment for testing one or two cavities,more » with associated auxiliary components, in a condition similar to that of a real cryomodule. A series of tests has been performed on a prototype 7-cell cavity and the above-mentioned systems. In this paper the results of the tests on the cryostat, on the cavity performance, on its coupler, on the tuner characteristics, and on the microphonics behavior will be reported.« less

  16. Cryogenic System for Neutron Scattering Experiments with In Situ Pressure Tuning Mechanism: Response of the Antiferromagnetism of URu2Si2 to Uniaxial Stress

    NASA Astrophysics Data System (ADS)

    Kawarazaki, Shuzo; Uwatoko, Yoshiya; Yokoyama, Makoto; Okita, Yuji; Tabata, Yoshikazu; Taniguchi, Toshifumi; Amitsuka, Hiroshi

    2002-10-01

    A handy insertable device to manipulate hydrostatic pressure or uniaxial stress on a sample in a cryostat for neutron scattering experiments is described. The pressure that is generated in a miniature hydraulic oil-cylinder on the top of the inserting stick is transmitted to the sample via a long piston-cylinder unit made of a thick stainless-steel tube and a fiber-reinforced plastics (FRP) rod. One can thus in situ tune the pressure or the stress on the sample without handling the pressure-cell at room temperature outside the cryostat. The device is designed to fit into the ILL-type Orange cryostat so that it can be used in many neutron scattering facilities. A newly designed uniaxial-stress cell and hydrostatic pressure cell to be used with this system are also described. The result of measurement of the hysteresis effect of uniaxial stress on the antiferromagnetism of URu2Si2 at 1.4 K is presented.

  17. Thermal conductance modeling and characterization of the SuperCDMS-SNOLAB sub-Kelvin cryogenic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhuley, R. C.; Hollister, M. I.; Ruschman, M. K.

    The detectors of the Super Cryogenic Dark Matter Search experiment at SNOLAB (SuperCDMS SNOLAB) will operate in a seven-layered cryostat with thermal stages between room temperature and the base temperature of 15 mK. The inner three layers of the cryostat, which are to be nominally maintained at 1 K, 250 mK, and 15 mK, will be cooled by a dilution refrigerator via conduction through long copper stems. Bolted and mechanically pressed contacts, at and cylindrical, as well as exible straps are the essential stem components that will facilitate assembly/dismantling of the cryostat. These will also allow for thermal contractions/movements duringmore » cooldown of the sub-Kelvin system. To ensure that these components and their contacts meet their design thermal conductance, prototypes were fabricated and cryogenically tested. The present paper gives an overview of the SuperCDMS SNOLAB sub-Kelvin architecture and its conductance requirements. Results from the conductance measurements tests and from sub-Kelvin thermal modeling are discussed.« less

  18. Design and optimisation of low heat load liquid helium cryostat to house cryogenic current comparator in antiproton decelerator at CERN

    NASA Astrophysics Data System (ADS)

    Lees, A.; Koettig, T.; Fernandes, M.; Tan, J.

    2017-02-01

    The Cryogenic Current Comparator (CCC) is installed in the low-energy Antiproton Decelerator (AD) at CERN to make an absolute measurement of the beam intensity. Operating below 4.2 K, it is based on a superconducting quantum interference device (SQUID) and employs a superconducting niobium shield to supress magnetic field components not linked to the beam current. The AD contains no permanent cryogenic infrastructure so the local continuous liquefaction of helium using a pulse-tube is required; limiting the available cooling power to 0.69 W at 4.2K. Due to the sensitivity of the SQUID to variations in magnetic fields, the CCC is highly sensitive to mechanical vibration which is limited to a minimum by the support systems of the cryostat. This article presents the cooling system of the cryostat and discusses the design challenges overcome to minimise the transmission of vibration to the CCC while operating within the cryogenic limits imposed by the cooling system.

  19. New hardware and software platform for experiments on a HUBER-5042 X-ray diffractometer with a DISPLEX DE-202 helium cryostat in the temperature range of 20-300 K

    NASA Astrophysics Data System (ADS)

    Dudka, A. P.; Antipin, A. M.; Verin, I. A.

    2017-09-01

    Huber-5042 diffractometer with a closed-cycle Displex DE-202 helium cryostat is a unique scientific instrument for carrying out X-ray diffraction experiments when studying the single crystal structure in the temperature range of 20-300 K. To make the service life longer and develop new experimental techniques, the diffractometer control is transferred to a new hardware and software platform. To this end, a modern computer; a new detector reader unit; and new control interfaces for stepper motors, temperature controller, and cryostat vacuum pumping system are used. The system for cooling the X-ray tube, the high-voltage generator, and the helium compressor and pump for maintaining the desired vacuum in the cryostat are replaced. The system for controlling the primary beam shutter is upgraded. A biological shielding is installed. The new program tools, which use the Linux Ubuntu operating system and SPEC constructor, include a set of drivers for control units through the aforementioned interfaces. A program for searching reflections from a sample using fast continuous scanning and a priori information about crystal is written. Thus, the software package for carrying out the complete cycle of precise diffraction experiment (from determining the crystal unit cell to calculating the integral reflection intensities) is upgraded. High quality of the experimental data obtained on this equipment is confirmed in a number of studies in the temperature range from 20 to 300 K.

  20. Collisional Quenching of No A2sigma+(nu’= 0) Between 125 and 294 (Postprint)

    DTIC Science & Technology

    2009-05-28

    using an oil-free pumping system consisting of a turbomolecular pump backed by a dry scroll pump . The measured leak rate of the cell was less than 10...mode-locked laser producing pulses of approximately 100 ps duration, was used to pump a DFDL, a side- pumped dye amplifier, and an end- pumped dye...conditions, the calibrated pressure Vacuum C N2 Laser PMTMono L2 L3 Cryostat W1 W2 L1 L1 Ap ND FIG. 1. Experimental arrangement with section detail of cryostat

  1. Laser-powered thermoelectric generators operating at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Harutyunyan, S. R.; Vardanyan, V. H.; Kuzanyan, A. S.; Nikoghosyan, V. R.; Kunii, S.; Winzer, K.; Wood, K. S.; Gulian, A. M.

    2005-11-01

    A thermoelectric generator, operating in a cryostat at liquid helium temperatures, is described. Energy to the generator is supplied via an external laser beam. For this prototype device the associated heat load at permanent operation is comparable with the heat load associated with power delivery via metallic wires. Estimates indicate that still better performance can be enabled with existing thermoelectric materials, thereby far exceeding efficiency of traditional cryostat wiring. We used a prototype generator to produce electric power for measuring critical currents in Nb3Sn-films at 4K.

  2. Damping and support in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R [Sammamish, WA; McIver, Carl R [Everett, WA; Mittleider, John A [Kent, WA

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  3. Baseline Receiver Concept for a Next Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Srikanth, Sivasankaran; Wes Grammer, Silver Sturgis, Rob Selina

    2018-01-01

    The Next Generation Very Large Array (ngVLA) is envisioned to be an interferometric array with 10 times the effective collecting area and spatial resolution as the current VLA, operating over a frequency range of 1.2-116 GHz. Achieving these goals will require 214 antennas of nominal 18m diameter, on baselines of 300km. Maximizing sensitivity for each receiver band, while also minimizing the overall operating cost are the primary design goals. Therefore, receivers and feeds will be cryogenically cooled, with multiple bands integrated into a common cryostat to the greatest extent possible. Using feed designs that yield broad bandwidths and high aperture efficiencies are key to meeting these goals.The proposed receiver configuration will be implemented as six independent bands, each with its own feed. The upper five bands will be integrated into a single compact cryostat, while the lowest-frequency band occupies a second cryostat of similar volume and mass. The lowest-band feed is cooled to 80K, while all other feeds are cooled to 20K.For optimum performance at the higher frequencies, waveguide-bandwidth (~1.66:1) receivers are proposed to cover 12.6 – 50.5 GHz and 70 – 116 GHz in four separate bands, integrated into a single cryostat. Excellent LNA noise performance is readily achievable, and using waveguide throughout the signal chain reduces losses and their associated noise contributions, without adding undue size or weight. An axially-corrugated conical feed horn with wide flare angle (~50degree half-angle), based on a design by G. Cortes and L. Baker, is being considered for these receivers.For continuous coverage between 1.2 – 12.6 GHz, waveguide or even octave-bandwidth receivers are not cost-effective, given the > 10:1 frequency range. For these bands, wideband (3.25:1) receivers mated to a Caltech-designed quad-ridge feed horn (QRFH) are proposed. These feeds are highly compact, and cryogenically cooled to reduce losses ahead of the LNAs. Aperture efficiency and LNA noise temperature may be somewhat less than optimum: however, there would be significant cost savings by effectively halving the number of receivers and cryostats required per antenna.

  4. PLC-controlled cryostats for the BlackGEM and MeerLICHT detectors

    NASA Astrophysics Data System (ADS)

    Raskin, Gert; Morren, Johan; Pessemier, Wim; Bloemen, Steven; Klein-Wolt, Marc; Roelfsema, Ronald; Groot, Paul; Aerts, Conny

    2016-08-01

    BlackGEM is an array of telescopes, currently under development at the Radboud University Nijmegen and at NOVA (Netherlands Research School for Astronomy). It targets the detection of the optical counterparts of gravitational waves. The first three BlackGEM telescopes are planned to be installed in 2018 at the La Silla observatory (Chile). A single prototype telescope, named MeerLICHT, will already be commissioned early 2017 in Sutherland (South Africa) to provide an optical complement for the MeerKAT radio array. The BlackGEM array consists of, initially, a set of three robotic 65-cm wide-field telescopes. Each telescope is equipped with a single STA1600 CCD detector with 10.5k x 10.5k 9-micron pixels that covers a 2.7 square degrees field of view. The cryostats for housing these detectors are developed and built at the KU Leuven University (Belgium). The operational model of BlackGEM requires long periods of reliable hands-off operation. Therefore, we designed the cryostats for long vacuum hold time and we make use of a closed-cycle cooling system, based on Polycold PCC Joule-Thomson coolers. A single programmable logic controller (PLC) controls the cryogenic systems of several BlackGEM telescopes simultaneously, resulting in a highly reliable, cost-efficient and maintenance-friendly system. PLC-based cryostat control offers some distinct advantages, especially for a robotic facility. Apart of temperature monitoring and control, the PLC also monitors the vacuum quality, the power supply and the status of the PCC coolers (compressor power consumption and temperature, pressure in the gas lines, etc.). Furthermore, it provides an alarming system and safe and reproducible procedures for automatic cool down and warm up. The communication between PLC and higher-level software takes place via the OPC-UA protocol, offering a simple to implement, yet very powerful interface. Finally, a touch-panel display on the PLC provides the operator with a user-friendly and robust technical interface. In this contribution, we present the design of the BlackGEM cryostats and of the PLC-based control system.

  5. Cavendish Balance Automation

    NASA Technical Reports Server (NTRS)

    Thompson, Bryan

    2000-01-01

    This is the final report for a project carried out to modify a manual commercial Cavendish Balance for automated use in cryostat. The scope of this project was to modify an off-the-shelf manually operated Cavendish Balance to allow for automated operation for periods of hours or days in cryostat. The purpose of this modification was to allow the balance to be used in the study of effects of superconducting materials on the local gravitational field strength to determine if the strength of gravitational fields can be reduced. A Cavendish Balance was chosen because it is a fairly simple piece of equipment for measuring gravity, one the least accurately known and least understood physical constants. The principle activities that occurred under this purchase order were: (1) All the components necessary to hold and automate the Cavendish Balance in a cryostat were designed. Engineering drawings were made of custom parts to be fabricated, other off-the-shelf parts were procured; (2) Software was written in LabView to control the automation process via a stepper motor controller and stepper motor, and to collect data from the balance during testing; (3)Software was written to take the data collected from the Cavendish Balance and reduce it to give a value for the gravitational constant; (4) The components of the system were assembled and fitted to a cryostat. Also the LabView hardware including the control computer, stepper motor driver, data collection boards, and necessary cabling were assembled; and (5) The system was operated for a number of periods, data collected, and reduced to give an average value for the gravitational constant.

  6. Mobile refrigeration system for precool and warm up of superconducting magnets

    NASA Astrophysics Data System (ADS)

    Gandla, S. K.; Longsworth, R. C.

    2017-12-01

    Conservation of helium has become more important in recent years due to global shortages in supply. Magnetic resonance imaging (MRI) superconducting magnets use approximately 20% of the world’s helium reserves in liquid form to cool down and maintain operating temperatures at 4 K. This paper describes a mobile cryogenic refrigeration system, which has been developed by Sumitomo (SHI) Cryogenics of America, Inc. to conserve helium by shipping MRI magnets warm and cooling them down or servicing them on site at a medical facility. The system can cool a typical magnet from room temperature to below 40K in less than a week. The system consists of four single stage Displex®-type Gifford-McMahon (GM) expanders in a cryostat with heat exchangers integrated on the cold ends that cool the helium gas, which is circulated in a closed-loop system through the magnet by a cryogenic fan. The system is configured with heaters on the heat exchangers to effectively warm up a magnet. The system includes a scroll vacuum pump, which is used to evacuate the helium circuit with or without the magnet and turbo pump to evacuate the cryostat. Vacuum-jacketed transfer lines connect the cryostat to the magnet. The system is designed with its own controller for continuous operation of precool, warm up and evacuation processes with automatic and manual controls. The cryostat, pumps and gas controls are mounted on a dewar cart. One compressor and the system controller are mounted on a compressor and control cart, and the other three compressors are mounted on separate carts.

  7. Design and Operation of A Setup with A Camera and Adjustable Mirror to Inspect the Sense-Wire Planes of the Time Projection Chamber Inside the MicroBooNE Cryostat

    DOE PAGES

    Carls, Benjamin; Horton-Smith, Glenn; James, Catherine C.; ...

    2015-08-26

    Detectors in particle physics, particularly when including cryogenic components, are often enclosed in vessels that do not provide any physical or visual access to the detectors themselves after installation. However, it can be desirable for experiments to visually investigate the inside of the vessel. The MicroBooNE cryostat hosts a TPC with sense-wire planes, which had to be inspected for damage such as breakage or sagging. This inspection was performed after the transportation of the vessel with the enclosed detector to its final location, but before filling with liquid argon. Our paper describes an approach to view the inside of themore » MicroBooNE cryostat with a setup of a camera and a mirror through one of its cryogenic service nozzles. The paper also describes the camera and mirror chosen for the operation, the illumination, and the mechanical structure of the setup. It explains how the system was operated and demonstrates its performance.« less

  8. APOGEE cryostat design

    NASA Astrophysics Data System (ADS)

    Blank, Basil; Henderson, Chuck; Wilson, John C.; Hearty, Fred R.; Skrutskie, Michael F.; O'Brien, Thomas P.; Majewski, Steven R.; Schiavon, Ricardo; Maseman, Paul; Brunner, Sophia; Burton, Adam; Walker, Eric

    2010-07-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a survey of all Galactic stellar populations that will employ an R=30,000 spectrograph operating in the near-infrared (1.5-1.7μm) wavelength range. The fiber-fed spectrograph is housed in a large (1.4m x 2.3m x 1.3m) stainless steel cryostat or Dewar that is LN2-cooled and will be located in a building near the 2.5m Sloan Digital Sky Survey (SDSS) telescope to which it will be coupled. The choice of shell material and configuration was an optimization among optics packaging, weight, strength, external dimensions, rigging and transportation, the available integration and testing room, and the ultimate instrument room at APO. Internals are fabricated of more traditional 6061-T6 aluminum which is well proven in cryogenic applications. An active thermal shield with MLI blanketing yields an extremely low thermal load of 45-50 watts for this ~3000 liter instrument. Cryostat design details are discussed with applicable constraints and trade decisions. APOGEE is one of four experiments that are part of Sloan Digital Sky Survey III (SDSS-III).

  9. Large-scale HTS bulks for magnetic application

    NASA Astrophysics Data System (ADS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  10. Experimental validation of a self-calibrating cryogenic mass flowmeter

    NASA Astrophysics Data System (ADS)

    Janzen, A.; Boersch, M.; Burger, B.; Drache, J.; Ebersoldt, A.; Erni, P.; Feldbusch, F.; Oertig, D.; Grohmann, S.

    2017-12-01

    The Karlsruhe Institute of Technology (KIT) and the WEKA AG jointly develop a commercial flowmeter for application in helium cryostats. The flowmeter functions according to a new thermal measurement principle that eliminates all systematic uncertainties and enables self-calibration during real operation. Ideally, the resulting uncertainty of the measured flow rate is only dependent on signal noises, which are typically very small with regard to the measured value. Under real operating conditions, cryoplant-dependent flow rate fluctuations induce an additional uncertainty, which follows from the sensitivity of the method. This paper presents experimental results with helium at temperatures between 30 and 70 K and flow rates in the range of 4 to 12 g/s. The experiments were carried out in a control cryostat of the 2 kW helium refrigerator of the TOSKA test facility at KIT. Inside the cryostat, the new flowmeter was installed in series with a Venturi tube that was used for reference measurements. The measurement results demonstrate the self-calibration capability during real cryoplant operation. The influences of temperature and flow rate fluctuations on the self-calibration uncertainty are discussed.

  11. An ultrahigh-vacuum cryostat for simultaneous scanning tunneling microscopy and magneto-transport measurements down to 400 mK

    NASA Astrophysics Data System (ADS)

    Liebmann, Marcus; Bindel, Jan Raphael; Pezzotta, Mike; Becker, Stefan; Muckel, Florian; Johnsen, Tjorven; Saunus, Christian; Ast, Christian R.; Morgenstern, Markus

    2017-12-01

    We present the design and calibration measurements of a scanning tunneling microscope setup in a 3He ultrahigh-vacuum cryostat operating at 400 mK with a hold time of 10 days. With 2.70 m in height and 4.70 m free space needed for assembly, the cryostat fits in a one-story lab building. The microscope features optical access, an xy table, in situ tip and sample exchange, and enough contacts to facilitate atomic force microscopy in tuning fork operation and simultaneous magneto-transport measurements on the sample. Hence, it enables scanning tunneling spectroscopy on microstructured samples which are tuned into preselected transport regimes. A superconducting magnet provides a perpendicular field of up to 14 T. The vertical noise of the scanning tunneling microscope amounts to 1 pmrms within a 700 Hz bandwidth. Tunneling spectroscopy using one superconducting electrode revealed an energy resolution of 120 μeV. Data on tip-sample Josephson contacts yield an even smaller feature size of 60 μeV, implying that the system operates close to the physical noise limit.

  12. Temperature Control and Noise Reduction in our Compact ADR System for TES Microcalorimeter Operation

    NASA Astrophysics Data System (ADS)

    Hishi, U.; Fujimoto, R.; Kamiya, K.; Kotake, M.; Ito, H.; Kaido, T.; Tanaka, K.; Hattori, K.

    2016-08-01

    We have been developing a compact adiabatic demagnetization refrigerator, keeping ground application and future missions in mind. A salt pill fabricated in-house, a superconducting magnet with a passive magnetic shield around it, and a mechanical heat switch are mounted in a dedicated helium cryostat. The detector stage temperature is regulated by PID control of the magnet current, with a dI/dt term added to compensate the temperature rise due to parasitic heat. The temperature fluctuation of the detector stage is 1-2 \\upmu Krms, and the hold time was extended by about 15 % thanks to the dI/dt term. Bundle shields of the harnesses between the cryostat and the analog electronics boxes were connected to the chassis at both ends, and the analog electronics boxes were grounded to the cryostat through the bundle shields. This reduced the readout noise to 16 pA/√{Hz} in the 10-60 kHz range. Using this system, an energy resolution of 3.8 ± 0.2 eV (FWHM) was achieved at 5.9 keV.

  13. An ultrahigh-vacuum cryostat for simultaneous scanning tunneling microscopy and magneto-transport measurements down to 400 mK.

    PubMed

    Liebmann, Marcus; Bindel, Jan Raphael; Pezzotta, Mike; Becker, Stefan; Muckel, Florian; Johnsen, Tjorven; Saunus, Christian; Ast, Christian R; Morgenstern, Markus

    2017-12-01

    We present the design and calibration measurements of a scanning tunneling microscope setup in a 3 He ultrahigh-vacuum cryostat operating at 400 mK with a hold time of 10 days. With 2.70 m in height and 4.70 m free space needed for assembly, the cryostat fits in a one-story lab building. The microscope features optical access, an xy table, in situ tip and sample exchange, and enough contacts to facilitate atomic force microscopy in tuning fork operation and simultaneous magneto-transport measurements on the sample. Hence, it enables scanning tunneling spectroscopy on microstructured samples which are tuned into preselected transport regimes. A superconducting magnet provides a perpendicular field of up to 14 T. The vertical noise of the scanning tunneling microscope amounts to 1 pm rms within a 700 Hz bandwidth. Tunneling spectroscopy using one superconducting electrode revealed an energy resolution of 120 μeV. Data on tip-sample Josephson contacts yield an even smaller feature size of 60 μeV, implying that the system operates close to the physical noise limit.

  14. A solvent-free coating-procedure for the improved preparation of cryostat sections in light microscope histochemistry.

    PubMed

    Fink, S

    1992-01-01

    A new technique is presented for the external stabilization of cryostat sections by spraying the specimen surfaces with an aqueous solution of poly(vinyl alcohol) before each sectioning stroke. The spray freezes upon the surface and forms a tough coating which facilitates subsequent sectioning and handling especially of difficult material. The sections are affixed upon cold glass slides covered with an improved formulation of pressure-sensitive adhesive. During further processing of the affixed sections, the PVA-coating and any surrounding supporting medium dissolve without traces in the first aqueous incubation or staining solution.

  15. A Focus on Cryogenic Engineering for the Primordial Inflation Polarization Explorer (PIPER) Mission

    NASA Technical Reports Server (NTRS)

    Rosas, Rogelio; Weston, Amy

    2011-01-01

    Cryogenic engineering involves design and modification of equipment that is used under boiling point of nitrogen which is 77 K. The focus of this paper will be on the design of hardware for cryogenic use and a retrofit that was done to the main laboratory cryostat used to test flight components for the Primordial Inflation Polarization Explorer balloon-borne mission. Data from prior tests showed that there was a superfluid helium leak and a total disassemble of the cryostat was conducted in order to localize and fix the leak. To improve efficiency new fill tubes and clamps with modifications were added to the helium tank. Upon removal of the tank, corrosion was found on the flange face that connects to the helium cold plate and therefore had to be fully replaced and copper plated to prevent future corrosion. Indium seals were also replaced for the four fill tubes, a helium level sensor, and the nitrogen and helium tanks. Four additional shielded twisted pairs of cryogenic wire and a wire harness for the Superconducting Quantum Interference Devices (SQUIDs) were added. Finally, there was also design work done for multiple pieces that went inside the cryostat and a separate probe used to test the SQUIDs. Upon successful completion of the cryostat upgrade, tests were run to check the effectiveness and stability of the upgrades. The post-retrofit tests showed minor leaks were still present and due to this, superfluidity has still not been attained. As such there could still be a possibility of a superfluid leak appearing in the future. Regardless, the copper plating on the helium tank has elongated the need to service it by three to five years.

  16. Eddy current simulation in thick cylinders of finite length induced by coils of arbitrary geometry.

    PubMed

    Sanchez Lopez, Hector; Poole, Michael; Crozier, Stuart

    2010-12-01

    Eddy currents are inevitably induced when time-varying magnetic field gradients interact with the metallic structures of a magnetic resonance imaging (MRI) scanner. The secondary magnetic field produced by this induced current degrades the spatial and temporal performance of the primary field generated by the gradient coils. Although this undesired effect can be minimized by using actively and/or passively shielded gradient coils and current pre-emphasis techniques, a residual eddy current still remains in the MRI scanner structure. Accurate simulation of these eddy currents is important in the successful design of gradient coils and magnet cryostat vessels. Efficient methods for simulating eddy currents are currently restricted to cylindrical-symmetry. The approach presented in this paper divides thick conducting cylinders into thin layers (thinner than the skin depth) and expresses the current density on each as a Fourier series. The coupling between each mode of the Fourier series with every other is modeled with an inductive network method. In this way, the eddy currents induced in realistic cryostat surfaces by coils of arbitrary geometry can be simulated. The new method was validated by simulating a canonical problem and comparing the results against a commercially available software package. An accurate skin depth of 2.76 mm was calculated in 6 min with the new method. The currents induced by an actively shielded x-gradient coil were simulated assuming a finite length cylindrical cryostat consisting of three different conducting materials. Details of the temporal-spatial induced current diffusion process were simulated through all cryostat layers, which could not be efficiently simulated with any other method. With this data, all quantities that depend on the current density, such as the secondary magnetic field, are simply evaluated. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Properties of large nearly perfect crystals at very low temperatures

    NASA Technical Reports Server (NTRS)

    Davis, W.; Krack, K. R.; Richard, J. P.; Weber, J.

    1983-01-01

    A liquid helium cryostat of a size and construction unavailable commercially, was built for use in measuring the Q of several materials at milli-Kelvin temperatures. The design and testing of the cryostat is described as well as the design of the experiment vacuum chamber and adaptor for the dilution refrigerator insert. Theory, design, and testing are also discussed for the magnetic coils built to levitate the materials so as to isolate them and increase the measured Q. A four point suspension with capacitor end plates as the transducer was used to obtain preliminary Q measurements of 6061 aluminum alloy and single crystal silicon. Results are tabulated.

  18. A versatile laboratory cryogenic plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrov, V.M.; Marevichev, I.P.; Petrova, Y.B.

    1983-07-01

    The Institute of Theoretical and Experimental physics has designed a versatile cryogenic plant (VCP) which can liquefy helium, hydrogen, neon, and can extract neon from a gaseous neon-helium mixture. It can also be used as a refrigerator for cryostating external objects. The versatile cryogenic plant is schematicized and the refrigerating capacity and VCP control panel are detailed. Characteristic features which distinguish the VCP from other plants are specified. The processes involved in the liquefaction of helium, hydrogen, or neon, and the cryostating and cooling of an external object are explained. The use of the plant showed it to be economic,more » reliable, and convenient to operate.« less

  19. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

    NASA Astrophysics Data System (ADS)

    Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.

    2018-06-01

    We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.

  20. Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Frontier, C. R.

    2007-01-01

    The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.

  1. Construction of an ultra low temperature cryostat and transverse acoustic spectroscopy in superfluid helium-3 in compressed aerogels

    NASA Astrophysics Data System (ADS)

    Bhupathi, Pradeep

    An ultra low temperature cryostat is designed and implemented in this work to perform experiments at sub-millikelvin temperatures, specifically aimed at understanding the superfluid phases of 3He in various scenarios. The cryostat is a combination of a dilution refrigerator (Oxford Kelvinox 400) with a base temperature of 5.2 mK and a 48 mole copper block as the adiabatic nuclear demagnetization stage with a lowest temperature of ≈ 200 muK. With the various techniques implemented for limiting the ambient heat leak to the cryostat, we were able to stay below 1 mK for longer than 5 weeks. The details of design, construction and performance of the cryostat are presented. We measured high frequency shear acoustic impedance in superfluid 3He in 98% porosity aerogel at pressures of 29 bar and 32 bar in magnetic fields upto 3 kG with the aerogel cylinder compressed along the symmetry axis to generate global anisotropy. With 5% compression, there is an indication of a supercooled A-like to B-like transition in aerogel in a wider temperature width than the A phase in the bulk, while at 10% axial compression, the A-like to B-like transition is absent on cooling down to ≈ 300 muK in zero magnetic field and in magnetic fields up to 3 kG. This behavior is in contrast to that in 3He in uncompressed aerogels, in which the supercooled A-like to B-like transitions have been identified by various experimental techniques. Our result is consistent with theoretical predictions. To characterize the anisotropy in compressed aerogels, optical birefringence is measured in 98% porosity silica aerogel samples subjected to various degrees of uniaxial compression up to 15% strain, with wavelengths between 200 to 800 nm. Uncompressed aerogels exhibit no or a minimal degree of birefringence, indicating the isotropic nature of the material over the length scale of the wavelength. Uniaxial compression of aerogel introduces global anisotropy, which produces birefringence in the material. We observed a quasi-linear strain dependence in Deltan = ne -- no in compressed aerogels, where n e(o) is the index of refraction for the extraordinary (ordinary) ray of light that has its polarization parallel to the compression axis. Incidentally, this effect has potential applications for aerogels as tunable waveplates operating in a broad spectral range.

  2. Evaluation of a menstrual cup to collect shed endometrium for in vitro studies.

    PubMed

    Koks, C A; Dunselman, G A; de Goeij, A F; Arends, J W; Evers, J L

    1997-09-01

    To evaluate whether a menstrual cup is a suitable instrument to collect antegradely shed endometrium for in vitro studies. A prospective, descriptive, cell biological and immunohistochemical study. Tertiary care university medical center. Nine female volunteers with regular cycles. Menstrual effluent was collected with a menstrual cup. Experience with the menstrual cup was described. Cytospin specimens, frozen sections, and cultures were prepared from the obtained menstrual tissue. The acceptability of the menstrual cup. The presence and viability of endometrial tissue was evaluated using immunohistochemical staining and culture outcome. All women except one described the menstrual cup as acceptable. Menstrual effluent contained single cells, clumps of cells, and glandlike structures. After 5 days of culture, the endometrial tissue appeared to be viable. Immunohistochemistry showed positive staining for vimentin in most cytospin specimens, in all cryostat specimens, and in 10 of 17 cultures. Cytokeratin 18 stained most cytospin specimens, all cryostat specimens, and 10 of 17 cultures. Positive staining for BW495/36 was observed in most cytospin specimens, all cryostat specimens, and 11 of 17 cultures. A menstrual cup in an acceptable instrument to collect antegradely shed menstrual tissue. Menstruum contains viable endometrial tissue that can be used for in vitro studies of endometrium and endometriosis.

  3. A compact membrane-driven diamond anvil cell and cryostat system for nuclear resonant scattering at high pressure and low temperature

    DOE PAGES

    Zhao, J. Y.; Bi, W.; Sinogeikin, S.; ...

    2017-12-13

    In order to study the vibrational and thermal dynamic properties of materials using the nuclear resonant inelastic X-ray scattering (NRIXS) and the hyperfine interactions and magnetic properties using the synchrotron Mössbauer spectroscopy (SMS) at simultaneously high pressure (multi-Mbar) and low temperature (T< 10 K), a new miniature panoramic diamond anvil cell (mini-pDAC) as well as a special gas membrane driven mechanism have been developed and implemented at 3ID, Advanced Photon Source. The gas membrane system allows in situ pressure tuning of the mini- pDAC at low temperature. The mini-pDAC fits into a specially designed compact liquid helium flow cryostat systemmore » to achieve low temperature, where liquid helium flows through the holder of the mini-pDAC to cool the sample more efficiently. The sample temperature as low as 9 K has been achieved. Through the membrane, the sample pressure as high as 1.4 Mbar has been generated from this mini-pDAC. The instrument has been routinely used at 3ID for NRIXS and SMS studies. In this paper, technical details of the mini-pDAC, membrane engaging mechanism and the cryostat system are described, and some experimental results are discussed.« less

  4. Infrared measurements on ultraviolet photolysis products at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Dong, Weibing; He, Ping; Wang, Jessie; Zhou, Zhaohui; Wang, Hongxin

    2013-01-01

    Combination of ultraviolet (UV) photolysis with infrared (IR) spectroscopy (or UV/IR for abbreviation) is a powerful tool to study various chemical photoreactions, while cryostat and sample-cell windows define the working ranges for both UV and IR beams. Although diamond window has a very wide transmission range from UV to IR, the extreme cost, the absorptions at 1800-2600 cm-1 and other problems prevent it from being the solution for all cases. In this paper, a gas-exchange cryostat was modified to realize a UV/mid-IR experiment at cryogenic temperatures. Several windows (including diamond) were discussed as options. A di-nitrogen iron complex trans-[Fe(DMeOPrPE)2(N2)H][BPh4] [DMeOPrPE = 1,2-bis(dimethoxypropylphosphino)ethane] was studied as a real photolysis example. Alternatively, a cold-finger cryostat was modified for UV/far-IR compatible experiments. Non-photolysis samples K5[Mo4O11(R,S-Hhomocit)2]Cl·5H2O (H4homocit = homocitric acid) and [(n-Bu)4N]2[Fe4S4(PPh)4] were studied at cryogenic temperatures. Sample cell windows can also be used as a natural way for choosing photolysis wavelength (in addition to the use of optical filters).

  5. A compact membrane-driven diamond anvil cell and cryostat system for nuclear resonant scattering at high pressure and low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J. Y.; Bi, W.; Sinogeikin, S.

    In order to study the vibrational and thermal dynamic properties of materials using the nuclear resonant inelastic X-ray scattering (NRIXS) and the hyperfine interactions and magnetic properties using the synchrotron Mössbauer spectroscopy (SMS) at simultaneously high pressure (multi-Mbar) and low temperature (T< 10 K), a new miniature panoramic diamond anvil cell (mini-pDAC) as well as a special gas membrane driven mechanism have been developed and implemented at 3ID, Advanced Photon Source. The gas membrane system allows in situ pressure tuning of the mini- pDAC at low temperature. The mini-pDAC fits into a specially designed compact liquid helium flow cryostat systemmore » to achieve low temperature, where liquid helium flows through the holder of the mini-pDAC to cool the sample more efficiently. The sample temperature as low as 9 K has been achieved. Through the membrane, the sample pressure as high as 1.4 Mbar has been generated from this mini-pDAC. The instrument has been routinely used at 3ID for NRIXS and SMS studies. In this paper, technical details of the mini-pDAC, membrane engaging mechanism and the cryostat system are described, and some experimental results are discussed.« less

  6. Muon flux measurements at the davis campus of the sanford underground research facility with the MAJORANA DEMONSTRATOR veto system

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schmitt, C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.

    2017-07-01

    We report the first measurement of the total muon flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were performed using the MAJORANADEMONSTRATOR muon veto system arranged in two different configurations. The measured total flux is (5.31 ± 0.17) ×10-9 μ /s/cm2. Demonstrate a path forward to achieving a background rate at or below 1 count/(ROI-t-y)in the 4-keV region of interest (ROI) around the 2039-keV Q-value for 76Ge ββ(0ν) decay. This is required for tonne-scale germanium-based searches that will probe the inverted-ordering neutrino-mass parameter space for the effective Majorana neutrino mass in ββ(0ν) decay. Show technical and engineering scalability toward a tonne-scale instrument. Perform searches for additional physics beyond the Standard Model, such as dark matter and axions. The MAJORANA Collaboration has designed a modular instrument composed of two cryostats built from ultra-pure electroformed copper, with each cryostat capable of housing over 20 kg of HPGe detectors. The MAJORANADEMONSTRATOR contains 30 kg of detectors fabricated from Ge material enriched to 88% in 76Ge and another 15 kg fabricated from natural Ge (7.8% 76Ge). The modular approach allows us to assemble and optimize each cryostat independently, providing a fast deployment with minimal effect on already-operational detectors.Starting from the innermost cavity, the cryostats are surrounded by a compact graded shield composed of an inner layer of electroformed copper, a layer of commercially sourced C10100 copper, high-purity lead, an active muon veto, borated polyethylene, and pure polyethylene shielding. The cryostats, copper, and lead shielding are enclosed in a radon exclusion box and rest on an over-floor table that has openings for the active muon veto and polyethylene shielding panels situated below the detector. The entire experiment is located in a clean room at the 4850 ft level of SURF. A high-level summary of shield components is shown in Fig. 1.A large fraction of the plastic scintillator panels comprising the active muon-veto system were operated in different configurations at the experimental site during Ge detector constructions and commissioning. We used the resulting data to measure the total muon flux at the Davis Campus at SURF for the first time.

  7. Preliminary Mechanical Characterization of Thermal Filters for the X-IFU Instrument on Athena

    NASA Astrophysics Data System (ADS)

    Barbera, Marco; Lo Cicero, Ugo; Sciortino, Luisa; Parodi, Giancarlo; D'Anca, Fabio; Giglio, Paolo; Ferruggia Bonura, Salvatore; Nuzzo, Flavio; Jimenez Escobar, Antonio; Ciaravella, Angela; Collura, Alfonso; Varisco, Salvatore; Samain, Valerie

    2018-05-01

    The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision Science Program. The X-IFU consists of a large array of TES microcalorimeters that will operate at 50 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate RF electromagnetic interferences, and to protect the detector from contamination. In this paper, we present the current thermal filters design, describe the filter samples developed/procured so far, and present preliminary results from the ongoing characterization tests.

  8. New design of a cryostat-mounted scanning near-field optical microscope for single molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Durand, Yannig; Woehl, Jörg C.; Viellerobe, Bertrand; Göhde, Wolfgang; Orrit, Michel

    1999-02-01

    Due to the weakness of the fluorescence signal from a single fluorophore, a scanning near-field optical microscope for single molecule spectroscopy requires a very efficient setup for the collection and detection of emitted photons. We have developed a home-built microscope for operation in a l-He cryostat which uses a solid parabolic mirror in order to optimize the fluorescence collection efficiency. This microscope works with Al-coated, tapered optical fibers in illumination mode. The tip-sample separation is probed by an optical shear-force detection. First results demonstrate the capability of the microscope to image single molecules and achieve a topographical resolution of a few nanometers vertically and better than 50 nm laterally.

  9. Cryogenic performance of a cryocooler-cooled superconducting undulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuerst, J. D.; Doose, C.; Hasse, Q.

    2014-01-29

    A cryocooler-cooled superconducting undulator has been installed and operated with beam at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The device consists of a dual-core 42-pole magnet structure that is cooled to 4.2 K with a system of four cryocoolers operating in a zero-boil-off configuration. This effort represents the culmination of a development program to establish concept feasibility and evaluate cryostat design and cryocooler-based refrigeration. Cryostat performance is described including cool-down/warm-up, steady-state operation, cooling margin, and the impact of beam during operation in the APS storage ring. Plans for future devices with longer magnets, which will incorporatemore » lessons learned from the development program, are also discussed.« less

  10. The final results of the Mi-Beta Cryogenic Experiment towards the CUORICINO Experiment

    NASA Astrophysics Data System (ADS)

    Pirro, S.; Arnaboldi, C.; Brofferio, C.; Bucci, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; McDonald, R. J.; Nucciotti, A.; Pavan, M.; Pedretti, M.; Pessina, G.; Pobes, C.; Previtali, E.; Sisti, M.; Vanzini, M.; Zanotti, L.

    2002-02-01

    We present the final results on neutrinoless Double Beta Decay (DBD) of 130Te obtained with an array of 20 cryogenic detectors. The Mi-Beta Experiment is operating since 3 years and was upgraded in March 2001. The background in the DBD energy region was reduced thanks to a new Roman lead shield framed inside the dilution unit and a neutron shield mounted outside the cryostat. We also improved the energy threshold using a cold electronic stage inside the cryostat. The new set-up represents also a good test for the CUORICINO Experiment. CUORICINO will start by the beginning of 2002 and will consist of 56 Tellurium Oxide Crystal with an overall bolometric mass of 42 kg. .

  11. Dynamic motion modes of high temperature superconducting maglev on a 45-m long ring test line

    NASA Astrophysics Data System (ADS)

    Lei, W. Y.; Qian, N.; Zheng, J.; Jin, L. W.; Zhang, Y.; Deng, Z. G.

    2017-10-01

    With the development of high temperature superconducting (HTS) maglev, studies on the running stability have become more and more significant to ensure the operation safety. An experimental HTS maglev vehicle was tested on a 45-m long ring test line under the speed from 4 km/h to 20 km/h. The lateral and vertical acceleration signals of each cryostat were collected by tri-axis accelerometers in real time. By analyzing the phase relationship of acceleration signals on the four cryostats, several typical motion modes of the HTS maglev vehicle, including lateral, yaw, pitch and heave motions were observed. This experimental finding is important for the next improvement of the HTS maglev system.

  12. Ultralow noise performance of an 8.4-GHz maser-feedhorn system

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Petty, S. M.; Kovatch, J. J.; Glass, G. W.

    1990-01-01

    A total system noise temperature of 6.6 K was demonstrated with an 8.4-GHz traveling wave maser and feedhorn operating in a cryogenic environment. Both the maser and feedhorn were inserted in the helium cryostat, with the maser operating in the 1.6-K liquid bath and the feedhorn cooled in the helium gas, with a temperature gradient along the horn ranging from the liquid bath temperature at its lower end to room temperature at its top. The ruby maser exhibited 43 dB of gain with a bandwidth of 76 MHz(-3 dB) centered at 8400 MHz. Discussions of the maser, cooled feedhorn, and cryostat designs are presented along with a discussion of the noise temperature measurements.

  13. Mechanical Design of the LSST Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordby, Martin; Bowden, Gordon; Foss, Mike

    2008-06-13

    The LSST camera is a tightly packaged, hermetically-sealed system that is cantilevered into the main beam of the LSST telescope. It is comprised of three refractive lenses, on-board storage for five large filters, a high-precision shutter, and a cryostat that houses the 3.2 giga-pixel CCD focal plane along with its support electronics. The physically large optics and focal plane demand large structural elements to support them, but the overall size of the camera and its components must be minimized to reduce impact on the image stability. Also, focal plane and optics motions must be minimized to reduce systematic errors inmore » image reconstruction. Design and analysis for the camera body and cryostat will be detailed.« less

  14. Use of cryostat sections from snap-frozen nervous tissue for combining stereological estimates with histological, cellular, or molecular analyses on adjacent sections.

    PubMed

    Schmitz, C; Dafotakis, M; Heinsen, H; Mugrauer, K; Niesel, A; Popken, G J; Stephan, M; Van de Berg, W D; von Hörsten, S; Korr, H

    2000-10-01

    Adequate tissue preparation is essential for both modern stereological and immunohistochemical investigations. However, combining these methodologies in a single study presents a number of obstacles pertaining to optimal histological preparation. Tissue shrinkage and loss of nuclei/nucleoli from the unprotected section surfaces of unembedded tissue used for immunohistochemistry may be problematic with regard to adequate stereological design. In this study, frozen cryostat sections from hippocampal and cerebellar regions of two rat strains and cerebellar and cerebral regions from a human brain were analyzed to determine the potential impact of these factors on estimates of neuron number obtained using the optical disector. Neuronal nuclei and nucleoli were clearly present in thin sections of snap-frozen rat (3 microm) and human (6 microm) tissue, indicating that neuronal nuclei/nucleoli are not unavoidably lost from unprotected section surfaces of unembedded tissue. In order to quantify the potential impact of any nuclear loss, optical fractionator estimates of rat hippocampal pyramidal cells in areas CA1-3 and cerebellar granule and Purkinje cells were made using minimal (1 microm) upper guard zones. Estimates did not differ from data reported previously in the literature. This data indicates that cryostat sections of snap-frozen nervous tissue may successfully be used for estimating total neuronal numbers using optical disectors.

  15. Operating single quantum emitters with a compact Stirling cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlehahn, A.; Krüger, L.; Gschrey, M.

    2015-01-15

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, wemore » perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g{sup (2)}(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g{sup (2)}(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.« less

  16. Development of cooling system for 66/6.9kV-20MVA REBCO superconducting transformers with Ne turbo-Brayton refrigerator and subcooled liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Iwakuma, M.; Adachi, K.; Yun, K.; Yoshida, K.; Sato, S.; Suzuki, Y.; Umeno, T.; Konno, M.; Hayashi, H.; Eguchi, T.; Izumi, T.; Shiohara, Y.

    2015-12-01

    We developed a turbo-Brayton refrigerator with Ne gas as a working fluid for a 3 ϕ- 66/6.9kV-2MVA superconducting transformer with coated conductors which was bath-cooled with subcooled LN2. The two-stage compressor and expansion turbine had non-contact magnetic bearings for a long maintenance interval. In the future, we intend to directly install a heat exchanger into the Glass-Fiber-Reinforced-Plastics cryostat of a transformer and make a heat exchange between the working fluid gas and subcooled LN2. In this paper we investigate the behaviour of subcooled LN2 in a test cryostat, in which heater coils were arranged side by side with a flat plate finned-tube heat exchanger. Here a He turbo-Brayton refrigerator was used as a substitute for a Ne turbo-Brayton one. The pressure at the surface of LN2 in the cryostat was one atmosphere. Just under the LN2 surface, a stationary layer of LN2 was created over the depth of 20 cm and temperature dropped from 77 K to 65 K with depth while, in the lower level than that, a natural convection flow of LN2 was formed and temperature was almost uniform over 1 m depth. The boundary plane between the stationary layer and the natural convection region was visible.

  17. Operating single quantum emitters with a compact Stirling cryocooler.

    PubMed

    Schlehahn, A; Krüger, L; Gschrey, M; Schulze, J-H; Rodt, S; Strittmatter, A; Heindel, T; Reitzenstein, S

    2015-01-01

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g((2))(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g((2))(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  18. Beam loss detection system in the arcs of the LHC

    NASA Astrophysics Data System (ADS)

    Arauzo, A.; Bovet, C.

    2000-11-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet.

  19. A variable conductance gas switch for intermediate temperature operation of liquid He/liquid N2 cryostats

    NASA Technical Reports Server (NTRS)

    Rayner, J. T.; Chuter, T. C.; Mclean, I. S.; Radostitz, J. V.; Nolt, I. G.

    1988-01-01

    A technique for establishing a stable intermediate temperature stage in liquid He/liquid N2 double vessel cryostats is described. The tertiary cold stage, which can be tuned to any temperature between 10 and 60 K, is ideal for cooling IR sensors for use in astronomy and physics applications. The device is called a variable-conductance gas switch. It is essentially a small chamber, located between the cold stage and liquid helium cold-face, whose thermal conductance may be controlled by varying the pressure of helium gas within the chamber. A key feature of this device is the large range of temperature control achieved with a very small (less than 10 mW) heat input from the cryogenic temperature control switch.

  20. Canister cryogenic system for cooling germanium semiconductor detectors in borehole and marine probes

    USGS Publications Warehouse

    Boynton, G.R.

    1975-01-01

    High resolution intrinsic and lithium-drifted germanium gamma-ray detectors operate at about 77-90 K. A cryostat for borehole and marine applications has been designed that makes use of prefrozen propane canisters. Uses of such canisters simplifies cryostat construction, and the rapid exchange of canisters greatly reduces the time required to restore the detector to full holding-time capability and enhances the safety of a field operation where high-intensity 252Cf or other isotopic sources are used. A holding time of 6 h at 86 K was achieved in the laboratory in a simulated borehole probe in which a canister 3.7 cm diameter by 57 cm long was used. Longer holding times can be achieved by larger volume canisters in marine probes. ?? 1975.

  1. Non-specific esterases in the gustatory epithelia of man and dog.

    PubMed

    Rakhawy, M T

    1976-01-01

    (1) Simple esterase activity has been demonstrated in the gustatory epithelium of man and dog by the simultaneous coupling azo dye technique using alpha-naphthol and naphthol As acetate. Unfixed cryostat and fixed paraffin sections were used. (2) A peculiar pattern of simple esterase activity was encountered in which--contrary to what was to be expected--the taste bud-carrying papillae showed a very poor reaction while there was a gradual increase in the enzyme intensity as the epithelium was traced away from these papillae. (3) It seems that among the reported differences between simple esterases and cholinesterases is this differential activity in relation to the gemmal system. (4) A peculiar difference in the enzyme activity was reported between the unfixed cryostat and the fixed paraffin sections in the human material.

  2. ngVLA Cryogenic Subsystem Concept

    NASA Astrophysics Data System (ADS)

    Wootten, Al; Urbain, Denis; Grammer, Wes; Durand, S.

    2018-01-01

    The VLA’s success over 35 years of operations stems in part from dramatically upgraded components over the years. The time has come to build a new array to lead the radio astronomical science into its next 40 years. To accomplish that, a next generation VLA (ngVLA) is envisioned to have 214 antennas with diameters of 18m. The core of the array will be centered at the current VLA location, but the arms will extend out to 1000km.The VLA cryogenic subsystem equipment and technology have remained virtually unchanged since the early 1980s. While adequate for a 27-antenna array, scaling the current system for an array of 214 antennas would be prohibitively expensive in terms of operating cost and maintenance. The overall goal is to limit operating cost to within three times the current level, despite having 8 times the number of antennas. To help realize this goal, broadband receivers and compact feeds will be utilized to reduce both the size and number of cryostats required. The current baseline front end concept calls for just two moderately-sized cryostats for the entire 1.2-116 GHz frequency range, as opposed to 8 in the VLA.For the ngVLA cryogenics, our objective is a well-optimized and efficient system that uses state-of-the-art technology to minimize per-antenna power consumption and maximize reliability. Application of modern technologies, such as variable-speed operation for the scroll compressors and cryocooler motor drives, allow the cooling capacity of the system to be dynamically matched to thermal loading in each cryostat. Significantly, power savings may be realized while the maintenance interval of the cryocoolers is also extended.Finally, a receiver designed to minimize thermal loading can produce savings directly translating to lower operating cost when variable-speed drives are used. Multi-layer insulation (MLI) on radiation shields and improved IR filters on feed windows can significantly reduce heat loading.Measurements done on existing cryogenic equipment show that the proposed baseline receiver concept with two cryostats, combined with variable-speed operation of the compressor and cryocoolers should allow the operating cost for ngVLA cryogenics to remain within a factor of two over the VLA.

  3. Freezing WISE Hydrogen

    NASA Image and Video Library

    2009-11-12

    A scaffolding structure built around NASA Wide-field Infrared Survey Explorer allows engineers to freeze its hydrogen coolant. The WISE infrared instrument is kept extremely cold by a bottle-like tank filled with frozen hydrogen, called the cryostat.

  4. Development of a Thermal Isolation Structure for Aerospace Cryogenic Instruments

    NASA Technical Reports Server (NTRS)

    Nash, A.; Robeck, L.

    1999-01-01

    A proof of concept prototype cryostat has been developed to demonstrate the ability to accommodate low temperature science investigations within the constraints of the Hitchhiker siderail carrier on the space shuttle.

  5. Development of an experimental system for characterization of high-temperature superconductors cooled by liquid hydrogen under the external magnetic field

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    2014-05-01

    An experimental system has been developed to investigate electro-magnetic properties of high-Tc superconductors cooled by liquid hydrogen under the external magnetic field of up to 7 T. A LH2 cryostat is concentrically mounted on the inside of a LHe cryostat to cool a NbTi superconducting magnet. The experimental system is installed in an explosion-proof room. Explosion proof electrical devices are used and current leads are covered with an enclosure filled with nitrogen gas. A remote control system has been developed. Furthermore, the effects of stray magnetic field on the existing and the new devices are investigated and electro-magnetic shielding panels and enclosure made of iron were designed. It is confirmed through the cryogenic test that the experimental system meets the design requirements.

  6. Numerical simulations on active shielding methods comparison and wrapped angle optimization for gradient coil design in MRI with enhanced shielding effect

    NASA Astrophysics Data System (ADS)

    Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng

    2018-05-01

    The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.

  7. Development of a 30-50 K dual-stage pulse tube space cooler

    NASA Astrophysics Data System (ADS)

    Leenders, H.; de Jonge, G.; Mullié, J.; Prouvé, T.; Charles, I.; Trollier, T.; Tanchon, J.

    2017-12-01

    There has been a trend towards increasing heat loads for cryogenically cooled Earth Observation instruments in recent years. This is the case at both the current operational temperature levels (∼50K), as well as at lower operational temperature levels (30-50 K). One solution to meet this trend is to use existing pulse tube technology in a double stage configuration. With such technology increased cooling power at a lower temperature can be achieved at the payload detector. Another advantage of such a system is the possibility to increase overall system efficiency by cooling an intermediate shield to avoid parasitic heat losses towards the detector. Therefore a consortium consisting of Thales Cryogenics B.V. (TCBV), Alternative Energies and Atomic Energy Commission (CEA) and Absolut System (AS) is working on the development of a space cryostat actively cooled by a 2-stage high reliability pulse tube cryocooler. This work is being performed in the frame of an European Space Agency (ESA) Technical Research Program (TRP) (refer 4000109933/14/NL/RA) with a target TRL of 6. This paper presents the design of the overall equipped cryostat and cryostat itself but is mainly focused on the 2-stage cryocooler. Design, manufacturing and test aspects of cryocooler and its the lower level components such as the compressor and cold finger are discussed in detail in this paper. The cryocooler test campaign is meanwhile in final stages of completion and the obtained test results are in line with program objectives.

  8. A Robot or a Science Instrument?

    NASA Image and Video Library

    2009-10-20

    Some say the science instrument on NASA Wide-field Infrared Survey Explorer mission resembles the Star Wars robot R2-D2. The instrument is enclosed in a solid-hydrogen cryostat, which cools the WISE telescope and detectors.

  9. Freezing Hydrogen

    NASA Image and Video Library

    2009-11-17

    An engineer loads hydrogen gas into the Wide-Field Infrared Survey Explorer in a clean room at the Vandenberg Air Force Base, Calif. The hydrogen is cooled and frozen inside a Thermos-like bottle, called the cryostat, which keeps the science instrument

  10. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  11. Technique for the metrology calibration of a Fourier transform spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Locke D.; Naylor, David A

    2008-11-10

    A method is presented for using a Fourier transform spectrometer (FTS) to calibrate the metrology of a second FTS. This technique is particularly useful when the second FTS is inside a cryostat or otherwise inaccessible.

  12. Present status and future prospects of the JT-60SA project

    NASA Astrophysics Data System (ADS)

    Ishida, S.; Barabaschi, P.; Kamada, Y.

    2014-10-01

    The JT-60SA project has been implemented jointly by Europe and Japan since June 2007. After the disassembly of JT-60 from the torus hall had been completed in October 2012, the project achieved the major milestone of starting the tokamak's assembly at the JAEA Naka site in January 2013 following the completion of the cryostat base in Europe and its transport to Japan. Procurement and assembly activities for components such as the superconducting magnet, cryogenic system, power supply, vacuum vessel, divertor and cryostat are progressing on track towards the start of operation in March 2019. In preparation for exploitation, the JT-60SA Research Plan was issued in December 2011, and the research integration activities are addressing JT-60SA data management, validation and analysis tools. This paper overviews the latest evolution of the project in terms of construction and exploitation for JT-60SA.

  13. Termination unit

    DOEpatents

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann

    2016-05-03

    Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.

  14. Liquid helium-free cryostat and hermetically sealed cryogenic microwave cavity for hyperfine spectroscopy of antiprotonic helium

    PubMed Central

    Massiczek, O.; Friedreich, S.; Juhász, B.; Widmann, E.; Zmeskal, J.

    2011-01-01

    The design and properties of a new cryogenic set-up for laser–microwave–laser hyperfine structure spectroscopy of antiprotonic helium – an experiment performed at the CERN-Antiproton Decelerator (AD), Geneva, Switzerland – are described. Similar experiments for 4He have been performed at the AD for several years. Due to the usage of a liquid helium operated cryostat and therefore necessary refilling of coolants, a loss of up to 10% beamtime occurred. The decision was made to change the cooling system to a closed-circuit cryocooler. New hermetically sealed target cells with minimised 3He gas volume and different dimensions of the microwave resonator for measuring the 3He transitions were needed. A new set-up has been designed and tested at Stefan Meyer Institute in Vienna before being used for the 2009 and 2010 beamtimes at the AD. PMID:22267883

  15. Damping in high-temperature superconducting levitation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The dampingmore » of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.« less

  16. Building and Testing a Superconductivity Measurement Platform for a Helium Cryostat

    NASA Astrophysics Data System (ADS)

    Rose, Heath; Ostrander, Joshua; Wu, Jim; Ramos, Roberto

    2013-03-01

    Superconductivity experiments using Josephson junctions are an excellent environment to study quantum mechanics and materials science. A standard electrical transport technique uses filtered four wire measurement of these superconducting devices. We report our experience as undergraduates in a liberal arts college in building and testing an experimental platform anchored on the cold-finger of a helium cryostat and designed for performing differential conductance measurements in Josephson junctions. To filter out RF, we design, build and test cryogenic filters using ceramic capacitors and inductors and thermocoax cables. We also use fixed attenuators for thermal anchoring and use miniature connectors to connect wires and coax to a sample box. We report on progress in our diagnostic measurements as well as low-temperature tunneling experiments to probe the structure of the energy gap in both single- and multi-gapped superconductors. We acknowledge the support of the National Science Foundation through NSF Grant DMR-1206561.

  17. Thermal Performance Testing of Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  18. IO:I, a near-infrared camera for the Liverpool Telescope

    NASA Astrophysics Data System (ADS)

    Barnsley, Robert M.; Jermak, Helen E.; Steele, Iain A.; Smith, Robert J.; Bates, Stuart D.; Mottram, Chris J.

    2016-01-01

    IO:I is a new instrument that has recently been commissioned for the Liverpool Telescope, extending current imaging capabilities beyond the optical and into the near-infrared. Cost has been minimized by the use of a previously decommissioned instrument's cryostat as the base for a prototype and retrofitting it with Teledyne's 1.7-μm cutoff Hawaii-2RG HgCdTe detector, SIDECAR ASIC controller, and JADE2 interface card. The mechanical, electronic, and cryogenic aspects of the cryostat retrofitting process will be reviewed together with a description of the software/hardware setup. This is followed by a discussion of the results derived from characterization tests, including measurements of read noise, conversion gain, full well depth, and linearity. The paper closes with a brief overview of the autonomous data reduction process and the presentation of results from photometric testing conducted on on-sky, pipeline processed data.

  19. Slow Monitoring Systems for CUORE

    NASA Astrophysics Data System (ADS)

    Dutta, Suryabrata; Cuore Collaboration

    2016-09-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale neutrinoless double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS). The experiment is comprised of 988 TeO2 bolometric crystals arranged into 19 towers and operated at a temperature of 10 mK. We have developed slow monitoring systems to monitor the cryostat during detector installation, commissioning, data taking, and other crucial phases of the experiment. Our systems use responsive LabVIEW virtual instruments and video streams of the cryostat. We built a website using the Angular, Bootstrap, and MongoDB frameworks to display this data in real-time. The website can also display archival data and send alarms. I will present how we constructed these slow monitoring systems to be robust, accurate, and secure, while maintaining reliable access for the entire collaboration from any platform in order to ensure efficient communications and fast diagnoses of all CUORE systems.

  20. Damping in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R [Sammamish, WA

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  1. Torus CLAS12-Superconducting Magnet Quench Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashikhin, V. S.; Elouadhiri, L.; Ghoshal, P. K.

    The JLAB Torus magnet system consists of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration. These coils are wound with SSC-36 Nb-Ti superconductor and have the peak magnetic field of 3.6 T. The first coil manufacturing based on the JLAB design began at FNAL. The large magnet system dimensions (8 m diameter and 14 MJ of stored energy) dictate the need for quench protection. Each coil is placed in an aluminum case mounted inside a cryostat and cooled by 4.6 K supercritical helium gas flowing through a copper tube attached to the coil ID. The large coil dimensionsmore » and small cryostat thickness drove the design to challenging technical solutions, suggesting that Lorentz forces due to transport currents and eddy currents during quench and various failure scenarios are analyzed. The paper covers the magnet system quench analysis using the OPERA3d Quench code.« less

  2. CANICA: The Cananea Near-Infrared Camera at the 2.1 m OAGH Telescope

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Hernández Utrera, O.; Vázquez, S.; Mayya, Y. D.; Carrasco, E.; Pedraza, J.; Castillo-Domínguez, E.; Escobedo, G.; Devaraj, R.; Luna, A.

    2017-10-01

    The Cananea near-infrared camera (CANICA) is an instrument commissioned at the 2.12 m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located in Cananea, Sonora, México. CANICA operates in the near-infrared at multiple bands including J(1.24 μm), H(1.63 μm) and K' (2.12 μm) broad-bands. CANICA in located at the Ritchey-Chrétien focal plane of the telescope, reimaging the f/12 beam into f/6 beam. The detector is a 1024 × 1024 HgCdTe HAWAII array of 18.5 μm pixel size, covering a field of view of 5.5 × 5.5 arcmin2, for a plate scale of 0.32 arcsec/pixel. The camera is enclosed in a cryostat, cooled with liquid nitrogen to 77 K. The cryostat contains the collimator, two 15-position filter wheels, single fixed reimaging optics and the detector.

  3. The Liquid Argon Purity Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamowski, M.; Carls, B.; Dvorak, E.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to themore » cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.« less

  4. Soft x-ray spectrometer (SXS): the high-resolution cryogenic spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Akamatsu, Hiroki; Bialas, Thomas; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng; Costantini, Elisa; den Herder, Jan-Willem; de Vries, Cor; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kimball, Mark; Kitamoto, Shunji; Konami, Saori; Leutenegger, Maurice A.; McCammon, Dan; Miko, Joseph; Mitsuishi, Ikuyuki; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Ota, Naomi; Paltani, Stéphane; Porter, F. Scott; Sato, Kosuke; Sato, Yoichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto S.; Terada, Yukikatsu; Tsujimoto, Masahiro; Yamada, Shinya; Yamasaki, Noriko Y.

    2014-07-01

    We present the development status of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H mission. The SXS provides the capability of high energy-resolution X-ray spectroscopy of a FWHM energy resolution of < 7eV in the energy range of 0.3 - 10 keV. It utilizes an X-ray micorcalorimeter array operated at 50 mK. The SXS microcalorimeter subsystem is being developed in an EM-FM approach. The EM SXS cryostat was developed and fully tested and, although the design was generally confirmed, several anomalies and problems were found. Among them is the interference of the detector with the micro-vibrations from the mechanical coolers, which is the most difficult one to solve. We have pursued three different countermeasures and two of them seem to be effective. So far we have obtained energy resolutions satisfying the requirement with the FM cryostat.

  5. Modeling of Non-Isothermal Cryogenic Fluid Sloshing

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Moder, Jeffrey P.

    2015-01-01

    A computational fluid dynamic model was used to simulate the thermal destratification in an upright self-pressurized cryostat approximately half-filled with liquid nitrogen and subjected to forced sinusoidal lateral shaking. A full three-dimensional computational grid was used to model the tank dynamics, fluid flow and thermodynamics using the ANSYS Fluent code. A non-inertial grid was used which required the addition of momentum and energy source terms to account for the inertial forces, energy transfer and wall reaction forces produced by the shaken tank. The kinetics-based Schrage mass transfer model provided the interfacial mass transfer due to evaporation and condensation at the sloshing interface. The dynamic behavior of the sloshing interface, its amplitude and transition to different wave modes, provided insight into the fluid process at the interface. The tank pressure evolution and temperature profiles compared relatively well with the shaken cryostat experimental test data provided by the Centre National D'Etudes Spatiales.

  6. Subcooled Liquid Oxygen Cryostat for Magneto-Archimedes Particle Separation by Density

    NASA Astrophysics Data System (ADS)

    Hilton, D. K.; Celik, D.; Van Sciver, S. W.

    2008-03-01

    An instrument for the separation of particles by density (sorting) is being developed that uses the magneto-archimedes effect in liquid oxygen. With liquid oxygen strongly paramagnetic, the magneto-archimedes effect is an extension of diamagnetic levitation in the sense of increasing the effective buoyancy of a particle. The instrument will be able to separate ensembles of particles from 100 μm to 100 nm in size, and vertically map or mechanically deliver the separated particles. The instrument requires a column of liquid oxygen that is nearly isothermal, free of thermal convection, subcooled to prevent nucleate boiling, and supported against the strong magnetic field used. Thus, the unique cryostat design that meets these requirements is described in the present article. It consists in part of a column of liquid nitrogen below for cooling the liquid oxygen, with the liquid oxygen pressurized by helium gas to prevent nucleate boiling.

  7. Two-dimensional over-all neutronics analysis of the ITER device

    NASA Astrophysics Data System (ADS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi

    1993-07-01

    The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.

  8. Thin-thick hydrogen target for nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gheller, J.-M.; Juster, F.-P.; Authelet, G.

    In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a widthmore » of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.« less

  9. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat.

    PubMed

    Hackley, Jason D; Kislitsyn, Dmitry A; Beaman, Daniel K; Ulrich, Stefan; Nazin, George V

    2014-10-01

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  10. Interview of Professor Lucio Rossi about the First Beam

    ScienceCinema

    None

    2017-12-09

    Lucio Rossi: Head of the Magnets, Cryostats and Superconductors Group, CERN Questions asked : 1. What does it take to start up the LHC machine? 2. What's the plan for 1st injection day? 3. How do you feel about this?

  11. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    NASA Astrophysics Data System (ADS)

    Zong, Zhanguo; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-01

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption.

  12. Temperature influence on diode pumped Yb:GGAG laser

    NASA Astrophysics Data System (ADS)

    Veselský, Karel; Boháček, Pavel; Šulc, Jan; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin

    2017-05-01

    We present temperature influence (in range from 78 up to 400,K) on spectroscopic properties and laser performance of new Yb-doped mixed garnet Gd3GaxAl5-xO12 (Yb:GGAG). The sample was 2.68 mm thick plane-parallel face-polished Yb:GGAG single-crystal plate which was AR coated for pump (930 nm) and generated (1030 nm) laser radiation wavelength. The composition of sample was Gd3.098Yb0:0897Ga2:41Al2.41O12 (3 at % Yb/Gd). The Yb:GGAG crystal was mounted in temperature controlled copper holder of the liquid nitrogen cryostat. The 138 mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (T > 90 % @ 930 nm, HR @ 1030 nm) placed inside cryostat, and a curved output coupler (r = 150 mm, R = 94.5 % @ 1030 nm) placed outside cryostat. For longitudinal pumping a fiber coupled laser diode was used. The diode was operating in the pulse regime (5 ms pulse length, 20 Hz repetition rate) at wavelength 928.5 nm. The absorption spectrum was measured for the temperatures from 78 to 400 K, and absorption lines narrowing was observed with temperature decrease. Zero-phonon line at 970 nm has width 1 nm (FWHM) at 100 K. The fluorescence intensity decay time was measured and it increased linearly with temperature from 864 μs @ 78 K to 881 μs @ 300 K. The temperature of active medium has strong influence mainly on laser threshold which was 5 times lower at 100 K than at 300 K, and on slope efficiency which was 3 times higher at 100 K than at 300 K.

  13. Sample Holder for Cryogenic Adhesive Shear Test

    NASA Technical Reports Server (NTRS)

    Ledbetter, F. E.; Clemons, J. M.; White, W. T.; Penn, B.; Semmel, M. L.

    1983-01-01

    Five samples tested in one cooldown. Holder mounted in testing machine. Submerged in cryogenic liquid held in cryostat. Movable crosshead of testing machine moves gradually downward. Samples placed under tension, one after another, starting with top one; each sample fails in turn before next is stressed.

  14. Cryogenics - Its influence on the selection of the ASTROMAG superconducting magnet coils

    NASA Technical Reports Server (NTRS)

    Green, M. A.

    1990-01-01

    ASTROMAG, a particle astrophysics experimental facility proposed for running alongside a Space Station, has a large superconducting magnet to analyze particles coming from deep space. Several types of magnets were investigated for use in the ASTROMAG central facility. The factors which influence the selection of the magnet coil design include: (1) the upper limit of particle momentum resolved (proportional to the integrated field) as a function of solid angle; (2)cryogenic design and its effect on cryogen lifetime for a given central facility mass; and (3) the overall cost of the magnet coils and cryostat. Four magnet types are analyzed in this paper. These include a simple two-coil solenoid (the baseline design),two disk coils at the ends of the helium tank, a two-coil toroid and a thin solenoid plus bucking coil. A balance must be struck between cryostat lifetime, total mass and the integrated field through the detectors. This balance tends to favor coils which are in the same vacuum vessel as the cryogen.

  15. Large Angle Optical Access in a Sub-Kelvin Cryostat

    NASA Astrophysics Data System (ADS)

    Hähnle, S.; Bueno, J.; Huiting, R.; Yates, S. J. C.; Baselmans, J. J. A.

    2018-05-01

    The development of lens-antenna-coupled aluminum-based microwave kinetic inductance detectors (MKIDs) and on-chip spectrometers needs a dedicated cryogenic setup to measure the beam patterns of the lens-antenna system over a large angular throughput and broad frequency range. This requires a careful design since the MKID has to be cooled to temperatures below 300 mK to operate effectively. We developed such a cryostat with a large opening angle θ = ± 37.8° and an optical access with a low-pass edge at 950 GHz . The system is based upon a commercial pulse tube cooled 3 K system with a ^4He -^3He sorption cooler to allow base temperatures below 300 mK . A careful study of the spectral and geometric throughput was performed to minimize thermal loading on the cold stage, allowing a base temperature of 265 mK . Radio-transparent multi-layer-insulation was employed as a recent development in filter technology to efficiently block near-infrared radiation.

  16. Thermal architecture for the SPIDER flight cryostat

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. E.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bonetti, J. A.; Bryan, S. A.; Burger, B.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Doré, O.; Farhang, M.; Filippini, J.; Fissel, L. M.; Gandilo, N. N.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Montroy, T. E.; Morford, T. A.; Netterfield, C. B.; O'Dea, D. T.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Schenker, M. A.; Shariff, J. A.; Soler, J. D.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.

    2010-07-01

    We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle 3He adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.

  17. Low cost cryostat

    NASA Technical Reports Server (NTRS)

    Stephens, J. B. (Inventor)

    1980-01-01

    A cryostat for use in a low or a substantially gravity-free environment adapted to cool an experiment through the use of helium 2, or helium in its super fluid state is characterized by a number of interchangeable daughter dewars and helium supply or mother dewar. A low pressure venting system is provided for converting helium contained in the mother dewar to a superfluid state for use as a primary cryogen. Each daughter dewar is adapted to be removably mounted in mated relation on the mother dewar and is characterized by support for an experiment package, a source of helium to be employed as a secondary cryogen. A heat pipe is suspended from each daughter dewar and adapted to be extended into the mother dewar for facilitating cooling of the secondary cryogen. A transfer of heat from the package to the primary cryogen, via the secondary cryogen, is accommodated as a film flow of helium 2 progresses from the heat pipe to the experiment dewar.

  18. Development status of a 125 horsepower superconducting motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, R.F.; Zhang, B.X.; Driscoll, D.I.

    1997-06-01

    The current development status of an air core synchronous motor with high-temperature superconducting field coils is presented. The work described is part of a U.S. DoE Superconductivity Partnership Initiative award. The motor design features a topology with a combination of a modified conventional armature and a rotating four-pole superconducting field winding operating at a nominal temperature of 27 K. For testing purposes, an open-loop cryogenic system is adopted to supply helium gas to the rotor cryostat for maintaining the operating temperature of the superconducting field winding. The exhaust helium gas intercepts heat leak into the rotor cryostat before being vented.more » The motor is expected to deliver 125 horsepower (hp) at 1,800 rpm. Successful demonstration of the 125 hp motor will represent a major milestone in the process of developing commercial superconducting motors with integrated closed-loop cryogenic systems. Design objectives and results as well as current project status are discussed.« less

  19. A liquid-He cryostat for structural and thermal disorder studies by X-ray absorption.

    PubMed

    Bouamrane, F; Ribbens, M; Fonda, E; Adjouri, C; Traverse, A

    2003-07-01

    A new device operating from 4.2 to 300 K is now installed on the hard X-ray station of the DCI ring in LURE in order to measure absorption coefficients. This liquid-He bath device has three optical windows. One allows the incident beam to impinge on the sample, one located at 180 degrees with respect to the sample allows transmitted beams to be detected, and another located at 90 degrees is used to detect emitted photons. Total electron yield detection mode is also possible thanks to a specific sample holder equipped with an electrode that collects the charges created by the emitted electrons in the He gas brought from the He bath around the sample. The performance of the cryostat is described by measurements of the absorption coefficients versus the temperature for Cu and Co foils. For comparison, the absorption coefficient is also measured for Cu clusters. As expected from dimension effects, the Debye temperature obtained for the clusters is lower than that of bulk Cu.

  20. Scalability study of solid xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  1. Microgravity

    NASA Image and Video Library

    1996-01-01

    Ted Brunzie and Peter Mason observe the float package and the data rack aboard the DC-9 reduced gravity aircraft. The float package contains a cryostat, a video camera, a pump and accelerometers. The data rack displays and record the video signal from the float package on tape and stores acceleration and temperature measurements on disk.

  2. Solid state crystal physics at very low temperatures

    NASA Technical Reports Server (NTRS)

    Davis, W.; Krack, K.; Richard, J. P.; Weber, J.

    1980-01-01

    The properties of nearly perfect crystals was studied at cryogenic temperatures. A large Helium 3 and Helium 4 dilution refrigerator has been assembled, and is described. A cryostat suitable for cooling a 35 liter volume to .020 Kelvin was designed and constructed, together with instrumentation to observe the properties of nearly perfect crystals.

  3. Longitudinal gradient coil optimization in the presence of transient eddy currents.

    PubMed

    Trakic, A; Liu, F; Lopez, H Sanchez; Wang, H; Crozier, S

    2007-06-01

    The switching of magnetic field gradient coils in magnetic resonance imaging (MRI) inevitably induces transient eddy currents in conducting system components, such as the cryostat vessel. These secondary currents degrade the spatial and temporal performance of the gradient coils, and compensation methods are commonly employed to correct for these distortions. This theoretical study shows that by incorporating the eddy currents into the coil optimization process, it is possible to modify a gradient coil design so that the fields created by the coil and the eddy currents combine together to generate a spatially homogeneous gradient that follows the input pulse. Shielded and unshielded longitudinal gradient coils are used to exemplify this novel approach. To assist in the evaluation of transient eddy currents induced within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using the total-field scattered-field (TFSF) scheme was performed. The simulations demonstrate the effectiveness of the proposed method for optimizing longitudinal gradient fields while taking into account the spatial and temporal behavior of the eddy currents.

  4. Step-by-step design of a single phase 3.3 kV/200 a resistive type superconducting fault current limiter (R-SFCL) and cryostat

    NASA Astrophysics Data System (ADS)

    Kar, Soumen; Rao, V. V.

    2018-07-01

    In our first attempt to design a single phase R-SFCL in India, we have chosen the typical rating of a medium voltage level (3.3 kVrms, 200 Arms, 1Φ) R-SFCL. The step-by-step design procedure for the R-SFCL involves conductor selection, time dependent electro-thermal simulations and recovery time optimization after fault removal. In the numerical analysis, effective fault limitation for a fault current of 5 kA for the medium voltage level R-SFCL are simulated. Maximum normal state resistance and maximum temperature rise in the SFCL coil during current limitation are estimated using one-dimensional energy balance equation. Further, a cryogenic system is conceptually designed for aforesaid MV level R-SFCL by considering inner and outer vessel materials, wall-thickness and thermal insulation which can be used for R-SFCL system. Finally, the total thermal load is calculated for the designed R-SFCL cryostat to select a suitable cryo-refrigerator for LN2 re-condensation.

  5. A flying superconducting magnet and cryostat for magnetic suspension of wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Britcher, C.; Goodyer, M. J.; Scurlock, R. G.; Wu, Y. Y.

    1984-01-01

    The engineering practicality of a persistent high-field superconducting solenoid cryostat as a magnetic suspension and balance system (MSBS) for wind-tunnel testing of aircraft and missile models is examined. The test apparatus is a simple solenoid of filamentary NbTi superconductor with a cupronickel matrix. The apparatus, with a length-to-diameter ratio of 6 to 1 and a radius of 32 mm, used a 0.25 mm wire with a critical current of 27 A in an external field of 6 T. The total heat inleak of 150 mW was achieved. Helium boiloff rates were tested over a range of operating conditions, including pitch attitudes from 10 deg nose down to 90 deg nose up; the rate was estimated as low, but the aerodynamic acceptability of venting gaseous helium has not been determined. It is shown that the effectiveness of the concept increases with increasing scale, and performance in excess of that of conventional ferromagnets is achievable with reduction in size and costs, and with aptness to transonic wind-tunnel testing. Detailed specifications and schematics are included.

  6. Three stage vacuum system for ultralow temperature installation

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.

  7. UHV LT-STM system with Sample and Tip Exchange

    NASA Astrophysics Data System (ADS)

    Dreyer, Michael; Lee, Jonghee; Wang, Hui; Sullivan, Dan; Barker, Barry

    2006-03-01

    We developed and built a low temperature scanning tunneling microscope system with ultra high vacuum sample and tip preparation capabilities. The STM is mounted inside an UHV can which is submerged in a He bath cryostat. The cryostat is equipped with two superconducting magnets allowing a maximum in plane field of 2 T and a maximum out of plane field of 9 T. The two fields can be combined to a 1 T vector field. The vacuum can is connected to an UHV system at room temperature consisting of two chambers: One dedicated to transferring samples and tips to the STM, and the other chamber used for tip/sample preparation. It is equipped with two electron beam evaporators, an argon ion sputter gun as well as sample heaters. The whole system is supported by an optical table to decouple the STM from building vibrations. The system was successfully used to study standing electron waves on gold (111) as well as vortices on NbSe2. Details of the microscope, sample and tip handling system, as well as the UHV system will be presented.

  8. 35t Prototype Detector for Experiment at Long Base Line Neutrino Facility (ELBNF) Far Detector

    NASA Astrophysics Data System (ADS)

    Santucci, Gabriel; Elbnf Collaboration

    2015-04-01

    The 35ton prototype detector is a Liquid Argon Time Projection Chamber (LAr TPC) utilizing a membrane cryostat. It serves as a prototype for testing technology proposed for the ELBNF far detector. The construction of the prototype is an essential part of the ELBNF project due to the large amount of new technologies introduced for the far detector. In early 2014, it was shown that the membrane cryostat technology was able to reach and maintain the required LAr purity and an electron lifetime of 2.5 ms was achieved. The goals for the next phase include the installation of a fully functional TPC using the novel designs for the ELBNF far detector as much as possible. This includes the installation of the cold electronics, scintillation photon detectors and multiple Anode Plane Arrays with wrapped wires. In this talk I will review the status of the 35t prototype detector and describe what has been accomplished during 2014 and early 2015, including the commissioning phase and the early stages of data taking from cosmic-rays.

  9. Compact low temperature scanning tunneling microscope with in-situ sample preparation capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungdae; Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749; Nam, Hyoungdo

    2015-09-15

    We report on the design of a compact low temperature scanning tunneling microscope (STM) having in-situ sample preparation capability. The in-situ sample preparation chamber was designed to be compact allowing quick transfer of samples to the STM stage, which is ideal for preparing temperature sensitive samples such as ultra-thin metal films on semiconductor substrates. Conventional spring suspensions on the STM head often cause mechanical issues. To address this problem, we developed a simple vibration damper consisting of welded metal bellows and rubber pads. In addition, we developed a novel technique to ensure an ultra-high-vacuum (UHV) seal between the copper andmore » stainless steel, which provides excellent reliability for cryostats operating in UHV. The performance of the STM was tested from 2 K to 77 K by using epitaxial thin Pb films on Si. Very high mechanical stability was achieved with clear atomic resolution even when using cryostats operating at 77 K. At 2 K, a clean superconducting gap was observed, and the spectrum was easily fit using the BCS density of states with negligible broadening.« less

  10. Remote refilling of LN2 cryostats for high sensitivity astronomical applications

    NASA Astrophysics Data System (ADS)

    l'Allemand, J. L. Lizon a.

    2017-12-01

    The most sensitive observation mode of the ESO VLT (European Southern Observatory Very Large Telescope) is the interferometric mode, where the 4 Units Telescopes are directed to the same stellar object in order to operate as a gigantic interferometer. The beam is then re-combined in the main interferometry laboratory and fed into the analyzing instruments. In order not to disturb the performance of the Interferometer, this room is considered as a sanctuary where one enters only in case of extreme need. A simple opening of the door would create air turbulences affecting the stability for hours. Any cold spot in the room could also cause convection which might change the optical path by fraction of a micron. Most of the instruments are operating at cryogenic temperatures using passive cooling based on LN2 bath cryostat. For this reason, dedicated strategy has been developed for the transfer of LN2 to the various instruments. The present document describes the various aspects and care taken in order to guarantee the very high thermal and mechanical environmental stability.

  11. Compact low temperature scanning tunneling microscope with in-situ sample preparation capability.

    PubMed

    Kim, Jungdae; Nam, Hyoungdo; Qin, Shengyong; Kim, Sang-ui; Schroeder, Allan; Eom, Daejin; Shih, Chih-Kang

    2015-09-01

    We report on the design of a compact low temperature scanning tunneling microscope (STM) having in-situ sample preparation capability. The in-situ sample preparation chamber was designed to be compact allowing quick transfer of samples to the STM stage, which is ideal for preparing temperature sensitive samples such as ultra-thin metal films on semiconductor substrates. Conventional spring suspensions on the STM head often cause mechanical issues. To address this problem, we developed a simple vibration damper consisting of welded metal bellows and rubber pads. In addition, we developed a novel technique to ensure an ultra-high-vacuum (UHV) seal between the copper and stainless steel, which provides excellent reliability for cryostats operating in UHV. The performance of the STM was tested from 2 K to 77 K by using epitaxial thin Pb films on Si. Very high mechanical stability was achieved with clear atomic resolution even when using cryostats operating at 77 K. At 2 K, a clean superconducting gap was observed, and the spectrum was easily fit using the BCS density of states with negligible broadening.

  12. Mechanical Design of the LHC Standard Half-Cell

    NASA Astrophysics Data System (ADS)

    Poncet, A.; Brunet, J. C.; Cruikshank, P.; Genet, M.; Parma, V.; Rohmig, P.; Saban, R.; Tavian, L.; Veness, R.; Vlogaert, J.; Williams, L. R.

    1997-05-01

    The LHC Conceptual Design Report issued on 20th October 1995 (CERN/AC/95-05 (LHC) - nicknamed "Yellow Book") introduced significant changes to some fundamental features of the LHC standard half-cell, composed of one quadrupole, 3 dipoles and a set of corrector magnets. A separate cryogenic distribution line was introduced, which was previously inside the main cryostat. The dipole length has been increased from 10 to 15 m and independent powering of the focusing and defocusing quadrupole magnets was chosen. Individual quench protection diodes were introduced in magnets interconnects and many auxiliary bus bars were added to feed in series the various families of correcting superconducting magnets. The various highly intricate basic systems such as: cryostats and cryogenics feeders, superconducting magnets and their electrical feeding and protection, vacuum beam screen and its cooling, support and alignment devices have been redesigned, taking into account the very tight space available. These space constraints are given by the necessity to have maximum integral bending field strength for maximum LHC energy, and the existing LHC tunnel. Finally, cryogenic and vacuum sectorisation have been introduced to reduce downtimes and facilitate commissioning.

  13. Cryogenic Insulation Standard Data and Methodologies Project

    NASA Technical Reports Server (NTRS)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system for applications at sub-ambient to cryogenic temperatures. A growing need for energy efficiency and cryogenic applications is creating a worldwide demand for improved thermal insulation systems for low temperatures. The need for thermal characterization of these systems and materials raises a corresponding need for insulation test standards and thermal data targeted for cryogenic-vacuum applications. Such standards have a strong correlation to energy, transportation, and environment and the advancement of new materials technologies in these areas. In conjunction with this project, two new standards on cryogenic insulation were recently published by ASTM International: C1774 and C740. Following the requirements of NPR 7120.10, Technical Standards for NASA Programs and Projects, the appropriate information in this report can be provided to the NASA Chief Engineer as input for NASA's annual report to NIST, as required by OMB Circular No. A-119, describing NASA's use of voluntary consensus standards and participation in the development of voluntary consensus standards and bodies.

  14. New results of GridPix TPCs

    NASA Astrophysics Data System (ADS)

    van der Graaf, Harry

    2009-07-01

    The Gossip detector, being a GridPix TPC equipped with a thin layer of gas, is a promising alternative for Si tracking detectors. In addition, GridPix would be an interesting way to read out the gaseous phase volume of bi-phase Liquid Xe cryostats of v-less double beta decay and rare event (i.e. WIMP) search experiments.

  15. History of Space-Based Infrared Astronomy and the Air Force Infrared Celestial Backgrounds Program

    DTIC Science & Technology

    2008-04-18

    catastrophic cryostat failure that, as Tom Murdock (27 July 1999 e-mail) noted “…split the vent tube plumbing through the heat exchanger like a banana ... peel from end-to-end along the soldered seam of the two quasi- semi circle pieces” and almost terminated the program. Schick and Bell (1997) attributed

  16. Solid State Compressor

    DTIC Science & Technology

    1984-01-20

    Air Products and Chemicals , Inc . CONTRACT NO.: N00014-83-C-0394...performed by Air Products and Chemicals , Inc . 2.0 TASK 2. MECHANICAL SIMULATOR: SUBTASK 2.1, ONE CELL SIMULATOR 2.1 Purpose The overall goal of this...refrigerant 12 (Freon 12) • 4.5 Test final system, ten cell compressor, and cryostat APCI ., ’ APCI - Air Products and Chemicals , Inc . CPI -

  17. Float Package and the Data Rack aboard the DC-9

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Ted Brunzie and Peter Mason observe the float package and the data rack aboard the DC-9 reduced gravity aircraft. The float package contains a cryostat, a video camera, a pump and accelerometers. The data rack displays and record the video signal from the float package on tape and stores acceleration and temperature measurements on disk.

  18. HiFi-MBQC High Fidelitiy Measurement-Based Quantum Computing using Superconducting Detectors

    DTIC Science & Technology

    2016-04-04

    superconducting nanowire single photon detectors (SNSPDs) which allowed support of quantum photonics experiments leading to 14 peer-reviewed...sampling, and several other areas. 15. SUBJECT TERMS EOARD, photonics, cryostat, superconducting nanowire , SNSPD 16. SECURITY CLASSIFICATION OF: 17...quantum simulations. The main budget contribution was dedicated to develop superconducting nanowire detectors with efficiencies above 93% at telecom

  19. Midcourse Space Experiment (MSX)

    DTIC Science & Technology

    1992-08-01

    Facility (PCF), on South Base. The PPF houses the MSX spacecraft for the prelaunch operations (installation of payload fairing, battery charging , etc...include: unpacking the spacecraft from its shipping container; charging the onboard nickel-hydrogen batteries ; filling the cryostat with solid...activities, and will remain in orbit for several hundred years. The MSX spacecraft is solar powered with a battery backup. The battery is capable of

  20. Impact of remanent magnetic field on the heat load of original CEBAF cryomodule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciovati, Gianluigi; Cheng, Guangfeng; Drury, Michael

    The heat load of the original cryomodules for the CEBAF accelerator is ~50% higher than the target value of 100 W at 2.07 K for refurbished cavities operating at an accelerating gradient of 12.5 MV/m. This issue is due to the quality factor of the cavities being ~50% lower in the cryomodule than when tested in a vertical cryostat, even at low RF field. Previous studies were not conclusive about the origin of the additional losses. We present the results of a systematic study of the additional losses in a five-cell cavity from a decommissioned cryomodule after attaching components, whichmore » are part of the cryomodule, such as the cold tuner, the He tank and the cold magnetic shield, prior to cryogenic testing in a vertical cryostat. Flux-gate magnetometers and temperature sensors are used as diagnostic elements. Different cool-down procedures and tests in different residual magnetic fields were investigated during the study. Here, three flux-gate magnetometers attached to one of the cavities installed in the refurbished cryomodule C50-12 confirmed the hypothesis of high residual magnetic field as a major cause for the increased RF losses.« less

  1. Impact of remanent magnetic field on the heat load of original CEBAF cryomodule

    DOE PAGES

    Ciovati, Gianluigi; Cheng, Guangfeng; Drury, Michael; ...

    2016-11-22

    The heat load of the original cryomodules for the CEBAF accelerator is ~50% higher than the target value of 100 W at 2.07 K for refurbished cavities operating at an accelerating gradient of 12.5 MV/m. This issue is due to the quality factor of the cavities being ~50% lower in the cryomodule than when tested in a vertical cryostat, even at low RF field. Previous studies were not conclusive about the origin of the additional losses. We present the results of a systematic study of the additional losses in a five-cell cavity from a decommissioned cryomodule after attaching components, whichmore » are part of the cryomodule, such as the cold tuner, the He tank and the cold magnetic shield, prior to cryogenic testing in a vertical cryostat. Flux-gate magnetometers and temperature sensors are used as diagnostic elements. Different cool-down procedures and tests in different residual magnetic fields were investigated during the study. Here, three flux-gate magnetometers attached to one of the cavities installed in the refurbished cryomodule C50-12 confirmed the hypothesis of high residual magnetic field as a major cause for the increased RF losses.« less

  2. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  3. Development of the Los Alamos National Laboratory Cryogenic Pressure Loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebey, Peter S.; Dole, James M.; Hoffer, James K.

    2003-05-15

    Targets for inertial fusion research and ignition at OMEGA, the National Ignition Facility, LMJ, and future facilities rely on beta-radiation-driven layering of spherical cryogenic DT ice layers contained within plastic or metal shells. Plastic shells will be permeation filled at room temperature then cooled to cryogenic temperatures before removal of the overpressure. The cryogenic pressure loader (CPL) was recently developed at Los Alamos National Laboratory as a testbed for studying the filling and layering of plastic target shells with DT. A technical description of the CPL is provided. The CPL consists of a cryostat, which contains a high-pressure permeation cell,more » and has optical access for investigating beta layering. The cryostat is housed within a tritium glovebox that contains manifolds for supplying high-pressure DT. The CPL shares some design elements with the cryogenic target handling system at the OMEGA facility to allow testing of tritium issues related to that system. The CPL has the capability to fill plastic targets by permeation to pressures up to 100 MPa and to cool them to 15 K. The CPL will accommodate a range of targets and may be modified for future experiments.« less

  4. Preliminary thermal architecture of the X-IFU instrument dewar

    NASA Astrophysics Data System (ADS)

    Charles, Ivan; Daniel, Christophe; André, Jérome; Duband, Lionel; Duval, Jean-Marc; den Hartog, Roland; Mitsuda, Kazuhisa; Shinozaki, Keisuke; van Weers, Henk; Yamasaki, Noriko Y.

    2016-07-01

    The ESA Athena mission will implement 2 instruments to study the hot and energetic universe. The X-ray Integral Field Unit (X-IFU) will provide spatially resolved high resolution spectroscopy. This high energy resolution of 2.5 eV at 7 keV could be achieved thanks to TES (Transition Edge Sensor) detectors that need to be cooled to very low temperature. To obtain the required 50 mK temperature level, a careful design of the cryostat and of the cooling chain including different technologies in cascade is needed. The preliminary cryogenic architecture of the X-IFU instrument that fulfils the TES detector thermal requirements is described. In particular, the thermal design of the detector focal plane assembly (FPA), that uses three temperature stages (from 2 K to 50 mK) to limit the thermal loads on the lowest temperature stage, is described. The baseline cooling chain is based on European and Japanese mechanical coolers (Stirling, Pulse tube and Joule Thomson coolers) that precool a sub Kelvin cooler made of a 3He sorption cooler coupled with a small ADR (Adiabatic Demagnetization Refrigerator). Preliminary thermal budgets of the X-IFU cryostat are presented and discussed regarding cooling chain performances.

  5. Enabling Exploration of Deep Space: High Density Storage of Antimatter

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.; Kramer, Kevin J.

    1999-01-01

    Portable electromagnetic antiproton traps are now in a state of realization. This allows facilities like NASA Marshall Space Flight Center to conduct antimatter research remote to production sites. MSFC is currently developing a trap to store 10(exp 12) antiprotons for a twenty-day half-life period to be used in future experiments including antimatter plasma guns, antimatter-initiated microfusion, and the synthesis of antihydrogen for space propulsion applications. In 1998, issues including design, safety and transportation were considered for the MSFC High Performance Antimatter Trap (HiPAT). Radial diffusion and annihilation losses of antiprotons prompted the use of a 4 Tesla superconducting magnet and a 20 KV electrostatic potential at 10(exp -12) Torr pressure. Cryogenic fluids used to maintain a trap temperature of 4K were sized accordingly to provide twenty days of stand-alone storage time (half-life). Procurement of the superconducting magnet with associated cryostat has been completed. The inner, ultra-high vacuum system with electrode structures has been fabricated, tested and delivered to MSFC along with the magnet and cryostat. Assembly of these systems is currently in progress. Testing under high vacuum conditions, using electrons and hydrogen ions will follow in the months ahead.

  6. Aspects technologiques d'un alternateur synchrone entièrement supraconducteur de 18 kVA

    NASA Astrophysics Data System (ADS)

    Védrine, P.; Brunet, Y.; Tixador, P.; Bonnet, P.; Laumond, Y.; Sabrié, J. L.

    1991-02-01

    Taking advantage of the recent development of low loss a.c. superconducting conductors, the realization of a fully superconducting generator is now possible. In collaboration with GEC-ALSTHOM we have first, in the CRTBT-LEG lab, defined the main characteristics of the machine and the technological problems induced by the use of superconducting wires both at the armature and the field windings. We have now constructed the first fully superconducting generator with separated cryostats, for the stator and rotor windings. Le faible niveau de pertes en régime alternatif obtenu dans des brins multifilamentaires NbTi produits par GEC-ALSTHOM, a permis à partir de 1984 d'envisager la réalisation d'un alternateur synchrone dont les deux enroulements, inducteur et induit, seraient supraconducteurs. Le travail entrepris au CRTBT-LEG en collaboration avec GEC-ALSTHOM a eu pour objectif de définir les caractéristiques de la machine, d'identifier puis de résoudre les problèmes technologiques liés aux conditions d'utilisation de ces supraconducteurs, afin de réaliser maintenant, le premier alternateur entièrement supraconducteur à axe horizontal avec des cryostats statorique et rotorique séparés.

  7. Dead zone analysis of ECAL barrel modules under static and dynamic load

    NASA Astrophysics Data System (ADS)

    Pierre-Emile, T.; Anduze, M.

    2018-03-01

    In the context of ILD project, impact studies of environmental loads on the Electromagnetic CALorimeter (ECAL) have been initiated. The ECAL part considered is the barrel and it consists of several independent modules which are mounted on the Hadronic CALorimeter barrel (HCAL) itself mounted on the cryostat coil and the yoke. The estimate of the gap required between each ECAL modules is fundamental to define the assembly step and avoid mechanical contacts over the barrel lifetime. In the meantime, it has to be done in consideration to the dead spaces reduction and detector hermiticity optimization. Several Finite Element Analysis (FEA) with static and dynamic loads have been performed in order to define correctly the minimum values for those gaps. Due to the implantation site of the whole project in Japan, seismic analysis were carried out in addition to the static ones. This article shows results of these analysis done with the Finite Element Method (FEM) in ANSYS. First results show the impact of HCAL design on the ECAL modules motion in static load. The second study dedicated to seismic approach on a larger model (including yoke and cryostat) gives additional results on earthquake consequences.

  8. A cryostat device for liquid nitrogen convection experiments

    NASA Astrophysics Data System (ADS)

    Dubois, Charles; Duchesne, Alexis; Caps, Herve

    2015-11-01

    When a horizontal layer of expansible fluid heated from below is submitted to a large vertical temperature gradient, one can observe convective cells. This phenomenon is the so-called Rayleigh-Bénard instability. In the literature, this instability is mainly studied when the entire bottom surface of a container heats the liquid. Under these conditions, the development of regularly spaced convective cells in the liquid bulk is observed. Cooling applications led us to consider this instability in a different geometry, namely a resistor immersed in a bath of cold liquid. We present here experiments conducted with liquid nitrogen. For this purpose, we developed a cryostat in order to be able to perform Particle Image Velocimetry. We obtained 2D maps of the flow and observed, as expected, two Rayleigh-Bénard convective cells around the heater. We particularly investigated the vertical velocity in the central column between the two cells. We compared these data to results we obtained with silicone oil and water in the same geometry. We derived theoretical law from classical models applied to the proposed geometry and found a good agreement with our experimental data. This project has been financially supported by ARC SuperCool contract of the University of Liege.

  9. Simulation and analysis of the interactions between split gradient coils and a split magnet cryostat in an MRI-PET system.

    PubMed

    Liu, Limei; Sanchez-Lopez, Hector; Poole, Michael; Liu, Feng; Crozier, Stuart

    2012-09-01

    Splitting a magnetic resonance imaging (MRI) magnet into two halves can provide a central region to accommodate other modalities, such as positron emission tomography (PET). This approach, however, produces challenges in the design of the gradient coils in terms of gradient performance and fabrication. In this paper, the impact of a central gap in a split MRI system was theoretically studied by analysing the performance of split, actively-shielded transverse gradient coils. In addition, the effects of the eddy currents induced in the cryostat on power loss, mechanical vibration and magnetic field harmonics were also investigated. It was found, as expected, that the gradient performance tended to decrease as the central gap increased. Furthermore, the effects of the eddy currents were heightened as a consequence of splitting the gradient assembly into two halves. An optimal central gap size was found, such that the split gradient coils designed with this central gap size could produce an engineering solution with an acceptable trade-off between gradient performance and eddy current effects. These investigations provide useful information on the inherent trade-offs in hybrid MRI imaging systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Cryogen-free cryostat for large-scale arrays of superconducting tunnel junction ion detectors in time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kushino, A.; Ohkubo, M.; Chen, Y. E.; Ukibe, M.; Kasai, S.; Fujioka, K.

    2006-04-01

    Nb-based superconducting tunnel junction (STJ) detectors have a fast time resolution of a few 100 ns and high operating temperature of 0.3 K. These advantages expand their applicable fields to time-of-flight mass spectrometry (TOF-MS). In order to enlarge effective detection area, we have built arrays based on hundreds of large STJ elements. To realize the fast readout and no-cross talk, coaxial cables made of low-thermal conductivity materials were investigated. From results of thermal conduction measurements, we chose thin coaxial cables with a diameter of 0.33 mm, consisting of CuNi center/outer conductors and Teflon insulator for the wiring between 0.3 K- 3He pot of the sorption pump and 3 K-2nd stage of GM cooler. Even after the installation of coaxial cables and a cold snout to the cryogen-free cryostat, we could keep arrays at 0.3 K for about a week, and reduction of the holding time at 0.3 K and temperature rise at 3He pot due to the installation were small, ˜0.5 day and 10 mK, respectively.

  11. Development of a relatchable cover mechanism for a cryogenic IR-sensor

    NASA Technical Reports Server (NTRS)

    Birner, R.; Lange, G.; Roth, M.; Voit, A.

    1991-01-01

    A cover mechanism for use on the Infrared Background Signature Survey (IBSS) cryostat was developed. The IBSS IR-instrument is scheduled for STS launch in early 1991 as a payload of the Shuttle Payload Satellite (SPS) 2. The cover is hinged, with a motorized rope drive. During ground processing, launch, entry, and landing, the cryostat, which houses the IR-instrument, is required to be a sealed vacuum tight container for cooling purposes and contamination prevention. When on orbit, the cover is opened to provide an unobstructed field of view for the IR-instrument. A positive seal is accomplished through the use of latch mechanism. The cover and the latch are driven by a common redundant actuator consisting of dc motors, spur gears, and a differential gear. Hall probe limit switches and position sensors (rotary variable transformer) are used to determine the position of the cover and the latch. The cover mechanism was successfully qualified for thermal vacuum (-25 to 35 C), acoustic noise, vibration (6 Gs sine, 9.7 G RMS) and life cycles. Constricting requirements, mechanical and electronic control design, specific design details, test results of functional performance, and environmental and life tests are described.

  12. The Focal Plane Assembly for the Athena X-Ray Integral Field Unit Instrument

    NASA Technical Reports Server (NTRS)

    Jackson, B. D.; Van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.; hide

    2016-01-01

    This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including stray light from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.

  13. A numerical study of the acoustic radiation due to eddy current-cryostat interactions.

    PubMed

    Wang, Yaohui; Liu, Feng; Zhou, Xiaorong; Li, Yu; Crozier, Stuart

    2017-06-01

    To investigate the acoustic radiation due to eddy current-cryostat interactions and perform a qualitative analysis on noise reduction methods. In order to evaluate the sound pressure level (SPL) of the eddy current induced warm bore wall vibration, a Finite Element (FE) model was created to simulate the noises from both the warm bore wall vibration and the gradient coil assembly. For the SPL reduction of the warm bore wall vibration, we first improved the active shielding of the gradient coil, thus reducing the eddy current on the warm bore wall. A damping treatment was then applied to the warm bore wall to control the acoustic radiation. Initial simulations show that the SPL of the warm bore wall is higher than that of the gradient assembly with typical design shielding ratios at many frequencies. Subsequent simulation results of eddy current control and damping treatment application show that the average SPL reduction of the warm bore wall can be as high as 9.6 dB, and even higher in some frequency bands. Combining eddy current control and suggested damping scheme, the noise level in a MRI system can be effectively reduced. © 2017 American Association of Physicists in Medicine.

  14. Thermal analysis of the cryostat feed through for the ITER Tokamak TF feeder

    NASA Astrophysics Data System (ADS)

    Zhang, Shanwen; Song, Yuntao; Lu, Kun; Wang, Zhongwei; Zhang, Jianfeng; Qin, Yongfa

    2017-04-01

    In Tokamaks, the toroidal field (TF) coil feeder is an important component that is used to supply the cryogens and electrical power for the TF coils. As a part of the TF feeder, the cryostat-feed through (CFT) is subject to low temperatures of 9 and 80 K inside and room temperature of 300 K outside. Based on the features of the International Thermonuclear Experimental Reactor TF feeder, the thermal performance of the CFT under the nominal conditions is studied. Taking into account the conductive, convective and radiation heat transfer, the finite element model of the CFT is built. Transient thermal analysis is performed to determine the temperatures of the CFT on the 9th day of cooldown. The model is assessed by comparing the cooling curves of the CFT after 9 days. If the simulation and experimental results are the same, the finite element model can be considered as calibrated. The model predicts that the cooling time will be approximately 26 days and the temperature distribution and heat load of the main components are obtained when the CFT reaches thermal equilibrium. This study provides a valid quantitative characterization of the CFT design.

  15. [Experimental xenogenic immune pancreatitis. --Immunohistological, enzyme histochemical and ultrastructural studies (author's transl)].

    PubMed

    Nizze, H

    1975-01-01

    Repeated intraperitoneal injections of anti-mouse pancreas rabbit serum or of anti-mouse pancreas guinea pig serum produce a chronical sclerotizing pancreatitis. This study has the aim to contribute to the further elucidation of the changes which occur in the acinar cells, as well as to the etiology and pathogenesis of immune pancreatitis, by means of immunohistological, enzyme histochemical and electron microscopic studies. Anti-mouse pancreas rabbit serum was obtained by sensitization of rabbits with an admixture of AB-mouse pancreas extract (100,000 g - supernatant) and complete Freund's adjuvant [details see NIZZE, Exp. Path. (1975a)]. The presence of precipitating mouse pancreas antibodies in the rabbit serum was ascertained by the agargel diffusion test according to Duchterlony (1958). The experiments were performed with 54 adult male white mice (AB colony strain) of 22 to 30 g.b.s. (averagely 26 g). The animals were divided into 4 groups which were treated as follows: 1. 24 mice with anti-mouse pancreas rabbit serum, 2. 12 mice with rabbit normal serum, 3. 12 mice with physiological saline, 4. 6 mice remained untreated (controls) Always 4 animals of the group 1 as well as each 2 of the groups 2 and 3 were administered in total 1, 3, 5, 9, 17 or 33 intraperitoneal injections of 0.3 ml of the correspondent serum or with physiological saline within 3 hours, 1, 2, 4, 8 or 16 days. The last injection was regularly applied 3 hours before sacrification by decapitation. The time of sacrification was always at 11.00 o'clock a.m. For immunohistological and enzyme histochemical investigations 10 mum thick cryostat sections were prepared consisting of pancreatic specimens piled up to a bloc. In each case the tissue samples were taken from the experimental animals and from one control animal sacrificed at the same day. The sections were incubated in FITC-labelled anti-rabbit globulin goat serum at room temperature for 30 min in a moist chamber. For control of specificity were employed: a) initial incubation of equal sections with unlabelled anti-rabbit globulin goat serum for 30 min ("blocking test''), b) pancreatic tissue specimens of each one untreated control animal present in the cryostat sections and thus incubated like the pancreatic tissue of the experimental animals, c) native nonincubated cryostat sections from the same bloc to exclude nonspecific autofluorescence. Evaluation of the sections was done in a Zeiss-Lg-microscope with HBO-50 high pressure mercury lamp. Exciter filters were UG 1/3.5 and 1/1.5, the eyepiece was screened with a GG 9/1 filter photographs were taken on ORWO X-ray film RS 2 (VEB Filmfabrik Wolfen). The enzyme histochemical studies were performed on cryostat sections of the same tissue bloc using the following methods: lead nitrate- or calcium-Co-method after GOMORI (1952) for demonstration of acid and alkaline phosphatase, naphthylacetate method (NACHLAS and SELIGMAN 1945) for nonspecific esterase, MTT-co-method (PEARSE et al...

  16. Information on a Photon: Free-Space Quantum Communication (InPho: FSQC)

    DTIC Science & Technology

    2015-10-06

    3 5 kHz . 9 InPho: FSQCSuperconducting nanowire detectors InPho Breakthrough – Develop 8 channel SiW superconducting... nanowire detectors optimized for 710 nm in collaboration with NIST Status report (6/4/14): Cryostat constructed, chill-down tests, detectors...similar jitter with custom circuit vs. MPD circuit allows for higher key rate and photon efficiency 27 InPho: FSQCSuperconducting nanowire detectors

  17. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strait, James; McCluskey, Elaine; Lundin, Tracy

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  18. Optical Properties of III-V Semiconductor Nanostructures and Quantum Wells

    DTIC Science & Technology

    2006-12-31

    measurements were made using a BOMEM Fourier-transform infrared spectrometer in conjunction with a continuous flow cryostat. A low- noise current...infrared photodetector ( QWIP ). Quantum well infrared photodetectors are designed from wide bandgap (III-V) semiconductor materials in such a way where...quantum confinement is created. Unlike HgCdTe which utilizes electronic transitions across the fundamental bandgap, QWIPs relies on transitions between

  19. Handheld isotope identification system

    DOEpatents

    Frankle, Christen M [Los Alamos, NM; Becker, John A [Alameda, CA; Cork,; Christopher, P [Pleasant Hill, CA; Madden, Norman W [Livermore, CA

    2007-01-09

    A portable radiation detector using a high-purity germanium crystal as the sensing device. The crystal is fabricated such that it exhibits a length to width ratio greater than 1:1 and is oriented within the detector to receive radiation along the width of said crystal. The crystal is located within a container pressurized with ultra-pure nitrogen, and the container is located within a cryostat under vacuum.

  20. Implementation of Microcalorimeter Array Technology for Safeguards of Nuclear Material

    NASA Astrophysics Data System (ADS)

    Kossmann, Shannon; Mateju, Klara; Koehler, Katrina; Croce, Mark

    2018-03-01

    Safeguards of nuclear materials depend on both destructive and nondestructive assay (DA and NDA, respectively). Ultra-high-resolution microcalorimeter gamma spectroscopy has the potential to substantially reduce the performance gap between NDA and DA methods in determination of plutonium isotopic composition. This paper details the setup of a cryostat and microwave readout system for microcalorimeter gamma spectroscopy, the functionality of which has been successfully demonstrated.

  1. MO-F-CAMPUS-J-04: Radiation Heat Load On the MR System of the Elekta Atlantic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Towe, S; Roberts, D; Overweg, J

    2015-06-15

    Purpose: The Elekta Atlantic system combines a digital linear accelerator system with a 1.5T Philips MRI machine.This study aimed to assess the energy deposited within the cryostat system when the radiation beam passes through the cryostat. The cryocooler on the magnet has a cooling capacity which is about 1 Watt in excess of the cryogenic heat leak into the magnet’s cold mass. A pressure-controlled heater inside the magnet balances the excess refrigeration power such that the helium pressure in the tank is kept slightly above ambient air pressure. If radiation power is deposited in the cold mass then this heatermore » will need less power to maintain pressure equilibrium and if the radiation heat load exceeds the excess cryocooler capacity the pressure will rise. Methods: An in-house CAD based Monte Carlo code based on Penelope was used to model the entire MR-Linac system to quantify the heat load on the magnet’s cold mass. These results were then compared to experimental results obtained from an Elekta Atlantic system installed in UMC-Utrecht. Results: For a field size of 25 cm x 22 cm and a dose rate of 107 mu.min-1, the energy deposited by the radiation beam led to a reduction in heater power from 1.16 to 0.73 W. Simulations predicted a reduction to 0.69 W which is in good agreement. For the worst case field size (largest) and maximum dose rate the cryostat cooler capacity was exceeded. This resulted in a pressure rise within the system but was such that continuous irradiation for over 12 hours would be required before the magnet would start blowing off helium. Conclusion: The study concluded that the Atlantic system does not have to be duty cycle restricted, even for the worst case non-clinical scenario and that there are no adverse effects on the MR system. Stephen Towe and David Roberts Both work for Elekta; Ezra Van Lanen works for Philips Healthcare; Johan Overweg works for Philips Innovative Technologies.« less

  2. JPRS Report Science & Technology USSR: Chemistry

    DTIC Science & Technology

    1991-08-29

    EXPLOSIVES Cryostatic Problems at Temperatures Below 2 K. Part 2. Analysis of Principal Refrigerator Designs //. F. Kuzmenko; KHIMICHESKOYEINEFTYANOYE...VOLOKNA, No 1, Jan 91] 24 Eperimental Method for Evaluating Quality of Core-Shell Interface in Polymeric Light Conductors [M. A. Maryukov...No 3, Mar 91 pp 178-179 [Article by Yu. S. Ivchenko] UDC 66.023.002.237:66.063.8 [Abstract] An attempt was made to design a universal apparatus

  3. Near-Infrared Scintillation of Liquid Argon: Recent Results Obtained with the NIR Facility at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar, C. O.; Rubinov, P.; Tilly, E.

    After a short review of previous attempts to observe and measure the near-infrared scintillation in liquid argon, we present new results obtained with NIR, a dedicated cryostat at the Fermilab Proton Assembly Building (PAB). The new results give confidence that the near-infrared light can be used as the much needed light signal in large liquid argon time projection chambers.11 pages,

  4. High-pressure cells for study of condensed matter by diffraction and inelastic neutron scattering at low temperatures and in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Sadykov, R. A.; Strassle, Th; Podlesnyak, A.; Keller, L.; Fak, B.; Mesot, J.

    2017-12-01

    We have developed and implemented series of new original clamp high-pressure cells for neutron diffraction and inelastic neutron scattering at low temperatures. The cells design allows one to place them in the standard cryostats or cryomagnets used on neutron sources. Some results obtained for ZnCr2Se4 are demonstrated as an example.

  5. Cryogenic lifetime tests on a commercial epoxy resin high voltage bushing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenterly, S W; Pleva, Ed; Ha, Tam T

    2012-06-12

    High-temperature superconducting (HTS) power devices operating in liquid nitrogen frequently require high-voltage bushings to carry the current leads from the superconducting windings to the room temperature grid connections. Oak Ridge National Laboratory is collaborating with Waukesha Electric Systems, SuperPower, and Southern California Edison to develop and demonstrate an HTS utility power transformer. Previous dielectric high voltage tests in support of this program have been carried out in test cryostats with commercial epoxy resin bushings from Electro Composites Inc. (ECI). Though the bushings performed well in these short-term tests, their long-term operation at high voltage in liquid nitrogen needs to bemore » verified for use on the utility grid. Long-term tests are being carried out on a sample 28-kV-class ECI bushing. The bushing has a monolithic cast, cycloaliphatic resin body and is fire- and shatter-resistant. The test cryostat is located in an interlocked cage and is energized at 25 kVac around the clock. Liquid nitrogen (LN) is automatically refilled every 9.5 hours. Partial discharge, capacitance, and leakage resistance tests are periodically performed to check for deviations from factory values. At present, over 2400 hours have been accumulated with no changes in these parameters. The tests are scheduled to run for four to six months.« less

  6. Experiments in a real scale maglev vehicle prototype

    NASA Astrophysics Data System (ADS)

    Sotelo, G. G.; Dias, D. H. N.; Machado, O. J.; David, E. D.; de Andrade, R., Jr.; Stephan, R. M.; Costa, G. C.

    2010-06-01

    A Brazilian real scale magnetically levitated transport system prototype is under development at the Federal University of Rio de Janeiro. To test this system a 180 m long line has been projected and it will be concluded by the end of 2010. A superconducting linear bearing (SLB) is used to replace the wheels of a conventional train. High temperature superconductor bulks placed inside cryostats attached to the vehicle and a magnetic rail composes the SLB. To choose the magnetic rail for the test line three different rails, selected in a previous simulation work, were built and tested. They are composed by Nd-Fe-B and steel, arranged in a flux concentrator topology. The magnetic flux density for those magnetic rails was mapped. Also, the levitation force between those rails and the superconductor cryostat, for several cooling gaps, were measured to select the best rail geometry to be used in the real scale line. The SLB allows building a light vehicle with distributed load, silent and high energy efficient. The proposed vehicle is composed of four modules with just 1.5 m of length each one and it can transport up to 24 passengers. The test line having two curves with 45 m radius and a 15% acclivity ramp is also presented.

  7. Cryogenic lifetime tests on a commercial epoxy resin high voltage bushing

    NASA Astrophysics Data System (ADS)

    Schwenterly, S. W.; Pleva, E. F.; Ha, T. T.

    2012-06-01

    High-temperature superconducting (HTS) power devices operating in liquid nitrogen frequently require high-voltage bushings to carry the current leads from the superconducting windings to the room temperature grid connections. Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES), SuperPower (SP), and Southern California Edison (SCE) to develop and demonstrate an HTS utility power transformer. Previous dielectric high voltage tests in support of this program have been carried out in test cryostats with commercial epoxy resin bushings from Electro Composites Inc. (ECI). Though the bushings performed well in these short-term tests, their long-term operation at high voltage in liquid nitrogen (LN) needs to be verified for use on the utility grid. Long-term tests are being carried out on a sample 28-kV-rms-class ECI bushing. The bushing has a monolithic cast, cycloaliphatic resin body and is fire- and shatter-resistant. The test cryostat is located in an interlocked cage and is continuously energized at 25 kVac rms. LN is automatically refilled every 9.5 hours. Partial discharge, capacitance, and leakage resistance tests are periodically performed to check for deviations from factory values. At present, over 2400 hours have been accumulated with no changes in these parameters. The tests are scheduled to run for four to six months.

  8. Pre-cooling of ton-scale particle detectors in low radioactivity environments

    NASA Astrophysics Data System (ADS)

    Cappelli, L.; Pagliarone, C. E.; Bucci, C.; D’Aguanno, D.; Erme, G.; Gorla, P.; Kartal, S.; Marignetti, F.

    2018-03-01

    Low radioactivity sites are mandatory to perform searches for rare processes that cannot be studied with particle accelerators and requires low environmental backgrounds. Neutrino-less double β decay or Dark Matter searches must be performed in underground low radioactivity observatories. Large detectors are needed to increase the acceptances and proper cryogenic systems to run dedicated detectors. To reach the working temperatures, refrigerators as Pulse Tubes, Dilution Units are used inside complex cryostats. CUORE, Cryogenic Underground Observatory for Rare Events, is an experiment located at LNGS under the Gran Sasso mountain. So far, it’s the coldest cubic meter and the largest cold mass ever realized. Its 998 TeO2 bolometers need to be kept at temperatures T< 10 mK. Using only Pulse Tubes, CUORE needs several weeks to reach the baseline T. Then a Fast Cooling System has been designed and constructed for a faster precooling of the whole CUORE cold volume. The Fast Cooling System (FCS) consists of a cryostat with heat exchangers that use 3 Gifford-McMahon refrigerators, a 4He compressor, a filtering module and several sensors that allow to monitor and control the system during CUORE cooldown. The present work describes the FCS and summarizes its performances during the first full CUORE cooldown.

  9. Multilayer integral method for simulation of eddy currents in thin volumes of arbitrary geometry produced by MRI gradient coils.

    PubMed

    Sanchez Lopez, Hector; Freschi, Fabio; Trakic, Adnan; Smith, Elliot; Herbert, Jeremy; Fuentes, Miguel; Wilson, Stephen; Liu, Limei; Repetto, Maurizio; Crozier, Stuart

    2014-05-01

    This article aims to present a fast, efficient and accurate multi-layer integral method (MIM) for the evaluation of complex spatiotemporal eddy currents in nonmagnetic and thin volumes of irregular geometries induced by arbitrary arrangements of gradient coils. The volume of interest is divided into a number of layers, wherein the thickness of each layer is assumed to be smaller than the skin depth and where one of the linear dimensions is much smaller than the remaining two dimensions. The diffusion equation of the current density is solved both in time-harmonic and transient domain. The experimentally measured magnetic fields produced by the coil and the induced eddy currents as well as the corresponding time-decay constants were in close agreement with the results produced by the MIM. Relevant parameters such as power loss and force induced by the eddy currents in a split cryostat were simulated using the MIM. The proposed method is capable of accurately simulating the current diffusion process inside thin volumes, such as the magnet cryostat. The method permits the priori-calculation of optimal pre-emphasis parameters. The MIM enables unified designs of gradient coil-magnet structures for an optimal mitigation of deleterious eddy current effects. Copyright © 2013 Wiley Periodicals, Inc.

  10. OPERATIONAL EXPERIENCE WITH FAST FIBER-OPTIC BEAM LOSS MONITORS FOR THE ADVANCED PHOTON SOURCE STORAGE RING SUPERCONDUCTING UNDULATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooling, J.; Harkay, K.; Sajaev, V.

    Fast fiber-optic (FFO) beam loss monitors (BLMs) installed with the first two superconducting undulators (SCUs) in the Advanced Photon Source storage ring have proven to be a useful diagnostic for measuring deposited charge (energy) during rapid beam loss events. The first set of FFOBLMs were installed outside the cryostat of the short SCU, a 0.33-m long device, above and below the beam centerline. The second set are mounted with the first 1.1-mlong SCU within the cryostat, on the outboard and inboard sides of the vacuum chamber. The next 1.1-m-long SCU is scheduled to replace the short SCU later in 2016more » and will be fitted with FFOBLMs in a manner similar to original 1.1-m device. The FFOBLMs were employed to set timing and voltage for the abort kicker (AK) system. The AK helps to prevent quenching of the SCUs during beam dumps [1] by directing the beam away from the SC magnet windings. The AK is triggered by the Machine Protection System (MPS). In cases when the AK fails to prevent quenching, the FFOBLMs show that losses often begin before detection by the MPS.« less

  11. Thermal performance evaluation of the infrared telescope dewar subsystem

    NASA Technical Reports Server (NTRS)

    Urban, E. W.

    1986-01-01

    Thermal performance evaluations (TPE) were conducted with the superfluid helium dewar of the Infrared Telescope (IRT) experiment from November 1981 to August 1982. Test included measuring key operating parameters, simulating operations with an attached instrument cryostat and validating servicing, operating and safety procedures. Test activities and results are summarized. All objectives are satisfied except for those involving transfer of low pressure liquid helium (LHe) from a supply dewar into the dewar subsystem.

  12. Dilution Refrigerator Technology for Scalable Quantum Computing

    DTIC Science & Technology

    2014-05-22

    Faraday cage but we did not do this for vibration concerns. 3. 90 degree Aeroquip fitting This elbow can be used (or not) depending upon where you...place. 4. Gas ballast tanks We have them mounted inside of the Faraday cage 5. Gas handling system Everything in this picture is...lines will work for your installation. 11. Cryostat test stand and faraday cage We were not planning on sending the test stand because it is

  13. Growth And Characterization Studies Of Advanced Infrared Heterostructures

    DTIC Science & Technology

    2015-06-30

    controlled within 50 arc-seconds for all the samples. The three samples were then processed into deep-etched mesa -type photodiodes, by using standard...contact ultraviolet lithography and wet-chemical etching. The circular mesa -size ranged from 25 to 400 µm in diameter. A 200-nm-thick SiNx film...coating was applied on top of the mesa . Devices were mounted on ceramic leadless chip carriers, and then mounted in the cryostat to characterize their

  14. Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Hahn, Inseob; Ho Eom, Byeong

    2009-01-01

    A new gradiometer scheme uses middle loops as sensing elements in lowfield superconducting quantum interference device (SQUID) magnetic resonance imaging (MRI). This design of a second order gradiometer increases its sensitivity and makes it more uniform, compared to the conventional side loop sensing scheme with a comparable matching SQUID. The space between the two middle loops becomes the imaging volume with the enclosing cryostat built accordingly.

  15. Advances in large, transportable, highly spin-polarized, solid HD targets operable in the frozen-spin mode in a 1-4K temperature environment

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron Paul

    The development of large, portable highly spin-polarized solid HD targets has been in progress at Syracuse University for the past 5 years. These targets are scheduled for deployment at Brookhaven National Laboratory, bearing the acronym SPHICE (Spin-Polarized Hydrogen Ice), for studies of the electro-magnetic spin structure of the nucleus via scattering of polarized gammas from the HD polarized protons and deuterons. The target work has just reached the milestone demonstration of the complete system, including polarization of triple targets containing 4 moles of solid HD, aging of these targets so that they retain their polarization for months under storage at a temperature of 1.3K and in an 8 Tesla field, and for at least a week at operational conditions of 1.3K and 0.7 Tesla in an in-beam cryostat. Cold-transfers of the polarized targets to a storage cryostat have been successfully carried out, and the storage cryostat has been trucked from Syracuse to BNL with one polarized target, sufficient to test the in-beam operations there. The complete system is presented here, with emphasis on innovations for engagement and disengagement of multiple targets, a solution to the challenge of attaining sufficiently strong RF fields in the large volume probe coils at acceptable power dissipation in the cables, and the polarization production and monitoring in the highly inhomogeneous magnetic fields owing to the multiple targets and the large dimensions of the targets. In this first multiple target production and extraction-to-storage cycle, air-ice accumulation in the dilution refrigerator due to repetitive use of cold sliding o-ring seals resulted in a rupture of one of the inserted targets, and a consequent partial thermal short from a solid HD ice bridge. The o-ring fault was cured with double evacuatable o-ring seals, and the air-ice was successfully cleaned out. However, the refrigerator operating base temperature was substantially higher than that normally obtained and the proton polarizations were accordingly lower than the 48% previously obtained. Nevertheless, the targets passed all their production procedures and are still useful for a first experiment at BNL. We anticipate an era of important use of these now demonstrated specially advantageous polarized frozen-spin HD targets.

  16. Low-cost measurement and monitoring system for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Tubío Araújo, Óscar; Hernández Suárez, Elvio; Gracia Temich, Félix

    2016-07-01

    Cryostats are closed chambers that hinder the monitoring of materials, structures or systems installed therein. This paper presents a webcam-based measurement and monitoring system, which can operate under vacuum and cryogenic conditions to be mainly used in astrophysical applications. The system can be configured in two different assemblies: wide field that can be used for mechanism monitoring and narrow field, especially useful in cryogenic precision measurements with a resolution up to 4 microns/pixel.

  17. Experiment definition and integration study for the accommodation of magnetic spectrometer payload on Spacelab/shuttle missions

    NASA Technical Reports Server (NTRS)

    Buffington, A.

    1978-01-01

    A super-cooled magnetic spectrometer for a cosmic-ray experiment is considered for application in the high energy astronomical observatory which may be used on a space shuttle spacelab mission. New cryostat parameters are reported which are appropriate to shuttle mission weight and mission duration constraints. Since a super-conducting magnetic spectrometer has a magnetic fringe field, methods for shielding sensitive electronic and mechanical components on nearby experiments are described.

  18. Low-temperature dielectric behavior of Nb{sub 2}O{sub 5}-SiO{sub 2} solid solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choosuwan, H.; Guo, R.; Bhalla, A. S.

    2003-03-01

    Dielectric properties of Nb{sub 2}O{sub 5}(0.92):SiO{sub 2}(0.08) ceramic were measured in the temperature range of 10-300 K by the cryostat system. Frequency-dependent dielectric loss suggests the relaxation behavior of this material. The relaxation mechanism was analyzed by the Arrhenius relationship and the Cole-Cole plot. Calculated distribution of relaxation time reveals deviation from the pure Debye relaxation.

  19. The EBIT Calorimeter Spectrometer: a new, permanent user facility at the LLNL EBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, F S; Beiersdorfer, P; Brown, G V

    The EBIT Calorimeter Spectrometer (ECS) is currently being completed and will be installed at the EBIT facility at the Lawrence Livermore National Laboratory in October 2007. The ECS will replace the smaller XRS/EBIT microcalorimeter spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory program. The new ECS spectrometer was built to be a low maintenance, high performance implanted silicon microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 {micro}s event timing, and capable of uninterrupted acquisitionmore » sessions of over 60 hours at 50 mK. The XRS/EBIT program has been very successful, producing many results on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES instrument.« less

  20. Precise Determination of the Lyman-1 Transition Energy in Hydrogen-like Gold Ions with Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Kilbourne, C.; Kiselev, O.; McCammon, D.; Scholz, P.

    2014-09-01

    The precise determination of the transition energy of the Lyman-1 line in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. We report the determination of the Lyman-1 transition energy of gold ions (Au) with microcalorimeters at the experimental storage ring at GSI. X-rays produced by the interaction of 125 MeV/u Au ions with an internal argon gas-jet target were detected. The detector array consisted of 14 pixels with silicon thermistors and Sn absorbers, for which an energy resolution of 50 eV for an X-ray energy of 59.5 keV was obtained in the laboratory. The Lyman-1 transition energy was determined for each pixel in the laboratory frame, then transformed into the emitter frame and averaged. A Dy-159 source was used for energy calibration. The absolute positions of the detector pixels, which are needed for an accurate correction of the Doppler shift, were determined by topographic measurements and by scanning a collimated Am-241 source across the cryostat window. The energy of the Lyman-1 line in the emitter frame is eV, in good agreement with theoretical predictions. The systematic error is dominated by the uncertainty in the position of the cryostat relative to the interaction region of beam and target.

  1. Conceptual Design and Analysis of Cold Mass Support of the CS3U Feeder for the ITER

    NASA Astrophysics Data System (ADS)

    Zhu, Yinfeng; Song, Yuntao; Zhang, Yuanbin; Wang, Zhongwei

    2013-06-01

    In the International Thermonuclear Experimental Reactor (ITER) project, the feeders are one of the most important and critical systems. To convey the power supply and the coolant for the central solenoid (CS) magnet, 6 sets of CS feeders are employed, which consist mainly of an in-cryostat feeder (ICF), a cryostat feed-through (CFT), an S-bend box (SBB), and a coil terminal box (CTB). To compensate the displacements of the internal components of the CS feeders during operation, sliding cold mass supports consisting of a sled plate, a cylindrical support, a thermal shield, and an external ring are developed. To check the strength of the developed cold mass supports of the CS3U feeder, electromagnetic analysis of the two superconducting busbars is performed by using the CATIA V5 and ANSYS codes based on parametric technology. Furthermore, the thermal-structural coupling analysis is performed based on the obtained results, except for the stress concentration, and the max. stress intensity is lower than the allowable stress of the selected material. It is found that the conceptual design of the cold mass support can satisfy the required functions under the worst case of normal working conditions. All these performed activities will provide a firm technical basis for the engineering design and development of cold mass supports.

  2. Cryogenic Testing of Different Seam Concepts for Multilayer Insulation Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, J. E.

    2009-01-01

    Recent testing in a cylindrical, comparative cryostat at the Cryogenics Test Laboratory has focused on various seam concepts for multilayer insulation systems. Three main types of seams were investigated: straight overlap, fold-over, and roll wrapped. Each blanket was comprised of 40 layer pairs of reflector and spacer materials. The total thickness was approximately 12.5-mm, giving an average layer density of 32 layers per centimeter. The blankets were tested at high vacuum, soft vacuum, and no vacuum using liquid nitrogen to maintain the cold boundary temperature at 77 K. Test results show that all three seam concepts are all close in thermal performance; however the fold-over method provides the lowest heat flux. For the first series of tests, seams were located 120 degrees around the circumference of the cryostat from the previous seam. This technique appears to have lessened the degradation of the blanket due to the seams. In a follow-on test, a 20 layer blanket was tested in a roll wrapped configuration and then cut down the side of the cylinder, taped together, and re-tested. This test result shows the thermal performance impact of having the seams all in one location versus having the seams clocked around the vessel. This experimental investigation indicates that the method of joining the seams in multilayer insulation systems is not as critical as the quality of the installation process.

  3. Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable

    NASA Astrophysics Data System (ADS)

    Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John

    2014-01-01

    The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.

  4. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Rutherfoord, John; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 1034 cm-2 s-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals with narrower liquid argon gaps, lowering the values of the protection resistors, and the addition of cooling loops. A second proposed solution, which does not require opening the cryostat cold volume, is the addition of a small, warm calorimeter in front of each existing FCal, resulting in a reduction of the particle flux to levels at which the existing FCal can operate normally.

  5. A Dual Operational Refrigerator/Flow Cryostat with Wide Bore Medium Field Magnet for Application Demonstration

    NASA Astrophysics Data System (ADS)

    Young, E. A.; Bailey, W. O. S.; Al-Mosawi, M. K.; Beduz, C.; Yang, Y.; Chappell, S.; Twin, A.

    Since stand alone cryocooler systems have become more widely available, there has been increased commercial interest in superconductor applications in the temperature range intermediate to liquid helium and liquid nitrogen. There are however few facilities that have large in-field bore size with variable temperatures. A large bore system can reduce costs associated with full scale demonstration magnets by testing smaller coils and qualify medium length (up to meters) conductors. A 5 T, wide bore, (170 mm) Nb3Sn Oxford Instrument magnet has been integrated into a custom built dual mode refrigerator/helium flow cryostat with 600A HTS current leads. In one mode the system can be used with zero field without cost of liquid helium relying for cooling on a Sumitomo GM cryocooler with 1.5W at 4.2K: (no He) this can be used either as the sole characterisation method, or as a preliminary check before more expensive and extensive measurements are taken. The first measurements using MgB2 wire from 10 to 20K were made using a transient current step of ∼5s duration, as opposed to a DC measurement. This has the advantage of not requiring thermal equilibrium to be achieved at nominal current. The feasibility of this technique for determining critical transport properties is discussed.

  6. IR detector system based on high-Tc superconducting bolometer on SI membrane

    NASA Astrophysics Data System (ADS)

    Burnus, M.; Hefle, G.; Heidenblut, T.; Khrebtov, Igor A.; Laukemper, J.; Michalke, W.; Neff, H.; Schwierzi, B.; Semtchinova, O. K.; Steinbeiss, E.; Tkachenko, A. D.

    1996-06-01

    An infrared detector system based on high-T(subscript c) superconducting (HTS) membrane bolometer is reported. Superconducting transition-edge bolometer has been manufactured by silicon micromachining using an epitaxial GdBa(subscript 2)Cu(subscript 3)O(subscript 7-x) film on an epitaxial yttria- stabilized zirconia buffer layer on silicon. The active area of the element is 0.85 X 0.85 mm(superscript 2). The membrane thickness is 1 micrometers , those of the buffer layer and HTS films are 50 nm. The detectivity of bolometer, D(superscript *), is 3.8 X 10(superscript 9) cm Hz(superscript 1/2) W(superscript -1) at 84.5 K and within the frequency regime 100 < f < 300 Hz. The optical response is 580 V/W at time constant 0.4 ms. This is one of the fastest composite type HTS-bolometer ever reported. The bolometer is mounted on a metal N(subscript 2)-liquid cryostat, which fits the preamplifier. With the volume of N(subscript 2)-reservoir being 0.1 liter, the cryostat holds nitrogen for about 8 hours. Using only wire heater with constant current, the temperature stability of about 0.03 K/h is achieved. The detector system can be used in IR- Fourier spectroscopy at wavelengths longer than the typical operating range of semiconductor detectors (wavelength greater than about 20 micrometers ).

  7. Development of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate Data

    DTIC Science & Technology

    1978-05-01

    nitrogen cooled cryostat; high temperature tests were conducted using resistance heating tapes . An automatic controller maintained test temperatures...Cracking," Int. J. Fracture, Vol. 9, 1973, pp. 63-74. 87. P. Paris and F. Erdogan , "A Critical Analysis of Crack Propagation Laws," Trans. ASME, Ser. D: J...requirements of Sec. 7.2 and Appendix B. 200 REFERENCES 1. P. C. Paris and F. Erdogan , "A Critical Analysis of Crack Propagation Laws", Trans. ASME, Ser. D: 3

  8. The CUORE slow monitoring systems

    NASA Astrophysics Data System (ADS)

    Gladstone, L.; Biare, D.; Cappelli, L.; Cushman, J. S.; Del Corso, F.; Fujikawa, B. K.; Hickerson, K. P.; Moggi, N.; Pagliarone, C. E.; Schmidt, B.; Wagaarachchi, S. L.; Welliver, B.; Winslow, L. A.

    2017-09-01

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay in 130Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.

  9. Cryogenic and thermal design for the Superfluid Helium On-Orbit Transfer (SHOOT) experiment

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Maa, S.; Brooks, W. F.; Ng, Y. S.

    1988-01-01

    The analysis and trade-offs of the external thermal design of the two 200-liter dewars required in the SHOOT experiment to extend space mission life by superfluid helium replenishment are discussed. Also considered are the support electronics and the optimization and prediction of the performance of the dewar and cryostat assemblies. Particular attention is given to the ground-hold and standby performance of the dewars, along with the temperature of the helium bath during high-flow-rate helium transfers.

  10. Histofluorescent labelling of catecholaminergic structures in rotifers (Aschelminthes). II. Males of Brachionus plicatilis and structures from sectioned females.

    PubMed

    Keshmirian, J; Nogrady, T

    1988-01-01

    1. Catecholaminergic structures in the male Brachionus plicatilis were investigated, using aqueous dansylpropranolol as fluorescent label of neurotransmitter receptors. 2. All major organs of the male are innervated by catecholaminergic systems, that may also be involved in the regulation of copulatory behavior. 3. Cryostat-sectioned preparations of the female B. plicatilis were also investigated. They provided additional information to findings on whole animals reported in our previous paper (Keshmirian and Nogrady 1987 a).

  11. Autonomous cryogenic sapphire oscillators employing low vibration pulse-tube cryocoolers at NMIJ

    NASA Astrophysics Data System (ADS)

    Ikegami, Takeshi; Watabe, Ken-ichi; Yanagimachi, Shinya; Takamizawa, Akifumi; Hartnett, John G.

    2016-06-01

    Two liquid-helium-cooled cryogenic sapphire-resonator oscillators (CSOs), have been modified to operate using cryo-refrigerators and low-vibration cryostats. The Allan deviation of the first CSO was evaluated to be better than 2 x 10-15 for averaging times of 1 s to 30 000 s, which is better than that of the original liquid helium cooled CSO. The Allan deviation of the second CSO is better than 4 x 10-15 from 1 s to 6 000 s averaging time.

  12. A low power cryocooled autonomous ultra-stable oscillator

    NASA Astrophysics Data System (ADS)

    Fluhr, C.; Dubois, B.; Grop, S.; Paris, J.; Le Tetû, G.; Giordano, V.

    2016-12-01

    We present the design and the preliminary evaluation of a cryostat equipped with a low power pulse-tube cryocooler intended to maintain near 5 K a high-Q factor sapphire microwave resonator. This cooled resonator constitutes the frequency reference of an ultra-stable oscillator presenting a short term fractional frequency stability of better than 1 ×10-15 . The proposed design enables to reach a state-of-the-art frequency stability with a cryogenic oscillator consuming only 3 kW of electrical power.

  13. Utilization of low temperatures in electrical machines

    NASA Astrophysics Data System (ADS)

    Kwasniewska-Jankowicz, L.; Mirski, Z.

    1983-09-01

    The dimensions of conventional and superconducting direct and alternating current generators are compared and the advantages of using superconducting magnets are examined. The critical temperature, critical current, and critical magnetic field intensity of superconductors in an induction winding are discussed as well as the mechanical properties needed for bending connectors at small radii. Investigations of cryogenic cooling, cryostats, thermal insulation and rotary seals are reported as well as results of studies of the mechanical properties of austenitic Cr-Ni steels, welded joints and plastics for insulation.

  14. The Influence of Strain-Rate History and Temperature on the Shear Strength of Copper, Titanium and Mild Steel

    DTIC Science & Technology

    1976-03-01

    Temperature dependence of flow stress of titanium, at (a) low and (b) high strain rates. 76 18 Strain dependence of apparent and intrinsic strain-rate...Cryostat in position surrounding specimen 98 B3 General view of low- temperature apparatus 98 CI Design of high - temperature titanium specimen and grip 99 C2... High - temperature titanium specimen and stainless- steel grips 100 C3 Transmission of torsional wave through mechanical connectors, at (a) 2000C (b

  15. Vibration Mitigation for a Cryogen-Free Dilution Refrigerator for the AMoRE-Pilot Experiment

    NASA Astrophysics Data System (ADS)

    Lee, C.; Jo, H. S.; Kang, C. S.; Kim, G. B.; Kim, I.; Kim, Y. H.; Lee, H. J.; So, J. H.

    2018-06-01

    The Advanced Mo-based Rare process Experiment utilizes a cryogen-free dilution refrigerator to operate its low-temperature detectors. Mechanical vibration originating from its pulse tube refrigerator can affect the detector performance. A mechanical filter system has been installed between the 4K and still plates with eddy current dampers in addition to a spring-loaded damping system previously installed below the mixing chamber plate of the cryostat. The filters significantly mitigated vibrations and improved the detector signals.

  16. A beam condenser for infrared spectrophotometers.

    PubMed

    Brandt, R C

    1969-02-01

    The design and performance of a beam condenser for ir spectrophotometers such as the Beckman model IR-11 is described. The instrument has an image size of 4 mm x 8 mm and permits the use of samples mounted in the tail of a cryostat whose outside dimension is as large as 7 cm square. Applications to negative light flux spectroscopy are described, in particular, the direct measurement of the longitudinal optical frequency of lattice vibration for AgBr and AgCl.

  17. Reinnervation of Paralyzed Muscle by Nerve-Muscle-Endplate Band Grafting

    DTIC Science & Technology

    2015-10-01

    frozen in melting isopentane cooled with dry ice and cut on a cryostat (Reichert- Jung 1800; Mannheim, Germany) at –25ºC. Some sections were stained with... Jung 1800; Mannheim, Germany) at –25ºC, and stored at –80ºC until staining was performed. For each muscle, the caudal and rostral segments were cut...The stained sections were examined under a Zeiss photomicroscope (Axiophot-2; Carl Zeiss, Gottingen, Germany) and photographed using a digital camera

  18. A cryostat to hold frozen-spin polarized HD targets in CLAS. HDice-II

    DOE PAGES

    Lowry, Michael M.; Bass, Christopher D.; D'Angelo, Annalisa; ...

    2016-01-07

    The design, fabrication, operation, and performance of a helium-3/4 dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). Moreover, the device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 Tesla for extended periods.

  19. Thermal conductivity of Rene 41 honeycomb panels

    NASA Astrophysics Data System (ADS)

    Deriugin, V.

    1980-12-01

    Effective thermal conductivities of Rene 41 panels suitable for advanced space transportation vehicle structures were determined analytically and experimentally for temperature ranges between 20.4K (423 F) and 1186K (1675 F). The cryogenic data were obtained using a cryostat whereas the high temperature data were measured using a heat flow meter and a comparative thermal conductivity instrument respectively. Comparisons were made between analysis and experimental data. Analytical methods appear to provide reasonable definition of the honeycomb panel effective thermal conductivities.

  20. Thermal conductivity of Rene 41 honeycomb panels. [space transportation vehicles

    NASA Technical Reports Server (NTRS)

    Deriugin, V.

    1980-01-01

    Effective thermal conductivities of Rene 41 panels suitable for advanced space transportation vehicle structures were determined analytically and experimentally for temperature ranges between 20.4K (423 F) and 1186K (1675 F). The cryogenic data were obtained using a cryostat whereas the high temperature data were measured using a heat flow meter and a comparative thermal conductivity instrument respectively. Comparisons were made between analysis and experimental data. Analytical methods appear to provide reasonable definition of the honeycomb panel effective thermal conductivities.

  1. Nanotechnology-Enabled Optical Molecular Imaging of Breast Cancer

    DTIC Science & Technology

    2011-07-01

    Biochemical) and frozen rapidly over dry ice. Sections were then made of all specimens using a Leica CM1850 UV cryostat. At least 20 sections were...detection is well aligned, system sensitivity has improved greatly. The only drawback is the heat generated by the LED , which cannot be dissipated by a...heat sink and a fan as was the case in the prior design. The heat is transferred to the P100-P angular adjuster (to which the LED is heat taped) which

  2. Innovation in Broad-Area Diode Laser Array Architecture: Coupling Grating-Confined Zigzag Modes for High Power, High Brightness Applications

    DTIC Science & Technology

    2015-02-08

    These unstable resonators can be designed as either independent lasers or amplifiers in master oscillator power amplifier (MOPA) configuration [27-29...far field shown in this section are obtained in a cryostat system with the heat sink temperature set at 230K. In all the measurements, the lasers are...result is shown in Fig. 5 in the red dashed line and agrees well with the measured result. The angular distance between two interference stripes in

  3. Ballistic transport in graphene grown by chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calado, V. E.; Goswami, S.; Xu, Q.

    2014-01-13

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene.

  4. Woven ribbon cable for cryogenic instruments

    NASA Astrophysics Data System (ADS)

    Cunningham, C. R.; Hastings, P. R.; Strachan, J. M. D.

    Robust woven ribbon cables are described for connecting sensors at low temperatures to higher temperature systems. Woven cables have several advantages over conventional wiring or flat ribbon cables in cryostats: heat sinking is easier; twisted pairs may be used; and miniature multi-way connectors are easily incorporated. Their use is demonstrated in making connections from 131 bolometers in two arrays mounted in a dilution refrigerator at 100 mK. Thermal and electrical properties are discussed, as are other possible applications in cryogenic instruments.

  5. Expression of the diabetes risk gene wolframin (WFS1) in the human retina

    PubMed Central

    Schmidt-Kastner, Rainald; Kreczmanski, Pawel; Preising, Markus; Diederen, Roselie; Schmitz, Christoph; Reis, Danielle; Blanks, Janet; Dorey, C. Kathleen

    2009-01-01

    Wolfram syndrome 1 (WFS1, OMIM 222300), a rare genetic disorder characterized by optic nerve atrophy, deafness, diabetes insipidus and diabetes mellitus, is caused by mutations of WFS1, encoding WFS1/wolframin. Non-syndromic WFS1 variants are associated with the risk of diabetes mellitus due to altered function of wolframin in pancreatic islet cells, expanding the importance of wolframin. This study extends a previous report for the monkey retina, using immunohistochemistry to localize wolframin on cryostat and paraffin sections of human retina. In addition, the human retinal pigment epithelial (RPE) cell line termed ARPE-19 and retinas from both pigmented and albino mice were studied to assess wolframin localization. In the human retina, wolframin was expressed in retinal ganglion cells, optic axons and the proximal optic nerve. Wolframin expression in the human retinal pigment epithelium (RPE) was confirmed with intense cytoplasmic labeling in ARPE-19 cells. Strong labeling of the RPE was also found in the albino mouse retina. Cryostat sections of the mouse retina showed a more extended pattern of wolframin labeling, including the inner nuclear layer (INL) and photoreceptor inner segments, confirming the recent report of Kawano et al. (J. Comp. Neurol. 2008: 510, 1-23). Absence of these cells in the human specimens despite the use of human-specific antibodies to wolframin may be related to delayed fixation. Loss of wolframin function in RGCs and the unmyelinated portion of retinal axons could explain optic nerve atrophy in Wolfram Syndrome 1. PMID:19523951

  6. Detectors for the Atacama B-mode Search experiment

    NASA Astrophysics Data System (ADS)

    Appel, John William

    Inflation is the leading theory for explaining the initial conditions that brought about our homogeneous and isotropic Universe. It predicts the presence of gravitational waves in the early Universe, which implant a characteristic B-mode polarization pattern on the Cosmic Microwave Background (CMB). The Atacama B-mode Search (ABS) experiment is a polarimeter observing from Cerro Toco (located in the Atacama desert of Chile at an altitude of 5190 m), searching for the yet undetected B-mode signal. ABS carries 480 superconducting Transition Edge Sensor (TES) Bolometers that couple 150 GHz radiation via planar Ortho-Mode Transducers (OMTs) mounted at the output of corrugated feedhorns. The feedhorn beam is projected onto the sky through crossed Dragonian reflectors, a set of reflective and absorptive filters, and a rotating Half Wave Plate (HWP) that modulates any polarized sky signal at 10.2 Hz. The bolometers are cooled to 300 mK by a He3-He4 adsorption fridge system backed by pulse tubes. The reflectors are located within the 4 K cavity of the cryostat, while the HWP is mounted on frictionless air bearings above the cryostat window. This thesis discusses the development and construction of the ABS detector focal plane, and presents results of its performance in the field through August 2012. The ABS detector array sensitivity of 31 μKs 1/2, together with the experiment's unique set of systematic controls, and expected multi-year integration time, could detect a B-mode signal with tensor to scalar ratio r ˜ 0.1.

  7. Handling and analysis of ices in cryostats and glove boxes in view of cometary samples

    NASA Technical Reports Server (NTRS)

    Roessler, K.; Eich, G.; Heyl, M.; Kochan, H.; Oehler, A.; Patnaik, A.; Schlosser, W.; Schulz, R.

    1989-01-01

    Comet nucleus sample return mission and other return missions from planets and satellites need equipment for handling and analysis of icy samples at low temperatures under vacuum or protective gas. Two methods are reported which were developed for analysis of small icy samples and which are modified for larger samples in cometary matter simulation experiments (KOSI). A conventional optical cryostat system was modified to allow for transport of samples at 5 K, ion beam irradiation, and measurement in an off-line optical spectrophotometer. The new system consists of a removable window plug containing nozzles for condensation of water and volatiles onto a cold finger. This plug can be removed in a vacuum system, changed against another plug (e.g., with other windows (IR, VIS, VUV) or other nozzles). While open, the samples can be treated under vacuum with cooling by manipulators (cut, removal, sample taking, irradiation with light, photons, or ions). After bringing the plug back, the samples can be moved to another site of analysis. For handling the 30 cm diameter mineral-ice samples from the KOSI experiments an 80x80x80 cm glove box made out of plexiglass was used. The samples were kept in a liquid nitrogen bath, which was filled from the outside. A stream a dry N2 and evaporating gas from the bath purified the glove box from impurity gases and, in particular, H2O, which otherwise would condense onto the samples.

  8. Design and Development of a Composite Dome for Experimental Characterization of Material Permeability

    NASA Technical Reports Server (NTRS)

    Estrada, Hector; Smeltzer, Stanley S., III

    1999-01-01

    This paper presents the design and development of a carbon fiber reinforced plastic dome, including a description of the dome fabrication, method for sealing penetrations in the dome, and a summary of the planned test series. This dome will be used for the experimental permeability characterization and leakage validation of composite vessels pressurized using liquid hydrogen and liquid nitrogen at the Cryostat Test Facility at the NASA Marshall Space Flight Center (MSFC). The preliminary design of the dome was completed using membrane shell analysis. Due to the configuration of the test setup, the dome will experience some flexural stresses and stress concentrations in addition to membrane stresses. Also, a potential buckling condition exists for the dome due to external pressure during the leak testing of the cryostat facility lines. Thus, a finite element analysis was conducted to assess the overall strength and stability of the dome for each required test condition. Based on these results, additional plies of composite reinforcement material were applied to local regions on the dome to alleviate stress concentrations and limit deflections. The dome design includes a circular opening in the center for the installation of a polar boss, which introduces a geometric discontinuity that causes high stresses in the region near the hole. To attenuate these high stresses, a reinforcement system was designed using analytical and finite element analyses. The development of a low leakage polar boss system is also investigated.

  9. Histochemical detection of lead and zinc in plant tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, G.; Temple, P.J.

    1975-01-01

    Histochemical studies on uptake and localization of lead and zinc in plant tissues were carried out. A histochemical stain technique was developed to differentiate zinc from lead. Lead was detected in plant tissues by soaking fresh plant materials in freshly prepared sodium rhodizonate stain (0.2% Na rhodizonate acidified to pH3 with glacial acetic acid). Samples were evacuated 5 min and soaked for 30 min before embedding in the congealed stain, then sectioned with a cryostat and examined under a light microscope. Lead particles in plant tissues were stained scarlet-red. Gelatinous, proteinaceous or saccharic embedding materials normally used to prepare plantmore » sampled for sectioning in the cryostat interfered with the color reaction. Sectioning plant samples without staining whole tissues resulted in a weakened response to the stain. Color of stained sample materials were retained for several months if stored in a frozen condition. This technique was used to detect lead both inside and on the surface of plant samples collected in the vicinity of highway and industrial lead sources and to trace the pathways of lead uptake from the air or from contaminated soils. A sodium rhodizonate technique was also developed to be specific for zinc in plant tissues. Plant samples were soaked in a neutral Na-rhodizonate in phosphate buffer at pH 7.5 for observation. The color of zinc developed to produce a purplish or reddish-brown color.« less

  10. System to measure accurate temperature dependence of electric conductivity down to 20 K in ultrahigh vacuum.

    PubMed

    Sakai, C; Takeda, S N; Daimon, H

    2013-07-01

    We have developed the new in situ electrical-conductivity measurement system which can be operated in ultrahigh vacuum (UHV) with accurate temperature measurement down to 20 K. This system is mainly composed of a new sample-holder fixing mechanism, a new movable conductivity-measurement mechanism, a cryostat, and two receptors for sample- and four-probe holders. Sample-holder is pushed strongly against the receptor, which is connected to a cryostat, by using this new sample-holder fixing mechanism to obtain high thermal conductivity. Test pieces on the sample-holders have been cooled down to about 20 K using this fixing mechanism, although they were cooled down to only about 60 K without this mechanism. Four probes are able to be touched to a sample surface using this new movable conductivity-measurement mechanism for measuring electrical conductivity after making film on substrates or obtaining clean surfaces by cleavage, flashing, and so on. Accurate temperature measurement is possible since the sample can be transferred with a thermocouple and∕or diode being attached directly to the sample. A single crystal of Bi-based copper oxide high-Tc superconductor (HTSC) was cleaved in UHV to obtain clean surface, and its superconducting critical temperature has been successfully measured in situ. The importance of in situ measurement of resistance in UHV was demonstrated for this HTSC before and after cesium (Cs) adsorption on its surface. The Tc onset increase and the Tc offset decrease by Cs adsorption were observed.

  11. A small scale remote cooling system for a superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.

    2017-02-01

    Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.

  12. Cryogenic readout techniques for germanium detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benato, G.; Cattadori, C.; Di Vacri, A.

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN -more » Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)« less

  13. Thermal design of the Mu2e detector solenoid

    DOE PAGES

    Dhanaraj, N.; Wands, R.; Buehler, M.; ...

    2014-12-18

    The reference design for a superconducting detector solenoid (DS) for the Mu2e experiment has been completed. In this study, the main functions of the DS are to provide a graded field in the region of the stopping target, which ranges from 2 to 1 T and a uniform precision magnetic field of 1 T in a volume large enough to house a tracker downstream of the stopping target. The inner diameter of the magnet cryostat is 1.9 m and the length is 10.9 m. The gradient section of the magnet is about 4 m long and the spectrometer section withmore » a uniform magnetic field is about 6 m long. The inner cryostat wall supports the stopping target, tracker, calorimeter and other equipment installed in the DS. This warm bore volume is under vacuum during operation. It is sealed on one end by the muon beam stop, while it is open on the other end where it interfaces with the Transport Solenoid. The operating temperature of the magnetic coil is 4.7 K and is indirectly cooled with helium flowing in a thermosiphon cooling scheme. This paper describes the thermal design of the solenoid, including the design aspects of the thermosiphon for the coil cooling, forced flow cooling of the thermal shields with 2 phase LN2 (Liquid Nitrogen) and the transient studies of the cool down of the cold mass as well.« less

  14. Determining solid-fluid interface temperature distribution during phase change of cryogenic propellants using transient thermal modeling

    NASA Astrophysics Data System (ADS)

    Bellur, K.; Médici, E. F.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.

    2018-04-01

    Control of boil-off of cryogenic propellants is a continuing technical challenge for long duration space missions. Predicting phase change rates of cryogenic liquids requires an accurate estimation of solid-fluid interface temperature distributions in regions where a contact line or a thin liquid film exists. This paper described a methodology to predict inner wall temperature gradients with and without evaporation using discrete temperature measurements on the outer wall of a container. Phase change experiments with liquid hydrogen and methane in cylindrical test cells of various materials and sizes were conducted at the Neutron Imaging Facility at the National Institute of Standards and Technology. Two types of tests were conducted. The first type of testing involved thermal cycling of an evacuated cell (dry) and the second involved controlled phase change with cryogenic liquids (wet). During both types of tests, temperatures were measured using Si-diode sensors mounted on the exterior surface of the test cells. Heat is transferred to the test cell by conduction through a helium exchange gas and through the cryostat sample holder. Thermal conduction through the sample holder is shown to be the dominant mode with the rate of heat transfer limited by six independent contact resistances. An iterative methodology is employed to determine contact resistances between the various components of the cryostat stick insert, test cell and lid using the dry test data. After the contact resistances are established, inner wall temperature distributions during wet tests are calculated.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackley, Jason D.; Kislitsyn, Dmitry A.; Beaman, Daniel K.

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noisemore » level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.« less

  16. Focal plane alignment and detector characterization for the Subaru prime focus spectrograph

    NASA Astrophysics Data System (ADS)

    Hart, Murdock; Barkhouser, Robert H.; Carr, Michael; Golebiowski, Mirek; Gunn, James E.; Hope, Stephen C.; Smee, Stephen A.

    2014-07-01

    We describe the infrastructure being developed to align and characterize the detectors for the Subaru Measure- ment of Images and Redshifts (SuMIRe) Prime Focus Spectrograph (PFS). PFS will employ four three-channel spectrographs with an operating wavelength range of 3800 °A to 12600 °A. Each spectrograph will be comprised of two visible channels and one near infrared (NIR) channel, where each channel will use a separate Schmidt camera to image the captured spectra onto their respective detectors. In the visible channels, Hamamatsu 2k × 4k CCDs will be mounted in pairs to create a single 4k × 4k detector, while the NIR channel will use a single Teledyne 4k × 4k H4RG HgCdTe device. The fast f/1.1 optics of the Schmidt cameras will give a shallow depth of focus necessitating an optimization of the focal plane array flatness. The minimum departure from flatness of the focal plane array for the visible channels is set the by the CCD flatness, typically 10 μm peak-to-valley. We will adjust the coplanarity for a pair of CCDs such that the flatness of the array is consistent with the flatness of the detectors themselves. To achieve this we will use an optical non-contact measurement system to measure surface flatness and coplanarity at both ambient and operating temperatures, and use shims to adjust the coplanarity of the CCDs. We will characterize the performance of the detectors for PFS consistent with the scientific goals for the project. To this end we will measure the gain, linearity, full well, quantum efficiency (QE), charge diffusion, charge transfer inefficiency (CTI), and noise properties of these devices. We also desire to better understand the non-linearity of the photon transfer curve for the CCDs, and the charge persistence/reciprocity problems of the HgCdTe devices. To enable the metrology and characterization of these detectors we are building two test cryostats nearly identical in design. The first test cryostat will primarily be used for the coplanarity measurements and sub- pixel illumination testing, and the second will be dedicated to performance characterization requiring at field illumination. In this paper we will describe the design of the test cryostats. We will also describe the system we have built for measuring focal plane array flatness, and examine the precision and error with which it operates. Finally we will detail the methods by which we plan to characterize the performance of the detectors for PFS, and provide preliminary results.

  17. The CUORE slow monitoring systems

    DOE PAGES

    Gladstone, L.; Biare, D.; Cappelli, L.; ...

    2017-09-20

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay inmore » $$^{130}$$Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.« less

  18. The CLAS12 torus detector magnet at Jefferson Laboratory

    DOE PAGES

    Luongo, Cesar; Wiseman, Mark A.; Kashy, David H.; ...

    2015-12-17

    The CLAS12 Torus is a toroidal superconducting magnet, part of the detector for the 12GeV accelerator upgrade at Jefferson Lab. The coils were wound/fabricated by Fermi Lab, with Jlab responsible for all other parts of the project scope, including design, integration, cryostating the individual coils, installation, cryogenics, I&C, etc. The study provides an overview of the CLAS12 Torus magnet features, and serves as a status report of its installation in the experimental hall. Completion and commissioning of the magnet is expected in 2016.

  19. An efficient cooling loop for connecting cryocooler to a helium reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, C.E.; Abbott, C.S.R.; Leitner, D.

    2003-09-21

    The magnet system of the VENUS ECR Ion Source at LBNL has two 1.5-watt cryocoolers suspended in the cryostat vacuum. Helium vapor from the liquid reservoir is admitted to a finned condenser bolted to the cryocooler 2nd stage and returns as liquid via gravity. Small-diameter flexible tubes allow the cryocoolers to be located remotely from the reservoir. With 3.1 watts load, the helium reservoir is maintained at 4.35 K, 0.05K above the cryocooler temperature. Design, analysis, and performance are presented.

  20. Nanotemplate-Enabled Arrays of Highly Heterogeneous Nanostructures for Infrared Detection and Power Generation

    DTIC Science & Technology

    2015-06-01

    organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21- PT -2. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the...patterned region are created with their four edges along the [100] direction to enable symmetric adatom migration from the four side walls to the mesa...excitation light down to 2 μm diameter to study the optical response of individual mesas in samples mounted in a LHe cooled cryostat. A Ti:S laser in

  1. Thermal conductance measurements of bolted copper joints for SuperCDMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, R.; Tatkowski, Greg; Ruschman, M.

    2015-09-01

    Joint thermal conductance testing has been undertaken for bolted copper to copper connections from 60 mK to 26 K. This testing was performed to validate an initial design basis for the SuperCDMS experiment, where a dilution refrigerator will be coupled to a cryostat via multiple bolted connections. Copper used during testing was either gold plated or passivated with citric acid to prevent surface oxidation. Results obtained are well fit by a power law regression of joint thermal conductance to temperature and match well with data collected during a literature review.

  2. The CUORE slow monitoring systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladstone, L.; Biare, D.; Cappelli, L.

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay inmore » $$^{130}$$Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.« less

  3. Torsion Induced Traumatic Optic Neuropathy (TITON): Animal Model for Diagnostics, Drugs Delivery, and Therapeutics for Injuries to the Cental Nervous System

    DTIC Science & Technology

    2016-06-01

    neck and the eye coils are actively decoupled. The following parameters will be used: slice thickness = 1 mm, TR = 4 s, TE = 13 ms, label duration... Eyes were removed with 3-5 mm of optic nerve intact taking care not to stretch or otherwise injure the nerve. Eyes were flash frozen in liquid...nitrogen, then stored at -80°C. The eyes were then sectioned through the optic nerve using a cryostat, then transferred to indium titanium oxide-coated

  4. A LabVIEW based template for user created experiment automation.

    PubMed

    Kim, D J; Fisk, Z

    2012-12-01

    We have developed an expandable software template to automate user created experiments. The LabVIEW based template is easily modifiable to add together user created measurements, controls, and data logging with virtually any type of laboratory equipment. We use reentrant sequential selection to implement sequence script making it possible to wrap a long series of the user created experiments and execute them in sequence. Details of software structure and application examples for scanning probe microscope and automated transport experiments using custom built laboratory electronics and a cryostat are described.

  5. Note: Versatile sample stick for neutron scattering experiments in high electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartkowiak, M., E-mail: marek.bartkowiak@psi.ch; White, J. S.; Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne

    2014-02-15

    We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.

  6. The 1- to 4-K refrigeration techniques for cooling masers on a beam waveguide antenna

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1986-01-01

    The status of technology is reported for various 1- to 4-K commercially available refrigeration systems capable of producing 1.5-K refrigeration to cool masers and superconducting cavity oscillators on the proposed beam waveguide antenna. The design requirements for the refrigeration system and the cryostat are presented. A continuously operating evaporation refrigerator that uses capillary tubing to provide a continuous, self-regulating flow of helium at approximately 1.5 K has been selected as the first refrigerator design for the beam waveguide antenna.

  7. The test facility for the short prototypes of the LHC superconducting magnets

    NASA Astrophysics Data System (ADS)

    Delsolaro, W. Venturini; Arn, A.; Bottura, L.; Giloux, C.; Mompo, R.; Siemko, A.; Walckiers, L.

    2002-05-01

    The LHC development program relies on cryogenic tests of prototype and model magnets. This vigorous program is pursued in a dedicated test facility based on several vertical cryostats working at superfluid helium temperatures. The performance of the facility is detailed. Goals and test equipment for currently performed studies are reviewed: quench analysis and magnet protection studies, measurement of the field quality, test of ancillary electrical equipment like diodes and busbars. The paper covers the equipment available for tests of prototypes and some special series of LHC magnets to come.

  8. Investigation of Noise in Solids at Low Temperatures.

    DTIC Science & Technology

    1980-08-01

    surroundinz liquid helium dewar. The procedure used has been to liquefy helium gas and fill the liquid helium dewar. The liquefier operation is then...cryostat is at room temperature and is 25’ diameter X 72" long. Inside this is the liquid nitrogen shield which is a shell formed by two co-axial...cylinders of 22" and 19" diameters X 68’ long. This liquid nitrogen tank has a volume of 108 k. Across the bottom of this tank is a 1/16" thick copper

  9. Final Assembly and Factory Testing of the Jefferson Lab SHMS Spectrometer Quadrupole and Dipole Superconducting Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brindza, Paul; Lassiter, Steven; Sun, Eric

    Jefferson Lab is constructing an 11 Gev/c electron spectrometer called the Super High Momentum Spectrometer (SHMS) as part of the 12 GeV JLAB upgrade for experimental Hall C. Three of the five superconducting(SC) SHMS magnets are under construction at SigmaPhi in Vannes France as a result of an international competition for design and fabrication. The three magnets Q2 and Q3 60 cm bore quadrupoles and the 60 cm warm bore dipole are complete or near complete and have many design features in common. All three magnets share a common superconductor, collaring system, cryostat design, cold to warm support, cryogenic interface,more » burnout resistant current leads, DC power supply, quench protection, instrumentation and controls. The three magnets are collared, installed in cryostats and welded up and in various stages of final testing. The Q2 quadrupole is due to ship from France to America in August arriving during this ASC conference and has passed all final hipot, leak and pressure tests. The dipole is in leak and pressure testing as of July 2016 while the Q3 quadrupole requires some outer vacuum vessel assembly. Delivery of the Q3 and Dipole magnets will follow the Q2 at about 1 month intervals. Lastly, factory testing have included hipot and electrical tests, magnetic tests at low field, mechanical alignments to center the coils, leak tests and ASME Code required pressure tests. Upon installation in Hall C at JLAB cold testing will commence.« less

  10. Potential Second-Harmonic Ghost Bands in Fourier Transform Infrared (FT-IR) Difference Spectroscopy of Proteins.

    PubMed

    Ito, Shota; Kandori, Hideki; Lorenz-Fonfria, Victor A

    2018-06-01

    Fourier transform infrared (FT-IR) difference absorption spectroscopy is a common method for studying the structural and dynamical aspects behind protein function. In particular, the 2800-1800 cm -1 spectral range has been used to obtain information about internal (deuterated) water molecules, as well as site-specific details about cysteine residues and chemically modified and artificial amino acids. Here, we report on the presence of ghost bands in cryogenic light-induced FT-IR difference spectra of the protein bacteriorhodopsin. The presence of these ghost bands can be particularly problematic in the 2800-1900 cm -1 region, showing intensities similar to O-D vibrations from water molecules. We demonstrate that they arise from second harmonics from genuine chromophore bands located in the 1400-850 cm -1 region, generated by double-modulation artifacts caused from reflections of the IR beam at the sample and at the cryostat windows back to the interferometer (inter-reflections). The second-harmonic ghost bands can be physically removed by placing an optical filter of suitable cutoff in the beam path, but at the cost of losing part of the multiplexing advantage of FT-IR spectroscopy. We explored alternatives to the use of optical filters. Tilting the cryostat windows was effective in reducing the intensity of the second harmonic artifacts but tilting the sample windows was not, presumably by their close proximity to the focal point of the IR beam. We also introduce a simple numerical post-processing approach that can partially, but not fully, correct for second-harmonic ghost bands in FT-IR difference spectra.

  11. Note: Unshielded bilateral magnetoencephalography system using two-dimensional gradiometers

    NASA Astrophysics Data System (ADS)

    Seki, Yusuke; Kandori, Akihiko; Ogata, Kuniomi; Miyashita, Tsuyoshi; Kumagai, Yukio; Ohnuma, Mitsuru; Konaka, Kuni; Naritomi, Hiroaki

    2010-09-01

    Magnetoencephalography (MEG) noninvasively measures neuronal activity with high temporal resolution. The aim of this study was to develop a new type of MEG system that can measure bilateral MEG waveforms without a magnetically shielded room, which is an obstacle to reducing both the cost and size of an MEG system. An unshielded bilateral MEG system was developed using four two-dimensional (2D) gradiometers and two symmetric cryostats. The 2D gradiometer, which is based on a low-Tc superconducting quantum interference device and wire-wound pickup coil detects a magnetic-field gradient in two orthogonal directions, or ∂/∂x(∂2Bz/∂z2), and reduces environmental magnetic-field noise by more than 50 dB. The cryostats can be symmetrically positioned in three directions: vertical, horizontal, and rotational. This makes it possible to detect bilateral neuronal activity in the cerebral cortex simultaneously. Bilateral auditory-evoked fields (AEF) of 18 elderly subjects were measured in an unshielded hospital environment using the MEG system. As a result, both the ipsilateral and the contralateral AEF component N100m, which is the magnetic counterpart of electric N100 in electroencephalography and appears about 100 ms after the onset of an auditory stimulus, were successfully detected for all the subjects. Moreover, the ipsilateral P50m and the contralateral P50m were also detected for 12 (67%) and 16 (89%) subjects, respectively. Experimental results demonstrate that the unshielded bilateral MEG system can detect MEG waveforms, which are associated with brain dysfunction such as epilepsy, Alzheimer's disease, and Down syndrome.

  12. The opto-cryo-mechanical design of the short wavelength camera for the CCAT Observatory

    NASA Astrophysics Data System (ADS)

    Parshley, Stephen C.; Adams, Joseph; Nikola, Thomas; Stacey, Gordon J.

    2014-07-01

    The CCAT observatory is a 25-m class Gregorian telescope designed for submillimeter observations that will be deployed at Cerro Chajnantor (~5600 m) in the high Atacama Desert region of Chile. The Short Wavelength Camera (SWCam) for CCAT is an integral part of the observatory, enabling the study of star formation at high and low redshifts. SWCam will be a facility instrument, available at first light and operating in the telluric windows at wavelengths of 350, 450, and 850 μm. In order to trace the large curvature of the CCAT focal plane, and to suit the available instrument space, SWCam is divided into seven sub-cameras, each configured to a particular telluric window. A fully refractive optical design in each sub-camera will produce diffraction-limited images. The material of choice for the optical elements is silicon, due to its excellent transmission in the submillimeter and its high index of refraction, enabling thin lenses of a given power. The cryostat's vacuum windows double as the sub-cameras' field lenses and are ~30 cm in diameter. The other lenses are mounted at 4 K. The sub-cameras will share a single cryostat providing thermal intercepts at 80, 15, 4, 1 and 0.1 K, with cooling provided by pulse tube cryocoolers and a dilution refrigerator. The use of the intermediate temperature stage at 15 K minimizes the load at 4 K and reduces operating costs. We discuss our design requirements, specifications, key elements and expected performance of the optical, thermal and mechanical design for the short wavelength camera for CCAT.

  13. Sea salt irradiation experiments relevant to the surface conditions of ocean worlds such as Europa and Enceladus

    NASA Astrophysics Data System (ADS)

    Hand, Kevin P.; Carlson, Robert W.

    2015-11-01

    We have conducted a set of laboratory experiments to measure changes in NaCl, KCl, MgCl2, and mixtures of these salts, as a function of exposure to the temperature, pressure, and radiation conditions relevant to ice covered ocean worlds in our solar system. Reagent grade salts were placed onto a diffuse aluminum target at the end of a cryostat coldfinger and loaded into an ultra-high vacuum chamber. The samples were then cooled to 100 K and the chamber pumped down to ~10-8 Torr, achieving conditions comparable to the surface of several moons of the outer solar system. Samples were subsequently irradiated with 10 keV electrons at an average current of 1 µA.We examined a range of conditions for NaCl including pure salts grains (~300 µm diameter), salt grains with water ice deposited on top, and evaporites. For the evaporites saturated salt water was loaded onto the cryostat target, the chamber closed, and then slowly pumped down to remove the water, leaving behind a salt evaporate for irradiation.The electron bombardment resulted in the trapping of electrons in halogen vacancies, yielding the the F- and M- color centers. After irraditiation we observed yellow-brown discoloration in NaCl. KCl was observed to turn a distinct violet. In NaCl these centers have strong absorptions at 450 nm and 720 nm, respectively, providing a highly diagnostic signature of otherwise transparent alkali halides, making it possible to remotely characterize and quantify the composition and salinity of ocean worlds.

  14. ICARUS: An Innovative Large LAR Detector for Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Vignoli, C.; Barni, D.; Disdier, J. M.; Rampoldi, D.; Icarus Collaboration

    2006-04-01

    ICARUS is an international project that foresees the installation of very large LAr detectors inside the Gran Sasso underground laboratory in order to be sensitive to rare phenomena of particle physics. The detection technique is based on the collection of electrons produced by particle interactions in LAr by a matrix of thousands of thin wires. At the moment the project foresees the installation of a 600,000-kg vessel (T600). The total amount of LAr can be expanded in a modular way to masses of the order of 106 kg. The T600 houses two identical 300,000-kg Ar sub-cryostats that are aluminum boxes about 20-m long, 4-m high and 4-m wide. Safety requirements for the underground installation have led to a unique design for the vessels to prevent LAr spillages even in the case of inner cryostat failure. Electrons must drift over meters requiring the development of special gas and liquid Ar purification units to provide an extremely high LAr purity (better then 0.1 ppb). The cooling system has been designed to assure a high thermal uniformity in the detector volume (less than 1-K differential). The cryogenic system associated with the final ICARUS configuration is based on three N2 refrigerators, three 30-m3 tanks and pump driven two-phase N2 forced-flow cooling of the various sub-systems. The T600 was successfully tested in Pavia in 2001 and it is now under installation in Gran Sasso for final operation. The future mass expansion strategy is under investigation.

  15. Final Assembly and Factory Testing of the Jefferson Lab SHMS Spectrometer Quadrupole and Dipole Superconducting Magnets

    DOE PAGES

    Brindza, Paul; Lassiter, Steven; Sun, Eric; ...

    2017-06-01

    Jefferson Lab is constructing an 11 Gev/c electron spectrometer called the Super High Momentum Spectrometer (SHMS) as part of the 12 GeV JLAB upgrade for experimental Hall C. Three of the five superconducting(SC) SHMS magnets are under construction at SigmaPhi in Vannes France as a result of an international competition for design and fabrication. The three magnets Q2 and Q3 60 cm bore quadrupoles and the 60 cm warm bore dipole are complete or near complete and have many design features in common. All three magnets share a common superconductor, collaring system, cryostat design, cold to warm support, cryogenic interface,more » burnout resistant current leads, DC power supply, quench protection, instrumentation and controls. The three magnets are collared, installed in cryostats and welded up and in various stages of final testing. The Q2 quadrupole is due to ship from France to America in August arriving during this ASC conference and has passed all final hipot, leak and pressure tests. The dipole is in leak and pressure testing as of July 2016 while the Q3 quadrupole requires some outer vacuum vessel assembly. Delivery of the Q3 and Dipole magnets will follow the Q2 at about 1 month intervals. Lastly, factory testing have included hipot and electrical tests, magnetic tests at low field, mechanical alignments to center the coils, leak tests and ASME Code required pressure tests. Upon installation in Hall C at JLAB cold testing will commence.« less

  16. An FPGA-based instrumentation platform for use at deep cryogenic temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway Lamb, I. D.; Colless, J. I.; Hornibrook, J. M.

    2016-01-15

    We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.

  17. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  18. Magneto-optical system for high speed real time imaging

    NASA Astrophysics Data System (ADS)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  19. High resolution powder diffraction at HASYLAB

    NASA Astrophysics Data System (ADS)

    Wroblewski, Thomas; Ihringer, Jorg; Maichle, Josef

    1988-04-01

    HASYLAB's beamline F1 was modified for powder diffraction in a triple-axis geometry. The diffractometer consists of two independent circles for θ and 2θ motion on either side of the beam. The θ circle can be translated along its axis. This makes the instrument highly flexible for the installation of different attachments like a cryostat which was used for low temperature measurements on the new high Tc superconductors. Measurements on zeolites demonstrate the excellent resolution and signal-to-noise ratio. Novel measuring strategies concerning the use of multiple analyzers, the examination of phase transitions and anomalous dispersion are presented.

  20. A Compton Suppressed Gamma Ray Counter For Radio Assay of Materials

    NASA Astrophysics Data System (ADS)

    Godfrey, Benjamin

    2016-03-01

    Rare event searches, such as direct dark matter experiments, require materials with ultra-low levels of natural radioactivity. We present a neutron activation analysis (NAA) technique for assaying metals, specifically titanium used for cryostat construction. Earlier attempts at NAA encountered limitations due to bulk activation via (n, p) reactions, which contributed to large continuum backgrounds due to Compton tails. Our method involves a heavy water shielded exposure to minimize (n,p) reactions and a sodium iodide shielded high purity germanium counter for the gamma ray assay. Preliminary results on assays for U/Th/K contamination in titaniumwill be presented.

  1. Multiplex Superconducting Transmission Line for green power consolidation on a Smart Grid

    NASA Astrophysics Data System (ADS)

    McIntyre, P.; Gerity, J.; Kellams, J.; Sattarov, A.

    2017-12-01

    A multiplex superconducting transmission line (MSTL) is being developed for applications requiring interconnection of multi-MW electric power generation among a number of locations. MSTL consists of a cluster of many 2- or 3-conductor transmission lines within a coaxial cryostat envelope. Each line operates autonomously, so that the interconnection of multiple power loads can be done in a failure-tolerant network. Specifics of the electrical, mechanical, and cryogenic design are presented. The consolidation of transformation and conditioning and the failure-tolerant interconnects have the potential to offer important benefit for the green energy components of a Smart Grid.

  2. Methods of Testing Thermal Insulation and Associated Test Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2004-01-01

    The system and method for testing thermal insulation uses a cryostatic insulation tester having a vacuum chamber and a cold mass including a test chamber and upper and lower guard chambers adjacent thereto. The thermal insulation is positioned within the vacuum chamber and adjacent the cold mass. Cryogenic liquid is supplied to the test chamber, upper guard and lower guard to create a first gas layer in an upper portion of the lower guard chamber and a second gas layer in an upper portion of the test chamber. Temperature are sensed within the vacuum chamber to test the thermal insulation.

  3. Precooling of a dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Pavlov, Valentin N.

    A non-trivial system for Precooling of the dilution refrigerator for low-temperatureexperiments on an ISOL-facility is described in detail. Neither exchange gas in the vacuum jacket of the cryostat nor a demantable window in the 4K shield are used in this system. Instead of that the dilution refrigerator is supplemented with two capillaries and a heater in order to cool all low-temperature parts of the refrigerator down to start conditions. The, time of cooling depends on the total impedance of the first heat exchanger. Such system has been developed and tested in Dubna, and it is in operation.

  4. Superconducting properties of lithographic lead break junctions

    NASA Astrophysics Data System (ADS)

    Weber, David; Scheer, Elke

    2018-01-01

    We have fabricated mechanically controlled break junction samples made of lead (Pb) by means of state-of-the-art nanofabrication methods: electron beam lithography and physical vapour deposition. The electrical and magnetic properties were characterized in a {}3{He} cryostat and showed a hard superconducting gap. Temperature and magnetic field dependence of tunnel contacts were compared and quantitatively described by including either thermal broadening of the density of states or pair breaking in the framework of a Skalski model, respectively. We show point contact spectra of few-atom contacts and present tunneling spectra exhibiting a superconducting double-gap structure.

  5. Intrinsic magnetic refrigeration of a single electron transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciccarelli, C.; Ferguson, A. J.; Campion, R. P.

    In this work, we show that aluminium doped with low concentrations of magnetic impurities can be used to fabricate quantum devices with intrinsic cooling capabilities. We fabricate single electron transistors made of aluminium doped with 2% Mn by using a standard multi angle evaporation technique and show that the quantity of metal used to fabricate the devices generates enough cooling power to achieve a drop of 160 mK in the electron temperature at the base temperature of our cryostat (300 mK). The cooling mechanism is based on the magneto-caloric effect from the diluted Mn moments.

  6. Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin

    2017-01-01

    Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.

  7. Neutron-transmutation-doped germanium bolometers

    NASA Technical Reports Server (NTRS)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  8. High field superconducting solenoid for the LASA in Milan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acerbi, E.; Aleessandria, F.; Baccaglioni, G.

    1988-03-01

    This paper presents the preliminary design of a 19 T superconducting facility for the LASA Laboratory in Milan. The main features of the facility, realized with NbTi, Nb/sub 3/Sn and V/sub 3/Ga coils, are represented by an high field homogeneity in the center region and by the presence of two cryostats which allow to operate separately the NbTi coil (useful bore 0.55 m) and the Nb/sub 3/Sn - V/sub 3/Ga coils (useful bore 0.05 - 0.07 m). The main parameters of the facility and the design criteria are discussed in details.

  9. An indirect method for quantitation of cellular zinc content of Timm-stained cerebellar samples by energy dispersive X-ray microanalysis.

    PubMed

    Farkas, I; Szerdahelyi, P; Kása, P

    1988-01-01

    The absolute concentration of zinc in the Purkinje cells of the rat cerebellum was determined by means of energy dispersive X-ray microanalysis (EDAX). Gelatine blocks with known zinc concentrations were stained by Timm's sulphide-silver method, and their silver concentrations were measured by EDAX. A linear correlation was found between the zinc and silver concentrations and this linear function was used as a quantitative calibration for evaluation of sulphide-silver staining, after perfusion with sodium-sulphide solution, fixation with glutaraldehyde, cryostat sectioning and staining of cerebellar samples in Timm's reagent.

  10. Electron Spin Resonance in CuSO45H2O down to 100 mK

    NASA Astrophysics Data System (ADS)

    Kadowaki, Kazuo; Chiba, Yoshiaki; Kindo, Koichi; Date, Muneyuki

    1988-12-01

    Copper sulfate pentahydrate CuSO45H2O is investigated by ESR at 9, 17, 24, 35 and 50 GHz regions down to about 100 mK using a combined cryostat of 3He and adiabatic demagnetization. The temperature dependent exchange interaction JAB between inequivalent site spins A and B is found. It is about 0.11 K at room temperature and increases with decreasing temperature up to 0.24 K. Temperature dependent resonance shifts are attributed to the exchange shift coming from non-resonant dissimilar spins. Partial order effect below 1 K is discussed.

  11. Front-end electronics for the LZ experiment

    NASA Astrophysics Data System (ADS)

    Morad, James; LZ Collaboration

    2016-03-01

    LZ is a second generation direct dark matter detection experiment with 5.6 tonnes of liquid xenon active target, which will be instrumented as a two-phase time projection chamber (TPC). The peripheral xenon outside the active TPC (``skin'') will also be instrumented. In addition, there will be a liquid scintillator based outer veto surrounding the main cryostat. All of these systems will be read out using photomultiplier tubes. I will present the designs for front-end electronics for all these systems, which have been optimized for shaping times, gains, and low noise. Preliminary results from prototype boards will also be presented.

  12. Thermal conductance measurements of bolted copper joints for SuperCDMS

    DOE PAGES

    Schmitt, R. L.; Tatkowski, G.; Ruschman, M.; ...

    2015-04-28

    Joint thermal conductance testing has been undertaken for bolted copper to copper connections from 60 mK to 26 K. This testing was performed to validate an initial design basis for the SuperCDMS experiment, where a dilution refrigerator will be coupled to a cryostat via multiple bolted connections. Copper used during testing was either gold plated or passivated with citric acid to prevent surface oxidation. Finally, the results we obtained are well fit by a power law regression of joint thermal conductance to temperature and match well with data collected during a literature review.

  13. Experience with a cholinesterase histochemical technique for rectal suction biopsies in the diagnosis of Hirschsprung's disease

    PubMed Central

    Trigg, P. H.; Belin, R.; Haberkorn, S.; Long, W. J.; Nixon, H. H.; Plaschkes, J.; Spitz, L.; Willital, G. H.

    1974-01-01

    Cryostat sections from 160 rectal suction biopsies were stained for cholinesterases by the method of Karnovsky and Roots (1964) in an attempt to facilitate the diagnosis of Hirschsprung's disease. The method proved at least as reliable as experienced assessment of paraffin haematoxylin-eosin sections, and appeared to offer the advantages of reduced scanning fatigue and superior demonstration of the increased cholinesterase-positive nerves in Hirschprung's disease. Contrary to the findings of Meier-Ruge (1971) it was not possible to base a diagnosis on mucosal cholinesterase activity. Images PMID:4832300

  14. Long-term performance of the passive thermal control systems of the IRAS spacecraft

    NASA Technical Reports Server (NTRS)

    Mason, P. V.

    1988-01-01

    Degradation of passive thermal control systems in space is a matter of serious concern and has been observed in many missions. The performance of the passive thermal control systems of the Infrared Astronomical Satellite (IRAS) over a period of three years is reported here. An exterior temperature of 200 K and a sunshade temperature of approximately 100 K were maintained over this period without significant degradation. The temperature of the telescope contained in the IRAS cryostat was also observed for two years after expenditure of the helium cryogen. It remained at 100 K with no degradation.

  15. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    NASA Astrophysics Data System (ADS)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken

    2010-11-01

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  16. The CUORE cryostat and its bolometric detector

    DOE PAGES

    Santone, D.; Alduino, C.; Alfonso, K.; ...

    2017-02-16

    CUORE is a cryogenic detector that will be operated at LNGS to search for neutrinoless double beta decay (0νββ) of 130Te. The detector installation was completed in summer 2016. Before the installation, several cold runs were done to test the cryogenic system performance. In the last cold run the base temperature of 6.3 mK was reached in stable condition. CUORE-0, a CUORE prototype, has proven the feasibility of CUORE, demonstrating that the target background of 0.01 counts/keV/kg/y and the energy resolution of 5 keV are within reach.

  17. Monoclonal Antibodies against the Drosophila Nervous System

    NASA Astrophysics Data System (ADS)

    Fujita, Shinobu C.; Zipursky, Stephen L.; Benzer, Seymour; Ferrus, Alberto; Shotwell, Sandra L.

    1982-12-01

    A panel of 148 monoclonal antibodies directed against Drosophila neural antigens has been prepared by using mice immunized with homogenates of Drosophila tissue. Antibodies were screened immunohistochemically on cryostat sections of fly heads. A large diversity of staining patterns was observed. Some antigens were broadly distributed among tissues; others were highly specific to nerve fibers, neuropil, muscle, the tracheal system, cell nuclei, photoreceptors, or other structures. The antigens for many of the antibodies have been identified on immunoblots. Monoclonal antibodies that identify specific molecules within the nervous system should prove useful in the study of the molecular genetics of neural development.

  18. Fused silica mirror development for SIRTF

    NASA Technical Reports Server (NTRS)

    Barnes, W. P., Jr.

    1983-01-01

    An advanced design, lightweight, fuse-quartz mirror of sandwich construction was evaluated for optical figure performance at cryogenic temperatures. A low temperature shroud was constructed with an integral mirror mount and interface to a cryostat for use in a vacuum chamber. The mirror was tested to 13 K. Cryogenic distortion of the mirror was measured interferometrically. Separate interferometry of the chamber window during the test permitted subtraction of the small window distortions from the data. Results indicate that the imaging performance of helium cooled, infrared telescopes will be improved using this type of mirror without correction of cryogenic distortion of the primary mirror.

  19. Topochemistry of trace metals in nasal mucosa. Potentialities of some histochemical methods and energy dispersive X-ray microanalysis.

    PubMed

    Torjussen, W; Haug, F M; Olsen, A; Andersen, I

    1978-01-01

    Histochemical methods and energy dispersive X-ray micro-analysis (EDX-analysis) were evaluated in model experiments and on tissue sections for their usefulness in detecting traces of metals in biological tissue. The goal for this study was to establish a method for localization of nickel deposits in the nasal mucosa, where it has been found in concentrations between 1 and 40 microgram/g in nickel exposed individuals. The histochemical methods tested were staining with dimethylglyoxime, rubeanic acid and dithizone, the Turnbull and Prussian blue methods and TIMM'S sulphide silver procedure. In model experiments nickel-, cobalt-, copper-, zinc- and ironsalts were applied to thin-layer chromatography sheets (TLC-sheets) and stained by the histochemical methods. Spots containing 500 and 50 ng of these metals represented the smallest amounts that could consistently be detected in these experiments, except for the sulphide silver method which seemed a little more sensitive. With the latter method, moreover, zinc was detected in 40 micrometer thick cryostat sections of gelatine made up with 1 microgram/g of the metal. For nickel the corresponding figure was 10 to 50 microgram/g. On specimens of nasal mucosa from nickel-exposed workers, a faint colour was obtained in 40 micron thick cryostat sections from specimens that had been immersed in dithizone, but the colour was too weak for histological analysis. None of the other coloured chelating agents caused noticeable staining when applied to blocks or to cryostat sections. TIMM'S sulphide silver method caused strong staining of the basal layers of the surface epithelium and of fibroblast-like cells in the underlying connective tissue. This staining pattern is described in more detail in a separate report. Rat liver tissue was analyzed by atomic absorption before and after araldite embedding. Blocks of gelatine made up with nickel, copper, zinc and iron were embedded in epoxy resin and analyzed by atomic absorption. Large changes in the metal concentrations, usually an increase, were found after embedding. Ultrathin sections from this material were used to test the sensitivity of the EDX-equipment. Referring to the concentrations determined by atomic absorption in the embedded material, iron was detected at 1215 microgram/g and 362 microgram/g (gelatine standards) but not at 167 microgram/g (rat liver). Similar values could not be determined for nickel, copper or zinc, because of background radiation resulting from the presence of these metals in the instrument. We did not succeed in establishing a procedure for detecting nickel deposits in nasal mucosa with any of the methods which were tested. The most sensitive but least specific of the tested methods for visualizing heavy metals in the nasal mucosa, was TIMM'S sulphide silver procedure. The preparation of tissue for this method is discussed.

  20. The EBIT Calorimeter Spectrometer: A New, Permanent User Facility at the LLNL EBIT

    NASA Technical Reports Server (NTRS)

    Porter, S.

    2007-01-01

    The EBIT Calorimeter Spectrometer (ECS) has recently been completed and is currently being installed at the EBIT facility at the Lawrence Livermore National Laboratory. The ECS will replace the smaller XRS/EBIT spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory. The new ECS spectrometer was built from the ground up to be a low maintenance, high performance microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 us event timing, and capable of uninterrupted acquisition sessions of over 70 hours at 50 mK. The XRSIEBIT program has been extremely successful, producing over two-dozen refereed publications on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility, with many more publications in preparation. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. This proposed future instrument would include a hybrid detector system with 0.8 eV resolution in the band from 0.1-1.0 keV, 2 eV from 0.1-10 keV, and 30 eV from 0.5-100 keV, with high quantum efficiency in each band. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES spectrometer.

  1. The opto-mechanical design for GMOX: a next-generation instrument concept for Gemini

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Barkhouser, Robert; Robberto, Massimo; Ninkov, Zoran; Gennaro, Mario; Heckman, Timothy M.

    2016-08-01

    We present the opto-mechanical design of GMOX, the Gemini Multi-Object eXtra-wide-band spectrograph, a potential next-generation (Gen-4 #3) facility-class instrument for Gemini. GMOX is a wide-band, multi-object, spectrograph with spectral coverage spanning 350 nm to 2.4 um with a nominal resolving power of R 5000. Through the use of Digital Micromirror Device (DMD) technology, GMOX will be able to acquire spectra from hundreds of sources simultaneously, offering unparalleled flexibility in target selection. Utilizing this technology, GMOX can rapidly adapt individual slits to either seeing-limited or diffraction-limited conditions. The optical design splits the bandpass into three arms, blue, red, and near infrared, with the near-infrared arm being split into three channels covering the Y+J band, H band, and K band. A slit viewing camera in each arm provides imaging capability for target acquisition and fast-feedback for adaptive optics control with either ALTAIR (Gemini North) or GeMS (Gemini South). Mounted at the Cassegrain focus, GMOX is a large (1.3 m x 2.8 m x 2.0 m) complex instrument, with six dichroics, three DMDs (one per arm), five science cameras, and three acquisition cameras. Roughly half of these optics, including one DMD, operate at cryogenic temperature. To maximize stiffness and simplify assembly and alignment, the opto-mechanics are divided into three main sub-assemblies, including a near-infrared cryostat, each having sub-benches to facilitate ease of alignment and testing of the optics. In this paper we present the conceptual opto-mechanical design of GMOX, with an emphasis on the mounting strategy for the optics and the thermal design details related to the near-infrared cryostat.

  2. The Submillimeter Array – current status and future plans

    NASA Astrophysics Data System (ADS)

    Blundell, Raymond

    2018-01-01

    The current SMA receiver systems were designed in the mid-1990s and have been operating for more than fifteen years. With regular upgrades to receivers, deployment of the SWARM correlator, expansion of the IF signal transport bandwidth via improvements to the analog IF signal processing hardware, and many other enhancements, the SMA currently greatly outperforms its original specifications in terms of sensitivity, instantaneous bandwidth, and availability of observing modes such as full-Stokes polarization and dual frequency operation.We have recently started to implement a three-year instrument upgrade plan, which we are calling the wSMA. The wSMA will offer even wider bandwidth operation than the current SMA and improved sensitivity. The major subsystems that will form the wSMA include significantly improved, dual polarization receiver cartridges housed in a new cryostat; local oscillator units incorporating modern mm-wave technology; an upgraded signal transmission system; and a further expansion of the SWARM correlator. The cryostat will be cooled by a low-maintenance pulse-tube cryocooler. Two dual-polarization receiver cartridges will cover approximately the same sky frequencies as the current receiver sets; the low-band receiver will be fed by an LO unit covering 210-270 GHz, and the high-band receiver will be fed by an LO covering 280-360 GHz. With a receiver IF band of 4-20 GHz, this will enable continuous sky frequency coverage from 190 GHz to 380 GHz.Details of the upgrade plans will be presented together with a discussion of scientific opportunities afforded by this upgrade, which, once implemented, will enable the SMA to continue to produce the highest quality science throughout the next decade.

  3. Identification of a Peripheral Nerve Neurite Growth-Promoting Activity by Development and Use of an in vitro Bioassay

    NASA Astrophysics Data System (ADS)

    Sandrock, Alfred W.; Matthew, William D.

    1987-10-01

    The effective regeneration of severed neuronal axons in the peripheral nerves of adult mammals may be explained by the presence of molecules in situ that promote the effective elongation of neurites. The absence of such molecules in the central nervous system of these animals may underlie the relative inability of axons to regenerate in this tissue after injury. In an effort to identify neurite growth-promoting molecules in tissues that support effective axonal regeneration, we have developed an in vitro bioassay that is sensitive to substrate-bound factors of peripheral nerve that influence the growth of neurites. In this assay, neonatal rat superior cervical ganglion explants are placed on longitudinal cryostat sections of fresh-frozen sciatic nerve, and the regrowing axons are visualized by catecholamine histofluorescence. Axons are found to regenerate effectively over sciatic nerve tissue sections. When ganglia are similarly explanted onto cryostat sections of adult rat central nervous system tissue, however, axonal regeneration is virtually absent. We have begun to identify the molecules in peripheral nerve that promote effective axonal regeneration by examining the effect of antibodies that interfere with the activity of previously described neurite growth-promoting factors. Axonal elongation over sciatic nerve tissue was found to be sensitive to the inhibitory effects of INO (for inhibitor of neurite outgrowth), a monoclonal antibody that recognizes and inhibits a neurite growth-promoting activity from PC-12 cell-conditioned medium. The INO antigen appears to be a molecular complex of laminin and heparan sulfate proteoglycan. In contrast, a rabbit antiserum that recognizes laminin purified from mouse Engelbreth-Holm-Swarm (EHS) sarcoma, stains the Schwann cell basal lamina of peripheral nerve, and inhibits neurite growth over purified laminin substrata has no detectable effect on the rate of axonal regeneration in our assay.

  4. Thermal Performance of Biological Substance Systems in Vitro Under Static and Dynamic Conditions at the Cryogenic Test Laboratory, NASA Kennedy Space Center, USA

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, James E.; Steinrock, T. (Technical Monitor)

    2001-01-01

    A unique research program, including a comprehensive study of thermal performance at cryogenic vacuum insulation systems, was performed at the NASA Kennedy Space Center. The main goal was to develop a new soft vacuum system (from 1 torr to 10 torr) that provides an intermediate level of performance (k-value below 4.8 mW/m-K). Liquid nitrogen boil-off methods were used to test conventional materials, novel materials, and certain combinations. The test articles included combinations of aluminum foil, fiberglass paper, polyester fabric, silica aerogel composite blanket, fumed silica, silica aerogel powder, and syntactic foam. A new LCI system was developed at the Cryogenics Test Laboratory. This system performs exceptionally well at soft vacuum levels and nearly as good as an MLI at high vacuum levels. Apparent thermal conductivities for the LCI range from 2 mW/m-K at soft vacuum to 0.1 mW/m-K at high vacuum. Several cryostats were designed, constructed, and calibrated by the Cryogenics Test Laboratory at KSC NASA as part of this research program. The cryostat test apparatus is a liquid nitrogen boil-off calorimeter system for direct measurement of the apparent thermal conductivity at a fixed vacuum level between 5 x 10(exp -5) and 760 torr. The apparatus is also used for transient measurements of temperature profiles. The development of efficient, robust cryogenic insulation systems has been a targeted area of research for a number of years. Improved methods of characterization, testing, and evaluation of complex biological substance systems for cryosurgery and cryobiology are the focus of this paper.

  5. Spectral measurements of the cosmic microwave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogut, A.J.

    1989-04-01

    Three experiments have measured the intensity of the Cosmic Microwave Background (CMB) at wavelengths 4.0, 3.0, and 0.21 cm. The measurement at 4.0 cm used a direct-gain total-power radiometer to measure the difference in power between the zenith sky and a large cryogenic reference target. Foreground signals are measured with the same instrument and subtracted from the zenith signal, leaving the CMB as the residual. The reference target consists of a large open-mouth cryostat with a microwave absorber submerged in liquid helium; thin windows block the radiative heat load and prevent condensation atmospheric gases within the cryostat. The thermodynamic temperaturemore » of the CMB at 4.0 cm is 2.59 +- 0.07 K. The measurement at 3.0 cm used a superheterodyne Dicke-switched radiometer with a similar reference target to measure the zenith sky temperature. A rotating mirror allowed one of the antenna beams to be redirected to a series of zenith angles, permitting automated atmospheric measurements without moving the radiometer. A weighted average of 5 years of data provided the thermodynamic temperature of the CMB at 3.0 cm of 2.62 +- 0.06 K. The measurement at 0.21 cm used Very Large Array observations of interstellar ortho-formaldehyde to determine the CMB intensity in molecular clouds toward the giant HII region W51A (G49.5-0.4). Solutions of the radiative transfer problem in the context of a large velocity gradient model provided estimates of the CMB temperature within the foreground clouds. Collisional excitation from neutral hydrogen molecules within the clouds limited the precision of the result. The thermodynamic temperature of the CMB at 0.21 cm is 3.2 +- 0.9 K. 72 refs., 27 figs., 38 tabs.« less

  6. Cylindrical cryogenic calorimeter testing of six types of multilayer insulation systems

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Johnson, W. L.

    2018-01-01

    Extensive cryogenic thermal testing of more than 100 different multilayer insulation (MLI) specimens was performed over the last 20 years for the research and development of evacuated reflective thermal insulation systems. From this data library, 26 MLI systems plus several vacuum-only systems are selected for analysis and comparison. The test apparatus, methods, and results enabled the adoption of two new technical consensus standards under ASTM International. Materials tested include reflectors of aluminum foil or double-aluminized Mylar and spacers of fiberglass paper, polyester netting, silk netting, polyester fabric, or discrete polymer standoffs. The six types of MLI systems tested are listed as follows: Mylar/Paper, Foil/Paper, Mylar/Net, Mylar/Blanket, Mylar/Fabric, Mylar/Discrete. Also tested are vacuum-only systems with different cold surface materials/finishes including stainless steel, black, copper, and aluminum. Testing was performed between the boundary temperatures of 78 K and 293 K (and up to 350 K) using a thermally guarded one-meter-long cylindrical calorimeter (Cryostat-100) for absolute heat flow measurement. Cold vacuum pressures include the full range from 1 × 10-6 torr to 760 torr with nitrogen as the residual gas. System variations include number of layers from one to 80 layers, layer densities from 0.5 to 5 layers per millimeter, and installation techniques such layer-by-layer, blankets (multi-layer assemblies), sub-blankets, seaming, butt-joining, spiral wrapping, and roll-wrapping. Experimental thermal performance data for the different MLI systems are presented in terms of heat flux and effective thermal conductivity. Benchmark cryogenic-vacuum thermal performance curves for MLI are given for comparison with different insulation approaches for storage and transfer equipment, cryostats, launch vehicles, spacecraft, or science instruments.

  7. ISO successfully launched

    NASA Astrophysics Data System (ADS)

    1995-11-01

    ISO is a high-technology telescope facility designed and built in Europe for use by the scientific community in Europe, Japan and the USA. It will provide astronomers with an unprecedented opportunity - the only one in the next decade - to make scientific observations of a wide variety of weak infrared radiation sources such as cold gases, galaxies and stars dying and being born. ISO represents a leap forward in space technology harnessed for astronomical observation of the universe. ISO is the world's first astronomical observatory in space operating at infrared wavelengths. To observe the weakest heat sources in the universe, its four scientific instruments have to be cooled to extremely low temperatures, using superfluid helium which evaporates slowly at minus 271 or about 2 degrees above absolute zero. The scientific instruments, telescope and liquid helium are all contained in a cryostat, which has been likened to an extraordinarily well insulated thermos flask. It is the first such cryogenically cooled satellite developed in Europe and employs very advanced technologies, notably for the scientific instruments, telescope and attitude control system. ISO will be controlled from the ESA's Space Operations Centre (ESOC) in Darmstadt, Germany, for the first few days, until the final orbit is achieved, and then operational control will be passed to a dedicated ESA operations centre in Villafranca, Spain. The first 21/2 months of operations will be given over to commissioning the satellite and verifying the performance of the scientific instruments. The observation programme is planned to start in early February 1996. ISO's lifetime is expected to be 20 months, by the end of which the helium, steadily evaporating as it cools the cryostat, should be exhausted.

  8. A compact sub-Kelvin ultrahigh vacuum scanning tunneling microscope with high energy resolution and high stability.

    PubMed

    Zhang, L; Miyamachi, T; Tomanić, T; Dehm, R; Wulfhekel, W

    2011-10-01

    We designed a scanning tunneling microscope working at sub-Kelvin temperatures in ultrahigh vacuum (UHV) in order to study the magnetic properties on the nanoscale. An entirely homebuilt three-stage cryostat is used to cool down the microscope head. The first stage is cooled with liquid nitrogen, the second stage with liquid (4)He. The third stage uses a closed-cycle Joule-Thomson refrigerator of a cooling power of 1 mW. A base temperature of 930 mK at the microscope head was achieved using expansion of (4)He, which can be reduced to ≈400 mK when using (3)He. The cryostat has a low liquid helium consumption of only 38 ml/h and standing times of up to 280 h. The fast cooling down of the samples (3 h) guarantees high sample throughput. Test experiments with a superconducting tip show a high energy resolution of 0.3 meV when performing scanning tunneling spectroscopy. The vertical stability of the tunnel junction is well below 1 pm (peak to peak) and the electric noise floor of tunneling current is about 6fA/√Hz. Atomic resolution with a tunneling current of 1 pA and 1 mV was achieved on Au(111). The lateral drift of the microscope at stable temperature is below 20 pm/h. A superconducting spilt-coil magnet allows to apply an out-of-plane magnetic field of up to 3 T at the sample surface. The flux vortices of a Nb(110) sample were clearly resolved in a map of differential conductance at 1.1 K and a magnetic field of 0.21 T. The setup is designed for in situ preparation of tip and samples under UHV condition.

  9. Multi-Column Xe/Kr Separation with AgZ-PAN and HZ-PAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil

    Previous multi-column xenon/krypton separation tests have demonstrated the capability of separating xenon from krypton in a mixed gas feed stream. The results of this initial testing with AgZ-PAN and HZ-PAN indicated that an excellent separation of xenon from krypton could be achieved. Building upon these initial results, a series of additional multi-column testing were performed in FY-16. The purpose of this testing was to scale up the sorbent beds, test a different composition of feed gas and attempt to improve the accuracy of the analysis of the individual capture columns’ compositions. Two Stirling coolers were installed in series to performmore » this testing. The use of the coolers instead of the cryostat provided two desired improvements, 1) removal of the large dilution due to the internal volume of the cryostat adsorption chamber, and 2) ability to increase the sorbent bed size for scale-up. The AgZ-PAN sorbent, due to its xenon selectivity, was loaded in the first column to capture the xenon while allowing the krypton to flow through and be routed to a second column containing the HZ-PAN for capture and analysis. The gases captured on both columns were sampled with evacuated sample bombs and subsequently analyzed via GC-MS for both krypton and xenon. The results of these tests can be used to develop the scope of future testing and analysis using this test bed for demonstrating the capture and separation of xenon and krypton using sorbents, for demonstrating desorption and regeneration of the sorbents, and for determining compositions of the desorbed gases. They indicate a need for future desorption studies in order to better quantify co-adsorbed species and final krypton purity.« less

  10. TIGRESS highly-segmented high-purity germanium clover detector

    NASA Astrophysics Data System (ADS)

    Scraggs, H. C.; Pearson, C. J.; Hackman, G.; Smith, M. B.; Austin, R. A. E.; Ball, G. C.; Boston, A. J.; Bricault, P.; Chakrawarthy, R. S.; Churchman, R.; Cowan, N.; Cronkhite, G.; Cunningham, E. S.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Leslie, J. R.; Martin, J.-P.; Morris, D.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.; Zimmerman, L.

    2005-05-01

    The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) will consist of twelve units of four high-purity germanium (HPGe) crystals in a common cryostat. The outer contacts of each crystal will be divided into four quadrants and two lateral segments for a total of eight outer contacts. The performance of a prototype HPGe four-crystal unit has been investigated. Integrated noise spectra for all contacts were measured. Energy resolutions, relative efficiencies for both individual crystals and for the entire unit, and peak-to-total ratios were measured with point-like sources. Position-dependent performance was measured by moving a collimated source across the face of the detector.

  11. Terahertz Heterodyne Receiver with an Electron-Heating Mixer and a Heterodyne Based on the Quantum-Cascade Laser

    NASA Astrophysics Data System (ADS)

    Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P.

    2017-12-01

    We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.

  12. Broadband microwave spectroscopy in Corbino geometry at 3He temperatures

    NASA Astrophysics Data System (ADS)

    Steinberg, Katrin; Scheffler, Marc; Dressel, Martin

    2012-02-01

    A broadband microwave spectrometer has been constructed to determine the complex conductivity of thin metal films at frequencies from 45 MHz to 20 GHz working in the temperature range from 0.45 K to 2 K (in a 3He cryostat). The setup follows the Corbino approach: a vector network analyzer measures the complex reflection coefficient of a microwave signal hitting the sample as termination of a coaxial transmission line. As the calibration of the setup limits the achievable resolution, we discuss the sources of error hampering different types of calibration. Test measurements of the complex conductivity of a heavy-fermion material demonstrate the applicability of the calibration procedures.

  13. The PILOT optical alignment for its first flight

    NASA Astrophysics Data System (ADS)

    Mot, B.; Longval, Y.; Bernard, J.-Ph.; Ade, P.; André, Y.; Aumont, J.; Bautista, L.; Bray, N.; deBernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Chaigneau, M.; Coudournac, C.; Crane, B.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P.; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Mangilli, A.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Saccoccio, M.; Salatino, M.; Savini, G.; Stever, S.; Simonella, O.; Tapie, P.; Tauber, J.; Tibbs, C.; Torre, J.-P.; Tucker, C.

    2017-12-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 and 550 µm with an angular resolution of about two arc-min. PILOT optics is composed of an off-axis Gregorian telescope and a refractive re-imager system. All these optical elements, except the primary mirror, are in a cryostat cooled to 3K. We used optical and 3D measurements combined with thermo-elastic modeling to perform the optical alignment. This paper describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015

  14. Note: A wide temperature range MOKE system with annealing capability.

    PubMed

    Chahil, Narpinder Singh; Mankey, G J

    2017-07-01

    A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K < T < 760 K. The sample stage incorporates a removable platen and copper block with inserted cartridge heater and two thermocouple sensors. It is supported and thermally coupled to a cold finger with two sapphire bars. The sapphire based thermal coupling enables the system to perform at higher temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.

  15. Superconductor cable

    DOEpatents

    Allais, Arnaud [Hannover, DE; Schmidt, Frank [Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  16. a New Laboratory for Terahertz Characterization of Cosmic Analog Dusts

    NASA Astrophysics Data System (ADS)

    Perera, Thushara

    2016-06-01

    Two efforts have been underway to enable the laboratory study of cosmic analogs dusts in the frequency range 60--2000 GHz. They are: (1) the construction of a novel compact Fourier Transform Spectrometer (FTS) design coupled to a dry 4-K cryostat which houses a cooled sample exchanger (filter wheel) and a bolometer. (2) The production of Mg- and Fe-rich silicate dusts using sol-gel methods; various tests to determine their physical and chemical properties; embedding of samples in LDPE pellets for insertion into the novel FTS. This presentation will focus on the current status of the apparatus and data from its first few months of use.

  17. Opiate receptor binding in the brain of the seizure sensitive Mongolian gerbil (Meriones unguiculatus).

    PubMed

    Lee, R J; Olsen, R W; Lomax, P; McCabe, R T; Wamsley, J K

    1984-12-01

    Opiate receptor binding was studied in seizure sensitive (SS) and seizure resistant (SR) strains of the Mongolian gerbil. Cryostat sections of the brain were labeled with [3H]-dihydromorphine, subjected to autoradiography and analysed by microdensitometry. SS gerbils, prior to seizure induction, demonstrated overall greater brain opiate binding when compared to SR animals. Immediately following a seizure, binding in the interpeduncular nucleus fell to levels found in SR animals. The increased opiate binding in the SS (pre-seizure) compared to SR gerbils could reflect a deficit of endogenous ligand which could underlie the seizure diathesis in the gerbil.

  18. A continuous dry 300 mK cooler for THz sensing applications.

    PubMed

    Klemencic, G M; Ade, P A R; Chase, S; Sudiwala, R; Woodcraft, A L

    2016-04-01

    We describe and demonstrate the automated operation of a novel cryostat design that is capable of maintaining an unloaded base temperature of less than 300 mK continuously, without the need to recycle the gases within the final cold head, as is the case for conventional single shot sorption pumped (3)He cooling systems. This closed dry system uses only 5 l of (3)He gas, making this an economical alternative to traditional systems where a long hold time is required. During testing, a temperature of 365 mK was maintained with a constant 20 μW load, simulating the cooling requirement of a far infrared camera.

  19. Cryogenic probe station for on-wafer characterization of electrical devices

    NASA Astrophysics Data System (ADS)

    Russell, Damon; Cleary, Kieran; Reeves, Rodrigo

    2012-04-01

    A probe station, suitable for the electrical characterization of integrated circuits at cryogenic temperatures is presented. The unique design incorporates all moving components inside the cryostat at room temperature, greatly simplifying the design and allowing automated step and repeat testing. The system can characterize wafers up to 100 mm in diameter, at temperatures <20 K. It is capable of highly repeatable measurements at millimeter-wave frequencies, even though it utilizes a Gifford McMahon cryocooler which typically imposes limits due to vibration. Its capabilities are illustrated by noise temperature and S-parameter measurements on low noise amplifiers for radio astronomy, operating at 75-116 GHz.

  20. Salt materials testing for a spacecraft adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Savage, M. L.; Kittel, P.; Roellig, T.

    1990-01-01

    As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.

  1. Design of two blackbody sources for millimeter and sub-millimeter wave Fourier transform spectrometry

    NASA Astrophysics Data System (ADS)

    Colin, Angel

    2014-03-01

    This paper describes an experimental setup for the spectral calibration of bolometric detectors used in radioastronomy. The system is composed of a Martin-Puplett interferometer with two identical artificial blackbody sources operating in the vacuum mode at 77 K and 300 K simultaneously. One source is integrated into a liquid nitrogen cryostat, and the other one into a vacuum chamber at room temperature. The sources were designed with a combination of conical with cylindrical geometries thus forming an orthogonal configuration to match the internal optics of the interfermometer. With a simple mathematical model we estimated emissivities of ε 0.995 for each source.

  2. A rapid technique for the histological examination of large ovarian follicles.

    PubMed

    Driancourt, M A; Mariana, J C; Palmer, E

    1981-01-01

    A rapid technique for counting and classifying large ovarian follicles of domestic animals is described. Using a cryostat, 250-micrograms thick sections were cut from the frozen ovary; an image of the surface of each ovarian section was recorded on videotape. By replaying the videotape, the largest profile of each follicle larger than 1 mm in diameter was readily identified and measured. The presence or absence of atresia was determined by applying standard histological methods to fragments of individual follicles taken from the frozen sections. The results obtained are similar to those found using previous methods and demand only one-quarter of the time.

  3. New high- and low-temperature apparatus for synchrotron polycrystalline X-ray diffraction.

    PubMed

    Tang, C C; Bushnell-Wye, G; Cernik, R J

    1998-05-01

    A high-temperature furnace with an induction heater coil and a cryogenic system based on closed-cycle refrigeration have been assembled to enhance the non-ambient powder diffraction facilities at the Synchrotron Radiation Source, Daresbury Laboratory. The commissioning of the high- and low-temperature devices on the high-resolution powder diffractometer of Station 2.3 is described. The combined temperature range provided by the furnace/cryostat is 10-1500 K. Results from Fe and NH(4)Br powder samples are presented to demonstrate the operation of the apparatus. The developments presented in this paper are applicable to a wide range of other experiments and diffraction geometries.

  4. Multipurpose setup for low-temperature conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Augustyns, V.; Trekels, M.; Gunnlaugsson, H. P.; Masenda, H.; Temst, K.; Vantomme, A.; Pereira, L. M. C.

    2017-05-01

    We describe an experimental setup for conversion electron Mössbauer spectroscopy (CEMS) at low temperature. The setup is composed of a continuous flow cryostat (temperature range of 4.2-500 K), detector housing, three channel electron multipliers, and corresponding electronics. We demonstrate the capabilities of the setup with CEMS measurements performed on a sample consisting of a thin enriched 57Fe film, with a thickness of 20 nm, deposited on a silicon substrate. We also describe exchangeable adaptations (lid and sample holder) which extend the applicability of the setup to emission Mössbauer spectroscopy as well as measurements under an applied magnetic field.

  5. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    NASA Astrophysics Data System (ADS)

    Xiao, Binping; Alberty, Luis; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdu-Andres, Silvia; Wu, Qiong

    2015-04-01

    We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC) shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity's electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC.

  6. Design of a cryogenic test facility for evaluating the performance of interferometric components of the SPICA/SAFARI instrument

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian T.; Naylor, David A.; Gom, Brad G.

    2014-08-01

    The Japanese SPace Infrared telescope for Cosmology and Astrophysics (SPICA), a 3 m class telescope cooled to ~ 6 K, will provide extremely low thermal background far-infrared observations. An imaging Fourier transform spectrometer (SAFARI) is being developed to exploit the low background provided by SPICA. Evaluating the performance of the interferometer translation stage and key optical components requires a cryogenic test facility. In this paper we discuss the design challenges of a pulse tube cooled cryogenic test facility that is under development for this purpose. We present the design of the cryostat and preliminary results from component characterization and external optical metrology.

  7. Measuring the electronic transport properties of individual nano-objects under high pressures

    NASA Astrophysics Data System (ADS)

    Caillier, C.; Ayari, A.; Le Floch, S.; Féret, H.; Guiraud, G.; San-Miguel, A.

    2011-09-01

    We describe a setup to carry out electronic transport measurements under high pressures on individual nano-objects. It is based on a home-automated three-stage gas compressor working with argon or helium up to 1 GPa. The setup was successfully tested on contacted individual nanotubes, for which we evidence strong evolutions of the transport properties. These evolutions are related to fundamental issues such as the modification of the nano-object contact resistance, the pressure-induced modification of the nano-object geometry or pressure-induced changes in the intrinsic electronic properties of the nanosystem. A cryostat has also been adapted to the pressure cell, allowing combined pressure and temperature experiments down to 12 K.

  8. The High Resolution Microcalorimeter Soft X-Ray Spectrometer for the Astro-H Mission

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.; Mitsuda, Kazuhisa; den Herder, Jan-Willem A.; Aarts, Henri J. M.; Azzarello, Philipp; Boyce, Kevin R.; Brown, Gregory V.; Chiao, Meng P.; de Vries, Cor P.; DiPirro, Michael J.; hide

    2012-01-01

    We are developing the Soft X-Ray Spectrometer for the JAXA Astro-H mission. The instrument features a 5 eV, 36-pixel array of micro calorimeters designed for high spectral resolution from 0.3-12 keV at the focus of an x-ray mirror, providing a field of view of3 x 3 arcmin. The principal components of the spectrometer are the microcalorimeter detector system, a 3-stage ADR and dewar. The dewar is a long-life, hybrid design with a superfluid He cryostat, Joule-Thomson cooler, and Stirling coolers. We describe the present design of the SXS instrument and initial engineering model test results.

  9. Transmitted wavefront error of a volume phase holographic grating at cryogenic temperature.

    PubMed

    Lee, David; Taylor, Gordon D; Baillie, Thomas E C; Montgomery, David

    2012-06-01

    This paper describes the results of transmitted wavefront error (WFE) measurements on a volume phase holographic (VPH) grating operating at a temperature of 120 K. The VPH grating was mounted in a cryogenically compatible optical mount and tested in situ in a cryostat. The nominal root mean square (RMS) wavefront error at room temperature was 19 nm measured over a 50 mm diameter test aperture. The WFE remained at 18 nm RMS when the grating was cooled. This important result demonstrates that excellent WFE performance can be obtained with cooled VPH gratings, as required for use in future cryogenic infrared astronomical spectrometers planned for the European Extremely Large Telescope.

  10. [Characteristics of regional lymph nodes in breast cancer (quantitative histochemical study)].

    PubMed

    Anisimova, L O

    1982-01-01

    The changes in axillary lymph nodes in mammary gland carcinoma of different histological types, metastasizing and nonmetastasizing, as well as after radiation therapy and in fibroadenomatosis were studied. The study was carried out on cryostate sections by histological and histochemical methods. Signs of activation of lymph nodes were clearly seen only in solid carcinoma, not always manifested in adenocarcinomas and scirrhous carcinomas, and undetectable in fibroadenomatosis. The quantitative determination of enzymes and nucleic acids showed differences in their activity between fibroadenomatosis and carcinomas. Proliferation processes dominated significantly over lymphocyte differentiation in carcinoma, increasing even more in metastasizing tumors. Pre-operative irradiation did not inhibit metabolism or proliferative activity of the cells.

  11. Experiments with phase transitions at very high pressure. [compressed solidifed gases, semiconductors, superconductors, and molecular crystals

    NASA Technical Reports Server (NTRS)

    Spain, I. L.

    1983-01-01

    Diamond cells were constructed for use to 1 Mbar. A refrigerator for cooling diamond cells was adapted for studies between 15 and 300 K. A cryostat for superconductivity studies between 1.5 to 300 K was constructed. Optical equipment was constructed for fluorescence, transmission, and reflectance studies. X-ray equipment was adapted for use with diamond cells. Experimental techniques were developed for X-ray diffraction studies using synchrotron radiation. AC susceptibility techniques were developed for detecting superconducting transitions. The following materials were studied: compressed solidified gases (Xe, Ar), semiconductors (Ge, Si, GaAs), superconductors (Nb3Ge, Nb3Si, Nb3As, CuCl), molecular crystals (I).

  12. A continuous dry 300 mK cooler for THz sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klemencic, G. M., E-mail: Georgina.Klemencic@astro.cf.ac.uk; Ade, P. A. R.; Sudiwala, R.

    We describe and demonstrate the automated operation of a novel cryostat design that is capable of maintaining an unloaded base temperature of less than 300 mK continuously, without the need to recycle the gases within the final cold head, as is the case for conventional single shot sorption pumped {sup 3}He cooling systems. This closed dry system uses only 5 l of {sup 3}He gas, making this an economical alternative to traditional systems where a long hold time is required. During testing, a temperature of 365 mK was maintained with a constant 20 μW load, simulating the cooling requirement ofmore » a far infrared camera.« less

  13. MICADO: first light imager for the E-ELT

    NASA Astrophysics Data System (ADS)

    Davies, R.; Schubert, J.; Hartl, M.; Alves, J.; Clénet, Y.; Lang-Bardl, F.; Nicklas, H.; Pott, J.-U.; Ragazzoni, R.; Tolstoy, E.; Agocs, T.; Anwand-Heerwart, H.; Barboza, S.; Baudoz, P.; Bender, R.; Bizenberger, P.; Boccaletti, A.; Boland, W.; Bonifacio, P.; Briegel, F.; Buey, T.; Chapron, F.; Cohen, M.; Czoske, O.; Dreizler, S.; Falomo, R.; Feautrier, P.; Förster Schreiber, N.; Gendron, E.; Genzel, R.; Glück, M.; Gratadour, D.; Greimel, R.; Grupp, F.; Häuser, M.; Haug, M.; Hennawi, J.; Hess, H. J.; Hörmann, V.; Hofferbert, R.; Hopp, U.; Hubert, Z.; Ives, D.; Kausch, W.; Kerber, F.; Kravcar, H.; Kuijken, K.; Lang-Bardl, F.; Leitzinger, M.; Leschinski, K.; Massari, D.; Mei, S.; Merlin, F.; Mohr, L.; Monna, A.; Müller, F.; Navarro, R.; Plattner, M.; Przybilla, N.; Ramlau, R.; Ramsay, S.; Ratzka, T.; Rhode, P.; Richter, J.; Rix, H.-W.; Rodeghiero, G.; Rohloff, R.-R.; Rousset, G.; Ruddenklau, R.; Schaffenroth, V.; Schlichter, J.; Sevin, A.; Stuik, R.; Sturm, E.; Thomas, J.; Tromp, N.; Turatto, M.; Verdoes-Kleijn, G.; Vidal, F.; Wagner, R.; Wegner, M.; Zeilinger, W.; Ziegler, B.; Zins, G.

    2016-08-01

    MICADO will equip the E-ELT with a first light capability for diffraction limited imaging at near-infrared wavelengths. The instrument's observing modes focus on various flavours of imaging, including astrometric, high contrast, and time resolved. There is also a single object spectroscopic mode optimised for wavelength coverage at moderately high resolution. This contribution provides an overview of the key functionality of the instrument, outlining the scientific rationale for its observing modes. The interface between MICADO and the adaptive optics system MAORY that feeds it is summarised. The design of the instrument is discussed, focusing on the optics and mechanisms inside the cryostat, together with a brief overview of the other key sub-systems.

  14. HEB spool pieces design description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D.; Strube, D.

    1994-02-01

    The many varied types of spool pieces for the High Energy Booster (HEB) of the Superconducting Super Collider (SSC) Laboratory are presented. Each type of spool piece is discussed, and the specific components are identified. The spool piece components allow each spool piece to perform as a unique electromechanical device positioned in series with large superconducting magnets to provide electrical and mechanical support for each superconducting magnet in areas of cryogenics, electrical power, instrumentation, diagnostics, and vacuum. A specialized HEB superspool is identified that perhaps has the potential to aid in the overall configuration management of the HEB lattice bymore » combining HEB superconducting quadrupole magnets and spool pieces within a common cryostat.« less

  15. Status of the ITER Cryodistribution

    NASA Astrophysics Data System (ADS)

    Chang, H.-S.; Vaghela, H.; Patel, P.; Rizzato, A.; Cursan, M.; Henry, D.; Forgeas, A.; Grillot, D.; Sarkar, B.; Muralidhara, S.; Das, J.; Shukla, V.; Adler, E.

    2017-12-01

    Since the conceptual design of the ITER Cryodistribution many modifications have been applied due to both system optimization and improved knowledge of the clients’ requirements. Process optimizations in the Cryoplant resulted in component simplifications whereas increased heat load in some of the superconducting magnet systems required more complicated process configuration but also the removal of a cold box was possible due to component arrangement standardization. Another cold box, planned for redundancy, has been removed due to the Tokamak in-Cryostat piping layout modification. In this proceeding we will summarize the present design status and component configuration of the ITER Cryodistribution with all changes implemented which aim at process optimization and simplification as well as operational reliability, stability and flexibility.

  16. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Chris; Daigle, Stephen; Buckner, Matt

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ) 15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  17. Measurement of the time-temperature dependent dynamic mechanical properties of boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.; Maisel, J. E.

    1978-01-01

    A flexural vibration test and associated equipment were developed to accurately measure the low strain dynamic modulus and damping of composite materials from -200 C to over 500 C. The basic test method involves the forced vibration of composite bars at their resonant free-free flexural modes in a high vacuum cryostat furnace. The accuracy of these expressions and the flexural test was verified by dynamic moduli and damping capacity measurements on 50 fiber volume percent boron/aluminum (B/Al) composites vibrating near 2000 Hz. The phase results were summarized to permit predictions of the B/Al dynamic behavior as a function of frequency, temperature, and fiber volume fraction.

  18. THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing

    PubMed Central

    Consolino, Luigi; Bartalini, Saverio; Beere, Harvey E.; Ritchie, David A.; Vitiello, Miriam Serena; De Natale, Paolo

    2013-01-01

    We report on a set of high-sensitivity terahertz spectroscopy experiments making use of QCLs to detect rotational molecular transitions in the far-infrared. We demonstrate that using a compact and transportable cryogen-free setup, based on a quantum cascade laser in a closed-cycle Stirling cryostat, and pyroelectric detectors, a considerable improvement in sensitivity can be obtained by implementing a wavelength modulation spectroscopy technique. Indeed, we show that the sensitivity of methanol vapour detection can be improved by a factor ≈ 4 with respect to standard direct absorption approaches, offering perspectives for high sensitivity detection of a number of chemical compounds across the far-infrared spectral range. PMID:23478601

  19. THz QCL-based cryogen-free spectrometer for in situ trace gas sensing.

    PubMed

    Consolino, Luigi; Bartalini, Saverio; Beere, Harvey E; Ritchie, David A; Vitiello, Miriam Serena; De Natale, Paolo

    2013-03-11

    We report on a set of high-sensitivity terahertz spectroscopy experiments making use of QCLs to detect rotational molecular transitions in the far-infrared. We demonstrate that using a compact and transportable cryogen-free setup, based on a quantum cascade laser in a closed-cycle Stirling cryostat, and pyroelectric detectors, a considerable improvement in sensitivity can be obtained by implementing a wavelength modulation spectroscopy technique. Indeed, we show that the sensitivity of methanol vapour detection can be improved by a factor ≈ 4 with respect to standard direct absorption approaches, offering perspectives for high sensitivity detection of a number of chemical compounds across the far-infrared spectral range.

  20. Gravity assisted recovery of liquid xenon at large mass flow rates

    NASA Astrophysics Data System (ADS)

    Virone, L.; Acounis, S.; Beaupère, N.; Beney, J.-L.; Bert, J.; Bouvier, S.; Briend, P.; Butterworth, J.; Carlier, T.; Chérel, M.; Crespi, P.; Cussonneau, J.-P.; Diglio, S.; Manzano, L. Gallego; Giovagnoli, D.; Gossiaux, P.-B.; Kraeber-Bodéré, F.; Ray, P. Le; Lefèvre, F.; Marty, P.; Masbou, J.; Morteau, E.; Picard, G.; Roy, D.; Staempflin, M.; Stutzmann, J.-S.; Visvikis, D.; Xing, Y.; Zhu, Y.; Thers, D.

    2018-06-01

    We report on a liquid xenon gravity assisted recovery method for nuclear medical imaging applications. The experimental setup consists of an elevated detector enclosed in a cryostat connected to a storage tank called ReStoX. Both elements are part of XEMIS2 (XEnon Medical Imaging System): an innovative medical imaging facility for pre-clinical research that uses pure liquid xenon as detection medium. Tests based on liquid xenon transfer from the detector to ReStoX have been successfully performed showing that an unprecedented mass flow rate close to 1 ton per hour can be reached. This promising achievement as well as future areas of improvement will be discussed in this paper.

  1. A squid-based beam current monitor for FAIR/CRYRING

    NASA Astrophysics Data System (ADS)

    Geithner, Rene; Kurian, Febin; Reeg, Hansjörg; Schwickert, Marcus; Neubert, Ralf; Seidel, Paul; Stöhlker, Thomas

    2015-11-01

    A SQUID-based beam current monitor was developed for the upcoming FAIR-Project, providing a non-destructive online monitoring of the beam currents in the nA-range. The cryogenic current comparator (CCC) was optimized for lowest possible noise-limited current resolution together with a high system bandwidth. This CCC is foreseen to be installed in the CRYRING facility (CRYRING@ESR: A study group report www.gsi.de/fileadmin/SPARC/documents/Cryring/ReportCryring_40ESR.PDF), working as a test bench for FAIR. In this contribution we present results of the completed CCC for FAIR/CRYRING and also arrangements that have been done for the installation of the CCC at CRYRING, regarding the cryostat design.

  2. NASA Astrophysics Data System (ADS)

    Good, J.; Bracanovic, D.

    The development of High Temperature Superconductors (HTS) conductors makes it possible to build very high field superconducting magnets up to at least 25 T. Previously, the only way to obtain a steady field of 25 T for research would be to use water cooled copper solenoids. To achieve 25 T in a 50 mm working space would require about 10 MW of power with a large water cooling plant to carry away the heat. With such high powers involved it is difficult to have a stable and quiet magnetic field environment in which to make sensitive measurements such as NMR. Both capital and operating costs are high so few such facilities exist worldwide. This makes a superconducting magnet of 25 T a very attractive proposition. Figure 1 shows that the critical current of HTS as compared to NbTi and NbSn. The latter can be used up to a limit of about 20 T at 4.2 K. The HTS on the other hand shows the potential of much higher fields. The two main issues in magnet design are the maximum critical current and the maximum stress that a conductor or coil structure can support. For the inner sections of the coil the forces are modest but as the diameter increases towards the outside of the coil hoop stress becomes the dominant issue. Cryogenic has built a magnet system with first generation BSCCO conductor. It is designed to run at 4.2 K. It has a three section design, two of conventional superconductor and one of HTS. • The outer winding is made from NbTi giving a field of 9 T, in a bore of 225 mm. The coil is made from 21 km of NbTi wire graded from 1 to 0.6 mm diameter. • A middle coil of NbSn bronze route conductor providing a field of 14 T in 140 mm diameter. • An inner set of HTS coils. These are in the form of 3 coaxial windings made from silver matrix BSCCO conductor supplied by American Superconductor. This conductor has a critical current of 100 A at 77 K in zero field. At 4 K in low field the current is very much higher. The set of three BSCCO windings has a gauss per amp of 157 and when run on its own at a current of 300 A provides a field of 4.7 T, although currents above 275 A begin to show significant resistive losses in the conductor. The inner BSCCO coils are separately powered from the outer magnet. In a test of the full magnet system the BSCCO coil is ramped up at various background fields up to 13 T. The resulting voltage loss across the BSCCO is shown in Fig. 2. This test shows that the BSCCO conductor can operate up to 275 A quite successfully independent of the background field with just a slight increase in resistive losses presumably from the joints between conductor being magneto-resistive or due to flux flow in the conductor. Since the BSCCO coils were made new 2nd generation conductors have become available made from thin films of YBCO on a stainless steel backing. These have a much higher effective current density. A 4 mm wide tape of BSCCO is 0.4 mm thick but carries a similar current to an YBCO tape of 0.01 mm or even 0.05 mm thickness. Table 1 shows the properties of different conductors compared. Interestingly the conductors are not just higher current density but also more flexible and stronger in tension. A new coil has now been produced from 0.1 mm Super Power material of a size that can fit inside the existing winding so that the combination can produce above 6 T providing a total field of 20 T at 4.2 K in a working bore of 38 mm. Now that the new 2nd generation YBCO based conductors have become available it is intended to exchange the BSCCO coils for YBCO windings which will allow this magnet to operate at much higher fields of up to 25 T. At this field it will be the highest field superconducting magnet worldwide. The magnet is housed in a liquid helium cryostat. To reduce helium consumption a powerful 2nd stage cryocooler is fitted to the cryostat. The first stage cools a shield around the liquid helium to 45 K. The second stage has a cooling power of 1.5 W at 4.2 K and is used to recondense helium gas evolved from the magnet. In operation, with no current in the leads to the cryocooler it is able to condense more gas than that evolved from the cryostat so the liquid helium level will increase with time. Except at the highest currents the cryostat is a zero loss magnet system. A cross section of cryostat and magnet is show in Fig 3. The power required for the cryocooler is 6.5 kW while that for the magnet power supplies and ancillary electronics is 2 kW giving a combined power requirement of 8.5 kW. This compares very favourably with the typical value of 10 MW required by a water cooled copper solenoid to achieve the same field. Note from Publisher: This article contains the abstract only.

  3. Development and performance validation of a cryogenic linear stage for SPICA-SAFARI verification

    NASA Astrophysics Data System (ADS)

    Ferrari, Lorenza; Smit, H. P.; Eggens, M.; Keizer, G.; de Jonge, A. W.; Detrain, A.; de Jonge, C.; Laauwen, W. M.; Dieleman, P.

    2014-07-01

    In the context of the SAFARI instrument (SpicA FAR-infrared Instrument) SRON is developing a test environment to verify the SAFARI performance. The characterization of the detector focal plane will be performed with a backilluminated pinhole over a reimaged SAFARI focal plane by an XYZ scanning mechanism that consists of three linear stages stacked together. In order to reduce background radiation that can couple into the high sensitivity cryogenic detectors (goal NEP of 2•10-19 W/√Hz and saturation power of few femtoWatts) the scanner is mounted inside the cryostat in the 4K environment. The required readout accuracy is 3 μm and reproducibility of 1 μm along the total travel of 32 mm. The stage will be operated in "on the fly" mode to prevent vibrations of the scanner mechanism and will move with a constant speed varying from 60 μm/s to 400 μm/s. In order to meet the requirements of large stroke, low dissipation (low friction) and high accuracy a DC motor plus spindle stage solution has been chosen. In this paper we will present the stage design and stage characterization, describing also the measurements setup. The room temperature performance has been measured with a 3D measuring machine cross calibrated with a laser interferometer and a 2-axis tilt sensor. The low temperature verification has been performed in a wet 4K cryostat using a laser interferometer for measuring the linear displacements and a theodolite for measuring the angular displacements. The angular displacements can be calibrated with a precision of 4 arcsec and the position could be determined with high accuracy. The presence of friction caused higher values of torque than predicted and consequently higher dissipation. The thermal model of the stage has also been verified at 4K.

  4. Experience with helium leak and thermal shocks test of SST-1 cryo components

    NASA Astrophysics Data System (ADS)

    Sharma, Rajiv; Nimavat, Hiren; Srikanth, G. L. N.; Bairagi, Nitin; Shah, Pankil; Tanna, V. L.; Pradhan, S.

    2012-11-01

    A steady state superconducting Tokamak SST-1 is presently under its assembly stage at the Institute for Plasma Research. The SST-1 machine is a family of Superconducting SC coils for both Toroidal field and Poloidal Field. An ultra high vacuum compatible vacuum vessel, placed in the bore of the TF coils, houses the plasma facing components. A high vacuum cryostat encloses all the SC coils and the vacuum vessel. Liquid Nitrogen (LN2) cooled thermal shield between the vacuum vessel & SC coils as well as between cryostat and the SC coils. There are number of crucial cryogenic components as Electrical isolators, 80 K thermal shield, Cryogenic flexible hose etc., which have to be passed the performance validation tests as part of fulfillment of the stringent QA/QC before incorporated in the main assembly. The individual leak tests of components at RT as well as after thermal cycle from 300 K to 77 K ensure us to make final overall leak proof system. These components include, Large numbers of Electrical Isolators for Helium as well as LN2 services, Flexible Bellows and Hoses for Helium as well as LN2 services, Thermal shock tests of large numbers of 80 K Bubble shields In order to validate the helium leak tightness of these components, we have used the calibrated mass spectrometer leak detector (MSLD) at 300 K, 77 K and 4.2. Since it is very difficult to locate the leaks, which are appearing at rather lower temperatures e.g. less than 20 K, We have invented different approaches to resolve the issue of such leaks. This paper, in general describes the design of cryogenic flexible hose, assembly, couplings for leak testing, test method and techniques of thermal cycles test at 77 K inflow conditions and leak testing aspects of different cryogenic components. The test results, the problems encountered and its solutions techniques are discussed.

  5. Development of a 500 kVA-class oxide-superconducting power transformer operated at liquid-nitrogen temperature

    NASA Astrophysics Data System (ADS)

    Funaki, K.; Iwakuma, M.; Kajikawa, K.; Takeo, M.; Suehiro, J.; Hara, M.; Yamafuji, K.; Konno, M.; Kasagawa, Y.; Okubo, K.; Yasukawa, Y.; Nose, S.; Ueyama, M.; Hayashi, K.; Sato, K.

    We have designed and constructed a 500 kVA-class oxide-superconducting power transformer. The windings are cooled by liquid nitrogen or subcooled nitrogen in a G-FRP cryostat of 785 mm in diameter and 1210 mm in height, that has a room-temperature space for an iron core with the diameter of 314 mm. The primary and secondary windings are three-strand and six-strand parallel conductors of a Bi-2223 multifilamentary tape with silver sheath, respectively. The strand 0.22 mm thick and 3.5 mm wide has 61 filaments with no twisting. The ratio of superconductor is 0.284. In the parallel conductors, the strands are transposed five times in each layer for a uniform current distribution among them. It was proved that the transformer has the rated capacity of 500 kVA by means of two-h short-circuit test and half-h no-load test in liquid nitrogen of 77 K. The efficiency is estimated as 99.1% from a core loss of 2.3 kW and a thermal load of 2.2 kW in coolant. The latter is composed of AC losses in windings and heat leakage from the cryostat and current leads, and is multiplied by a refrigeration penalty of liquid nitrogen, 20. Load test was also performed up to 500 kVA. The transformer was furthermore operated in subcooled nitrogen at 66 K with no quenching up to a critical level, that is equivalent to 800 kVA. The efficiency estimated was improved to 99.3% in subcooled nitrogen. Measured a.c. loss in both windings are well explained by a theoretical prediction with the "critical state model". We also discuss prospective applications of the parallel conductors composed of advanced HTS multifilamentary tapes to a.c. windings with large current capacity.

  6. Cavity Ring-Down Absorption of O2 in Air as a Temperature Sensor for an Open and a Cryogenic Optical Cavity.

    PubMed

    Nyaupane, Parashu R; Perez-Delgado, Yasnahir; Camejo, David; Wright, Lesley M; Manzanares, Carlos E

    2017-05-01

    The A-band of oxygen has been measured at low resolution at temperatures between 90 K and 373 K using the phase shift cavity ring down (PS-CRD) technique. For temperatures between 90 K and 295 K, the PS-CRD technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 295 K. For temperatures above 295 K, a hollow glass cylindrical tube without windows has been inserted inside an optical cavity to measure the temperature of air flowing through the tube. The cavity consists of two highly reflective mirrors which are mounted parallel to each other and separated by a distance of 93 cm. In this experiment, air is passed through a heated tube. The temperature of the air flowing through the tube is determined by measuring the intensity of the oxygen absorption as a function of the wavenumber. The A-band of oxygen is measured between 298 K and 373 K, with several air flow rates. To obtain the temperature, the energy of the lower rotational state for seven selected rotational transitions is linearly fitted to a logarithmic function that contains the relative intensity of the rotational transition, the initial and final rotational quantum numbers, and the energy of the transition. Accuracy of the temperature measurement is determined by comparing the calculated temperature from the spectra with the temperature obtained from a calibrated thermocouple inserted at the center of the tube. This flowing air temperature sensor will be used to measure the temperatures of cooling air at the input (cold air) and output (hot air) after cooling the blades of a laboratory gas turbine. The results could contribute to improvements in turbine blade cooling design.

  7. Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Program [Development of a cryogenically-cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Concept

    DOE PAGES

    Awe, T. J.; Shelton, K. P.; Sefkow, A. B.; ...

    2017-09-25

    A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ~2 kJ laser that must pass through a ~1.5-3.5-μm-thick polyimide “window” at the target’s laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel,more » initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility’s cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. Here, the MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.« less

  8. Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Program [Development of a cryogenically-cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awe, T. J.; Shelton, K. P.; Sefkow, A. B.

    A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ~2 kJ laser that must pass through a ~1.5-3.5-μm-thick polyimide “window” at the target’s laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel,more » initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility’s cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. Here, the MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.« less

  9. Cryo-Infrared Optical Characterization at NASA GSFC

    NASA Technical Reports Server (NTRS)

    Boucarut, Ray; Quijada, Manuel A.; Henry, Ross M.

    2004-01-01

    The development of large space infrared optical systems, such as the Next Generation Space Telescope (NGST), has increased requirements for measurement accuracy in the optical properties of materials. Many materials used as optical components in infrared optical systems, have strong temperature dependence in their optical properties. Unfortunately, data on the temperature dependence of most of these materials is sparse. In this paper, we provide a description of the capabilities existing in the Optics Branch at the Goddard Space Flight Center that enable the characterization of the refractive index and absorption coefficient changes and other optical properties in infrared materials at cryogenic temperatures. Details of the experimental apparatus, which include continuous flow liquid helium optical cryostat, and a Fourier Transform Infrared (FTIR) spectrometer are discussed.

  10. Manufacturing of a superconducting magnet system for 28 GHz electron cyclotron resonance ion source at KBSI.

    PubMed

    Lee, B S; Choi, S; Yoon, J H; Park, J Y; Won, M S

    2012-02-01

    A magnet system for a 28 GHz electron cyclotron resonance ion source is being developed by the Korea Basic Science Institute. The configuration of the magnet system consists of 3 solenoid coils for a mirror magnetic field and 6 racetrack coils for a hexapole magnetic field. They can generate axial magnetic fields of 3.6 T at the beam injection part and 2.2 T at the extraction part. A radial magnetic field of 2.1 T is achievable at the plasma chamber wall. A step type winding process was employed in fabricating the hexapole coil. The winding technique was confirmed through repeated cooling tests. Superconducting magnets and a cryostat system are currently being manufactured.

  11. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    PubMed

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  12. Determination of band offset using continuous-wave two-photon excitation in a ZnSe quantum-well waveguide structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, H. P.; Kuhnelt, M.; Wenisch, H.

    2001-06-15

    We investigate exciton subband transitions in a ZnSe/Zn{sub 1{minus}x}Mg{sub x}S{sub y}Se{sub 1{minus}y} multiple-quantum-well grown by molecular beam epitaxy waveguide structure by photoluminescence excitation and two-photon excitation spectroscopy. A continuous-wave two-photon absorption is realized by an efficient waveguide coupling scheme within the cryostat. From the energetic position of the 1s and 2p exciton transitions exciton binding energies of 33 and 38 meV are deduced for heavy and light-hole excitons, respectively. With these values we are able to determine the strain free and dimensionless conduction-band-offset parameter to Q{sub c}=0.3{+-}0.1.

  13. Light induces a rapid and transient increase in inositol-trisphosphate in toad rod outer segments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.E.; Blazynski, C.; Cohen, A.I.

    1987-08-14

    The sub-second time course of changes in the content of (/sup 3/H)inositol-1,4,5-trisphosphate was determined in rod outer segments from very rapidly frozen Bufo retinas that had been incubated with (/sup 3/H)inositol. Rod outer segments were cut off frozen specimens with a cryostat microtome and the water soluble extracts were analyzed. The content of (/sup 3/H)inositol-1,4,5-trisphosphate rose after approximately 250 msec of bright illumination, but returned to the unstimulated level after 1 sec, whether the stimulus remained on or not. That is, there was rapid but transient change in the content of (/sup 3/H)inositol-1,4,5-trisphosphate after the onset of stimulation.

  14. Ultrastable Silicon Cavity in a Continuously Operating Closed-Cycle Cryostat at 4 K

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Robinson, J. M.; Sonderhouse, L.; Oelker, E.; Benko, C.; Hall, J. L.; Legero, T.; Matei, D. G.; Riehle, F.; Sterr, U.; Ye, J.

    2017-12-01

    We report on a laser locked to a silicon cavity operating continuously at 4 K with 1 ×10-16 instability and a median linewidth of 17 mHz at 1542 nm. This is a tenfold improvement in short-term instability, and a 1 04 improvement in linewidth, over previous sub-10-K systems. Operating at low temperatures reduces the thermal noise floor and, thus, is advantageous toward reaching an instability of 10-18, a long-sought goal of the optical clock community. The performance of this system demonstrates the technical readiness for the development of the next generation of ultrastable lasers that operate with an ultranarrow linewidth and long-term stability without user intervention.

  15. Active-passive gradient shielding for MRI acoustic noise reduction.

    PubMed

    Edelstein, William A; Kidane, Tesfaye K; Taracila, Victor; Baig, Tanvir N; Eagan, Timothy P; Cheng, Yu-Chung N; Brown, Robert W; Mallick, John A

    2005-05-01

    An important source of MRI acoustic noise-magnet cryostat warm-bore vibrations caused by eddy-current-induced forces-can be mitigated by a passive metal shield mounted on the outside of a vibration-isolated, vacuum-enclosed shielded gradient set. Finite-element (FE) calculations for a z-gradient indicate that a 2-mm-thick Cu layer wrapped on the gradient assembly can decrease mechanical power deposition in the warm bore and reduce warm-bore acoustic noise production by about 25 dB. Eliminating the conducting warm bore and other magnet parts as significant acoustic noise sources could lead to the development of truly quiet, fully functioning MRI systems with noise levels below 70 dB. Copyright 2005 Wiley-Liss, Inc.

  16. On the DEAP-3600 resurfacing

    NASA Astrophysics Data System (ADS)

    Giampa, P.

    2018-01-01

    The DEAP-3600 experiment is a single-phase detector that can hold up to 3600 kg of liquid argon to search for dark matter at SNOLAB in Sudbury Canada, 6800 ft. underground. The projected sensitivity to the spin-independent WIMP-nucleon cross-section is 10-46 cm2 for a WIMP mass of 100 GeV/c2. One of the primary background sources to the WIMP search are alpha decays occurring on the surface of the experiment, which only deposit a tiny fraction of their energy in the argon. The work reported here focuses on the development and operation of a custom designed robot, the Resurfacer, which was used to remove 500 micrometers from the inner-most layer of the detector's acrylic cryostat, thus removing contaminations introduced during construction.

  17. Recent NASA/GSFC cryogenic measurements of the total hemispheric emissivity of black surface preparations

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Canavan, E.

    2015-12-01

    High-emissivity (black) surfaces are commonly used on deep-space radiators and thermal radiation absorbers in test chambers. Since 2011 NASA Goddard Space Flight Center has measured the total hemispheric emissivity of such surfaces from 20 to 300 K using a test apparatus inside a small laboratory cryostat. We report the latest data from these measurements, including Aeroglaze Z307 paint, Black Kapton, and a configuration of painted aluminum honeycomb that was not previously tested. We also present the results of batch-to- batch reproducibility studies in Ball Infrared BlackTM and painted aluminum honeycomb. Finally, we describe a recently-adopted temperature control method which significantly speeds the data acquisition, and we discuss efforts to reduce the noise in future data.

  18. Design concepts for the ASTROMAG cryogenic system

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Castles, S.

    1987-01-01

    Described is a proposed cryogenic system used to cool the superconducting magnet for the Space Station based ASTROMAG Particle Astrophysics Facility. This 2-meter diameter superconducting magnet will be cooled using stored helium II. The paper presents a liquid helium storage concept which would permit cryogenic lifetimes of up to 3 years between refills. It is proposed that the superconducting coil be cooled using superfluid helium pumped by the thermomechanical effect. It is also proposed that the storage tank be resupplied with helium in orbit. A method for charging and discharging the magnet with minimum helium loss using split gas-cooled leads is discussed. A proposal to use a Stirling cycle cryocooler to extend the storage life of the cryostat will also be presented.

  19. Tuning exciton energy and fine-structure splitting in single InAs quantum dots by applying uniaxial stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dan; Dou, Xiuming; Wu, Xuefei

    2016-04-15

    Exciton and biexciton emission energies as well as excitonic fine-structure splitting (FSS) in single InAs/GaAs quantum dots (QDs) have been continuously tuned in situ in an optical cryostat using a developed uniaxial stress device. With increasing tensile stress, the red shift of excitonic emission is up to 5 nm; FSS decreases firstly and then increases monotonically, reaching a minimum value of approximately 10 μeV; biexciton binding energy decreases from 460 to 106 μeV. This technique provides a simple and convenient means to tune QD structural symmetry, exciton energy and biexciton binding energy and can be used for generating entangled andmore » indistinguishable photons.« less

  20. A technique to measure the thermal diffusivity of high Tc superconductors

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    1991-01-01

    High T(sub c) superconducting electrical current leads and ground straps will be used in cryogenic coolers in future NASA Goddard Space Flight Center missions. These superconducting samples are long, thin leads with a typical diameter of two millimeters. A longitudinal method is developed to measure the thermal diffusivity of candidate materials for this application. This technique uses a peltier junction to supply an oscillatory heat wave into one end of a sample and will use low mass thermocouples to follow the heat wave along the sample. The thermal diffusivity is calculated using both the exponential decay of the heat wave and the phase shift to the wave. Measurements are performed in a cryostat between 10 K and room temperature.

  1. Development of a gas-pressurized high-pressure μSR setup at the RIKEN-RAL Muon Facility

    NASA Astrophysics Data System (ADS)

    Watanabe, I.; Ishii, Y.; Kawamata, T.; Suzuki, T.; Pratt, F. L.; Done, R.; Chowdhury, M.; Goodway, C.; Dreyer, J.; Smith, C.; Southern, M.

    2009-04-01

    The development and testing of a gas-pressurized μSR setup for the RIKEN-RAL Muon Facility is reported. In collaboration with the high-pressure group of the ISIS Facility at the Rutherford Appleton Laboratory, a gas-pressurized setup for a pulsed muon beam at the RIKEN-RAL Muon Facility has been constructed in 2008. The sample is pressurized by helium gas and the designed maximum pressure is 6.4 kbar. The high-pressure cell can be cooled down to 2 K using an existing cryostat. Tests were made injecting the double-pulsed muon beam into a high-purity sample of Sn powder, which confirmed that the maximum pressure achieved at 2 K was close to the designed pressure.

  2. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    DOE PAGES

    Xiao, Binping; Alberty, Luis; Belomestnykh, Sergey; ...

    2015-04-01

    We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC) shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity’s electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present themore » design, prototyping, and results from testing the DQWCC.« less

  3. High-Throughput Method of Whole-Brain Sectioning, Using the Tape-Transfer Technique.

    PubMed

    Pinskiy, Vadim; Jones, Jamie; Tolpygo, Alexander S; Franciotti, Neil; Weber, Kevin; Mitra, Partha P

    2015-01-01

    Cryostat sectioning is a popular but labor-intensive method for preparing histological brain sections. We have developed a modification of the commercially available CryoJane tape collection method that significantly improves the ease of collection and the final quality of the tissue sections. The key modification involves an array of UVLEDs to achieve uniform polymerization of the glass slide and robust adhesion between the section and slide. This report presents system components and detailed procedural steps, and provides examples of end results; that is, 20 μm mouse brain sections that have been successfully processed for routine Nissl, myelin staining, DAB histochemistry, and fluorescence. The method is also suitable for larger brains, such as rat and monkey.

  4. High-Throughput Method of Whole-Brain Sectioning, Using the Tape-Transfer Technique

    PubMed Central

    Pinskiy, Vadim; Jones, Jamie; Tolpygo, Alexander S.; Franciotti, Neil; Weber, Kevin; Mitra, Partha P.

    2015-01-01

    Cryostat sectioning is a popular but labor-intensive method for preparing histological brain sections. We have developed a modification of the commercially available CryoJane tape collection method that significantly improves the ease of collection and the final quality of the tissue sections. The key modification involves an array of UVLEDs to achieve uniform polymerization of the glass slide and robust adhesion between the section and slide. This report presents system components and detailed procedural steps, and provides examples of end results; that is, 20μm mouse brain sections that have been successfully processed for routine Nissl, myelin staining, DAB histochemistry, and fluorescence. The method is also suitable for larger brains, such as rat and monkey. PMID:26181725

  5. A segmented, enriched N-type germanium detector for neutrinoless double beta-decay experiments

    NASA Astrophysics Data System (ADS)

    Leviner, L. E.; Aalseth, C. E.; Ahmed, M. W.; Avignone, F. T.; Back, H. O.; Barabash, A. S.; Boswell, M.; De Braeckeleer, L.; Brudanin, V. B.; Chan, Y.-D.; Egorov, V. G.; Elliott, S. R.; Gehman, V. M.; Hossbach, T. W.; Kephart, J. D.; Kidd, M. F.; Konovalov, S. I.; Lesko, K. T.; Li, Jingyi; Mei, D.-M.; Mikhailov, S.; Miley, H.; Radford, D. C.; Reeves, J.; Sandukovsky, V. G.; Umatov, V. I.; Underwood, T. A.; Tornow, W.; Wu, Y. K.; Young, A. R.

    2014-01-01

    We present data characterizing the performance of the first segmented, N-type Ge detector, isotopically enriched to 85% 76Ge. This detector, based on the Ortec PT6×2 design and referred to as SEGA (Segmented, Enriched Germanium Assembly), was developed as a possible prototype for neutrinoless double beta-decay measurements by the MAJORANA collaboration. We present some of the general characteristics (including bias potential, efficiency, leakage current, and integral cross-talk) for this detector in its temporary cryostat. We also present an analysis of the resolution of the detector, and demonstrate that for all but two segments there is at least one channel that reaches the MAJORANA resolution goal below 4 keV FWHM at 2039 keV, and all channels are below 4.5 keV FWHM.

  6. Research and Development Supporting a Next Generation Germanium Double Beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Rielage, Keith; Elliott, Steve; Chu, Pinghan; Goett, Johnny; Massarczyk, Ralph; Xu, Wenqin

    2015-10-01

    To improve the search for neutrinoless double beta decay, the next-generation experiments will increase in source mass and continue to reduce backgrounds in the region of interest. A promising technology for the next generation experiment is large arrays of Germanium p-type point contact detectors enriched in 76-Ge. The experience, expertise and lessons learned from the MAJORANA DEMONSTRATOR and GERDA experiments naturally lead to a number of research and development activities that will be useful in guiding a future experiment utilizing Germanium. We will discuss some R&D activities including a hybrid cryostat design, background reduction in cabling, connectors and electronics, and modifications to reduce assembly time. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  7. Unshielded fetal magnetocardiography system using two-dimensional gradiometers

    NASA Astrophysics Data System (ADS)

    Seki, Yusuke; Kandori, Akihiko; Kumagai, Yukio; Ohnuma, Mitsuru; Ishiyama, Akihiko; Ishii, Tetsuko; Nakamura, Yoshiyuki; Horigome, Hitoshi; Chiba, Toshio

    2008-03-01

    We developed a fetal magnetocardiography (fMCG) system that uses a pair of two-dimensional gradiometers to achieve high signal-to-noise ratio. The gradiometer, which is based on a low-Tc superconducting quantum interference device, detects the gradient of a magnetic field in two orthogonal directions. Gradiometer position is easy to adjust by operating the gantry to drive the cryostat in both the swinging and axial directions. As a result, a fMCG waveform for 25weeks' gestation was measured under an unshielded environment in real time. Moreover, the P and T waves for 25 and 34weeks' gestation, respectively, were obtained by averaging. These results indicate that this two-dimensional gradiometer is one of the most promising techniques for measuring fetal heart rate and diagnosing fetal arrhythmia.

  8. Versatile strain-tuning of modulated long-period magnetic structures

    DOE PAGES

    Fobes, D. M.; Luo, Yongkang; León-Brito, N.; ...

    2017-05-10

    In this paper, we report a detailed small-angle neutron scattering (SANS) study of the skyrmion lattice phase of MnSi under compressive and tensile strain. In particular, we demonstrate that tensile strain applied to the skyrmion lattice plane, perpendicular to the magnetic field, acts to destabilize the skyrmion lattice phase. Finally, this experiment was enabled by our development of a versatile strain cell, unique in its ability to select the application of either tensile or compressive strain in-situ by using two independent helium-actuated copper pressure transducers, whose design has been optimized for magnetic SANS on modulated long-period magnetic structures and vortexmore » lattices, and is compact enough to fit in common sample environments such as cryostats and superconducting magnets.« less

  9. Experiment of low resistance joints for the ITER correction coil.

    PubMed

    Liu, Huajun; Wu, Yu; Wu, Weiyue; Liu, Bo; Shi, Yi; Guo, Shuai

    2013-01-01

    A test method was designed and performed to measure joint resistance of the ITER correction coil (CC) in liquid helium (LHe) temperature. A 10 kA superconducting transformer was manufactured to provide the joints current. The transformer consisted of two concentric layer-wound superconducting solenoids. NbTi superconducting wire was wound in the primary coil and the ITER CC conductor was wound in the secondary coil. The primary and the secondary coils were both immersed in liquid helium of a 300 mm useful bore diameter cryostat. Two ITER CC joints were assembled in the secondary loop and tested. The current of the secondary loop was ramped to 9 kA in several steps. The two joint resistances were measured to be 1.2 nΩ and 1.65 nΩ, respectively.

  10. Optics Alignment of a Balloon-Borne Far-Infrared Interferometer BETTII

    NASA Technical Reports Server (NTRS)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Sampler, Henry; Juanola Parramon, Roser; Veach, Todd; Fixsen, Dale; Vila Hernandez De Lorenzo, Jor; Silverberg, Robert F.

    2017-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-m baseline far-infrared (FIR: 30 90 micrometer) interferometer providing spatially resolved spectroscopy. The initial scientific focus of BETTII is on clustered star formation, but this capability likely has a much broader scientific application.One critical step in developing an interferometer, such as BETTII, is the optical alignment of the system. We discuss how we determine alignment sensitivities of different optical elements on the interferogram outputs. Accordingly, an alignment plan is executed that makes use of a laser tracker and theodolites for precise optical metrology of both the large external optics and the small optics inside the cryostat. We test our alignment on the ground by pointing BETTII to bright near-infrared sources and obtaining their images in the tracking detectors.

  11. Terminal structure

    DOEpatents

    Schmidt, Frank [Langenhagen, DE; Allais, Arnaud [Hannover, DE; Mirebeau, Pierre [Villebon sur Yvette, FR; Ganhungu, Francois [Vieux-Reng, FR; Lallouet, Nicolas [Saint Martin Boulogne, FR

    2009-10-20

    A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.

  12. The Windowless Gaseous Tritium Source (WGTS) of the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Heizmann, Florian; Seitz-Moskaliuk, Hendrik; KATRIN Collaboration

    2017-09-01

    The Karlsruhe Tritium Neutrino Experiment (KATRIN) will perform a direct, kinematics-based measurement of the neutrino mass with a sensitivity of 200 meV (90 % C. L.), which will be reached after 3 years of measurement time. The neutrino mass is obtained by investigating the shape of the energy spectrum of tritium β-decay electrons close to the endpoint at 18.6 keV with a spectrometer of MAC-E filter type. This contribution reviews the current status of the tritium source cryostat and magnet system which is currently in its first cool-down phase. Furthermore, the next steps of the comprehensive pre-tritium measurement programme to characterise the apparatus and investigate important systematics are outlined. This work is supported by BMBF (05A14VK2) and the Helmholtz Association.

  13. Strategies on solar observation of Atacama Large Millimeter/submillimeter Array (ALMA) band-1 receiver

    NASA Astrophysics Data System (ADS)

    Chiong, Chau-Ching; Chiang, Po-Han; Hwang, Yuh-Jing; Huang, Yau-De

    2016-07-01

    ALMA covering 35-950 GHz is the largest existing telescope array in the world. Among the 10 receiver bands, Band-1, which covers 35-50 GHz, is the lowest. Due to its small dimension and its time-variant frequency-dependent gain characteristics, current solar filter located above the cryostat cannot be applied to Band-1 for solar observation. Here we thus adopt new strategies to fulfill the goals. Thanks to the flexible dc biasing scheme of the HEMT-based amplifier in Band-1 front-end, bias adjustment of the cryogenic low noise amplifier is investigated to accomplish solar observation without using solar filter. Large power handling range can be achieved by the de-tuning bias technique with little degradation in system performance.

  14. Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator.

    PubMed

    Pelliccione, M; Sciambi, A; Bartel, J; Keller, A J; Goldhaber-Gordon, D

    2013-03-01

    We report on our design of a scanning gate microscope housed in a cryogen-free dilution refrigerator with a base temperature of 15 mK. The recent increase in efficiency of pulse tube cryocoolers has made cryogen-free systems popular in recent years. However, this new style of cryostat presents challenges for performing scanning probe measurements, mainly as a result of the vibrations introduced by the cryocooler. We demonstrate scanning with root-mean-square vibrations of 0.8 nm at 3 K and 2.1 nm at 15 mK in a 1 kHz bandwidth with our design. Using Coulomb blockade thermometry on a GaAs/AlGaAs gate-defined quantum dot, we demonstrate an electron temperature of 45 mK.

  15. On-chip integration of a superconducting microwave circulator and a Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Bradley A.; Kerckhoff, Joseph; Malnou, Maxime; Palken, D. A.; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; Lehnert, K. W.

    Recent progress in microwave amplification based on parametric processes in superconducting circuits has revolutionized the measurement of feeble microwave signals. These devices, which operate near the quantum limit, are routinely used in ultralow temperature cryostats to: readout superconducting qubits, search for axionic dark matter, and characterize astrophysical sensors. However, these amplifiers often require ferrite circulators to separate incoming and outgoing traveling waves. For this reason, measurement efficiency and scalability are limited. In order to facilitate the routing of quantum signals we have created a superconducting, on-chip microwave circulator without permanent magnets. We integrate our circulator on-chip with a Josephson parametric amplifier for the purpose of near quantum-limited directional amplification. In this talk I will present a design overview and preliminary measurements.

  16. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    NASA Astrophysics Data System (ADS)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2008-03-01

    Thermal conductivity testing under actual-use conditions is a key to understanding how cryogenic thermal insulation systems perform in regard to engineering, economics, and materials factors. The Cryogenics Test Laboratory at NASA's Kennedy Space Center tested a number of bulk-fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boiloff method were 78 K and 293 K. Tests were performed as a function of cold vacuum pressure under conditions ranging from high vacuum to no vacuum. Results were compared with those from complementary test methods in the range of 20 K to 300 K. Various testing techniques are required to completely understand the operating performance of a material and to provide data for answers to design engineering questions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, M.; Abgrall, N.; Alvis, S. I.

    Here, the Majorana Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76Ge. The Majorana Demonstrator is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a tonne scale 76Ge-based search (the LEGEND collaboration). In the Demonstrator, germanium detectors operate in an ultra-pure vacuum cryostat at 80 K. One special challenge of an ultra-pure environment is to develop reliable cables, connectors, and electronics that do not significantly contribute to the radioactive background of the experiment. This paper highlights the experimental requirements and how these requirements were met for the Majorana Demonstrator,more » including plans to upgrade the wiring for higher reliability in the summer of 2018. Also described are requirements for LEGEND R&D efforts underway to meet these additional requirements« less

  18. Magnetic levitation on a type-I superconductor as a practical demonstration experiment for students

    NASA Astrophysics Data System (ADS)

    Osorio, M. R.; Lahera, D. E.; Suderow, H.

    2012-09-01

    We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 l liquid helium dewar. We study the equilibrium position of a magnet that levitates over a lead bowl immersed in a liquid hand-held helium cryostat. We combine the measurement of the position of the magnet with simple analytical calculations. This provides a vivid visualization of magnetic levitation from the balance between pure flux expulsion and gravitation. The experiment contrasts and illustrates the case of magnetic levitation with high temperature type-II superconductors using liquid nitrogen, where levitation results from partial flux expulsion and vortex physics.

  19. On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs

    NASA Astrophysics Data System (ADS)

    Schroeder, Edward; Mauskopf, Philip; Pilyavsky, Genady; Sinclair, Adrian; Smith, Nathan; Bryan, Sean; Mani, Hamdi; Morozov, Dmitry; Berggren, Karl; Zhu, Di; Smirnov, Konstantin; Vakhtomin, Yuriy

    2016-08-01

    We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes.

  20. A new concept of a hybrid trapped field magnet lens

    NASA Astrophysics Data System (ADS)

    Takahashi, Keita; Fujishiro, Hiroyuki; Ainslie, Mark D.

    2018-04-01

    In this paper, a new concept of a hybrid trapped field magnet lens (HTFML) is proposed. The HTMFL exploits the ‘vortex pinning effect’ of an outer superconducting bulk cylinder, which is magnetized as a trapped field magnet (TFM) using field-cooled magnetization (FCM), and the ‘diamagnetic shielding effect’ of an inner bulk magnetic lens to generate a concentrated magnetic field higher than the trapped field from the TFM in the bore of the magnetic lens. This requires that, during the zero-field-cooled magnetization process, the outer cylinder is in the normal state (T> superconducting transition temperature, T c) and the inner lens is in the superconducting state (T < T c) when the external magnetizing field is applied, followed by cooling to an appropriate operating temperature, then removing the external field. This is explored for two potential cases: (1) exploiting the difference in T c of two different bulk materials (‘case-1’), e.g. MgB2 (T c = 39 K) and GdBaCuO (T c = 92 K) or (2) using the same material for the whole HTFML, e.g., GdBaCuO, but utilizing individually controlled cryostats, the same cryostat with different cooling loops or coolants, or heaters that keep the outer bulk cylinder at a temperature above T c to achieve the same desired effect. The HTFML is verified using numerical simulations for ‘case-1’ using an MgB2 cylinder and GdBaCuO lens pair and for ‘case-2’ using a GdBaCuO cylinder and GdBaCuO lens pair. As a result, the HTFML could reliably generate a concentrated magnetic field B c = 4.73 T with the external magnetizing field B app = 3 T in the ‘case-1’, and a higher B c = 13.49 T with higher B app = 10 T in the ‘case-2’, respectively. This could, for example, be used to enhance the magnetic field in the bore of a bulk superconducting NMR/MRI system to improve its resolution.

  1. Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Barry; Bremer, Johan; Chalifour, Michel

    2017-01-01

    The Short-Baseline Neutrino (SBN) physics program will involve three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. The Program will be composed of an existing and operational detector known as Micro Boone (170 ton LAr mass) plus two new experiments known as the SBN Near Detector (SBND, ~ 260more » ton) and the SBN Far Detector (SBN-FD, ~ 600 tons). Fermilab is now building two new facilities to house the experiments and incorporate all cryogenic and process systems to operate these detectors beginning in the 2018-2019 time frame. The SBN cryogenics are a collaborative effort between Fermilab and CERN. The SBN cryogenic systems for both detectors are composed of several sub-systems: External/Infrastructure (or LN2), Proximity (or LAr), and internal cryogenics. For each detector the External/Infrastructure cryogenics includes the equipment used to store and the cryogenic fluids needed for the operation of the Proximity cryogenics, including the LN2 and LAr storage facilities. The Proximity cryogenics consists of all the systems that take the cryogenic fluids from the external/infrastructure cryogenics and deliver them to the internal at the required pressure, temperature, purity and mass flow rate. It includes the condensers, the LAr and GAr purification systems, the LN2 and LAr phase separators, and the interconnecting piping. The Internal cryogenics is comprised of all the cryogenic equipment located within the cryostats themselves, including the GAr and LAr distribution piping and the piping required to cool down the cryostats and the detectors. These cryogenic systems will be engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution presents the performance, the functional requirements and the modes of operation of the SBN cryogenics, and details the current status of the design, present and future needs.« less

  2. A magnetic resonance (MR) microscopy system using a microfluidically cryo-cooled planar coil.

    PubMed

    Koo, Chiwan; Godley, Richard F; Park, Jaewon; McDougall, Mary P; Wright, Steven M; Han, Arum

    2011-07-07

    We present the development of a microfluidically cryo-cooled planar coil for magnetic resonance (MR) microscopy. Cryogenically cooling radiofrequency (RF) coils for magnetic resonance imaging (MRI) can improve the signal to noise ratio (SNR) of the experiment. Conventional cryostats typically use a vacuum gap to keep samples to be imaged, especially biological samples, at or near room temperature during cryo-cooling. This limits how close a cryo-cooled coil can be placed to the sample. At the same time, a small coil-to-sample distance significantly improves the MR imaging capability due to the limited imaging depth of planar MR microcoils. These two conflicting requirements pose challenges to the use of cryo-cooling in MR microcoils. The use of a microfluidic based cryostat for localized cryo-cooling of MR microcoils is a step towards eliminating these constraints. The system presented here consists of planar receive-only coils with integrated cryo-cooling microfluidic channels underneath, and an imaging surface on top of the planar coils separated by a thin nitrogen gas gap. Polymer microfluidic channel structures fabricated through soft lithography processes were used to flow liquid nitrogen under the coils in order to cryo-cool the planar coils to liquid nitrogen temperature (-196 °C). Two unique features of the cryo-cooling system minimize the distance between the coil and the sample: (1) the small dimension of the polymer microfluidic channel enables localized cooling of the planar coils, while minimizing thermal effects on the nearby imaging surface. (2) The imaging surface is separated from the cryo-cooled planar coil by a thin gap through which nitrogen gas flows to thermally insulate the imaging surface, keeping it above 0 °C and preventing potential damage to biological samples. The localized cooling effect was validated by simulations, bench testing, and MR imaging experiments. Using this cryo-cooled planar coil system inside a 4.7 Tesla MR system resulted in an average image SNR enhancement of 1.47 ± 0.11 times relative to similar room-temperature coils. This journal is © The Royal Society of Chemistry 2011

  3. A Magnetic Resonance (MR) Microscopy System using a Microfluidically Cryo-Cooled Planar Coil

    PubMed Central

    Koo, Chiwan; Godley, Richard F.; Park, Jaewon; McDougall, Mary P.; Wright, Steven M.; Han, Arum

    2011-01-01

    We present the development of a microfluidically cryo-cooled planar coil for magnetic resonance (MR) microscopy. Cryogenically cooling radiofrequency (RF) coils for magnetic resonance imaging (MRI) can improve the signal to noise ratio (SNR) of the experiment. Conventional cryostats typically use a vacuum gap to keep samples to be imaged, especially biological samples, at or near room temperature during cryo-cooling. This limits how close a cryo-cooled coil can be placed to the sample. At the same time, a small coil-to-sample distance significantly improves the MR imaging capability due to the limited imaging depth of planar MR microcoils. These two conflicting requirements pose challenges to the use of cryo-cooling in MR microcoils. The use of a microfluidic based cryostat for localized cryo-cooling of MR microcoils is a step towards eliminating these constraints. The system presented here consists of planar receive-only coils with integrated cryo-cooling microfluidic channels underneath, and an imaging surface on top of the planar coils separated by a thin nitrogen gas gap. Polymer microfluidic channel structures fabricated through soft lithography processes were used to flow liquid nitrogen under the coils in order to cryo-cool the planar coils to liquid nitrogen temperature (−196°C). Two unique features of the cryo-cooling system minimize the distance between the coil and the sample: 1) The small dimension of the polymer microfluidic channel enables localized cooling of the planar coils, while minimizing thermal effects on the nearby imaging surface. 2) The imaging surface is separated from the cryo-cooled planar coil by a thin gap through which nitrogen gas flows to thermally insulate the imaging surface, keeping it above 0°C and preventing potential damage to biological samples. The localized cooling effect was validated by simulations, bench testing, and MR imaging experiments. Using this cryo-cooled planar coil system inside a 4.7 Tesla MR system resulted in an average image SNR enhancement of 1.47 ± 0.11 times relative to similar room-temperature coils. PMID:21603723

  4. Low Background Assay Results for LZ

    NASA Astrophysics Data System (ADS)

    Oliver-Mallory, Kelsey; Thomas, Keenan; Lux-Zeplin Collaboration; Berkeley Low Background Facility Team

    2016-03-01

    The next generation dark matter experiment LUX-ZEPLIN (LZ) requires careful control of intrinsic radioactivity in all critical detector components in order to reach its unprecedented target sensitivity to Weakly Interacting Massive Particles (WIMPs): 2 ×10-48 cm2 at 50 GeV/c2. Appropriate material selection is essential to meeting this goal, and an extensive campaign of low background screening is currently being carried out using assay devices at the Sanford Underground Research Facility and the Boulby Underground Laboratory. We will present results from this work, including measurements for the Ti cryostat, PMT bases, PMT raw materials, PTFE, and other components. This work was partially supported by the U.S. Department of Energy (DOE) under Award Number DE-AC02-05CH11231, and is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1106400.

  5. A bulk superconducting MgB2 cylinder for holding transversely polarized targets

    NASA Astrophysics Data System (ADS)

    Statera, M.; Balossino, I.; Barion, L.; Ciullo, G.; Contalbrigo, M.; Lenisa, P.; Lowry, M. M.; Sandorfi, A. M.; Tagliente, G.

    2018-02-01

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. A feasibility study with a prototype bulk MgB2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electron scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.

  6. A cryocooler for applications requiring low magnetic and mechanical interference

    NASA Technical Reports Server (NTRS)

    Zimmerman, J. E.; Daney, D. E.; Sullivan, D. B.

    1983-01-01

    A very low-power, low-interference Stirling cryocooler is being developed based on principles and techniques described in several previous publications over the last four years. It differs in several important details from those built previously. It uses a tapered displacer based upon an analytical optimization procedure. The displacer is driven by an auxiliary piston and cylinder (rather than by mechanical linkage) using some of the working fluid itself to provide the driving force. This provides smooth, vibration-free motion, and, more importantly, allows complete mechanical and spatial separation of the cryostat from the pressure-wave generator. Either of two different pressure-wave generators can be used. One is a non-contaminating, unlubricated ceramic piston and cylinder. The other is a compressed-air-operated rubber diaphragm with motor-driven valves to cycle the pressure between appropriate limits.

  7. Germanium resistance thermometer calibration at superfluid helium temperatures

    NASA Technical Reports Server (NTRS)

    Mason, F. C.

    1985-01-01

    The rapid increase in resistance of high purity semi-conducting germanium with decreasing temperature in the superfluid helium range of temperatures makes this material highly adaptable as a very sensitive thermometer. Also, a germanium thermometer exhibits a highly reproducible resistance versus temperature characteristic curve upon cycling between liquid helium temperatures and room temperature. These two factors combine to make germanium thermometers ideally suited for measuring temperatures in many cryogenic studies at superfluid helium temperatures. One disadvantage, however, is the relatively high cost of calibrated germanium thermometers. In space helium cryogenic systems, many such thermometers are often required, leading to a high cost for calibrated thermometers. The construction of a thermometer calibration cryostat and probe which will allow for calibrating six germanium thermometers at one time, thus effecting substantial savings in the purchase of thermometers is considered.

  8. Ultra high molecular weight polyethylene: Optical features at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    D'Alessandro, G.; Paiella, A.; Coppolecchia, A.; Castellano, M. G.; Colantoni, I.; de Bernardis, P.; Lamagna, L.; Masi, S.

    2018-05-01

    The next generation of experiments for the measurement of the Cosmic Microwave Background (CMB) requires more and more the use of advanced materials, with specific physical and structural properties. An example is the material used for receiver's cryostat windows and internal lenses. The large throughput of current CMB experiments requires a large diameter (of the order of 0.5 m) of these parts, resulting in heavy structural and optical requirements on the material to be used. Ultra High Molecular Weight (UHMW) polyethylene (PE) features high resistance to traction and good transmissivity in the frequency range of interest. In this paper, we discuss the possibility of using UHMW PE for windows and lenses in experiments working at millimeter wavelengths, by measuring its optical properties: emissivity, transmission and refraction index. Our measurements show that the material is well suited to this purpose.

  9. Realization of mechanical rotation in superfluid helium

    NASA Astrophysics Data System (ADS)

    Gordon, E. B.; Kulish, M. I.; Karabulin, A. V.; Matyushenko, V. I.; Dyatlova, E. V.; Gordienko, A. S.; Stepanov, M. E.

    2017-09-01

    The possibility of using miniaturized low-power electric motors submerged in superfluid helium for organization of rotation inside a cryostat has been investigated. It has been revealed that many of commercial micromotors can operate in liquid helium consuming low power. Turret with 5 sample holders, assembled on the base of stepper motor, has been successfully tested in experiments on the nanowire production in quantized vortices of superfluid helium. Application of the stepper motor made it possible in a single experiment to study the effect of various experimental parameters on the yield and quality of the nanowires. The promises for continuous fast rotation of the bath filled by superfluid helium by using high-speed brushless micromotor were outlined and tested. Being realized, this approach will open new possibility to study the guest particles interaction with the array of parallel linear vortices in He II.

  10. Bitter magnet system 13 T. -125 mm. bore usable for investigations at 1. 8 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claudet, G.; Rub, P.; Vallier, J.C.

    1981-09-01

    A cryomagnetic system is described for superconducting materials submitted to an external field for two temperatures: 1.8 K and 4.2 K. The originality of the system is to obtain 1.8 K at atmospheric pressure. The system is made of two distinct parts: A bitter coil, with a nominal power of 10 mw allowing one to obtain more than 13T in a clear bore of 160 mm at room temperature; a cryostat in which it is possible to insert cylindrical elements with a diam of 125 mm, equipped with appliances allowing either a traditional use or use of superfluid helium atmore » atmospheric pressure. This material was built to allow stability experiments in superconducting samples as well as significant length tests of commercial superconducting materials. 8 refs.« less

  11. Angle-dependent electron spin resonance of YbRh2Si2 measured with planar microwave resonators and in-situ rotation

    NASA Astrophysics Data System (ADS)

    Bondorf, Linda; Beutel, Manfred; Thiemann, Markus; Dressel, Martin; Bothner, Daniel; Sichelschmidt, Jörg; Kliemt, Kristin; Krellner, Cornelius; Scheffler, Marc

    2018-05-01

    We present a new experimental approach to investigate the magnetic properties of the anisotropic heavy-fermion system YbRh2Si2 as a function of crystallographic orientation. Angle-dependent electron spin resonance (ESR) measurements are performed at a low temperature of 1.6 K and at an ESR frequency of 4.4 GHz utilizing a superconducting planar microwave resonator in a 4He-cryostat in combination with in-situ sample rotation. The obtained ESR g-factor of YbRh2Si2 as a function of the crystallographic angle is consistent with results of previous measurements using conventional ESR spectrometers at higher frequencies and fields. Perspectives to implement this experimental approach into a dilution refrigerator and to reach the magnetically ordered phase of YbRh2Si2 are discussed.

  12. The Wide Integral Field Infrared Spectrograph (WIFIS): optomechanical design and development

    NASA Astrophysics Data System (ADS)

    Meyer, R. Elliot; Moon, Dae-Sik; Sivanandam, Suresh; Ma, Ke; Henderson, Chuck; Blank, Basil; Chou, Chueh-Yi; Jarvis, Miranda; Eikenberry, Stephen S.

    2016-08-01

    We present the optomechanical design and development of the Wide Integral Field Infrared Spectrograph (WIFIS). WIFIS will provide an unrivalled integral field size of 20"×50" for a near-infrared (0.9-1.7 μm) integral-field spectrograph at the 2.3-meter Steward Bok telescope. Its main optomechanical system consists of two assemblies: a room-temperature bench housing the majority of the optical components and a cryostat for a field-flattening lens, thermal blocking filter, and detector. Two additional optical subsystems will provide calibration functionality, telescope guiding, and off-axis optical imaging. WIFIS will be a highly competitive instrument for seeing-limited astronomical investigations of the dynamics and chemistry of extended objects in the near-infrared wavebands. WIFIS is expected to be commissioned during the end of 2016 with scientific operations beginning in 2017.

  13. Manufacturing, integration, and test results of the MATISSE cold optics bench

    NASA Astrophysics Data System (ADS)

    Bettonvil, Felix C. M.; Kroes, G.; Agoćs, T.; van Duin, A.; Elswijk, E.; de Haan, M.; ter Horst, R.; Kragt, J.; Kuindersma, J.; Navarro, R.; Roelfsema, R.; Schuil, M.; Tromp, T.; Venema, L.; van Kessel, F.; Jaskó, A.

    2014-07-01

    MATISSE is the second-generation mid-infrared interferometric spectrograph and imager for ESO's Very Large Telescope Interferometer (VLTI). NOVA-ASTRON is responsible for the Cold Optics Bench (COB), representing the last part of the optics train where the four beams are re-arranged, spectrally dispersed and combined. The COB consist of two sister units, one for the LM-band, one for the N-band, which were successively completed at NOVA-ASTRON in autumn 2013 and spring 2014. The LM-band COB is under cryogenic test in its cryostat at MPIA/Heidelberg; the N-band COB finished cryogenic tests and has been installed at OCA/Nice for integration together with the Warm Optics. This paper focuses on the manufacturing, integration and test results of the COBs, and gives an overview of the current status.

  14. In situ optical microscopy of the martensitic phase transformation of lithium

    NASA Astrophysics Data System (ADS)

    Krystian, M.; Pichl, W.

    2000-12-01

    The phase transformation of lithium was investigated by in situ optical microscopy in a helium cryostat. The martensite microstructure is composed of irregular segments which grow in rapid bursts from many nuclei to a final size of 10 to 20 μm and then are immobilized. A major part of the segments is arranged in groups of parallel lamellas. A theoretical consideration of lattice compatibility predicts the existence of an almost perfectly coherent habit-plane interface between bcc and 9R in lithium. Therefore, the irregular microstructure is interpreted by the presence of the disordered polytype phase. Comparison with an earlier investigation in comparably impure lithium indicates a strong influence of impurities on the transformation mechanism. The connections between the low-temperature phase diagram, the geometrical compatibility condition, and the martensite microstructure are discussed.

  15. Cryogenic Microcalorimeter System for Ultra-High Resolution Alpha-Particle Spectrometry

    NASA Astrophysics Data System (ADS)

    Croce, M. P.; Bacrania, M. K.; Hoover, A. S.; Rabin, M. W.; Hoteling, N. J.; LaMont, S. P.; Plionis, A. A.; Dry, D. E.; Ullom, J. N.; Bennett, D. A.; Horansky, R. D.; Kotsubo, V.; Cantor, R.

    2009-12-01

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with ˜15-μK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis. This paper will discuss design and operation of our microcalorimeter alpha-particle spectrometer, and will show recent results.

  16. Electrically insulated MLI and thermal anchor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Koji; Furukawa, Masato; Murakami, Haruyuki

    2014-01-29

    The thermal shield of JT-60SA is kept at 80 K and will use the multilayer insulation (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for the MLI system are proposed, focusing on a way to overlap the layers. A boil-off calorimeter methodmore » and temperature measurement has been performed to determine the thermal performance of the MLI system. The design of the electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.« less

  17. Edison and radiatively-cooled IR space observatories

    NASA Technical Reports Server (NTRS)

    Thronson, H. A.; Hawarden, T. G.; Bally, J.; Burnell, S. J. Bell; Penny, A. J.; Rapp, D.

    1993-01-01

    Radiative cooling of IR space telescopes is an alternative to embedding within massive cryostats and should offer advantages for future missions, including longer life, larger aperture for a fixed spacecraft size, lower cost due to less complex engineering, and easier ground handling. Relatively simple analyses of conventional designs show that it is possible to achieve telescope temperatures in the range of 25 to 40 K at distances from the sun of about 1 AU. Lower temperatures may be possible with 'open' designs or distant orbits. At approximately 25 K, an observatory will be limited by the celestial thermal background in the near- and mid-IR and by the confusion limit in the far-IR. We outline here our concept for a moderate aperture (approximately 1.75 m; Ariane 4 or Atlas launch) international space observatory for the next decade.

  18. Vacuum variable-angle far-infrared ellipsometer

    NASA Astrophysics Data System (ADS)

    Friš, Pavel; Dubroka, Adam

    2017-11-01

    We present the design and performance of a vacuum far-infrared (∼50-680 cm-1) ellipsometer with a rotating analyser. The system is based on a Fourier transform spectrometer, an in-house built ellipsometer chamber and a closed-cycle bolometer. The ellipsometer chamber is equipped with a computer controlled θ-2θ goniometer for automated measurements at various angles of incidence. We compare our measurements on SrTiO3 crystal with the results acquired above 300 cm-1 with a commercially available ellipsometer system. After the calibration of the angle of incidence and after taking into account the finite reflectivity of mirrors in the detector part we obtain a very good agreement between the data from the two instruments. The system can be supplemented with a closed-cycle He cryostat for measurements between 5 and 400 K.

  19. NASA's Spitzer Space Telescope's Operational Mission Experience

    NASA Technical Reports Server (NTRS)

    Wilson, Robert K.; Scott, Charles P.

    2006-01-01

    New Generation of Detector Arrays(100 to 10,000 Gain in Capability over Previous Infrared Space Missions). IRAC: 256 x 256 pixel arrays operating at 3.6 microns, 4.5 microns, 5.8 microns, 8.0 microns. MIPS: Photometer with 3 sets of arrays operating at 24 microns, 70 microns and 160 microns. 128 x 128; 32 x 32 and 2 x 20 arrays. Spectrometer with 50-100 micron capabilities. IRS: 4 Array (128x128 pixel) Spectrograph, 4 -40 microns. Warm Launch Architecture: All other Infrared Missions launched with both the telescope and scientific instrument payload within the cryostat or Dewar. Passive cooling used to cool outer shell to approx.40 K. Cryogenic Boil-off then cools telescope to required 5.5K. Earth Trailing Heliocentric Orbit: Increased observing efficiency, simplification of observation planning, removes earth as heat source.

  20. The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowden, Gordon B.; Langton, Brian J.; /SLAC

    2014-05-28

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results frommore » a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)« less

  1. Low background materials and fabrication techniques for cables and connectors in the Majorana Demonstrator

    NASA Astrophysics Data System (ADS)

    Busch, M.; Abgrall, N.; Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Barton, C. J.; Bertrand, F. E.; Bode, T.; Bradley, A. W.; Brudanin, V.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Hehn, L.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Myslik, J.; O'Shaughnessy, C.; Othman, G.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Rouf, N. W.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.

    2018-01-01

    The Majorana Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76Ge. The Majorana Demonstrator is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a tonne scale 76Ge-based search (the LEGEND collaboration). In the Demonstrator, germanium detectors operate in an ultra-pure vacuum cryostat at 80 K. One special challenge of an ultra-pure environment is to develop reliable cables, connectors, and electronics that do not significantly contribute to the radioactive background of the experiment. This paper highlights the experimental requirements and how these requirements were met for the Majorana Demonstrator, including plans to upgrade the wiring for higher reliability in the summer of 2018. Also described are requirements for LEGEND R&D efforts underway to meet these additional requirements

  2. Multiplexed charge-locking device for large arrays of quantum devices

    NASA Astrophysics Data System (ADS)

    Puddy, R. K.; Smith, L. W.; Al-Taie, H.; Chong, C. H.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Kelly, M. J.; Pepper, M.; Smith, C. G.

    2015-10-01

    We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.

  3. Extraction of breathing pattern using temperature sensor based on Arduino board

    NASA Astrophysics Data System (ADS)

    Patel, Rajesh; Sengottuvel, S.; Gireesan, K.; Janawadkar, M. P.; Radhakrishnan, T. S.

    2015-06-01

    Most of the basic functions of human body are assessed by measuring the different parameters from the body such as temperature, pulse activity and blood pressure etc. Respiration rate is the number of inhalations a person takes per minute and needs to be quantitatively assessed as it modulates other measurements such as SQUID based magnetocardiography (MCG) by bringing the chest closer to or away from the sensor array located inside a stationary liquid helium cryostat. The respiration rate is usually measured when a person is at rest and simply involves counting the number of inhalations for one minute. This paper aims at the development of a suitable methodology for the measurement of respiration rate with the help of a temperature sensor which monitors the very slight change in temperature near the nostril during inhalation & exhalation. The design and development of the proposed system is presented, along with typical experiment results.

  4. Quench protection analysis of the Mu2e production solenoid

    NASA Astrophysics Data System (ADS)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.

  5. Thermal Design for the Micro-X Rocket Payload

    NASA Astrophysics Data System (ADS)

    Goldfinger, D. C.; Figueroa-Feliciano, E.; Danowski, M.; Heine, S. N. T.

    2016-08-01

    Micro-X is a NASA funded, rocket borne X-ray imaging spectrometer that uses transition edge sensors (TESs) to do high-resolution microcalorimetry. The TESs are cooled by an adiabatic demagnetization refrigerator, whose salt pill functions as a heat sink for the detectors. We have made a thermal model of the cryostat with SPICE for the purposes of understanding its behavior at low temperatures. Implementing modifications based on this model has further allowed us to cool the system down to a lower temperature than had previously been accessible and to improve its low-temperature hold time. These modifications include a variety of schemes for power through heat sinks and tweaking the conductance between the cold baths and the refrigerated hardware. We present an overview of the model and its constituent parameters, information about thermal modifications, and a summary of results from thermal tests of the entire system.

  6. Search for double beta processes in {sup 106}Cd with enriched {sup 106}CdWO{sub 4} crystal scintillator in coincidence with four crystals HPGe detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danevich, F. A., E-mail: danevich@kinr.kiev.ua; Chernyak, D. M.; Mokina, V. M.

    2015-10-28

    A radiopure cadmium tungstate crystal scintillator, enriched in {sup 106}Cd ({sup 106}CdWO{sub 4}), was used to search for double beta decay processes in {sup 106}Cd in coincidence with an ultra-low background set-up containing four high purity germanium (HPGe) detectors in a single cryostat. The experiment has been completed after 13085 h of data taking. New improved limits on most of the double beta processes in {sup 106}Cd have been set on the level of 10{sup 20}−10{sup 21} yr. Tn particular, the half-life limit on the two neutrino electron capture with positron emission, T{sub 1/2} ≥ 1.8 × 10{sup 21} yr, reachedmore » the region of theoretical predictions.« less

  7. Status of the LBNF Cryogenic System

    DOE PAGES

    Montanari, D.; Adamowski, M.; Bremer, J.; ...

    2017-12-30

    We present that the Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An internationalmore » engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. Lastly, the expected performance, the functional requirements and the status of the design are also highlighted.« less

  8. Status of the LBNF Cryogenic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, D.; Adamowski, M.; Bremer, J.

    We present that the Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An internationalmore » engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. Lastly, the expected performance, the functional requirements and the status of the design are also highlighted.« less

  9. Status of the LBNF Cryogenic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, D.; Adamowski, M.; Bremer, J.

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 ton of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team willmore » design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the models of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.« less

  10. Alumina shunt for precooling a cryogen-free 4He or 3He refrigerator

    NASA Astrophysics Data System (ADS)

    Uhlig, Kurt

    2016-10-01

    In this technical report a cryogen-free 1 K cryostat is described where the pot of the 4He refrigeration unit is precooled by the 2nd stage of a pulse tube cryocooler (PTC) from room temperature to T ∼ 3 K via a shunt made from sintered alumina (SA); the total mass of the 1 K stage is 3.5 kg. SA has high thermal conductivity at high temperatures; but below ∼50 K the thermal conductivity drops rapidly, almost following a T3-law. This makes SA an interesting candidate for the construction of a thermal shunt, especially as the heat capacity of metals drops by several orders of magnitude in the temperature range from 300 K to 3 K. At the base temperature of the PTC, the heat conduction of the shunt is so small that the heat leak into the 1 K stage is negligible.

  11. Conceptual design of the superconducting magnet for the 250 MeV proton cyclotron.

    PubMed

    Ren, Yong; Liu, Xiaogang; Gao, Xiang

    2016-01-01

    The superconducting cyclotron is of great importance to treat cancer parts of the body. To reduce the operation costs, a superconducting magnet system for the 250 MeV proton cyclotron was designed to confirm the feasibility of the superconducting cyclotron. The superconducting magnet system consists of a pair of split coils, the cryostat and a pair of binary high temperature superconductor current leads. The superconducting magnet can reach a central magnetic field of about 1.155 T at 160 A. The three GM cryocooler with cooling capacities of 1.5 W at 4.5 K and 35 W at 50 K and one GM cryocooler of 100 W at 50 K were adopted to cool the superconducting magnet system through the thermosiphon technology. The four GM cryocoolers were used to cool the superconducting magnet to realize zero evaporation of the liquid helium.

  12. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    NASA Astrophysics Data System (ADS)

    Lebrun, Ph

    2017-02-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices - magnets and high-frequency cavities - distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.

  13. NASA Tech Briefs, April 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics include: Tool for Bending a Metal Tube Precisely in a Confined Space; Multiple-Use Mechanisms for Attachment to Seat Tracks; Force-Measuring Clamps; Cellular Pressure-Actuated Joint; Block QCA Fault-Tolerant Logic Gates; Hybrid VLSI/QCA Architecture for Computing FFTs; Arrays of Carbon Nanotubes as RF Filters in Waveguides; Carbon Nanotubes as Resonators for RF Spectrum Analyzers; Software for Viewing Landsat Mosaic Images; Updated Integrated Mission Program; Software for Sharing and Management of Information; Optical-Quality Thin Polymer Membranes; Rollable Thin Shell Composite-Material Paraboloidal Mirrors; Folded Resonant Horns for Power Ultrasonic Applications; Touchdown Ball-Bearing System for Magnetic Bearings; Flux-Based Deadbeat Control of Induction-Motor Torque; Block Copolymers as Templates for Arrays of Carbon Nanotubes; Throttling Cryogen Boiloff To Control Cryostat Temperature; Collaborative Software Development Approach Used to Deliver the New Shuttle Telemetry Ground Station; Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers; and Time-Resolved Measurements in Optoelectronic Microbioanal.

  14. The Infrared Astronomical Satellite (IRAS) mission

    NASA Technical Reports Server (NTRS)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  15. Split gradient coils for simultaneous PET-MRI

    PubMed Central

    Poole, Michael; Bowtell, Richard; Green, Dan; Pittard, Simon; Lucas, Alun; Hawkes, Rob; Carpenter, Adrian

    2015-01-01

    Combining positron emission tomography (PET) and MRI necessarily involves an engineering tradeoff as the equipment needed for the two modalities vies for the space closest to the region where the signals originate. In one recently described scanner configuration for simultaneous positron emission tomography–MRI, the positron emission tomography detection scintillating crystals reside in an 80-mm gap between the 2 halves of a 1-T split-magnet cryostat. A novel set of gradient and shim coils has been specially designed for this split MRI scanner to include an 110-mm gap from which wires are excluded so as not to interfere with positron detection. An inverse boundary element method was necessarily employed to design the three orthogonal, shielded gradient coils and shielded Z0 shim coil. The coils have been constructed and tested in the hybrid positron emission tomography-MRI system and successfully used in simultaneous positron emission tomography-MRI experiments. PMID:19780167

  16. A bulk superconducting MgB 2 cylinder for holding transversely polarized targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Statera, M.; Balossino, I.; Barion, L.

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. Here, a feasibility study with a prototype bulk MgB 2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electronmore » scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.« less

  17. Application of Cryocoolers to a Vintage Dilution Refrigerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Richard; Smith, Gary; Ruschman, Mark

    2011-06-06

    A dilution refrigerator is required for 50mK detector operation of CDMS (Cryogenic Dark Matter Search). Besides shielding the dilution refrigerator itself, the liquid nitrogen shield and liquid helium bath in the refrigerator cool the detector cryostat heat shields and cool electronics, resulting in significant external heat loads at 80K and at 4K. An Oxford Instruments Kelvinox 400 has served this role for ten years but required daily transfers of liquid nitrogen and liquid helium. Complicating the cryogen supply is the location 800 meters below ground in an RF shielded, class 10000 clean room at Soudan, MN. Nitrogen and helium re-liquefiersmore » using cryocoolers were installed outside the clean room and continuously condense room temperature gas and return the liquids to the dilution refrigerator through a transfer line. This paper will describe the design, installation, controls and performance of liquefaction systems.« less

  18. Soviet-West German Symposium on Heat Transfer in Cryogenic Systems, 3rd, Kharkov, Ukrainian SSR, Oct. 9-11, 1989, Proceedings

    NASA Astrophysics Data System (ADS)

    1990-04-01

    The papers presented in this volume describe a rotating cryostat for the simulation of mechanical, thermal, and hydraulic processes in superconducting rotors; the problems of cooling the fully superconducting generator stator; an investigation of natural circulation by optical methods; and a method of calculating void fraction for vapor-liquid or gas-liquid flow conditions. Attention is given to an experimental study of the processes of He-3 boiling and condensation, heat transfer in He II at a slow variation of the heat load, an investigation of He II flow crisis in porous media, and cryogenic heat pipes. Other papers are on the stability of rotating superconducting windings for electric machines, the stability of high-temperature superconductors cooled by liquid nitrogen, a calculation of the transpiration cooling of a cylindrical porous wall, and pressure losses in boiling nitrogen flow through horizontal channels.

  19. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    NASA Technical Reports Server (NTRS)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  20. Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications.

    PubMed

    Bellei, Francesco; Cartwright, Alyssa P; McCaughan, Adam N; Dane, Andrew E; Najafi, Faraz; Zhao, Qingyuan; Berggren, Karl K

    2016-02-22

    This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% ± 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 ± 0.11 µm starting from a fiber source at wavelength, λ = 1.55 µm. We demonstrated photon counting on a detector with an 8 × 7.3 µm2 area. We measured a dark count rate of 95 ± 3.35 kcps and a system detection efficiency of 1.64% ± 0.13%. We explain the key steps that are required to improve further the coupling efficiency.

  1. Development of Tunneling Spectroscopy Apparatus for Kelvin and Sub-Kelvin Measurements of Superconducting Energy Gaps by Multi-disciplinary students at a Liberal Arts University

    NASA Astrophysics Data System (ADS)

    Eckhardt, Matt

    2014-03-01

    Tunneling spectroscopy is an important technique used to measure the superconducting energy gap, a feature that is at the heart of the nature of superconductivity in various materials. In this presentation, we report the progress and results in developing high-resolution tunneling spectroscopy experimental platforms in a helium three cryostat, a 3 Kelvin cryocooler and a helium dip-tester. The experimental team working in a liberal arts university is a multi-disciplinary group consisting of one physics major, chemisty majors and a biology major. Students including non-physics majors learned and implemented current-voltage measurement techniques, vacuum system engineering, built electronic boxes and amplifier circuits from scratch, built custom multi-conductor cables for thermometry and current-voltage measurements, and performed conductance measurements. We report preliminary results. Acknowledgments: We acknowledge support from National Science Foundation Grant # DMR-1206561.

  2. Development of a Superconducting Magnet System for the ONR/General Atomics Homopolar Motor

    NASA Astrophysics Data System (ADS)

    Schaubel, K. M.; Langhorn, A. R.; Creedon, W. P.; Johanson, N. W.; Sheynin, S.; Thome, R. J.

    2006-04-01

    This paper describes the design, testing and operational experience of a superconducting magnet system presently in use on the Homopolar Motor Program. The homopolar motor is presently being tested at General Atomics in San Diego, California for the U.S Navy Office of Naval Research. The magnet system consists of two identical superconducting solenoid coils housed in two cryostats mounted integrally within the homopolar motor housing. The coils provide the static magnetic field required for motor operation and are wound using NbTi superconductor in a copper matrix. Each magnet is conduction cooled using a Gifford McMahon cryocooler. The coils are in close proximity to the iron motor housing requiring a cold to warm support structure with high stiffness and strength. The design of the coils, cold to warm support structure, cryogenic system, and the overall magnet system design will be described. The test results and operational experience will also be described.

  3. A small mode volume tunable microcavity: Development and characterization

    NASA Astrophysics Data System (ADS)

    Greuter, Lukas; Starosielec, Sebastian; Najer, Daniel; Ludwig, Arne; Duempelmann, Luc; Rohner, Dominik; Warburton, Richard J.

    2014-09-01

    We report the realization of a spatially and spectrally tunable air-gap Fabry-Pérot type microcavity of high finesse and cubic-wavelength-scale mode volume. These properties are attractive in the fields of opto-mechanics, quantum sensing, and foremost cavity quantum electrodynamics. The major design feature is a miniaturized concave mirror with atomically smooth surface and radius of curvature as low as 10 μm produced by CO2 laser ablation of fused silica. We demonstrate excellent mode-matching of a focussed laser beam to the microcavity mode and confirm from the frequencies of the resonator modes that the effective optical radius matches the physical radius. With these small radii, we demonstrate wavelength-size beam waists. We also show that the microcavity is sufficiently rigid for practical applications: in a cryostat at 4 K, the root-mean-square microcavity length fluctuations are below 5 pm.

  4. A uniaxial stress capacitive dilatometer for high-resolution thermal expansion and magnetostriction under multiextreme conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchler, R.; Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstrasse 2, 86135 Augsburg; Stingl, C.

    2016-07-15

    Thermal expansion and magnetostriction are directional dependent thermodynamic quantities. For the characterization of novel quantum phases of matter, it is required to study materials under multi-extreme conditions, in particular, down to very low temperatures, in very high magnetic fields or under high pressure. We developed a miniaturized capacitive dilatometer suitable for temperatures down to 20 mK and usage in high magnetic fields, which exerts a large spring force between 40 to 75 N on the sample. This corresponds to a uniaxial stress up to 3 kbar for a sample with cross section of (0.5 mm){sup 2}. We describe design andmore » performance test of the dilatometer which resolves length changes with high resolution of 0.02 Å at low temperatures. The miniaturized device can be utilized in any standard cryostat, including dilution refrigerators or the commercial physical property measurement system.« less

  5. Penetration of surface-inoculated bacteria as a result of hydrodynamic shock wave treatment of beef steaks.

    PubMed

    Lorca, T A; Pierson, M D; Claus, J R; Eifert, J D; Marcy, J E; Sumner, S S

    2002-04-01

    The top surface of the raw eye of round steaks was inoculated with either green fluorescent protein (GFP)-labeled Escherichia coli (E. coli-GFP) or rifampin-resistant E. coli (E. coli-rif). Cryostat sampling in concert with laser scanning confocal microscopy (LSCM) or plating onto antibiotic selective agar was used to determine if hydrodynamic shock wave (HSW) treatment resulted in the movement of the inoculated bacteria from the outer inoculated surface to the interior of intact beef steaks. HSW treatment induced the movement of both marker bacteria into the steaks to a maximum depth of 300 microm (0.3 mm). Because popular steak-cooking techniques involve the application of heat from the exterior surface of the steak to achieve internal temperatures ranging from 55 to 82 degrees C, the extent of bacterial penetration observed in HSW-treated steaks does not appear to pose a safety hazard to consumers.

  6. Characterization and optimization for detector systems of IGRINS

    NASA Astrophysics Data System (ADS)

    Jeong, Ueejeong; Chun, Moo-Young; Oh, Jae Sok; Park, Chan; Yuk, In-Soo; Oh, Heeyoung; Kim, Kang-Min; Ko, Kyeong Yeon; Pavel, Michael D.; Yu, Young Sam; Jaffe, Daniel T.

    2014-07-01

    IGRINS (Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by the Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). This spectrograph has H-band and K-band science cameras and a slit viewing camera, all three of which use Teledyne's λc~2.5μm 2k×2k HgCdTe HAWAII-2RG CMOS detectors. The two spectrograph cameras employ science grade detectors, while the slit viewing camera includes an engineering grade detector. Teledyne's cryogenic SIDECAR ASIC boards and JADE2 USB interface cards were installed to control those detectors. We performed experiments to characterize and optimize the detector systems in the IGRINS cryostat. We present measurements and optimization of noise, dark current, and referencelevel stability obtained under dark conditions. We also discuss well depth, linearity and conversion gain measurements obtained using an external light source.

  7. Magnetic Microcalorimeters with Ultra-High Energy Resolution (FY17 Q2 report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, S.; Ramos, Chris

    We will continue to characterize the Ag:Er MMC in detail to compare it with existing models and understand its limiting performance, both in New Mexico and at LLNL. For best resolution, it will be important to reduce external electromagnetic interference and ensure good thermal coupling to the cryostat. Improved resolution will be important for our presentations at the LTD-17 conference in Japan in Q3. We have also hired Cameron Flynn, a junior in physics at the university of New Hampshire, as a summer student to work on the MMC detector project. If he turns out to be as smart andmore » as strong in the lab as his letters of recommendation and his interview performance suggests, we will try to attract him into one of the bay area universities for his Ph.D. and recruit him to LLNL for his thesis research.« less

  8. A New Laboratory For Terahertz Characterization Of Cosmic Analog Dusts

    NASA Astrophysics Data System (ADS)

    Perera, Thushara; Liu, Lunjun; Breyer, Fiona; Schonert, Ryan; O'Shea, Kyle; Roesner, Rebecca

    2016-06-01

    Most studies conducted with observatories such as ALMA, SOFIA, PLANCK, and Herschel will benefit from knowledge of (1) the predominant cosmic dust species in various environments and (2) the mm/sub-mm optical properties of cosmic dusts, including the temperature dependent-emissivity and spectral index. We have undertaken two efforts to enable the laboratory study of cosmic analogs dusts in the frequency range 60-2000 GHz. They are: (1) the construction of a novel compact Fourier Transform Spectrometer (FTS) design coupled to a dry 4-K cryostat which houses a cooled sample exchanger (filter wheel) and a bolometer. (2) The production of Mg- and Fe-rich silicate dusts using sol-gel methods; various tests to determine their physical and chemical properties; embedding of samples in LDPE pellets for insertion into the novel FTS. This presentation will focus on the current status of the apparatus and data from its first few months of use.

  9. A bulk superconducting MgB 2 cylinder for holding transversely polarized targets

    DOE PAGES

    Statera, M.; Balossino, I.; Barion, L.; ...

    2017-11-06

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. Here, a feasibility study with a prototype bulk MgB 2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electronmore » scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.« less

  10. The International Microgravity Laboratory, a Spacelab for materials and life sciences

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    1992-01-01

    The material science experiments performed on the International Microgravity Laboratory (IML-1), which is used to perform investigations which require the low gravity environment of space, are discussed. These experiments, the principal investigator, and associated organization are listed. Whether the experiment was a new development or was carried on an earlier space mission, such as the third Spacelab (SL-3) or the Shuttle Middeck, is also noted. The two major disciplines of materials science represented on IML-1 were the growth of crystals from the melt, solution, or vapor and the study of fluids (liquids and gases) in a reduced gravity environment. The various facilities on board IML-1 and their related experiments are described. The facilities include the Fluids Experiment System (FES) Vapor Crystal Growth System (VCGS) Organic Crystal Growth Facility (OCGF), Cryostat (CRY), and the Critical Point Facility (CPF).

  11. Note: Sub-Kelvin refrigeration with dry-coolers on a rotating system.

    PubMed

    Oguri, S; Ishitsuka, H; Choi, J; Kawai, M; Tajima, O

    2014-08-01

    We developed a cryogenic system on a rotating table that achieves sub-Kelvin conditions. The cryogenic system consists of a helium sorption cooler and a pulse tube cooler in a cryostat mounted on a rotating table. Two rotary-joint connectors for electricity and helium gas circulation enable the coolers to be operated and maintained with ease. We performed cool-down tests under a condition of continuous rotation at 20 rpm. We obtained a temperature of 0.23 K with a holding time of more than 24 h, thus complying with catalog specifications. We monitored the system's performance for four weeks; two weeks with and without rotation. A few-percent difference in conditions was observed between these two states. Most applications can tolerate such a slight difference. The technology developed is useful for various scientific applications requiring sub-Kelvin conditions on rotating platforms.

  12. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat.

    PubMed

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  13. Insulation Progress since the Mid-1950s

    NASA Astrophysics Data System (ADS)

    Timmerhaus, K. D.

    Storage vessel and cryostat design for modern cryogenic systems has become rather routine as the result of the wide use of and application of cryogenic fluids. Such vessels for these fluids range in size from 1 L flasks used in the laboratory for liquid nitrogen to the more than 200,000 m3 double-walled tanks used for temporary storage of liquefied natural gas before being transported overseas to their final destination. These storage vessels for cryogenic fluids range in type from low-performance containers insulated with rigid foam or fibrous insulation to high-performance containers insulated with evacuated multilayer insulations. The overriding factors in the type of container selected normally are of economics and safety. This paper will consider various insulation concepts used in such cryogenic storage systems and will review the progress that has been made over the past 50 years in these insulation systems.

  14. Insulation Test Cryostat with Lift Mechanism

    NASA Technical Reports Server (NTRS)

    Dokos, Adam G. (Inventor); Fesmire, James E. (Inventor)

    2014-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  15. Quench protection analysis of the Mu2e production solenoid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. Amore » 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.« less

  16. Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todoshchenko, I., E-mail: todo@boojum.hut.fi; Kaikkonen, J.-P.; Hakonen, P. J.

    We demonstrate successful “dry” refrigeration of quantum fluids down to T = 0.16 mK by using copper nuclear demagnetization stage that is pre-cooled by a pulse-tube-based dilution refrigerator. This type of refrigeration delivers a flexible and simple sub-mK solution to a variety of needs including experiments with superfluid {sup 3}He. Our central design principle was to eliminate relative vibrations between the high-field magnet and the nuclear refrigeration stage, which resulted in the minimum heat leak of Q = 4.4 nW obtained in field of 35 mT. For thermometry, we employed a quartz tuning fork immersed into liquid {sup 3}He. We show that themore » fork oscillator can be considered as self-calibrating in superfluid {sup 3}He at the crossover point from hydrodynamic into ballistic quasiparticle regime.« less

  17. Nuclear Science Symposium, 31st and Symposium on Nuclear Power Systems, 16th, Orlando, FL, October 31-November 2, 1984, Proceedings

    NASA Technical Reports Server (NTRS)

    Biggerstaff, J. A. (Editor)

    1985-01-01

    Topics related to physics instrumentation are discussed, taking into account cryostat and electronic development associated with multidetector spectrometer systems, the influence of materials and counting-rate effects on He-3 neutron spectrometry, a data acquisition system for time-resolved muscle experiments, and a sensitive null detector for precise measurements of integral linearity. Other subjects explored are concerned with space instrumentation, computer applications, detectors, instrumentation for high energy physics, instrumentation for nuclear medicine, environmental monitoring and health physics instrumentation, nuclear safeguards and reactor instrumentation, and a 1984 symposium on nuclear power systems. Attention is given to the application of multiprocessors to scientific problems, a large-scale computer facility for computational aerodynamics, a single-board 32-bit computer for the Fastbus, the integration of detector arrays and readout electronics on a single chip, and three-dimensional Monte Carlo simulation of the electron avalanche in a proportional counter.

  18. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors.

    PubMed

    Chiuchiolo, Antonella; Palmieri, Luca; Consales, Marco; Giordano, Michele; Borriello, Anna; Bajas, Hugues; Galtarossa, Andrea; Bajko, Marta; Cusano, Andrea

    2015-10-01

    This contribution presents distributed and multipoint fiber-optic monitoring of cryogenic temperatures along a superconducting power transmission line down to 30 K and over 20 m distance. Multipoint measurements were conducted using fiber Bragg gratings sensors coated with two different functional overlays (epoxy and poly methyl methacrylate (PMMA)) demonstrating cryogenic operation in the range 300-4.2 K. Distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering along two concatenated fibers with different coatings (acrylate and polyimide). The integrated system has been placed along the 20 m long cryostat of a superconducting power transmission line, which is currently being tested at the European Organization for Nuclear Research (CERN). Cool-down events from 300-30 K have been successfully measured in space and time, confirming the viability of these approaches to the monitoring of cryogenic temperatures along a superconducting transmission line.

  19. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues.

    PubMed

    Holthöfer, H; Virtanen, I; Kariniemi, A L; Hormia, M; Linder, E; Miettinen, A

    1982-07-01

    Ulex europaeus I agglutinin, a lectin specific for some alpha-L-fucose-containing glycocompounds, was used in fluorescence microscopy to stain cryostat sections of human tissues. The endothelium of vessels of all sizes was stained ubiquitously in all tissues studied as judged by double staining with a known endothelial marker, antibodies against human clotting factor VIII. Cultured human umbilical vein endothelial cells, but not fibroblasts, also bound Ulex lectin. The staining was not affected by the blood group type of the tissue donor. In some tissues Ulex lectin presented additional binding to epithelial structures. Also, this was independent on the blood group or the ability of the tissue donor to secrete soluble blood group substances. Lotus tetragonolobus agglutinin, another lectin specific for some alpha-L-fucose-containing moieties failed to react with endothelial cells. Our results suggest that Ulex europaeus I agglutinin is a good histologic marker for endothelium in human tissues.

  20. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  1. Temperature dependence of conductivity measurement for conducting polymer

    NASA Astrophysics Data System (ADS)

    Gutierrez, Leandro; Duran, Jesus; Isah, Anne; Albers, Patrick; McDougall, Michael; Wang, Weining

    2014-03-01

    Conducting polymer-based solar cells are the newest generation solar cells. While research on this area has been progressing, the efficiency is still low because certain important parameters of the solar cell are still not well understood. It is of interest to study the temperature dependence of the solar cell parameters, such as conductivity of the polymer, open circuit voltage, and reverse saturation current to gain a better understanding on the solar cells. In this work, we report our temperature dependence of conductivity measurement using our in-house temperature-varying apparatus. In this project, we designed and built a temperature varying apparatus using a thermoelectric cooler module which gives enough temperature range as we need and costs much less than a cryostat. The set-up of the apparatus will be discussed. Temperature dependence of conductivity measurements for PEDOT:PSS films with different room-temperature conductivity will be compared and discussed. NJSGC-NASA Fellowship grant

  2. Performance of the e2v 1.2 GPix cryogenic camera for the J-PAS 2.5m survey telescope

    NASA Astrophysics Data System (ADS)

    Robbins, M. S.; Bastable, M.; Bates, A.; Dryer, M.; Eames, S.; Fenemore-Jones, G.; Haddow, G.; Jorden, P. R.; Lane, B.; Marin-Franch, A.; Mortimer, J.; Palmer, I.; Puttay, N.; Renshaw, R.; Smith, M.; Taylor, K.; Tearle, J.; Weston, P.; Wheeler, P.; Worley, J.

    2016-08-01

    The J-PAS project will perform a five-year survey of the northern sky from a new 2.5m telescope in Teruel, Spain. In this paper the build and factory testing of the commercially supplied cryogenic camera is described. The 1.2 Giga-pixel focal plane is contained within a novel liquid-nitrogen cooled vacuum cryostat, which maintains the flatness for the cooled, 0.45m diameter focal plane to better than 27 μm peak to valley. The cooling system controls the focal plane to a temperature of -100°C with a variation across the focal plane of better than 2.5oC and a stability of better than +/- 0.5 °C over the long periods of operation required. The proximity drive electronics achieves total system level noise performance better than 5 e- from the 224-channel CCD system.

  3. The UT 19-channel DC SQUID based neuromagnetometer.

    PubMed

    ter Brake, H J; Flokstra, J; Jaszczuk, W; Stammis, R; van Ancum, G K; Martinez, A; Rogalla, H

    1991-01-01

    A 19-channel DC SQUID based neuromagnetometer is under construction at the University of Twente (UT). Except for the cryostat all elements of the system are developed at the UT. It comprises 19 wire-wound first-order gradiometers in a hexagonal configuration. The gradiometers are connected to planar DC SQUIDs fabricated with a Nb/Al, AlO kappa/Nb technology. For this connection we developed a method to bond a Nb wire to a Nb thin-film. The SQUIDs are placed in compartmentalised Nb modules. Further, external feedback is incorporated in order to eliminate cross talk between the gradiometers. The electronics basically consist of a phase-locked loop operating with a modulation frequency of 100 kHz. Between SQUID and preamplifier a small transformer is used to limit the noise contribution of the preamplifier. In the paper the overall system is described, and special attention is paid to the SQUID module (bonding, compartments, external-feedback setup, output transformer).

  4. Photon Detector System Timing Performance in the DUNE 35-ton Prototype Liquid Argon Time Projection Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, D.L.; et al.

    The 35-ton prototype for the Deep Underground Neutrino Experiment far detector was a single-phase liquid argon time projection chamber with an integrated photon detector system, all situated inside a membrane cryostat. The detector took cosmic-ray data for six weeks during the period of February 1, 2016 to March 12, 2016. The performance of the photon detection system was checked with these data. An installed photon detector was demonstrated to measure the arrival times of cosmic-ray muons with a resolution better than 32 ns, limited by the timing of the trigger system. A measurement of the timing resolution using closely-spaced calibration pulses yielded a resolution of 15 ns for pulses at a level of 6 photo-electrons. Scintillation light from cosmic-ray muons was observed to be attenuated with increasing distance with a characteristic length ofmore » $$155 \\pm 28$$ cm.« less

  5. Design and properties of a cryogenic dip-stick scanning tunneling microscope with capacitive coarse approach control.

    PubMed

    Schlegel, R; Hänke, T; Baumann, D; Kaiser, M; Nag, P K; Voigtländer, R; Lindackers, D; Büchner, B; Hess, C

    2014-01-01

    We present the design, setup, and operation of a new dip-stick scanning tunneling microscope. Its special design allows measurements in the temperature range from 4.7 K up to room temperature, where cryogenic vacuum conditions are maintained during the measurement. The system fits into every (4)He vessel with a bore of 50 mm, e.g., a transport dewar or a magnet bath cryostat. The microscope is equipped with a cleaving mechanism for cleaving single crystals in the whole temperature range and under cryogenic vacuum conditions. For the tip approach, a capacitive automated coarse approach is implemented. We present test measurements on the charge density wave system 2H-NbSe2 and the superconductor LiFeAs which demonstrate scanning tunneling microscopy and spectroscopy data acquisition with high stability, high spatial resolution at variable temperatures and in high magnetic fields.

  6. Stray light suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Astrophysics Data System (ADS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-09-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8x16 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimétrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  7. Application of cell-surface engineering for visualization of yeast in bread dough: development of a fluorescent bio-imaging technique in the mixing process of dough.

    PubMed

    Maeda, Tatsuro; Shiraga, Seizaburo; Araki, Tetsuya; Ueda, Mitsuyoshi; Yamada, Masaharu; Takeya, Koji; Sagara, Yasuyuki

    2009-07-01

    Cell-surface engineering (Ueda et al., 2000) has been applied to develop a novel technique to visualize yeast in bread dough. Enhanced green fluorescent protein (EGFP) was bonded to the surface of yeast cells, and 0.5% EGFP yeasts were mixed into the dough samples at four different mixing stages. The samples were placed on a cryostat at -30 degrees C and sliced at 10 microm. The sliced samples were observed at an excitation wavelength of 480 nm and a fluorescent wavelength of 520 nm. The results indicated that the combination of the EGFP-displayed yeasts, rapid freezing, and cryo-sectioning made it possible to visualize 2-D distribution of yeast in bread dough to the extent that the EGFP yeasts could be clearly distinguished from the auto-fluorescent background of bread dough.

  8. Status of the LBNF Cryogenic System

    NASA Astrophysics Data System (ADS)

    Montanari, D.; Adamowski, M.; Bremer, J.; Delaney, M.; Diaz, A.; Doubnik, R.; Haaf, K.; Hentschel, S.; Norris, B.; Voirin, E.

    2017-12-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  9. Stray Light Suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Technical Reports Server (NTRS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-01-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8xl6 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimetrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  10. Plasma Chamber Design and Fabrication Activities

    NASA Astrophysics Data System (ADS)

    Parodi, B.; Bianchi, A.; Cucchiaro, A.; Coletti, A.; Frosi, P.; Mazzone, G.; Pizzuto, A.; Ramogida, G.; Coppi, B.

    2006-10-01

    A fabrication procedure for a typical Plasma Chamber (PC) sector has been developed to cover all the manufacturing phases, from the raw materials specification (including metallurgical processes) to the machining operations, acceptance procedures and vacuum tests. Basically, the sector is made of shaped elements (forged or rolled) welded together using special fixtures and then machined to achieve the final dimensional accuracy. An upgraded design of the plasma chamber's vertical support that can withstand the estimated electromagnetic loads (Eddy and Halo current plus horizontal net force resulting from the worst plasma disruption scenario VDE, Vertical Displacement Event) has been completed. The maintenance of the radial support can take place hands-on with a direct access from outside the cryostat. With the present design, vacuum tightness is achieved by welding conducted with automatic welding heads. On the outer surface of the PC a dedicated duct system, filled by helium gas, is included to cool down the PC to room temperature when needed.

  11. Pulse-Shape Analysis of Ionization Signals in Cryogenic Ge Detectors for Dark Matter

    NASA Astrophysics Data System (ADS)

    Foerster, N.; Broniatowski, A.; Eitel, K.; Marnieros, S.; Paul, B.; Piro, M.-C.; Siebenborn, B.

    2016-08-01

    The detectors of the direct dark matter search experiment EDELWEISS consist of high-purity germanium crystals operated at cryogenic temperatures (mathrm {{<}20 mK}) and low electric fields (mathrm {{<}1 V/cm}). The surface discrimination is based on the simultaneous measurement of the charge amplitudes on different sets of electrodes. As the rise time of a charge signal strongly depends on the location of an interaction in the crystal, a time-resolved measurement can also be used to identify surface interactions. This contribution presents the results of a study of the discrimination power of the rise time parameter from a hot carrier transport simulation in combination with time-resolved measurements using an EDELWEISS-type detector in a test cryostat at ground level. We show the setup for the time-resolved ionization signal read-out in the EDELWEISS-III experiment and first results from data taking in the underground laboratory of Modane.

  12. Low background materials and fabrication techniques for cables and connectors in the Majorana Demonstrator

    DOE PAGES

    Busch, M.; Abgrall, N.; Alvis, S. I.; ...

    2018-01-03

    Here, the Majorana Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76Ge. The Majorana Demonstrator is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a tonne scale 76Ge-based search (the LEGEND collaboration). In the Demonstrator, germanium detectors operate in an ultra-pure vacuum cryostat at 80 K. One special challenge of an ultra-pure environment is to develop reliable cables, connectors, and electronics that do not significantly contribute to the radioactive background of the experiment. This paper highlights the experimental requirements and how these requirements were met for the Majorana Demonstrator,more » including plans to upgrade the wiring for higher reliability in the summer of 2018. Also described are requirements for LEGEND R&D efforts underway to meet these additional requirements« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin Yong; Pusan National University, Busan; Choi, Seyong

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The finalmore » assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.« less

  14. Design of Multilayer Insulation for the Multipurpose Hydrogen Test Bed

    NASA Technical Reports Server (NTRS)

    Marlow, Weston A.

    2011-01-01

    Multilayer insulation (MLI) is a critical component for future, long term space missions. These missions will require the storage of cryogenic fuels for extended periods of time with little to no boil-off and MLI is vital due to its exceptional radiation shielding properties. Several MLI test articles were designed and fabricated which explored methods of assembling and connecting blankets, yielding results for evaluation. Insight gained, along with previous design experience, will be used in the design of the replacement blanket for the Multipurpose Hydrogen Test Bed (MHTB), which is slated for upcoming tests. Future design considerations are discussed which include mechanical testing to determine robustness of such a system, as well as cryostat testing of samples to give insight to the loss of thermal performance of sewn panels in comparison to the highly efficient, albeit laborious application of the original MHTB blanket.

  15. Study and realization of SI microcalorimeters for high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Alessandrello, A.; Brofferio, Chiara; Camin, D. V.; Cattadori, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Maglione, A.; Margesin, B.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pignatel, Giorgio U.; Previtali, Ezio; Zanotti, Luigi

    1994-09-01

    We are developing Si-implanted thermistors to realize high resolution microcalorimeters. We plan to use these devices in an experiment for the determination of the neutrino mass. The measure implies the evaluation of the correct end-point energy of a beta spectrum with a calorimetric approach. Our study is devoted to outline the optimum fabrication process concerning performances and reproducibility. For such reasons we have realized Si thermistors with different concentration of dopant impurities and with different implant geometries. Tests are performed between 4.2 and 1.2 K using a pumped helium cryostat, and selected samples are characterized at very low temperatures in a dilution refrigerator. Good reproducibility of the devices is necessary for producing an array of detectors. At the same time suitable electronics are developed to optimize the detectors preamplifiers link: minimization of the parasitic capacitance is necessary to reduce the integration of signal and to maximize the speed response of the detector.

  16. STS-52 deployment of LAGEOS / IRIS spacecraft from OV-102's payload bay (PLB)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    During STS-52 deployment activities, the Italian Research Interim Stage (IRIS), a spinning solid fuel rocket, lifts the Laser Geodynamic Satellite II (LAGEOS II) out of its support cradle and above the thermal shield aboard Columbia, Orbiter Vehicle (OV) 102. The remote manipulator system (RMS) arm, with Material Exposure in Low Earth Orbit (MELEO), is positioned above the port side sill longeron. On the mission-peculiar equipment support structure (MPESS) carriers in the center foreground is the United States (U.S.) Microgravity Payload 1 (USMP-1) with Space Acceleration Measurement System (SAMS), MEPHISTO (its French abbreviation), Lambda Point Experiment (LPE) cryostat assembly (identified by JPL insignia), and LPE vacuum maintenance assembly. Other payload bay (PLB) experiments visible in this image include: (on the starboard wall (left)) the Canadian Experiments 2 (CANEX-2) Space Vision System (SVS) Canadian Target Assembly (CTA) (foreground) and the Attitude Sensor Package (ASP);

  17. High current superconductors for tokamak toroidal field coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fietz, W.A.

    1976-01-01

    Conductors rated at 10,000 A for 8 T and 4.2 K are being purchased for the first large coil segment tests at ORNL. Requirements for these conductors, in addition to the high current rating, are low pulse losses, cryostatic stability, and acceptable mechanical properties. The conductors are required to have losses less than 0.4 W/m under pulsed fields of 0.5 T with a rise time of 1 sec in an ambient 8-T field. Methods of calculating these losses and techniques for verifying the performance by direct measurement are discussed. Conductors stabilized by two different cooling methods, pool boiling and forcedmore » helium flow, have been proposed. Analysis of these conductors is presented and a proposed definition and test of stability is discussed. Mechanical property requirements, tensile and compressive, are defined and test methods are discussed.« less

  18. Zeeman Effect in Ruby at High Pressures

    NASA Astrophysics Data System (ADS)

    Dan, Ioana

    2012-02-01

    We have developed a versatile fiber-coupled system for magneto-optical spectroscopy measurements at high pressure. The system is based on a miniature Cu-alloy Diamond Anvil Cell (from D'Anvils, Ltd) fitted with a custom-designed He gas-actuated membrane for in-situ pressure control, and coupled with a He transfer cryostat incorporating a superconducting magnet (from Quantum Designs). This system allows optical measurements (Raman, photoluminescence, reflectivity) within wide ranges of pressures (up to 100GPa), temperatures (4.2-300K) and magnetic fields (0-9T). We employ this system to examine the effect of pressure and non-hydrostatic stress on the Zeeman split d-d transitions of Cr^3+ in ruby (Al2O3: Cr^3+). We determine the effect of pressure and non-hydrostaticity on the trigonal crystal field in this material, and discuss the use of the Zeman-split ruby fluorescence as a possible probe for deviatoric stresses in diamond anvil cell experiments.

  19. Cryogenic microcalorimeter system for ultra-high resolution alpha-particle spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, Michael W; Hoover, Andrew S; Bacrania, Mnesh K

    2009-01-01

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with {approx}15 uK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by amore » commercial SQUID readout system and digitized for further analysis, This paper will discuss design and operation of our microcalorimeter alpha spectrometer, and will show recent results.« less

  20. Surface Figure Measurement of Silicon Carbide Mirrors at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Robinson, F. David; Content, David; Davila, Pamela

    2005-01-01

    The surface figure of a developmental silicon carbide mirror, cooled to 87 K and then 20 K within a cryostat, was measured with unusually high precision at the Goddard Space Flight Center (GSFC). The concave spherical mirror, with a radius of 600 mm and a clear aperture of 150 mm, was fabricated of sintered silicon carbide. The mirror was mounted to an interface plate representative of an optical bench, made of the material Cesic@, a composite of silicon, carbon, and silicon carbide. The change in optical surface figure as the mirror and interface plate cooled from room temperature to 20 K was 3.7 nm rms, with a standard uncertainty of 0.23 nm in the rms statistic. Both the cryo-change figure and the uncertainty are among the lowest such figures yet published. This report describes the facilities, experimental methods, and uncertainty analysis of the measurements.

  1. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less

  2. Insulation Test Cryostat with Lift Mechanism

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)

    2016-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  3. The Lhc Cryomagnet Supports in Glass-Fiber Reinforced Epoxy: a Large Scale Industrial Production with High Reproducibility in Performance

    NASA Astrophysics Data System (ADS)

    Poncet, A.; Struik, M.; Trigo, J.; Parma, V.

    2008-03-01

    The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production. The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004. This paper describes the development and the production of the supports, and presents the production experience and the achieved performance.

  4. Specific binding of [(18)F]fluoroethyl-harmol to monoamine oxidase A in rat brain cryostat sections, and compartmental analysis of binding in living brain.

    PubMed

    Maschauer, Simone; Haller, Adelina; Riss, Patrick J; Kuwert, Torsten; Prante, Olaf; Cumming, Paul

    2015-12-01

    We investigated [(18)F]fluoroethyl-harmol ([(18)F]FEH) as a reversible and selective ligand for positron emission tomography (PET) studies of monoamine oxidase A (MAO-A). Binding of [(18)F]FEH in rat brain cryostat sections indicated high affinity (KD = 3 nM), and density (Bmax; 600 pmol/g). The plasma free fraction was 45%, and untransformed parent constituted only 13% of plasma radioactivity at 10 min after injection. Compartmental analysis of PET recordings in pargyline-treated rats showed high permeability to brain (K1; 0.32 mL/g/min) and slow washout (k2; 0.024/min), resulting in a uniformly high equilibrium distribution volume (VD; 20 mL/g). Using this VD to estimate unbound ligand in brain of untreated rats, the binding potential ranged from 4.2 in cerebellum to 7.2 in thalamus. We also calculated maps of rats receiving [(18)F]FEH at a range of specific activities, and then estimated saturation binding parameters in the living brain. In thalamus, striatum and frontal cortex KD was globally close to 300 nM and Bmax was close to 1600 pmol/g; the 100-fold discrepancy in affinity suggests a very low free fraction for [(18)F]FEH in the living brain. Based on a synthesis of findings, we calculate the endogenous dopamine concentration to be 0.4 μM in the striatal compartment containing MAO-A, thus unlikely to exert competition against [(18)F]FEH binding in vivo. In summary, [(18)F]FEH has good properties for the detection of MAO-A in the rat brain by PET, and may present logistic advantages for clinical research at centers lacking a medical cyclotron. We made a compartmental analysis of [(18)F]fluoroethylharmol ([(18)F]FEH) binding to monoamine oxidase A (MAO-A) in living rat brain and estimated the saturation binding parameters from the binding potential (BPND). The Bmax was of comparable magnitude to that in vitro, but with apparent affinity (300 nM), it was 100-fold lower in vivo. PET imaging with [(18) F]FEH is well suited for quantitation of MAO-A in living brain. © 2015 International Society for Neurochemistry.

  5. Test of the Equivalence Principle in an Einstein Elevator

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.; Glashow, S.; Lorenzini, E. C.; Cosmo, M. L.; Cheimets, P. N.; Finkelstein, N.; Schneps, M.

    2004-01-01

    The scientific goal of the experiment is to test the equality of gravitational and inertial mass (i.e., to test the Principle of Equivalence) by measuring the independence of the rate of fall of bodies from their compositions. The measurement is accomplished by measuring the relative displacement (or equivalently acceleration) of two falling bodies of different materials which are the proof masses of a differential accelerometer spinning about an horizontal axis to modulate a possible violation signal. A non-zero differential acceleration appearing at the signal frequency will indicate a violation of the Equivalence Principle. The goal of the experiment is to measure the Eotvos ratio og/g (differential acceleration/common acceleration) with a targeted accuracy that is about two orders of magnitude better than the state of the art (presently at several parts in 10(exp 13). The analyses carried out during this first grant year have focused on: (1) evaluation of possible shapes for the proof masses to meet the requirements on the higher-order mass moment disturbances generated by the falling capsule; (2) dynamics of the instrument package and differential acceleration measurement in the presence of errors and imperfections; (3) computation of the inertia characteristic of the instrument package that enable a separation of the signal from the dynamics-related noise; (4) a revised thermal analysis of the instrument package in light of the new conceptual design of the cryostat; (5) the development of a dynamic and control model of the capsule attached to the gondola and balloon to define the requirements for the leveling mechanism (6) a conceptual design of the leveling mechanism that keeps the capsule aligned before release from the balloon; and (7) a new conceptual design of the customized cryostat and a preliminary valuation of its cost. The project also involves an international cooperation with the Institute of Space Physics (IFSI) in Rome, Italy. The group at IFSI is in charge of prototyping the differential accelerometer and carrying out precursor laboratory measurements. During this grant year, our partners analyzed and then designed a new prototype of differential accelerometer that has several characteristics in common with the flight accelerometer at this point of the instrument development. The highlights of these activities are documented in a section of this report.

  6. Beam characterisation of the 1.5 T MRI-linac

    NASA Astrophysics Data System (ADS)

    Woodings, S. J.; Bluemink, J. J.; de Vries, J. H. W.; Niatsetski, Y.; van Veelen, B.; Schillings, J.; Kok, J. G. M.; Wolthaus, J. W. H.; Hackett, S. L.; van Asselen, B.; van Zijp, H. M.; Pencea, S.; Roberts, D. A.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2018-04-01

    As a prerequisite for clinical treatments it was necessary to characterize the Elekta 1.5 T MRI-linac 7 MV FFF radiation beam. Following acceptance testing, beam characterization data were acquired with Semiflex 3D (PTW 31021), microDiamond (PTW 60019), and Farmer-type (PTW 30013 and IBA FC65-G) detectors in an Elekta 3D scanning water phantom and a PTW 1D water phantom. EBT3 Gafchromic film and ion chamber measurements in a buildup cap were also used. Special consideration was given to scan offsets, detector effective points of measurement and avoiding air gaps. Machine performance has been verified and the system satisfied the relevant beam requirements of IEC60976. Beam data were acquired for field sizes between 1  ×  1 and 57  ×  22 cm2. New techniques were developed to measure percentage depth dose (PDD) curves including the electron return effect at beam exit, which exhibits an electron-type practical range of cm. The Lorentz force acting on the secondary charged particles creates an asymmetry in the crossline profiles with an average shift of  +0.24 cm. For a 10  ×  10 cm2 beam, scatter from the cryostat contributes 1% of the dose at isocentre. This affects the relative output factors, scatter factors and beam profiles, both in-field and out-of-field. The average 20%–80% penumbral width measured for small fields with a microDiamond detector at 10 cm depth is 0.50 cm. MRI-linac penumbral widths are very similar to that of the Elekta Agility linac MLC, as is the near-surface dose PDD(0.2 cm)  =  57%. The entrance surface dose is  ∼36% of . Cryostat transmission is quantified for inclusion within the treatment planning system. As a result, the 1.5 T MRI-linac 7 MV FFF beam has been characterised for the first time and is suitable for clinical use. This was a key step towards the first clinical treatments with the MRI-linac, which were delivered at University Medical Center Utrecht in May 2017 (Raaymakers et al 2017 Phys. Med. Biol. 62 L41–50).

  7. Spin coherence in silicon/silicon-germanium nanostructures

    NASA Astrophysics Data System (ADS)

    Truitt, James L.

    This thesis investigates the spin coherence of electrons in silicon/silicon-germanium (Si/SiGe) quantum wells. With a long spin coherence time, an electron trapped in a quantum dot in Si/SiGe is a prime candidate for a quantum bit (qubit) in a solid state implementation of a quantum computer. In particular, the mechanisms responsible for decoherence are examined in a variety of Si/SiGe quantum wells, and it is seen that their behavior does not correspond to published theories of decoherence in these structures. Transport data are analyzed for all samples to determine the electrical properties of each, taking into account a parallel conduction path seen in all samples. Furthermore, the effect of confining the electrons into nanostructures of varying size in one of the samples is studied. All but one of the samples examined are grown by ultrahigh vacuum chemical vapor deposition at the University of Wisconsin - Madison. The nanostructures are patterned on a sample provided by IBM using the Nabity Pattern Generation Software (NPGS) on a LEO1530 Scanning Electron Microscope, and etched using SF6 in an STS reactive ion etcher. Continuous-wave electron spin resonance studies are done using a Bruker ESP300E spectrometer, with a 4.2K continuous flow cryostat and X-band cavity. In order to fully characterize the sample, electrical measurements were done. Hall bars are etched into the 2DEGs, and Ohmic contacts are annealed in to provide a current path through the 2DEG. Measurements are made both from room temperature down to 2K in a Physical Property Measurement System (PPMS), and at 300mK using a custom built probe in a one shot 3He cryostat made by Oxford Instruments. The custom built probe also allows high frequency excitations, facilitating electrically detected magnetic resonance (EDMR) experiments. In many of the samples, an orientationally dependent electron spin resonance linewidth is seen whose anisotropy is much larger at small angles than that predicted by published theories. The anisotropy is further increased through lateral confinement of the electrons, and a change in the coherence and relaxation times may be seen as a function of dot size as well. Finally, an outlook on the direction the lab is taking from 2DEGs to dots with electron spin resonance is given, with some promising electrically detected magnetic resonance results shown.

  8. Flux modulations seen by the muon veto of the GERDA experiment

    NASA Astrophysics Data System (ADS)

    GERDA Collaboration; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicsk'o Cs'athy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knapp, M.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Ritter, F.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Strecker, H.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-11-01

    The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66 PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two causes have been identified: (i) secondary muons from the CNGS neutrino beam (2.2%) and (ii) a temperature modulation of the atmosphere (1.4%). A mean cosmic muon rate of Iμ0 =(3.477 ± 0 .002stat ± 0 .067sys) ×10-4 /(s · m2) was found in good agreement with other experiments at LNGS. Combining the present result with those from previous experiments at LNGS the effective temperature coefficient αT , Lngs is determined to 0.93 ± 0.03. A fit of the temperature coefficients measured at various underground sites yields a kaon to pion ratio rK/π of 0.10 ± 0.03.

  9. The performance of the Muon Veto of the G erda experiment

    NASA Astrophysics Data System (ADS)

    Freund, K.; Falkenstein, R.; Grabmayr, P.; Hegai, A.; Jochum, J.; Knapp, M.; Lubsandorzhiev, B.; Ritter, F.; Schmitt, C.; Schütz, A.-K.; Jitnikov, I.; Shevchik, E.; Shirchenko, M.; Zinatulina, D.

    2016-05-01

    Low background experiments need a suppression of cosmogenically induced events. The Gerda experiment located at Lngs is searching for the 0ν β β decay of ^{76}Ge. It is equipped with an active muon veto the main part of which is a water Cherenkov veto with 66 PMTs in the water tank surrounding the Gerda cryostat. With this system 806 live days have been recorded, 491 days were combined muon-germanium data. A muon detection efficiency of \\varepsilon _\\upmu d=(99.935± 0.015) % was found in a Monte Carlo simulation for the muons depositing energy in the germanium detectors. By examining coincident muon-germanium events a rejection efficiency of \\varepsilon _{\\upmu r}=(99.2_{-0.4}^{+0.3}) % was found. Without veto condition the muons by themselves would cause a background index of {BI}_{μ }=(3.16 ± 0.85)× 10^{-3} cts/(keV\\cdot kg\\cdot year) at Q_{β β }.

  10. Production, characterization and operation of Ge enriched BEGe detectors in GERDA

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Palioselitis, D.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-02-01

    The GERmanium Detector Array ( Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay () of Ge. Germanium detectors made of material with an enriched Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.

  11. Monte Carlo studies and optimization for the calibration system of the GERDA experiment

    NASA Astrophysics Data System (ADS)

    Baudis, L.; Ferella, A. D.; Froborg, F.; Tarka, M.

    2013-11-01

    The GERmanium Detector Array, GERDA, searches for neutrinoless double β decay in 76Ge using bare high-purity germanium detectors submerged in liquid argon. For the calibration of these detectors γ emitting sources have to be lowered from their parking position on the top of the cryostat over more than 5 m down to the germanium crystals. With the help of Monte Carlo simulations, the relevant parameters of the calibration system were determined. It was found that three 228Th sources with an activity of 20 kBq each at two different vertical positions will be necessary to reach sufficient statistics in all detectors in less than 4 h of calibration time. These sources will contribute to the background of the experiment with a total of (1.07±0.04(stat)-0.19+0.13(sys))×10-4 cts/(keV kg yr)) when shielded from below with 6 cm of tantalum in the parking position.

  12. Bulk Superconductors in Mobile Application

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  13. Design of the superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Li, Y.; Wang, Q.; Dai, Y.; Ni, Z.; Zhu, X.; Li, L.; Zhao, B.; Chen, S.

    2017-02-01

    A superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging is designed and fabricated in Institute of Electrical Engineering, Chinese Academy of Sciences. In this paper, the electromagnetic design methods of the main coils and compensating coils are presented. Sensitivity analysis is performed for all superconducting coils. The design of the superconducting shimming coils is also presented and the design of electromagnetic decoupling of the Z2 coils from the main coils is introduced. Stress and strain analysis with both averaged and detailed models is performed with finite element method. A quench simulation code with anisotropic continuum model and control volume method is developed by us and is verified by experimental study. By means of the quench simulation code, the quench protection system for the 9.4 T magnet is designed for the main coils, the compensating coils and the shimming coils. The magnet cryostat design with zero helium boiling-off technology is also introduced.

  14. A single-solenoid pulsed-magnet system for single-crystal scattering studies

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Capatina, Dana; Ruff, Jacob P. C.; Das, Ritesh K.; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Welp, Ulrich; Canfield, Paul C.

    2012-03-01

    We present a pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies with the magnetic field applied on or close to the scattering plane. The apparatus consists of a single large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields close to ˜30 T with a zero-to-peak-field rise time of ˜2.9 ms are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (˜23.6°) on the entrance and exit sides of the magnet bore by virtue of a novel double-funnel insert. This instrument will facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using split-pair and narrow-opening solenoid magnets. Furthermore, it offers a practical solution for preserving optical access in future higher-field pulsed magnets.

  15. HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiangdong; Bass, Christopher; D'Angelo, Annalisa

    2012-12-01

    Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (~10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4{pi} detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first applicationmore » of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS.« less

  16. Argon Triple-Point Device for Calibration of SPRTs

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Manuszkiewicz, H.; Szmyrka-Grzebyk, A.; Lipiński, L.; Kowal, A.; Steur, P. P. M.; Pavese, F.

    2015-03-01

    This paper presents an apparatus for the calibration of long-stem platinum resistance thermometers at the argon triple point , designed at the Institute of Low Temperature and Structural Research, Poland (INTiBS). A hermetically sealed cell filled at the Istituto Nazionale di Ricerca Metrologica, Italy with high purity gas (6N) is the main element of this apparatus. The cell is placed in a cryostat fully immersed in liquid nitrogen. A temperature-controlled shield ensures the quasi-adiabatic condition needed for proper realization of the phase transition. A system for correcting the temperature distribution along the thermometer well is also implemented. The cell cooling and argon solidification is carried out by filling the thermometer well with liquid nitrogen. A LabVIEW computer program written at INTiBS automatically controls the triple-point realization process. The duration of a melting plateau in the apparatus lasts for about 24 h. The melting width for between 20 % and 80 % was mK. The reproducibility of the plateau temperature is better than.

  17. An International Intercomparison of Argon Triple Point Calibration Facilities, Accommodating Long-stem Thermometers

    NASA Astrophysics Data System (ADS)

    Bloembergen, P.; Bonnier, G.; Ronsin, H.

    1990-01-01

    Argon triple point calibration facilities have been compared among eight laboratories with one transfer system, employing local long-stem standard platinum resistance thermometers. The apparatus intercompared, included a sealed cell and its associated cryostat. As is evidenced by the results of long-term investigations, previously performed at the INM, cells of the type employed may show a triple-point temperature, which is stable within the reproducibility of the measurements (simeq0,1 mK) over a period of about 10 years. At each laboratory the mean difference between the Argon triple-point temperature of the transfer cell (t) and the local cell (i) has been determined, using a standard resistance thermometer previously calibrated at the fixed points, according to the IPTS-68; associated repeatabilities are typically of the order of 0,1 mK. The reproducibility attained by measuring the mean difference in different laboratories, using cells of the same type and origin (INM), amounts to 0,4 mK.

  18. Dynamic response characteristics of the high-temperature superconducting maglev system under lateral eccentric distance

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2016-07-01

    Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sager, P.H.

    Studies were carried out on the FED Baseline to improve design definition, establish feasibility, and reduce cost. Emphasis was placed on cost reduction, but significant feasibility concerns existed in several areas, and better design definition was required to establish feasibility and provide a better basis for cost estimates. Design definition and feasibility studies included the development of a labyrinth shield ring concept to prevent radiation streaming between the torus spool and the TF coil cryostat. The labyrinth shield concept which was developed reduced radiation streaming sufficiently to permit contact maintenance of the inboard EF coils. Various concepts of preventing arcingmore » between adjacent shield sectors were also explored. It was concluded that installation of copper straps with molybdenum thermal radiation shields would provide the most reliable means of preventing arcing. Other design studies included torus spool electrical/structural concepts, test module shielding, torus seismic response, poloidal conditions in the magnets, disruption characteristics, and eddy current effects. These additional studies had no significant impact on cost but did confirm the feasibility of the basic FED Baseline concept.« less

  20. High-gain cryogenic amplifier assembly employing a commercial CMOS operational amplifier.

    PubMed

    Proctor, J E; Smith, A W; Jung, T M; Woods, S I

    2015-07-01

    We have developed a cryogenic amplifier for the measurement of small current signals (10 fA-100 nA) from cryogenic optical detectors. Typically operated with gain near 10(7) V/A, the amplifier performs well from DC to greater than 30 kHz and exhibits noise level near the Johnson limit. Care has been taken in the design and materials to control heat flow and temperatures throughout the entire detector-amplifier assembly. A simple one-board version of the amplifier assembly dissipates 8 mW to our detector cryostat cold stage, and a two-board version can dissipate as little as 17 μW to the detector cold stage. With current noise baseline of about 10 fA/(Hz)(1/2), the cryogenic amplifier is generally useful for cooled infrared detectors, and using blocked impurity band detectors operated at 10 K, the amplifier enables noise power levels of 2.5 fW/(Hz)(1/2) for detection of optical wavelengths near 10 μm.

Top