Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L
2012-01-01
Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.
Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L.
2012-01-01
Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium. PMID:22479347
van Elsas, Jan Dirk; McSpadden Gardener, Brian B.; Wolters, Anneke C.; Smit, Eric
1998-01-01
A set of self-transmissible plasmids with IncQ plasmid-mobilizing capacity was isolated by triparental exogenous isolation from the wheat rhizosphere with an Escherichia coli IncQ plasmid host and a Ralstonia eutropha recipient. Three plasmids of 38 to 45 kb, denoted pIPO1, pIPO2, and pIPO3, were selected for further study. No selectable traits (antibiotic or heavy-metal resistance) were identified in these plasmids. The plasmids were characterized by replicon typing via PCR and hybridization with replicon-specific probes and other hybridizations. pIPO1 and pIPO3 were similar to each other, whereas pIPO2 was different. None of these plasmids belonged to any known incompatibility group. pIPO2 was selected for further work, and a mini-Tn5-tet transposon was inserted to confer selectability. Plasmid pIPO2 had a broad IncQ plasmid mobilization and self-transfer range among the alpha, beta, and gamma subclasses of the Proteobacteria but did not show productive transfer to gram-positive bacteria. Plasmid pIPO2 mobilized IncQ plasmid pIE723 from Pseudomonas fluorescens to diverse indigenous proteobacteria in the rhizosphere of field-grown wheat. Transfer of pIE723 to indigenous bacteria was not observed in the absence of added pIPO2. A specific PCR primer system and a probe were developed for the detection of pIPO2-type plasmids in soil and rhizosphere. Analysis of soil DNA provided evidence for the presence of pIPO2 in inoculated wheat rhizosphere soil in the field study, as well as in the rhizosphere of uninoculated wheat plants growing in soil microcosms. The system failed to identify major reservoirs of pIPO2 in a variety of other soils. PMID:9501428
Cloning systems for Rhodococcus and related bacteria
Finnerty, W.R.; Singer, M.E.
1990-08-28
A plasmid transformation system for Rhodococcus was developed using an Escherichia coli-Rhodococcus shuttle plasmid. Rhodococcus sp. H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200 and pMVS300, of 75, 19.5 and 13.4 kilobases (Kb), respectively. A 3.8 Kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3 Kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla) as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1 Kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1 (pMVS301) and transformed into Rhodococcus sp. AS-50, a derivative of strain H13-A, by polyethylene glycol-assisted transformation of Rhodococcus protoplasts and selection for thiostrepton-resistant transformants. This strain was deposited with the ATCC on Feb. 1, 1988 and assigned ATCC 53719. The plasmid contains the Rhodococcus origin of replication. The plasmid and derivatives thereof can therefore be used to introduce nucleic acid sequences to and from Rhodococcus for subsequent expression and translation into protein. The isolated origin of replication can also be used in the construction of new vectors. 2 figs.
Cloning systems for Rhodococcus and related bacteria
Finnerty, William R.; Singer, Mary E.
1990-01-01
A plasmid transformation system for Rhodococcus was developed using an Escherichia coli-Rhodococcus shuttle plasmid. Rhodococcus sp. H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200 and pMVS300, of 75, 19.5 and 13.4 kilobases (Kb), respectively. A 3.8 Kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3 Kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla) as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1 Kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1 (pMVS301) and transformed into Rhodococcus sp. AS-50, a derivative of strain H13-A, by polyethylene glycol-assisted transformation of Rhodococcus protoplasts and selection for thiostrepton-resistant transformants. This strain was deposited with the ATCC on Feb. 1, 1988 and assigned ATCC 53719. The plasmid contains the Rhodococcus origin of replication. The plasmid and derivatives thereof can therefore be used to introduce nucleic acid sequences to and from Rhodococcus for subsequent expression and translation into protein. The isolated origin of replication can also be used in the construction of new vectors.
Characterization of a cryptic plasmid from an alpha-proteobacterial endosymbiont of Amoeba proteus.
Park, Miey; Kim, Min-Soo; Lee, Kyung-Min; Hwang, Sue-Yun; Ahn, Tae In
2009-01-01
A new cryptic plasmid pAP3.9 was discovered in symbiotic alpha-proteobacteria present in the cytoplasm of Amoeba proteus. The plasmid is 3869bp with a GC content of 34.66% and contains replication origins for both double-strand (dso) and single-strand (sso). It has three putative ORFs encoding Mob, Rep and phosphoglycolate phosphatase (PGPase). The pAP3.9 plasmid appears to propagate by the conjugative rolling-circle replication (RCR), since it contains all required factors such as Rep, sso and dso. Mob and Rep showed highest similarities to those of the cryptic plasmid pBMYdx in Bacillus mycoides. The PGPase was homologous to that of Bacillus cereus and formed a clade with those of Bacillus sp. in molecular phylogeny. These results imply that the pAP3.9 plasmid evolved by the passage through Bacillus species. We hypothesize that the plasmid-encoded PGPase may have contributed to the establishment of bacterial symbiosis within the hostile environment of amoeba cytoplasm.
Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system.
Jang, Ye-Ji; Seo, Seung-Oh; Kim, Seul-Ah; Li, Ling; Kim, Tae-Jip; Kim, Sun Chang; Jin, Yong-Su; Han, Nam Soo
2017-06-10
Leuconostoc spp. are important lactic acid bacteria for the fermentation of foods. In particular, L. citreum strains isolated from various foods have been used as host strains for genetic and metabolic engineering studies. In order to develop a food-grade genetic engineering system, L. citreum CB2567 was isolated from Kimchi. However, the isolated bacterium contained a cryptic plasmid which was difficult to eliminate. As the existence of the plasmid might hinder strain engineering, we eliminated the plasmid using an RNA-guided DNA endonuclease CRISPR/Cas9 system. We demonstrated that a plasmid-free L. citreum CB2567 host strain could be efficiently constructed through a two-step procedure: 1) transformation of the "killer" plasmid expressing Cas9 endonuclease and a guide RNA (gRNA) targeting for a specific sequence in the cryptic plasmid, and 2) serial subculture without antibiotics for curing the killer plasmid. When the crude extract of L. citreum expressing Cas9 and the guide RNA was incubated with a PCR fragment containing the specific sequence recognized by the guide RNA, the PCR fragment was cleaved. Also, the cryptic plasmid pCB42 was successfully eliminated from the host strain after transforming the plasmid harboring Cas9 and the guide RNA. The Cas9 and gRNA expression plasmid used in this study can be applied for genome engineering purposes by additionally introducing an editing DNA template to repair the double strand DNA breakage caused by Cas9 in the genome of L. citreum. This study demonstrates the feasibility of developing CRISPR/Cas9-based genetic engineering tools to develop a safe host strain and construct food-grade lactic acid bacteria without residual antibiotic markers. Copyright © 2017 Elsevier B.V. All rights reserved.
Vogel, R F; Lohmann, M; Weller, A N; Hugas, M; Hammes, W P
1991-11-15
Plasmid profiles of strains of Lactobacillus curvatus and L. sake isolated from meat or sauerkraut were analysed to investigate plasmid homology and distribution in relation to the ecology of these organisms in fermenting foods. A hybridisation probe was constructed by cloning of pLc2, a cryptic, 2.6-kbp plasmid from L. curvatus LTH683, into the Escherichia coli plasmid pRV50. In Southern hybridisations with the digoxygenine labeled pLc2 probe, pLc2-related small plasmids were frequently detected in meat-borne strains of L. casei subsp. pseudoplantarum, L. curvatus, L. sake, L. alimentarius, L. farciminis and L. halotolerans and in L. curvatus and L. sake isolated from sauerkraut. Among 27 Lactobacillus type strains originally isolated from habitats other than meat this type of homology was detected only with plasmids of L. buchneri and L. mali. Restriction-enzyme mapping of six small cryptic plasmids from L. curvatus and L. sake revealed strong structural homology but no similarity to previously characterized plasmids of lactobacilli. The presence of a variable region in addition to a conserved one and the occurrence of deletions during cloning of pLc2 suggest that vectors derived from these plasmids are likely to be structurally unstable.
Conjugal properties of the Sinorhizobium meliloti plasmid mobilome.
Pistorio, Mariano; Giusti, María A; Del Papa, María F; Draghi, Walter O; Lozano, Mauricio J; Tejerizo, Gonzalo Torres; Lagares, Antonio
2008-09-01
The biology and biochemistry of plasmid transfer in soil bacteria is currently under active investigation because of its central role in prokaryote adaptation and evolution. In this work, we examined the conjugal properties of the cryptic plasmids present in a collection of the N(2)-fixing legume-symbiont Sinorhizobium meliloti. The study was performed on 65 S. meliloti isolates recovered from 25 humic soils of Argentina, which were grouped into 22 plasmid-profile types [i.e. plasmid operational taxonomic units (OTUs)]. The cumulative Shannon index calculated for the observed plasmid profiles showed a clear saturation plateau, thus indicating an adequate representation of the S. meliloti plasmid-profile types in the isolates studied. The results show that isolates of nearly 14% of the plasmid OTUs hosted transmissible plasmids and that isolates of 29% of the plasmid OTUs were able to retransfer the previously characterized mobilizable-cryptic plasmid pSmeLPU88b to a third recipient strain. It is noteworthy that isolates belonging to 14% of the plasmid OTUs proved to be refractory to the entrance of the model plasmid pSmeLPU88b, suggesting either the presence of surface exclusion phenomena or the occurrence of restriction incompatibility with the incoming replicon. Incompatibility for replication between resident plasmids and plasmid pSmeLPU88b was observed in c. 20% of the OTUs. The results reported here reveal a widespread compatibility among the conjugal functions of the cryptic plasmids in S. meliloti, and this fact, together with the observed high proportion of existing donor genotypes, points to the extrachromosomal compartment of the species as being an extremely active plasmid mobilome.
Hiett, Kelli L; Rothrock, Michael J; Seal, Bruce S
2013-09-01
The complete nucleotide sequence was determined for a cryptic plasmid, pTIW94, recovered from several Campylobacter jejuni isolates from wild birds in the southeastern United States. pTIW94 is a circular molecule of 3860 nucleotides, with a G+C content (31.0%) similar to that of many Campylobacter spp. genomes. A typical origin of replication, with iteron sequences, was identified upstream of DNA sequences that demonstrated similarity to replication initiation proteins. A total of five open reading frames (ORFs) were identified; two of the five ORFs demonstrated significant similarity to plasmid pCC2228-2 found within Campylobacter coli. These two ORFs were similar to essential replication proteins RepA (100%; 26/26 aa identity) and RepB (95%; 327/346 aa identity). A third identified ORF demonstrated significant similarity (99%; 421/424 aa identity) to the MOB protein from C. coli 67-8, originally recovered from swine. The other two identified ORFs were either similar to hypothetical proteins from other Campylobacter spp., or exhibited no significant similarity to any DNA or protein sequence in the GenBank database. Promoter regions (-35 and -10 signal sites), ribosomal binding sites upstream of ORFs, and stem-loop structures were also identified within the plasmid. These results demonstrate that pTIW94 represents a previously un-reported small cryptic plasmid with unique sequences as well as highly similar sequences to other small plasmids found within Campylobacter spp., and that this cryptic plasmid is present among Campylobacter spp. recovered from different genera of wild birds. Copyright © 2013. Published by Elsevier Inc.
Shared Features of Cryptic Plasmids from Environmental and Pathogenic Francisella Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challacombe, Jean Faust; Pillai, Segaran; Kuske, Cheryl R.
The Francisella genus includes several recognized species, additional potential species, and other representatives that inhabit a range of incredibly diverse ecological niches, but are not closely related to the named species. Francisella species have been obtained from a wide variety of clinical and environmental sources; documented species include highly virulent human and animal pathogens, fish pathogens, opportunistic human pathogens, tick endosymbionts, and free-living isolates inhabiting brackish water. While more than 120 Francisella genomes have been sequenced to date, only a few contain plasmids, and most of these appear to be cryptic, with unknown benefit to the host cell. We havemore » identified several putative cryptic plasmids in the sequenced genomes of three Francisella novicida and F. novicida-like strains (TX07-6608, AZ06-7470, DPG_3A-IS) and two new Francisella species (F. frigiditurris CA97-1460 and F. opportunistica MA06-7296). These plasmids were compared to each other and to previously identified plasmids from other Francisella species. Some of the plasmids encoded functions potentially involved in replication, conjugal transfer and partitioning, environmental survival (transcriptional regulation, signaling, metabolism), and hypothetical proteins with no assignable functions. In conclusion, genomic and phylogenetic comparisons of these new plasmids to the other known Francisella plasmids revealed some similarities that add to our understanding of the evolutionary relationships among the diverse Francisella species.« less
Shared Features of Cryptic Plasmids from Environmental and Pathogenic Francisella Species
Challacombe, Jean Faust; Pillai, Segaran; Kuske, Cheryl R.
2017-08-24
The Francisella genus includes several recognized species, additional potential species, and other representatives that inhabit a range of incredibly diverse ecological niches, but are not closely related to the named species. Francisella species have been obtained from a wide variety of clinical and environmental sources; documented species include highly virulent human and animal pathogens, fish pathogens, opportunistic human pathogens, tick endosymbionts, and free-living isolates inhabiting brackish water. While more than 120 Francisella genomes have been sequenced to date, only a few contain plasmids, and most of these appear to be cryptic, with unknown benefit to the host cell. We havemore » identified several putative cryptic plasmids in the sequenced genomes of three Francisella novicida and F. novicida-like strains (TX07-6608, AZ06-7470, DPG_3A-IS) and two new Francisella species (F. frigiditurris CA97-1460 and F. opportunistica MA06-7296). These plasmids were compared to each other and to previously identified plasmids from other Francisella species. Some of the plasmids encoded functions potentially involved in replication, conjugal transfer and partitioning, environmental survival (transcriptional regulation, signaling, metabolism), and hypothetical proteins with no assignable functions. In conclusion, genomic and phylogenetic comparisons of these new plasmids to the other known Francisella plasmids revealed some similarities that add to our understanding of the evolutionary relationships among the diverse Francisella species.« less
Multiple Pathways of Plasmid DNA Transfer in Helicobacter pylori
Rohrer, Stefanie; Holsten, Lea; Weiss, Evelyn; Benghezal, Mohammed; Fischer, Wolfgang; Haas, Rainer
2012-01-01
Many Helicobacter pylori (Hp) strains carry cryptic plasmids of different size and gene content, the function of which is not well understood. A subgroup of these plasmids (e.g. pHel4, pHel12), contain a mobilisation region, but no cognate type IV secretion system (T4SS) for conjugative transfer. Instead, certain H. pylori strains (e.g. strain P12 carrying plasmid pHel12) can harbour up to four T4SSs in their genome (cag-T4SS, comB, tfs3, tfs4). Here, we show that such indigenous plasmids can be efficiently transferred between H. pylori strains, even in the presence of extracellular DNaseI eliminating natural transformation. Knockout of a plasmid-encoded mobA relaxase gene significantly reduced plasmid DNA transfer in the presence of DNaseI, suggesting a DNA conjugation or mobilisation process. To identify the T4SS involved in this conjugative DNA transfer, each individual T4SS was consecutively deleted from the bacterial chromosome. Using a marker-free counterselectable gene deletion procedure (rpsL counterselection method), a P12 mutant strain was finally obtained with no single T4SS (P12ΔT4SS). Mating experiments using these mutants identified the comB T4SS in the recipient strain as the major mediator of plasmid DNA transfer between H. pylori strains, both in a DNaseI-sensitive (natural transformation) as well as a DNaseI-resistant manner (conjugative transfer). However, transfer of a pHel12::cat plasmid from a P12ΔT4SS donor strain into a P12ΔT4SS recipient strain provided evidence for the existence of a third, T4SS-independent mechanism of DNA transfer. This novel type of plasmid DNA transfer, designated as alternate DNaseI-Resistant (ADR) mechanism, is observed at a rather low frequency under in vitro conditions. Taken together, our study describes for the first time the existence of three distinct pathways of plasmid DNA transfer between H. pylori underscoring the importance of horizontal gene transfer for this species. PMID:23029142
Multiple pathways of plasmid DNA transfer in Helicobacter pylori.
Rohrer, Stefanie; Holsten, Lea; Weiss, Evelyn; Benghezal, Mohammed; Fischer, Wolfgang; Haas, Rainer
2012-01-01
Many Helicobacter pylori (Hp) strains carry cryptic plasmids of different size and gene content, the function of which is not well understood. A subgroup of these plasmids (e.g. pHel4, pHel12), contain a mobilisation region, but no cognate type IV secretion system (T4SS) for conjugative transfer. Instead, certain H. pylori strains (e.g. strain P12 carrying plasmid pHel12) can harbour up to four T4SSs in their genome (cag-T4SS, comB, tfs3, tfs4). Here, we show that such indigenous plasmids can be efficiently transferred between H. pylori strains, even in the presence of extracellular DNaseI eliminating natural transformation. Knockout of a plasmid-encoded mobA relaxase gene significantly reduced plasmid DNA transfer in the presence of DNaseI, suggesting a DNA conjugation or mobilisation process. To identify the T4SS involved in this conjugative DNA transfer, each individual T4SS was consecutively deleted from the bacterial chromosome. Using a marker-free counterselectable gene deletion procedure (rpsL counterselection method), a P12 mutant strain was finally obtained with no single T4SS (P12ΔT4SS). Mating experiments using these mutants identified the comB T4SS in the recipient strain as the major mediator of plasmid DNA transfer between H. pylori strains, both in a DNaseI-sensitive (natural transformation) as well as a DNaseI-resistant manner (conjugative transfer). However, transfer of a pHel12::cat plasmid from a P12ΔT4SS donor strain into a P12ΔT4SS recipient strain provided evidence for the existence of a third, T4SS-independent mechanism of DNA transfer. This novel type of plasmid DNA transfer, designated as alternate DNaseI-Resistant (ADR) mechanism, is observed at a rather low frequency under in vitro conditions. Taken together, our study describes for the first time the existence of three distinct pathways of plasmid DNA transfer between H. pylori underscoring the importance of horizontal gene transfer for this species.
Hu, Jian; Zhang, Xiaoyun; Jiang, Zhilin; Zhang, Feifei; Liu, Yuanyuan; Li, Zhan; Zhang, Zhongkai
2018-04-01
The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex and widely distributed throughout tropical and subtropical regions. To understand the B. tabaci cryptic species diversity in China more comprehensively, in the year 2014 and 2016, a large-scale sampling was conducted from the famous biodiversity hotspot of China, Yunnan province. Mitochondrial cytochrome oxidase I gene sequences were used to identify new putative cryptic species. Phylogenetic analyses were performed using Bayesian methods to evaluate the position of new cryptic species in the context of the B. tabaci diversity in Asia. Two new cryptic species, China 5 and Asia V were identified. In total, 19 B. tabaci cryptic species are present in China, two invasive (MED and MEAM1) and 17 indigenous. A new sibling species of B. tabaci was first defined and reported. Based on the mtCOI sequences and haplotype network analyses, the genetic diversity of MED was far higher than MEAM1. We confirmed the exotic MED was originated from the western Mediterranean regions and first invaded into Yunnan, China. The genetic structures of other four indigenous species (Asia I, Asia II 1, Asia II 6, and China 1) with relatively wide distribution ranges in China were also discussed.
Yamagata, A; Kato, J; Hirota, R; Kuroda, A; Ikeda, T; Takiguchi, N; Ohtake, H
1999-06-01
Two plasmids were discovered in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11, which was isolated from activated sludge. The plasmids, designated pAYS and pAYL, were relatively small, being approximately 1.9 kb long. They were cryptic plasmids, having no detectable plasmid-linked antibiotic resistance or heavy metal resistance markers. The complete nucleotide sequences of pAYS and pAYL were determined, and their physical maps were constructed. There existed two major open reading frames, ORF1 in pAYS and ORF2 in pAYL, each of which was more than 500 bp long. The predicted product of ORF2 was 28% identical to part of the replication protein of a Bacillus plasmid, pBAA1. However, no significant similarity to any known protein sequences was detected with the predicted product of ORF1. pAYS and pAYL had a highly homologous region, designated HHR, of 262 bp. The overall identity was 98% between the two nucleotide sequences. Interestingly, HHR-homologous sequences were also detected in the genomes of ENI-11 and the plasmidless strain Nitrosomonas europaea IFO14298. Deletion analysis of pAYS and pAYL indicated that HHR, together with either ORF1 or ORF2, was essential for plasmid maintenance in ENI-11. To our knowledge, pAYS and pAYL are the first plasmids found in the ammonia-oxidizing autotrophic bacteria.
Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients.
DiGiovanni, G D; Neilson, J W; Pepper, I L; Sinclair, N A
1996-01-01
This study evaluated the potential for gene transfer of a large catabolic plasmid from an introduced organism to indigenous soil recipients. The donor organism Alcaligenes eutrophus JMP134 contained the 80-kb plasmid pJP4, which contains genes that code for mercury resistance. Genes on this plasmid plus chromosomal genes also allow degradation of 2,4-dichloruphenoxyacetic acid (2,4-D). When JMP134 was inoculated into a nonsterile soil microcosm amended with 1,000 micrograms of 2,4-D g-1, significant (10(6) g of soil-1) populations of indigenous recipients or transconjugants arose. These transconjugants all contained an 80-kb plasmid similar in size to pJP4, and all degraded 2,4-D. In addition, all transconjugants were resistant to mercury and contained the tfdB gene of pJP4 as detected by PCR. No mercury-resistant, 2,4-D-degrading organisms with large plasmids or the tfdB gene were found in the 2,4-D-amended but uninoculated control microcosm. These data clearly show that the plasmid pJP4 was transferred to indigenous soil recipients. Even more striking is the fact that not only did the indigenous transconjugant population survive and proliferate but also enhanced rates of 2,4-D degradation occurred relative to microcosms in which no such gene transfer occurred. Overall, these data indicate that gene transfer from introduced organisms is an effective means of bioaugmentation and that survival of the introduced organism is not a prerequisite for biodegradation that utilizes introduced biodegradative genes. PMID:8779592
Yeow, Tee Cian; Wong, Won Fen; Sabet, Negar Shafiei; Sulaiman, Sofiah; Shahhosseini, Fatemeh; Tan, Grace Min Yi; Movahed, Elaheh; Looi, Chung Yeng; Shankar, Esaki M; Gupta, Rishien; Arulanandam, Bernard P; Hassan, Jamiyah; Abu Bakar, Sazaly
2016-03-18
The 7.5 kb cryptic plasmid of Chlamydia trachomatis has been shown to be a virulence factor in animal models, but its significance in humans still remains unknown. The aim of this study was to investigate the prevalence and potential involvement of the C. trachomatis cryptic plasmid in causing various clinical manifestations; including infertility, reproductive tract disintegrity, menstrual disorder, and polycystic ovarian syndrome (PCOS) among genital C. trachomatis-infected patients. A total of 180 female patients of child bearing age (mean 30.9 years old, IQR:27-35) with gynecological complications and subfertility issues, who visited Obstetrics and Gynecology clinics in Kuala Lumpur, Malaysia were recruited for the study. Prevalence of genital chlamydial infection among these patients was alarmingly high at 51.1% (92/180). Of the 92 chlamydia-infected patients, 93.5% (86/92) were infected with plasmid-bearing (+) C. trachomatis while the remaining 6.5% (6/92) were caused by the plasmid-free (-) variant. Our data showed that genital C. trachomatis infection was associated with infertility issues, inflammation in the reproductive tract (mucopurulent cervicitis or endometriosis), irregular menstrual cycles and polycystic ovarian syndrome (PCOS). However, no statistical significance was detected among patients with plasmid (+) versus plasmid (-) C. trachomatis infection. Interestingly, plasmid (+) C. trachomatis was detected in all patients with PCOS, and the plasmid copy numbers were significantly higher among PCOS patients, relative to non-PCOS patients. Our findings show a high incidence of C. trachomatis infection among women with infertility or gynecological problems in Malaysia. However, due to the low number of plasmid (-) C. trachomatis cases, a significant role of the plasmid in causing virulence in human requires further investigation of a larger cohort.
Inui, Masayuki; Roh, Jung Hyeob; Zahn, Kenneth; Yukawa, Hideaki
2000-01-01
A 15-kb cryptic plasmid was obtained from a natural isolate of Rhodopseudomonas palustris. The plasmid, designated pMG101, was able to replicate in R. palustris and in closely related strains of Bradyrhizobium japonicum and phototrophic Bradyrhizobium species. However, it was unable to replicate in the purple nonsulfur bacterium Rhodobacter sphaeroides and in Rhizobium species. The replication region of pMG101 was localized to a 3.0-kb SalI-XhoI fragment, and this fragment was stably maintained in R. palustris for over 100 generations in the absence of selection. The complete nucleotide sequence of this fragment revealed two open reading frames (ORFs), ORF1 and ORF2. The deduced amino acid sequence of ORF1 is similar to sequences of Par proteins, which mediate plasmid stability from certain plasmids, while ORF2 was identified as a putative rep gene, coding for an initiator of plasmid replication, based on homology with the Rep proteins of several other plasmids. The function of these sequences was studied by deletion mapping and gene disruptions of ORF1 and ORF2. pMG101-based Escherichia coli-R. palustris shuttle cloning vectors pMG103 and pMG105 were constructed and were stably maintained in R. palustris growing under nonselective conditions. The ability of plasmid pMG101 to replicate in R. palustris and its close phylogenetic relatives should enable broad application of these vectors within this group of α-proteobacteria. PMID:10618203
Yamagata, Akira; Kato, Junichi; Hirota, Ryuichi; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao
1999-01-01
Two plasmids were discovered in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11, which was isolated from activated sludge. The plasmids, designated pAYS and pAYL, were relatively small, being approximately 1.9 kb long. They were cryptic plasmids, having no detectable plasmid-linked antibiotic resistance or heavy metal resistance markers. The complete nucleotide sequences of pAYS and pAYL were determined, and their physical maps were constructed. There existed two major open reading frames, ORF1 in pAYS and ORF2 in pAYL, each of which was more than 500 bp long. The predicted product of ORF2 was 28% identical to part of the replication protein of a Bacillus plasmid, pBAA1. However, no significant similarity to any known protein sequences was detected with the predicted product of ORF1. pAYS and pAYL had a highly homologous region, designated HHR, of 262 bp. The overall identity was 98% between the two nucleotide sequences. Interestingly, HHR-homologous sequences were also detected in the genomes of ENI-11 and the plasmidless strain Nitrosomonas europaea IFO14298. Deletion analysis of pAYS and pAYL indicated that HHR, together with either ORF1 or ORF2, was essential for plasmid maintenance in ENI-11. To our knowledge, pAYS and pAYL are the first plasmids found in the ammonia-oxidizing autotrophic bacteria. PMID:10348848
Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils
Garbisu, Carlos; Garaiyurrebaso, Olatz; Epelde, Lur; Grohmann, Elisabeth; Alkorta, Itziar
2017-01-01
Bioaugmentation, or the inoculation of microorganisms (e.g., bacteria harboring the required catabolic genes) into soil to enhance the rate of contaminant degradation, has great potential for the bioremediation of soils contaminated with organic compounds. Regrettably, cell bioaugmentation frequently turns into an unsuccessful initiative, owing to the rapid decrease of bacterial viability and abundance after inoculation, as well as the limited dispersal of the inoculated bacteria in the soil matrix. Genes that encode the degradation of organic compounds are often located on plasmids and, consequently, they can be spread by horizontal gene transfer into well-established, ecologically competitive, indigenous bacterial populations. Plasmid-mediated bioaugmentation aims to stimulate the spread of contaminant degradation genes among indigenous soil bacteria by the introduction of plasmids, located in donor cells, harboring such genes. But the acquisition of plasmids by recipient cells can affect the host’s fitness, a crucial aspect for the success of plasmid-mediated bioaugmentation. Besides, environmental factors (e.g., soil moisture, temperature, organic matter content) can play important roles for the transfer efficiency of catabolic plasmids, the expression of horizontally acquired genes and, finally, the contaminant degradation activity. For plasmid-mediated bioaugmentation to be reproducible, much more research is needed for a better selection of donor bacterial strains and accompanying plasmids, together with an in-depth understanding of indigenous soil bacterial populations and the environmental conditions that affect plasmid acquisition and the expression and functioning of the catabolic genes of interest. PMID:29062312
Increased Furan Tolerance in Escherichia coli Due to a Cryptic ucpA Gene
Wang, Xuan; Miller, Elliot N.; Yomano, Lorraine P.; Shanmugam, K. T.
2012-01-01
Expression arrays were used to identify 4 putative oxidoreductases that were upregulated (>3-fold) by furfural (15 mM, 15 min). Plasmid expression of one (ucpA) increased furan tolerance in ethanologenic strain LY180 and wild-type strain W. Deleting ucpA decreased furfural tolerance. Although the mechanism remains unknown, the cryptic ucpA gene is now associated with a phenotype: furan resistance. PMID:22267665
Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus
Greve, Bo; Jensen, Susanne; Phan, Hoa; Brügger, Kim; Zillig, Wolfram; She, Qunxin; Garrett, Roger A.
2005-01-01
Three plasmids isolated from the crenarchaeal thermoacidophile Sulfolobus neozealandicus were characterized. Plasmids pTAU4 (7,192 bp), pORA1 (9,689 bp) and pTIK4 (13,638 bp) show unusual properties that distinguish them from previously characterized cryptic plasmids of the genus Sulfolobus. Plasmids pORA1 and pTIK4 encode RepA proteins, only the former of which carries the novel polymerase–primase domain of other known Sulfolobus plasmids. Plasmid pTAU4 encodes a mini-chromosome maintenance protein homolog and no RepA protein; the implications for DNA replication are considered. Plasmid pORA1 is the first Sulfolobus plasmid to be characterized that does not encode the otherwise highly conserved DNA-binding PlrA protein. Another encoded protein appears to be specific for the New Zealand plasmids. The three plasmids should provide useful model systems for functional studies of these important crenarchaeal proteins. PMID:15876565
Roles of Salmonella typhimurium umuDC and samAB in UV mutagenesis and UV sensitivity.
Nohmi, T; Yamada, M; Watanabe, M; Murayama, S Y; Sofuni, T
1992-01-01
Expression of the umuDC operon is required for UV mutagenesis and most chemical mutagenesis in Escherichia coli. The closely related species Salmonella typhimurium has two sets of umuDC-like operons; the samAB operon is located in a 60-MDa cryptic plasmid, while the S. typhimurium umuDC (umuDCST) operon resides in a chromosome. The roles of these two umuDC-like operons in UV mutagenesis and UV sensitivity of S. typhimurium were investigated. A pBR322-derived plasmid carrying the samAB operon more efficiently restored UV mutability to a umuD44 strain and a umuC122::Tn5 strain of E. coli than a plasmid carrying the umuDCST operon did. When the umuDCST operon was specifically deleted from the chromosome of S. typhimurium TA2659, the resulting strain was not UV mutable and was more sensitive to the killing effect of UV irradiation than the parent strain was. Curing of the 60-MDa cryptic plasmid carrying the samAB operon did not influence the UV mutability of strain TA2659 but did increase its resistance to UV killing. A pSC101-derived plasmid carrying the samAB operon did not restore UV mutability to a umuD44 strain of E. coli, whereas pBR322- or pBluescript-derived plasmids carrying the samAB operon efficiently did restore UV mutability. We concluded that the umuDCST operon plays a major role in UV mutagenesis in S. typhimurium and that the ability of the samAB operon to promote UV mutagenesis is strongly affected by gene dosage. Possible reasons for the poor ability of samAB to promote UV mutagenesis when it is present on low-copy-number plasmids are discussed. Images PMID:1400244
Chlamydia felis: Lack of association between clinical signs and the presence of the cryptic plasmid.
Gonsales, F F; Brandão, P E; Melville, P A; Zuniga, E; Benites, N R
2016-08-01
Chlamydia felis is an obligate intracellular bacterial pathogen that infects cats, causing severe conjunctivitis associated with upper respiratory tract disease (URTD). In the present study, 186 cats from three non-commercial catteries in São Paulo, SP, Brazil were evaluated. The detection of Chlamydia felis was performed by PCR. The clinical severity was scored from 1 to 4, with a score of 4 as the most severe manifestation. The total occurrence of C. felis was of 18.82% (35/186) of cats overall, but notably, 58.06% (18/31) of infected cats originated from a single cattery. All animals harboring C. felis had URTD clinical signs and higher scores (3 and 4). In addition, C. felis occurrence was associated with the presence of cryptic plasmid. However, the virulence and clinical severity were not correlated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Newby, D. T.; Gentry, T. J.; Pepper, I. L.
2000-01-01
A pilot field study was conducted to assess the impact of bioaugmentation with two plasmid pJP4-bearing microorganisms: the natural host, Ralstonia eutropha JMP134, and a laboratory-generated strain amenable to donor counterselection, Escherichia coli D11. The R. eutropha strain contained chromosomal genes necessary for mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D), while the E. coli strain did not. The soil system was contaminated with 2,4-D alone or was cocontaminated with 2,4-D and Cd. Plasmid transfer to indigenous populations, plasmid persistence in soil, and degradation of 2,4-D were monitored over a 63-day period in the bioreactors. To assess the impact of contaminant reexposure, aliquots of bioreactor soil were reamended with additional 2,4-D. Both introduced donors remained culturable and transferred plasmid pJP4 to indigenous recipients, although to different extents. Isolated transconjugants were members of the Burkholderia and Ralstonia genera, suggesting multiple, if not successive, plasmid transfers. Upon a second exposure to 2,4-D, enhanced degradation was observed for all treatments, suggesting microbial adaptation to 2,4-D. Upon reexposure, degradation was most rapid for the E. coli D11-inoculated treatments. Cd did not significantly impact 2,4-D degradation or transconjugant formation. This study demonstrated that the choice of donor microorganism might be a key factor to consider for bioaugmentation efforts. In addition, the establishment of an array of stable indigenous plasmid hosts at sites with potential for reexposure or long-term contamination may be particularly useful. PMID:10919798
Fellner, Lea; Huptas, Christopher; Simon, Svenja; Mühlig, Anna; Neuhaus, Klaus
2016-01-01
Escherichia coli O157:H7 EDL933, isolated in 1982 in the United States, was the first enterohemorrhagic E. coli (EHEC) strain sequenced. Unfortunately, European labs can no longer receive the original strain. We checked three European EDL933 derivatives and found major genetic deviations (deletions, inversions) in two strains. All EDL933 strains contain the cryptic EHEC-plasmid, not reported before. PMID:27056239
Fellner, Lea; Huptas, Christopher; Simon, Svenja; Mühlig, Anna; Scherer, Siegfried; Neuhaus, Klaus
2016-04-07
Escherichia coliO157:H7 EDL933, isolated in 1982 in the United States, was the first enterohemorrhagicE. coli(EHEC) strain sequenced. Unfortunately, European labs can no longer receive the original strain. We checked three European EDL933 derivatives and found major genetic deviations (deletions, inversions) in two strains. All EDL933 strains contain the cryptic EHEC-plasmid, not reported before. Copyright © 2016 Fellner et al.
Caufield, Page W; Saxena, Deepak; Fitch, David; Li, Yihong
2007-02-01
There are suggestions that the phylogeny of Streptococcus mutans, a member of the human indigenous biota that is transmitted mostly mother to child, might parallel the evolutionary history of its human host. The relatedness and phylogeny of plasmid-containing strains of S. mutans were examined based on chromosomal DNA fingerprints (CDF), a hypervariable region (HVR) of a 5.6-kb plasmid, the rRNA gene intergenic spacer region (IGSR), serotypes, and the genotypes of mutacin I and II. Plasmid-containing strains were studied because their genetic diversity was twice as great as that of plasmid-free strains. The CDF of S. mutans from unrelated human hosts were unique, except those from Caucasians, which were essentially identical. The evolutionary history of the IGSR, with or without the serotype and mutacin characters, clearly delineated an Asian clade. Also, a continuous association with mutacin II could be reconstructed through an evolutionary lineage with the IGSR, but not for serotype e. DNA sequences from the HVR of the plasmid produced a well-resolved phylogeny that differed from the chromosomal phylogeny, indicating that the horizontal transfer of the plasmid may have occurred multiple times. The plasmid phylogeny was more congruent with serotype e than with mutacin II evolution, suggesting a possible functional correlation. Thus, the history of this three-tiered relationship between human, bacterium, and plasmid supported both coevolution and independent evolution.
[Construction of screening system for mutation of negative regulatory genes in Streptomyces].
Zhu, Yu; Feng, Chi; Tan, Huarong; Tian, Yuqing
2013-10-04
We aimed to create a novel report system for screening the mutation of the negative regulatory genes, especially for those repressing the expression of cryptic antibiotics clusters. We used marker-free gene disruption strategy, which combines with the "REDIRECT (Rapid Efficient Directed Recombination Time Saving)" technology and in vivo site-specific recombination by Streptomyces phage phiBT1 integrase, to construct a scbR2/inoA double mutant strain of S. coelicolor M145. This strain was used as the host of the report system. For the construction of the reporter plasmid, the ScbR2 repressed promoter of cpkO from CPK (cryptic polyketide) cluster was used to drive the expression of a promoterless conserved gene inoA of S. coelicolor. Then the reporter plasmid was introduced into the host strain described above to test the availability of inoA as a reporter gene in this system. The scbR2/inoA double mutant strain gave rise to a bald pheno type on MM medium in the absence of inositol, and produced yellow pigmented secondary metabolite by the disruption of scbR2 to release the repression of cpkO, a pathway specific activator gene situated in CPK cluster. After introducing the reporter plasmid into this test stain, the resulting strain recovered the phenotype as wild-type strain, indicating that the promoter of cpkO can drive the expression of inoA in scbR2 mutant and consequently restore the biosynthesis of inositol. Our results indicated that inoA can be used as a novel reporter gene for Streptomyces, especially for detecting the activation of the "silent" promoter. This report system might be available for screening the mutation of the negative regulatory genes for the cryptic secondary metabolic gene clusters.
Hu, Jian; Jiang, Zhi-Lin; Nardi, Francesco; Liu, Yuan-Yuan; Luo, Xiao-Rong; Li, Hong-Xiang; Zhang, Zhong-Kai
2014-01-01
Abstract Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex that includes some of the most significant pests of agriculture and horticulture worldwide. To understand the diversity and distribution of B. tabaci cryptic species in Yunnan, a famous biodiversity hotspot in China, a large-scale sampling was conducted from year 2010 to 2013 in 10 prefectures. Mitochondrial cytochrome oxidase I gene sequences were used to identify different cryptic species. Phylogenetic analyses were performed using Bayesian methods to assess the position of a new B. tabaci cryptic species in the context of the B. tabaci diversity in Asia. The survey indicates at least eight B. tabaci cryptic species are present in Yunnan, two invasive (MEAM1 and MED) and six indigenous (China 2, China3, China 4, Asia I, Asia II 1, and Asia II 6), MEAM1, MED, and Asia I being the three predominant cryptic species in Yunnan. Compared with MEAM1, MED has a wider distribution. Based on molecular data, a new cryptic species, here named China 4, was identified that appears to be related to China 1, China 2, and China 3. Future efforts should focus on the interactions between predominant B. tabaci cryptic species and begomoviruses and on the development of effective control strategies. PMID:25502045
Hu, Jian; Jiang, Zhi-Lin; Nardi, Francesco; Liu, Yuan-Yuan; Luo, Xiao-Rong; Li, Hong-Xiang; Zhang, Zhong-Kai
2014-01-01
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex that includes some of the most significant pests of agriculture and horticulture worldwide. To understand the diversity and distribution of B. tabaci cryptic species in Yunnan, a famous biodiversity hotspot in China, a large-scale sampling was conducted from year 2010 to 2013 in 10 prefectures. Mitochondrial cytochrome oxidase I gene sequences were used to identify different cryptic species. Phylogenetic analyses were performed using Bayesian methods to assess the position of a new B. tabaci cryptic species in the context of the B. tabaci diversity in Asia. The survey indicates at least eight B. tabaci cryptic species are present in Yunnan, two invasive (MEAM1 and MED) and six indigenous (China 2, China3, China 4, Asia I, Asia II 1, and Asia II 6), MEAM1, MED, and Asia I being the three predominant cryptic species in Yunnan. Compared with MEAM1, MED has a wider distribution. Based on molecular data, a new cryptic species, here named China 4, was identified that appears to be related to China 1, China 2, and China 3. Future efforts should focus on the interactions between predominant B. tabaci cryptic species and begomoviruses and on the development of effective control strategies. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Hu, Jian; Wang, Lun-Ji; Dong, Jun-Feng; Song, Yue-Qin; Sun, Hui-Zhong
2017-01-01
Abstract Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex, causing significant crop losses in China during the last decade. Although knowledge of cryptic species composition and dynamics within B. tabaci complex is critical for developing sustainable pest management strategies, limited information is available on this pest in the Henan province of China. A systematic survey of the cryptic species composition and distribution of B. tabaci complex in different locations of Henan province was conducted in 2012. The results of RAPD-PCR and the gene for the mitochondrial cytochrome oxidase subunit-1 (mtCOI) based phylogenetic relationships established using Bayesian method indicated there were four known cryptic species MEAM1, MED, Asia II 3, Asia II 9 and a new cryptic species named China 6 in Henan province. In the survey, the invasive cryptic species MED and MEAM1 were found to be predominant with wide spread distribution across the surveyed regions. On the contrary, the indigenous B. tabaci cryptic species including Asia II 3, Asia II 9 and China 6 remained with low prevalence in some surveyed regions. Cryptic species MEAM1 and MED have not completely displaced the native B. tabaci in Henan province. This current study for the first time unifies our knowledge of the diversity and distribution of B. tabaci across Henan province of China. PMID:28973577
Pittet, Vanessa; Phister, Trevor G.; Ziola, Barry
2013-01-01
Growth of specific lactic acid bacteria in beer leads to spoiled product and economic loss for the brewing industry. Microbial growth is typically inhibited by the combined stresses found in beer (e.g., ethanol, hops, low pH, minimal nutrients); however, certain bacteria have adapted to grow in this harsh environment. Considering little is known about the mechanisms used by bacteria to grow in and spoil beer, transcriptome sequencing was performed on a variant of the beer-spoilage organism Pediococcus claussenii ATCC BAA-344T (Pc344-358). Illumina sequencing was used to compare the transcript levels in Pc344-358 growing mid-exponentially in beer to those in nutrient-rich MRS broth. Various operons demonstrated high gene expression in beer, several of which are involved in nutrient acquisition and overcoming the inhibitory effects of hop compounds. As well, genes functioning in cell membrane modification and biosynthesis demonstrated significantly higher transcript levels in Pc344-358 growing in beer. Three plasmids had the majority of their genes showing increased transcript levels in beer, whereas the two cryptic plasmids showed slightly decreased gene expression. Follow-up analysis of plasmid copy number in both growth environments revealed similar trends, where more copies of the three non-cryptic plasmids were found in Pc344-358 growing in beer. Transcriptome sequencing also enabled the addition of several genes to the P . claussenii ATCC BAA-344T genome annotation, some of which are putatively transcribed as non-coding RNAs. The sequencing results not only provide the first transcriptome description of a beer-spoilage organism while growing in beer, but they also highlight several targets for future exploration, including genes that may have a role in the general stress response of lactic acid bacteria. PMID:24040005
Dillon, J R; Duck, P; Thomas, D Y
1981-01-01
The incidence of penicillinase-producing Neisseria gonorrhoeae (PPNG) infections has increased in Canada during the past 2 years. Most of these cases were imported from abroad. The PPNG strains from these cases were characterized with respect to susceptibility to 11 antibiotics, auxotype, and plasmid content. Rosaramicin and cefuroxime proved to be the most potent of the antibiotics tested. The molecular characterization of the isolates indicated that all carried a 2.6-megadalton cryptic plasmid. Most of the PPNG isolates (87%) harbored a 4.5-megadalton penicillinase-producing plasmid, whereas only 13% harbored the 3.2-megadalton penicillinase-producing plasmid. In those cases where contact tracing was possible, the correlation linking strains of Far Eastern etiology with carriage of the 4.5-megadalton plasmid was upheld. The penicillinase-producing strains were typed auxanographically in either the proline-requiring (57%) or prototrophic groups (42%). Substrate hydrolysis profiles and analytical isoelectric focusing of crude beta-lactamase extracts of several isolates has reconfirmed that these strains elaborate a type TEM-1 enzyme. Several of the penicillinase-producing plasmids were also examined for plasmid stability. PMID:6791587
Jiu, Min; Hu, Jian; Wang, Lun-Ji; Dong, Jun-Feng; Song, Yue-Qin; Sun, Hui-Zhong
2017-05-01
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex, causing significant crop losses in China during the last decade. Although knowledge of cryptic species composition and dynamics within B. tabaci complex is critical for developing sustainable pest management strategies, limited information is available on this pest in the Henan province of China. A systematic survey of the cryptic species composition and distribution of B. tabaci complex in different locations of Henan province was conducted in 2012. The results of RAPD-PCR and the gene for the mitochondrial cytochrome oxidase subunit-1 (mtCOI) based phylogenetic relationships established using Bayesian method indicated there were four known cryptic species MEAM1, MED, Asia II 3, Asia II 9 and a new cryptic species named China 6 in Henan province. In the survey, the invasive cryptic species MED and MEAM1 were found to be predominant with wide spread distribution across the surveyed regions. On the contrary, the indigenous B. tabaci cryptic species including Asia II 3, Asia II 9 and China 6 remained with low prevalence in some surveyed regions. Cryptic species MEAM1 and MED have not completely displaced the native B. tabaci in Henan province. This current study for the first time unifies our knowledge of the diversity and distribution of B. tabaci across Henan province of China. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Shao, Lili; Melero, Jose; Zhang, Nu; Arulanandam, Bernard; Baseman, Joel; Liu, Quanzhong; Zhong, Guangming
2017-01-01
Chlamydia has been detected in the gastrointestinal tracts of both animals and humans. However, the mechanism by which Chlamydia colonizes the gut remains unclear. Chlamydia muridarum is known to spread from the genital to the gastrointestinal tracts hematogenously. The C. muridarum plasmid is a key pathogenic determinant in the mouse upper genital tract although plasmid-deficient C. muridarum is still able to colonize the upper genital tract. We now report that plasmid-deficient C. muridarum exhibits significantly delayed/reduced spreading from the mouse genital to the gastrointestinal tracts. C. muridarum with or without plasmid maintained similar levels in the mouse circulatory system following intravenous inoculation but the hematogenous plasmid-deficient C. muridarum was significantly less efficient in colonizing the gastrointestinal tract. Consistently, plasmid-deficient C. muridarum failed to restore normal colonization in the gastrointestinal tract even after intragastric inoculation at a high dose. Thus, we have demonstrated a plasmid-dependent colonization of C. muridarum in the gastrointestinal tract, supporting the concept that C. muridarum may have acquired the plasmid for adaptation to the mouse gastrointestinal tract during oral-fecal transmission. Since the plasmid is more important for C. muridarum to colonize the gastrointestinal tract than to infect the genital tract, the current study has laid a foundation for further defining the host pathways targeted by the plasmid-encoded or -regulated chlamydial effectors.
Shao, Lili; Melero, Jose; Zhang, Nu; Arulanandam, Bernard; Baseman, Joel; Liu, Quanzhong
2017-01-01
Chlamydia has been detected in the gastrointestinal tracts of both animals and humans. However, the mechanism by which Chlamydia colonizes the gut remains unclear. Chlamydia muridarum is known to spread from the genital to the gastrointestinal tracts hematogenously. The C. muridarum plasmid is a key pathogenic determinant in the mouse upper genital tract although plasmid-deficient C. muridarum is still able to colonize the upper genital tract. We now report that plasmid-deficient C. muridarum exhibits significantly delayed/reduced spreading from the mouse genital to the gastrointestinal tracts. C. muridarum with or without plasmid maintained similar levels in the mouse circulatory system following intravenous inoculation but the hematogenous plasmid-deficient C. muridarum was significantly less efficient in colonizing the gastrointestinal tract. Consistently, plasmid-deficient C. muridarum failed to restore normal colonization in the gastrointestinal tract even after intragastric inoculation at a high dose. Thus, we have demonstrated a plasmid-dependent colonization of C. muridarum in the gastrointestinal tract, supporting the concept that C. muridarum may have acquired the plasmid for adaptation to the mouse gastrointestinal tract during oral-fecal transmission. Since the plasmid is more important for C. muridarum to colonize the gastrointestinal tract than to infect the genital tract, the current study has laid a foundation for further defining the host pathways targeted by the plasmid-encoded or -regulated chlamydial effectors. PMID:28542376
Complete genome sequence of the clinical Campylobacter coli isolate 15-537360
USDA-ARS?s Scientific Manuscript database
Campylobacter coli strain 15-537360 was originally isolated from a 42 year-old patient with gastroenteritis. Here we report its complete genome sequence, which comprises a 1.7 Mbp chromosome and a 29 kbp conjugative cryptic plasmid. This is the first complete genome sequence of a clinical isolate of...
Biochemistry and genetics of autotrophy in Methanococcus. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitman, W.B.
In the last two years of this research, the most exciting results have come from the work on the genetics of methanococci. First, the author demonstrated that the cryptic plasmid from Methanococcus maripaludis C5, pURB500, could be transformed into Methanococcus maripaludis JJ. Strain JJ is the type strain of M. maripaludis and has only about 65% DNA:DNA hybridization to strain C5. Because of the low relatedness of these strains, it was not obvious that pURB500 could be transferred between them. This goal was achieved by first transforming strain C5 with a series of suicide plasmids containing the pac cassette, whichmore » possessed the selectable puromycin resistance marker, and different cloned fragments of pURB500. From the puromycin-resistant transformants, a plasmid was isolated that transformed strain JJ. However, when this plasmid was electroporated into E. coli, only rearrangement products were obtained that contained small portions of the original pURB500. These plasmids no longer transformed Methanococcus. While these experiments did not yield a shuttle vector, they demonstrated that pURB500 could replicate in strain JJ.« less
2012-01-01
Background Streptomyces species are widely distributed in natural habitats, such as soils, lakes, plants and some extreme environments. Replication loci of several Streptomyces theta-type plasmids have been reported, but are not characterized in details. Conjugation loci of some Streptomyces rolling-circle-type plasmids are identified and mechanism of conjugal transferring are described. Results We report the detection of a widely distributed Streptomyces strain Y27 and its indigenous plasmid pWTY27 from fourteen plants and four soil samples cross China by both culturing and nonculturing methods. The complete nucleotide sequence of pWTY27 consisted of 14,288 bp. A basic locus for plasmid replication comprised repAB genes and an adjacent iteron sequence, to a long inverted-repeat (ca. 105 bp) of which the RepA protein bound specifically in vitro, suggesting that RepA may recognize a second structure (e.g. a long stem-loop) of the iteron DNA. A plasmid containing the locus propagated in linear mode when the telomeres of a linear plasmid were attached, indicating a bi-directional replication mode for pWTY27. As for rolling-circle plasmids, a single traA gene and a clt sequence (covering 16 bp within traA and its adjacent 159 bp) on pWTY27 were required for plasmid transfer. TraA recognized and bound specifically to the two regions of the clt sequence, one containing all the four DC1 of 7 bp (TGACACC) and one DC2 (CCCGCCC) and most of IC1, and another covering two DC2 and part of IC1, suggesting formation of a high-ordered DNA-protein complex. Conclusions This work (i) isolates a widespread Streptomyces strain Y27 and sequences its indigenous theta-type plasmid pWTY27; (ii) identifies the replication and conjugation loci of pWTY27 and; (iii) characterizes the binding sequences of the RepA and TraA proteins. PMID:23134842
R-factor cointegrate formation in Salmonella typhimurium bacteriophage type 201 strains.
Helmuth, R; Stephan, R; Bulling, E; van Leeuwen, W J; van Embden, J D; Guinée, P A; Portnoy, D; Falkow, S
1981-01-01
The genetic and molecular properties of the plasmids in Salmonella typhimurium phase type 201 isolated are described. Such strains are resistant to streptomycin, tetracycline, chloramphenicol, ampicillin, kanamycin, and several other antimicrobial drugs, and are highly pathogenic for calves. These strains have been encountered with increasing frequency since 1972 in West Germany and The Netherlands. We show that isolates of this phage type constitute a very homogeneous group with regard to their extrachromosomal elements. These bacteria carry three small plasmids: pRQ3, a 4.2-megadalton (Md) colicinogenic plasmid; pRQ4, 3.4-Md plasmid that interferes with the propagation of phages; and pRQ5, a 3.2-Md cryptic plasmid. Tetracycline resistance resides on a conjugative 120-MD plasmid pRQ1, belonging to the incompatibility class H2. Other antibiotic resistance determinants are encoded by a nonconjugative 108-Md plasmid pRQ2. Transfer of multiple-antibiotic resistance to appropriate recipient strains was associated with the appearance of a 230-Md plasmid, pRQ6. It appears that pRQ6 is a stable cointegrate of pRQ1 and pRQ2. This cointegrate plasmid was transferable with the same efficiency as pRQ1. Other conjugative plasmids could mobilize pRQ2, but stable cointegrates were not detected in the transconjugants. Phase type 201 strains carry a prophage, and we show that phage pattern 201 reflects the interference with propagation of typing phages effected by this prophage and plasmid pRQ4 in strains of phage type 201. Images PMID:7012128
Biological Invasions of Geminiviruses: Case Study of TYLCV and Bemisia tabaci in Reunion Island
Péréfarres, Frédéric; Thierry, Magali; Becker, Nathalie; Lefeuvre, Pierre; Reynaud, Bernard; Delatte, Hélène; Lett, Jean-Michel
2012-01-01
In the last 20 years, molecular ecology approaches have proven to be extremely useful to identify and assess factors associated with viral emerging diseases, particularly in economically and socially important tropical crops such as maize (maize streak disease) and cassava (cassava mosaic disease). Molecular ecology approaches were applied in Reunion Island to analyze the epidemic of tomato yellow leaf curl disease, which has been affecting the island since the end of the 1990s. Before the invasive biotype B (currently known as Middle East-Asia Minor 1 cryptic species) of Bemisia tabaci spread across the world, Reunion Island (South West Indian Ocean) only hosted an indigenous biotype of B. tabaci, Ms (currently known as Indian Ocean cryptic species). Wild hybrids between invasive and indigenous species were subsequently characterized over multiple generations. Endosymbiont analysis of the hybrid population indicated that matings were non-random. Similarly, while no indigenous begomoviruses have ever been reported on Reunion Island, the two main strains of one of the most damaging and emerging plant viruses in the world, the Mild and Israel strains of the Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL), were introduced in 1997 and 2004 respectively. While these introductions extensively modified the agricultural landscape of Reunion Island, they also provided an invaluable opportunity to study the ecological and genetic mechanisms involved in biological invasion and competition. PMID:23235470
The PL6-Family Plasmids of Haloquadratum Are Virus-Related.
Dyall-Smith, Mike; Pfeiffer, Friedhelm
2018-01-01
Plasmids PL6A and PL6B are both carried by the C23 T strain of the square archaeon Haloquadratum walsbyi , and are closely related (76% nucleotide identity), circular, about 6 kb in size, and display the same gene synteny. They are unrelated to other known plasmids and all of the predicted proteins are cryptic in function. Here we describe two additional PL6-related plasmids, pBAJ9-6 and pLT53-7, each carried by distinct isolates of Haloquadratum walsbyi that were recovered from hypersaline waters in Australia. A third PL6-like plasmid, pLTMV-6, was assembled from metavirome data from Lake Tyrell, a salt-lake in Victoria, Australia. Comparison of all five plasmids revealed a distinct plasmid family with strong conservation of gene content and synteny, an average size of 6.2 kb (range 5.8-7.0 kb) and pairwise similarities between 61-79%. One protein (F3) was closely similar to a protein carried by betapleolipoviruses while another (R6) was similar to a predicted AAA-ATPase of His 1 halovirus (His1V_gp16). Plasmid pLT53-7 carried a gene for a FkbM family methyltransferase that was not present in any of the other plasmids. Comparative analysis of all PL6-like plasmids provided better resolution of conserved sequences and coding regions, confirmed the strong link to haloviruses, and showed that their sequences are highly conserved among examples from Haloquadratum isolates and metagenomic data that collectively cover geographically distant locations, indicating that these genetic elements are widespread.
Plasmid profile in oral Fusobacterium nucleatum from humans and Cebus apella monkeys.
Paula, Marcia O; Gaetti-Jardim Júnior, Elerson; Avila-Campos, Mario J
2003-01-01
Fusobacterium nucleatum is a strict anaerobe and is indigenous of the human oral cavity. This organism is commonly recovered from different monomicrobial and mixed infections in humans and animals. In this study, the plasmid profile, the plasmid stability and the penicillin-resistance association in oral F. nucleatum isolated from periodontal patients, healthy subjects and Cebus apella monkeys were evaluated. Forty-five F. nucleatum strains from patients, 38 from healthy subjects and seven from C. apella were identified and analyzed. Plasmid extraction was performed in all the isolated strains. These elements were found in 26.7% strains from patients and one strain from C. apella. Strains from healthy subjects did not show any plasmid. Most of strains showed two plasmid bands ranging from 4 to 16 Kb, but digestions with endonucleases showed that they belonged to a single plasmid. The plasmid profile was similar and stable in human and monkey strains. Also, plasmids were classified into three groups according to size. Two strains were positive to beta-lactamase production and no plasmid DNA-hybridization with a beta-lactamase gene probe was observed, suggesting a chromosomal resistance.
Lilley, A. K.; Bailey, M. J.
1997-01-01
The transfer of naturally occurring conjugative plasmids from the indigenous microflora to a genetically modified population of bacteria colonizing the phytospheres of plants has been observed. The marked strain (Pseudomonas fluorescens SBW25EeZY6KX) was introduced as a seed dressing to sugar beets (Beta vulgaris var. Amethyst) as part of a field experiment to assess the ecology and genetic stability of deliberately released bacterial inocula. The sustained populations of the introduced strain, which colonized the phytosphere, were assessed throughout the growing season for the acquisition of plasmids conferring mercury resistance (Hg(supr)). Transconjugants were isolated only from root and leaf samples collected within a narrow temporal window coincident with the midseason maturation of the crop. Conjugal-transfer events were recorded during this defined period in two separate field release experiments conducted over consecutive years. On one occasion seven of nine individual plants sampled supported transconjugant P. fluorescens SBW25EeZY6KX, demonstrating that conjugative gene transfer between bacterial populations in the phytosphere may be a common event under specific environmental conditions. The plasmids acquired in situ by the colonizing inocula were identified as natural variants of restriction digest pattern group I, III, or IV plasmids from five genetically distinct groups of large, conjugative mercury resistance plasmids known to persist in the phytospheres of sugar beets at the field site. These data demonstrate not only that gene transfer may be a common event but also that the genetic and phenotypic stability of inocula released into the natural environment cannot be predicted. PMID:16535580
Frazer, Lauren C; Darville, Toni; Chandra-Kuntal, Kumar; Andrews, Charles W; Zurenski, Matthew; Mintus, Margaret; AbdelRahman, Yasser M; Belland, Robert J; Ingalls, Robin R; O'Connell, Catherine M
2012-01-01
Loss of the conserved "cryptic" plasmid from C. trachomatis and C. muridarum is pleiotropic, resulting in reduced innate inflammatory activation via TLR2, glycogen accumulation and infectivity. The more genetically distant C. caviae GPIC is a natural pathogen of guinea pigs and induces upper genital tract pathology when inoculated intravaginally, modeling human disease. To examine the contribution of pCpGP1 to C. caviae pathogenesis, a cured derivative of GPIC, strain CC13, was derived and evaluated in vitro and in vivo. Transcriptional profiling of CC13 revealed only partial conservation of previously identified plasmid-responsive chromosomal loci (PRCL) in C. caviae. However, 2-deoxyglucose (2DG) treatment of GPIC and CC13 resulted in reduced transcription of all identified PRCL, including glgA, indicating the presence of a plasmid-independent glucose response in this species. In contrast to plasmid-cured C. muridarum and C. trachomatis, plasmid-cured C. caviae strain CC13 signaled via TLR2 in vitro and elicited cytokine production in vivo similar to wild-type C. caviae. Furthermore, inflammatory pathology induced by infection of guinea pigs with CC13 was similar to that induced by GPIC, although we observed more rapid resolution of CC13 infection in estrogen-treated guinea pigs. These data indicate that either the plasmid is not involved in expression or regulation of virulence in C. caviae or that redundant effectors prevent these phenotypic changes from being observed in C. caviae plasmid-cured strains.
Toda, Hiroshi; Itoh, Nobuya
2017-01-01
The novel cryptic pKPAL3 plasmid was isolated from the Gram-positive microorganism Kocuria palustris IPUFS-1 and characterized in detail. pKPAL3 is a circular plasmid that is 4,443 bp in length. Open reading frame (ORF) and homology search analyses indicated that pKPAL3 possesses four ORFs; however, there were no replication protein coding genes predicted in the plasmid. Instead, there were two nucleotide sequence regions that showed significant identities with untranslated regions of K. rhizophila DC2201 (NBRC 103217) genomic sequences, and these sequences were essential for autonomous replication of pKPAL3 in Kocuria cells. Based on these findings, we constructed the novel Escherichia coli - Kocuria shuttle vectors pKITE301 (kanamycin resistant) and pKITE303 (thiostrepton resistant) from pKPAL3. The copy numbers of the constructed shuttle vectors were estimated to be 20 per cell, and they exhibited low segregation stability in Kocuria transformant cells in the absence of antibiotics. Moreover, constructed vectors showed compatibility with the other K. rhizophila shuttle vector pKITE103. We successfully expressed multiple heterologous genes, including the styrene monooxygenase gene from Rhodococcus sp. ST-10 ( rhsmo ) and alcohol dehydrogenase gene from Leifsonia sp. S749 ( lsadh ), in K . rhizophila DC2201 using the pKITE301P and pKITE103P vectors under the control of the glyceraldehyde 3-phosphate dehydrogenase ( gapdh ) promotor. The RhSMO-LSADH co-expressing K. rhizophila was used as a biocatalyst in an organic solvent-water biphasic reaction system to efficiently convert styrene into ( S )-styrene oxide with 99% ee in the presence of 2-propanol as a hydrogen donor. The product concentration of the reaction in the organic solvent reached 235 mM after 30 h under optimum conditions. Thus, we demonstrated that this novel shuttle vector is useful for developing biocatalysts based on organic solvent-tolerant Kocuria cells.
Mela, Francesca; Fritsche, Kathrin; Boersma, Hidde; van Elsas, Jan D; Bartels, Daniela; Meyer, Folker; de Boer, Wietse; van Veen, Johannes A; Leveau, Johan H J
2008-10-01
Plasmid pTer331 from the bacterium Collimonas fungivorans Ter331 is a new member of the pIPO2/pSB102 family of environmental plasmids. The 40 457-bp sequence of pTer331 codes for 44 putative ORFs, most of which represent genes involved in replication, partitioning and transfer of the plasmid. We confirmed that pTer331 is stably maintained in its native host. Deletion analysis identified a mini-replicon capable of replicating autonomously in Escherichia coli and Pseudomonas putida. Furthermore, plasmid pTer331 was able to mobilize and retromobilize IncQ plasmid pSM1890 at typical rates of 10(-4) and 10(-8), respectively. Analysis of the 91% DNA sequence identity between pTer331 and pIPO2 revealed functional conservation of coding sequences, the deletion of DNA fragments flanked by short direct repeats (DR), and sequence preservation of long DRs. In addition, we experimentally established that pTer331 has no obvious contribution in several of the phenotypes that are characteristic of its host C. fungivorans Ter331, including the ability to efficiently colonize plant roots. Based on our findings, we hypothesize that cryptic plasmids such as pTer331 and pIPO2 might not confer an individual advantage to bacteria, but, due to their broad-host-range and ability to retromobilize, benefit bacterial populations by accelerating the intracommunal dissemination of the mobile gene pool.
[Cloning and gene expression in lactic acid bacteria].
Bondarenko, V M; Beliavskaia, V A
2000-01-01
The possibility of using the genera Lactobacillus and Lactococcus as vector representatives is widely discussed at present. The prospects of the construction of recombinant bacteria are closely connected with the solution of a number of problems: the level of the transcription of cloned genes, the effectiveness of the translation of heterologous mRNA, the stability of protein with respect to bacterial intracellular proteases, the method by protein molecules leave the cell (by secretion or as the result of lysis). To prevent segregation instability, the construction of vector molecules on the basis of stable cryptic plasmids found in wild strains of lactic acid bacteria was proposed. High copying plasmids with low molecular weight were detected in L. plantarum and L. pentosus strains. Several plasmids with molecular weights of 1.7, 1.8 and 2.3 kb were isolated from bacterial cells to be used as the basis for the construction of vector molecules. Genes of chloramphenicol- and erythromycin-resistance from Staphylococcus aureus plasmids were used as marker genes ensuring cell transformation. The vector plasmids thus constructed exhibited high transformation activity in the electroporation of different strains, including L. casei, L. plantarum, L. acidophilus, L. fermentum and L. brevis which could be classified with the replicons of a wide circle of hosts. But the use of these plasmids was limited due to the risk of the uncontrolled dissemination of recombinant plasmids. L. acidophilus were also found to have strictly specific plasmids with good prospects of being used as the basis for the creation of vectors, incapable of dissemination. In addition to the search of strain-specific plasmids, incapable of uncontrolled gene transmission, the use of chromosome-integrated heterologous genes is recommended in cloning to ensure the maximum safety.
Lagares, Antonio; Sanjuán, Juan; Pistorio, Mariano
2014-10-01
Rhizobia are Gram-negative Alpha- and Betaproteobacteria living in the underground which have the ability to associate with legumes for the establishment of nitrogen-fixing symbioses. Sinorhizobium meliloti in particular-the symbiont of Medicago, Melilotus, and Trigonella spp.-has for the past decades served as a model organism for investigating, at the molecular level, the biology, biochemistry, and genetics of a free-living and symbiotic soil bacterium of agricultural relevance. To date, the genomes of seven different S. meliloti strains have been fully sequenced and annotated, and several other draft genomic sequences are also available. The vast amount of plasmid DNA that S. meliloti frequently bears (up to 45% of its total genome), the conjugative ability of some of those plasmids, and the extent of the plasmid diversity has provided researchers with an extraordinary system to investigate functional and structural plasmid molecular biology within the evolutionary context surrounding a plant-associated model bacterium. Current evidence indicates that the plasmid mobilome in S. meliloti is composed of replicons varying greatly in size and having diverse conjugative systems and properties along with different evolutionary stabilities and biological roles. While plasmids carrying symbiotic functions (pSyms) are known to have high structural stability (approaching that of chromosomes), the remaining plasmid mobilome (referred to as the non-pSym, functionally cryptic, or accessory compartment) has been shown to possess remarkable diversity and to be highly active in conjugation. In light of the modern genomic and current biochemical data on the plasmids of S. meliloti, the current article revises their main structural components, their transfer and regulatory mechanisms, and their potential as vehicles in shaping the evolution of the rhizobial genome.
Closely related NDM-1-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan.
Chen, Chao-Ju; Wu, Tsu-Lan; Lu, Po-Liang; Chen, Ying-Tsong; Fung, Chang-Phone; Chuang, Yin-Ching; Lin, Jung-Chung; Siu, L Kristopher
2014-01-01
Two plasmids carrying blaNDM-1 isolated from carbapenem-resistant Klebsiella pneumoniae (CR-KP) and carbapenem-resistant Escherichia coli (CR-EC) were sequenced. CR-KP and CR-EC were isolated from two Taiwanese patients without travel histories. Complete sequencing of the plasmids (pLK75 and pLK78) was conducted using a shotgun approach. Annotation of the contigs was performed using the RAST Server, followed by manual inspection and correction. These similar plasmids were obtained from two patients with overlapping stays at the same hospital. The pLK75 and pLK78 plasmids were 56,489-bp and 56,072-bp in length, respectively. Plasmid annotation revealed a common backbone similar to the IncN plasmid pR46. The regions flanking the blaNDM-1 genes in these plasmids were very similar to plasmid pNDM-HU01 in Japan, which contains a complex class 1 integron located next to an ISCR1 element. The ISCR1 element has been suggested to provide a powerful mechanism for mobilising antibiotic resistance genes. Two indigenous NDM-1-producing Enterobacteriaceae cases were identified for the first time in Taiwan, highlighting the alarming introduction of NDM-1-producing Enterobacteriaceae in this region.
Smith, M D; Flickinger, J L; Lineberger, D W; Schmidt, B
1986-01-01
The goal of this study was to investigate the likelihood of developing useful transformation systems for coryneform bacteria. Two species of coryneform bacteria, Brevibacterium lactofermentum and Corynebacterium lilium, were transformed with chimeras constructed from pUB110 and a cryptic coryneform plasmid (pGX1901). C. lilium protoplasts were also efficiently transfected with phage CS1 DNA. High transformation and transfection frequencies were obtained after only 2 min of lysozyme treatment of lysozyme-sensitive mutants. A series of experiments was also conducted to determine whether DNA from other species of important industrial microbes from the genus Bacillus could be expressed in coryneform bacteria. Evidence of restriction of Bacillus subtilis DNA by B. lactofermentum was observed but could be overcome. A Bacillus amyloliquefaciens alpha-amylase gene (amyEBamP) was subcloned onto a plasmid able to replicate in B. lactofermentum. B. lactofermentum transformants for this plasmid expressed amylase activity and produced material cross-reactive to amylase antibody. Images PMID:3008649
Toda, Hiroshi; Itoh, Nobuya
2017-01-01
The novel cryptic pKPAL3 plasmid was isolated from the Gram-positive microorganism Kocuria palustris IPUFS-1 and characterized in detail. pKPAL3 is a circular plasmid that is 4,443 bp in length. Open reading frame (ORF) and homology search analyses indicated that pKPAL3 possesses four ORFs; however, there were no replication protein coding genes predicted in the plasmid. Instead, there were two nucleotide sequence regions that showed significant identities with untranslated regions of K. rhizophila DC2201 (NBRC 103217) genomic sequences, and these sequences were essential for autonomous replication of pKPAL3 in Kocuria cells. Based on these findings, we constructed the novel Escherichia coli–Kocuria shuttle vectors pKITE301 (kanamycin resistant) and pKITE303 (thiostrepton resistant) from pKPAL3. The copy numbers of the constructed shuttle vectors were estimated to be 20 per cell, and they exhibited low segregation stability in Kocuria transformant cells in the absence of antibiotics. Moreover, constructed vectors showed compatibility with the other K. rhizophila shuttle vector pKITE103. We successfully expressed multiple heterologous genes, including the styrene monooxygenase gene from Rhodococcus sp. ST-10 (rhsmo) and alcohol dehydrogenase gene from Leifsonia sp. S749 (lsadh), in K. rhizophila DC2201 using the pKITE301P and pKITE103P vectors under the control of the glyceraldehyde 3-phosphate dehydrogenase (gapdh) promotor. The RhSMO–LSADH co-expressing K. rhizophila was used as a biocatalyst in an organic solvent–water biphasic reaction system to efficiently convert styrene into (S)-styrene oxide with 99% ee in the presence of 2-propanol as a hydrogen donor. The product concentration of the reaction in the organic solvent reached 235 mM after 30 h under optimum conditions. Thus, we demonstrated that this novel shuttle vector is useful for developing biocatalysts based on organic solvent-tolerant Kocuria cells. PMID:29230202
Nishida, Takashi; Watanabe, Kenta; Tachibana, Masato; Shimizu, Takashi; Watarai, Masahisa
2017-03-01
In this study, a cryptic plasmid pOfk55 from Legionella pneumophila was isolated and characterized. pOfk55 comprised 2584bp with a GC content of 37.3% and contained three putative open reading frames (ORFs). orf1 encoded a protein of 195 amino acids and the putative protein shared 39% sequence identity with a putative plasmid replication protein RepL. ORF1 was needed for replication in L. pneumophila but pOfk55 did not replicate in Escherichia coli. orf2 and orf3 encoded putative hypothetical proteins of 114 amino acids and 78 amino acids, respectively, but the functions of the putative proteins ORF2 and OFR3 are not clear. The transfer mechanism for pOfk55 was independent on the type IVB secretion system in the original host. A L. pneumophila-E. coli shuttle vector, pNT562 (5058bp, Km R ), was constructed by In-Fusion Cloning of pOfk55 with a kanamycin-resistance gene from pUTmini-Tn5Km and the origin of replication from pBluescript SK(+) (pNT561). Multiple cloning sites from pBluescript SK(+) as well as the tac promoter region and lacI gene from pAM239-GFP were inserted into pNT561 to construct pNT562. The transformation efficiency of pNT562 in L. pneumophila strains ranged from 1.6×10 1 to 1.0×10 5 CFU/ng. The relative number of pNT562 was estimated at 5.7±1.0 copies and 73.6% of cells maintained the plasmid after 1week in liquid culture without kanamycin. A green fluorescent protein (GFP) expression vector, pNT563, was constructed by ligating pNT562 with the gfpmut3 gene from pAM239-GFP. pNT563 was introduced into L. pneumophila Lp02 and E. coli DH5α, and both strains expressed GFP successfully. These results suggest that the shuttle vector is useful for genetic studies in L. pneumophila. Copyright © 2017 Elsevier Inc. All rights reserved.
Asteri, Ioanna-Areti; Papadimitriou, Konstantinos; Boutou, Effrossyni; Anastasiou, Rania; Pot, Bruno; Vorgias, Constantinos E; Tsakalidou, Effie
2010-07-15
The pLAC1 plasmid of Lactobacillus acidipiscis ACA-DC 1533, a strain isolated from traditional Kopanisti cheese, was characterised. Nucleotide sequence analysis revealed a circular molecule of 3478bp with a G+C content of 37.2%. Ab initio annotation indicated four putative open reading frames (orfs). orf1 and orf4 were found to encode a replication initiation protein (Rep) and a mobilization protein (Mob), respectively. The deduced products of orf2 and orf3 revealed no significant homology to other known proteins. However, in silico examination of the plasmid sequence supported the existence of a novel operon that includes rep, orf2 and orf3 in pLAC1 and that this operon is highly conserved also in plasmids pLB925A02, pSMA23, pLC88 and pC7. RT-PCR experiments allowed us to verify that these three genes are co-transcribed as a single polycistronic mRNA species. Furthermore, phylogenetic analysis of pLAC1 Rep and Mob proteins demonstrated that they may have derived from different plasmid origins, suggesting that pLAC1 is a product of a modular evolution process. Comparative analysis of full length nucleotide sequences of pLAC1 and related Lactobacillus plasmids showed that pLAC1 shares a very similar replication backbone with pLB925A02, pSMA23 and pLC88. In contrast, mob of pLAC1 was almost identical with the respective gene of plasmids pLAB1000, pLB4 and pPB1. These findings lead to the conclusion that pLAC1 acquired mob probably via an ancestral recombination event. Our overall work highlights the importance of characterizing plasmids deriving from non-starter 'wild' isolates in order to better appreciate plasmid divergence and evolution of lactic acid bacteria. 2010 Elsevier B.V. All rights reserved.
Indigenous American species of the Bemisia tabaci complex are still widespread in the Americas.
Barbosa, Leonardo da F; Marubayashi, Julio M; De Marchi, Bruno R; Yuki, Valdir A; Pavan, Marcelo A; Moriones, Enrique; Navas-Castillo, Jesús; Krause-Sakate, Renate
2014-10-01
Bemisia tabaci is a complex of at least 36 putative cryptic species. Since the late 1980s, the Middle East-Asia Minor 1 species (MEAM1, formerly known as the B biotype), has emerged in many tropical and subtropical regions of the world and in some areas has displaced the indigenous populations of B. tabaci. Based on analysis of the mtCOI gene, two indigenous species native to America have been reported: New World (NW, formerly the A biotype) and New World 2 (NW2). NW is present at least in Argentina, Brazil, Martinique, Mexico, Texas and Venezuela, and NW2 in Argentina, Bolivia and Brazil. Wild plants (Euphorbia sp. and Ipomoea sp.), as well as important crops such as tomato, bean and cotton, are still hosts for native B. tabaci populations in the Americas. MEAM1 has not completely displaced the native B. tabaci from the Americas. © 2014 Society of Chemical Industry.
Interaction of Type IV Toxin/Antitoxin Systems in Cryptic Prophages of Escherichia coli K-12.
Wen, Zhongling; Wang, Pengxia; Sun, Chenglong; Guo, Yunxue; Wang, Xiaoxue
2017-03-01
Toxin/antitoxin (TA) systems are widespread in prokaryotic chromosomes and in mobile genetic elements including plasmids and prophages. The first characterized Type IV TA system CbtA/CbeA was found in cryptic prophage CP4-44 in Escherichia coli K-12. Two homologous TA loci of CbtA/CbeA also reside in cryptic prophages of E. coli K-12, YkfI/YafW in CP4-6 and YpjF/YfjZ in CP4-57. In this study, we demonstrated that YkfI and YpjF inhibited cell growth and led to the formation of "lemon-shaped" cells. Prolonged overproduction of YkfI led to the formation of "gourd-shaped" cells and immediate cell lysis. YafW and YfjZ can neutralize the toxicity of YkfI or YpjF. Furthermore, we found that YkfI and YpjF interacted with cell division protein FtsZ in E. coli , but ectopic expression in Pseudomonas and Shewanella did not cause the formation of "lemon-shaped" cells. Moreover, deletion of all of the three toxin genes together decreased resistance to oxidative stress and deletion of the antitoxin genes increased early biofilm formation. Collectively, these results demonstrated that the homologous Type IV TA systems in E. coli may target cell division protein FtsZ in E. coli and may have different physiological functions in E. coli .
Interaction of Type IV Toxin/Antitoxin Systems in Cryptic Prophages of Escherichia coli K-12
Wen, Zhongling; Wang, Pengxia; Sun, Chenglong; Guo, Yunxue; Wang, Xiaoxue
2017-01-01
Toxin/antitoxin (TA) systems are widespread in prokaryotic chromosomes and in mobile genetic elements including plasmids and prophages. The first characterized Type IV TA system CbtA/CbeA was found in cryptic prophage CP4-44 in Escherichia coli K-12. Two homologous TA loci of CbtA/CbeA also reside in cryptic prophages of E. coli K-12, YkfI/YafW in CP4-6 and YpjF/YfjZ in CP4-57. In this study, we demonstrated that YkfI and YpjF inhibited cell growth and led to the formation of “lemon-shaped” cells. Prolonged overproduction of YkfI led to the formation of “gourd-shaped” cells and immediate cell lysis. YafW and YfjZ can neutralize the toxicity of YkfI or YpjF. Furthermore, we found that YkfI and YpjF interacted with cell division protein FtsZ in E. coli, but ectopic expression in Pseudomonas and Shewanella did not cause the formation of “lemon-shaped” cells. Moreover, deletion of all of the three toxin genes together decreased resistance to oxidative stress and deletion of the antitoxin genes increased early biofilm formation. Collectively, these results demonstrated that the homologous Type IV TA systems in E. coli may target cell division protein FtsZ in E. coli and may have different physiological functions in E. coli. PMID:28257056
Multiplexed precision genome editing with trackable genomic barcodes in yeast.
Roy, Kevin R; Smith, Justin D; Vonesch, Sibylle C; Lin, Gen; Tu, Chelsea Szu; Lederer, Alex R; Chu, Angela; Suresh, Sundari; Nguyen, Michelle; Horecka, Joe; Tripathi, Ashutosh; Burnett, Wallace T; Morgan, Maddison A; Schulz, Julia; Orsley, Kevin M; Wei, Wu; Aiyar, Raeka S; Davis, Ronald W; Bankaitis, Vytas A; Haber, James E; Salit, Marc L; St Onge, Robert P; Steinmetz, Lars M
2018-07-01
Our understanding of how genotype controls phenotype is limited by the scale at which we can precisely alter the genome and assess the phenotypic consequences of each perturbation. Here we describe a CRISPR-Cas9-based method for multiplexed accurate genome editing with short, trackable, integrated cellular barcodes (MAGESTIC) in Saccharomyces cerevisiae. MAGESTIC uses array-synthesized guide-donor oligos for plasmid-based high-throughput editing and features genomic barcode integration to prevent plasmid barcode loss and to enable robust phenotyping. We demonstrate that editing efficiency can be increased more than fivefold by recruiting donor DNA to the site of breaks using the LexA-Fkh1p fusion protein. We performed saturation editing of the essential gene SEC14 and identified amino acids critical for chemical inhibition of lipid signaling. We also constructed thousands of natural genetic variants, characterized guide mismatch tolerance at the genome scale, and ascertained that cryptic Pol III termination elements substantially reduce guide efficacy. MAGESTIC will be broadly useful to uncover the genetic basis of phenotypes in yeast.
Extrachromosomal genetic elements in Micrococcus.
Dib, Julián Rafael; Liebl, Wolfgang; Wagenknecht, Martin; Farías, María Eugenia; Meinhardt, Friedhelm
2013-01-01
Micrococci are Gram-positive G + C-rich, nonmotile, nonspore-forming actinomycetous bacteria. Micrococcus comprises ten members, with Micrococcus luteus being the type species. Representatives of the genus play important roles in the biodegradation of xenobiotics, bioremediation processes, production of biotechnologically important enzymes or bioactive compounds, as test strains in biological assays for lysozyme and antibiotics, and as infective agents in immunocompromised humans. The first description of plasmids dates back approximately 28 years, when several extrachromosomal elements ranging in size from 1.5 to 30.2 kb were found in Micrococcus luteus. Up to the present, a number of circular plasmids conferring antibiotic resistance, the ability to degrade aromatic compounds, and osmotolerance are known, as well as cryptic elements with unidentified functions. Here, we review the Micrococcus extrachromosomal traits reported thus far including phages and the only quite recently described large linear extrachromosomal genetic elements, termed linear plasmids, which range in size from 75 kb (pJD12) to 110 kb (pLMA1) and which confer putative advantageous capabilities, such as antibiotic or heavy metal resistances (inferred from sequence analyses and curing experiments). The role of the extrachromosomal elements for the frequently proven ecological and biotechnological versatility of the genus will be addressed as well as their potential for the development and use as genetic tools.
Heuermann, D; Haas, R
1998-03-01
A versatile plasmid shuttle vector system was constructed, which is useful for genetic complementation of Helicobacter pylori strains or mutants with cloned genes of homologous or heterologous origin. The individual plasmid vectors consist of the minimal essential genetic elements, including an origin of replication for Escherichia coli, a H. pylori-specific replicon originally identified on a small cryptic H. pylori plasmid, an oriT sequence and a multiple cloning site. Shuttle plasmid pHel2 carries a chloramphenicol resistance cassette (catGC) and pHel3 contains a kanamycin resistance gene (aphA-3) as the selectable marker; both are functional in E. coli and H. pylori. The shuttle plasmids were introduced into the H. pylori strain P1 by natural transformation. A efficiency of 7.0 x 10(-7) and 4.7 x 10(-7) transformants per viable recipient was achieved with pHel2 and pHel3, respectively, and both vectors showed stable, autonomous replication in H. pylori. An approximately 100-fold higher H. pylori transformation rate was obtained when the shuttle vectors for transformation were isolated from the homologous H. pylori strain, rather than E. coli, indicating that DNA restriction and modification mechanisms play a crucial role in plasmid transformation. Interestingly, both shuttle vectors could also be mobilized efficiently from E. coli into different H. pylori recipients, with pHel2 showing an efficiency of 2.0 x 10(-5) transconjugants per viable H. pylori P1 recipient. Thus, DNA restriction seems to be strongly reduced or absent during conjugal transfer. The functional complementation of a recA-deficient H. pylori mutant by the cloned H. pylori recA+ gene, and the expression of the heterologous green fluorescent protein (GFP) in H. pylori demonstrate the general usefulness of this system, which will significantly facilitate the molecular analysis of H. pylori virulence factors in the future.
Kuno, Sotaro; Yoshida, Takashi; Kaneko, Takakazu; Sako, Yoshihiko
2012-08-01
Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids.
Kuno, Sotaro; Kaneko, Takakazu; Sako, Yoshihiko
2012-01-01
Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids. PMID:22636003
Król, J. E.; Penrod, J. T.; McCaslin, H.; Rogers, L. M.; Yano, H.; Stancik, A. D.; Dejonghe, W.; Brown, C. J.; Parales, R. E.; Wuertz, S.
2012-01-01
Broad-host-range catabolic plasmids play an important role in bacterial degradation of man-made compounds. To gain insight into the role of these plasmids in chloroaniline degradation, we determined the first complete nucleotide sequences of an IncP-1 chloroaniline degradation plasmid, pWDL7::rfp and its close relative pNB8c, as well as the expression pattern, function, and bioaugmentation potential of the putative 3-chloroaniline (3-CA) oxidation genes. Based on phylogenetic analysis of backbone proteins, both plasmids are members of a distinct clade within the IncP-1β subgroup. The plasmids are almost identical, but whereas pWDL7::rfp carries a duplicate inverted catabolic transposon, Tn6063, containing a putative 3-CA oxidation gene cluster, dcaQTA1A2BR, pNB8c contains only a single copy of the transposon. No genes for an aromatic ring cleavage pathway were detected on either plasmid, suggesting that only the upper 3-CA degradation pathway was present. The dcaA1A2B gene products expressed from a high-copy-number vector were shown to convert 3-CA to 4-chlorocatechol in Escherichia coli. Slight differences in the dca promoter region between the plasmids and lack of induction of transcription of the pNB8c dca genes by 3-CA may explain previous findings that pNB8C does not confer 3-CA transformation. Bioaugmentation of activated sludge with pWDL7::rfp accelerated removal of 3-CA, but only in the presence of an additional carbon source. Successful bioaugmentation requires complementation of the upper pathway genes with chlorocatechol cleavage genes in indigenous bacteria. The genome sequences of these plasmids thus help explain the molecular basis of their catabolic activities. PMID:22101050
Dejonghe, Winnie; Goris, Johan; El Fantroussi, Saïd; Höfte, Monica; De Vos, Paul; Verstraete, Willy; Top, Eva M.
2000-01-01
Transfer of the 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids pEMT1 and pJP4 from an introduced donor strain, Pseudomonas putida UWC3, to the indigenous bacteria of two different horizons (A horizon, depth of 0 to 30 cm; B horizon, depth of 30 to 60 cm) of a 2,4-D-contaminated soil was investigated as a means of bioaugmentation. When the soil was amended with nutrients, plasmid transfer and enhanced degradation of 2,4-D were observed. These findings were most striking in the B horizon, where the indigenous bacteria were unable to degrade any of the 2,4-D (100 mg/kg of soil) during at least 22 days but where inoculation with either of the two plasmid donors resulted in complete 2,4-D degradation within 14 days. In contrast, in soils not amended with nutrients, inoculation of donors in the A horizon and subsequent formation of transconjugants (105 CFU/g of soil) could not increase the 2,4-D degradation rate compared to that of the noninoculated soil. However, donor inoculation in the nonamended B-horizon soil resulted in complete degradation of 2,4-D within 19 days, while no degradation at all was observed in noninoculated soil during 89 days. With plasmid pEMT1, this enhanced degradation seemed to be due only to transconjugants (105 CFU/g of soil), since the donor was already undetectable when degradation started. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes showed that inoculation of the donors was followed by a shift in the microbial community structure of the nonamended B-horizon soils. The new 16S rRNA gene fragments in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D-degrading transconjugant colonies isolated on agar plates. This result indicates that the observed change in the community was due to proliferation of transconjugants formed in soil. Overall, this work clearly demonstrates that bioaugmentation can constitute an effective strategy for cleanup of soils which are poor in nutrients and microbial activity, such as those of the B horizon. PMID:10919784
Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum.
Alvarez, B; Secades, P; McBride, M J; Guijarro, J A
2004-01-01
Flavobacterium psychrophilum, a member of the Cytophaga-Flavobacterium-Bacteroides group, is an important pathogen of salmonid fish. Previous attempts to develop genetic techniques for this fastidious, psychrotrophic bacterium have met with failure. Here we describe the development of techniques for the genetic manipulation of F. psychrophilum and the identification of plasmids, selectable markers, a reporter system, and a transposon that function in several isolates of this fish pathogen. The antibiotic resistance genes ermF, cfxA, and tetQ function in F. psychrophilum. Cloning vectors based on the F. psychrophilum cryptic plasmid pCP1 which carried these selectable markers were introduced by conjugation from E. coli, resulting in antibiotic-resistant colonies of F. psychrophilum. Conjugative transfer of DNA into F. psychrophilum was strain dependent. Efficient transfer was observed for two of the seven strains tested (THC02-90 and THC04-90). E. coli lacZY functioned in F. psychrophilum when expressed from a pCP1 promoter, allowing its development as a reporter for studies of gene expression. Plasmids isolated from F. psychrophilum were efficiently introduced into F. psychrophilum by electroporation, but plasmids isolated from E. coli were not suitable for transfer by this route, suggesting the presence of a restriction barrier. DNA isolated from F. psychrophilum was resistant to digestion by Sau3AI and BamHI, indicating that a Sau3AI-like restriction modification system may constitute part of this barrier. Tn4351 was introduced into F. psychrophilum from E. coli and transposed with apparent randomness, resulting in erythromycin-resistant colonies. The techniques developed in this study allow for genetic manipulation and analysis of this important fish pathogen.
Kim, K S; Chilton, W S; Farrand, S K
1996-01-01
The mocC gene encoded by the octopine/mannityl opine-type Ti plasmid pTi15955 is related at the nucleotide sequence level to mas1' encoded by the T region of this plasmid. While Mas1 is required for the synthesis of mannopine (MOP) by crown gall tumor cells, MocC is essential for the utilization of MOP by Agrobacterium spp. A cosmid clone of pTi15955, pYDH208, encodes mocC and confers the utilization of MOP on strain NT1 and on strain UIA5, a derivative of NT1 lacking the 450-kb cryptic plasmid pAtC58. NT1 or UIA5 harboring pYDH208 with an insertion mutation in mocC failed to utilize MOP as the sole carbon source. Plasmid pSa-C, which encodes only mocC, complemented this mutation in both strains. This plasmid also was sufficient to confer utilization of MOP on NT1 but not on UIA5. Computer analysis showed that MocC is related at the amino acid sequence level to members of the short-chain alcohol dehydrogenase family of oxidoreductases. Lysates prepared from Escherichia coli cells expressing mocC contained an enzymatic activity that oxidizes MOP to deoxyfructosyl glutamine (santhopine [SOP]) in the presence of NAD+. The reaction catalyzed by the MOP oxidoreductase is reversible; in the presence of NADH, the enzyme reduced SOP to MOP. The apparent Km values of the enzyme for MOP and SOP were 6.3 and 1.2 mM, respectively. Among analogs of MOP tested, only N-1-(1-deoxy-D-lyxityl)-L-glutamine and N-1-(1-deoxy-D-mannityl)-L-asparagine served as substrates for MOP oxidoreductase. These results indicate that mocC encodes an oxidoreductase that, as an oxidase, is essential for the catabolism of MOP. The reductase activity of this enzyme is precisely the reaction ascribed to its T-region-encoded homolog, Mas1, which is responsible for biosynthesis of mannopine in crown gall tumors. PMID:8655510
Kim, K S; Chilton, W S; Farrand, S K
1996-06-01
The mocC gene encoded by the octopine/mannityl opine-type Ti plasmid pTi15955 is related at the nucleotide sequence level to mas1' encoded by the T region of this plasmid. While Mas1 is required for the synthesis of mannopine (MOP) by crown gall tumor cells, MocC is essential for the utilization of MOP by Agrobacterium spp. A cosmid clone of pTi15955, pYDH208, encodes mocC and confers the utilization of MOP on strain NT1 and on strain UIA5, a derivative of NT1 lacking the 450-kb cryptic plasmid pAtC58. NT1 or UIA5 harboring pYDH208 with an insertion mutation in mocC failed to utilize MOP as the sole carbon source. Plasmid pSa-C, which encodes only mocC, complemented this mutation in both strains. This plasmid also was sufficient to confer utilization of MOP on NT1 but not on UIA5. Computer analysis showed that MocC is related at the amino acid sequence level to members of the short-chain alcohol dehydrogenase family of oxidoreductases. Lysates prepared from Escherichia coli cells expressing mocC contained an enzymatic activity that oxidizes MOP to deoxyfructosyl glutamine (santhopine [SOP]) in the presence of NAD+. The reaction catalyzed by the MOP oxidoreductase is reversible; in the presence of NADH, the enzyme reduced SOP to MOP. The apparent Km values of the enzyme for MOP and SOP were 6.3 and 1.2 mM, respectively. Among analogs of MOP tested, only N-1-(1-deoxy-D-lyxityl)-L-glutamine and N-1-(1-deoxy-D-mannityl)-L-asparagine served as substrates for MOP oxidoreductase. These results indicate that mocC encodes an oxidoreductase that, as an oxidase, is essential for the catabolism of MOP. The reductase activity of this enzyme is precisely the reaction ascribed to its T-region-encoded homolog, Mas1, which is responsible for biosynthesis of mannopine in crown gall tumors.
Top, E M; Holben, W E; Forney, L J
1995-01-01
The diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative plasmids in the microbial community of an agricultural soil was examined by complementation. This technique involved mixing a suitable Alcaligenes eutrophus (Rifr) recipient strain with the indigenous microbial populations extracted from soil. After incubation of this mixture, Rifr recipient strains which grow with 2,4-D as the only C source were selected. Two A. eutrophus strains were used as recipients: JMP228 (2,4-D-), which was previously derived from A. eutrophus JMP134 by curing of the 2,4-D-degradative plasmid pJP4, and JMP228 carrying pBH501aE (a plasmid derived from pJP4 by deletion of a large part of the tfdA gene which encodes the first step in the mineralization of 2,4-D). By using agricultural soil that had been treated with 2,4-D for several years, transconjugants were obtained with both recipients. However, when untreated control soil was used, no transconjugants were isolated. The various transconjugants had plasmids with seven different EcoRI restriction patterns. The corresponding plasmids are designated pEMT1 to pEMT7. Unlike pJP4, pEMT1 appeared not to be an IncP1 plasmid, but all the others (pEMT2 to pEMT7) belong to the IncP1 group. Hybridization with individual probes for the tfdA to tfdF genes of pJP4 demonstrated that all plasmids showed high degrees of homology to the tfdA gene. Only pEMT1 showed a high degree of homology to tfdB, tfdC, tfdD, tfdE, and tfdF, while the others showed only moderate degrees of homology to tfdB and low degrees of homology to tfdC.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7646006
Evolutionary origins of the emergent ST796 clone of vancomycin resistant Enterococcus faecium
Buultjens, Andrew H.; Lam, Margaret M.C.; Ballard, Susan; Monk, Ian R.; Mahony, Andrew A.; Grabsch, Elizabeth A.; Grayson, M. Lindsay; Pang, Stanley; Coombs, Geoffrey W.; Robinson, J. Owen; Seemann, Torsten; Howden, Benjamin P.
2017-01-01
From early 2012, a novel clone of vancomycin resistant Enterococcus faecium (assigned the multi locus sequence type ST796) was simultaneously isolated from geographically separate hospitals in south eastern Australia and New Zealand. Here we describe the complete genome sequence of Ef_aus0233, a representative ST796 E. faecium isolate. We used PacBio single molecule real-time sequencing to establish a high quality, fully assembled genome comprising a circular chromosome of 2,888,087 bp and five plasmids. Comparison of Ef_aus0233 to other E. faecium genomes shows Ef_aus0233 is a member of the epidemic hospital-adapted lineage and has evolved from an ST555-like ancestral progenitor by the accumulation or modification of five mosaic plasmids and five putative prophage, acquisition of two cryptic genomic islands, accrued chromosomal single nucleotide polymorphisms and a 80 kb region of recombination, also gaining Tn1549 and Tn916, transposons conferring resistance to vancomycin and tetracycline respectively. The genomic dissection of this new clone presented here underscores the propensity of the hospital E. faecium lineage to change, presumably in response to the specific conditions of hospital and healthcare environments. PMID:28149688
Favier, Marion; Bilhère, Eric; Lonvaud-Funel, Aline; Moine, Virginie; Lucas, Patrick M.
2012-01-01
Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly contribute to the technological performance of strains in wine. PMID:23139835
Genetic manipulation of clostridium acetobutylicum for enhanced butanol production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaschek, H.P.; Holt, S.
Recent developments in the genetic manipulation of the acetone-butanol-ethanol fermentation microorganism, Clostridium acetobutylicum will be discussed. This specifically involves the characterization of an M13-like genetic system for C. acetobutylicum based on the pCAK1 phagemid, as well as the development of a plasmid-based vector based on the indigenous pDM11 plasmid recovered from C. acetobutylicum NCIB 6443. In addition, a macrorestriction map of the C. acetobutylicum ATCC 824 genome was constructed by utilizing two-dimensional transverse alternating field electrophoresis combined with reciprocal enzyme digestions and hybridization with previously cloned genes. We also describe the genetic engineering of a C. acetobutylicum strain with amplifiedmore » encloglucanase activity and to development and characterization of C. acetobutylicum hyper-amylolytic mutants with enhanced potential for commercial processes and evaluate their ability to produce butanol under batch and continuous culture conditions.« less
Chomvarin, Chariya; Johura, Fatema-Tuz; Mannan, Shahnewaj B.; Jumroenjit, Warin; Kanoktippornchai, Boonnapa; Tangkanakul, Waraluk; Tantisuwichwong, Napaporn; Huttayananont, Sriwanna; Watanabe, Haruo; Hasan, Nur A.; Huq, Anwar; Cravioto, Alejandro; Colwell, Rita R.
2013-01-01
Cholera, caused by Vibrio cholerae, results in significant morbidity and mortality worldwide, including Thailand. Representative V. cholerae strains associated with endemic cholera (n = 32), including strains (n = 3) from surface water sources, in Khon Kaen, Thailand (2003–2011), were subjected to microbiological, molecular and phylogenetic analyses. According to phenotypic and related genetic data, all tested V. cholerae strains belonged to serogroup O1, biotype El Tor (ET), Inaba (IN) or Ogawa (OG). All of the strains were sensitive to gentamicin and ciprofloxacin, while multidrug-resistant (MDR) strains showing resistance to erythromycin, tetracycline, trimethoprim/sulfamethoxazole and ampicillin were predominant in 2007. V. cholerae strains isolated before and after 2007 were non-MDR. All except six diarrhoeal strains possessed ctxA and ctxB genes and were toxigenic altered ET, confirmed by MAMA-PCR and DNA sequencing. Year-wise data revealed that V. cholerae INET strains isolated between 2003 and 2004, plus one strain isolated in 2007, lacked the RS1 sequence (rstC) and toxin-linked cryptic plasmid (TLC)-specific genetic marker, but possessed CTXCL prophage genes ctxBCL and rstRCL. A sharp genetic transition was noted, namely the majority of V. cholerae strains in 2007 and all in 2010 and 2011 were not repressor genotype rstRCL but instead were rstRET, and all ctx+ strains possessed RS1 and TLC-specific genetic markers. DNA sequencing data revealed that strains isolated since 2007 had a mutation in the tcpA gene at amino acid position 64 (N→S). Four clonal types, mostly of environmental origin, including subtypes, reflected genetic diversity, while distinct signatures were observed for clonally related, altered ET from Thailand, Vietnam and Bangladesh, confirmed by distinct subclustering patterns observed in the PFGE (NotI)-based dendrogram, suggesting that endemic cholera is caused by V. cholerae indigenous to Khon Kaen. PMID:23319310
Bathe, Stephan; Schwarzenbeck, Norbert; Hausner, Martina
2009-06-01
A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and complete 3CA degradation together with spread of the plasmid within the indigenous biofilm population was achieved. A second set of reactors was then bioaugmented with either a suspension of biofilm cells removed from the carrier material or with biofilm-containing carrier material. 3CA degradation was established rapidly in all bioaugmented reactors, followed by a slow adaptation of the non-bioaugmented control reactors. In response to variations in 3CA concentration, all reactors exhibited temporary performance breakdowns. Whereas duplicates of the control reactors deviated in their behaviour, the bioaugmented reactors appeared more reproducible in their performance and population dynamics. Finally, the carrier-bioaugmented reactors showed an improved performance in the presence of high 3CA influent concentrations over the suspension-bioaugmented reactors. In contrast, degradation in one control reactor failed completely, but was rapidly established in the remaining control reactor.
Sobecky, P. A.; Schell, M. A.; Moran, M. A.; Hodson, R. E.
1996-01-01
An indigenous marine Achromobacter sp. was isolated from coastal Georgia seawater and modified in the laboratory by introduction of a plasmid with a phoA hybrid gene that directed constitutive overproduction of alkaline phosphatase. The effects of this "indigenous" genetically engineered microorganism (GEM) on phosphorus cycling were determined in seawater microcosms following the addition of a model dissolved organic phosphorus compound, glycerol 3-phosphate, at a concentration of 1 or 10 (mu)M. Within 48 h, a 2- to 10-fold increase in the concentration of inorganic phosphate occurred in microcosms containing the GEM (added at an initial density equivalent to 8% of the total bacterial population) relative to controls containing only natural microbial populations, natural populations with the unmodified Achromobacter sp., or natural populations with the Achromobacter sp. containing the plasmid but not the phoA gene. Secondary effects of the GEM on the phytoplankton community were observed after several days, evident as sustained increases in phytoplankton biomass (up to 14-fold) over that in controls. Even in the absence of added glycerol 3-phosphate, a numerically stable GEM population (averaging 3 to 5% of culturable bacteria) was established within 2 to 3 weeks of introduction into seawater. Moreover, alkaline phosphatase activity in microcosms with the GEM was substantially higher than that in controls for up to 25 days, and microcosms containing the GEM maintained the potential for net phosphate accumulation above control levels for longer than 1 month. PMID:16535222
Shao, Lili; Zhang, Tianyuan; Melero, Jose; Huang, Yumeng; Liu, Yuanjun; Liu, Quanzhong; He, Cheng; Nelson, David E; Zhong, Guangming
2018-01-01
The cryptic plasmid is essential for Chlamydia muridarum dissemination from the genital tract to the gastrointestinal (GI) tract. Following intravaginal inoculation, a C. muridarum strain deficient in plasmid-encoded pGP3 or pGP4 but not pGP5, pGP7, or pGP8 failed to spread to the mouse gastrointestinal tract, although mice infected with these strains developed productive genital tract infections. pGP3- or pGP4-deficient strains also failed to colonize the gastrointestinal tract when delivered intragastrically. pGP4 regulates pGP3, while pGP3 does not affect pGP4 expression, indicating that pGP3 is critical for C. muridarum colonization of the gastrointestinal tract. Mutants deficient in GlgA, a chromosome-encoded protein regulated by pGP4, also consistently colonized the mouse gastrointestinal tract. Interestingly, C. muridarum colonization of the gastrointestinal tract positively correlated with pathogenicity in the upper genital tract. pGP3-deficient C. muridarum strains did not induce hydrosalpinx or spread to the GI tract even when delivered to the oviduct by intrabursal inoculation. Thus, the current study not only has revealed that pGP3 is a novel chlamydial colonization factor in the gastrointestinal tract but also has laid a foundation for investigating the significance of gastrointestinal Chlamydia . Copyright © 2017 American Society for Microbiology.
Chen, Jianchi; Civerolo, Edwin L; Jarret, Robert L; Van Sluys, Marie-Anne; de Oliveira, Mariana C
2005-02-01
Xylella fastidiosa causes many important plant diseases including Pierce's disease (PD) in grape and almond leaf scorch disease (ALSD). DNA-based methodologies, such as randomly amplified polymorphic DNA (RAPD) analysis, have been playing key roles in genetic information collection of the bacterium. This study further analyzed the nucleotide sequences of selected RAPDs from X. fastidiosa strains in conjunction with the available genome sequence databases and unveiled several previously unknown novel genetic traits. These include a sequence highly similar to those in the phage family of Podoviridae. Genome comparisons among X. fastidiosa strains suggested that the "phage" is currently active. Two other RAPDs were also related to horizontal gene transfer: one was part of a broadly distributed cryptic plasmid and the other was associated with conjugal transfer. One RAPD inferred a genomic rearrangement event among X. fastidiosa PD strains and another identified a single nucleotide polymorphism of evolutionary value.
Wang, Yong-Liang; Wang, Yu-Jun; Luan, Jun-Bo; Yan, Gen-Hong; Liu, Shu-Sheng; Wang, Xiao-Wei
2013-01-01
Background The whitefly Bemisa tabaci is a species complex of more than 31 cryptic species which include some of the most destructive invasive pests of crops worldwide. Among them, Middle East-Asia Minor 1 (MEAM1) and Mediterranean have invaded many countries and displaced the native whitefly species. The successful invasion of the two species is largely due to their wide range of host plants, high resistance to insecticides and remarkable tolerance to environmental stresses. However, the molecular differences between invasive and indigenous whiteflies remain largely unknown. Methodology/Principal Findings Here the global transcriptional difference between the two invasive whitefly species (MEAM1, MED) and one indigenous whitefly species (Asia II 3) were analyzed using the Illumina sequencing. Our analysis indicated that 2,422 genes between MEAM1 and MED; 3,073 genes between MEAM1 and Asia II 3; and 3,644 genes between MED and Asia II 3 were differentially expressed. Gene Ontology enrichment analysis revealed that the differently expressed genes between the invasive and indigenous whiteflies were significantly enriched in the term of ‘oxidoreductase activity’. Pathway enrichment analysis showed that carbohydrate, amino acid and glycerolipid metabolisms were more active in MEAM1 and MED than in Asia II 3, which may contribute to their differences in biological characteristics. Our analysis also illustrated that the majority of genes involved in ‘drug metabolic pathway’ were expressed at a higher level in MEAM1 and MED than in Asia II 3. Taken together, these results revealed that the genes related to basic metabolism and detoxification were expressed at an elevated level in the invasive whiteflies, which might be responsible for their higher resistance to insecticides and environmental stresses. Conclusions/Significance The extensive comparison of MEAM1, MED and Asia II 3 gene expression may serve as an invaluable resource for revealing the molecular mechanisms underlying their biological differences and the whitefly invasion. PMID:23667457
Analysis of competition in soil among 2,4-dichlorophenoxyacetic acid-degrading bacteria.
Ka, J O; Holben, W E; Tiedje, J M
1994-01-01
Competition among indigenous and inoculated 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria was studied in a native Kansas prairie soil following 2,4-D additions. The soil was inoculated with four different 2,4-D-degrading strains at densities of 10(3) cells per g of soil; the organisms used were Pseudomonas cepacia DBO1(pJP4) and three Michigan soil isolates, strain 745, Sphingomonas paucimobilis 1443, and Pseudomonas pickettii 712. Following 2,4-D additions, total soil DNA was extracted and analyzed on Southern blots by using a tfdA gene probe which detected three of the strains and another probe that detected the fourth strain, S. paucimobilis 1443, which belongs to a different class of 2,4-D degraders. P. cepacia DBO1(pJP4), a constructed strain, outcompeted the other added strains and the indigenous 2,4-D-degrading populations. The S. paucimobilis population was the secondary dominant population, and strain 745 and P. pickettii were not detected. Relative fitness coefficients determined in axenic broth cultures predicted the outcome of competition in soil for some but not all strains. Lag time was shown to be a principal determinant of competitiveness among the strains, but the lag times were significantly reduced in mixed broth cultures, which changed the competitive outcome. Plasmids containing the genes for the 2,4-D pathway were important determinants of competitiveness since plasmid pKA4 in P. cepacia DBO1 resulted in the slower growth characteristic of its original host, P. pickettii, rather than the rapid growth observed when this strain harbors pJP4. Images PMID:8017909
Mateos, L M; Schäfer, A; Kalinowski, J; Martin, J F; Pühler, A
1996-10-01
Conjugative transfer of mobilizable derivatives of the Escherichia coli narrow-host-range plasmids pBR322, pBR325, pACYC177, and pACYC184 from E. coli to species of the gram-positive genera Corynebacterium and Brevibacterium resulted in the integration of the plasmids into the genomes of the recipient bacteria. Transconjugants appeared at low frequencies and reproducibly with a delay of 2 to 3 days compared with matings with replicative vectors. Southern analysis of corynebacterial transconjugants and nucleotide sequences from insertion sites revealed that integration occurs at different locations and that different parts of the vector are involved in the process. Integration is not dependent on indigenous insertion sequence elements but results from recombination between very short homologous DNA segments (8 to 12 bp) present in the vector and in the host DNA. In the majority of the cases (90%), integration led to cointegrate formation, and in some cases, deletions or rearrangements occurred during the recombination event. Insertions were found to be quite stable even in the absence of selective pressure.
Mateos, L M; Schäfer, A; Kalinowski, J; Martin, J F; Pühler, A
1996-01-01
Conjugative transfer of mobilizable derivatives of the Escherichia coli narrow-host-range plasmids pBR322, pBR325, pACYC177, and pACYC184 from E. coli to species of the gram-positive genera Corynebacterium and Brevibacterium resulted in the integration of the plasmids into the genomes of the recipient bacteria. Transconjugants appeared at low frequencies and reproducibly with a delay of 2 to 3 days compared with matings with replicative vectors. Southern analysis of corynebacterial transconjugants and nucleotide sequences from insertion sites revealed that integration occurs at different locations and that different parts of the vector are involved in the process. Integration is not dependent on indigenous insertion sequence elements but results from recombination between very short homologous DNA segments (8 to 12 bp) present in the vector and in the host DNA. In the majority of the cases (90%), integration led to cointegrate formation, and in some cases, deletions or rearrangements occurred during the recombination event. Insertions were found to be quite stable even in the absence of selective pressure. PMID:8824624
Bing, Xiao-Li; Yang, Jiao; Zchori-Fein, Einat; Wang, Xiao-Wei
2013-01-01
Bemisia tabaci (Hemiptera: Aleyrodidae) is a species complex containing >28 cryptic species, some of which are important crop pests worldwide. Like many other sap-sucking insects, whiteflies harbor an obligatory symbiont, “Candidatus Portiera aleyrodidarum,” and a number of secondary symbionts. So far, six genera of secondary symbionts have been identified in B. tabaci. In this study, we report and describe the finding of an additional bacterium in the indigenous B. tabaci cryptic species China 1 (formerly known as B. tabaci biotype ZHJ3). Phylogenetic analysis based on the 16S rRNA and gltA genes showed that the bacterium belongs to the Alphaproteobacteria subdivision of the Proteobacteria and has a close relationship with human pathogens of the genus Orientia. Consequently, we temporarily named it Orientia-like organism (OLO). OLO was found in six of eight wild populations of B. tabaci China 1, with the infection rate ranging from 46.2% to 76.8%. Fluorescence in situ hybridization (FISH) of B. tabaci China 1 in nymphs and adults revealed that OLOs are confined to the bacteriome and co-occur with “Ca. Portiera aleyrodidarum.” The vertical transmission of OLO was demonstrated by detection of OLO at the anterior pole end of the oocytes through FISH. Quantitative PCR analysis of population dynamics suggested a complex interaction between “Ca. Portiera aleyrodidarum” and OLO. Based on these results, we propose “Candidatus Hemipteriphilus asiaticus” for the classification of this symbiont from B. tabaci. PMID:23144129
Lajus, Dmitry; Sukhikh, Natalia; Alekseev, Victor
2015-01-01
Interest in cryptic species has increased significantly with current progress in genetic methods. The large number of cryptic species suggests that the resolution of traditional morphological techniques may be insufficient for taxonomical research. However, some species now considered to be cryptic may, in fact, be designated pseudocryptic after close morphological examination. Thus the “cryptic or pseudocryptic” dilemma speaks to the resolution of morphological analysis and its utility for identifying species. We address this dilemma first by systematically reviewing data published from 1980 to 2013 on cryptic species of Copepoda and then by performing an in-depth morphological study of the former Eurytemora affinis complex of cryptic species. Analyzing the published data showed that, in 5 of 24 revisions eligible for systematic review, cryptic species assignment was based solely on the genetic variation of forms without detailed morphological analysis to confirm the assignment. Therefore, some newly described cryptic species might be designated pseudocryptic under more detailed morphological analysis as happened with Eurytemora affinis complex. Recent genetic analyses of the complex found high levels of heterogeneity without morphological differences; it is argued to be cryptic. However, next detailed morphological analyses allowed to describe a number of valid species. Our study, using deep statistical analyses usually not applied for new species describing, of this species complex confirmed considerable differences between former cryptic species. In particular, fluctuating asymmetry (FA), the random variation of left and right structures, was significantly different between forms and provided independent information about their status. Our work showed that multivariate statistical approaches, such as principal component analysis, can be powerful techniques for the morphological discrimination of cryptic taxons. Despite increasing cryptic species designations, morphological techniques have great potential in determining copepod taxonomy. PMID:26120427
Desomer, Jan; Dhaese, Patrick; Montagu, Marc Van
1990-01-01
The analysis of the virulence determinants of phytopathogenic Rhodococcus fascians has been hampered by the lack of a system for introducing exogenous DNA. We investigated the possibility of genetic transformation of R. fascians by high-voltage electroporation of intact bacterial cells in the presence of plasmid DNA. Electrotransformation in R. fascians D188 resulted in transformation frequencies ranging from 105/μg of DNA to 107/μg of DNA, depending on the DNA concentration. The effects of different electrical parameters and composition of electroporation medium on transformation efficiency are presented. By this transformation method, a cloning vector (pRF28) for R. fascians based on an indigenous 160-kilobase (chloramphenicol and cadmium resistance-encoding) plasmid pRF2 from strain NCPPB 1675 was developed. The origin of replication and the chloramphenicol resistance gene on pRF28 were used to construct cloning vectors that are capable of replication in R. fascians and Escherichia coli. The electroporation method presented was efficient enough to allow detection of the rare integration of replication-deficient pRF28 derivatives in the R. fascians D188 genome via either homologous or illegitimate recombination. Images PMID:16348290
Szczecińska, Monika; Sawicki, Jakub; Stebel, Adam; Buczkowska, Katarzyna
2017-01-01
Aneura pinguis is a thalloid liverwort species with broad geographical distribution. It is composed of cryptic species, however, the number of cryptic species within A. pinguis is not known. Five cpDNA regions (matK, rbcL, rpoC1, trnH-psbA and trnL-trnF) and the entire nuclear ITS region were studied in 130 samples of A. pinguis from different geographical regions. The relationships between the cryptic species of A. pinguis, A. maxima and A. mirabilis were analyzed. All of the examined samples were clustered into 10 clades corresponding to 10 cryptic species of A. pinguis (marked A to J). Aneura mirabilis and A. maxima were nested among different cryptic species of A. pinguis, which indicates that A. pinguis is a paraphyletic taxon. Subgroups were found in cryptic species A, B, C and E. As single barcodes, all tested DNA regions had 100% discriminant power and fulfilled DNA barcode criteria for species identification; however, the only combination detected in all subgroups was trnL-trnF with trnH-psbA or ITS2. The distances between cryptic species were 11- to 35-fold higher than intraspecific distances. In all analyzed DNA regions, the distances between most pairs of cryptic A. pinguis species were higher than between A. maxima and A. mirabilis. All cryptic species of A. pinguis clearly differed in their habitat preferences, which suggests that habitat adaptation could be the main driving force behind cryptic speciation within this taxon. PMID:29206876
Bączkiewicz, Alina; Szczecińska, Monika; Sawicki, Jakub; Stebel, Adam; Buczkowska, Katarzyna
2017-01-01
Aneura pinguis is a thalloid liverwort species with broad geographical distribution. It is composed of cryptic species, however, the number of cryptic species within A. pinguis is not known. Five cpDNA regions (matK, rbcL, rpoC1, trnH-psbA and trnL-trnF) and the entire nuclear ITS region were studied in 130 samples of A. pinguis from different geographical regions. The relationships between the cryptic species of A. pinguis, A. maxima and A. mirabilis were analyzed. All of the examined samples were clustered into 10 clades corresponding to 10 cryptic species of A. pinguis (marked A to J). Aneura mirabilis and A. maxima were nested among different cryptic species of A. pinguis, which indicates that A. pinguis is a paraphyletic taxon. Subgroups were found in cryptic species A, B, C and E. As single barcodes, all tested DNA regions had 100% discriminant power and fulfilled DNA barcode criteria for species identification; however, the only combination detected in all subgroups was trnL-trnF with trnH-psbA or ITS2. The distances between cryptic species were 11- to 35-fold higher than intraspecific distances. In all analyzed DNA regions, the distances between most pairs of cryptic A. pinguis species were higher than between A. maxima and A. mirabilis. All cryptic species of A. pinguis clearly differed in their habitat preferences, which suggests that habitat adaptation could be the main driving force behind cryptic speciation within this taxon.
Park, Jong-Uk; Jo, Jae-Hyung; Kim, Young-Ji; Chung, So-Sun; Lee, Jin-Ho; Lee, Hyune Hwan
2008-04-01
The heat-inducible expression vectors for Corynebacterium glutamicum and C. ammoniagenes were constructed by using the lambdaOL1 and the cryptic promoters, CJ1 and CJ4 that express genes constitutively in C. ammoniagenes.. Although the promoters were isolated from C. ammoniagenes, CJ1 and CJ4 were also active in C. glutamicum. To construct vectors, the OL1 from the lambdaPL promoter was isolated and fused to the CJ1 and CJ4 promoters by recombinant PCR. The resulting artificial promoters, CJ1O and CJ4O, which have one lambdaOL1, and CJ1OX2, which has two successive lambdaOL1, were fused to the green fluorescent protein (GFP) gene followed by subcloning into pCES208. The expression of GFP in the corynebacteria harboring the vectors was regulated successfully by the temperature sensitive cI857 repressor. Among them, C. ammoniagenes harboring plasmid pCJ1OX2G containing GFP fused to CJ1OX2 showed more GFP than the other ones and the expression was tightly regulated by the repressor. To construct the generally applicable expression vector using the plasmid pCJ1OX2G, the His-tag, enterokinase (EK) moiety, and the MCS were inserted in front of the GFP gene. Using the vector, the expression of pyrR from C. glutamicum was tried by temperature shift-up. The results indicated that the constructed vectors (pCeHEMG) can be successfully used in the expression and regulation of foreign genes in corynebacteria.
Biofluorescence as a survey tool for cryptic marine species.
De Brauwer, Maarten; Hobbs, Jean-Paul A; Ambo-Rappe, Rohani; Jompa, Jamaluddin; Harvey, Euan S; McIlwain, Jennifer L
2017-10-06
As ecosystems come under increasing anthropogenic pressure, rare species face the highest risk of extinction. Paradoxically, data necessary to evaluate the conservation status of rare species are often lacking because of the challenges of detecting species with low abundance. One group of fishes subject to this undersampling bias are those with cryptic body patterns. Twenty-one percent of cryptic fish species assessed for their extinction risk (International Union for Conservation of Nature [IUCN]) are data deficient. We developed a nondestructive method for surveying cryptically patterned marine fishes based on the presence of biofluorescence (underwater biofluorescence census, UBC). Blue LED torches were used to investigate how widespread biofluorescence was in cryptic reef fishes in the Coral Triangle region. The effectiveness of UBC to generate abundance data was tested on a data-deficient pygmy seahorse species (Hippocampus bargibanti) and compared with data obtained from standard underwater visual census (UVC) surveys. We recorded 95 reef fish species displaying biofluorescence, 73 of which had not been previously described as biofluorescent. Of those fish with cryptic patterns, 87% were biofluorescent compared with 9% for noncryptic fishes. The probability of species displaying biofluorescence was 70.9 times greater for cryptic species than for noncryptic species. Almost twice the number of H. bargibanti was counted using the UBC compared with UVC. For 2 triplefin species (Ucla xenogrammus, Enneapterygius tutuilae), the abundance detected with UBC was triple that detected with UVC. The UBC method was effective at finding cryptic species that would otherwise be difficult to detect and thus will reduce interobserver variability inherent to UVC surveys. Biofluorescence is ubiquitous in cryptic fishes, making this method applicable across a wide range of species. Data collected using UBC could be used with multiple IUCN criteria to assess the extinction risk of cryptic species. Adopting this technique will enhance researchers' ability to survey cryptic species and facilitate management and conservation of cryptic marine species. © 2017 Society for Conservation Biology.
Zou, Shanmei; Li, Qi
2016-06-01
With the global biodiversity crisis, DNA barcoding aims for fast species identification and cryptic species diversity revelation. For more than 10 years, large amounts of DNA barcode data have been accumulating in publicly available databases, most of which were conducted by distance or tree-building methods that have often been argued, especially for cryptic species revelation. In this context, overlooked cryptic diversity may exist in the available barcoding data. The character-based DNA barcoding, however, has a good chance for detecting the overlooked cryptic diversity. In this study, marine mollusk was as the ideal case for detecting the overlooked potential cryptic species from existing cytochrome c oxidase I (COI) sequences with character-based DNA barcode. A total of 1081 COI sequences of mollusks, belonging to 176 species of 25 families of Gastropoda, Cephalopoda, and Lamellibranchia, were conducted by character analysis. As a whole, the character-based barcoding results were consistent with previous distance and tree-building analysis for species discrimination. More importantly, quite a number of species analyzed were divided into distinct clades with unique diagnostical characters. Based on the concept of cryptic species revelation of character-based barcoding, these species divided into separate taxonomic groups might be potential cryptic species. The detection of the overlooked potential cryptic diversity proves that the character-based barcoding mode possesses more advantages of revealing cryptic biodiversity. With the development of DNA barcoding, making the best use of barcoding data is worthy of our attention for species conservation.
Les, Donald H; Peredo, Elena L; Benoit, Lori K; Tippery, Nicholas P; King, Ursula M; Sheldon, Sallie P
2013-09-01
The discontinuous North American distribution of Najas gracillima has not been explained satisfactorily. Influences of extirpation, nonindigenous introduction, and postglacial migration on its distribution were evaluated using field, fossil, morphological, and molecular data. Najas is a major waterfowl food, and appropriate conservation measures rely on accurate characterization of populations as indigenous or imperiled. • Seed lengths of N. gracillima from native Korean populations, a nonindigenous Italian population, and North American populations were compared using digital image analysis. DNA sequence analyses from these regions provided nine nrITS genotypes and eight cpDNA haplotypes. • Najas gracillima seeds from Eurasia and California are shorter than those from eastern North America. Nuclear and chloroplast DNA sequences of N. gracillima from Korea and Italy were identical to California material but differed from native eastern North American plants. Eastern North American specimens of N. gracillima at localities above the last glacial maximum boundary were identical or similar genetically to material from the northeastern United States and Atlantic Coastal Plain and Piedmont but divergent from plants of the Interior Highlands-Mississippi Embayment region. • In California, N. gracillima is nonindigenous and introduced from Asia. In eastern North America, populations that colonized deglaciated areas were derived primarily from refugia in the Atlantic Coastal Plain and Piedmont. Genetic data indicate initial postglacial migration to northeastern North America, with subsequent westward dispersal into the Upper Great Lakes. These results differentiate potentially invasive California populations from seriously imperiled indigenous eastern North American populations.
Suman, Devi Shankar; Wang, Yi; Unlu, Isik; Williges, Eric; Williams, Gregory M.; Gaugler, Randy
2016-01-01
Background The Asian tiger mosquito, Aedes albopictus, is a vector of dengue, Chikungunya, and Zika viruses. This mosquito inhabits a wide range of artificial water-holding containers in urban and suburban areas making it difficult to control. We tested the hypothesis that female-driven autodissemination of an insect growth regulator could penetrate cryptic oviposition habitats difficult to treat with conventional insecticidal sprays. Methodology Oviposition preferences of Ae. albopictus females for open and cryptic cups were tested in semi-field experiments. Two conventional larvicidal sprayers were tested to determine droplet penetration and larvicidal efficacy in open and cryptic habitats using Bacillus thuringiensis var. israelensis (Bti) in the field. Finally, the efficacy of pyriproxyfen autodissemination stations was assessed in cryptic and open cups in residential areas during 2013 and 2014. Principal Findings Gravid females strongly preferred cryptic (53.1±12.9 eggs/cup) over open (10.3±4.3 eggs/cup) cups for oviposition. Cryptic cups showed limited droplet penetration and produced 0.1–0.3% larval mortality with a conventional backpack and low-volume sprays of Bti. The autodissemination stations effectively contaminated these cryptic cups (59.3–84.6%) and produced 29.7–40.8% pupal mortality during 2013–2014. Significant pupal mortality was also observed in open cups. Conclusions The autodissemination station effectively exploits the oviposition behavior of wild gravid females to deliver pyriproxyfen to targeted oviposition habitats. Although the pupal mortality in cryptic cups was relatively lower than expected for the effective vector control. Autodissemination approach may be a suitable supporting tool to manage Ae. albopictus immatures in the cryptic habitats those are less accessible to conventional larvicidal sprays. PMID:28033379
Darwell, C T; Cook, J M
2017-02-01
A key debate in ecology centres on the relative importance of niche and neutral processes in determining patterns of community assembly with particular focus on whether ecologically similar species with similar functional traits are able to coexist. Meanwhile, molecular studies are increasingly revealing morphologically indistinguishable cryptic species with presumably similar ecological roles. Determining the geographic distribution of such cryptic species provides opportunities to contrast predictions of niche vs. neutral models. Discovery of sympatric cryptic species increases alpha diversity and supports neutral models, while documentation of allopatric/parapatric cryptic species increases beta diversity and supports niche models. We tested these predictions using morphological and molecular data, coupled with environmental niche modelling analyses, of a fig wasp community along its 2700-km latitudinal range. Molecular methods increased previous species diversity estimates from eight to eleven species, revealing morphologically cryptic species in each of the four wasp genera studied. Congeneric species pairs that were differentiated by a key morphological functional trait (ovipositor length) coexisted sympatrically over large areas. In contrast, morphologically similar species, with similar ovipositor lengths, typically showed parapatric ranges with very little overlap. Despite parapatric ranges, environmental niche models of cryptic congeneric pairs indicate large regions of potential sympatry, suggesting that competitive processes are important in determining the distributions of ecologically similar species. Niche processes appear to structure this insect community, and cryptic diversity may typically contribute mostly to beta rather than alpha diversity. © 2016 John Wiley & Sons Ltd.
Serrao, Natasha R; Steinke, Dirk; Hanner, Robert H
2014-01-01
Detecting and documenting the occurrence of invasive species outside their native range requires tools to support their identification. This can be challenging for taxa with diverse life stages and/or problematic or unresolved morphological taxonomies. DNA barcoding provides a potent method for identifying invasive species, as it allows for species identification at all life stages, including fragmentary remains. It also provides an efficient interim taxonomic framework for quantifying cryptic genetic diversity by parsing barcode sequences into discontinuous haplogroup clusters (typical of reproductively isolated species) and labelling them with unique alphanumeric identifiers. Snakehead fishes are a diverse group of opportunistic predators endemic to Asia and Africa that may potentially pose significant threats as aquatic invasive species. At least three snakehead species (Channa argus, C. maculata, and C. marulius) are thought to have entered North America through the aquarium and live-food fish markets, and have established populations, yet their origins remain unclear. The objectives of this study were to assemble a library of DNA barcode sequences derived from expert identified reference specimens in order to determine the identity and aid invasion pathway analysis of the non-indigenous species found in North America using DNA barcodes. Sequences were obtained from 121 tissue samples representing 25 species and combined with public records from GenBank for a total of 36 putative species, which then partitioned into 49 discrete haplogroups. Multiple divergent clusters were observed within C. gachua, C. marulius, C. punctata and C. striata suggesting the potential presence of cryptic species diversity within these lineages. Our findings demonstrate that DNA barcoding is a valuable tool for species identification in challenging and under-studied taxonomic groups such as snakeheads, and provides a useful framework for inferring invasion pathway analysis.
How hidden are hidden processes? A primer on crypticity and entropy convergence
NASA Astrophysics Data System (ADS)
Mahoney, John R.; Ellison, Christopher J.; James, Ryan G.; Crutchfield, James P.
2011-09-01
We investigate a stationary process's crypticity—a measure of the difference between its hidden state information and its observed information—using the causal states of computational mechanics. Here, we motivate crypticity and cryptic order as physically meaningful quantities that monitor how hidden a hidden process is. This is done by recasting previous results on the convergence of block entropy and block-state entropy in a geometric setting, one that is more intuitive and that leads to a number of new results. For example, we connect crypticity to how an observer synchronizes to a process. We show that the block-causal-state entropy is a convex function of block length. We give a complete analysis of spin chains. We present a classification scheme that surveys stationary processes in terms of their possible cryptic and Markov orders. We illustrate related entropy convergence behaviors using a new form of foliated information diagram. Finally, along the way, we provide a variety of interpretations of crypticity and cryptic order to establish their naturalness and pervasiveness. This is also a first step in developing applications in spatially extended and network dynamical systems.
Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1.
Mongodin, Emmanuel F; Shapir, Nir; Daugherty, Sean C; DeBoy, Robert T; Emerson, Joanne B; Shvartzbeyn, Alla; Radune, Diana; Vamathevan, Jessica; Riggs, Florenta; Grinberg, Viktoria; Khouri, Hoda; Wackett, Lawrence P; Nelson, Karen E; Sadowsky, Michael J
2006-12-01
Arthrobacter sp. strains are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils. Member of the genus are metabolically and ecologically diverse and have the ability to survive in environmentally harsh conditions for extended periods of time. The genome of Arthrobacter aurescens strain TC1, which was originally isolated from soil at an atrazine spill site, is composed of a single 4,597,686 basepair (bp) circular chromosome and two circular plasmids, pTC1 and pTC2, which are 408,237 bp and 300,725 bp, respectively. Over 66% of the 4,702 open reading frames (ORFs) present in the TC1 genome could be assigned a putative function, and 13.2% (623 genes) appear to be unique to this bacterium, suggesting niche specialization. The genome of TC1 is most similar to that of Tropheryma, Leifsonia, Streptomyces, and Corynebacterium glutamicum, and analyses suggest that A. aurescens TC1 has expanded its metabolic abilities by relying on the duplication of catabolic genes and by funneling metabolic intermediates generated by plasmid-borne genes to chromosomally encoded pathways. The data presented here suggest that Arthrobacter's environmental prevalence may be due to its ability to survive under stressful conditions induced by starvation, ionizing radiation, oxygen radicals, and toxic chemicals.
Construction of a novel shuttle vector for use in Gluconobacter oxydans.
Zhang, Lin; Lin, Jinping; Ma, Yushu; Wei, Dongzhi; Sun, Ming
2010-11-01
A shuttle vector pZL1 which can replicate both in Gluconobacter oxydans and Escherichia coli was constructed based on G. oxydans DSM2003 cryptic plasmid pGOX3, a homology of G. oxydans 621H pGOX3, and E. coli cloning vector pUC18. It was found to be stably maintained in G. oxydans during the serial subcultures in the absence of antibiotic pressure for 144 h. With pGOX3 as the reference sample, the relative copy number of pZL1 in G. oxydans is 13 determined by real-time fluorescence quantitative PCR (qPCR). The copy number of pZL1 is much higher than pBBR1MCS5 in E. coli. The vector pZL1 contains six commonly used restriction endonuclease sites, HindIII, SalI, XbaI, BamHI, SmaI, KpnI, and SacI, and is easy to manipulate in molecular biology experiments. The shuttle vector was used to express a reporter protein wasabi successfully in G. oxydans DSM2003 under the control of the tufB promoter.
Acquisition of omptin reveals cryptic virulence function of autotransporter YapE in Yersinia pestis
Pennington, Jarrod; Miller, Virginia L.
2013-01-01
SUMMARY Autotransporters, the largest family of secreted proteins in Gram negative bacteria, perform a variety of functions, including adherence, cytotoxicity, and immune evasion. In Yersinia pestis the autotransporter YapE has adhesive properties and contributes to bubonic infection of the mouse model. Here, we demonstrate that omptin cleavage of Y. pestis YapE is required to mediate bacterial aggregation and adherence to eukaryotic cells. We demonstrate that omptin cleavage is specific for the Y. pestis and Y. pseudotuberculosis YapE orthologs but is not conserved in the Y. enterocolitica protein. We also show that cleavage of YapE occurs in Y. pestis but not in the enteric Yersinia species, and requires the omptin Pla (plasminogen activator protease), which is encoded on the Y. pestis-specific plasmid pPCP1. Together, these data show that post-translation modification of YapE appears to be specific to Y. pestis, was acquired along with the acquisition of pPCP1 during the divergence of Y. pestis from Y. pseudotuberculosis, and are the first evidence of a novel mechanism to regulate bacterial adherence. PMID:23701256
Van Campenhout, Jelle; Derycke, Sofie; Moens, Tom; Vanreusel, Ann
2014-01-01
The discovery of morphologically very similar but genetically distinct species complicates a proper understanding of the link between biodiversity and ecosystem functioning. Cryptic species have been frequently observed to co-occur and are thus expected to be ecological equivalent. The marine nematode Halomonhystera disjuncta contains five cryptic species (GD1-5) that co-occur in the Westerschelde estuary. In this study, we investigated the effect of three abiotic factors (salinity, temperature and sulphide) on life-history traits of three cryptic H. disjuncta species (GD1-3). Our results show that temperature had the most profound influence on all life-cycle parameters compared to a smaller effect of salinity. Life-history traits of closely related cryptic species were differentially affected by temperature, salinity and presence of sulphides which shows that cryptic H. disjuncta species are not ecologically equivalent. Our results further revealed that GD1 had the highest tolerance to a combination of sulphides, high salinities and low temperatures. The close phylogenetic position of GD1 to Halomonhystera hermesi, the dominant species in sulphidic sediments of the Håkon Mosby mud volcano (Barent Sea, 1280 m depth), indicates that both species share a recent common ancestor. Differential life-history responses to environmental changes among cryptic species may have crucial consequences for our perception on ecosystem functioning and coexistence of cryptic species.
Brikun, I; Suziedelis, K; Berg, D E
1994-01-01
Derivatives of Escherichia coli K-12 of known ancestry were characterized by random amplified polymorphic DNA (RAPD) fingerprinting to better understand genome evolution in this family of closely related strains. This sensitive method entails PCR amplification with arbitrary primers at low stringency and yields arrays of anonymous DNA fragments that are strain specific. Among 150 fragments scored, eight were polymorphic in that they were produced from some but not all strains. Seven polymorphic bands were chromosomal, and one was from the F-factor plasmid. Five of the six mapped polymorphic chromosomal bands came from just 7% of the genome, a 340-kb segment that includes the terminus of replication. Two of these were from the cryptic Rac prophage, and the inability to amplify them from strains was attributable to deletion (excision) or to rearrangement of Rac. Two other terminus-region segments that resulted in polymorphic bands appeared to have sustained point mutations that affected the ability to amplify them. Control experiments showed that RAPD bands from the 340-kb terminus-region segment and also from two plasmids (P1 and F) were represented in approximate proportion to their size. Optimization experiments showed that the concentration of thermostable polymerase strongly affected the arrays of RAPD products obtained. Comparison of RAPD polymorphisms and positions of strains exhibiting them in the pedigree suggests that many sequence changes occurred in these historic E. coli strains during their storage. We propose that the clustering of such mutations near the terminus reflects errors during completion of chromosome replication, possibly during slow growth in the stab cultures that were often used to store E. coli strains in the early years of bacterial genetics. Images PMID:8132463
Hoffmann, N; Steinbüchel, A; Rehm, B H
2000-11-01
Various pseudomonads are capable of the synthesis of polyhydroxyalkanoate (PHA), composed of medium chain length (MCL) 3-hydroxy fatty acids (C6-C14), when grown on simple carbon sources such as, for example, gluconate or acetate. In Pseudomonas putida, the fatty acid de novo synthesis and PHA synthesis are linked by the transacylase PhaG. Southern hybridization experiments with digoxigenin-labeled phaG(Pp) from P. putida and genomic DNA from various pseudomonads indicate that phaG homologues are present in various other pseudomonads. Although P. oleovorans does not accumulate PHA(MCL) from non-related carbon sources, its genomic DNA reveals a strong hybridization signal. We employed PCR to amplify this phaG homologue. The respective PCR product comprising the coding region of phaG(Po) was cloned into pBBR1MCS-2, resulting in plasmid pBHR84. DNA sequencing revealed that putative PhaG(Po) from P. oleovorans exhibited about 95% amino acid sequence identity to PhaG(Pp) from P. putida. Reverse transcriptase-PCR analysis demonstrated that phaG(Po) was not transcribed even tinder inducing conditions, i.e. in the presence of gluconate as carbon source, whereas induction of phaG(Pp) transcription was obtained in P. putida. When octanoate was used as sole carbon source, only low levels of phaG mRNA were detected in P. putida. Plasmid pBHR84 complemented the phaG-negative mutant PhaG(N)-21 from P. putida. Interestingly, reintroduction of phaG(Po) under lac promoter control into the natural host P. oleovorans established PHA(MCL) synthesis from non-related carbon sources in this bacterium. These data indicated that phaG(Po) in P. oleovorans is not functionally expressed and does not exert its original function.
Understanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations.
Oleinikovas, Vladimiras; Saladino, Giorgio; Cossins, Benjamin P; Gervasio, Francesco L
2016-11-02
Cryptic pockets, that is, sites on protein targets that only become apparent when drugs bind, provide a promising alternative to classical binding sites for drug development. Here, we investigate the nature and dynamical properties of cryptic sites in four pharmacologically relevant targets, while comparing the efficacy of various simulation-based approaches in discovering them. We find that the studied cryptic sites do not correspond to local minima in the computed conformational free energy landscape of the unliganded proteins. They thus promptly close in all of the molecular dynamics simulations performed, irrespective of the force-field used. Temperature-based enhanced sampling approaches, such as Parallel Tempering, do not improve the situation, as the entropic term does not help in the opening of the sites. The use of fragment probes helps, as in long simulations occasionally it leads to the opening and binding to the cryptic sites. Our observed mechanism of cryptic site formation is suggestive of an interplay between two classical mechanisms: induced-fit and conformational selection. Employing this insight, we developed a novel Hamiltonian Replica Exchange-based method "SWISH" (Sampling Water Interfaces through Scaled Hamiltonians), which combined with probes resulted in a promising general approach for cryptic site discovery. We also addressed the issue of "false-positives" and propose a simple approach to distinguish them from druggable cryptic pockets. Our simulations, whose cumulative sampling time was more than 200 μs, help in clarifying the molecular mechanism of pocket formation, providing a solid basis for the choice of an efficient computational method.
Britch, Seth C; Linthicum, Kenneth J; Aldridge, Robert L; Breidenbaugh, Mark S; Latham, Mark D; Connelly, Peter H; Rush, Mattie J E; Remmers, Jennifer L; Kerce, Jerry D; Silcox, Charles A
2018-01-01
We conducted aerial fixed wing ultra low volume (ULV) spray trials with naled to investigate penetration of exposed and simulated cryptic habitat within opened buildings, partially sealed buildings, and outdoor locations targeting sentinel adult Aedes aegypti mosquitoes in north central Florida. Mortality was observed in open and closed buildings and outdoors, even in mosquitoes placed in cryptic habitats. Observations on the impact of building type, mosquito exposure method such as placement in cryptic habitat, and spray nozzle size on mosquito mortality are described and analyzed.
Wawrzyniak, Rafał; Wasiak, Wiesław; Bączkiewicz, Alina; Buczkowska, Katarzyna
2014-09-01
Aneura pinguis is one of the liverwort species complexes that consist of several cryptic species. Ten samples collected from different regions in Poland are in the focus of our research. Eight of the A. pinguis complex belonging to four cryptic species (A, B, C, E) and two samples of closely related species Aneura maxima were tested for the composition of volatile compounds. The HS-SPME technique coupled to GC/FID and GC/MS analysis has been applied. The fiber coated with DVB/CAR/PDMS has been used. The results of the present study, revealed the qualitative and quantitative differences in the composition of the volatile compounds between the studied species. Mainly they are from the group of sesquiterpenoids, oxygenated sesquiterpenoids and aliphatic hydrocarbons. The statistical methods (CA and PCA) showed that detected volatile compounds allow to distinguish cryptic species of A. pinguis. All examined cryptic species of the A. pinguis complex differ from A. maxima. Species A and E of A. pinguis, in CA and PCA, form separate clusters remote from two remaining cryptic species of A. pinguis (B and C) and A. maxima. Relationship between the cryptic species appeared from the chemical studies are in accordance with that revealed on the basis of DNA sequences. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gill, B. A.; Kondratieff, B. C.; Casner, K. L.; Encalada, A. C.; Flecker, A. S.; Gannon, D. G.; Ghalambor, C. K.; Guayasamin, J. M.; Poff, N. L.; Simmons, M. P.; Thomas, S. A.; Zamudio, K. R.; Funk, W. C.
2016-01-01
The ‘mountain passes are higher in the tropics’ (MPHT) hypothesis posits that reduced climate variability at low latitudes should select for narrower thermal tolerances, lower dispersal and smaller elevational ranges compared with higher latitudes. These latitudinal differences could increase species richness at low latitudes, but that increase may be largely cryptic, because physiological and dispersal traits isolating populations might not correspond to morphological differences. Yet previous tests of the MPHT hypothesis have not addressed cryptic diversity. We use integrative taxonomy, combining morphology (6136 specimens) and DNA barcoding (1832 specimens) to compare the species richness, cryptic diversity and elevational ranges of mayflies (Ephemeroptera) in the Rocky Mountains (Colorado; approx. 40°N) and the Andes (Ecuador; approx. 0°). We find higher species richness and smaller elevational ranges in Ecuador than Colorado, but only after quantifying and accounting for cryptic diversity. The opposite pattern is found when comparing diversity based on morphology alone, underscoring the importance of uncovering cryptic species to understand global biodiversity patterns. PMID:27306051
Domingos, Fabricius M C B; Colli, Guarino R; Lemmon, Alan; Lemmon, Emily Moriarty; Beheregaray, Luciano B
2017-02-01
The recognition of cryptic diversity within geographically widespread species is gradually becoming a trend in the highly speciose Neotropical biomes. The statistical methods to recognise such cryptic lineages are rapidly advancing, but have rarely been applied to genomic-scale datasets. Herein, we used phylogenomic data to investigate phylogenetic history and cryptic diversity within Tropidurus itambere, a lizard endemic to the Cerrado biodiversity hotspot. We applied a series of phylogenetic methods to reconstruct evolutionary relationships and a coalescent Bayesian species delimitation approach (BPP) to clarify species limits. The BPP results suggest that the widespread nominal taxon comprises a complex of 5 highly supported and geographically structured cryptic species. We highlight and discuss the different topological patterns recovered by concatenated and coalescent species tree methods for these closely related lineages. Finally, we suggest that the existence of cryptic lineages in the Cerrado is much more common than traditionally thought, highlighting the value of using NGS data and coalescent techniques to investigate patterns of species diversity. Copyright © 2016 Elsevier Inc. All rights reserved.
Nadler, Steven A; DE León, Gerardo Pérez-Ponce
2011-11-01
Herein we review theoretical and methodological considerations important for finding and delimiting cryptic species of parasites (species that are difficult to recognize using traditional systematic methods). Applications of molecular data in empirical investigations of cryptic species are discussed from an historical perspective, and we evaluate advantages and disadvantages of approaches that have been used to date. Developments concerning the theory and practice of species delimitation are emphasized because theory is critical to interpretation of data. The advantages and disadvantages of different molecular methodologies, including the number and kind of loci, are discussed relative to tree-based approaches for detecting and delimiting cryptic species. We conclude by discussing some implications that cryptic species have for research programmes in parasitology, emphasizing that careful attention to the theory and operational practices involved in finding, delimiting, and describing new species (including cryptic species) is essential, not only for fully characterizing parasite biodiversity and broader aspects of comparative biology such as systematics, evolution, ecology and biogeography, but to applied research efforts that strive to improve development and understanding of epidemiology, diagnostics, control and potential eradication of parasitic diseases.
Linthicum, Kenneth J.; Aldridge, Robert L.; Breidenbaugh, Mark S.; Latham, Mark D.; Connelly, Peter H.; Rush, Mattie J. E.; Remmers, Jennifer L.; Kerce, Jerry D.; Silcox, Charles A.
2018-01-01
We conducted aerial fixed wing ultra low volume (ULV) spray trials with naled to investigate penetration of exposed and simulated cryptic habitat within opened buildings, partially sealed buildings, and outdoor locations targeting sentinel adult Aedes aegypti mosquitoes in north central Florida. Mortality was observed in open and closed buildings and outdoors, even in mosquitoes placed in cryptic habitats. Observations on the impact of building type, mosquito exposure method such as placement in cryptic habitat, and spray nozzle size on mosquito mortality are described and analyzed. PMID:29352307
Lv, Xiao-Mei; Song, Ju-Sheng; Li, Ji; Zhai, Kun
2017-08-01
In the present study, quick-lime-based thermal-alkaline sludge disintegration (SD) under low temperature was combined with cryptic growth to investigate the excess sludge reduction efficiency in the sequencing batch reactor (SBR). The optimized condition of SD was as follows: T = 80℃, pH = 11, t = 180 min, and the SD rate was about 42.1%. With 65.6% of excess sludge disintegrated and returned to the SBR, the system achieved sludge reduction rate of about 40.1%. The lysis-cryptic growth still obtained satisfactory sludge reduction efficiency despite the comparative low SD rate, which suggested that disintegration rate might not be the decisive factor for cryptic-growth-based sludge reduction. Lysis-cryptic growth did not impact the effluent quality, yet the phosphorus removal performance was enhanced, with effluent total phosphorus concentration decreased by 0.3 mg/L (33%). Crystal compounds of calcium phosphate precipitate were detected in the system by Fourier transform infrared spectroscopy and X-ray diffraction, which indicated the phosphorus removal potential of SD using lime. Moreover, endogenous dehydrogenase activity of activated sludge in the lysis-cryptic system was enhanced, which was beneficial for sludge reduction. SD and cryptic growth in the present study demonstrates an economical and effective approach for sludge reduction.
Crawford, Andrew J; Cruz, Catalina; Griffith, Edgardo; Ross, Heidi; Ibáñez, Roberto; Lips, Karen R; Driskell, Amy C; Bermingham, Eldredge; Crump, Paul
2013-11-01
Amphibians constitute a diverse yet still incompletely characterized clade of vertebrates, in which new species are still being discovered and described at a high rate. Amphibians are also increasingly endangered, due in part to disease-driven threats of extinctions. As an emergency response, conservationists have begun ex situ assurance colonies for priority species. The abundance of cryptic amphibian diversity, however, may cause problems for ex situ conservation. In this study we used a DNA barcoding approach to survey mitochondrial DNA (mtDNA) variation in captive populations of 10 species of Neotropical amphibians maintained in an ex situ assurance programme at El Valle Amphibian Conservation Center (EVACC) in the Republic of Panama. We combined these mtDNA sequences with genetic data from presumably conspecific wild populations sampled from across Panama, and applied genetic distance-based and character-based analyses to identify cryptic lineages. We found that three of ten species harboured substantial cryptic genetic diversity within EVACC, and an additional three species harboured cryptic diversity among wild populations, but not in captivity. Ex situ conservation efforts focused on amphibians are therefore vulnerable to an incomplete taxonomy leading to misidentification among cryptic species. DNA barcoding may therefore provide a simple, standardized protocol to identify cryptic diversity readily applicable to any amphibian community. © 2012 John Wiley & Sons Ltd.
Causative Agents of Aspergillosis Including Cryptic Aspergillus Species and A. fumigatus.
Toyotome, Takahito
2016-01-01
Aspergillosis is an important deep mycosis. The causative agents are Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, and Aspergillus terreus, of which A. fumigatus is the most prevalent. Cryptic Aspergillus spp., which morphologically resemble representative species of each Aspergillus section, also cause aspergillosis. Most of the cryptic species reveal different susceptibility patterns and/or different secondary metabolite profiles, also called exometabolome in this manuscript, from those representative species. On the other hand, azole-resistant A. fumigatus strains in clinical specimens and in the environment have been reported. Therefore, it is imperative to precisely identify the species, including cryptic Aspergillus spp., and evaluate the susceptibility of isolates.In this manuscript, some of the causative cryptic Aspergillus spp. are briefly reviewed. In addition, the exometabolome of Aspergillus section Fumigati is described. Finally, azole resistance of A. fumigatus is also discussed, in reference to several studies from Japan.
Multi-resistant aspergillosis due to cryptic species.
Howard, Susan Julie
2014-12-01
Reports of cryptic species causing aspergillosis in humans are increasing in the literature. Cryptic species are defined as those which are morphologically indistinguishable, although their identifications can be confirmed using molecular or other techniques which continue to become more widely available in the clinical setting. Antifungal resistance has often been noted in these cases, and indeed there does appear to be a higher prevalence of reduced susceptibility in cryptic species. Many of these observations are published as individual case reports or as a small component of larger data sets, making it challenging to review and compare the data fully. This review article seeks to describe the susceptibility trends and key learning outcomes of specific cases of infections caused by cryptic species, including Aspergillus alliaceus, Aspergillus calidoustus, Aspergillus felis, Aspergillus lentulus, Aspergillus tubingensis, Aspergillus viridinutans and Neosartorya pseudofischeri. These reports highlight the clinical need for full accurate identification and susceptibility testing to guide patient care.
Liu, Zuyao; Chen, Guoling; Zhu, Tianqi; Zeng, Zhaochi; Lyu, Zhitong; Wang, Jian; Messenger, Kevin; Greenberg, Anthony J; Guo, Zixiao; Yang, Ziheng; Shi, Suhua; Wang, Yingyong
2018-06-16
Diversity and distributions of cryptic species have long been a vexing issue. Identification of species boundaries is made difficult by the lack of obvious morphological differences. Here, we investigate the cryptic diversity and evolutionary history of an underappreciated group of Asian frog species (Megophrys) to explore the pattern and dynamic of amphibian cryptic species. We sequenced four mitochondrial genes and five nuclear genes and delineated species using multiple approaches, combining DNA and mating-call data. A Bayesian species tree was generated to estimate divergence times and to reconstruct ancestral ranges. Macroevolutionary analyses and hybridization tests were conducted to explore the evolutionary dynamics of this cryptic group. Our phylogenies support the current subgenera. We revealed 43 cryptic species, 158% higher than previously thought. The species-delimitation results were further confirmed by mating-call data and morphological divergence. We found that these Asian frogss entered China from the Sunda Shelf 48 Mya, followed by an ancient radiation event during middle Miocene. We confirmed the efficiency of the multispecies coalescent model for delimitation of species with low morphological diversity. Species diversity of Megophrys is severely underappreciated, and species distributions have been misestimated as a result. Copyright © 2018. Published by Elsevier Inc.
Dincâ, V; Wiklund, C; Lukhtanov, V A; Kodandaramaiah, U; Norén, K; Dapporto, L; Wahlberg, N; Vila, R; Friberg, M
2013-01-01
Molecular studies of natural populations are often designed to detect and categorize hidden layers of cryptic diversity, and an emerging pattern suggests that cryptic species are more common and more widely distributed than previously thought. However, these studies are often decoupled from ecological and behavioural studies of species divergence. Thus, the mechanisms by which the cryptic diversity is distributed and maintained across large spatial scales are often unknown. In 1988, it was discovered that the common Eurasian Wood White butterfly consisted of two species (Leptidea sinapis and Leptidea reali), and the pair became an emerging model for the study of speciation and chromosomal evolution. In 2011, the existence of a third cryptic species (Leptidea juvernica) was proposed. This unexpected discovery raises questions about the mechanisms preventing gene flow and about the potential existence of additional species hidden in the complex. Here, we compare patterns of genetic divergence across western Eurasia in an extensive data set of mitochondrial and nuclear DNA sequences with behavioural data on inter- and intraspecific reproductive isolation in courtship experiments. We show that three species exist in accordance with both the phylogenetic and biological species concepts and that additional hidden diversity is unlikely to occur in Europe. The Leptidea species are now the best studied cryptic complex of butterflies in Europe and a promising model system for understanding the formation of cryptic species and the roles of local processes, colonization patterns and heterospecific interactions for ecological and evolutionary divergence. PMID:23909947
Left-right axis asymmetry determining human Cryptic gene is transcriptionally repressed by Snail.
Gupta, Kartik; Pilli, Vijaya Satish Sekhar; Aradhyam, Gopala Krishna
2016-10-28
Establishment of the left-right axis is important for positioning organs asymmetrically in the developing vertebrate-embryo. A number of factors like maternally deposited molecules have emerged essential in initiating the specification of the axis; the downstream events, however, are regulated by signal-transduction and gene-expression changes identifying which remains a crucial challenge. The EGF-CFC family member Cryptic, that functions as a co-receptor for some TGF-beta ligands, is developmentally expressed in higher mammals and mutations in the gene cause loss or change in left-right axis asymmetry. Despite the strong phenotype, no transcriptional-regulator of this gene is known till date. Using promoter-analyses tools, we found strong evidence that the developmentally essential transcription factor Snail binds to the human Cryptic-promoter. We cloned the promoter-region of human Cryptic in a reporter gene and observed decreased Cryptic-promoter activation upon increasing Snail expression. Further, the expression of Cryptic is down-regulated upon exogenous Snail expression, validating the reporter assays and the previously identified role of Snail as a transcriptional repressor. Finally, we demonstrate using gel-shift assay that Snail in nuclear extract of PANC1 cells interacts with the promoter-construct bearing putative Snail binding sites and confirm this finding using chromatin immunoprecipitation assay. Snail represses the expression of human Cryptic and therefore, might affect the signaling via Nodal that has previously been demonstrated to specify the left-right axis using the EGF-CFC co-receptors.
NASA Astrophysics Data System (ADS)
Morard, Raphaël.; Reinelt, Melanie; Chiessi, Cristiano M.; Groeneveld, Jeroen; Kucera, Michal
2016-09-01
The use of planktonic foraminifera in paleoceanographic studies relies on the assumption that morphospecies represent biological species with ecological preferences that are stable through time and space. However, genetic surveys unveiled a considerable level of diversity in most morphospecies of planktonic foraminifera. This diversity is significant for paleoceanographic applications because cryptic species were shown to display distinct ecological preferences that could potentially help refine paleoceanographic proxies. Subtle morphological differences between cryptic species of planktonic foraminifera have been reported, but so far, their applicability within paleoceanographic studies remains largely unexplored. Here we show how information on genetic diversity can be transferred to paleoceanography using Globorotalia inflata as a case study. The two cryptic species of G. inflata are separated by the Brazil-Malvinas Confluence (BMC), a major oceanographic feature in the South Atlantic. Based on this observation, we developed a morphological model of cryptic species detection in core top material. The application of the cryptic species detection model to Holocene samples implies latitudinal oscillations in the position of the confluence that are largely consistent with reconstructions obtained from stable isotope data. We show that the occurrence of cryptic species in G. inflata can be detected in the fossil record and used to trace the migration of the BMC. Since a similar degree of morphological separation as in G. inflata has been reported from other species of planktonic foraminifera, the approach presented in this study can potentially yield a wealth of new paleoceanographical proxies.
Cryptic biodiversity and phylogeographic patterns of Seychellois Ligia isopods
Bluemel, Joanna K.; Bunbury, Nancy; Curran, Melinda
2017-01-01
Ligia isopods are conspicuous inhabitants of rocky intertidal habitats exhibiting several biological traits that severely limit their dispersal potential. Their presence in patchy habitats and low vagility may lead to long term isolation, allopatric isolation and possible cryptic speciation. Indeed, various species of Ligia have been suggested to represent instead cryptic species complexes. Past studies; however, have largely focused in Eastern Pacific and Atlantic species of Ligia, leaving in doubt whether cryptic diversity occurs in other highly biodiverse areas. The Seychelles consists of 115 islands of different ages and geological origins spread across the western Indian Ocean. They are well known for their rich biodiversity with recent reports of cryptic species in terrestrial Seychellois organisms. Despite these studies, it is unclear whether coastal invertebrates from the Seychelles harbor any cryptic diversity. In this study, we examined patterns of genetic diversity and isolation within Ligia isopods across the Seychelles archipelago by characterizing individuals from locations across both inner and outer islands of the Seychelles using mitochondrial and nuclear markers. We report the presence of highly divergent lineages of independent origin. At Aldabra Atoll, we uncovered a lineage closely related to the Ligia vitiensis cryptic species complex. Within the inner islands of Cousine, Silhouette, and Mahé we detected the presence of two moderately divergent and geographically disjunct lineages most closely related to Ligia dentipes. Our findings suggest that the Seychelles may harbor at least three novel species of Ligia in need of description and that these species may have originated independently. PMID:29018626
Baudoin, Ezékiel; Lerner, Anat; Mirza, M Sajjad; El Zemrany, Hamdy; Prigent-Combaret, Claire; Jurkevich, Edouard; Spaepen, Stijn; Vanderleyden, Jos; Nazaret, Sylvie; Okon, Yaacov; Moënne-Loccoz, Yvan
2010-04-01
The phytostimulatory properties of Azospirillum inoculants, which entail production of the phytohormone indole-3-acetic acid (IAA), can be enhanced by genetic means. However, it is not known whether this could affect their interactions with indigenous soil microbes. Here, wheat seeds were inoculated with the wild-type strain Azospirillum brasilense Sp245 or one of three genetically modified (GM) derivatives and grown for one month. The GM derivatives contained a plasmid vector harboring the indole-3-pyruvate/phenylpyruvate decarboxylase gene ipdC (IAA production) controlled either by the constitutive promoter PnptII or the root exudate-responsive promoter PsbpA, or by an empty vector (GM control). All inoculants displayed equal rhizosphere population densities. Only inoculation with either ipdC construct increased shoot biomass compared with the non-inoculated control. At one month after inoculation, automated ribosomal intergenic spacer analysis (ARISA) revealed that the effect of the PsbpA construct on bacterial community structure differed from that of the GM control, which was confirmed by 16S rDNA-based denaturing gradient gel electrophoresis (DGGE). The fungal community was sensitive to inoculation with the PsbpA construct and especially the GM control, based on ARISA data. Overall, fungal and bacterial communities displayed distinct responses to inoculation of GM A. brasilense phytostimulators, whose effects could differ from those of the wild-type.
The identification of sympatric cryptic free-living nematode species in the Antarctic intertidal
Canales-Aguirre, Cristian B.; Nuñez, Daniela; Pérez, Karla; Hernández, Crisitan E.; Brante, Antonio
2017-01-01
The diversity of free-living nematodes in the beaches of two Antarctic islands, King George and Deception islands was investigated. We used morphological and molecular (LSU, and two fragments of SSU sequences) approaches to evaluate 236 nematodes. Specimens were assigned to at least genera using morphology and were assessed for the presence of cryptic speciation. The following genera were identified: Halomonhystera, Litoditis, Enoploides, Chromadorita, Theristus, Oncholaimus, Viscosia, Gammanema, Bathylaimus, Choanolaimus, and Paracanthonchus; along with specimens from the families Anticomidae and Linhomoeidae. Cryptic speciation was identified within the genera Halomonhystera and Litoditis. All of the cryptic species identified live sympatrically. The two cryptic species of Halomonhystera exhibited no significant morphological differences. However, Litoditis species 2 was significantly larger than Litoditis species 1. The utility of molecular data in confirming the identifications of some of the morphologically more challenging families of nematodes was demonstrated. In terms of which molecular sequences to use for the identification of free-living nematodes, the SSU sequences were more variable than the LSU sequences, and thus provided more resolution in the identification of cryptic speciation. Finally, despite the considerable amount of time and effort required to put together genetic and morphological data, the resulting advance in our understanding of diversity and ecology of free-living marine nematodes, makes that effort worthwhile. PMID:28982192
Analysis of Cryptic, Systemic Botrytis Infections in Symptomless Hosts
Shaw, Michael W.; Emmanuel, Christy J.; Emilda, Deni; Terhem, Razak B.; Shafia, Aminath; Tsamaidi, Dimitra; Emblow, Mark; van Kan, Jan A. L.
2016-01-01
Botrytis species are generally considered to be aggressive, necrotrophic plant pathogens. By contrast to this general perception, however, Botrytis species could frequently be isolated from the interior of multiple tissues in apparently healthy hosts of many species. Infection frequencies reached 50% of samples or more, but were commonly less, and cryptic infections were rare or absent in some plant species. Prevalence varied substantially from year to year and from tissue to tissue, but some host species routinely had high prevalence. The same genotype was found to occur throughout a host, representing mycelial spread. Botrytis cinerea and Botrytis pseudocinerea are the species that most commonly occur as cryptic infections, but phylogenetically distant isolates of Botrytis were also detected, one of which does not correspond to previously described species. Sporulation and visible damage occurred only when infected tissues were stressed, or became mature or senescent. There was no evidence of cryptic infection having a deleterious effect on growth of the host, and prevalence was probably greater in plants grown in high light conditions. Isolates from cryptic infections were often capable of causing disease (to varying extents) when spore suspensions were inoculated onto their own host as well as on distinct host species, arguing against co-adaptation between cryptic isolates and their hosts. These data collectively suggest that several Botrytis species, including the most notorious pathogenic species, exist frequently in cryptic form to an extent that has thus far largely been neglected, and do not need to cause disease on healthy hosts in order to complete their life-cycles. PMID:27242829
NASA Astrophysics Data System (ADS)
Popova, L. Yu.; Kargatova, T. V.; Ganusova, E. E.; Lobova, T. I.; Boyandin, A. N.; Mogilnaya, O. A.; Pechurkin, N. S.
Populations of Escherichia coli Z905/pPHL7, a transgenic microorganism, were heterogenic in the expression of plasmid genes when adapting to the conditions of water microcosms of various mineralization levels and structure of microbial community. This TM has formed two subpopulations (ampicillin-resistant and ampicillin-sensitive) in every microcosm. Irrespective of mineralization level of a microcosm, when E. coli Z905/pPHL7 alone was introduced, the ampicillin-resistant subpopulation prevailed, while introduction of the TM together with indigenous bacteria led to the dominance of the ampicillin-sensitive subpopulation. A high level of lux gene expression maintained longer in the freshwater microcosms than in sterile saline lake water microcosms. A horizontal gene transfer has been revealed between the jointly introduced TM and Micrococcus sp. 9/pSH1 in microcosms with the Lake Shira sterile water.
Grasso, Giuseppe; Mielczarek, Przemyslaw; Niedziolka, Magdalena; Silberring, Jerzy
2014-01-01
The term “cryptome” refers to the subset of cryptic peptides with bioactivities that are often unpredictable and very different from the parent protein. These cryptic peptides are generated by proteolytic cleavage of proteases, whose identification in vivo can be very challenging. In this work, we show that insulin-degrading enzyme (IDE) is able to degrade specific amino acid sequences present in the neuropeptide pro-NPFFA (NPFF precursor), generating some cryptic peptides that are also observed after incubation with rat brain cortex homogenate. The reported experimental findings support the increasingly accredited hypothesis, according to which, due to its wide substrate selectivity, IDE is involved in a wide variety of physiopathological processes. PMID:25247577
Kwon, Ahreum; Hyun, Sei Eun; Jung, Mo Kyung; Chae, Hyun Wook; Lee, Woo Jung; Kim, Tae Hyuk; Kim, Duk Hee; Kim, Ho-Seong
2017-06-01
Current guidelines recommend that testing for Y chromosome material should be performed only in patients with Turner syndrome harboring a marker chromosome and exhibiting virilization in order to detect individuals who are at high risk of gonadoblastoma. However, cryptic Y chromosome material is suggested to be a risk factor for gonadoblastoma in patients with Turner syndrome. Here, we aimed to estimate the frequency of cryptic Y chromosome material in patients with Turner syndrome and determine whether Y chromosome material increased the risk for development of gonadoblastoma. A total of 124 patients who were diagnosed with Turner syndrome by conventional cytogenetic techniques underwent additional molecular analysis to detect cryptic Y chromosome material. In addition, patients with Turner syndrome harboring Y chromosome cell lines had their ovaries removed prophylactically. Finally, we assessed the occurrence of gonadoblastoma in patients with Turner syndrome. Molecular analysis demonstrated that 10 patients had Y chromosome material among 118 patients without overt Y chromosome (8.5%). Six patients with overt Y chromosome and four patients with cryptic Y chromosome material underwent oophorectomy. Histopathological analysis revealed that the occurrence of gonadoblastoma in the total group was 2.4%, and gonadoblastoma occurred in one of six patients with an overt Y chromosome (16.7%) and 2 of 10 patients with cryptic Y chromosome material (20.0%). The risk of developing gonadoblastoma in patients with cryptic Y chromosome material was similar to that in patients with overt Y chromosome. Therefore, molecular screening for Y chromosome material should be recommended for all patients with Turner syndrome to detect individuals at a high risk of gonadoblastoma and to facilitate proper management of the disease.
Moeder, Katelyn E.; Ho, Chris M. W.; Zimmerman, Maxwell I.; Frederick, Thomas E.; Bowman, Gregory R.
2017-01-01
Allosteric drugs, which bind to proteins in regions other than their main ligand-binding or active sites, make it possible to target proteins considered “undruggable” and to develop new therapies that circumvent existing resistance. Despite growing interest in allosteric drug discovery, rational design is limited by a lack of sufficient structural information about alternative binding sites in proteins. Previously, we used Markov State Models (MSMs) to identify such “cryptic pockets,” and here we describe a method for identifying compounds that bind in these cryptic pockets and modulate enzyme activity. Experimental tests validate our approach by revealing both an inhibitor and two activators of TEM β-lactamase (TEM). To identify hits, a library of compounds is first virtually screened against either the crystal structure of a known cryptic pocket or an ensemble of structures containing the same cryptic pocket that is extracted from an MSM. Hit compounds are then screened experimentally and characterized kinetically in individual assays. We identify three hits, one inhibitor and two activators, demonstrating that screening for binding to allosteric sites can result in both positive and negative modulation. The hit compounds have modest effects on TEM activity, but all have higher affinities than previously identified inhibitors, which bind the same cryptic pocket but were found, by chance, via a computational screen targeting the active site. Site-directed mutagenesis of key contact residues predicted by the docking models is used to confirm that the compounds bind in the cryptic pocket as intended. Because hit compounds are identified from docking against both the crystal structure and structures from the MSM, this platform should prove suitable for many proteins, particularly targets whose crystal structures lack obvious druggable pockets, and for identifying both inhibitory and activating small-molecule modulators. PMID:28570708
Yu, Ying; Heinrichs, Jochen; Zhu, Rui-Liang; Schneider, Harald
2013-01-01
Cryptic species are frequently recovered in plant lineages, and considered an important cause for divergent of morphological disparity and species diversity. The identification of cryptic species has important implications for the assessment of conservation needs of species aggregates. The mechanisms and processes of the origin of cryptic species diversity are still poorly understand based on the lack of studies especially in context of environment factors. Here we explored evidence for cryptic species within the epiphyllous liverworts Cololejeunea lanciloba complex based on two loci, the plastid trnL-F region and the nuclear ribosomal ITS region. Several analytic approaches were employed to delimit species based on DNA sequence variation including phylogenetic reconstruction, statistical parsimony networks analysis and two recently introduced species delimitation criteria: Rosenberg’s reciprocal monophyly and Rodrigo’s randomly distinct. We found evidence for thirteen genetically distinct putative species, each consisting of more than one haplotype, rather than four morphologically-circumscribed species. The results implied that the highly conserved phenotypes are not congruent with the genetic differentiation, contributing to incorrect assessments of the biodiversity of epiphyllous liverworts. We hypothesize that evolution of cryptic species recovered may be caused by selection of traits critical to the survival in epiphyllous habitats combined with limited developmental options designed in the small body. PMID:24367634
Sun, Lei; Dimitromanolakis, Apostolos
2014-01-01
Pedigree errors and cryptic relatedness often appear in families or population samples collected for genetic studies. If not identified, these issues can lead to either increased false negatives or false positives in both linkage and association analyses. To identify pedigree errors and cryptic relatedness among individuals from the 20 San Antonio Family Studies (SAFS) families and cryptic relatedness among the 157 putatively unrelated individuals, we apply PREST-plus to the genome-wide single-nucleotide polymorphism (SNP) data and analyze estimated identity-by-descent (IBD) distributions for all pairs of genotyped individuals. Based on the given pedigrees alone, PREST-plus identifies the following putative pairs: 1091 full-sib, 162 half-sib, 360 grandparent-grandchild, 2269 avuncular, 2717 first cousin, 402 half-avuncular, 559 half-first cousin, 2 half-sib+first cousin, 957 parent-offspring and 440,546 unrelated. Using the genotype data, PREST-plus detects 7 mis-specified relative pairs, with their IBD estimates clearly deviating from the null expectations, and it identifies 4 cryptic related pairs involving 7 individuals from 6 families.
Wesonga, S M; Muluvi, G M; Okemo, P O; Kariuki, S
2010-05-01
To characterise and investigate antimicrobial resistance of Esherichia coli and salmonella strains isolated from indigenous Gallus gallus in a leading slaughterhouse/market outlet in Nairobi-Kenya. A repeated cross sectional study and based on random sampling was used. The study was carried out in a leading market outlet in Nairobi, Kenya. A hundred and four indigenous chicken rectal swabs were analysed, of which 67.3% were contaminated with Escherichia coli and 12.5% with Salmonella typhimurium. Seventy Escherichia coli isolates showed resistance phenotypes to one, two or more antibiotics. The most common antimicrobial resistance pattern was the single resistance to Tet (21.43%), followed by Amp Cot Tet (14%), Aug Amp Cot Tet (4.29%), Aug Amp Cot Tet Kan Chl (2.86%), Amp Cot Tet Chl, Cot Tet (2.86%) and Crx Amp Cot Tet Chl, Crx Amp Cot Chi, Amp Cot, Aug Amp, (1.43%) respectively. The highest rate of resistance was against Tet (55.7%), followed by Cot (40%). Third in line of resistance was Amp 32.86%, followed by Aug (11.43%), low or moderate resistance was against Chl (8.57%), Kan (4.29%), and Crx (2.86%) (P<0.0002). Salmonella typhimurium recovered displayed single resistance pattern to Tet (16.67%), Gen Cot Tet (8.33%), Amp Cot Tet (8.33%), Aug Amp Cot Tet (8.33%) and Amp Cot Tet Chl (16.67%). The highest resistance was against Tet (58.3%), Cot (41.7%), Amp (33.3%), Chl (16.7%), Aug and Gen (8.3%) respectively (P<0.0001). 3.0kb and 5.6kb plasmids isolated were not transferable by conjugation. Routine surveillance at slaughter/market outlets of Escherichia coli and Salmonella enterica should be done to identify infected flocks as a regulatory procedure for food safety and security programme.
Marten, Andreas; Kaib, Manfred; Brandl, Roland
2009-05-01
In several termite species, distinct differences in the composition of cuticular hydrocarbons among colonies correspond to high genetic divergence of mitochondrial DNA sequences. These observations suggest that hydrocarbon phenotypes represent cryptic species. Different cuticular hydrocarbon phenotypes also are found among colonies of fungus-growing termites of the genus Macrotermes. To determine if these hydrocarbon differences in Macrotermes also indicate cryptic species, we sequenced the mitochondrial CO I gene from species in West and East Africa. Among individuals of a supposed species but belonging to different cuticular hydrocarbon phenotypes, the genetic distances are much smaller than distances between species. Unlike what has been observed in other termites, Macrotermes hydrocarbon phenotypes do not represent cryptic species. Our findings suggest fundamental differences in the evolution and/or function of cuticular hydrocarbons among different termite lineages.
Why do cryptic species tend not to co-occur? A case study on two cryptic pairs of butterflies.
Vodă, Raluca; Dapporto, Leonardo; Dincă, Vlad; Vila, Roger
2015-01-01
As cryptic diversity is being discovered, mostly thanks to advances in molecular techniques, it is becoming evident that many of these taxa display parapatric distributions in mainland and that they rarely coexist on islands. Genetic landscapes, haplotype networks and ecological niche modeling analyses were performed for two pairs of non-sister cryptic butterfly species, Aricia agestis-A. cramera and Polyommatus icarus-P. celina (Lycaenidae), to specifically assess non-coexistence on western Mediterranean islands, and to test potential causes producing such chequered distribution patterns. We show that the morphologically and ecologically equivalent pairs of species do not coexist on any of the studied islands, although nearly all islands are colonized by one of them. According to our models, the cryptic pairs displayed marked climatic preferences and 'precipitation during the driest quarter' was recovered as the most important climatic determinant. However, neither dispersal capacity, nor climatic or ecological factors fully explain the observed distributions across particular sea straits, and the existence of species interactions resulting in mutual exclusion is suggested as a necessary hypothesis. Given that the studied species are habitat generalists, feeding on virtually unlimited resources, we propose that reproductive interference, together with climatic preferences, sustain density-dependent mechanisms like "founder takes all" and impede coexistence on islands. Chequered distributions among cryptic taxa, both sister and non-sister, are common in butterflies, suggesting that the phenomenon revealed here could be important in determining biodiversity patterns.
FOLLITROPIN RECEPTORS CONTAIN CRYPTIC LIGAND BINDING SITES1
Lin, Win; Bernard, Michael P.; Cao, Donghui; Myers, Rebecca V.; Kerrigan, John E.; Moyle, William R.
2007-01-01
Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with an FSHR/LHR chimera having only two unique LHR residues similar to the manners in which they dock with LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863
De Meester, N; Gingold, R; Rigaux, A; Derycke, S; Moens, T
2016-10-01
Marine ecosystems are experiencing accelerating population and species loss. Some ecosystem functions are decreasing and there is growing interest in the link between biodiversity and ecosystem functioning. The role of cryptic (morphologically identical but genetically distinct) species in this biodiversity-ecosystem functioning link is unclear and has not yet been formally tested. We tested if there is a differential effect of four cryptic species of the bacterivorous nematode Litoditis marina on the decomposition process of macroalgae. Bacterivorous nematodes can stimulate or slow down bacterial activity and modify the bacterial assemblage composition. Moreover, we tested if interspecific interactions among the four cryptic species influence the decomposition process. A laboratory experiment with both mono- and multispecific nematode cultures was conducted, and loss of organic matter and the activity of two key extracellular enzymes for the degradation of phytodetritus were assessed. L. marina mainly influenced qualitative aspects of the decomposition process rather than its overall rate: an effect of the nematodes on the enzymatic activities became manifest, although no clear nematode effect on bulk organic matter weight loss was found. We also demonstrated that species-specific effects on the decomposition process existed. Combining the four cryptic species resulted in high competition, with one dominant species, but without complete exclusion of other species. These interspecific interactions translated into different effects on the decomposition process. The species-specific differences indicated that each cryptic species may play an important and distinct role in ecosystem functioning. Functional differences may result in coexistence among very similar species.
Why Do Cryptic Species Tend Not to Co-Occur? A Case Study on Two Cryptic Pairs of Butterflies
Vodă, Raluca; Dapporto, Leonardo; Dincă, Vlad; Vila, Roger
2015-01-01
As cryptic diversity is being discovered, mostly thanks to advances in molecular techniques, it is becoming evident that many of these taxa display parapatric distributions in mainland and that they rarely coexist on islands. Genetic landscapes, haplotype networks and ecological niche modeling analyses were performed for two pairs of non-sister cryptic butterfly species, Aricia agestis-A. cramera and Polyommatus icarus—P. celina (Lycaenidae), to specifically assess non-coexistence on western Mediterranean islands, and to test potential causes producing such chequered distribution patterns. We show that the morphologically and ecologically equivalent pairs of species do not coexist on any of the studied islands, although nearly all islands are colonized by one of them. According to our models, the cryptic pairs displayed marked climatic preferences and ‘precipitation during the driest quarter’ was recovered as the most important climatic determinant. However, neither dispersal capacity, nor climatic or ecological factors fully explain the observed distributions across particular sea straits, and the existence of species interactions resulting in mutual exclusion is suggested as a necessary hypothesis. Given that the studied species are habitat generalists, feeding on virtually unlimited resources, we propose that reproductive interference, together with climatic preferences, sustain density-dependent mechanisms like “founder takes all” and impede coexistence on islands. Chequered distributions among cryptic taxa, both sister and non-sister, are common in butterflies, suggesting that the phenomenon revealed here could be important in determining biodiversity patterns. PMID:25692577
Luu, Vinh Quang; Bonkowski, Michael; Nguyen, Truong Quang; Le, Minh Duc; Schneider, Nicole; Ngo, Hanh Thi; Ziegler, Thomas
2016-05-02
Species designated as 'cryptic' share a similar morphotype, and are often only clearly separable by molecular data. Cyrtodactylus, the most diverse gecko genus of the family Gekkonidae, is a prime example, because many morphologically similar taxa have only recently been identified as new species as a result of available genetic evidence. However, while cryptic diversity of Cyrtodactylus is already well documented on the Vietnamese side of the Truong Son range, only scarce data is available from central Laos. In this study, we address this issue by means of an integrative approach, which employs morphological, molecular, and ecological data to distinguish cryptic species of the Cyrtodacylus phongnhakebangensis species group primarily distributed along the northern Truong Son Range. Our analyses based on 12 selected morphological characters, a partial mitochondrial gene (COI), and five ecological parameters revealed three undescribed cryptic Cyrtodactylus species from Hin Nam No National Protected Area, which are described as Cyrtodactylus calamei sp. nov., Cyrtodactylus hinnamnoensis sp. nov., and Cyrtodactylus sommerladi sp. nov. A fourth discovered Cyrtodactylus population in Hin Nam No proved to be the first country record of C. cryptus for Laos. Our results highlight the importance of applying an integrative approach to resolving the taxonomy of complex and cryptic species groups, and the role of the Truong Son Range in maintaining the high level of biodiversity over time.
Causes and methods to estimate cryptic sources of fishing mortality.
Gilman, E; Suuronen, P; Hall, M; Kennelly, S
2013-10-01
Cryptic, not readily detectable, components of fishing mortality are not routinely accounted for in fisheries management because of a lack of adequate data, and for some components, a lack of accurate estimation methods. Cryptic fishing mortalities can cause adverse ecological effects, are a source of wastage, reduce the sustainability of fishery resources and, when unaccounted for, can cause errors in stock assessments and population models. Sources of cryptic fishing mortality are (1) pre-catch losses, where catch dies from the fishing operation but is not brought onboard when the gear is retrieved, (2) ghost-fishing mortality by fishing gear that was abandoned, lost or discarded, (3) post-release mortality of catch that is retrieved and then released alive but later dies as a result of stress and injury sustained from the fishing interaction, (4) collateral mortalities indirectly caused by various ecological effects of fishing and (5) losses due to synergistic effects of multiple interacting sources of stress and injury from fishing operations, or from cumulative stress and injury caused by repeated sub-lethal interactions with fishing operations. To fill a gap in international guidance on best practices, causes and methods for estimating each component of cryptic fishing mortality are described, and considerations for their effective application are identified. Research priorities to fill gaps in understanding the causes and estimating cryptic mortality are highlighted. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.
Johansson, M L; Molin, G; Jeppsson, B; Nobaek, S; Ahrné, S; Bengmark, S
1993-01-01
In vivo colonization by different Lactobacillus strains on human intestinal mucosa of healthy volunteers was studied together with the effect of Lactobacillus administration on different groups of indigenous bacteria. A total of 19 test strains were administered in fermented oatmeal soup containing 5 x 10(6) CFU of each strain per ml by using a dose of 100 ml of soup per day for 10 days. Biopsies were taken from both the upper jejunum and the rectum 1 day before administration was started and 1 and 11 days after administration was terminated. The administration significantly increased the Lactobacillus counts on the jejunum mucosa, and high levels remained 11 days after administration was terminated. The levels of streptococci increased by 10- to 100-fold in two persons, and the levels of sulfite-reducing clostridia in the jejunum decreased by 10- to 100-fold in three of the volunteers 1 day after administration was terminated. In recta, the anaerobic bacterium counts and the gram-negative anaerobic bacterium counts decreased significantly by the end of administration. Furthermore, a decrease in the number of members of the Enterobacteriaceae by 1,000-fold was observed on the rectal mucosa of two persons. Randomly picked Lactobacillus isolates were identified phenotypically by API 50CH tests and genotypically by the plasmid profiles of strains and by restriction endonuclease analysis of chromosomal DNAs.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8439146
High levels of cryptic species diversity uncovered in Amazonian frogs
Funk, W. Chris; Caminer, Marcel; Ron, Santiago R.
2012-01-01
One of the greatest challenges for biodiversity conservation is the poor understanding of species diversity. Molecular methods have dramatically improved our ability to uncover cryptic species, but the magnitude of cryptic diversity remains unknown, particularly in diverse tropical regions such as the Amazon Basin. Uncovering cryptic diversity in amphibians is particularly pressing because amphibians are going extinct globally at an alarming rate. Here, we use an integrative analysis of two independent Amazonian frog clades, Engystomops toadlets and Hypsiboas treefrogs, to test whether species richness is underestimated and, if so, by how much. We sampled intensively in six countries with a focus in Ecuador (Engystomops: 252 individuals from 36 localities; Hypsiboas: 208 individuals from 65 localities) and combined mitochondrial DNA, nuclear DNA, morphological, and bioacoustic data to detect cryptic species. We found that in both clades, species richness was severely underestimated, with more undescribed species than described species. In Engystomops, the two currently recognized species are actually five to seven species (a 150–250% increase in species richness); in Hypsiboas, two recognized species represent six to nine species (a 200–350% increase). Our results suggest that Amazonian frog biodiversity is much more severely underestimated than previously thought. PMID:22130600
High-model abundance may permit the gradual evolution of Batesian mimicry: an experimental test
Kikuchi, David W.; Pfennig, David W.
2010-01-01
In Batesian mimicry, a harmless species (the ‘mimic’) resembles a dangerous species (the ‘model’) and is thus protected from predators. It is often assumed that the mimetic phenotype evolves from a cryptic phenotype, but it is unclear how a population can transition through intermediate phenotypes; such intermediates may receive neither the benefits of crypsis nor mimicry. Here, we ask if selection against intermediates weakens with increasing model abundance. We also ask if mimicry has evolved from cryptic phenotypes in a mimetic clade. We first present an ancestral character-state reconstruction showing that mimicry of a coral snake (Micrurus fulvius) by the scarlet kingsnake (Lampropeltis elapsoides) evolved from a cryptic phenotype. We then evaluate predation rates on intermediate phenotypes relative to cryptic and mimetic phenotypes under conditions of both high- and low-model abundances. Our results indicate that where coral snakes are rare, intermediate phenotypes are attacked more often than cryptic and mimetic phenotypes, indicating the presence of an adaptive valley. However, where coral snakes are abundant, intermediate phenotypes are not attacked more frequently, resulting in an adaptive landscape without a valley. Thus, high-model abundance may facilitate the evolution of Batesian mimicry. PMID:19955153
High-model abundance may permit the gradual evolution of Batesian mimicry: an experimental test.
Kikuchi, David W; Pfennig, David W
2010-04-07
In Batesian mimicry, a harmless species (the 'mimic') resembles a dangerous species (the 'model') and is thus protected from predators. It is often assumed that the mimetic phenotype evolves from a cryptic phenotype, but it is unclear how a population can transition through intermediate phenotypes; such intermediates may receive neither the benefits of crypsis nor mimicry. Here, we ask if selection against intermediates weakens with increasing model abundance. We also ask if mimicry has evolved from cryptic phenotypes in a mimetic clade. We first present an ancestral character-state reconstruction showing that mimicry of a coral snake (Micrurus fulvius) by the scarlet kingsnake (Lampropeltis elapsoides) evolved from a cryptic phenotype. We then evaluate predation rates on intermediate phenotypes relative to cryptic and mimetic phenotypes under conditions of both high- and low-model abundances. Our results indicate that where coral snakes are rare, intermediate phenotypes are attacked more often than cryptic and mimetic phenotypes, indicating the presence of an adaptive valley. However, where coral snakes are abundant, intermediate phenotypes are not attacked more frequently, resulting in an adaptive landscape without a valley. Thus, high-model abundance may facilitate the evolution of Batesian mimicry.
Cryptic introductions and the interpretation of island biodiversity.
Avery, Julian D; Fonseca, Dina M; Campagne, Pascal; Lockwood, Julie L
2013-04-01
Species with cryptic origins (i.e. those that cannot be reliably classed as native or non-native) present a particular challenge to our understanding of the generation and maintenance of biodiversity. Such species may be especially common on islands given that some islands have had a relatively recent history of human settlement. It is likely that select island species considered native might have achieved their current distributions via direct or indirect human actions. As an example, we explore the origins of eastern bluebirds (Sialia sialis bermudensis) on the island of Bermuda. Considered native to the island and a distinct subspecies, this population has diverged in morphology relative to mainland North America. Using microsatellite markers and simulation of island colonization, we show that the Bermuda population of bluebirds is the likely result of a single colonization event that occurred during the 1600s, making this a cryptic invader. To our knowledge, this is one of the youngest examples of a terrestrial vertebrate cryptic invader. We suggest that the eastern bluebird is not an isolated case of cryptic invader on either Bermuda or elsewhere and that caution be exercised when studying present-day distributions of organisms. © 2013 Blackwell Publishing Ltd.
Zamboni, Milena; Ralph, Constanza; García, Patricia; Cuello, Mauricio
2016-12-01
Chlamydia trachomatis infection constitutes the most common sexual transmitted disease (STD) among young women. International studies demonstrate that prevalence changes over time and also according to places. To estimate the prevalence of this infection among asymptomatic Chilean women (15 to 24 years old) and correlating with risk factor occurrence. Transversal cohort study to identify C. trachomatis infection through a diagnostic kit designed to detect and amplify cryptic plasmid DNA by quantitative PCR from endocervical sample. 181 women were screened during the period of study. The overall prevalence estimate was 5.5% and founding significant estimate variations (0% to 14.6%) between recruiting centers. There was difference in number of sexual partners (4.1 vs 2.5; p<0.05) between positive and negative women. No difference was observed in age of first coitus, STD history, the use of barrier method or socioeconomic level. However, the probability of being carrier increases as greater is the number of sexual partners, especially when the use of barrier method is low. The latest is not related to the socioeconomic level. One of 12 to 18 women at this age range will have asymptomatic infection. The current prevalence and its variability substantiates the C. trachomatis screening and periodic surveillance.
Sela, Noa; Lachman, Oded; Reingold, Victoria; Dombrovsky, Aviv
2013-10-01
A novel virus was detected in watermelon plants (Citrullus lanatus Thunb.) infected with Melon necrotic spot virus (MNSV) using SOLiD next-generation sequence analysis. In addition to the expected MSNV genome, two double-stranded RNA (dsRNA) segments of 1,312 and 1,118 bp were also identified and sequenced from the purified virus preparations. These two dsRNA segments encode two putative partitivirus-related proteins, an RNA-dependent RNA polymerase (RdRP) and a capsid protein, which were sequenced. Genomic-sequence analysis and analysis of phylogenetic relationships indicate that these two dsRNAs together make up the genome of a novel Partitivirus. This virus was found to be closely related to the Pepper cryptic virus 1 and Raphanus sativus cryptic virus. It is suggested that this novel virus putatively named Citrullus lanatus cryptic virus be considered as a new member of the family Partitiviridae.
Accurate population genetic measurements require cryptic species identification in corals
NASA Astrophysics Data System (ADS)
Sheets, Elizabeth A.; Warner, Patricia A.; Palumbi, Stephen R.
2018-06-01
Correct identification of closely related species is important for reliable measures of gene flow. Incorrectly lumping individuals of different species together has been shown to over- or underestimate population differentiation, but examples highlighting when these different results are observed in empirical datasets are rare. Using 199 single nucleotide polymorphisms, we assigned 768 individuals in the Acropora hyacinthus and A. cytherea morphospecies complexes to each of eight previously identified cryptic genetic species and measured intraspecific genetic differentiation across three geographic scales (within reefs, among reefs within an archipelago, and among Pacific archipelagos). We then compared these calculations to estimated genetic differentiation at each scale with all cryptic genetic species mixed as if we could not tell them apart. At the reef scale, correct genetic species identification yielded lower F ST estimates and fewer significant comparisons than when species were mixed, raising estimates of short-scale gene flow. In contrast, correct genetic species identification at large spatial scales yielded higher F ST measurements than mixed-species comparisons, lowering estimates of long-term gene flow among archipelagos. A meta-analysis of published population genetic studies in corals found similar results: F ST estimates at small spatial scales were lower and significance was found less often in studies that controlled for cryptic species. Our results and these prior datasets controlling for cryptic species suggest that genetic differentiation among local reefs may be lower than what has generally been reported in the literature. Not properly controlling for cryptic species structure can bias population genetic analyses in different directions across spatial scales, and this has important implications for conservation strategies that rely on these estimates.
NASA Astrophysics Data System (ADS)
Timms, N. E.; Erickson, T. M.; Cavosie, A. J.; Pearce, M. A.; Reddy, S. M.; Zanetti, M.; Tohver, E.; Schmieder, M.; Nemchin, A. A.; Wittmann, A.
2016-08-01
We present an approach to constrain pressure and temperature conditions during impact events involving identification of cryptic histories of phase transformations from orientation relationships in shocked zircon, linked to new P-T phase diagrams.
Germination and amplification of anthrax spores by soil-dwelling amoebas.
Dey, Rafik; Hoffman, Paul S; Glomski, Ian J
2012-11-01
While anthrax is typically associated with bioterrorism, in many parts of the world the anthrax bacillus (Bacillus anthracis) is endemic in soils, where it causes sporadic disease in livestock. These soils are typically rich in organic matter and calcium that promote survival of resilient B. anthracis spores. Outbreaks of anthrax tend to occur in warm weather following rains that are believed to concentrate spores in low-lying areas where runoff collects. It has been concluded that elevated spore concentrations are not the result of vegetative growth as B. anthracis competes poorly against indigenous bacteria. Here, we test an alternative hypothesis in which amoebas, common in moist soils and pools of standing water, serve as amplifiers of B. anthracis spores by enabling germination and intracellular multiplication. Under simulated environmental conditions, we show that B. anthracis germinates and multiplies within Acanthamoeba castellanii. The growth kinetics of a fully virulent B. anthracis Ames strain (containing both the pX01 and pX02 virulence plasmids) and vaccine strain Sterne (containing only pX01) inoculated as spores in coculture with A. castellanii showed a nearly 50-fold increase in spore numbers after 72 h. In contrast, the plasmidless strain 9131 showed little growth, demonstrating that plasmid pX01 is essential for growth within A. castellanii. Electron and time-lapse fluorescence microscopy revealed that spores germinate within amoebal phagosomes, vegetative bacilli undergo multiplication, and, following demise of the amoebas, bacilli sporulate in the extracellular milieu. This analysis supports our hypothesis that amoebas contribute to the persistence and amplification of B. anthracis in natural environments.
Geochemical evidence for cryptic sulfur cycling in salt marsh sediments
NASA Astrophysics Data System (ADS)
Mills, Jennifer V.; Antler, Gilad; Turchyn, Alexandra V.
2016-11-01
Cryptic sulfur cycling is an enigmatic process in which sulfate is reduced to some lower-valence state sulfur species and subsequently quantitatively reoxidized; the rate and microbial energetics of this process and how prevalent it may be in the environment remain controversial. Here we investigate sulfur cycling in salt marsh sediments from Norfolk, England where we observe high ferrous iron concentrations with no depletion of sulfate or change in the sulfur isotope ratio of that sulfate, but a 5‰ increase in the oxygen isotope ratio in sulfate, indicating that sulfate has been through a reductive cycle replacing its oxygen atoms. This cryptic sulfur cycle was replicated in laboratory incubations using 18O-enriched water, demonstrating that the field results do not solely result from mixing processes in the natural environment. Numerical modeling of the laboratory incubations scaled to represent the salt marsh sediments suggests that the uptake rate of sulfate during this cryptic sulfur cycling is similar to the uptake rate of sulfate during the fastest microbial sulfate reduction that has been measured in the natural environment. The difference is that during cryptic sulfur cycling, all of the sulfur is subsequently reoxidized to sulfate. We discuss mechanisms for this pathway of sulfur cycling including the possible link to the subsurface iron cycle.
Dincă, Vlad; Montagud, Sergio; Talavera, Gerard; Hernández-Roldán, Juan; Munguira, Miguel L.; García-Barros, Enrique; Hebert, Paul D. N.; Vila, Roger
2015-01-01
How common are cryptic species - those overlooked because of their morphological similarity? Despite its wide-ranging implications for biology and conservation, the answer remains open to debate. Butterflies constitute the best-studied invertebrates, playing a similar role as birds do in providing models for vertebrate biology. An accurate assessment of cryptic diversity in this emblematic group requires meticulous case-by-case assessments, but a preview to highlight cases of particular interest will help to direct future studies. We present a survey of mitochondrial genetic diversity for the butterfly fauna of the Iberian Peninsula with unprecedented resolution (3502 DNA barcodes for all 228 species), creating a reliable system for DNA-based identification and for the detection of overlooked diversity. After compiling available data for European butterflies (5782 sequences, 299 species), we applied the Generalized Mixed Yule-Coalescent model to explore potential cryptic diversity at a continental scale. The results indicate that 27.7% of these species include from two to four evolutionary significant units (ESUs), suggesting that cryptic biodiversity may be higher than expected for one of the best-studied invertebrate groups and regions. The ESUs represent important units for conservation, models for studies of evolutionary and speciation processes, and sentinels for future research to unveil hidden diversity. PMID:26205828
Yamaguchi, Hiroki; Sakaguchi, Hirotoshi; Yoshida, Kenichi; Yabe, Miharu; Yabe, Hiromasa; Okuno, Yusuke; Muramatsu, Hideki; Takahashi, Yoshiyuki; Yui, Shunsuke; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Inokuchi, Koiti; Ito, Etsuro; Ogawa, Seishi; Kojima, Seiji
2015-11-01
Dyskeratosis congenita (DKC) is an inherited bone marrow failure (BMF) syndrome typified by reticulated skin pigmentation, nail dystrophy, and mucosal leukoplakia. Hoyeraal-Hreidarsson syndrome (HHS) is considered to be a severe form of DKC. Unconventional forms of DKC, which develop slowly in adulthood but without the physical anomalies characteristic of DKC (cryptic DKC), have been reported. Clinical and genetic features of DKC have been investigated in Caucasian, Black, and Hispanic populations, but not in Asian populations. The present study aimed to determine the clinical and genetic features of DKC, HHS, and cryptic DKC among Japanese patients. We analyzed 16 patients diagnosed with DKC, three patients with HHS, and 15 patients with cryptic DKC. We found that platelet count was significantly more depressed than neutrophil count or hemoglobin value in DKC patients, and identified DKC patients with large deletions in the telomerase reverse transcriptase and cryptic DKC patients with RTEL1 mutations on both alleles. This led to some patients previously considered to have unclassifiable BMF being diagnosed with cDKC through identification of new gene mutations. It thus seems important from a clinical viewpoint to re-examine the clinical characteristics, frequency of genetic mutations, and treatment efficacy in DKC, HHS, and cDKC.
NASA Technical Reports Server (NTRS)
Eluszkiewicz, J.; Titus, T. N.
2003-01-01
One of the highlights of the TES observations in the polar regions has been the identification of a "cryptic" region in the south where CO2 appears to be in the form of a solid slab rather than a fluffy frost. While the exact mechanism(s) by which the cryptic region is formed are still subject of some debate, it appears certain that a type of rapid metamorphism related to the high volatility of CO2 ice is involved. The high volatility of CO2 ice under martian conditions has several Solar System analogs (N2 on Triton and Pluto, SO2 on Io), thus making the martian cryptic region somewhat less cryptic and certainly non-unique among planetary objects. In an endmember scenario, both the formation and the spectral properties of the cryptic region (and of other areas in the seasonal caps) can be quantitatively modeled by considering sintering of an ensemble of quasi-spherical CO2 grains. This model includes the special case of instanteneous slab formation, which occurs when the grains are sufficiently small (in the submicron range) so that their sintering timescale is short relative to the deposition timescale (a situation analogous to the "sintering" of water droplets falling into a pond).
Cui, Ping; Jin, Huiyan; Vutukuru, Manjula Ramya; Kaplan, Craig D.
2016-01-01
The interplay between adjacent transcription units can result in transcription-dependent alterations in chromatin structure or recruitment of factors that determine transcription outcomes, including the generation of intragenic or other cryptic transcripts derived from cryptic promoters. Mutations in a number of genes in Saccharomyces cerevisiae confer both cryptic intragenic transcription and the Suppressor of Ty (Spt-) phenotype for the lys2-128∂ allele of the LYS2 gene. Mutants that suppress lys2-128∂ allow transcription from a normally inactive Ty1 ∂ promoter, conferring a LYS+ phenotype. The arrangement of transcription units at lys2-128∂ is reminiscent of genes containing cryptic promoters within their open reading frames. We set out to examine the relationship between RNA Polymerase II (Pol II) activity, functions of Spt elongation factors, and cryptic transcription because of the previous observation that increased-activity Pol II alleles confer an Spt- phenotype. We identify both cooperating and antagonistic genetic interactions between Pol II alleles and alleles of elongation factors SPT4, SPT5, and SPT6. We find that cryptic transcription at FLO8 and STE11 is distinct from that at lys2-128∂, though all show sensitivity to reduction in Pol II activity, especially the expression of lys2-128∂ found in Spt- mutants. We determine that the lys2-128∂ Spt- phenotypes for spt6-1004 and increased activity rpo21/rpb1 alleles each require transcription from the LYS2 promoter. Furthermore, we identify the Ty1 transcription start site (TSS) within the ∂ element as the position of Spt- transcription in tested Spt- mutants. PMID:27261007
NASA Technical Reports Server (NTRS)
Popova, L. Yu; Kargatova, T. V.; Ganusova, E. E.; Lobova, T. I.; Boyandin, A. N.; Mogilnaya, O. A.; Pechurkin, N. S.
2005-01-01
Populations of Escherichia coli Z905/pPHL7, a transgenic microorganism, were heterogenic in the expression of plasmid genes when adapting to the conditions of water microcosms of various mineralization levels and structure of microbial community. This TM has formed two subpopulations (ampicillin-resistant and ampicillin-sensitive) in every microcosm. Irrespective of mineralization level of a microcosm, when E. coli Z905/pPHL7 alone was introduced, the ampicillin-resistant subpopulation prevailed, while introduction of the TM together with indigenous bacteria led to the dominance of the ampicillin-sensitive subpopulation. A high level of lux gene expression maintained longer in the freshwater microcosms than in sterile saline lake water microcosms. A horizontal gene transfer has been revealed between the jointly introduced TM and Micrococcus sp. 9/pSH1 in microcosms with the Lake Shira sterile water. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Williams, Laura E; Wireman, Joy; Hilliard, Valda C; Summers, Anne O
2013-01-01
Plasmids are important in evolution and adaptation of host bacteria, yet we lack a comprehensive picture of their own natural variation. We used replicon typing and RFLP analysis to assess diversity and distribution of plasmids in the ECOR, SARA, SARB and SARC reference collections of Escherichia coli and Salmonella. Plasmids, especially large (≥30 kb) plasmids, are abundant in these collections. Host species and genotype clearly impact plasmid prevalence; plasmids are more abundant in ECOR than SAR, but, within ECOR, subgroup B2 strains have the fewest large plasmids. The majority of large plasmids have unique RFLP patterns, suggesting high variation, even within dominant replicon families IncF and IncI1. We found only four conserved plasmid types within ECOR, none of which are widely distributed. Within SAR, conserved plasmid types are primarily serovar-specific, including a pSLT-like plasmid in 13 Typhimurium strains. Conservation of pSLT contrasts with variability of other plasmids, suggesting evolution of serovar-specific virulence plasmids is distinct from that of most enterobacterial plasmids. We sequenced a conserved serovar Heidelberg plasmid but did not detect virulence or antibiotic resistance genes. Our data illustrate the high degree of natural variation in large plasmids of E. coli and Salmonella, even among plasmids sharing backbone genes. Copyright © 2012 Elsevier Inc. All rights reserved.
Roshmi, Rekha Sarma; Ramya, Badrinath; Sudhira, H. S.; Ravikanth, G.; Aravind, Neelavara Anantharam
2016-01-01
A new cryptic species of bush frog Raorchestes honnametti sp. nov. is described from the south-eastern part of the Western Ghats, India. This newly described species belongs to the Charius clade and is morphologically similar to other clade members—R. charius and R. griet. Therefore, an integrative taxonomic approach based on molecular and bioacoustic analysis along with morphology was used to delimit the new species. Raorchestes honnametti sp. nov., is currently known only from Biligiri Rangaswamy Temple Tiger Reserve, a part of Biligiri Rangaswamy horst mountain range (a mountain formed due movement of two faults) formed during the Late Quaternary period (1.8–2.58 Ma). Discovery of cryptic species from a highly speciose and well-studied genus Raorchestes hints at the possible existence of several more cryptic species in this genus. We discuss the possible reasons for crypsis and emphasize the need for continued systematic surveys of amphibians across the Western Ghats. PMID:26934213
Wang, Denong; Tang, Jin; Liu, Shaoyi
2015-01-01
Using carbohydrate microarrays, we explored potential natural ligands of antitumor monoclonal antibody HAE3. This antibody was raised against a murine mammary tumor antigen but was found to cross-react with a number of human epithelial tumors in tissues. Our carbohydrate microarray analysis reveals that HAE3 is specific for an O-glycan cryptic epitope that is normally hidden in the cores of blood group substances. Using HAE3 to screen tumor cell surface markers by flow cytometry, we found that the HAE3 glycoepitope, gpHAE3, was highly expressed by a number of human breast cancer cell lines, including some triple-negative cancers that lack the estrogen, progesterone, and Her2/neu receptors. Taken together, we demonstrate that HAE3 recognizes a conserved cryptic glycoepitope of blood group precursors, which is nevertheless selectively expressed and surface-exposed in certain breast tumor cells. The potential of this class of O-glycan cryptic antigens in breast cancer subtyping and targeted immunotherapy warrants further investigation. PMID:26539555
Karanovic, Tomislav; Djurakic, Marko; Eberhard, Stefan M
2016-03-01
Discovery of cryptic species using molecular tools has become common in many animal groups but it is rarely accompanied by morphological revision, creating ongoing problems in taxonomy and conservation. In copepods, cryptic species have been discovered in most groups where fast-evolving molecular markers were employed. In this study at Yeelirrie in Western Australia we investigate a subterranean species complex belonging to the harpacticoid genus Schizopera Sars, 1905, using both the barcoding mitochondrial COI gene and landmark-based two-dimensional geometric morphometrics. Integumental organs (sensilla and pores) are used as landmarks for the first time in any crustacean group. Complete congruence between DNA-based species delimitation and relative position of integumental organs in two independent morphological structures suggests the existence of three distinct evolutionary units. We describe two of them as new species, employing a condensed taxonomic format appropriate for cryptic species. We argue that many supposedly cryptic species might not be cryptic if researchers focus on analyzing morphological structures with multivariate tools that explicitly take into account geometry of the phenotype. A perceived supremacy of molecular methods in detecting cryptic species is in our view a consequence of disparity of investment and unexploited recent advancements in morphometrics among taxonomists. Our study shows that morphometric data alone could be used to find diagnostic morphological traits and gives hope to anyone studying small animals with a hard integument or shell, especially opening the door to assessing fossil diversity and rich museum collections. We expect that simultaneous use of molecular tools with geometry-oriented morphometrics may yield faster formal description of species. Decrypted species in this study are a good example for urgency of formal descriptions, as they display short-range endemism in small groundwater calcrete aquifers in a paleochannel, where their conservation may be threatened by proposed mining. ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Predation selects against conspicuous colors in bird eggs and nests, while thermoregulatory constraints select for nest building behavior that regulates incubation temperatures. We present results that reveal a trade-off between nest crypticity and thermoregulation of eggs base...
A multiplex PCR method for rapid identification of Brachionus rotifers.
Vasileiadou, Kalliopi; Papakostas, Spiros; Triantafyllidis, Alexander; Kappas, Ilias; Abatzopoulos, Theodore J
2009-01-01
Cryptic species are increasingly being recognized in many organisms. In Brachionus rotifers, many morphologically similar yet genetically distinct species/biotypes have been described. A number of Brachionus cryptic species have been recognized among hatchery strains. In this study, we present a simple, one-step genetic method to detect the presence of those Brachionus sp. rotifers that have been found in hatcheries. With the proposed technique, each of the B. plicatilis sensu stricto, B. ibericus, Brachionus sp. Nevada, Brachionus sp. Austria, Brachionus sp. Manjavacas, and Brachionus sp. Cayman species and/or biotypes can be identified with polymerase chain reaction (PCR) analysis. Based on 233 cytochrome c oxidase subunit I sequences, we reviewed all the available cryptic Brachionus sp. genetic polymorphisms, and we designed six nested primers. With these primers, a specific amplicon of distinct size is produced for every one of the involved species/biotypes. Two highly sensitive protocols were developed for using the primers. Many of the primers can be combined in the same PCR. The proposed method has been found to be an effective and practical tool to investigate the presence of the above six cryptic species/biotypes in both individual and communal (bulk) rotifer deoxyribonucleic acid extractions from hatcheries. With this technique, hatchery managers could easily determine their rotifer composition at the level of cryptic species and monitor their cultures more efficiently.
Spyksma, Arie J P; Taylor, Richard B; Shears, Nick T
2017-03-01
It is well known that predators often influence the foraging behaviour of prey through the so-called "fear effect". However, it is also possible that predators could change prey behaviour indirectly by altering the prey's food supply through a trophic cascade. The predator-sea urchin-kelp trophic cascade is widely assumed to be driven by the removal of sea urchins by predators, but changes in sea urchin behaviour in response to predators or increased food availability could also play an important role. We tested whether increased crevice occupancy by herbivorous sea urchins in the presence of abundant predatory fishes and lobsters is a response to the increased risk of predation, or an indirect response to higher kelp abundances. Inside two New Zealand marine reserves with abundant predators and kelp, individuals of the sea urchin Evechinus chloroticus were rarer and remained cryptic (i.e. found in crevices) to larger sizes than on adjacent fished coasts where predators and kelp are rare. In a mesocosm experiment, cryptic behaviour was induced by simulated predation (the addition of crushed conspecifics), but the addition of food in the form of drift kelp did not induce cryptic behaviour. These findings demonstrate that the 'fear' of predators is more important than food availability in promoting sea urchin cryptic behaviour and suggest that both density- and behaviourally mediated interactions are important in the predator-sea urchin-kelp trophic cascade.
Canal, Nelson A.; Hernández-Ortiz, Vicente; Salas, Juan O. Tigrero; Selivon, Denise
2015-01-01
Abstract The occurrence of cryptic species among economically important fruit flies strongly affects the development of management tactics for these pests. Tools for studying cryptic species not only facilitate evolutionary and systematic studies, but they also provide support for fruit fly management and quarantine activities. Previous studies have shown that the South American fruit fly, Anastrepha fraterculus, is a complex of cryptic species, but few studies have been performed on the morphology of its immature stages. An analysis of mandible shape and linear morphometric variability was applied to third-instar larvae of five morphotypes of the Anastrepha fraterculus complex: Mexican, Andean, Ecuadorian, Peruvian and Brazilian-1. Outline geometric morphometry was used to study the mouth hook shape and linear morphometry analysis was performed using 24 linear measurements of the body, cephalopharyngeal skeleton, mouth hook and hypopharyngeal sclerite. Different morphotypes were grouped accurately using canonical discriminant analyses of both the geometric and linear morphometry. The shape of the mandible differed among the morphotypes, and the anterior spiracle length, number of tubules of the anterior spiracle, length and height of the mouth hook and length of the cephalopharyngeal skeleton were the most significant variables in the linear morphometric analysis. Third-instar larvae provide useful characters for studies of cryptic species in the Anastrepha fraterculus complex. PMID:26798253
Durand, Jean-Dominique; Borsa, Philippe
2015-04-01
The low level of morphometric variability and the poor phylogenetic information borne by the morpho-anatomical characters used thus far in the systematics of grey mullets (Mugilidae) emphasize the utility of molecular systematics in this family. A recent mitochondrial phylogeny of grey mullets has uncovered multiple deep lineages within several species, flagging putative cryptic species. Here, we considered that several of the deeply divergent lineages represent separate species based on either the tree topology, independent data from nuclear markers, geographic distributions, or a combination of the foregoing. By analogy with these well-documented cases, we considered other deep lineages in seven genera we focused on to represent putative cryptic species. Up to two cryptic species were thus potentially detected in the genus Chelon, three in Crenimugil (including two within the single Crenimugil seheli), two in Dajaus, one in Ellochelon, 16 in Mugil (including 13 within the single M. cephalus), two in Osteomugil, and 10 in Planiliza. Wherever possible, we kept the current species epithets to designate those lineages that unambiguously correspond to the type material, based on type locality, and we assigned arbitrary letters (sp. A, B, etc.) to the other lineages. We present a molecular diagnosis for 24 of the species analysed in this work, as well as for 25 putative cryptic species. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Antibiotic resistance of vibrio cholerae: special considerations of R-plasmids.
Kuwahara, S
1978-09-01
Studies on the transmission of R plasmid by conjugation between enterobacteria and vibrio or related bacteria were reviewed. The majority of the reports confirmed successful transmission from enterobacteria to Vibrio cholerae and related species, although the transmission frequencies were extremely low and the transmitted R plasmid was very unstable except for thermosensitive kanamycin plasmid and usual R plasmid coexisting with P plasmid. Strains of V. cholerae and Aeromonas liquefaciens as well as A. salmonicida bearing R plasmid were detected in nature. R plasmid was relatively unstable in V. cholerae strains with which transmission of R plasmid to enterobacteria was confirmed. At present, only 3 R plasmids have been obtained from naturally occurring strains of V. cholerae. Although the 2 European plasmids belong to the C incompatibility group with 98 megadalton closed covalent circular DNA molecule, one plasmid belongs to the J group with more than 25 megadalton molecular weight, and no CCC of satelite DNA was detected in bacteria harboring this plasmid.
Distribution of small native plasmids in Streptococcus pyogenes in India.
Bergmann, René; Nerlich, Andreas; Chhatwal, Gursharan S; Nitsche-Schmitz, D Patric
2014-05-01
Complete characterization of a Streptococcus pyogenes population from a defined geographic region comprises information on the plasmids that circulate in these bacteria. Therefore, we determined the distribution of small plasmids (<5kb) in a collection of 279 S. pyogenes isolates from India, where diversity of strains and incidence rates of S. pyogenes infections are high. The collection comprised 77 emm-types. For plasmid detection and discrimination, we developed PCRs for different plasmid replication initiation protein genes, the putative repressor gene copG and bacteriocin genes dysA and scnM57. Plasmid distribution was limited to 13 emm-types. Co-detection analysis using aforementioned PCRs revealed four distinct plasmid sub-types, two of which were previously unknown. Representative plasmids pA852 and pA996 of the two uncharacterized plasmid sub-types were sequenced. These two plasmids could be assigned to the pMV158 and the pC194/pUB110 family of rolling-circle plasmids, respectively. The majority of small plasmids found in India belonged to the two newly characterized sub-types, with pA852- and pA996-like plasmids amounting to 42% and 22% of all detected plasmids, respectively. None of the detected plasmids coded for a known antibiotic resistance gene. Instead, all of the four plasmid sub-types carried known or potential bacteriocin genes. These genes may have influence on the evolutionary success of certain S. pyogenes genotypes. Notably, pA852-like plasmids were found in all isolates of the most prevalent emm-type 11.0. Together, a priori fitness of this genotype and increased fitness due to the acquired plasmids may have rendered type emm11.0 successful and caused the prevalence of pA852-like plasmids in India. Copyright © 2013 Elsevier GmbH. All rights reserved.
A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species
USDA-ARS?s Scientific Manuscript database
The identification of species – of importance for most biological disciplines – is not always straightforward as cryptic species present a hurdle for traditional species discrimination. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and cheap method for a wide range of different applicatio...
Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi.
Casjens, Sherwood R; Gilcrease, Eddie B; Vujadinovic, Marija; Mongodin, Emmanuel F; Luft, Benjamin J; Schutzer, Steven E; Fraser, Claire M; Qiu, Wei-Gang
2017-02-15
Bacteria from the genus Borrelia are known to harbor numerous linear and circular plasmids. We report here a comparative analysis of the nucleotide sequences of 236 plasmids present in fourteen independent isolates of the Lyme disease agent B. burgdorferi. We have sequenced the genomes of 14 B. burgdorferi sensu stricto isolates that carry a total of 236 plasmids. These individual isolates carry between seven and 23 plasmids. Their chromosomes, the cp26 and cp32 circular plasmids, as well as the lp54 linear plasmid, are quite evolutionarily stable; however, the remaining plasmids have undergone numerous non-homologous and often duplicative recombination events. We identify 32 different putative plasmid compatibility types among the 236 plasmids, of which 15 are (usually) circular and 17 are linear. Because of past rearrangements, any given gene, even though it might be universally present in these isolates, is often found on different linear plasmid compatibility types in different isolates. For example, the arp gene and the vls cassette region are present on plasmids of four and five different compatibility types, respectively, in different isolates. A majority of the plasmid types have more than one organizationally different subtype, and the number of such variants ranges from one to eight among the 18 linear plasmid types. In spite of this substantial organizational diversity, the plasmids are not so variable that every isolate has a novel version of every plasmid (i.e., there appears to be a limited number of extant plasmid subtypes). Although there have been many past recombination events, both homologous and nonhomologous, among the plasmids, particular organizational variants of these plasmids correlate with particular chromosomal genotypes, suggesting that there has not been rapid horizontal transfer of whole linear plasmids among B. burgdorferi lineages. We argue that plasmid rearrangements are essentially non-revertable and are present at a frequency of only about 0.65% that of single nucleotide changes, making rearrangement-derived novel junctions (mosaic boundaries) ideal phylogenetic markers in the study of B. burgdorferi population structure and plasmid evolution and exchange.
Arai, T; Ando, T; Kusakabe, A; Ullah, M A
1983-01-01
We surveyed plasmids in naturally occurring Vibrio parahemolyticus strains isolated in Japan and Bangladesh. Among the strains isolated in Japan, about half of the strains isolated from stools of patients of domestic diarrhea outbreaks as well as of travelers returning from East Asia were found to have plasmids, but no strains from foods had plasmids. In contrast, among the strains isolated in Bangladesh, none of the four strains isolated from patients had plasmids, but two out of eight strains isolated from water had plasmids, suggesting that plasmids are common in strains from the water in Bangladesh. All plasmids so far reported in V. parahemolyticus were detected in strains isolated from stools of patients. Incidences of plasmids in this organism were not so high in either area. In Japan, all plasmids were detected in strains from human intestines at 37 C, but in Bangladesh, where the temperature is around 30-40 C, the plasmids were detected in strains from the natural environment. These results suggested the possibility that these plasmids can come from different bacteria under rather high temperatures and that incidences of plasmids are influenced by the incidences of plasmids in bacteria present in the vicinity of V. parahemolyticus strains. None of these plasmids were found to have any relation to the biological characters tested.
Phylogeographic insights into cryptic glacial refugia.
Provan, Jim; Bennett, K D
2008-10-01
The glacial episodes of the Quaternary (2.6 million years ago-present) were a major factor in shaping the present-day distributions of extant flora and fauna, with expansions and contractions of the ice sheets rendering large areas uninhabitable for most species. Fossil records suggest that many species survived glacial maxima by retreating to refugia, usually at lower latitudes. Recently, phylogeographic studies have given support to the existence of previously unknown, or cryptic, refugia. Here we summarise many of these insights into the glacial histories of species in cryptic refugia gained through phylogeographic approaches. Understanding such refugia might be important as the Earth heads into another period of climate change, in terms of predicting the effects on species distribution and survival.
Agaras, Betina; Sobrero, Patricio; Valverde, Claudio
2013-02-01
Members of the CsrA/RsmA family are global regulatory proteins that bind to mRNAs, usually at the ribosome-binding site, to control mRNA translation and stability. Their activity is counteracted by small non-coding RNAs (sRNAs), which offer several binding sites to compete with mRNA binding. The csrA/rsmA genes are widespread in prokaryotic chromosomes, although certain phylogenetic groups such as Alphaproteobacteria lack this type of global regulator. Interestingly, a csrA/rsmA-like sequence was identified in the replication region of plasmid pMBA19a from the alphaproteobacterium Sinorhizobium meliloti. This rsmA-like allele (rsmA(Sm)) is 58 % identical to Xanthomonas axonopodis pv. citri chromosomal rsmA and bears an unusual C-terminal extension that may fold into an extra α-helix. Homology-based modelling of RsmA(Sm) suggests that all key mRNA-binding residues are conserved and correctly positioned in the RNA-binding pocket. In fact, a 1.6 kb fragment from pMBA19a encompassing the rsmA(Sm) locus restored rsmA/E-dependent phenotypes of rsmA/E gacS Pseudomonas fluorescens mutants. The functionality of RsmA(Sm) was confirmed by the gain of control over target aprA'-'lacZ and hcnA'-'lacZ translational fusions in the same mutant background. The RsmA(Sm) activity correlated with Western blot detection of the polypeptide. Phenotype and translational fusion data from rsmA/E P. fluorescens mutants expressing RsmX/Y/Z RNAs indicated that RsmA(Sm) is able to bind these antagonistic sRNAs. In agreement with the latter observation, it was also found that the sRNA RsmY was stabilized by RsmA(Sm). Deletion of the C-terminal extra α-helix of RsmA(Sm) affected its cellular concentration, but increased its relative RNA-binding activity. This is believed to be the first report of the presence and characterization of a functional csrA/rsmA homologue in a mobile genetic element.
Yong, Delicia; Tee, Kok Keng; Yin, Wai-Fong; Chan, Kok-Gan
2016-01-01
To date, information on plasmid analysis in Pandoraea spp. is scarce. To address the gap of knowledge on this, the complete sequences of eight plasmids from Pandoraea spp. namely Pandoraea faecigallinarum DSM 23572T (pPF72-1, pPF72-2), Pandoraea oxalativorans DSM 23570T (pPO70-1, pPO70-2, pPO70-3, pPO70-4), Pandoraea vervacti NS15 (pPV15) and Pandoraea apista DSM 16535T (pPA35) were studied for the first time in this study. The information on plasmid sequences in Pandoraea spp. is useful as the sequences did not match any known plasmid sequence deposited in public databases. Replication genes were not identified in some plasmids, a situation that has led to the possibility of host interaction involvement. Some plasmids were also void of par genes and intriguingly, repA gene was also not discovered in these plasmids. This further leads to the hypothesis of host-plasmid interaction. Plasmid stabilization/stability protein-encoding genes were observed in some plasmids but were not established for participating in plasmid segregation. Toxin-antitoxin systems MazEF, VapBC, RelBE, YgiT-MqsR, HigBA, and ParDE were identified across the plasmids and their presence would improve plasmid maintenance. Conjugation genes were identified portraying the conjugation ability amongst Pandoraea plasmids. Additionally, we found a shared region amongst some of the plasmids that consists of conjugation genes. The identification of genes involved in replication, segregation, toxin-antitoxin systems and conjugation, would aid the design of drugs to prevent the survival or transmission of plasmids carrying pathogenic properties. Additionally, genes conferring virulence and antibiotic resistance were identified amongst the plasmids. The observed features in the plasmids shed light on the Pandoraea spp. as opportunistic pathogens. PMID:27790203
Modulation of ColE1-like Plasmid Replication for Recombinant Gene Expression
Camps, Manel
2010-01-01
ColE1-like plasmids constitute the most popular vectors for recombinant protein expression. ColE1 plasmid replication is tightly controlled by an antisense RNA mechanism that is highly dynamic, tuning plasmid metabolic burden to the physiological state of the host. Plasmid homeostasis is upset upon induction of recombinant protein expression because of non-physiological levels of expression and because of the frequently biased amino acid composition of recombinant proteins. Disregulation of plasmid replication is the main cause of collapse of plasmid-based expression systems because of a simultaneous increase in the metabolic burden (due to increased average copy number) and in the probability of generation of plasmid-free cells (due to increased copy number variation). Interference between regulatory elements of co-resident plasmids causes comparable effects on plasmid stability (plasmid incompatibility). Modulating plasmid copy number for recombinant gene expression aims at achieving a high gene dosage while preserving the stability of the expression system. Here I present strategies targeting plasmid replication for optimizing recombinant gene expression. Specifically, I review approaches aimed at modulating the antisense regulatory system (as well as their implications for plasmid incompatibility) and innovative strategies involving modulation of host factors, of R-loop formation, and of the timing of recombinant gene expression. PMID:20218961
First report of Persimmon cryptic virus and Persimmon virus A in Korea
USDA-ARS?s Scientific Manuscript database
In 2014, a total of 77 persimmon (Diospyros kaki Thunb.) trees from Korean commercial persimmon orchards were surveyed for Persimmon cryptic virus (PeCV) and Persimmon virus A (PeVA). Leaf samples were collected from symptomatic trees with necrosis (two), or mosaic and leaf malformations (one) and 7...
ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616
D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...
A nearly cryptic scorpionfly, Panorpa cryptica n sp.(Mecoptera: Panorpidae) from North America
Wesley Bicha; Nathan Schiff; Aaron Lancaster; Brian Scheffler
2015-01-01
The first nearly cryptic species of scorpionfly from the United States, Strong>Panorpa cryptica Bicha and Schiff, n. sp., is described from northern Georgia, southwestern North Carolina and northwestern South Carolina. This insect was initially differentiated from the very similar Panorpa nebulosa Westwood by its unique cytochrome...
USDA-ARS?s Scientific Manuscript database
In Washington state, identification of the quarantine apple pest Rhagoletis pomonella (Walsh) is complicated by the presence of the cryptic species R. zephyria Snow (Diptera: Tephritidae). Distinguishing the two flies is important because there is a zero tolerance policy for R. pomonella in apple p...
Field identification of the cryptic vespertilionid bats, Myotis lucifugus and M. yumanensis
Theodore J. Weller; Shonene A. Scott; Thomas J. Rodhouse; Patricia C. Ormsbee; Jan M. Zinck
2007-01-01
Recent advances in molecular techniques have provided new tools for confirming species identities, however they can be expensive and results are not immediately available. Myotis lucificugus and M. yumanensis are morphologically cryptic species of bats sympatric in western North America that can be difficult to distinguish in the...
USDA-ARS?s Scientific Manuscript database
There are approximately 55,000 described Acari species, accounting for almost half of all known Arachnida species, but total estimated Acari diversity is reckoned to be far greater. One important source of currently hidden Acari diversity is cryptic speciation, which poses challenges to taxonomists ...
Ma, Huaji; Zhang, Shuting; Lu, Xuebin; Xi, Bo; Guo, Xingli; Wang, Han; Duan, Jingxiao
2012-07-01
A pilot-scale lysis-cryptic growth system was built and operated continuously for excess sludge reduction. Combined ultrasonic/alkaline disintegration and hydrolysis/acidogenesis were integrated into its sludge pretreatment system. Continuous operation showed that the observed biomass yield and the sludge reduction efficiency of the lysis-cryptic growth system were 0.27 kg VSS/kg COD consumed and 56.5%, respectively. The water quality of its effluent was satisfactory. The sludge pretreatment system performed well and its TCOD removal efficiency was 7.9% which contributed a sludge reduction efficiency of 2.1%. The SCOD, VFA, TN, NH(4)(+)-N, TP and pH in the supernatant of pretreated sludge were 1790 mg/L, 1530 mg COD/L, 261.1mg/L, 114.0mg/L, 93.1mg/L and 8.69, respectively. The total operation cost of the lysis-cryptic growth system was $ 0.186/m(3) wastewater, which was 11.4% less than that of conventional activated sludge (CAS) system without excess sludge pretreatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Flow cytometry and real-time quantitative PCR as tools for assessing plasmid persistence.
Loftie-Eaton, Wesley; Tucker, Allison; Norton, Ann; Top, Eva M
2014-09-01
The maintenance of a plasmid in the absence of selection for plasmid-borne genes is not guaranteed. However, plasmid persistence can evolve under selective conditions. Studying the molecular mechanisms behind the evolution of plasmid persistence is key to understanding how plasmids are maintained under nonselective conditions. Given the current crisis of rapid antibiotic resistance spread by multidrug resistance plasmids, this insight is of high medical relevance. The conventional method for monitoring plasmid persistence (i.e., the fraction of plasmid-containing cells in a population over time) is based on cultivation and involves differentiating colonies of plasmid-containing and plasmid-free cells on agar plates. However, this technique is time-consuming and does not easily lend itself to high-throughput applications. Here, we present flow cytometry (FCM) and real-time quantitative PCR (qPCR) as alternative tools for monitoring plasmid persistence. For this, we measured the persistence of a model plasmid, pB10::gfp, in three Pseudomonas hosts and in known mixtures of plasmid-containing and -free cells. We also compared three performance criteria: dynamic range, resolution, and variance. Although not without exceptions, both techniques generated estimates of overall plasmid loss rates that were rather similar to those generated by the conventional plate count (PC) method. They also were able to resolve differences in loss rates between artificial plasmid persistence assays. Finally, we briefly discuss the advantages and disadvantages for each technique and conclude that, overall, both FCM and real-time qPCR are suitable alternatives to cultivation-based methods for routine measurement of plasmid persistence, thereby opening avenues for high-throughput analyses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Gascoyne, D M; Heritage, J; Hawkey, P M; Turner, A; van Klingeren, B
1991-08-01
High level tetracycline resistant strains of Neisseria gonorrhoeae (TRNG) have been shown to carry a 40.6 kb (25.2 MDa) conjugative plasmid with a Class M tetracycline resistance determinant. Restriction endonuclease analysis mapping showed that there were at least two different TRNG plasmid types which were found in geographically distinct locations. The physical maps of these two plasmids were compared to a gonococcal conjugative plasmid which did not encode tetracycline resistance. The plasmid type which is endemic in the Netherlands was found to be closely related to the gonococcal conjugative plasmid, which supports the established hypothesis that the 40.6 kb plasmid has evolved by transposition of the TetM determinant into the conjugative plasmid. The plasmid found in the United States has either evolved by substantial divergent evolution or it results from a different transposition event. In the UK there have been isolations of TRNGs carrying either of the two plasmid types reflecting a flow of people both across the Atlantic and in Europe. It is possible that further TetM-containing plasmids will be found in N. gonorrhoeae paralleling the family of TEM beta-lactamase encoding plasmids already described.
Whitacre, James M.; Lin, Joseph; Harding, Angus
2011-01-01
Evolution is often characterized as a process involving incremental genetic changes that are slowly discovered and fixed in a population through genetic drift and selection. However, a growing body of evidence is finding that changes in the environment frequently induce adaptations that are much too rapid to occur by an incremental genetic search process. Rapid evolution is hypothesized to be facilitated by mutations present within the population that are silent or “cryptic” within the first environment but are co-opted or “exapted” to the new environment, providing a selective advantage once revealed. Although cryptic mutations have recently been shown to facilitate evolution in RNA enzymes, their role in the evolution of complex phenotypes has not been proven. In support of this wider role, this paper describes an unambiguous relationship between cryptic genetic variation and complex phenotypic responses within the immune system. By reviewing the biology of the adaptive immune system through the lens of evolution, we show that T cell adaptive immunity constitutes an exemplary model system where cryptic alleles drive rapid adaptation of complex traits. In naive T cells, normally cryptic differences in T cell receptor reveal diversity in activation responses when the cellular population is presented with a novel environment during infection. We summarize how the adaptive immune response presents a well studied and appropriate experimental system that can be used to confirm and expand upon theoretical evolutionary models describing how seemingly small and innocuous mutations can drive rapid cellular evolution. PMID:22363338
Postaire, Bautisse; Magalon, Hélène; Bourmaud, Chloé A-F; Bruggemann, J Henrich
2016-12-01
A comprehensive inventory of global biodiversity would be greatly improved by automating methods for species delimitation. The Automatic Barcode Gap Discovery method, the Poisson tree processes algorithm and the Generalized mixed Yule-coalescent model have been proposed as means of increasing the rate of biodiversity description using single locus data. We applied these methods to explore the diversity within the Aglaopheniidae, a hydrozoan family with many species widely distributed across tropical and temperate oceans. Our analyses revealed widespread cryptic diversity in this family, almost half of the morpho-species presenting several independent evolutionary lineages, as well as support for cases of synonymy. For two common species of this family, Lytocarpia brevirostris and Macrorhynchia phoenicea, we compared the outputs to clustering analyses based on microsatellite data and to nuclear gene phylogenies. For L. brevirostris, microsatellite data were congruent with results of the species delimitation methods, revealing the existence of two cryptic species with Indo-Pacific distribution. For M. phoenicea, all analyses confirmed the presence of two cryptic species within the South-Western Indian Ocean. Our study suggests that the diversity of Aglaopheniidae might be much higher than assumed, likely related to low dispersal capacities. Sequence-based species delimitation methods seem highly valuable to reveal cryptic diversity in hydrozoans; their application in an integrative framework will be very useful in describing the phyletic diversity of these organisms. Copyright © 2016 Elsevier Inc. All rights reserved.
Stridulations Reveal Cryptic Speciation in Neotropical Sympatric Ants
Ferreira, Ronara Souza; Poteaux, Chantal; Delabie, Jacques Hubert Charles; Fresneau, Dominique; Rybak, Fanny
2010-01-01
The taxonomic challenge posed by cryptic species underlines the importance of using multiple criteria in species delimitation. In the current paper we tested the use of acoustic analysis as a tool to assess the real diversity in a cryptic species complex of Neotropical ants. In order to understand the potential of acoustics and to improve consistency in the conclusions by comparing different approaches, phylogenetic relationships of all the morphs considered were assessed by the analysis of a fragment of the mitochondrial DNA cytochrome b. We observed that each of the cryptic morph studied presents a morphologically distinct stridulatory organ and that all sympatric morphs produce distinctive stridulations. This is the first evidence of such a degree of specialization in the acoustic organ and signals in ants, which suggests that stridulations may be among the cues used by these ants during inter-specific interactions. Mitochondrial DNA variation corroborated the acoustic differences observed, confirming acoustics as a helpful tool to determine cryptic species in this group of ants, and possibly in stridulating ants in general. Congruent morphological, acoustic and genetic results constitute sufficient evidence to propose each morph studied here as a valid new species, suggesting that P. apicalis is a complex of at least 6 to 9 species, even if they present different levels of divergence. Finally, our results highlight that ant stridulations may be much more informative than hitherto thought, as much for ant communication as for integrative taxonomists. PMID:21203529
Plasmid-linked ampicillin resistance in haempohilus influenza type b.
Elwell, L P; De Graaff, J; Seibert, D; Falkow, S
1975-08-01
Four ampicillin-resistant, beta-lactamase-producing strains of Haempohilus influenzae type b were examined for the presence of plasmid deoxyribonucleic acid (DNA). Three resistant strains contained a 30 x 10-6-dalton (30Mdal) plasmid and one resitant strain contained a 3-Mdal plasmid. The ampicillin-sensitive Haemophilus strains examined did not contain plasmid DNA. Transformation of a sensitive H. influenzae strain to ampicillin resistance with isolated plasmid DNA preparations revealed that the structural gene for beta-lactamase resided on both plasmid species. DNA-DNA hybridization studies showed that the 30-Mdal Haemophilus plasmid contained the ampicillin translocation DNA segment (TnA) found on some R-factors of enteric origin of the H. influenzae plasmids.
Rawre, Jyoti; Dhawan, Benu; Malhotra, Neena; Sreenivas, Vishnubhatla; Broor, Shobha; Chaudhry, Rama
2016-12-01
To determine the prevalence and distribution of Chlamydia trachomatis genovars in patients with infertility by PCR-RFLP and ompA gene sequencing. Prevalence of other etiological agents (viz., Ureaplasma spp. and Mycoplasma hominis) were also assessed. Endocervical swabs were collected from 477 women and urine was collected from 151 men attending the Infertility Clinic. The samples were screened for C. trachomatis by cryptic plasmid, ompA gene and nested ompA gene PCR. Genotyping was performed by PCR-RFLP and sequencing. Samples were screened for Ureaplasma spp. and M. hominis. The prevalence of C. trachomatis in infertile women and their male partners were 15.7% (75 of 477) and 10.0% (15 of 151) respectively. Secondary infertility was significantly associated with chlamydial infection. Genovar E was the most prevalent followed by genovar D and F. Twenty-four C. trachomatis strains were selected for ompA gene sequencing. No mixed infection was picked. Variability in ompA sequences was seen in 50.0%. Both PCR-RFLP and ompA gene sequencing showed concordant results. High prevalence of C. trachomatis in infertile couples warrants routine screening for C. trachomatis infection in all infertile couples. Genotyping of the ompA gene of C. trachomatis may be a valuable tool in understanding the natural history of C. trachomatis infection. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Smith, Hilde; Bossers, Alex; Harders, Frank; Wu, Guanghui; Woodford, Neil; Schwarz, Stefan; Guerra, Beatriz; Rodríguez, Irene; van Essen-Zandbergen, Alieda; Brouwer, Michael; Mevius, Dik
2015-09-01
The aim of the study was to identify the plasmid-encoded factors contributing to the emergence and spread of epidemic IncI1-Iγ plasmids obtained from Escherichia coli and Salmonella enterica isolates from animal and human reservoirs. For this, 251 IncI1-Iγ plasmids carrying various extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase genes were compared using plasmid multilocus sequence typing (pMLST). Thirty-two of these plasmids belonging to different pMLST types were sequenced using Roche 454 and Illumina platforms. Epidemic IncI1-Iγ plasmids could be assigned to various dominant clades, whereas rarely detected plasmids clustered together as a distinct clade. Similar phylogenetic trees were obtained using only the plasmid backbone sequences, showing that the differences observed between the plasmids belonging to distinct clades resulted mainly from differences between their backbone sequences. Plasmids belonging to the various clades differed particularly in the presence/absence of genes encoding partitioning and addiction systems, which contribute to stable inheritance during cell division and plasmid maintenance. Despite this, plasmids belonging to the various phylogenetic clades also showed marked resistance gene associations, indicating the circulation of successful plasmid-gene combinations. The variation in traY and excA genes found in IncI1-Iγ plasmids is conserved within pMLST sequence types and plays a role in incompatibility, although functional study is needed to elucidate the role of these genes in plasmid epidemiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Swenson, Kai E; Dziura, James D; Aydin, Ani; Reynolds, Jesse; Wira, Charles R
2018-03-01
Prognostication in sepsis is limited by disease heterogeneity, and measures to risk-stratify patients in the proximal phases of care lack simplicity and accuracy. Hyperlactatemia and vasopressor dependence are easily identifiable risk factors for poor outcomes. This study compares incidence and hospital outcomes in sepsis based on initial serum lactate level and vasopressor use in the emergency department (ED). In a retrospective analysis of a prospectively identified dual-center ED registry, patients with sepsis were categorized by ED vasopressor use and initial serum lactate level. Vasopressor-dependent patients were categorized as dysoxic shock (lactate >4.0 mmol/L) and vasoplegic shock (≤4.0 mmol/L). Patients not requiring vasopressors were categorized as cryptic shock major (lactate >4.0 mmol/L), cryptic shock minor (>2.0 and ≤4.0 mmol/L), and sepsis without lactate elevation (≤2.0 mmol/L). Of 446 patients included, 4.9% (n = 22) presented in dysoxic shock, 11.7% (n = 52) in vasoplegic shock, 12.1% (n = 54) in cryptic shock major, 30.9% (n = 138) in cryptic shock minor, and 40.4% (n = 180) in sepsis without lactate elevation. Group mortality rates at 28 days were 50.0, 21.1, 18.5, 12.3, and 7.2%, respectively. After adjusting for potential confounders, odds ratios for mortality at 28 days were 15.1 for dysoxic shock, 3.6 for vasoplegic shock, 3.8 for cryptic shock major, and 1.9 for cryptic shock minor, when compared to sepsis without lactate elevation. Lactate elevation is associated with increased mortality in both vasopressor dependent and normotensive infected patients presenting to the emergency department (ED). Cryptic shock mortality (normotension + lactate >4 mmol/L) is equivalent to vasoplegic shock mortality (vasopressor requirement + lactate <4 mmol/L) in our population. The odds of normotensive, infected patients decompensating is three to fourfold higher with hyperlactemia. The proposed Sepsis-3 definitions exclude an entire group of high-risk ED patients. A simple classification in the ED by vasopressor requirement and initial lactate level may identify high-risk subgroups of sepsis. This study may inform prognostication and triage decisions in the proximal phases of care.
van Mastrigt, Oscar; Lommers, Marcel M A N; de Vries, Yorick C; Abee, Tjakko; Smid, Eddy J
2018-03-23
Lactic acid bacteria can carry multiple plasmids affecting their performance in dairy fermentations. The expression of plasmid-encoded genes and the activity of the corresponding proteins is severely affected by changes in the number of plasmid copies. We studied the impact of growth rate on dynamics of plasmid copy numbers at high growth rates in chemostat cultures and down to near-zero growth rates in retentostat cultures. Five plasmids of the dairy strain Lactococcus lactis FM03-V1 were selected which varied in size (3 to 39 kb), in replication mechanism (theta or rolling-circle) and in putative (dairy-associated) functions. Copy numbers ranged from 1.5 to 40.5 and the copy number of theta-type replicating plasmids were negatively correlated to the plasmid size. Despite the extremely wide range of growth rates (0.0003 h -1 to 0.6 h -1 ), copy numbers of the five plasmids were stable and only slightly increased at near-zero growth rates showing that the plasmid replication rate was strictly controlled. One low-copy number plasmid, carrying a large exopolysaccharide gene cluster, was segregationally unstable during retentostat cultivations reflected in complete loss of the plasmid in one of the retentostat cultures. The copy number of the five plasmids was also hardly affected by varying the pH value, nutrient limitation or presence of citrate (maximum 2.2-fold) signifying the stability in copy number of the plasmids. Importance Lactococcus lactis is extensively used in starter cultures for dairy fermentations. Important traits for growth and survival of L. lactis in dairy fermentations are encoded by genes located on plasmids, such as genes involved in lactose and citrate metabolism, protein degradation and oligopeptide uptake and bacteriophage resistance. Because the number of plasmid copies could affect the expression of plasmid-encoded genes, it is important to know the factors that influence the plasmid copy numbers. We monitored plasmid copy numbers of L. lactis at near-zero growth rates, characteristic for cheese ripening. Moreover, we analysed the effect of pH, nutrient limitation and presence of citrate. This showed that plasmid copy numbers were stable giving insight into plasmid copy number dynamics in dairy fermentations. Copyright © 2018 American Society for Microbiology.
Clostridium perfringens type A–E toxin plasmids
Freedman, John C.; Theoret, James R.; Wisniewski, Jessica A.; Uzal, Francisco A.; Rood, Julian I.; McClane, Bruce A.
2014-01-01
Clostridium perfringens relies upon plasmid-encoded toxin genes to cause intestinal infections. These toxin genes are associated with insertion sequences that may facilitate their mobilization and transfer, giving rise to new toxin plasmids with common backbones. Most toxin plasmids carry a transfer of clostridial plasmids locus mediating conjugation, which likely explains the presence of similar toxin plasmids in otherwise unrelated C. perfringens strains. The association of many toxin genes with insertion sequences and conjugative plasmids provides virulence flexibility when causing intestinal infections. However, incompatibility issues apparently limit the number of toxin plasmids maintained by a single cell. PMID:25283728
Pu, Xiao-Ying; Gu, Yaming; Li, Jun; Song, Shu-Juan; Lu, Zhe
2018-05-18
The aim of this study was to explore the fluoroquinolone resistance mechanism of aac (6')-Ib-cr and qnrS gene by comparing complete sequences and stability of the aac(6')-Ib-cr- and qnrS-positive plasmids from Shigella isolates in the Hangzhou area of China. The complete sequences of four newly acquired plasmids carrying aac(6')-Ib-cr or qnrS were compared with those of two plasmids obtained previously and two similar reference Escherichia coli plasmids. The results showed that the length, antibiotic resistance genes and genetic environment were different among the plasmids. Moreover, the plasmid stability of three wild-type isolates and five plasmid transformants carrying aac(6')-Ib-cr and/or qnrS was measured in vitro, and all eight isolates were found to have lost their aac(6')-Ib-cr- or qnrS-positive plasmids to a different extent at different stages. When the plasmids were electroporated into Shigella flexneri or they lost positive plasmids, the MICs of ciprofloxacin increased or decreased two- to eightfold for aac(6')-Ib-cr-positive plasmids and 16- to 32-fold for qnrS-positive plasmids. To our knowledge, this is the first report comparing the complete sequences and describing stability for the aac(6')-Ib-cr- and qnrS-positive plasmids from Shigella isolates.
Host range diversification within the IncP-1 plasmid group
Yano, Hirokazu; Rogers, Linda M.; Knox, Molly G.; Heuer, Holger; Smalla, Kornelia; Brown, Celeste J.
2013-01-01
Broad-host-range plasmids play a critical role in the spread of antibiotic resistance and other traits. In spite of increasing information about the genomic diversity of closely related plasmids, the relationship between sequence divergence and host range remains unclear. IncP-1 plasmids are currently classified into six subgroups based on the genetic distance of backbone genes. We investigated whether plasmids from two subgroups exhibit a different host range, using two IncP-1γ plasmids, an IncP-1β plasmid and their minireplicons. Efficiencies of plasmid establishment and maintenance were compared using five species that belong to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. The IncP-1β plasmid replicated and persisted in all five hosts in the absence of selection. Of the two IncP-1γ plasmids, both were unable to replicate in alphaproteobacterial host Sphingobium japonicum, and one established itself in Agrobacterium tumefaciens but was very unstable. In contrast, both IncP-1γ minireplicons, which produced higher levels of replication initiation protein than the wild-type plasmids, replicated in all strains, suggesting that poor establishment of the native plasmids is in part due to suboptimal replication initiation gene regulation. The findings suggest that host ranges of distinct IncP-1 plasmids only partially overlap, which may limit plasmid recombination and thus result in further genome divergence. PMID:24002747
Ho, Wing Sze; Yap, Kien-Pong; Yeo, Chew Chieng; Rajasekaram, Ganeswrie; Thong, Kwai Lin
2015-01-01
Extraintestinal pathogenic Escherichia coli (ExPEC) that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA, and FIB) with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as bla TEM-1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR) to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD) which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM)-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA)-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok) and a plasmid partitioning system, ParAB, and PsiAB, which are important for plasmid maintenance were also found. Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of clinical importance. Such phenomenon is bothersome when the plasmids are transmissible, facilitating the spread of virulence and resistance plasmids among pathogenic bacteria. Notably, certain TA systems are more commonly found in particular ExPEC plasmid types, indicating the possible relationships between certain TA systems and ExPEC pathogenesis.
Cao, Guojie; Allard, Marc; Hoffmann, Maria; Muruvanda, Tim; Luo, Yan; Payne, Justin; Meng, Kevin; Zhao, Shaohua; McDermott, Patrick; Brown, Eric; Meng, Jianghong
2018-06-01
Multidrug-resistant (MDR) plasmids play an important role in disseminating antimicrobial resistance genes. To elucidate the antimicrobial resistance gene compositions in A/C incompatibility complex (IncA/C) plasmids carried by animal-derived MDR Salmonella Newport, and to investigate the spread mechanism of IncA/C plasmids, this study characterizes the complete nucleotide sequences of IncA/C plasmids by comparative analysis. Complete nucleotide sequencing of plasmids and chromosomes of six MDR Salmonella Newport strains was performed using PacBio RSII. Open reading frames were assigned using prokaryotic genome annotation pipeline (PGAP). To understand genomic diversity and evolutionary relationships among Salmonella Newport IncA/C plasmids, we included three complete IncA/C plasmid sequences with similar backbones from Salmonella Newport and Escherichia coli: pSN254, pAM04528, and peH4H, and additional 200 draft chromosomes. With the exception of canine isolate CVM22462, which contained an additional IncI1 plasmid, each of the six MDR Salmonella Newport strains contained only the IncA/C plasmid. These IncA/C plasmids (including references) ranged in size from 80.1 (pCVM21538) to 176.5 kb (pSN254) and carried various resistance genes. Resistance genes floR, tetA, tetR, strA, strB, sul, and mer were identified in all IncA/C plasmids. Additionally, bla CMY-2 and sugE were present in all IncA/C plasmids, excepting pCVM21538. Plasmid pCVM22462 was capable of being transferred by conjugation. The IncI1 plasmid pCVM22462b in CVM22462 carried bla CMY-2 and sugE. Our data showed that MDR Salmonella Newport strains carrying similar IncA/C plasmids clustered together in the phylogenetic tree using chromosome sequences and the IncA/C plasmids from animal-derived Salmonella Newport contained diverse resistance genes. In the current study, we analyzed genomic diversities and phylogenetic relationships among MDR Salmonella Newport using complete plasmids and chromosome sequences and provided possible spread mechanism of IncA/C plasmids in Salmonella Newport Lineage II.
[Construction of plant expression plasmid of chimera SBR-CT delta A1].
Mai, Sui; Ling, Junqi
2003-08-01
The purpose of this study is to construct plant expression plasmid containing the gene encoding chimera SBR-CT delta A1. The target gene fragment P2, including the gene-encoded chimera SBR-CT delta A1 (3,498-5,378 bp), was obtained by standard PCR amplification. The PCR products were ligated with pGEM-easy vector through TA clone to form plasmid pTSC. The plasmid pTSC and plasmid pPOKII were digested by restricted endonuclease BamHI and KpnI, and the digested products were extracted and purified for recombination. Then the purified P2 and plasmid pPOKII were recombined by T4 DNA ligase to form recombinant plasmid pROSC; inserting bar gene into the plasmid and form pROSB plasmid. The recombined plasmids were isolated and identified by restricted endonuclease cutting and Sanger dideoxy DNA sequencing. P2 gene was linked to pPOKII plasmid and formed recombinant plasmid pROSC. The DNA sequence and orientation were corrected. And bar gene was inserted into pPOSC and form recombinant plasmid pROSB. Plant expression vector pROSC and pROSB containing the gene encoding chimera SBR-CT delta A1, which may provide useful experiment foundation for further study on edible vaccine against caries have been successfully constructed.
Fast and efficient three-step target-specific curing of a virulence plasmid in Salmonella enterica.
de Moraes, Marcos H; Teplitski, Max
2015-12-01
Virulence plasmids borne by serovars of Salmonella enterica carry genes involved in its pathogenicity, as well as other functions. Characterization of phenotypes associated with virulence plasmids requires a system for efficiently curing strains of their virulence plasmids. Here, we developed a 3-step protocol for targeted curing of virulence plasmids. The protocol involves insertion of an I-SecI restriction site linked to an antibiotic resistance gene into the target plasmid using λ-Red mutagenesis, followed by the transformation with a temperature-sensitive auxiliary plasmid which carries I-SecI nuclease expressed from a tetracycline-inducible promoter. Finally, the auxiliary plasmid is removed by incubation at 42 °C and the plasmid-less strains are verified on antibiotic-containing media. This method is fast and very efficient: over 90 % of recovered colonies lacked their virulence plasmid.
We investigated patterns of genetic diversity among invasive populations of A. valida and J. marmorata from the Pacific North American coast to assess the accuracy of morphological identification and determine whether or not cryptic diversity and multiple introductions contribute...
Rosati, Roberto; La Starza, Roberta; Barba, Gianluca; Gorello, Paolo; Pierini, Valentina; Matteucci, Caterina; Roti, Giovanni; Crescenzi, Barbara; Aloisi, Teresa; Aversa, Franco; Martelli, Massimo Fabrizio; Mecucci, Cristina
2007-02-01
In hematologic malignancies chromosome aberrations generating fusion genes include cryptic deletions. In a patient with acute myeloid leukemia and normal karyo-type we discovered a new cryptic 9q34 deletion and here report the cytogenetic and molecular findings. The 9q34 deletion extends 2.5 megabases and juxtaposes the 5' TAF-I to the 3' CAN producing a TAF-I/CAN fusion gene. TAF-I/CAN transcribes into two fusion proteins bearing either TAF-Ialpha or TAF-Ibeta moieties. We set up molecular assays to monitor the chimeric TAF-Ialpha/CAN and TAF-Ibeta/CAN transcripts which, after hematopoietic stem cell transplantation from an HLA-identical sibling, were no longer detected.
Location of Sites Within 'Cryptic Terrain'
NASA Technical Reports Server (NTRS)
2007-01-01
A regional landscape near Mars' south pole is called 'cryptic terrain' because it once defied explanation, but new observations bolster and refine interpretations of how springtime outbursts of carbon-dioxide gas there sculpt intricate patterns and paint seasonal splotches. This map indicates locations of three sites that have been examined within the area of cryptic terrain, informally designated 'Manhattan,' 'Giza' and 'Ithaca.' The underlying map offers context of brightness measurements from the Thermal Emission Spectrometer instrument draped over a shaded relief map based on data from the Mars Orbiter Laser Altimeter instrument. Cool colors are areas with a low albedo (dark) and warm colors are areas which have high albedo (bright). Both of those instruments flew on NASA's Mars Global Surveyor orbiter.Genetic control of ColE1 plasmid stability that is independent of plasmid copy number regulation.
Standley, Melissa S; Million-Weaver, Samuel; Alexander, David L; Hu, Shuai; Camps, Manel
2018-06-16
ColE1-like plasmid vectors are widely used for expression of recombinant genes in E. coli. For these vectors, segregation of individual plasmids into daughter cells during cell division appears to be random, making them susceptible to loss over time when no mechanisms ensuring their maintenance are present. Here we use the plasmid pGFPuv in a recA relA strain as a sensitized model to study factors affecting plasmid stability in the context of recombinant gene expression. We find that in this model, plasmid stability can be restored by two types of genetic modifications to the plasmid origin of replication (ori) sequence: point mutations and a novel 269 nt duplication at the 5' end of the plasmid ori, which we named DAS (duplicated anti-sense) ori. Combinations of these modifications produce a range of copy numbers and of levels of recombinant expression. In direct contradiction with the classic random distribution model, we find no correlation between increased plasmid copy number and increased plasmid stability. Increased stability cannot be explained by reduced levels of recombinant gene expression either. Our observations would be more compatible with a hybrid clustered and free-distribution model, which has been recently proposed based on detection of individual plasmids in vivo using super-resolution fluorescence microscopy. This work suggests a role for the plasmid ori in the control of segregation of ColE1 plasmids that is distinct from replication initiation, opening the door for the genetic regulation of plasmid stability as a strategy aimed at enhancing large-scale recombinant gene expression or bioremediation.
Parreira, Valeria R.; Costa, Marcio; Eikmeyer, Felix; Blom, Jochen; Prescott, John F.
2012-01-01
Twenty-six isolates of Clostridium perfringens of different MLST types from chickens with necrotic enteritis (NE) (15 netB-positive) or from healthy chickens (6 netB-positive, 5 netB-negative) were found to contain 1–4 large plasmids, with most netB-positive isolates containing 3 large and variably sized plasmids which were more numerous and larger than plasmids in netB-negative isolates. NetB and cpb2 were found on different plasmids consistent with previous studies. The pathogenicity locus NELoc1, which includes netB, was largely conserved in these plasmids whereas NeLoc3, present in the cpb2 containing plasmids, was less well conserved. A netB-positive and a cpb2-positive plasmid were likely to be conjugative, and the plasmids were completely sequenced. Both plasmids possessed the intact tcp conjugative region characteristic of C. perfringens conjugative plasmids. Comparative genomic analysis of nine CpCPs, including the two plasmids described here, showed extensive gene rearrangements including pathogenicity locus and accessory gene insertions around rather than within the backbone region. The pattern that emerges from this analysis is that the major toxin-containing regions of the variety of virulence-associated CpCPs are organized as complex pathogenicity loci. How these different but related CpCPs can co-exist in the same host has been an unanswered question. Analysis of the replication-partition region of these plasmids suggests that this region controls plasmid incompatibility, and that CpCPs can be grouped into at least four incompatibility groups. PMID:23189158
Parreira, Valeria R; Costa, Marcio; Eikmeyer, Felix; Blom, Jochen; Prescott, John F
2012-01-01
Twenty-six isolates of Clostridium perfringens of different MLST types from chickens with necrotic enteritis (NE) (15 netB-positive) or from healthy chickens (6 netB-positive, 5 netB-negative) were found to contain 1-4 large plasmids, with most netB-positive isolates containing 3 large and variably sized plasmids which were more numerous and larger than plasmids in netB-negative isolates. NetB and cpb2 were found on different plasmids consistent with previous studies. The pathogenicity locus NELoc1, which includes netB, was largely conserved in these plasmids whereas NeLoc3, present in the cpb2 containing plasmids, was less well conserved. A netB-positive and a cpb2-positive plasmid were likely to be conjugative, and the plasmids were completely sequenced. Both plasmids possessed the intact tcp conjugative region characteristic of C. perfringens conjugative plasmids. Comparative genomic analysis of nine CpCPs, including the two plasmids described here, showed extensive gene rearrangements including pathogenicity locus and accessory gene insertions around rather than within the backbone region. The pattern that emerges from this analysis is that the major toxin-containing regions of the variety of virulence-associated CpCPs are organized as complex pathogenicity loci. How these different but related CpCPs can co-exist in the same host has been an unanswered question. Analysis of the replication-partition region of these plasmids suggests that this region controls plasmid incompatibility, and that CpCPs can be grouped into at least four incompatibility groups.
Diverse Broad-Host-Range Plasmids from Freshwater Carry Few Accessory Genes
Sen, Diya; Yano, Hirokazu; Bauer, Matthew L.; Rogers, Linda M.; Van der Auwera, Geraldine A.
2013-01-01
Broad-host-range self-transferable plasmids are known to facilitate bacterial adaptation by spreading genes between phylogenetically distinct hosts. These plasmids typically have a conserved backbone region and a variable accessory region that encodes host-beneficial traits. We do not know, however, how well plasmids that do not encode accessory functions can survive in nature. The goal of this study was to characterize the backbone and accessory gene content of plasmids that were captured from freshwater sources without selecting for a particular phenotype or cultivating their host. To do this, triparental matings were used such that the only required phenotype was the plasmid's ability to mobilize a nonconjugative plasmid. Based on complete genome sequences of 10 plasmids, only 5 carried identifiable accessory gene regions, and none carried antibiotic resistance genes. The plasmids belong to four known incompatibility groups (IncN, IncP-1, IncU, and IncW) and two potentially new groups. Eight of the plasmids were shown to have a broad host range, being able to transfer into alpha-, beta-, and gammaproteobacteria. Because of the absence of antibiotic resistance genes, we resampled one of the sites and compared the proportion of captured plasmids that conferred antibiotic resistance to their hosts with the proportion of such plasmids captured from the effluent of a local wastewater treatment plant. Few of the captured plasmids from either site encoded antibiotic resistance. A high diversity of plasmids that encode no or unknown accessory functions is thus readily found in freshwater habitats. The question remains how the plasmids persist in these microbial communities. PMID:24096417
Davis, R; Vapnek, D
1976-01-01
The amounts of plasmid deoxyribonucleic acid (DNA) and the levels of the in vivo transcription of the Escherichia coli plasmids R538-1 (repressed for conjugal transfer) and R538-1drd (derepressed for transfer) were determined by DNA-DNA hybridization and DNA-ribonucleic acid hybridization, respectively. The results demonstrate that the level of plasmid transcription is increased by two-fold in the strain carrying the derepressed plasmid, compared to an isogenic strain carrying the repressed plasmid, whereas the amount of plasmid DNA is approximately the same, suggesting that the transfer genes are under transcriptional control. Levels of plasmid DNA, plasmid DNA transcription, and chloramphenicol acetyltransferase activity were also compared in a mutant strain that carried the R538-1drd plasmid and was resistant to high levels of antibiotics. This strain produces about 13 copies of plasmid DNA per chromosome compared to five copies for the parent strain. The level of transcription of plasmid DNA was found to be twofold higher in the high-level resistant strain, whereas the level of chloramphenition, acetyltransferase activity was increased by 10-fold. In addition the levels of plasmid DNA transcription and chloramphenicol acetyltransferase activity in the high-level resistant strain were found to be further increased by the presence of high levels of chloramphenicol in the growth medium. The amount of plasmid DNA remained constant under these conditions, indicating that high levels of chloramphenicol can stimulate the expression of plasmid genes at the level of transcription in this strain. PMID:767321
Kyselková, Martina; Chrudimský, Tomáš; Husník, Filip; Chroňáková, Alica; Heuer, Holger; Smalla, Kornelia; Elhottová, Dana
2016-06-01
Manure from dairy farms has been shown to contain diverse tetracycline resistance genes that are transferable to soil. Here, we focus on conjugative plasmids that may spread tetracycline resistance at a conventional dairy farm. We performed exogenous plasmid isolation from cattle feces using chlortetracycline for transconjugant selection. The transconjugants obtained harbored LowGC-type plasmids and tet(Y). A representative plasmid (pFK2-7) was fully sequenced and this was compared with previously described LowGC plasmids from piggery manure-treated soil and a GenBank record from Acinetobacter nosocomialis that we also identified as a LowGC plasmid. The pFK2-7 plasmid had the conservative backbone typical of LowGC plasmids, though this region was interrupted with an insert containing the tet(Y)-tet(R) tetracycline resistance genes and the strA-strB streptomycin resistance genes. Despite Acinetobacter populations being considered natural hosts of LowGC plasmids, these plasmids were not found in three Acinetobacter isolates from the study farm. The isolates harbored tet(Y)-tet(R) genes in identical genetic surroundings as pFK2-7, however, suggesting genetic exchange between Acinetobacter and LowGC plasmids. Abundance of LowGC plasmids and tet(Y) was correlated in manure and soil samples from the farm, indicating that LowGC plasmids may be involved in the spread of tet(Y) in the environment. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Orlek, Alex; Phan, Hang; Sheppard, Anna E; Doumith, Michel; Ellington, Matthew; Peto, Tim; Crook, Derrick; Walker, A Sarah; Woodford, Neil; Anjum, Muna F; Stoesser, Nicole
2017-05-01
Plasmid typing can provide insights into the epidemiology and transmission of plasmid-mediated antibiotic resistance. The principal plasmid typing schemes are replicon typing and MOB typing, which utilize variation in replication loci and relaxase proteins respectively. Previous studies investigating the proportion of plasmids assigned a type by these schemes ('typeability') have yielded conflicting results; moreover, thousands of plasmid sequences have been added to NCBI in recent years, without consistent annotation to indicate which sequences represent complete plasmids. Here, a curated dataset of complete Enterobacteriaceae plasmids from NCBI was compiled, and used to assess the typeability and concordance of in silico replicon and MOB typing schemes. Concordance was assessed at hierarchical replicon type resolutions, from replicon family-level to plasmid multilocus sequence type (pMLST)-level, where available. We found that 85% and 65% of the curated plasmids could be replicon and MOB typed, respectively. Overall, plasmid size and the number of resistance genes were significant independent predictors of replicon and MOB typing success. We found some degree of non-concordance between replicon families and MOB types, which was only partly resolved when partitioning plasmids into finer-resolution groups (replicon and pMLST types). In some cases, non-concordance was attributed to ambiguous boundaries between MOBP and MOBQ types; in other cases, backbone mosaicism was considered a more plausible explanation. β-lactamase resistance genes tended not to show fidelity to a particular plasmid type, though some previously reported associations were supported. Overall, replicon and MOB typing schemes are likely to continue playing an important role in plasmid analysis, but their performance is constrained by the diverse and dynamic nature of plasmid genomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Chen, Chin-Yi; Strobaugh, Terence P; Nguyen, Ly-Huong T; Abley, Melanie; Lindsey, Rebecca L; Jackson, Charlene R
2018-01-01
While antimicrobial resistance in Salmonella enterica is mainly attributed to large plasmids, small plasmids may also harbor antimicrobial resistance genes. Previously, three major groups of ColE1-like plasmids conferring kanamycin-resistance (KanR) in various S. enterica serotypes from diagnostic samples of human or animals were reported. In this study, over 200 KanR S. enterica isolates from slaughter samples, collected in 2010 and 2011 as a part of the animal arm of the National Antimicrobial Resistance Monitoring System, were screened for the presence of ColE1-like plasmids. Twenty-three KanR ColE1-like plasmids were successfully isolated. Restriction fragment mapping revealed five major plasmid groups with subgroups, including two new groups, X (n = 3) and Y/Y2/Y3 (n = 4), in addition to the previously identified groups A (n = 7), B (n = 6), and C/C3 (n = 3). Nearly 75% of the plasmid-carrying isolates were from turkey and included all the isolates carrying X and Y plasmids. All group X plasmids were from serotype Hadar. Serotype Senftenberg carried all the group Y plasmids and one group B plasmid. All Typhimurium isolates (n = 4) carried group A plasmids, while Newport isolates (n = 3) each carried a different plasmid group (A, B, or C). The presence of the selection bias in the NARMS strain collection prevents interpretation of findings at the population level. However, this study demonstrated that KanR ColE1-like plasmids are widely distributed among different S. enterica serotypes in the NARMS isolates and may play a role in dissemination of antimicrobial resistance genes.
Strobaugh, Terence P.; Nguyen, Ly-Huong T.; Abley, Melanie; Lindsey, Rebecca L.; Jackson, Charlene R.
2018-01-01
While antimicrobial resistance in Salmonella enterica is mainly attributed to large plasmids, small plasmids may also harbor antimicrobial resistance genes. Previously, three major groups of ColE1-like plasmids conferring kanamycin-resistance (KanR) in various S. enterica serotypes from diagnostic samples of human or animals were reported. In this study, over 200 KanR S. enterica isolates from slaughter samples, collected in 2010 and 2011 as a part of the animal arm of the National Antimicrobial Resistance Monitoring System, were screened for the presence of ColE1-like plasmids. Twenty-three KanR ColE1-like plasmids were successfully isolated. Restriction fragment mapping revealed five major plasmid groups with subgroups, including two new groups, X (n = 3) and Y/Y2/Y3 (n = 4), in addition to the previously identified groups A (n = 7), B (n = 6), and C/C3 (n = 3). Nearly 75% of the plasmid-carrying isolates were from turkey and included all the isolates carrying X and Y plasmids. All group X plasmids were from serotype Hadar. Serotype Senftenberg carried all the group Y plasmids and one group B plasmid. All Typhimurium isolates (n = 4) carried group A plasmids, while Newport isolates (n = 3) each carried a different plasmid group (A, B, or C). The presence of the selection bias in the NARMS strain collection prevents interpretation of findings at the population level. However, this study demonstrated that KanR ColE1-like plasmids are widely distributed among different S. enterica serotypes in the NARMS isolates and may play a role in dissemination of antimicrobial resistance genes. PMID:29513730
Zheng, Jinshui; Peng, Donghai; Ruan, Lifang; Sun, Ming
2013-12-02
Plasmids play a crucial role in the evolution of bacterial genomes by mediating horizontal gene transfer. However, the origin and evolution of most plasmids remains unclear, especially for megaplasmids. Strains of the Bacillus cereus group contain up to 13 plasmids with genome sizes ranging from 2 kb to 600 kb, and thus can be used to study plasmid dynamics and evolution. This work studied the origin and evolution of 31 B. cereus group megaplasmids (>100 kb) focusing on the most conserved regions on plasmids, minireplicons. Sixty-five putative minireplicons were identified and classified to six types on the basis of proteins that are essential for replication. Twenty-nine of the 31 megaplasmids contained two or more minireplicons. Phylogenetic analysis of the protein sequences showed that different minireplicons on the same megaplasmid have different evolutionary histories. Therefore, we speculated that these megaplasmids are the results of fusion of smaller plasmids. All plasmids of a bacterial strain must be compatible. In megaplasmids of the B. cereus group, individual minireplicons of different megaplasmids in the same strain belong to different types or subtypes. Thus, the subtypes of each minireplicon they contain may determine the incompatibilities of megaplasmids. A broader analysis of all 1285 bacterial plasmids with putative known minireplicons whose complete genome sequences were available from GenBank revealed that 34% (443 plasmids) of the plasmids have two or more minireplicons. This indicates that plasmid fusion events are general among bacterial plasmids. Megaplasmids of B. cereus group are fusion of smaller plasmids, and the fusion of plasmids likely occurs frequently in the B. cereus group and in other bacterial taxa. Plasmid fusion may be one of the major mechanisms for formation of novel megaplasmids in the evolution of bacteria.
Garcillán-Barcia, M. Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M.; de la Cruz, Fernando
2014-01-01
Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143
Lanza, Val F; de Toro, María; Garcillán-Barcia, M Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M; de la Cruz, Fernando
2014-12-01
Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.
Melville, Jane; Smith, Katie; Hobson, Rod; Hunjan, Sumitha; Shoo, Luke
2014-01-01
Molecular phylogenetics is increasingly highlighting the prevalence of cryptic species, where morphologically similar organisms have long independent evolutionary histories. When such cryptic species are known to be declining in numbers and are at risk of extinction due to a range of threatening processes, the disjunction between molecular systematics research and conservation policy becomes a significant problem. We investigate the taxonomic status of Tympanocryptis populations in Queensland, which have previously been assigned to T. tetraporophora, using three species delimitation approaches. The taxonomic uncertainties in this species-group are of particular importance in the Darling Downs Earless Dragon (T. cf. tetraporophora), which is ranked as an endangered ‘species’ of high priority for conservation by the Queensland Department of Environment and Heritage Protection. We undertook a morphological study, integrated with a comprehensive genetic study and species delimitation analyses, to investigate the species status of populations in the region. Phylogenetic analyses of two gene regions (mtDNA: ND2; nuclear: RAG1) revealed high levels of genetic divergence between populations, indicating isolation over long evolutionary time frames, and strongly supporting two independent evolutionary lineages in southeastern Queensland, from the Darling Downs, and a third in the Gulf Region of northern Queensland. Of the three species delimitation protocols used, we found integrative taxonomy the most applicable to this cryptic species complex. Our study demonstrates the utility of integrative taxonomy as a species delimitation approach in cryptic complexes of species with conservation significance, where limited numbers of specimens are available. PMID:25076129
NASA Astrophysics Data System (ADS)
Calvin, W. M.; Cantor, B. A.; James, P. B.
2017-08-01
The Mars Color Imager (MARCI) camera on the Mars Reconnaissance Orbiter provides daily synoptic coverage that allows monitoring of seasonal cap retreat and interannual changes that occur between Mars Years (MY) and over the southern summer. We present the first analysis of this data for the southern seasonal cap evolution observed in MY 28, 29, 30 and 31 (2/2007 to 07/2013). Observation over multiple Mars years allows us to compare changes between years as well as longer-term evolution of the high albedo deposits at the poles. Seasonal cap retreat is similar in all years and to retreats observed in other years by both optical and thermal instruments. The cryptic terrain has a fairly consistent boundary in each year, but numerous small-scale variations occur in each MY observed. Additionally, numerous small dark deposits are identified outside the classically identified cyptic region, including Inca City and other locations not previously noted. The large water ice outlier is observed to retain seasonal frost the longest (outside the polar dome) and is also highly variable in each MY. The development of the cryptic/anti-cryptic hemispheres is inferred to occur due to albedo variations that develop after dust venting starts and may be caused by recondensation of CO2 ice on the brightest and coldest regions controlled by topographic winds. Ground ice may play a role in which regions develop cryptic terrain, as there is no elevation control on either cryptic terrain or the late season brightest deposits.
2014-01-01
Background Skipper butterflies (Hesperiidae) are a relatively well-studied family of Lepidoptera. However, a combination of DNA barcodes, morphology, and natural history data has revealed several cryptic species complexes within them. Here, we investigate three DNA barcode lineages of what has been identified as Urbanus belli (Hesperiidae, Eudaminae) in Área de Conservación Guanacaste (ACG), northwestern Costa Rica. Results Although no morphological traits appear to distinguish among the three, congruent nuclear and mitochondrial lineage patterns show that “Urbanus belli” in ACG is a complex of three sympatric species. A single strain of Wolbachia present in two of the three cryptic species indicates that Urbanus segnestami Burns (formerly Urbanus belliDHJ01), Urbanus bernikerni Burns (formerly Urbanus belliDHJ02), and Urbanus ehakernae Burns (formerly Urbanus belliDHJ03) may be biologically separated by Wolbachia, as well as by their genetics. Use of parallel sequencing through 454-pyrosequencing improved the utility of ITS2 as a phylogenetic marker and permitted examination of the intra- and interlineage relationships of ITS2 variants within the species complex. Interlineage, intralineage and intragenomic compensatory base pair changes were discovered in the secondary structure of ITS2. Conclusion These findings corroborate the existence of three cryptic species. Our confirmation of a novel cryptic species complex, initially suggested by DNA barcode lineages, argues for using a multi-marker approach coupled with next-generation sequencing for exploration of other suspected species complexes. PMID:25005355
Melville, Jane; Smith, Katie; Hobson, Rod; Hunjan, Sumitha; Shoo, Luke
2014-01-01
Molecular phylogenetics is increasingly highlighting the prevalence of cryptic species, where morphologically similar organisms have long independent evolutionary histories. When such cryptic species are known to be declining in numbers and are at risk of extinction due to a range of threatening processes, the disjunction between molecular systematics research and conservation policy becomes a significant problem. We investigate the taxonomic status of Tympanocryptis populations in Queensland, which have previously been assigned to T. tetraporophora, using three species delimitation approaches. The taxonomic uncertainties in this species-group are of particular importance in the Darling Downs Earless Dragon (T. cf. tetraporophora), which is ranked as an endangered 'species' of high priority for conservation by the Queensland Department of Environment and Heritage Protection. We undertook a morphological study, integrated with a comprehensive genetic study and species delimitation analyses, to investigate the species status of populations in the region. Phylogenetic analyses of two gene regions (mtDNA: ND2; nuclear: RAG1) revealed high levels of genetic divergence between populations, indicating isolation over long evolutionary time frames, and strongly supporting two independent evolutionary lineages in southeastern Queensland, from the Darling Downs, and a third in the Gulf Region of northern Queensland. Of the three species delimitation protocols used, we found integrative taxonomy the most applicable to this cryptic species complex. Our study demonstrates the utility of integrative taxonomy as a species delimitation approach in cryptic complexes of species with conservation significance, where limited numbers of specimens are available.
Asgharian, Hosseinali; Sahafi, Homayoun Hosseinzadeh; Ardalan, Aria Ashja; Shekarriz, Shahrokh; Elahi, Elahe
2011-05-01
We provide cytochrome c oxidase subunit 1 (COI) barcode sequences of fishes of the Nayband National Park, Persian Gulf, Iran. Industrial activities, ecological considerations and goals of The Fish Barcode of Life campaign make it crucial that fish species residing in the park be identified. To the best of our knowledge, this is the first report of barcoding data on fishes of the Persian Gulf. We examined 187 individuals representing 76 species, 56 genera and 32 families. The data flagged potentially cryptic species of Gerres filamentosus and Plectorhinchus schotaf. 16S rDNA data on these species are provided. Exclusion of these two potential cryptic species resulted in a mean COI intraspecific distance of 0.18%, and a mean inter- to intraspecific divergence ratio of 66.7. There was no overlap between maximum Kimura 2-parameter distances among conspecifics (1.66%) and minimum distance among congeneric species (6.19%). Barcodes shared among species were not observed. Neighbour-joining analysis showed that most species formed cohesive sequence units with little variation. Finally, the comparison of 16 selected species from this study with meta-data of conspecifics from Australia, India, China and South Africa revealed high interregion divergences and potential existence of six cryptic species. Pairwise interregional comparisons were more informative than global divergence assessments with regard to detection of cryptic variation. Our analysis exemplifies optimal use of the expanding barcode data now becoming available. © 2011 Blackwell Publishing Ltd.
Les, Donald H; Peredo, Elena L; King, Ursula M; Benoit, Lori K; Tippery, Nicholas P; Ball, Cassandra J; Shannon, Robynn K
2015-01-01
Cryptic sympatric species arise when reproductive isolation is established in sympatry, leading to genetically divergent lineages that are highly similar morphologically or virtually indistinguishable. Although cryptic sympatric species have been reported in various animals, fungi, and protists, there are few compelling examples for plants. This investigation presents a case for cryptic sympatric speciation in Najas flexilis, a widespread aquatic plant, which extends throughout northern North America and Eurasia. The taxon is noted for its variable seed morphology, which earlier research associated with cytotypes; i.e., diploids were characterized by thicker seeds and tetraploids by thinner seeds. However, cytotypes are not patterned geographically with diploid and tetraploid plants often found in close proximity within the same lake. Using digital image and DNA sequence analyses, we found that diploids and tetraploids are well-isolated and remain genetically distinct throughout their sympatric range, where sterile hybrids occur frequently. Incorporation of sequence data from the single-copy nuclear phytoene desaturase locus revealed further that the tetraploids are allopolyploid derivatives of N. flexilis and N. guadalupensis, the latter a closely related species with an overlapping distribution. We conclude that the taxon widely known as N. flexilis actually comprises two cryptic, sibling species, which diverged in sympatry by interspecific hybridization and subsequent chromosomal isolation. By comparing seed morphology of type specimens, we associated the names N. flexilis and N. canadensis to the diploids and tetraploids respectively. Additionally, the narrowly restricted taxon known formerly as N. muenscheri is shown via morphological and genetic evidence to be synonymous with N. canadensis. Copyright © 2014 Elsevier Inc. All rights reserved.
Plasmid analyses in clinical isolates of Bacteroides fragilis and other Bacteroides species.
Wallace, B L; Bradley, J E; Rogolsky, M
1981-01-01
Plasmid analyses were performed on Bacteroides strains isolated from clinical specimens. Of 32 Bacteroides strains, 8 were found to contain plasmids. Seven of these eight strains were B. fragilis, and the other one was B. distasonis. Three of these eight strains harbored only a 3.0-megadalton plasmid. Two strains had only a 2.0-megadalton plasmid, and one had 2.0-, 3.0-megadalton plasmid. Of the remaining two strains, one had 2.0-, 3.0-, and 5.0-megadalton plasmids, and the other had 3.0- and 5.0-megadalton plasmids. Beta-Lactamase was produced by 93% of the clinical isolates. Seven of the eight plasmid-carrying strains were cadmium resistant, five were zinc resistant, four were mercury resistant, and two expressed a brick-red fluorescence under ultraviolet light. None of these traits could be associated with a plasmid after performing either curing experiments or genetic transfer experiments by cell-to-cell contact. Images PMID:6974737
Hofmeister series salts enhance purification of plasmid DNA by non-ionic detergents
Lezin, George; Kuehn, Michael R.; Brunelli, Luca
2011-01-01
Ion-exchange chromatography is the standard technique used for plasmid DNA purification, an essential molecular biology procedure. Non-ionic detergents (NIDs) have been used for plasmid DNA purification, but it is unclear whether Hofmeister series salts (HSS) change the solubility and phase separation properties of specific NIDs, enhancing plasmid DNA purification. After scaling-up NID-mediated plasmid DNA isolation, we established that NIDs in HSS solutions minimize plasmid DNA contamination with protein. In addition, large-scale NID/HSS solutions eliminated LPS contamination of plasmid DNA more effectively than Qiagen ion-exchange columns. Large-scale NID isolation/NID purification generated increased yields of high quality DNA compared to alkali isolation/column purification. This work characterizes how HSS enhance NID-mediated plasmid DNA purification, and demonstrates that NID phase transition is not necessary for LPS removal from plasmid DNA. Specific NIDs such as IGEPAL CA-520 can be utilized for rapid, inexpensive and efficient laboratory-based large-scale plasmid DNA purification, outperforming Qiagen-based column procedures. PMID:21351074
Ecological and genetic determinants of plasmid distribution in Escherichia coli.
Medaney, Frances; Ellis, Richard J; Raymond, Ben
2016-11-01
Bacterial plasmids are important carriers of virulence and antibiotic resistance genes. Nevertheless, little is known of the determinants of plasmid distribution in bacterial populations. Here the factors affecting the diversity and distribution of the large plasmids of Escherichia coli were explored in cattle grazing on semi-natural grassland, a set of populations with low frequencies of antibiotic resistance genes. Critically, the population genetic structure of bacterial hosts was chararacterized. This revealed structured E. coli populations with high diversity between sites and individuals but low diversity within cattle hosts. Plasmid profiles, however, varied considerably within the same E. coli genotype. Both ecological and genetic factors affected plasmid distribution: plasmid profiles were affected by site, E. coli diversity, E. coli genotype and the presence of other large plasmids. Notably 3/26 E. coli serotypes accounted for half the observed plasmid-free isolates indicating that within species variation can substantially affect carriage of the major conjugative plasmids. The observed population structure suggest that most of the opportunities for within species plasmid transfer occur between different individuals of the same genotype and support recent experimental work indicating that plasmid-host coevolution, and epistatic interactions on fitness costs are likely to be important in determining occupancy. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Melissa J. Fischer; Nathan P. Havill; Carrie S. Jubb; Sean W. Prosser; Brent D. Opell; Scott M. Salom; Loke T. Kok
2014-01-01
Laricobius osakensis (Coleoptera: Derodontidae) was imported from Japan to the United States in 2006 for study in quarantine facilities as a potential biological control of Hemlock Woolly Adelgid. Laricobius osakensis was released from quarantine in 2010, but it was soon discovered that the colony also contained a cryptic species...
Cryptic photosynthesis--extrasolar planetary oxygen without a surface biological signature.
Cockell, Charles S; Kaltenegger, Lisa; Raven, John A
2009-09-01
On Earth, photosynthetic organisms are responsible for the production of virtually all the oxygen in the atmosphere. On land, vegetation reflects in the visible and leads to a "red edge," which developed about 450 million years ago on Earth and has been proposed as a biosignature for life on extrasolar planets. However, in many regions on Earth, particularly where surface conditions are extreme--in hot and cold deserts, for example--photosynthetic organisms can be driven into and under substrates where light is still sufficient for photosynthesis. These communities exhibit no detectable surface spectral signature to indicate life. The same is true of the assemblages of photosynthetic organisms at more than a few meters' depth in water bodies. These communities are widespread and dominate local photosynthetic productivity. We review known cryptic photosynthetic communities and their productivity. We have linked geomicrobiology with observational astronomy by calculating the disk-averaged spectra of cryptic habitats and identifying detectable features on an exoplanet dominated by such a biota. The hypothetical cryptic photosynthesis worlds discussed here are Earth analogues that show detectable atmospheric biosignatures like our own planet but do not exhibit a discernable biological surface feature in the disc-averaged spectrum.
Sieben, Michaela; Steinhorn, Gregor; Müller, Carsten; Fuchs, Simone; Ann Chin, Laura; Regestein, Lars; Büchs, Jochen
2016-11-01
Plasmids are common vectors to genetically manipulate Escherichia coli or other microorganisms. They are easy to use and considerable experience has accumulated on their application in heterologous protein production. However, plasmids can be lost during cell growth, if no selection pressure like, e.g., antibiotics is used, hampering the production of the desired protein and endangering the economic success of a biotechnological production process. Thus, in this study the Continuously Operated Shaken BIOreactor System (COSBIOS) is applied as a tool for fast parallel testing of strain stability and operation conditions and to evaluate measures to counter such plasmid loss. In specific, by applying various ampicillin concentrations, the lowest effective ampicillin dosage is investigated to secure plasmid stability while lowering adverse ecological effects. A significant difference was found in the growth rates of plasmid-bearing and plasmid-free cells. The undesired plasmid-free cells grew 30% faster than the desired plasmid-bearing cells. During the testing of plasmid stability without antibiotics, the population fraction of plasmid-bearing cells rapidly decreased in continuous culture to zero within the first 48 h. An initial single dosage of ampicillin did not prevent plasmid loss. By contrast, a continuous application of a low dosage of 10 µg/mL ampicillin in the feed medium maintained plasmid stability in the culture. Consequently, the COSBIOS is an apt reactor system for measuring plasmid stability and evaluating methods to enhance this stability. Hence, decreased production of heterologous protein can be prevented. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1418-1425, 2016. © 2016 American Institute of Chemical Engineers.
Sota, Masahiro; Yano, Hirokazu; Hughes, Julie; Daughdrill, Gary W.; Abdo, Zaid; Forney, Larry J.; Top, Eva M.
2011-01-01
The ability of bacterial plasmids to adapt to novel hosts and thereby shift their host range is key to their long-term persistence in bacterial communities. Promiscuous plasmids of the IncP-1 group can colonize a wide range of hosts, but it is not known if and how they can contract, shift or further expand their host range. To understand the evolutionary mechanisms of host range shifts of IncP-1 plasmids, an IncP-1β mini-replicon was experimentally evolved in four hosts wherein it was initially unstable. After 1000 generations in serial batch cultures under antibiotic selection for plasmid maintenance (kanamycin resistance), the stability of the mini-plasmid had dramatically improved in all coevolved hosts. However, only plasmids evolved in Shewanella oneidensis showed improved stability in the ancestor, indicating that adaptive mutations had occurred in the plasmid itself. Complete genome sequence analysis of nine independently evolved plasmids showed seven unique plasmid genotypes that had various kinds of single mutations at one locus, namely the N-terminal region of the replication initiation protein TrfA. Such parallel evolution indicates that this region was under strong selection. In five of the seven evolved plasmids these trfA mutations resulted in a significantly higher plasmid copy number. Evolved plasmids were found to be stable in four other naïve hosts, but could no longer replicate in Pseudomonas aeruginosa. This study demonstrates that plasmids can specialize to a novel host through trade-offs between improved stability in the new host and the ability to replicate in a previously permissive host. PMID:20520653
Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J.; Fox, Catherine A.
2016-01-01
The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid partitioning and suggest underlying biological roles shared by such elements. PMID:26865697
Wang, Yibing; Kahane, Simona; Cutcliffe, Lesley T; Skilton, Rachel J; Lambden, Paul R; Persson, Kenneth; Bjartling, Carina; Clarke, Ian N
2013-01-01
Our study had three objectives: to extend the plasmid-based transformation protocol to a clinical isolate of C. trachomatis belonging to the trachoma biovar, to provide "proof of principle" that it is possible to "knock out" selected plasmid genes (retaining a replication competent plasmid) and to investigate the plasticity of the plasmid. A recently developed, plasmid-based transformation protocol for LGV isolates of C. trachomatis was modified and a plasmid-free, genital tract C. trachomatis isolate from Sweden (SWFP-) was genetically transformed. Transformation of this non-LGV C. trachomatis host required a centrifugation step, but the absence of the natural plasmid removed the need for plaque purification of transformants. Transformants expressed GFP, were penicillin resistant and iodine stain positive for accumulated glycogen. The transforming plasmid did not recombine with the host chromosome. A derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene was engineered. CDS5 encodes pgp3, a protein secreted from the inclusion into the cell cytoplasm. This plasmid (pCDS5KO) was used to transform C. trachomatis SWFP-, and established that pgp3 is dispensable for plasmid function. The work shows it is possible to selectively delete segments of the chlamydial plasmid, and this is the first step towards a detailed molecular dissection of the role of the plasmid. The 3.6 kb β-galactosidase cassette was inserted into the deletion site of CDS5 to produce plasmid placZ-CDS5KO. Transformants were penicillin resistant, expressed GFP and stained for glycogen. In addition, they expressed β-galactosidase showing that the lacZ cassette was functional in C. trachomatis. An assay was developed that allowed the visualisation of individual inclusions by X-gal staining. The ability to express active β-galactosidase within chlamydial inclusions is an important advance as it allows simple, rapid assays to measure directly chlamydial infectivity without the need for plaquing, fluorescence or antibody staining.
Rotger, R; García-Valdés, E; Trallero, E P
1986-01-01
A 9.4-kilobase plasmid encoding penicillin, streptomycin, and sulfonamide resistance was isolated from a beta-lactamase-producing Eikenella corrodens strain. This plasmid appears to be identical to a resistance plasmid common to saprophytic Neisseria strains. Images PMID:3535668
[Replication of Streptomyces plasmids: the DNA nucleotide sequence of plasmid pSB 24.2].
Bolotin, A P; Sorokin, A V; Aleksandrov, N N; Danilenko, V N; Kozlov, Iu I
1985-11-01
The nucleotide sequence of DNA in plasmid pSB 24.2, a natural deletion derivative of plasmid pSB 24.1 isolated from S. cyanogenus was studied. The plasmid amounted by its size to 3706 nucleotide pairs. The G-C composition was equal to 73 per cent. The analysis of the DNA structure in plasmid pSB 24.2 revealed the protein-encoding sequence of DNA, the continuity of which was significant for replication of the plasmid containing more than 1300 nucleotide pairs. The analysis also revealed two A-T-rich areas of DNA, the G-C composition of which was less than 55 per cent and a DNA area with a branched pin structure. The results may be of value in investigation of plasmid replication in actinomycetes and experimental cloning of DNA with this plasmid as a vector.
IncX2 and IncX1-X2 Hybrid Plasmids Coexisting in a FosA6-Producing Escherichia coli Strain
Su, Jiachun; McElheny, Christi Lee; Wang, Minggui
2017-01-01
ABSTRACT IncX plasmids are receiving much attention as vehicles of carbapenem and colistin resistance genes, such as blaNDM, blaKPC, and mcr-1. Among them, IncX2 subgroup plasmids remain rare. Here, we characterized IncX2 and IncX1-X2 hybrid plasmids coexisting in a FosA6-producing Escherichia coli strain that were possibly generated as a consequence of recombination events between an R6K-like IncX2 plasmid and a pLN126_33-like IncX1 plasmid. Variable multidrug resistance mosaic regions were observed in these plasmids, indicating their potential to serve as flexible carriers of resistance genes. The diversity of IncX group plasmid backbones and accessory genes and the evolution of hybrid IncX plasmids pose a challenge in detecting and classifying them. PMID:28438937
López-Villarejo, Juan; Lobato-Márquez, Damián; Díaz-Orejas, Ramón
2015-02-05
kis-kid, the auxiliary maintenance system of plasmid R1 and copB, the auxiliary copy number control gene of this plasmid, contribute to increase plasmid replication efficiency in cells with lower than average copy number. It is thought that Kis antitoxin levels decrease in these cells and that this acts as the switch that activates the Kid toxin; activated Kid toxin reduces copB-mRNA levels and this increases RepA levels that increases plasmid copy number. In support of this model we now report that: (i) the Kis antitoxin levels do decrease in cells containing a mini-R1 plasmid carrying a repA mutation that reduces plasmid copy number; (ii) kid-dependent replication rescue is abolished in cells in which the Kis antitoxin levels or the CopB levels are increased. Unexpectedly we found that this coordination significantly increases both the copy number of the repA mutant and of the wt mini-R1 plasmid. This indicates that the coordination between plasmid replication functions and kis-kid system contributes significantly to control plasmid R1 replication.
López-Villarejo, Juan; Lobato-Márquez, Damián; Díaz-Orejas, Ramón
2015-01-01
kis-kid, the auxiliary maintenance system of plasmid R1 and copB, the auxiliary copy number control gene of this plasmid, contribute to increase plasmid replication efficiency in cells with lower than average copy number. It is thought that Kis antitoxin levels decrease in these cells and that this acts as the switch that activates the Kid toxin; activated Kid toxin reduces copB-mRNA levels and this increases RepA levels that increases plasmid copy number. In support of this model we now report that: (i) the Kis antitoxin levels do decrease in cells containing a mini-R1 plasmid carrying a repA mutation that reduces plasmid copy number; (ii) kid-dependent replication rescue is abolished in cells in which the Kis antitoxin levels or the CopB levels are increased. Unexpectedly we found that this coordination significantly increases both the copy number of the repA mutant and of the wt mini-R1 plasmid. This indicates that the coordination between plasmid replication functions and kis-kid system contributes significantly to control plasmid R1 replication. PMID:25664511
Heuer, Holger; Fox, Randal E; Top, Eva M
2007-03-01
IncP-1 plasmids are known to be promiscuous, but it is not understood if they are equally well adapted to various species within their host range. Moreover, little is known about their fate in bacterial communities. We determined if the IncP-1beta plasmid pB10 was unstable in some Proteobacteria, and whether plasmid stability was enhanced after long-term carriage in a single host and when regularly switched between isogenic hosts. Plasmid pB10 was found to be very unstable in Pseudomonas putida H2, and conferred a high cost (c. 20% decrease in fitness relative to the plasmid-free host). H2(pB10) was then evolved under conditions that selected for plasmid maintenance, with or without regular plasmid transfer (host-switching). When tested in the ancestral host, the evolved plasmids were more stable and their cost was significantly reduced (9% and 16% for plasmids from host-switched and nonswitched lineages, respectively). Our findings suggest that IncP-1 plasmids can rapidly adapt to an unfavorable host by improving their overall stability, and that regular conjugative transfer accelerates this process.
Toxin Plasmids of Clostridium perfringens
Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.
2013-01-01
SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255
Giguère, Steeve; Hondalus, Mary K.; Yager, Julie A.; Darrah, Patricia; Mosser, David M.; Prescott, John F.
1999-01-01
Rhodococcus equi is a facultative intracellular pathogen of macrophages and a cause of pneumonia in young horses (foals) and immunocompromised people. Isolates of R. equi from pneumonic foals typically contain large, 85- or 90-kb plasmids encoding a highly immunogenic virulence-associated protein (VapA). The objective of this study was to determine the role of the 85-kb plasmid and VapA in the intracellular survival and virulence of R. equi. Clinical isolates containing the plasmid and expressing VapA efficiently replicated within mouse macrophages in vitro, while plasmid-cured derivatives of these organisms did not multiply intracellularly. An isolate harboring the large plasmid also replicated in the tissues of experimentally infected mice, whereas its plasmid-cured derivative was rapidly cleared. All foals experimentally infected with a plasmid-containing clinical isolate developed severe bronchopneumonia, whereas the foals infected with its plasmid-cured derivative remained asymptomatic and free of visible lung lesions. By day 14 postinfection, lung bacterial burdens had increased considerably in foals challenged with the plasmid-containing clinical isolate. In contrast, bacteria could no longer be cultured from the lungs of foals challenged with the isogenic plasmid-cured derivative. A recombinant, plasmid-cured derivative expressing wild-type levels of VapA failed to replicate in macrophages and remained avirulent for both mice and foals. These results show that the 85-kb plasmid of R. equi is essential for intracellular replication within macrophages and for development of disease in the native host, the foal. However, expression of VapA alone is not sufficient to restore the virulence phenotype. PMID:10377138
Yen-Ting-Liu; Sau, Saumitra; Ma, Chien-Hui; Kachroo, Aashiq H; Rowley, Paul A; Chang, Keng-Ming; Fan, Hsiu-Fang; Jayaram, Makkuni
2014-01-01
Summary The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications. PMID:25541598
Yen-Ting-Liu; Sau, Saumitra; Ma, Chien-Hui; Kachroo, Aashiq H; Rowley, Paul A; Chang, Keng-Ming; Fan, Hsiu-Fang; Jayaram, Makkuni
2014-10-01
The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.
Basta, Tamara; Keck, Andreas; Klein, Joachim; Stolz, Andreas
2004-01-01
A systematic survey for the presence of plasmids in 17 different xenobiotic-degrading Sphingomonas strains was performed. In almost all analyzed strains, two to five plasmids with sizes of about 50 to 500 kb were detected by using pulsed-field gel electrophoresis. A comparison of plasmid preparations untreated or treated with S1 nuclease suggested that, in general, Sphingomonas plasmids are circular. Hybridization experiments with labeled gene probes suggested that large plasmids are involved in the degradation of dibenzo-p-dioxin, dibenzofuran, and naphthalenesulfonates in S. wittichii RW1, Sphingomonas sp. HH69, and S. xenophaga BN6, respectively. The plasmids which are responsible for the degradation of naphthalene, biphenyl, and toluene by S. aromaticivorans F199 (pNL1) and of naphthalenesulfonates by S. xenophaga BN6 (pBN6) were site-specifically labeled with a kanamycin resistance cassette. The conjugative transfer of these labeled plasmids was attempted with various bacterial strains as putative recipient strains. Thus, a conjugative transfer of plasmid pBN6 from S. xenophaga BN6 to a cured mutant of strain BN6 and to Sphingomonas sp. SS3 was observed. The conjugation experiments with plasmid pNL1 suggested a broader host range of this plasmid, because it was transferred without any obvious structural changes to S. yanoikuyae B1, Sphingomonas sp. SS3, and S. herbicidovorans. In contrast, major plasmid rearrangements were observed in the transconjugants after the transfer of plasmid pNL1 to Sphingomonas sp. HH69 and of pBN6 to Sphingomonas sp. SS3. No indications for the transfer of a Sphingomonas plasmid to bacteria outside of the Sphingomonadaceae were obtained. PMID:15175300
Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G
2018-07-01
Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.
Plasmid Replicon Typing of Commensal and Pathogenic Escherichia coli Isolates▿
Johnson, Timothy J.; Wannemuehler, Yvonne M.; Johnson, Sara J.; Logue, Catherine M.; White, David G.; Doetkott, Curt; Nolan, Lisa K.
2007-01-01
Despite the critical role of plasmids in horizontal gene transfer, few studies have characterized plasmid relatedness among different bacterial populations. Recently, a multiplex PCR replicon typing protocol was developed for classification of plasmids occurring in members of the Enterobacteriaceae. Here, a simplified version of this replicon typing procedure which requires only three multiplex panels to identify 18 plasmid replicons is described. This method was used to screen 1,015 Escherichia coli isolates of avian, human, and poultry meat origin for plasmid replicon types. Additionally, the isolates were assessed for their content of several colicin-associated genes. Overall, a high degree of plasmid variability was observed, with 221 different profiles occurring among the 1,015 isolates examined. IncFIB plasmids were the most common type identified, regardless of the source type of E. coli. IncFIB plasmids occurred significantly more often in avian pathogenic E. coli (APEC) and retail poultry E. coli (RPEC) than in uropathogenic E. coli (UPEC) and avian and human fecal commensal E. coli isolates (AFEC and HFEC, respectively). APEC and RPEC were also significantly more likely than UPEC, HFEC, and AFEC to possess the colicin-associated genes cvaC, cbi, and/or cma in conjunction with one or more plasmid replicons. The results suggest that E. coli isolates contaminating retail poultry are notably similar to APEC with regard to plasmid profiles, with both generally containing multiple plasmid replicon types in conjunction with colicin-related genes. In contrast, UPEC and human and avian commensal E. coli isolates generally lack the plasmid replicons and colicin-related genes seen in APEC and RPEC, suggesting limited dissemination of such plasmids among these bacterial populations. PMID:17277222
Kid cleaves specific mRNAs at UUACU sites to rescue the copy number of plasmid R1
Pimentel, Belén; Madine, Mark A; de la Cueva-Méndez, Guillermo
2005-01-01
Stability and copy number of extra-chromosomal elements are tightly regulated in prokaryotes and eukaryotes. Toxin Kid and antitoxin Kis are the components of the parD stability system of prokaryotic plasmid R1 and they can also function in eukaryotes. In bacteria, Kid was thought to become active only in cells that lose plasmid R1 and to cleave exclusively host mRNAs at UA(A/C/U) trinucleotide sites to eliminate plasmid-free cells. Instead, we demonstrate here that Kid becomes active in plasmid-containing cells when plasmid copy number decreases, cleaving not only host- but also a specific plasmid-encoded mRNA at the longer and more specific target sequence UUACU. This specific cleavage by Kid inhibits bacterial growth and, at the same time, helps to restore the plasmid copy number. Kid targets a plasmid RNA that encodes a repressor of the synthesis of an R1 replication protein, resulting in increased plasmid DNA replication. This mechanism resembles that employed by some human herpesviruses to regulate viral amplification during infection. PMID:16163387
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, L.E.; Detter, C,; Barrie, K.
2006-06-01
Sequencing of the large (>50 kb), low-copy-number (<5 per cell) plasmids that mediate horizontal gene transfer has been hindered by the difficulty and expense of isolating DNA from individual plasmids of this class. We report here that a kit method previously devised for purification of bacterial artificial chromosomes (BACs) can be adapted for effective preparation of individual plasmids up to 220 kb from wild gram-negative and gram-positive bacteria. Individual plasmid DNA recovered from less than 10 ml of Escherichia coli, Staphylococcus, and Corynebacterium cultures was of sufficient quantity and quality for construction of highcoverage libraries, as shown by sequencing fivemore » native plasmids ranging in size from 30 kb to 94 kb. We also report recommendations for vector screening to optimize plasmid sequence assembly, preliminary annotation of novel plasmid genomes, and insights on mobile genetic element biology derived from these sequences. Adaptation of this BAC method for large plasmid isolation removes one major technical hurdle to expanding our knowledge of the natural plasmid gene pool.« less
A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation.
Sau, Soumitra; Conrad, Michael N; Lee, Chih-Ying; Kaback, David B; Dresser, Michael E; Jayaram, Makkuni
2014-06-09
The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid-telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis. © 2014 Sau et al.
Plasmid expression and maintenance during long-term starvation-survival of bacteria in well water.
Caldwell, B A; Ye, C; Griffiths, R P; Moyer, C L; Morita, R Y
1989-01-01
Strains of enteric bacteria and pseudomonads containing plasmid R388::Tnl721 (Tpr, Tcr) or pRO101 (Hgr, Tcr) were starved for over 250 days in sterile well water to evaluate effects of starvation-survival on plasmid expression and maintenance. Viable populations dropped to between approximately 0.1 and 1% of the initial populations. Escherichia coli(pRO101) and Pseudomonas cepacia(pRO101) lost both viability and plasmid expression at a lower rate than strains containing R388::Tnl721. Three patterns of host-plasmid interaction were detected: (i) no apparent loss of plasmid expression, (ii) loss of plasmid expression on initial recovery with subsequent expression upon resuscitation, and (iii) loss of capability to produce functional plasmid resistance. PMID:2782868
The evolutionary biology of cryptic pregnancy: A re-appraisal of the "denied pregnancy" phenomenon.
Del Giudice, Marco
2007-01-01
Previous research on 'denied pregnancy', i.e. lack of subjective awareness of pregnancy until the end of gestation in pregnant women, is reviewed and reinterpreted in an evolutionary biological framework. Recent epidemiological studies show that this condition has a much higher incidence than previously thought (about 1:475). Very often, bodily symptoms of pregnancy (nausea, amenorrhea and abdomen swelling) are absent or greatly reduced, and neonates tend to be underweight; in many cases, pregnancy goes undetected also by relatives and physicians. Current explanations in the clinical literature are based on psychodynamic hypotheses about pregnancy-related unconscious conflicts; the lack of symptoms is accounted for by 'somatic denial'. I argue that such psychodynamic accounts are misguided for two reasons: (1) they rest on a failure to recognize the active biological role of the fetus in determining the course of pregnancy, and (2) they ignore the many levels of mother-fetus conflict over resource allocation described by biological theories of parent-offspring conflict. Here I propose to redefine this condition as 'cryptic pregnancy', and begin to explore its possible physiological correlates and evolutionary significance. In the light of parent-offspring conflict theory, cryptic pregnancy appears to reduce the costs of pregnancy, both energetic and ecological (mobility, dependence on kin/mate, etc.), thus favoring the mother at the expense of the fetus. Reduced hCG production and/or effectiveness is likely to be involved in the process. I propose and discuss three nonexclusive evolutionary hypotheses to account for this phenomenon: (1) cryptic pregnancy could be a nonadaptive outcome of conflict resolution processes over resource allocation in pregnancy, possibly related to minor disruptions of genomic imprinting mechanisms. (2) Cryptic pregnancy could result from missed spontaneous abortions of low-quality fetuses. (3) Finally, cryptic pregnancy could be an adaptive pattern of 'forced cooperation' between mother and fetus in stressful or threatening ecological circumstances, as suggested by the reported association with elevated psychosocial stress. In case of reduced survival probability, both mother and fetus would benefit if the mother reduced investment in pregnancy in order to maximize her chances of surviving and reaching delivery.
Community-wide plasmid gene mobilization and selection
Sentchilo, Vladimir; Mayer, Antonia P; Guy, Lionel; Miyazaki, Ryo; Green Tringe, Susannah; Barry, Kerrie; Malfatti, Stephanie; Goessmann, Alexander; Robinson-Rechavi, Marc; van der Meer, Jan R
2013-01-01
Plasmids have long been recognized as an important driver of DNA exchange and genetic innovation in prokaryotes. The success of plasmids has been attributed to their independent replication from the host's chromosome and their frequent self-transfer. It is thought that plasmids accumulate, rearrange and distribute nonessential genes, which may provide an advantage for host proliferation under selective conditions. In order to test this hypothesis independently of biases from culture selection, we study the plasmid metagenome from microbial communities in two activated sludge systems, one of which receives mostly household and the other chemical industry wastewater. We find that plasmids from activated sludge microbial communities carry among the largest proportion of unknown gene pools so far detected in metagenomic DNA, confirming their presumed role of DNA innovators. At a system level both plasmid metagenomes were dominated by functions associated with replication and transposition, and contained a wide variety of antibiotic and heavy metal resistances. Plasmid families were very different in the two metagenomes and grouped in deep-branching new families compared with known plasmid replicons. A number of abundant plasmid replicons could be completely assembled directly from the metagenome, providing insight in plasmid composition without culturing bias. Functionally, the two metagenomes strongly differed in several ways, including a greater abundance of genes for carbohydrate metabolism in the industrial and of general defense factors in the household activated sludge plasmid metagenome. This suggests that plasmids not only contribute to the adaptation of single individual prokaryotic species, but of the prokaryotic community as a whole under local selective conditions. PMID:23407308
Role of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage.
Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa; Ziola, Barry
2015-02-01
Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate.
Role of Plasmids in Lactobacillus brevis BSO 464 Hop Tolerance and Beer Spoilage
Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa
2014-01-01
Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate. PMID:25501474
O'Brien, Frances G.; Yui Eto, Karina; Murphy, Riley J. T.; Fairhurst, Heather M.; Coombs, Geoffrey W.; Grubb, Warren B.; Ramsay, Joshua P.
2015-01-01
Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2–3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus. PMID:26243776
Construction of Biologically Functional Bacterial Plasmids In Vitro
Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Helling, Robert B.
1973-01-01
The construction of new plasmid DNA species by in vitro joining of restriction endonuclease-generated fragments of separate plasmids is described. Newly constructed plasmids that are inserted into Escherichia coli by transformation are shown to be biologically functional replicons that possess genetic properties and nucleotide base sequences from both of the parent DNA molecules. Functional plasmids can be obtained by reassociation of endonuclease-generated fragments of larger replicons, as well as by joining of plasmid DNA molecules of entirely different origins. Images PMID:4594039
Bicho, Diana; Sousa, Ângela; Sousa, Fani; Queiroz, João; Tomaz, Cãndida
2014-09-01
DNA therapies are becoming recognized alternatives for the treatment and prevention of severe pathologies. Although most current trials have used plasmids <10 kbp, in the future larger plasmids would be required. The purpose of this work was to study the chromatographic behavior of nongrafted carbonyldiimidazole monolithic disks using plasmids with different sizes under hydrophobic conditions. Thereunto, the purification of several plasmids was performed. Higher size plasmids needed lower ammonium sulfate concentration, due to the greater number of interactions between the plasmids and monolith. The dynamic binding capacity experiments for the different plasmids revealed a lower capacity for bigger plasmids. It was also verified that the increase of salt concentration from 2.5 to 3 M of ammonium sulfate increased the capacity. At the highest salt concentration, a slight improvement in the capacity using lower flow rate was observed, possibly due to compaction of plasmid molecules and its better organization on the monolith channels. Finally, a low pH also had a positive effect on the capacity. So, this monolithic support proved to be appropriate to purify the supercoiled isoform of different plasmids with different sizes, providing a valuable instrument as a purification technique. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasmids in Gram negatives: molecular typing of resistance plasmids.
Carattoli, Alessandra
2011-12-01
A plasmid is defined as a double stranded, circular DNA molecule capable of autonomous replication. By definition, plasmids do not carry genes essential for the growth of host cells under non-stressed conditions but they have systems which guarantee their autonomous replication also controlling the copy number and ensuring stable inheritance during cell division. Most of the plasmids confer positively selectable phenotypes by the presence of antimicrobial resistance genes. Plasmids evolve as an integral part of the bacterial genome, providing resistance genes that can be easily exchanged among bacteria of different origin and source by conjugation. A multidisciplinary approach is currently applied to study the acquisition and spread of antimicrobial resistance in clinically relevant bacterial pathogens and the established surveillance can be implemented by replicon typing of plasmids. Particular plasmid families are more frequently detected among Enterobacteriaceae and play a major role in the diffusion of specific resistance genes. For instance, IncFII, IncA/C, IncL/M, IncN and IncI1 plasmids carrying extended-spectrum beta-lactamase genes and acquired AmpC genes are currently considered to be "epidemic resistance plasmids", being worldwide detected in Enterobacteriaceae of different origin and sources. The recognition of successful plasmids is an essential first step to design intervention strategies preventing their spread. Copyright © 2011 Elsevier GmbH. All rights reserved.
Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran.
Hosseinkhani, Hossein; Tabata, Yasuhiko
2005-11-28
This study is an investigation to experimentally confirm whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of plasmid DNA in tumor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow to polyionically complex with a plasmid DNA. The cationized dextran prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have an active ester and methoxy groups at each terminal, to obtain cationized dextran with different percentages of PEG introduced. Various cationized dextrans with or without PEG introduction were mixed with a plasmid DNA of LacZ to form cationized dextran-plasmid DNA complexes. Electrophoretical examination revealed that the plasmid DNA was complexed both with the cationized dextran and PEG-introduced cationized dextran, irrespective of the PEG introduction percentage, although the higher N/P ratio was needed for plasmid DNA complexation with the latter. By complexation with the cationized dextran, the zeta potential of plasmid DNA was changed to be positive. The charge of PEG-introduced cationized dextran-plasmid DNA complexes became close to 0 mV as their percentage of PEG introduced increased, although the molecular size was about 250 nm, irrespective of the PEG introduction. When cationized dextran-plasmid DNA complexes with or without PEG introduction were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass and the subsequent US irradiation to the tumor mass percutaneously, the PEG-introduced cationized dextran-plasmid DNA complex plus US irradiation enhanced the tumor level of gene expression to a significantly high extent compared with the cationized dextran-plasmid DNA complex and free plasmid DNA with or without US irradiation. The enhanced level depended on the time period and timing of US irradiation. Fluorescent microscopic studies revealed that the localization of plasmid DNA and the gene expression were observed in the tumor tissue injected with the PEG-introduced cationized dextran-plasmid DNA complex plus the subsequent US irradiation. We conclude that complexation with the PEG-introduced cationized dextran combined with US irradiation is a promising way to target the plasmid DNA to the tumor for gene expression.
Yang, Shihui; Vera, Jessica M; Grass, Jeff; Savvakis, Giannis; Moskvin, Oleg V; Yang, Yongfu; McIlwain, Sean J; Lyu, Yucai; Zinonos, Irene; Hebert, Alexander S; Coon, Joshua J; Bates, Donna M; Sato, Trey K; Brown, Steven D; Himmel, Michael E; Zhang, Min; Landick, Robert; Pappas, Katherine M; Zhang, Yaoping
2018-01-01
Zymomonas mobilis is a natural ethanologen being developed and deployed as an industrial biofuel producer. To date, eight Z. mobilis strains have been completely sequenced and found to contain 2-8 native plasmids. However, systematic verification of predicted Z. mobilis plasmid genes and their contribution to cell fitness has not been hitherto addressed. Moreover, the precise number and identities of plasmids in Z. mobilis model strain ZM4 have been unclear. The lack of functional information about plasmid genes in ZM4 impedes ongoing studies for this model biofuel-producing strain. In this study, we determined the complete chromosome and plasmid sequences of ZM4 and its engineered xylose-utilizing derivatives 2032 and 8b. Compared to previously published and revised ZM4 chromosome sequences, the ZM4 chromosome sequence reported here contains 65 nucleotide sequence variations as well as a 2400-bp insertion. Four plasmids were identified in all three strains, with 150 plasmid genes predicted in strain ZM4 and 2032, and 153 plasmid genes predicted in strain 8b due to the insertion of heterologous DNA for expanded substrate utilization. Plasmid genes were then annotated using Blast2GO, InterProScan, and systems biology data analyses, and most genes were found to have apparent orthologs in other organisms or identifiable conserved domains. To verify plasmid gene prediction, RNA-Seq was used to map transcripts and also compare relative gene expression under various growth conditions, including anaerobic and aerobic conditions, or growth in different concentrations of biomass hydrolysates. Overall, plasmid genes were more responsive to varying hydrolysate concentrations than to oxygen availability. Additionally, our results indicated that although all plasmids were present in low copy number (about 1-2 per cell), the copy number of some plasmids varied under specific growth conditions or due to heterologous gene insertion. The complete genome of ZM4 and two xylose-utilizing derivatives is reported in this study, with an emphasis on identifying and characterizing plasmid genes. Plasmid gene annotation, validation, expression levels at growth conditions of interest, and contribution to host fitness are reported for the first time.
Barth, Peter T.; Grinter, Nigel J.
1974-01-01
Bacterial strains showing linked resistance to streptomycin (Sm) and sulfonamides (Su) were chosen representing a wide taxonomic and geographical range. Their SmSu resistances were transferred to Escherichia coli K-12 and then plasmid deoxyribonucleic acid (DNA) was isolated by ethidium bromide CsCl centrifugation. The plasmid DNA was examined by electron microscopy and analyzed by sedimentation through 5 to 20% neutral sucrose gradients. Plasmid DNA from strains having transmissible SmSu resistance consisted of two or three molecular species, one of which had a molecular mass of about 5.7 Mdal (106 daltons), the others varying between 20 to 60 Mdal. By using transformation or F′ mobilization, we isolated the SmSu-resistance determinant from any fellow resident plasmids in each strain and again isolated the plasmid DNA. Cosedimentation of each of these with a differently labeled reference plasmid DNA (R300B) showed 9 out of 12 of the plasmids to have a molecular mass not significantly different from the reference (5.7 Mdal); two others were 6.3 and 9.2 Mdal, but PB165 consisted of three plasmids of 7.4, 14.7, and 21.4 Mdal. Three separate isolations of the SmSu determinant from PB165 gave the same three plasmids, which we conclude may be monomer, dimer, and trimer, respectively. DNA-DNA hybridizations at 75 C demonstrated 80 to 93% homology between reference R300B DNA and each isolated SmSu plasmid DNA, except for the 9.2-Mdal plasmid which had 45% homology and PB165 which had 35%. All the SmSu plasmids were present as multiple copies (about 10) per chromosome. The conjugative plasmid of R300 (present as 1.3 copies per chromosome) has been shown to have negligible effect on the number of copies of its accompanying SmSu plasmid R300B. We conclude that the SmSu plasmids are closely related and probably have a common evolutionary origin. Images PMID:4616941
Explanatory chapter: how plasmid preparation kits work.
Koontz, Laura
2013-01-01
To isolate plasmid DNA from bacteria using a commercial plasmid miniprep kit (if interested, compare this protocol with Isolation of plasmid DNA from bacteria). Copyright © 2013 Elsevier Inc. All rights reserved.
Masood, Mariyam; Amin, Imran; Hassan, Ishtiaq; Mansoor, Shahid; Brown, Judith K; Briddon, Rob W
2017-12-05
Bemisia tabaci (Gennadius; Hempitera: Aleyrodidae) is considered to be a cryptic (sibling) species complex, the members of which exhibit morphological invariability while being genetically and behaviorally distinct. Members of the complex are agricultural pests that cause direct damage by feeding on plants, and indirectly by transmitting viruses that cause diseases leading to reduced crop yield and quality. In Pakistan, cotton leaf curl disease, caused by multiple begomovirus species, is the most economically important viral disease of cotton. In the study outlined here, the diversity and geographic distribution of B. tabaci cryptic species was investigated by analyzing a taxonomically informative fragment of the mitochondrial cytochrome c oxidase 1 gene (mtCOI-3'). The mtCOI-3' sequence was determined for 285 adult whiteflies and found to represent six cryptic species, the most numerous being Asia II-1 and Middle East Asia Minor 1 (MEAM-1), the later also referred to as the B-biotype, which was previously thought to be confined to Sindh province but herein, was also found to be present in the Punjab province. The endemic Asia I was restricted to Sindh province, while an individual in the Asia II-8 was identified in Pakistan for the first time. Also for the first time, samples were collected from northwestern Pakistan and Asia II-1 was identified. Results indicate that in Pakistan the overall diversity of B. tabaci cryptic species is high and, based on comparisons with findings from previous studies, the distribution is dynamic. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
SSU rDNA divergence in planktonic foraminifera: molecular taxonomy and biogeographic implications.
André, Aurore; Quillévéré, Frédéric; Morard, Raphaël; Ujiié, Yurika; Escarguel, Gilles; de Vargas, Colomban; de Garidel-Thoron, Thibault; Douady, Christophe J
2014-01-01
The use of planktonic foraminifera in paleoceanography requires taxonomic consistency and precise assessment of the species biogeography. Yet, ribosomal small subunit (SSUr) DNA analyses have revealed that most of the modern morpho-species of planktonic foraminifera are composed of a complex of several distinct genetic types that may correspond to cryptic or pseudo-cryptic species. These genetic types are usually delimitated using partial sequences located at the 3'end of the SSUrDNA, but typically based on empirical delimitation. Here, we first use patristic genetic distances calculated within and among genetic types of the most common morpho-species to show that intra-type and inter-type genetic distances within morpho-species may significantly overlap, suggesting that genetic types have been sometimes inconsistently defined. We further apply two quantitative and independent methods, ABGD (Automatic Barcode Gap Detection) and GMYC (General Mixed Yule Coalescent) to a dataset of published and newly obtained partial SSU rDNA for a more objective assessment of the species status of these genetic types. Results of these complementary approaches are highly congruent and lead to a molecular taxonomy that ranks 49 genetic types of planktonic foraminifera as genuine (pseudo)cryptic species. Our results advocate for a standardized sequencing procedure allowing homogenous delimitations of (pseudo)cryptic species. On the ground of this revised taxonomic framework, we finally provide an integrative taxonomy synthesizing geographic, ecological and morphological differentiations that can occur among the genuine (pseudo)cryptic species. Due to molecular, environmental or morphological data scarcities, many aspects of our proposed integrative taxonomy are not yet fully resolved. On the other hand, our study opens up the potential for a correct interpretation of environmental sequence datasets.
SSU rDNA Divergence in Planktonic Foraminifera: Molecular Taxonomy and Biogeographic Implications
André, Aurore; Quillévéré, Frédéric; Morard, Raphaël; Ujiié, Yurika; Escarguel, Gilles; de Vargas, Colomban; de Garidel-Thoron, Thibault; Douady, Christophe J.
2014-01-01
The use of planktonic foraminifera in paleoceanography requires taxonomic consistency and precise assessment of the species biogeography. Yet, ribosomal small subunit (SSUr) DNA analyses have revealed that most of the modern morpho-species of planktonic foraminifera are composed of a complex of several distinct genetic types that may correspond to cryptic or pseudo-cryptic species. These genetic types are usually delimitated using partial sequences located at the 3′end of the SSUrDNA, but typically based on empirical delimitation. Here, we first use patristic genetic distances calculated within and among genetic types of the most common morpho-species to show that intra-type and inter-type genetic distances within morpho-species may significantly overlap, suggesting that genetic types have been sometimes inconsistently defined. We further apply two quantitative and independent methods, ABGD (Automatic Barcode Gap Detection) and GMYC (General Mixed Yule Coalescent) to a dataset of published and newly obtained partial SSU rDNA for a more objective assessment of the species status of these genetic types. Results of these complementary approaches are highly congruent and lead to a molecular taxonomy that ranks 49 genetic types of planktonic foraminifera as genuine (pseudo)cryptic species. Our results advocate for a standardized sequencing procedure allowing homogenous delimitations of (pseudo)cryptic species. On the ground of this revised taxonomic framework, we finally provide an integrative taxonomy synthesizing geographic, ecological and morphological differentiations that can occur among the genuine (pseudo)cryptic species. Due to molecular, environmental or morphological data scarcities, many aspects of our proposed integrative taxonomy are not yet fully resolved. On the other hand, our study opens up the potential for a correct interpretation of environmental sequence datasets. PMID:25119900
Xiang, Xian-Ling; Xi, Yi-Long; Wen, Xin-Li; Zhang, Gen; Wang, Jin-Xia; Hu, Ke
2011-07-01
Spatio-temporal patterns and processes of genetic differentiation in passively dispersing zooplankton are drawing much attention from both ecologists and evolutionary biologists. Two opposite phylogeographical scenarios have already been demonstrated in rotifers, which consist of high levels of genetic differentiation among populations even on small geographical scales on the one hand and the traditionally known cosmopolitanism that is associated with high levels of gene flow and long-distance dispersal via diapausing stages on the other hand. Here, we analysed the population genetic structure and the phylogeography of the Brachionus calyciflorus species complex in eastern China. By screening a total of 318 individuals from ten locations along a 2320-km gradient and analysing samples from two growing seasons, we aimed at focusing on both small- and large-scale patterns. We identified eight cryptic species and verified species status of two of these by sexual reproduction tests. Samples in summer and winter yielded different cryptic species. The distribution patterns of these genetically distinct cryptic species were diverse across eastern China, from full cosmopolitanism to local endemism. The two most abundant cryptic species BcWIII and BcSW showed a pattern of strong genetic differentiation among populations and no significant isolation by distance. Long-distance colonization, secondary contact and recent range expansion are probably responsible for the indistinct pattern of isolation by distance. Our results suggest that geographical distance is more important than temporal segregation across seasons in explaining population differentiation and the occurrence of cryptic species. We explain the current phylogeographical structure in the B. calyciflorus species complex by a combination of recent population expansion, restricted gene flow, priority effects and long-distance colonization. © 2011 Blackwell Publishing Ltd.
Marchán, Daniel F; Fernández, Rosa; de Sosa, Irene; Díaz Cosín, Darío J; Novo, Marta
2017-07-01
Spatial and temporal aspects of the evolution of cryptic species complexes have received less attention than species delimitation within them. The phylogeography of the cryptic complex Hormogaster elisae (Oligochaeta, Hormogastridae) lacks knowledge on several aspects, including the small-scale distribution of its lineages or the palaeogeographic context of their diversification. To shed light on these topics, a dense specimen collection was performed in the center of the Iberian Peninsula - resulting in 28 new H. elisae collecting points, some of them as close as 760m from each other- for a higher resolution of the distribution of the cryptic lineages and the relationships between the populations. Seven molecular regions were amplified: mitochondrial subunit 1 of cytochrome c oxidase (COI), 16S rRNA and tRNA Leu, Ala, and Ser (16S t-RNAs), one nuclear ribosomal gene (a fragment of 28S rRNA) and one nuclear protein-encoding gene (histone H3) in order to infer their phylogenetic relationships. Different representation methods of the pairwise divergence in the cytochrome oxidase I sequence (heatmap and genetic landscape graphs) were used to visualize the genetic structure of H. elisae. A nested approach sensu Mairal et al. (2015) (connecting the evolutionary rates of two datasets of different taxonomic coverage) was used to obtain one approximation to a time-calibrated phylogenetic tree based on external Clitellata fossils and a wide molecular dataset. Our results indicate that limited active dispersal ability and ecological or biotic barriers could explain the isolation of the different cryptic lineages, which never co-occur. Rare events of long distance dispersal through hydrochory appear as one of the possible causes of range expansion. Copyright © 2017 Elsevier Inc. All rights reserved.
Folster, Jason P; Pecic, Gary; McCullough, Andre; Rickert, Regan; Whichard, Jean M
2011-12-01
Salmonella enterica is one of the most common bacterial causes of foodborne illness, and nontyphoidal Salmonella is estimated to cause ∼1.2 million illnesses in the United States each year. Plasmids are mobile genetic elements that play a critical role in the dissemination of antimicrobial resistance determinants. AmpC-type CMY β-lactamases (bla(CMY)) confer resistance to extended-spectrum cephalosporins and β-lactam/β-lactamase inhibitor combinations and are commonly plasmid-encoded. A variety of plasmids have been shown to encode CMY β-lactamases and certain plasmids may be associated with particular Salmonella serotypes or environmental sources. In this study, we characterized bla(CMY) β-lactamase-encoding plasmids among Salmonella isolates. Isolates of Salmonella from specimens collected from humans in 2007 were submitted to the Centers for Disease Control and Prevention National Antimicrobial Resistance Monitoring System laboratory for susceptibility testing. Three percent (65/2161) of Salmonella isolates displayed resistance to ceftriaxone (minimum inhibitory concentration [MIC] ≥4 mg/L) and amoxicillin/clavulanic acid (MIC ≥32 mg/L), a combination associated with the presence of a bla(CMY) mechanism of resistance. Sixty-four (98.5%) isolates were polymerase chain reaction-positive for bla(CMY) genes. Transformation and conjugation studies showed that 95% (61/64) of the bla(CMY) genes were plasmid-encoded. Most of the bla(CMY)-positive isolates were serotype Typhimurium, Newport, Heidelberg, and Agona. Forty-three plasmids were replicon type IncA/C, 15 IncI1, 2 contained multiple replicon loci, and 1 was untypeable. IncI1 plasmids conferred only the bla(CMY)-associated resistance phenotype, whereas IncA/C plasmids conferred additional multi-drug resistance (MDR) phenotypes to drugs such as chloramphenicol, sulfisoxazole, and tetracycline. Most of the IncI1 plasmids (12/15) were sequence type 12 by plasmid multi-locus sequence typing. CMY β-lactamase-encoding plasmids among human isolates of Salmonella in the United States tended to be large MDR IncA/C plasmids or single resistance determinant IncI1 plasmids. In general, IncI1 plasmids were identified among serotypes commonly associated with poultry, whereas IncA/C plasmids were more likely to be identified among cattle/beef-associated serotypes.
Camphor Plasmid-Mediated Chromosomal Transfer in Pseudomonas putida
Shaham, M.; Chakrabarty, A. M.; Gunsalus, I. C.
1973-01-01
Camphor-utilizing strains of Pseudomonas putida have been shown to carry the genetic information required for camphor degradation on a plasmid. The plasmid-carrying strains can serve as donors of both plasmid-borne and chromosomal genes. As recipients, plasmid-deleted strains are much superior to those carrying the camphor pathway genes. The transfer frequency of chromosomal, but not plasmid-borne, genes is markedly enhanced if the donor cells are irradiated with ultraviolet light followed by 3-h of growth on a rich medium in the dark. Recombinants selected for prototrophy are stable and most acquire the camphor (CAM) plasmid concomitantly; only a few of the Cam+ recombinants inherit the donor's ability to transfer chromosomal genes at a high frequency. Transfer-defective mutations occur on the CAM plasmid, affecting both CAM and chromosomal gene transfer. PMID:4745436
Sakai, Yoriko; Ogawa, Naoto; Shimomura, Yumi; Fujii, Takeshi
2014-03-01
Analysis of the complete nucleotide sequence of plasmid pM7012 from 2,4-dichlorophenoxyacetic-acid (2,4-D)-degrading bacterium Burkholderia sp. M701 revealed that the plasmid had 582 142 bp, with 541 putative protein-coding sequences and 39 putative tRNA genes for the transport of the standard 20 aa. pM7012 contains sequences homologous to the regions involved in conjugal transfer and plasmid maintenance found in plasmids byi_2p from Burkholderia sp. YI23 and pBVIE01 from Burkholderia sp. G4. No relaxase gene was found in any of these plasmids, although genes for a type IV secretion system and type IV coupling proteins were identified. Plasmids with no relaxase gene have been classified as non-mobile plasmids. However, nucleotide sequences with a high level of similarity to the genes for plasmid transfer, plasmid maintenance, 2,4-D degradation and arsenic resistance contained on pM7012 were also detected in eight other megaplasmids (~600 or 900 kb) found in seven Burkholderia strains and a strain of Cupriavidus, which were isolated as 2,4-D-degrading bacteria in Japan and the United States. These results suggested that the 2,4-D degradation megaplasmids related to pM7012 are mobile and distributed across various bacterial species worldwide, and that the plasmid group could be distinguished from known mobile plasmid groups.
Plasmid content of isolates of Erwinia amylovora from orchards in Washington and Oregon in the USA
USDA-ARS?s Scientific Manuscript database
Nearly all strains of Erwinia amylovora carry plasmid pEA29, which has not been found in other species of bacteria. Additional plasmids have been reported in the pathogen isolates from Western states, such as a plasmid in strain CA11 that carries streptomycin-resistance genes and the plasmid pEU30,...
[The plasmid profile of Neisseria meningitidis strains].
Khetsuriani, K G; Namgaladze, M Z; Lomsadze, Kh V; Kakuberi, D R
1993-01-01
The distribution of plasmids in N. meningitidis strains according to their origin and serological groups has been studied. Plasmids have been discovered in N. meningitidis of all groups, plasmid-carrying strains constituting 55% of strains isolated from healthy carriers and 46.2% of strains isolated from patients. The molecular weight of N. meningitidis plasmid DNA varies from 2.9 MD to 95 MD.
Plasmids foster diversification and adaptation of bacterial populations in soil.
Heuer, Holger; Smalla, Kornelia
2012-11-01
It is increasingly being recognized that the transfer of conjugative plasmids across species boundaries plays a vital role in the adaptability of bacterial populations in soil. There are specific driving forces and constraints of plasmid transfer within bacterial communities in soils. Plasmid-mediated genetic variation allows bacteria to respond rapidly with adaptive responses to challenges such as irregular antibiotic or metal concentrations, or opportunities such as the utilization of xenobiotic compounds. Cultivation-independent detection and capture of plasmids from soil bacteria, and complete sequencing have provided new insights into the role and ecology of plasmids. Broad host range plasmids such as those belonging to IncP-1 transfer a wealth of accessory functions which are carried by similar plasmid backbones. Plasmids with a narrower host range can be more specifically adapted to particular species and often transfer genes which complement chromosomally encoded functions. Plasmids seem to be an ancient and successful strategy to ensure survival of a soil population in spatial and temporal heterogeneous conditions with various environmental stresses or opportunities that occur irregularly or as a novel challenge in soil. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures
Lipinski, Leszek; Dziembowski, Andrzej
2018-01-01
Abstract Plasmids are mobile genetics elements that play an important role in the environmental adaptation of microorganisms. Although plasmids are usually analyzed in cultured microorganisms, there is a need for methods that allow for the analysis of pools of plasmids (plasmidomes) in environmental samples. To that end, several molecular biology and bioinformatics methods have been developed; however, they are limited to environments with low diversity and cannot recover large plasmids. Here, we present PlasFlow, a novel tool based on genomic signatures that employs a neural network approach for identification of bacterial plasmid sequences in environmental samples. PlasFlow can recover plasmid sequences from assembled metagenomes without any prior knowledge of the taxonomical or functional composition of samples with an accuracy up to 96%. It can also recover sequences of both circular and linear plasmids and can perform initial taxonomical classification of sequences. Compared to other currently available tools, PlasFlow demonstrated significantly better performance on test datasets. Analysis of two samples from heavy metal-contaminated microbial mats revealed that plasmids may constitute an important fraction of their metagenomes and carry genes involved in heavy-metal homeostasis, proving the pivotal role of plasmids in microorganism adaptation to environmental conditions. PMID:29346586
Tumor targeting of gene expression through metal-coordinated conjugation with dextran.
Hosseinkhani, Hossein; Aoyama, Teruyoshi; Ogawa, Osamu; Tabata, Yasuhiko
2003-03-07
Tumor targeting of plasmid DNA was achieved through the conjugation of dextran derivatives with chelate residues based on metal coordination. Diethylenetriamine pentaacetic acid (DTPA), spermidine (Sd), and spermine (Sm) were chemically introduced to the hydroxyl groups of dextran to obtain dextran-DTPA, dextran-Sd and dextran-Sm derivatives. Conjugation of the dextran derivative by Zn(2+) coordination decreased the apparent size of the plasmid DNA, depending on the derivative type. The negative zeta potential of plasmid DNA became almost 0 mV after Zn(2+)-coordinated conjugation with dextran-Sm. When the dextran derivative-plasmid DNA conjugates with Zn(2+) coordination were intravenously injected subcutaneously into mice bearing Meth-AR-1 fibrosarcoma, the dextran-Sm-plasmid DNA conjugate significantly enhanced the level of gene expression in the tumor, in contrast to the conjugate of other dextran derivatives and free plasmid DNA. The enhanced gene expression produced by the Zn(2+)-coordinated dextran-Sm-plasmid DNA conjugate was specific to the tumor, whereas a simple mixture of dextran-Sm and plasmid DNA was not effective. The level of gene expression depended on the percentage of chelate residues introduced, the mixing weight ratio of the plasmid DNA/Sm residue used for conjugate preparation, and the plasmid DNA dose. A fluorescent microscopic study revealed that localization of plasmid DNA in the tumor tissue was observed only after injection of the dextran-Sm-plasmid DNA conjugate with Zn(2+) coordination. In addition, the gene expression induced by the conjugate lasted for more than 10 days after the injection. We conclude that Zn(2+)-coordinated dextran-Sm conjugation is a promising way to enable plasmid DNA to target the tumor in gene expression as well as to prolong the duration of gene expression.
Akins, R A; Grant, D M; Stohl, L L; Bottorff, D A; Nargang, F E; Lambowitz, A M
1988-11-05
The Mauriceville and Varkud mitochondrial plasmids of Neurospora are closely related, closed circular DNAs (3.6 and 3.7 kb, respectively; 1 kb = 10(3) bases or base-pairs), whose characteristics suggest relationships to mitochondrial DNA introns and retrotransposons. Here, we characterized the structure of the Varkud plasmid, determined its complete nucleotide sequence and mapped its major transcripts. The Mauriceville and Varkud plasmids have more than 97% positional identity. Both plasmids contain a 710 amino acid open reading frame that encodes a reverse transcriptase-like protein. The amino acid sequence of this open reading frame is strongly conserved between the two plasmids (701/710 amino acids) as expected for a functionally important protein. Both plasmids have a 0.4 kb region that contains five PstI palindromes and a direct repeat of approximately 160 base-pairs. Comparison of sequences in this region suggests that the Varkud plasmid has diverged less from a common ancestor than has the Mauriceville plasmid. Two major transcripts of the Varkud plasmid were detected by Northern hybridization experiments: a full-length linear RNA of 3.7 kb and an additional prominent transcript of 4.9 kb, 1.2 kb longer than monomer plasmid. Remarkably, we find that the 4.9 kb transcript is a hybrid RNA consisting of the full-length 3.7 kb Varkud plasmid transcript plus a 5' leader of 1.2 kb that is derived from the 5' end of the mitochondrial small rRNA. This and other findings suggest that the Varkud plasmid, like certain RNA viruses, has a mechanism for joining heterologous RNAs to the 5' end of its major transcript, and that, under some circumstances, nucleotide sequences in mitochondria may be recombined at the RNA level.
Kudirkiene, Egle; Andoh, Linda A; Ahmed, Shahana; Herrero-Fresno, Ana; Dalsgaard, Anders; Obiri-Danso, Kwasi; Olsen, John E
2018-01-01
In the current study, we identified plasmids carrying antimicrobial resistance genes in draft whole genome sequences of 16 selected Salmonella enterica isolates representing six different serovars from humans in Ghana. The plasmids and the location of resistance genes in the genomes were predicted using a combination of PlasmidFinder, ResFinder, plasmidSPAdes and BLAST genomic analysis tools. Subsequently, S1-PFGE was employed for analysis of plasmid profiles. Whole genome sequencing confirmed the presence of antimicrobial resistance genes in Salmonella isolates showing multidrug resistance phenotypically. ESBL, either bla TEM52-B or bla CTX-M15 were present in two cephalosporin resistant isolates of S . Virchow and S . Poona, respectively. The systematic genome analysis revealed the presence of different plasmids in different serovars, with or without insertion of antimicrobial resistance genes. In S . Enteritidis, resistance genes were carried predominantly on plasmids of IncN type, in S . Typhimurium on plasmids of IncFII(S)/IncFIB(S)/IncQ1 type. In S . Virchow and in S . Poona, resistance genes were detected on plasmids of IncX1 and TrfA/IncHI2/IncHI2A type, respectively. The latter two plasmids were described for the first time in these serovars. The combination of genomic analytical tools allowed nearly full mapping of the resistance plasmids in all Salmonella strains analyzed. The results suggest that the improved analytical approach used in the current study may be used to identify plasmids that are specifically associated with resistance phenotypes in whole genome sequences. Such knowledge would allow the development of rapid multidrug resistance tracking tools in Salmonella populations using WGS.
Hazen, Tracy H; Michalski, Jane; Nagaraj, Sushma; Okeke, Iruka N; Rasko, David A
2017-09-01
Enteropathogenic Escherichia coli (EPEC) is a leading cause of severe infantile diarrhea in developing countries. Previous research has focused on the diversity of the EPEC virulence plasmid, whereas less is known regarding the genetic content and distribution of antibiotic resistance plasmids carried by EPEC. A previous study demonstrated that in addition to the virulence plasmid, reference EPEC strain B171 harbors a second, larger plasmid that confers antibiotic resistance. To further understand the genetic diversity and dissemination of antibiotic resistance plasmids among EPEC strains, we describe the complete sequence of an antibiotic resistance plasmid from EPEC strain B171. The resistance plasmid, pB171_90, has a completed sequence length of 90,229 bp, a GC content of 54.55%, and carries protein-encoding genes involved in conjugative transfer, resistance to tetracycline ( tetA ), sulfonamides ( sulI ), and mercury, as well as several virulence-associated genes, including the transcriptional regulator hha and the putative calcium sequestration inhibitor ( csi ). In silico detection of the pB171_90 genes among 4,798 publicly available E. coli genome assemblies indicates that the unique genes of pB171_90 ( csi and traI ) are primarily restricted to genomes identified as EPEC or enterotoxigenic E. coli However, conserved regions of the pB171_90 plasmid containing genes involved in replication, stability, and antibiotic resistance were identified among diverse E. coli pathotypes. Interestingly, pB171_90 also exhibited significant similarity with a sequenced plasmid from Shigella dysenteriae type I. Our findings demonstrate the mosaic nature of EPEC antibiotic resistance plasmids and highlight the need for additional sequence-based characterization of antibiotic resistance plasmids harbored by pathogenic E. coli . Copyright © 2017 American Society for Microbiology.
Ivo Tosevski; Roberto Caldara; Jelena Jovic; Gerardo Hernandez-Vera; Cosimo Baviera; Andre Gassmann; Brent C. Emerson
2011-01-01
A combined morphological, molecular and biological study shows that the weevil species presently named Mecinus janthinus is actually composed of two different cryptic species: M. janthinus Germar, 1821 and M. janthiniformis Tosevski & Caldara sp.n. These species are morphologically distinguishable from each other by a few very subtle morphological characters. On...
Elfekih, Samia; Tay, Wee Tek; Gordon, Karl; Court, Leon N; De Barro, Paul J
2018-01-01
The whitefly Bemisia tabaci complex harbours over 40 cryptic species that have been placed in 11 phylogenetically distinct clades based on the molecular characterization of partial mitochondrial DNA COI (mtCOI) gene region. Four cryptic species are currently within the invasive clade, i.e. MED, MEAM1, MEAM2 and IO. Correct identification of these species is a critical step towards implementing reliable measures for plant biosecurity and border protection; however, no standardized B. tabaci-specific primers are currently available which has caused inconsistencies in the species identification processes. We report three sets of polymerase chain reaction (PCR) primers developed to amplify the mtCOI region which can be used for genotyping MED, MEAM1 and IO species, and tested these primers on 91 MED, 35 MEAM1 and five IO individuals. PCR and sequencing of amplicons identified a total of 21, six and one haplotypes in MED, MEAM1 and IO respectively, of which six haplotypes were new to the B. tabaci database. These primer pairs enabled standardization and robust molecular species identification via mtCOI screening of the targeted invasive cryptic species and will improve quarantine decisions. Use of this diagnostic tool could be extended to other species within the complex. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology
Janzen, Daniel H.; Burns, John M.; Cong, Qian; Hallwachs, Winnie; Dapkey, Tanya; Manjunath, Ramya; Hajibabaei, Mehrdad; Hebert, Paul D. N.; Grishin, Nick V.
2017-01-01
DNA sequencing brings another dimension to exploration of biodiversity, and large-scale mitochondrial DNA cytochrome oxidase I barcoding has exposed many potential new cryptic species. Here, we add complete nuclear genome sequencing to DNA barcoding, ecological distribution, natural history, and subtleties of adult color pattern and size to show that a widespread neotropical skipper butterfly known as Udranomia kikkawai (Weeks) comprises three different species in Costa Rica. Full-length barcodes obtained from all three century-old Venezuelan syntypes of U. kikkawai show that it is a rainforest species occurring from Costa Rica to Brazil. The two new species are Udranomia sallydaleyae Burns, a dry forest denizen occurring from Costa Rica to Mexico, and Udranomia tomdaleyi Burns, which occupies the junction between the rainforest and dry forest and currently is known only from Costa Rica. Whereas the three species are cryptic, differing but slightly in appearance, their complete nuclear genomes totaling 15 million aligned positions reveal significant differences consistent with their 0.00065-Mbp (million base pair) mitochondrial barcodes and their ecological diversification. DNA barcoding of tropical insects reared by a massive inventory suggests that the presence of cryptic species is a widespread phenomenon and that further studies will substantially increase current estimates of insect species richness. PMID:28716927
Hackman, Sarah; Calvey, Laura; Bernreuter, Kristen; Mark, Mengya Wang; Starnes, Sarah; Batanian, Jacqueline R
2015-09-01
Alveolar rhabdomyosarcoma (ARMS) is a pediatric soft tissue neoplasm with a characteristic translocation, t(2;13)(q35;q14), which is detected in 70-80% of cases. This well-described translocation produces the gene fusion product PAX3-FOXO1. Cryptic rearrangements of this fusion have never before been reported in ARMS. Here we describe a patient with ARMS that showed, by fluorescence in situ hybridization and G-banded chromosomes, a cryptic insertion of 3'FOXO1 into inverted chromosome 2q. The inversion breakpoints were depicted by array comparative genomic hybridization as two small interstitial duplications, one of which involved the PAX3 gene. In addition, the array comparative genomic hybridization results revealed 1q gain, 16q loss, and 11 more small duplications, with one of them involving the FOXO1 gene. Although the pathogenesis in classic ARMS cases is thought to be driven by the 5'PAX3-3'FOXO1 fusion on derivative chromosome 13, here we report a novel cryptic insertion of 3'FOXO1 resulting in a pathogenic fusion with 5'PAX3 on inverted chromosome 2q. Copyright © 2015 Elsevier Inc. All rights reserved.
Yeates, Sarah E; Diamond, Sian E; Einum, Sigurd; Emerson, Brent C; Holt, William V; Gage, Matthew J G
2013-01-01
Despite evidence that variation in male–female reproductive compatibility exists in many fertilization systems, identifying mechanisms of cryptic female choice at the gamete level has been a challenge. Here, under risks of genetic incompatibility through hybridization, we show how salmon and trout eggs promote fertilization by conspecific sperm. Using in vitro fertilization experiments that replicate the gametic microenvironment, we find complete interfertility between both species. However, if either species’ ova were presented with equivalent numbers of both sperm types, conspecific sperm gained fertilization precedence. Surprisingly, the species’ identity of the eggs did not explain this cryptic female choice, which instead was primarily controlled by conspecific ovarian fluid, a semiviscous, protein-rich solution that bathes the eggs and is released at spawning. Video analyses revealed that ovarian fluid doubled sperm motile life span and straightened swimming trajectory, behaviors allowing chemoattraction up a concentration gradient. To confirm chemoattraction, cell migration tests through membranes containing pores that approximated to the egg micropyle showed that conspecific ovarian fluid attracted many more spermatozoa through the membrane, compared with heterospecific fluid or water. These combined findings together identify how cryptic female choice can evolve at the gamete level and promote reproductive isolation, mediated by a specific chemoattractive influence of ovarian fluid on sperm swimming behavior. PMID:24299405
Clark, Nancye; Patel, Jean B.
2013-01-01
Vancomycin-resistant Staphylococcus aureus (VRSA) is thought to result from the in vivo conjugative transfer of a vanA plasmid from an Enterococcus sp. to S. aureus. We studied bacterial isolates from VRSA cases that occurred in the United States to identify microbiological factors which may contribute to this plasmid transfer. First, vancomycin-susceptible, methicillin-resistant S. aureus (MRSA) isolates from five VRSA cases were tested for their ability to accept foreign DNA by conjugation in mating experiments with Enterococcus faecalis JH2-2 containing pAM378, a pheromone-response conjugative plasmid. All of the MRSA isolates accepted the plasmid DNA with similar transfer efficiencies (∼10−7/donor CFU) except for one isolate, MRSA8, for which conjugation was not successful. The MRSA isolates were also tested as recipients in mating experiments between an E. faecalis isolate with an Inc18-like vanA plasmid that was isolated from a VRSA case patient. Conjugative transfer was successful for 3/5 MRSA isolates. Successful MRSA recipients carried a pSK41-like plasmid, a staphylococcal conjugative plasmid, whereas the two unsuccessful MRSA recipients did not carry pSK41. The transfer of a pSK41-like plasmid from a successful MRSA recipient to the two unsuccessful recipients resulted in conjugal transfer of the Inc18-like vanA plasmid from E. faecalis at a frequency of 10−7/recipient CFU. In addition, conjugal transfer could be achieved for pSK41-negative MRSA in the presence of a cell-free culture filtrate from S. aureus carrying a pSK41-like plasmid at a frequency of 10−8/recipient CFU. These results indicated that a pSK41-like plasmid can facilitate the transfer of an Inc18-like vanA plasmid from E. faecalis to S. aureus, possibly via an extracellular factor produced by pSK41-carrying isolates. PMID:23089754
Theethakaew, Chonchanok; Nakamura, Shota; Motooka, Daisuke; Matsuda, Shigeaki; Kodama, Toshio; Chonsin, Kaknokrat; Suthienkul, Orasa; Iida, Tetsuya
2017-07-01
Vibrio parahaemolyticus is a causative agent of acute hapatopancreatic necrosis syndrome (AHPNS) which causes early mortality in white shrimp. Emergence of AHPNS has caused tremendous economic loss for aquaculture industry particularly in Asia since 2010. Previous studies reported that strains causing AHPNS harbor a 69-kb plasmid with possession of virulence genes, pirA and pirB. However, genetic variation of the 69-kb plasmid among AHPNS related strains has not been investigated. This study aimed to analyze genetic composition and diversity of the 69-kb plasmid in strains isolated from shrimps affected by AHPNS. Plasmids recovered from V. parahaemolyticus strain VPE61 which represented typical AHPNS pathogenicity, strain VP2HP which did not represent AHPNS pathogenicity but was isolated from AHPNS affected shrimp and other AHPNS V. parahaemolyticus isolates in Genbank were investigated. Protein coding genes of the 69-kb plasmid from the strain VPE61 were identical to that of AHPNS strain from Vietnam except the inverted complement 3.4-kb transposon covering pirA and pirB. The strain VP2HP possessed remarkable large 183-kb plasmid which shared similar protein coding genes to those of the 69-kb plasmid from strain VPE61. However, the 3.4-kb transposon covering pirA and pirB was absent from the 183-kb plasmid in strain VP2HP. A number of protein coding genes from the 183-kb plasmid were also detected in other AHPNS strains. In summary, this study identified a novel 183-kb plasmid that is related to AHPNS causing strains. Homologous recombination of the 69-kb AHPNS plasmid and other naturally occurring plasmids together with loss and gain of AHPNS virulence genes in V. parahaemolyticus were observed. The outcome of this research enables understanding of plasmid dynamics that possibly affect variable degrees of AHPNS pathogenicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Ruichao; Xie, Miaomiao; Lv, Jingzhang; Wai-Chi Chan, Edward; Chen, Sheng
2017-03-01
To investigate the genetic features of three plasmids recovered from an MCR-1 and ESBL-producing Escherichia coli strain, HYEC7, and characterize the transmission mechanism of mcr-1 . The genetic profiles of three plasmids were determined by PCR, S1-PFGE, Southern hybridization and WGS analysis. The ability of the mcr-1 -bearing plasmid to undergo conjugation was also assessed. The mcr-1 -bearing transposon Tn 6330 was characterized by PCR and DNA sequencing. Complete sequences of three plasmids were obtained. A non-conjugative phage P7-like plasmid, pHYEC7- mcr1 , was found to harbour the mcr-1 -bearing transposon Tn 6330 , which could be excised from the plasmid by generating a circular intermediate harbouring mcr-1 and the IS Apl1 element. The insertion of the circular intermediate into another plasmid, pHYEC7-IncHI2, could form pHNSHP45-2, the original IncHI2-type mcr-1 -carrying plasmid that was reported. The third plasmid, pHYEC7-110, harboured two replicons, IncX1 and IncFIB, and comprised multiple antimicrobial resistance mobile elements, some of which were shared by pHYEC7-IncHI2. The Tn 6330 element located in the phage-like plasmid pHYEC7- mcr1 could be excised from the plasmid and formed a circular intermediate that could be integrated into plasmids containing the IS Apl1 element. This phenomenon indicated that Tn 6330 is a key element responsible for widespread dissemination of mcr-1 among various types of plasmids and bacterial chromosomes. The dissemination rate of such an element may be further enhanced upon translocation into phage-like vectors, which may also be transmitted via transduction events. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Son, Yeon Jeong; Ryu, Ae Jin; Li, Ling; Han, Nam Soo; Jeong, Ki Jun
2016-01-15
Leuconostoc is a hetero-fermentative lactic acid bacteria, and its importance is widely recognized in the dairy industry. However, due to limited genetic tools including plasmids for Leuconostoc, there has not been much extensive research on the genetics and engineering of Leuconostoc yet. Thus, there is a big demand for high-copy-number plasmids for useful gene manipulation and overproduction of recombinant proteins in Leuconostoc. Using an existing low-copy plasmid, the copy number of plasmid was increased by random mutagenesis followed by FACS-based high-throughput screening. First, a random library of plasmids was constructed by randomizing the region responsible for replication in Leuconostoc citreum; additionally, a superfolder green fluorescent protein (sfGFP) was used as a reporter protein. With a high-speed FACS sorter, highly fluorescent cells were enriched, and after two rounds of sorting, single clone exhibiting the highest level of sfGFP was isolated. The copy number of the isolated plasmid (pCB4270) was determined by quantitative PCR (qPCR). It was found that the isolated plasmid has approximately a 30-fold higher copy number (approx. 70 copies per cell) than that of the original plasmid. From the sequence analysis, a single mutation (C→T) at position 4690 was found, and we confirmed that this single mutation was responsible for the increased plasmid copy number. The effectiveness of the isolated high-copy-number plasmid for the overproduction of recombinant proteins was successfully demonstrated with two protein models Glutathione-S-transferase (GST) and α-amylase. The high-copy number plasmid was successfully isolated by FACS-based high-throughput screening of a plasmid library in L. citreum. The isolated plasmid could be a useful genetic tool for high-level gene expression in Leuconostoc, and for extending the applications of this useful bacteria to various areas in the dairy and pharmaceutical industries.
PSI:Biology-Materials Repository: A Biologist’s Resource for Protein Expression Plasmids
Cormier, Catherine Y.; Park, Jin G.; Fiacco, Michael; Steel, Jason; Hunter, Preston; Kramer, Jason; Singla, Rajeev; LaBaer, Joshua
2011-01-01
The Protein Structure Initiative:Biology-Materials Repository (PSI:Biology-MR; MR; http://psimr.asu.edu) sequence-verifies, annotates, stores, and distributes the protein expression plasmids and vectors created by the Protein Structure Initiative (PSI). The MR has developed an informatics and sample processing pipeline that manages this process for thousands of samples per month from nearly a dozen PSI centers. DNASU (http://dnasu.asu.edu), a freely searchable database, stores the plasmid annotations, which include the full-length sequence, vector information, and associated publications for over 130,000 plasmids created by our laboratory, by the PSI and other consortia, and by individual laboratories for distribution to researchers worldwide. Each plasmid links to external resources, including the PSI Structural Biology Knowledgebase (http://sbkb.org), which facilitates cross-referencing of a particular plasmid to additional protein annotations and experimental data. To expedite and simplify plasmid requests, the MR uses an expedited material transfer agreement (EP-MTA) network, where researchers from network institutions can order and receive PSI plasmids without institutional delays. Currently over 39,000 protein expression plasmids and 78 empty vectors from the PSI are available upon request from DNASU. Overall, the MR’s repository of expression-ready plasmids, its automated pipeline, and the rapid process for receiving and distributing these plasmids more effectively allows the research community to dissect the biological function of proteins whose structures have been studied by the PSI. PMID:21360289
Liu, Yen-Ting; Chang, Keng-Ming; Ma, Chien-Hui; Jayaram, Makkuni
2016-09-30
The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts' fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates 'mother bias' (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Liu, Yen-Ting; Chang, Keng-Ming; Ma, Chien-Hui; Jayaram, Makkuni
2016-01-01
The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts’ fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates ‘mother bias’ (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation. PMID:27492289
Fusion and Compatibility of Camphor and Octane Plasmids in Pseudomonas
Chou, George I. N.; Katz, Dvorah; Gunsalus, I. C.
1974-01-01
The octane (OCT) plasmid in Pseudomonas putida derived from the ω-hydroxylase-carrying strain of Coon and coworkers is transferable to the camphor (CAM) plasmid-bearing strain by conjugation or by transduction. While the majority of the Cam +Oct+ exconjugants segregate Cam+ or Oct+ cells, exconjugants with stable Cam +Oct+ phenotype (CAM-OCT) can be detected at a low frequency. The transductants are all of the CAM-OCT phenotype. In the stable Cam +Oct+ strains, the OCT plasmid resembles the CAM plasmid with respect to curing by mitomycin C, transfer in conjugation, and reaction to ts (temperature-sensitive) mutation specifically affecting CAM plasmid replication. Therefore, it is suggested that certain regions of homology exist between the CAM and OCT plasmids that enable them to recombine to form a single plasmid, and to overcome the incompatibility barrier that prevents their coexisting. PMID:4527812
Stohl, L L; Collins, R A; Cole, M D; Lambowitz, A M
1982-01-01
Mitochondria from two Neurospora intermedia strains (P4O5-Labelle and Fiji N6-6) were found to contain plasmid DNAs in addition to the standard mitochondrial DNA species. The plasmid DNAs consist of monomeric circles (4.1-4.3 kbp and 5.2-5.3 kbp for Labelle and Fiji, respectively) and oligomers in which monomers are organized as head-to-tail repeats. DNA-DNA hybridization experiments showed that the plasmids have no substantial sequence homology to mtDNA, to each other, or to a previously characterized mitochondrial plasmid from N. crassa strain Mauriceville-lc (Collins et al. Cell 24, 443-452, 1981). The intramitochondrial location of the plasmids was established by cell fractionation and nuclease protection experiments. In sexual crosses, the plasmids showed strict maternal inheritance, the same as Neurospora mitochondrial DNA. The plasmids may represent a novel class of mitochondrial genetic elements. Images PMID:6280144
Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica.
Hoffmann, Maria; Pettengill, James B; Gonzalez-Escalona, Narjol; Miller, John; Ayers, Sherry L; Zhao, Shaohua; Allard, Marc W; McDermott, Patrick F; Brown, Eric W; Monday, Steven R
2017-01-01
Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in plasmids, advances in plasmid sequencing, and phylogenetic analyses, and important insights about how MDR evolution occurs across diverse serotypes from different animal sources, particularly in agricultural settings where antimicrobial drug use practices vary.
Lobato-Márquez, Damián; Molina-García, Laura; Moreno-Córdoba, Inma; García-Del Portillo, Francisco; Díaz-Orejas, Ramón
2016-01-01
Certain Salmonella enterica serovars belonging to subspecies I carry low-copy-number virulence plasmids of variable size (50-90 kb). All of these plasmids share the spv operon, which is important for systemic infection. Virulence plasmids are present at low copy numbers. Few copies reduce metabolic burden but suppose a risk of plasmid loss during bacterial division. This drawback is counterbalanced by maintenance modules that ensure plasmid stability, including partition systems and toxin-antitoxin (TA) loci. The low-copy number virulence pSLT plasmid of Salmonella enterica serovar Typhimurium encodes three auxiliary maintenance systems: one partition system ( parAB ) and two TA systems ( ccdAB ST and vapBC2 ST ). The TA module ccdAB ST has previously been shown to contribute to pSLT plasmid stability and vapBC2 ST to bacterial virulence. Here we describe a novel assay to measure plasmid stability based on the selection of plasmid-free cells following elimination of plasmid-containing cells by ParE toxin, a DNA gyrase inhibitor. Using this new maintenance assay we confirmed a crucial role of parAB in pSLT maintenance. We also showed that vapBC2 ST , in addition to contribute to bacterial virulence, is important for plasmid stability. We have previously shown that ccdAB ST encodes an inactive CcdB ST toxin. Using our new stability assay we monitored the contribution to plasmid stability of a ccdAB ST variant containing a single mutation (R99W) that restores the toxicity of CcdB ST . The "activation" of CcdB ST (R99W) did not increase pSLT stability by ccdAB ST . In contrast, ccdAB ST behaves as a canonical type II TA system in terms of transcriptional regulation. Of interest, ccdAB ST was shown to control the expression of a polycistronic operon in the pSLT plasmid. Collectively, these results show that the contribution of the CcdB ST toxin to pSLT plasmid stability may depend on its role as a co-repressor in coordination with CcdA ST antitoxin more than on its toxic activity.
Guillard, Thomas; Grillon, Antoine; de Champs, Christophe; Cartier, Céline; Madoux, Janick; Berçot, Béatrice; Lebreil, Anne-Laure; Lozniewski, Alain; Riahi, Jacques; Vernet-Garnier, Véronique; Cambau, Emmanuelle
2014-01-01
qnrD is a plasmid mediated quinolone resistance gene from unknown origin, recently described in Enterobacteriaceae. It encodes a pentapeptide repeat protein 36–60% different from the other Qnr (A, B, C, S and VC). Since most qnrD-positive strains were described as strains belonging to Proteus or Providencia genera, we hypothesized that qnrD originated in Proteeae before disseminating to other enterobacterial species. We screened 317 strains of Proteeae for qnrD and its genetic support by PCR. For all the seven qnrD-positive strains (4 Proteus mirabilis, 1 Proteus vulgaris and 2 Providencia rettgeri) the gene was carried onto a small non-transmissible plasmid, contrarily to other qnr genes that are usually carried onto large multi-resistant plasmids. Nucleotide sequences of the qnrD-bearing plasmids were 96% identical. Plasmids contained 3 ORFs apart from qnrD and belonged to an undescribed incompatibility group. Only one plasmid, in P. vulgaris, was slightly different with a 1,568-bp insertion between qnrD and its promoter, leading to absence of quinolone resistance. We sought for similar plasmids in 15 reference strains of Proteeae, but which were tested negative for qnrD, and found a 48% identical plasmid (pVERM) in Providencia vermicola. In order to explain how qnrD could have been inserted into such native plasmid, we sought for gene mobilization structures. qnrD was found to be located within a mobile insertion cassette (mic) element which sequences are similar to one mic also found in pVERM. Our conclusions are that (i) the small non-transmissible qnrD-plasmids described here may result from the recombination between an as-yet-unknown progenitor of qnrD and pVERM, (ii) these plasmids are maintained in Proteeae being a qnrD reservoir (iii) the mic element may explain qnrD mobilization from non-transmissible plasmids to mobilizable or conjugative plasmids from other Enterobacteriaceae, (iv) they can recombined with larger multiresistant plasmids conjugated in Proteeae. PMID:24504382
DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research
Seiler, Catherine Y.; Park, Jin G.; Sharma, Amit; Hunter, Preston; Surapaneni, Padmini; Sedillo, Casey; Field, James; Algar, Rhys; Price, Andrea; Steel, Jason; Throop, Andrea; Fiacco, Michael; LaBaer, Joshua
2014-01-01
The mission of the DNASU Plasmid Repository is to accelerate research by providing high-quality, annotated plasmid samples and online plasmid resources to the research community through the curated DNASU database, website and repository (http://dnasu.asu.edu or http://dnasu.org). The collection includes plasmids from grant-funded, high-throughput cloning projects performed in our laboratory, plasmids from external researchers, and large collections from consortia such as the ORFeome Collaboration and the NIGMS-funded Protein Structure Initiative: Biology (PSI:Biology). Through DNASU, researchers can search for and access detailed information about each plasmid such as the full length gene insert sequence, vector information, associated publications, and links to external resources that provide additional protein annotations and experimental protocols. Plasmids can be requested directly through the DNASU website. DNASU and the PSI:Biology-Materials Repositories were previously described in the 2010 NAR Database Issue (Cormier, C.Y., Mohr, S.E., Zuo, D., Hu, Y., Rolfs, A., Kramer, J., Taycher, E., Kelley, F., Fiacco, M., Turnbull, G. et al. (2010) Protein Structure Initiative Material Repository: an open shared public resource of structural genomics plasmids for the biological community. Nucleic Acids Res., 38, D743–D749.). In this update we will describe the plasmid collection and highlight the new features in the website redesign, including new browse/search options, plasmid annotations and a dynamic vector mapping feature that was developed in collaboration with LabGenius. Overall, these plasmid resources continue to enable research with the goal of elucidating the role of proteins in both normal biological processes and disease. PMID:24225319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shihui; Vera, Jessica M.; Grass, Jeff
Zymomonas mobilis is a natural ethanologen being developed and deployed as an industrial biofuel producer. To date, eight Z. mobilis strains have been completely sequenced and found to contain 2-8 native plasmids. However, systematic verification of predicted Z. mobilis plasmid genes and their contribution to cell fitness has not been hitherto addressed. Moreover, the precise number and identities of plasmids in Z. mobilis model strain ZM4 have been unclear. The lack of functional information about plasmid genes in ZM4 impedes ongoing studies for this model biofuel-producing strain. In this study, we determined the complete chromosome and plasmid sequences of ZM4more » and its engineered xylose-utilizing derivatives 2032 and 8b. Compared to previously published and revised ZM4 chromosome sequences, the ZM4 chromosome sequence reported here contains 65 nucleotide sequence variations as well as a 2400-bp insertion. Four plasmids were identified in all three strains, with 150 plasmid genes predicted in strain ZM4 and 2032, and 153 plasmid genes predicted in strain 8b due to the insertion of heterologous DNA for expanded substrate utilization. Plasmid genes were then annotated using Blast2GO, InterProScan, and systems biology data analyses, and most genes were found to have apparent orthologs in other organisms or identifiable conserved domains. To verify plasmid gene prediction, RNA-Seq was used to map transcripts and also compare relative gene expression under various growth conditions, including anaerobic and aerobic conditions, or growth in different concentrations of biomass hydrolysates. Overall, plasmid genes were more responsive to varying hydrolysate concentrations than to oxygen availability. Additionally, our results indicated that although all plasmids were present in low copy number (about 1-2 per cell), the copy number of some plasmids varied under specific growth conditions or due to heterologous gene insertion. The complete genome of ZM4 and two xylose-utilizing derivatives is reported in this study, with an emphasis on identifying and characterizing plasmid genes. Furthermore, plasmid gene annotation, validation, expression levels at growth conditions of interest, and contribution to host fitness are reported for the first time.« less
Yang, Shihui; Vera, Jessica M.; Grass, Jeff; ...
2018-05-02
Zymomonas mobilis is a natural ethanologen being developed and deployed as an industrial biofuel producer. To date, eight Z. mobilis strains have been completely sequenced and found to contain 2-8 native plasmids. However, systematic verification of predicted Z. mobilis plasmid genes and their contribution to cell fitness has not been hitherto addressed. Moreover, the precise number and identities of plasmids in Z. mobilis model strain ZM4 have been unclear. The lack of functional information about plasmid genes in ZM4 impedes ongoing studies for this model biofuel-producing strain. In this study, we determined the complete chromosome and plasmid sequences of ZM4more » and its engineered xylose-utilizing derivatives 2032 and 8b. Compared to previously published and revised ZM4 chromosome sequences, the ZM4 chromosome sequence reported here contains 65 nucleotide sequence variations as well as a 2400-bp insertion. Four plasmids were identified in all three strains, with 150 plasmid genes predicted in strain ZM4 and 2032, and 153 plasmid genes predicted in strain 8b due to the insertion of heterologous DNA for expanded substrate utilization. Plasmid genes were then annotated using Blast2GO, InterProScan, and systems biology data analyses, and most genes were found to have apparent orthologs in other organisms or identifiable conserved domains. To verify plasmid gene prediction, RNA-Seq was used to map transcripts and also compare relative gene expression under various growth conditions, including anaerobic and aerobic conditions, or growth in different concentrations of biomass hydrolysates. Overall, plasmid genes were more responsive to varying hydrolysate concentrations than to oxygen availability. Additionally, our results indicated that although all plasmids were present in low copy number (about 1-2 per cell), the copy number of some plasmids varied under specific growth conditions or due to heterologous gene insertion. The complete genome of ZM4 and two xylose-utilizing derivatives is reported in this study, with an emphasis on identifying and characterizing plasmid genes. Furthermore, plasmid gene annotation, validation, expression levels at growth conditions of interest, and contribution to host fitness are reported for the first time.« less
Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4.
Cao, Qing-Hua; Shao, Huan-Huan; Qiu, Hui; Li, Tao; Zhang, Yi-Zheng; Tan, Xue-Mei
2017-03-01
The CRISPR/Cas system can be used to simply and efficiently edit the genomes of various species, including animals, plants, and microbes. Zymomonas mobilis ZM4 is a highly efficient, ethanol-producing bacterium that contains five native plasmids. Here, we constructed the pSUZM2a-Cas9 plasmid and a single-guide RNA expression plasmid. The pSUZM2a-Cas9 plasmid was used to express the Cas9 gene cloned from Streptococcus pyogenes CICC 10464. The single-guide RNA expression plasmid pUC-T7sgRNA, with a T7 promoter, can be used for the in vitro synthesis of single-guide RNAs. This system was successfully employed to knockout the upp gene of Escherichia coli and the replicase genes of native Z. mobilis plasmids. This is the first study to apply the CRISPR/Cas9 system of S. pyogenes to eliminate native plasmids in Z. mobilis. It provides a new method for plasmid curing and paves the way for the genomic engineering of Z. mobilis.
Cui, Hong; Ghosh, Santanu K; Jayaram, Makkuni
2009-04-20
The 2 micron plasmid of Saccharomyces cerevisiae uses the Kip1 motor, but not the functionally redundant Cin8 motor, for its precise nuclear localization and equal segregation. The timing and lifetime of Kip1p association with the plasmid partitioning locus STB are consistent with Kip1p being an authentic component of the plasmid partitioning complex. Kip1-STB association is not blocked by disassembling the mitotic spindle. Lack of Kip1p disrupts recruitment of the cohesin complex at STB and cohesion of replicated plasmid molecules. Colocalization of a 2 micron reporter plasmid with Kip1p in close proximity to the spindle pole body is reminiscent of that of a CEN reporter plasmid. Absence of Kip1p displaces the plasmid from this nuclear address, where it has the potential to tether to a chromosome or poach chromosome segregation factors. Exploiting Kip1p, which is subsidiary to Cin8p for chromosome segregation, to direct itself to a "partitioning center" represents yet another facet of the benign parasitism of the yeast plasmid.
A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation
Sau, Soumitra; Conrad, Michael N.; Lee, Chih-Ying; Kaback, David B.; Dresser, Michael E.
2014-01-01
The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid–telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis. PMID:24914236
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-01-01
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518
Cormier, Catherine Y.; Mohr, Stephanie E.; Zuo, Dongmei; Hu, Yanhui; Rolfs, Andreas; Kramer, Jason; Taycher, Elena; Kelley, Fontina; Fiacco, Michael; Turnbull, Greggory; LaBaer, Joshua
2010-01-01
The Protein Structure Initiative Material Repository (PSI-MR; http://psimr.asu.edu) provides centralized storage and distribution for the protein expression plasmids created by PSI researchers. These plasmids are a resource that allows the research community to dissect the biological function of proteins whose structures have been identified by the PSI. The plasmid annotation, which includes the full length sequence, vector information and associated publications, is stored in a freely available, searchable database called DNASU (http://dnasu.asu.edu). Each PSI plasmid is also linked to a variety of additional resources, which facilitates cross-referencing of a particular plasmid to protein annotations and experimental data. Plasmid samples can be requested directly through the website. We have also developed a novel strategy to avoid the most common concern encountered when distributing plasmids namely, the complexity of material transfer agreement (MTA) processing and the resulting delays this causes. The Expedited Process MTA, in which we created a network of institutions that agree to the terms of transfer in advance of a material request, eliminates these delays. Our hope is that by creating a repository of expression-ready plasmids and expediting the process for receiving these plasmids, we will help accelerate the accessibility and pace of scientific discovery. PMID:19906724
The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector
NASA Technical Reports Server (NTRS)
Ludwig, D. L.; Bruschi, C. V.
1991-01-01
The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.
Plasmid Frequency Fluctuations in Bacterial Populations from Chemically Stressed Soil Communities
Wickham, Gene S.; Atlas, Ronald M.
1988-01-01
The frequency of plasmids in chemically stressed bacterial populations was investigated by individually adding various concentration of kanamycin, ampicillin, and mercuric chloride to soil samples. Viable bacterial populations were enumerated, soil respiration was monitored for up to 6 weeks as an indicator of physiological stress, and bacterial isolates from stressed and control soils were screened for the presence of plasmids. Low levels of the chemical stress factors did not for the most part significantly alter population viability, soil respiration, or plasmid frequency. Exposure to high stress levels of mercury and ampicillin, however, resulted in altered numbers of viable organisms, soil respiration, and plasmid frequency. Plasmid frequency increased in response to ampicillin exposure but was not significantly changed after exposure to kanamycin. In mercuric chloride-stressed soils, there was a decrease in plasmid frequency despite an increase in overall mercury resistance of the isolates, suggesting that mercury resistance in these populations is largely, if not completely, chromosome encoded. Chemical stress did not cause an increase in plasmid-mediated multiple resistance. A genetic response (change in plasmid frequency) was not found unless a physiological (phenotypic) response (change in viable cells and respiratory activity) was also observed. The results indicate that a change in plasmid frequency is dependent on both the amount and type of chemical stress. PMID:16347730
Wallis, T S; Paulin, S M; Plested, J S; Watson, P R; Jones, P W
1995-01-01
Plasmid-bearing and plasmid-free isolates and a plasmid-cured strain of Salmonella dublin were compared for virulence in calves. The plasmid-bearing strains were highly virulent, causing severe enteric and systemic disease with high mortality. In contrast, the plasmid-free strains caused diarrhea but only low mortality. The infection kinetics of a wild-type and a derivative plasmid-cured strain were compared. Both strains were isolated in high numbers from intestinal sites at 3 and 6 days after oral challenge and were isolated at comparable frequencies from systemic sites at 3 days, but not at 6 days, when the wild-type strain was predominant. The strains were equally invasive in intestinal epithelia with and without Peyer's patch and elicited comparable secretory and inflammatory responses and intestinal pathology in ligated ileal loops. The effect of the virulence plasmid on growth kinetics and on the outer membrane protein profile was assessed in an in vivo growth chamber. The virulence plasmid did not influence either extracellular growth or the expression of major outer membrane proteins. These observations demonstrate that the virulence plasmid is not involved in either the enteric phase of infection or the systemic dissemination of S. dublin but probably mediates the persistence of S. dublin at systemic sites. PMID:7790094
Costa, Sofia Santos; Palma, Cláudia; Kadlec, Kristina; Fessler, Andrea T; Viveiros, Miguel; Melo-Cristino, José; Schwarz, Stefan; Couto, Isabel
2016-12-01
Plasmids play a key role in the genetic plasticity and survival of Staphylococcus aureus in challenging environments. Although many S. aureus plasmids have been described, still few studies portray the plasmid content of a given S. aureus population. The aim of this work was to characterize the plasmids carried by a collection of 53 S. aureus isolates collected in a large hospital in Lisbon, Portugal, and investigate their role in conferring resistance to several antimicrobial agents. Plasmids were present in 44 out of the 53 isolates and were grouped into eleven AccI restriction profiles. Plasmid curing of representative strains and comparison of antimicrobial susceptibility profiles between pairs of isogenic strains proved to be a valuable guidance tool in the identification of plasmid-located resistance genes. The plasmids harbored several resistance genes, namely blaZ (resistance to β-lactams), erm(C) (resistance to macrolides, lincosamides, and streptogramin B), cadA (resistance to cadmium and zinc), cadD (resistance to cadmium), and qacA and smr (resistance to biocides and dyes). This study demonstrates the impact of plasmids on the resistance properties of S. aureus, highlighting their role in the dissemination of antibiotic, heavy metal, and biocide resistance genes, and survival of this major pathogen in the hospital environment.
Pornsukarom, Suchawan; Thakur, Siddhartha
2017-10-15
The aim of this study was to characterize the plasmids carrying antimicrobial resistance (AMR) determinants in multiple Salmonella serotypes recovered from the commercial swine farm environment after manure application on land. Manure and soil samples were collected on day 0 before and after manure application on six farms in North Carolina, and sequential soil samples were recollected on days 7, 14, and 21 from the same plots. All environmental samples were processed for Salmonella , and their plasmid contents were further characterized. A total of 14 isolates including Salmonella enterica serotypes Johannesburg ( n = 2), Ohio ( n = 2), Rissen ( n = 1), Typhimurium var5- ( n = 5), Worthington ( n = 3), and 4,12:i:- ( n = 1), representing different farms, were selected for plasmid analysis. Antimicrobial susceptibility testing was done by broth microdilution against a panel of 14 antimicrobials on the 14 confirmed transconjugants after conjugation assays. The plasmids were isolated by modified alkaline lysis, and PCRs were performed on purified plasmid DNA to identify the AMR determinants and the plasmid replicon types. The plasmids were sequenced for further analysis and to compare profiles and create phylogenetic trees. A class 1 integron with an ANT(2″)-Ia- aadA2 cassette was detected in the 50-kb IncN plasmids identified in S Worthington isolates. We identified 100-kb and 90-kb IncI1 plasmids in S Johannesburg and S Rissen isolates carrying the bla CMY-2 and tet (A) genes, respectively. An identical 95-kb IncF plasmid was widely disseminated among the different serotypes and across different farms. Our study provides evidence on the importance of horizontal dissemination of resistance determinants through plasmids of multiple Salmonella serotypes distributed across commercial swine farms after manure application. IMPORTANCE The horizontal gene transfer of antimicrobial resistance (AMR) determinants located on plasmids is considered to be the main reason for the rapid proliferation and spread of drug resistance. The deposition of manure generated in swine production systems into the environment is identified as a potential source of AMR dissemination. In this study, AMR gene-carrying plasmids were detected in multiple Salmonella serotypes across different commercial swine farms in North Carolina. The plasmid profiles were characterized based on Salmonella serotype donors and incompatibility (Inc) groups. We found that different Inc plasmids showed evidence of AMR gene transfer in multiple Salmonella serotypes. We detected an identical 95-kb plasmid that was widely distributed across swine farms in North Carolina. These conjugable resistance plasmids were able to persist on land after swine manure application. Our study provides strong evidence of AMR determinant dissemination present in plasmids of multiple Salmonella serotypes in the environment after manure application. Copyright © 2017 American Society for Microbiology.
Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge
2017-01-01
ABSTRACT Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H− strains, first identified in Germany, have emerged as important pathogens throughout Europe. Besides chromosomally encoded Shiga toxin 2a (the major virulence factor), several putative virulence loci, including the hly, etp, and sfp operons, encoding EHEC hemolysin, type II secretion system proteins, and Sfp fimbriae, respectively, are located on the 121-kb plasmid pSFO157 in German strains. Here we report novel SF EHEC O157:H− strains isolated from patients in the Czech Republic. These strains share the core genomes and chromosomal virulence loci encoding toxins (stx2a and the cdtV-ABC operon) and adhesins (eae-γ, efa1, lpfAO157OI-141, and lpfAO157OI-154) with German strains but differ essentially in their plasmids. In contrast to all previously detected SF EHEC O157:H− strains, the Czech strains carry two plasmids, of 79 kb and 86 kb. The 79-kb plasmid harbors the sfp operon, but neither of the plasmids contains the hly and etp operons. Sequence analyses demonstrated that the 79-kb plasmid (pSFO157 258/98-1) evolved from pSFO157 of German strains by deletion of a 41,534-bp region via homologous recombination, resulting in loss of the hly and etp operons. The 86-kb plasmid (pSFO157 258/98-2) displays 98% sequence similarity to a 92.7-kb plasmid of an extraintestinal pathogenic E. coli bloodstream isolate. Our finding of this novel plasmid composition in SF EHEC O157:H− strains extends the evolutionary history of EHEC O157 plasmids. Moreover, the unique molecular plasmid characteristics permit the identification of such strains, thereby facilitating further investigations of their geographic distribution, clinical significance, and epidemiology. IMPORTANCE Since their first identification in Germany in 1989, sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H− (nonmotile) strains have emerged as important causes of the life-threatening disease hemolytic-uremic syndrome in Europe. They account for 10 to 20% of sporadic cases of this disease and have caused several large outbreaks. The strains isolated throughout Europe share conserved chromosomal and plasmid characteristics. Here we identified novel sorbitol-fermenting enterohemorrhagic E. coli O157:H− patient isolates in the Czech Republic which differ from all such strains reported previously by their unique plasmid characteristics, including plasmid number, composition of plasmid-carried virulence genes, and plasmid origins. Our findings contribute substantially to understanding the evolution of E. coli O157 strains and their plasmids. In practical terms, they enable the identification of strains with these novel plasmid characteristics in patient stool samples and thus the investigation of their roles as human pathogens in other geographic areas. PMID:28970221
Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge; Mellmann, Alexander; Bielaszewska, Martina
2017-12-01
Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H - strains, first identified in Germany, have emerged as important pathogens throughout Europe. Besides chromosomally encoded Shiga toxin 2a (the major virulence factor), several putative virulence loci, including the hly , etp , and sfp operons, encoding EHEC hemolysin, type II secretion system proteins, and Sfp fimbriae, respectively, are located on the 121-kb plasmid pSFO157 in German strains. Here we report novel SF EHEC O157:H - strains isolated from patients in the Czech Republic. These strains share the core genomes and chromosomal virulence loci encoding toxins ( stx 2a and the cdtV -ABC operon) and adhesins ( eae -γ, efa1 , lpfA O157OI-141 , and lpfA O157OI-154 ) with German strains but differ essentially in their plasmids. In contrast to all previously detected SF EHEC O157:H - strains, the Czech strains carry two plasmids, of 79 kb and 86 kb. The 79-kb plasmid harbors the sfp operon, but neither of the plasmids contains the hly and etp operons. Sequence analyses demonstrated that the 79-kb plasmid (pSFO157 258/98-1) evolved from pSFO157 of German strains by deletion of a 41,534-bp region via homologous recombination, resulting in loss of the hly and etp operons. The 86-kb plasmid (pSFO157 258/98-2) displays 98% sequence similarity to a 92.7-kb plasmid of an extraintestinal pathogenic E. coli bloodstream isolate. Our finding of this novel plasmid composition in SF EHEC O157:H - strains extends the evolutionary history of EHEC O157 plasmids. Moreover, the unique molecular plasmid characteristics permit the identification of such strains, thereby facilitating further investigations of their geographic distribution, clinical significance, and epidemiology. IMPORTANCE Since their first identification in Germany in 1989, sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H - (nonmotile) strains have emerged as important causes of the life-threatening disease hemolytic-uremic syndrome in Europe. They account for 10 to 20% of sporadic cases of this disease and have caused several large outbreaks. The strains isolated throughout Europe share conserved chromosomal and plasmid characteristics. Here we identified novel sorbitol-fermenting enterohemorrhagic E. coli O157:H - patient isolates in the Czech Republic which differ from all such strains reported previously by their unique plasmid characteristics, including plasmid number, composition of plasmid-carried virulence genes, and plasmid origins. Our findings contribute substantially to understanding the evolution of E. coli O157 strains and their plasmids. In practical terms, they enable the identification of strains with these novel plasmid characteristics in patient stool samples and thus the investigation of their roles as human pathogens in other geographic areas. Copyright © 2017 American Society for Microbiology.
Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids.
Martínez, E; Palacios, R; Sánchez, F
1987-01-01
Rhizobium phaseoli CFN299 forms nitrogen-fixing nodules in Phaseolus vulgaris (bean) and in Leucaena esculenta. It has three plasmids of 185, 225, and 410 kilobases. The 410-kilobase plasmid contains the nitrogenase structural genes. We have transferred these plasmids to the plasmid-free strain Agrobacterium tumefaciens GMI9023. Transconjugants containing different combinations of the R. phaseoli plasmids were obtained, and they were exhaustively purified before nodulation was assayed. Only transconjugants harboring the 410-kilobase plasmid nodulate P. vulgaris and L. esculenta. Nodules formed by all such transconjugants are able to reduce acetylene. Transconjugants containing the whole set of plasmids from CFN299 nodulate better and fix more nitrogen than the transconjugants carrying only the Sym plasmid. Microscopic analysis of nodules induced by A. tumefaciens transconjugants reveals infected cells and vascular bundles. None of the A. tumefaciens transconjugants, not even the one with the whole set of plasmids from CFN299, behaves in symbiosis like the original R. phaseoli strain; the transconjugants produce fewer nodules and have lower acetylene reduction (25% as compared to the original R. phaseoli strain) and more amyloplasts per nodule. More than 2,000 bacterial isolates from nodules of P. vulgaris and L. esculenta formed by the transconjugants were analyzed by different criteria. Not a single rhizobium could be detected. Our results show that R. phaseoli plasmids may be expressed in the A. tumefaciens background and direct the formation of effective, differentiated nodules. Images PMID:3584072
Soto-Alonso, G; Cruz-Medina, J A; Caballero-Pérez, J; Arvizu-Hernández, I; Ávalos-Esparza, L M; Cruz-Hernández, A; Romero-Gómez, S; Rodríguez, A L; Pastrana-Martínez, X; Fernández, F; Loske, A M; Campos-Guillén, J
2015-07-01
Genetic characterization of plasmids from bacterial strains provides insight about multidrug resistance. Ten wild type Escherichia coli (E. coli) strains isolated from cow fecal samples were characterized by their antibiotic resistance profile, plasmid patterns and three different identification methods. From one of the strains, a fertility factor-like plasmid was replicated using tandem shock wave-mediated transformation. Underwater shock waves with a positive pressure peak of up to approximately 40 MPa, followed by a pressure trough of approximately -19 MPa were generated using an experimental piezoelectric shock wave source. Three different shock wave energies and a fixed delay of 750 μs were used to study the relationship between energy and transformation efficiency (TE), as well as the influence of shock wave energy on the integrity of the plasmid. Our results showed that the mean shock wave-mediated TE and the integrity of the large plasmid (~70 kb) were reduced significantly at the energy levels tested. The sequencing analysis of the plasmid revealed a high identity to the pHK17a plasmid, including the replication system, which was similar to the plasmid incompatibility group FII. It also showed that it carried an extended spectrum beta-lactamase gene, ctx-m-14. Furthermore, diverse genes for the conjugative mechanism were identified. Our results may be helpful in improving methodologies for conjugative plasmid transfer and directly selecting the most interesting plasmids from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Prevalence of ColE1-like plasmids and kanamycin resistance genes in Salmonella enterica serovars.
Chen, Chin-Yi; Lindsey, Rebecca L; Strobaugh, Terence P; Frye, Jonathan G; Meinersmann, Richard J
2010-10-01
Multi-antimicrobial-resistant Salmonella enterica strains frequently carry resistance genes on plasmids. Recent studies focus heavily on large conjugative plasmids, and the role that small plasmids play in resistance gene transfer is largely unknown. To expand our previous studies in assessing the prevalence of the isolates harboring ColE1-like plasmids carrying the aph gene responsible for kanamycin resistance (Kan(r)) phenotypes, 102 Kan(r) Salmonella isolates collected through the National Antimicrobial Resistance Monitoring System (NARMS) in 2005 were screened by PCR using ColE1 primer sets. Thirty isolates were found to be positive for ColE1-like replicon. Plasmids from 23 isolates were able to propagate in Escherichia coli and were subjected to further characterization. Restriction mapping revealed three major plasmid groups found in three or more isolates, with each group consisting of two to three subtypes. The aph genes from the Kan(r) Salmonella isolates were amplified by PCR, sequenced, and showed four different aph(3')-I genes. The distribution of the ColE1 plasmid groups in association with the aph gene, Salmonella serovar, and isolate source demonstrated a strong linkage of the plasmid with S. enterica serovar Typhimurium DT104. Due to their high copy number and mobility, the ColE1-like plasmids may play a critical role in transmission of antibiotic resistance genes among enteric pathogens, and these findings warrant a close monitoring of this plasmid incompatibility group.
Prevalence of ColE1-Like Plasmids and Kanamycin Resistance Genes in Salmonella enterica Serovars ▿
Chen, Chin-Yi; Lindsey, Rebecca L.; Strobaugh, Terence P.; Frye, Jonathan G.; Meinersmann, Richard J.
2010-01-01
Multi-antimicrobial-resistant Salmonella enterica strains frequently carry resistance genes on plasmids. Recent studies focus heavily on large conjugative plasmids, and the role that small plasmids play in resistance gene transfer is largely unknown. To expand our previous studies in assessing the prevalence of the isolates harboring ColE1-like plasmids carrying the aph gene responsible for kanamycin resistance (Kanr) phenotypes, 102 Kanr Salmonella isolates collected through the National Antimicrobial Resistance Monitoring System (NARMS) in 2005 were screened by PCR using ColE1 primer sets. Thirty isolates were found to be positive for ColE1-like replicon. Plasmids from 23 isolates were able to propagate in Escherichia coli and were subjected to further characterization. Restriction mapping revealed three major plasmid groups found in three or more isolates, with each group consisting of two to three subtypes. The aph genes from the Kanr Salmonella isolates were amplified by PCR, sequenced, and showed four different aph(3′)-I genes. The distribution of the ColE1 plasmid groups in association with the aph gene, Salmonella serovar, and isolate source demonstrated a strong linkage of the plasmid with S. enterica serovar Typhimurium DT104. Due to their high copy number and mobility, the ColE1-like plasmids may play a critical role in transmission of antibiotic resistance genes among enteric pathogens, and these findings warrant a close monitoring of this plasmid incompatibility group. PMID:20693446
Strategy to approach stable production of recombinant nattokinase in Bacillus subtilis.
Chen, Po Ting; Chiang, Chung-Jen; Chao, Yun-Peng
2007-01-01
Bacillus subtilis (B. subtilis) is widely accepted as an excellent host cell for the secretory production of recombinant proteins. In this study, a shuttle vector was constructed by fusion of Staphylococcus aureus (S. aureus) plasmid pUB110 with Escherichia coli (E. coli) plasmid pUC18 and used for the expression of nattokinase in B. subtilis. The pUB110/pUC-based plasmid was found to exhibit high structural instability with the identification of a DNA deletion between two repeated regions. An initial attempt was made to eliminate the homologous site in the plasmid, whereas the stability of the resulting plasmid was not improved. In an alternative way, the pUC18-derived region in this hybrid vector was replaced by the suicidal R6K plasmid origin of E. coli. As a consequence, the pUB110/R6K-based plasmid displayed full structural stability, leading to a high-level production of recombinant nattokinase in the culture broth. This was mirrored by the detection of a very low level of high molecular weight DNAs generated by the plasmid. Moreover, 2-fold higher nattokinase production was obtained by B. subtilis strain carrying the pUB110/R6K-based plasmid as compared to the cell with the pAMbeta1-derived vector, a plasmid known to have high structural stability. Overall, it indicates the feasibility of the approach by fusing two compatible plasmid origins for stable and efficient production of recombinant nattokinase in B. subtilis.
Shen, Kang-Ning; Yen, Ta-Chi; Chen, Ching-Hung; Ye, Jeng-Jia; Hsiao, Chung-Der
2016-05-01
In this study, the complete mitogenome sequence of the cryptic "lineage B" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) has been sequenced by next-generation sequencing method. The assembled mitogenome consisting of 16,694 bp, includes 13 protein coding genes, 25 transfer RNAs, 2 ribosomal RNAs genes. The overall base composition of "lineage B" S. lessoniana is 36.7% for A, 18.9 % for C, 34.5 % for T and 9.8 % for G and show 90% identities to "lineage C" S. lessoniana. It is also exhibits high T + A content (71.2%), two non-coding regions with TA tandem repeats. The complete mitogenome of the cryptic "lineage B" S. lessoniana provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for big-fin reef squid species complex.
Hsiao, Chung-Der; Shen, Kang-Ning; Ching, Tzu-Yun; Wang, Ya-Hsien; Ye, Jeng-Jia; Tsai, Shiou-Yi; Wu, Shan-Chun; Chen, Ching-Hung; Wang, Chia-Hui
2016-07-01
In this study, the complete mitogenome sequence of the cryptic "lineage A" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome consists of 16,605 bp, which includes 13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs genes. The overall base composition of "lineage A" S. lessoniana is 37.5% for A, 17.4% for C, 9.1% for G, and 35.9% for T and shows 87% identities to "lineage C" S. lessoniana. It is also noticed by its high T + A content (73.4%), two non-coding regions with TA tandem repeats. The complete mitogenome of the cryptic "lineage A" S. lessoniana provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for big-fin reef squid species complex.
Tong, Yan Qing; Xin, Bing; Zhu, Li
2014-01-01
Background: Plasmid transfer among bacteria provides a means for dissemination of resistance. Plasmid Analysis has made it possible to track plasmids that induce resistance in bacterial population. Objectives: To screen the presence of herb-resistance plasmid in Escherichia coli strains and determine the transferability of this resistance plasmid directly from E. coli to the Gram-positive, Staphylococcus aureus. Materials and Methods: The donor strain E. coli CP9 and recipient strain S. aureus RN450RF were isolated from UTI patients. E. coli CP9 was highly resistant to herbal concoction. Isolates of S. aureus RN450RF were fully susceptible. Total plasmid DNA was prepared and transferred into E. coli DH5α. Transconjugants were selected on agar plates containing serial dilutions of herbal concoction. Resistance plasmid was transferred to susceptible S. aureus RN450RFin triple replicas. The mating experiments were repeated twice. Results: The identified 45 kb herb-resistance plasmid could be transferred from E. coli CP9 isolates to E. coli DH5α. As a consequence E. coli DH5α transconjugant MIC increased from 0.0125 g/mL to 0.25 g/mL. The plasmid was easily transferred from E. coli CP9 strain to S. aureus RN450RF with a mean transfer rate of 1×10-2 transconjugants/recipient. The E. coli donor and the S. aureus RN450RF transconjugant contained a plasmid of the same size, which was absent in the recipient before mating. Susceptibility testing showed that the S. aureus RN450RF transconjugant was resistant to herbal concoction. Conclusions: E. coli herb-resistance plasmid can replicate and be expressed in S. aureus. PMID:25147679
Folster, J. P.; Pecic, G.; Stroika, S.; Rickert, R.; Whichard, J.
2015-01-01
Escherichia coli O157 is a major cause of foodborne illness. Plasmids are genetic elements that mobilize antimicrobial resistance determinants including blaCMY β-lactamases that confer resistance to extended-spectrum cephalosporins (ESC). ESCs are important for treating a variety of infections. IncA/C plasmids are found among diverse sources, including cattle, the principal source of E. coli O157 infections in humans. IncI1 plasmids are common among E. coli and Salmonella from poultry and other avian sources. To broaden our understanding of reservoirs of blaCMY, we determined the types of plasmids carrying blaCMY among E. coli O157. From 1996 to 2009, 3742 E. coli O157 isolates were tested. Eleven (0.29%) were ceftriaxone resistant and had a blaCMY-2-containing plasmid. All four isolates submitted before 2001 and a single 2001 isolate had blaCMY encoded on IncA/C plasmids, while all five isolates submitted after 2001 and a single 2001 isolate had blaCMY carried on IncI1 plasmids. The IncI1 plasmids were ST2, ST20, and ST23. We conclude that cephalosporin resistance among E. coli O157:H7 is due to plasmid-encoded blaCMY genes and that plasmid types appear to have shifted from IncA/C to IncI1. This shift suggests either a change in plasmid type among animal reservoirs or that the organism has expanded into avian reservoirs. More analysis of human, retail meat, and food animal isolates is necessary to broaden our understanding of the antimicrobial resistance determinants of ESC resistance among E. coli O157. PMID:26478858
Maj, Anna; Dziewit, Lukasz; Czarnecki, Jakub; Wlodarczyk, Miroslawa; Baj, Jadwiga; Skrzypczyk, Grazyna; Giersz, Dorota; Bartosik, Dariusz
2013-01-01
Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria. PMID:24260361
Carvalho, Maria J.; Toleman, Mark A.; White, P. Lewis; Connor, Thomas R.; Mushtaq, Ammara; Weeks, Janis L.; Kumarasamy, Karthikeyan K.; Raven, Katherine E.; Török, M. Estée; Peacock, Sharon J.; Howe, Robin A.; Walsh, Timothy R.
2014-01-01
The blaNDM-1 gene is associated with extensive drug resistance in Gram-negative bacteria. This probably spread to Enterobacteriaceae from Acinetobacter spp., and we characterized plasmids associated with blaNDM-1 in Acinetobacter spp. to gain insight into their role in this dissemination. Four clinical NDM-1-producing Acinetobacter species strains from India and Pakistan were investigated. A plasmid harboring blaNDM-1, pNDM-40-1, was characterized by whole-genome sequencing of Acinetobacter bereziniae CHI-40-1 and comparison with related plasmids. The presence of similar plasmids in strains from Pakistan was sought by PCR and sequencing of amplicons. Conjugation frequency was tested and stability of pNDM-40-1 investigated by real-time PCR of isolates passaged with and without antimicrobial selection pressure. A. bereziniae and Acinetobacter haemolyticus strains contained plasmids similar to the pNDM-BJ01-like plasmids identified in Acinetobacter spp. in China. The backbone of pNDM-40-1 was almost identical to that of pNDM-BJ01-like plasmids, but the transposon harboring blaNDM-1, Tn125, contained two short deletions. Escherichia coli and Acinetobacter pittii transconjugants were readily obtained. Transconjugants retained pNDM-40-1 after a 14-day passage experiment, although stability was greater with meropenem selection. Fragments of pNDM-BJ01-like plasmid backbones are found near blaNDM-1 in some genetic contexts from Enterobacteriaceae, suggesting that cross-genus transfer has occurred. pNDM-BJ01-like plasmids have been described in isolates originating from a wide geographical region in southern Asia. In vitro data on plasmid transfer and stability suggest that these plasmids could have contributed to the spread of blaNDM-1 into Enterobacteriaceae. PMID:25421466
Lacks, Sanford A.; Balganesh, Tanjore S.
1988-01-01
Disclosed is recombinant plasmid pLS101, consisting essentially of a 2.0 Kb malM gene fragment ligated to a 4.4 Kb T.sub.c r DNA fragment, which is particularly useful for transforming Gram-positive bacteria. This plasmid contains at least four restriction sites suitable for inserting exogeneous gene sequences. Also disclosed is a method for plasmid isolation by penicillin selection, as well as processes for enrichment of recombinant plasmids in Gram-positive bacterial systems.
Sentchilo, Vladimir S.; Perebituk, Alexander N.; Zehnder, Alexander J. B.; van der Meer, Jan Roelof
2000-01-01
Twenty different Pseudomonas strains utilizing m-toluate were isolated from oil-contaminated soil samples near Minsk, Belarus. Seventeen of these isolates carried plasmids ranging in size from 78 to about 200 kb (assigned pSVS plasmids) and encoding the meta cleavage pathway for toluene metabolism. Most plasmids were conjugative but of unknown incompatibility groups, except for one, which belonged to the IncP9 group. The organization of the genes for toluene catabolism was determined by restriction analysis and hybridization with xyl gene probes of pWW0. The majority of the plasmids carried xyl-type genes highly homologous to those of pWW53 and organized in a similar manner (M. T. Gallegos, P. A. Williams, and J. L. Ramos, J. Bacteriol. 179:5024–5029, 1997), with two distinguishable meta pathway operons, one upper pathway operon, and three xylS-homologous regions. All of these plasmids also possessed large areas of homologous DNA outside the catabolic genes, suggesting a common ancestry. Two other pSVS plasmids carried only one meta pathway operon, one upper pathway operon, and one copy each of xylS and xylR. The backbones of these two plasmids differed greatly from those of the others. Whereas these parts of the plasmids, carrying the xyl genes, were mostly conserved between plasmids of each group, the noncatabolic parts had undergone intensive DNA rearrangements. DNA sequencing of specific regions near and within the xylTE and xylA genes of the pSVS plasmids confirmed the strong homologies to the xyl genes of pWW53 and pWW0. However, several recombinations were discovered within the upper pathway operons of the pSVS plasmids and pWW0. The main genetic mechanisms which are thought to have resulted in the present-day configuration of the xyl operons are discussed in light of the diversity analysis carried out on the pSVS plasmids. PMID:10877777
Voets, Guido M; Fluit, Ad C; Scharringa, Jelle; Schapendonk, Claudia; van den Munckhof, Thijs; Leverstein-van Hall, Maurine A; Stuart, James Cohen
2013-11-01
The increasing prevalence of third-generation cephalosporin-resistant Enterobacteriaceae is a worldwide problem. Recent studies showed that poultry meat and humans share identical Extended-Spectrum Beta-Lactamase genes, plasmid types, and Escherichia coli strain types, suggesting that transmission from poultry meat to humans may occur. The aim of this study was to compare plasmid-encoded Ambler class C beta-lactamase (pAmpC) genes, their plasmids, and bacterial strain types between E. coli isolates from retail chicken meat and clinical isolates in the Netherlands. In total, 98 Dutch retail chicken meat samples and 479 third-generation cephalosporin non-susceptible human clinical E. coli isolates from the same period were screened for pAmpC production. Plasmid typing was performed using PCR-based replicon typing (PBRT). E coli strains were compared using Multi-Locus-Sequence-Typing (MLST). In 12 of 98 chicken meat samples (12%), pAmpC producing E. coli were detected (all blaCMY-2). Of the 479 human E. coli, 25 (5.2%) harboured pAmpC genes (blaCMY-2 n = 22, blaACT n = 2, blaMIR n = 1). PBRT showed that 91% of poultry meat isolates harboured blaCMY-2 on an IncK plasmid, and 9% on an IncI1 plasmid. Of the human blaCMY-2 producing isolates, 42% also harboured blaCMY-2 on an IncK plasmid, and 47% on an IncI1 plasmid. Thus, 68% of human pAmpC producing E. coli have the same AmpC gene (blaCMY-2) and plasmid type (IncI1 or IncK) as found in poultry meat. MLST showed one cluster containing one human isolate and three meat isolates, with an IncK plasmid. These findings imply that a foodborne transmission route of blaCMY-2 harbouring plasmids cannot be excluded and that further evaluation is required. © 2013.
Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids.
Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian
2017-04-11
Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation. Published by Elsevier Inc.
Mataseje, L F; Boyd, D A; Lefebvre, B; Bryce, E; Embree, J; Gravel, D; Katz, K; Kibsey, P; Kuhn, M; Langley, J; Mitchell, R; Roscoe, D; Simor, A; Taylor, G; Thomas, E; Turgeon, N; Mulvey, M R
2014-03-01
Emergence of plasmids harbouring bla(NDM-1) is a major public health concern due to their association with multidrug resistance and their potential mobility. PCR was used to detect bla(NDM-1) from clinical isolates of Providencia rettgeri (PR) and Klebsiella pneumoniae (KP). Antimicrobial susceptibilities were determined using Vitek 2. The complete DNA sequence of two bla(NDM-1) plasmids (pPrY2001 and pKp11-42) was obtained using a 454-Genome Sequencer FLX. Contig assembly and gap closures were confirmed by PCR-based sequencing. Comparative analysis was done using BLASTn and BLASTp algorithms. Both clinical isolates were resistant to all β-lactams, carbapenems, aminoglycosides, ciprofloxacin and trimethoprim/sulfamethoxazole, and susceptible to tigecycline. Plasmid pPrY2001 (113 295 bp) was isolated from PR. It did not show significant homology to any known plasmid backbone and contained a truncated repA and novel repB. Two bla(NDM-1)-harbouring plasmids from Acinetobacter lwoffii (JQ001791 and JQ060896) shared 100% similarity to a 15 kb region that contained bla(NDM-1). pPrY2001 also contained a type II toxin/antitoxin system. pKp11-42 (146 695 bp) was isolated from KP. It contained multiple repA genes. The plasmid backbone had the highest homology to the IncFIIk plasmid type (51% coverage, 100% nucleotide identity). The bla(NDM-1) region was unique in that it was flanked upstream by IS3000 and downstream by a novel transposon designated Tn6229. pKp11-42 also contained a number of mutagenesis and plasmid stability proteins. pPrY2001 differed from all known plasmids due to its novel backbone and repB. pKp11-42 was similar to IncFIIk plasmids and contained a number of genes that aid in plasmid persistence.
Vapnek, Daniel; Spingler, Elizabeth
1974-01-01
Deoxyribonucleic acid-ribonucleic acid (DNA-RNA) hybridization studies have been performed with R-plasmid DNA (R538-1drd) and in vivo-synthesized RNA. R-plasmid DNA was isolated from Escherichia coli K-12, and the complementary strands were separated in cesium chloride-polyuridylic acid-polyguanylic acid gradients. DNA-RNA hybridization was performed with the separated DNA strands and RNA purified from R-plasmid-carrying cells. The results demonstrated that an asymmetric transcription of the R-plasmid DNA occurs in vivo. Hybridization was only detected with the H strand (denser strand in cesium chloride-polyuridylic acid-polyguanylic acid). By determining the density of the RNA-DNA hybrid in CsCl gradients, it was estimated that greater than 60% of the nucleotide sequences in the R-plasmid DNA are transcribed in logarithmically growing E. coli cells. No R-plasmid-specific RNA was detected in E. coli cells that did not carry the plasmid. PMID:4612013
Characterization of new plasmids from methylotrophic bacteria.
Brenner, V; Holubová, I; Benada, O; Hubácek, J
1991-07-01
Several tens of methanol-utilizing bacterial strains isolated from soil were screened for the presence of plasmids. From the obligate methylotroph Methylomonas sp. strain R103a plasmid pIH36 (36 kb) was isolated and its restriction map was constructed. In pink-pigmented facultative methylotrophs (PPFM), belonging to the genus Methylobacterium four plasmids were detected: plasmids pIB200 (200 kb) and pIB14 (14 kb) in the strain R15d and plasmids pWU14 (14 kb) and pWU7 (7.8 kb) in the strain M17. Because of the small size and the presence of several unique REN sites (HindIII, EcoRI, NcoI), plasmid pWU7 was chosen for the construction of a vector for cloning in methylotrophs. Cointegrates pKWU7A and pKWU7B were formed between pWU7 and the E. coli plasmid pK19 Kmr, which were checked for conjugative transfer from E. coli into the methylotrophic host.
Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR.
Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz
2017-01-01
Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a straightforward and reliable method to quantify the plasmid copy number. Therefore we believe that the ddPCR designed in this study will be widely used for any plasmid copy number calculation in the future.
Oravcová, Veronika; Peixe, Luísa; Coque, Teresa M; Novais, Carla; Francia, Maria V; Literák, Ivan; Freitas, Ana R
2018-06-02
The most prevalent type of acquired vancomycin resistance in Enterococcus faecium (VREfm) is encoded by the vanA transposon Tn1546, mainly located on transferable plasmids. vanA plasmids have been characterized in VREfm from a variety of sources but not wild birds. The aim of this study was to analyse the genetic context of VREfm strains recovered from wild corvid birds and to compare their plasmid and strain characteristics with human strains. To achieve that, 75 VREfm isolates, including strains from wild birds recovered during wide surveillance studies performed in Europe, Canada and the United States (2010-2013), and clinical and wastewater strains from Czech Republic, a region lacking data about vanA plasmids, were analysed. Their population structure, presence of major putative virulence markers and characterization of vanA transposons and plasmids were established. VREfm from wild birds were mainly associated with major human lineages (ST18 and ST78) circulating in hospitals worldwide and were enriched in putative virulence markers that are highly associated with clinical E. faecium from human infections. They also carried plasmids of the same families usually found in the clinical setting [RCR, small theta plasmids, RepA_N (pRUM/pLG1) and Inc18]. The clinically widespread IS1251-carrying Tn1546 type "F" was predominant and Tn1546-vanA was mainly located on pRUM/Axe-Txe (USA) and Inc18- or pLG1-like (Europe) plasmids. VREfm from hospitals and wastewaters carried Tn1546-vanA in different plasmid types including mosaic pRUM-Inc18 plasmids, not identified in wild birds. This is the first characterization of vanA plasmids obtained from wild birds. A similar plasmid pool seems to exist in different clonal E. faecium backgrounds of humans and wild birds. The isolation of VREfm strains from wild birds that belong to human E. faecium adapted lineages and carry virulence genes, Tn1546 and plasmid variants widespread in the clinical setting is of concern and highlight their role as potential drivers of the global dissemination of vancomycin resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR
Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz
2017-01-01
Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a straightforward and reliable method to quantify the plasmid copy number. Therefore we believe that the ddPCR designed in this study will be widely used for any plasmid copy number calculation in the future. PMID:28085908
Di Sante, Laura; Morroni, Gianluca; Brenciani, Andrea; Vignaroli, Carla; Antonelli, Alberto; D'Andrea, Marco Maria; Di Cesare, Andrea; Giovanetti, Eleonora; Varaldo, Pietro E; Rossolini, Gian Maria; Biavasco, Francesca
2017-09-01
To analyse the recombination events associated with conjugal mobilization of two multiresistance plasmids, pRUM17i48 and pLAG (formerly named pDO1-like), from Enterococcus faecium 17i48 to Enterococcus faecalis JH2-2. The plasmids from two E. faecalis transconjugants (JH-4T, tetracycline resistant, and JH-8E, erythromycin resistant) and from the E. faecium donor (also carrying a pHTβ-like conjugative plasmid, named pHTβ17i48) were investigated by several methods, including PCR mapping and sequencing, S1-PFGE followed by Southern blotting and hybridization, and WGS. Two locations of repApHTβ were detected in both transconjugants, one on a ∼50 kb plasmid (as in the donor) and the other on plasmids of larger sizes. In JH-4T, WGS disclosed an 88.6 kb plasmid resulting from the recombination of pHTβ17i48 (∼50 kb) and a new plasmid, named pLAG (35.3 kb), carrying the tet(M), tet(L), lsa(E), lnu(B), spw and aadE resistance genes. In JH-8E, a 75 kb plasmid resulting from the recombination of pHTβ17i48 and pRUM17i48 was observed. In both cases, the cointegrates were apparently derived from replicative transposition of an IS1216 present in each of the multiresistance plasmids into pHTβ17i48. The cointegrates could resolve to yield the multiresistance plasmids and a pHTβ17i48 derivative carrying an IS1216 (unlike the pHTβ17i48 of the donor). Our results completed the characterization of the multiresistance plasmids carried by the E. faecium 17i48, confirming the role of pHT plasmids in the mobilization of non-conjugative antibiotic resistance elements among enterococci. Results also revealed that mobilization to E. faecalis was associated with the generation of cointegrate plasmids promoted by IS1216-mediated transposition. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sesma, F; Gardiol, D; de Ruiz Holgado, A P; de Mendoza, D
1990-01-01
The citrate plasmid (Cit+ plasmid) from Lactococcus lactis subsp. lactis biovar diacetylactis was cloned into the EcoRI site of plasmid pUC18. This recombinant plasmid enabled Escherichia coli K-12 to transport and utilize citrate as a source of energy, indicating expression of the citrate permease from L. lactis biovar diacetylactis. The citrate permease was under the control of the lac promoter of pUC18. Genetic expression of the Cit+ plasmid in maxicells revealed that the plasmid encoded two polypeptides of 47 and 32 kilodaltons, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:2117878
Large-scale preparation of plasmid DNA.
Heilig, J S; Elbing, K L; Brent, R
2001-05-01
Although the need for large quantities of plasmid DNA has diminished as techniques for manipulating small quantities of DNA have improved, occasionally large amounts of high-quality plasmid DNA are desired. This unit describes the preparation of milligram quantities of highly purified plasmid DNA. The first part of the unit describes three methods for preparing crude lysates enriched in plasmid DNA from bacterial cells grown in liquid culture: alkaline lysis, boiling, and Triton lysis. The second part describes four methods for purifying plasmid DNA in such lysates away from contaminating RNA and protein: CsCl/ethidium bromide density gradient centrifugation, polyethylene glycol (PEG) precipitation, anion-exchange chromatography, and size-exclusion chromatography.
Cui, Hong; Ghosh, Santanu K.
2009-01-01
The 2 micron plasmid of Saccharomyces cerevisiae uses the Kip1 motor, but not the functionally redundant Cin8 motor, for its precise nuclear localization and equal segregation. The timing and lifetime of Kip1p association with the plasmid partitioning locus STB are consistent with Kip1p being an authentic component of the plasmid partitioning complex. Kip1–STB association is not blocked by disassembling the mitotic spindle. Lack of Kip1p disrupts recruitment of the cohesin complex at STB and cohesion of replicated plasmid molecules. Colocalization of a 2 micron reporter plasmid with Kip1p in close proximity to the spindle pole body is reminiscent of that of a CEN reporter plasmid. Absence of Kip1p displaces the plasmid from this nuclear address, where it has the potential to tether to a chromosome or poach chromosome segregation factors. Exploiting Kip1p, which is subsidiary to Cin8p for chromosome segregation, to direct itself to a “partitioning center” represents yet another facet of the benign parasitism of the yeast plasmid. PMID:19364922
Liakopoulos, Apostolos; van der Goot, Jeanet; Bossers, Alex; Betts, Jonathan; Brouwer, Michael S M; Kant, Arie; Smith, Hilde; Ceccarelli, Daniela; Mevius, Dik
2018-05-16
The bla SHV-12 β-lactamase gene is one of the most prevalent genes conferring resistance to extended-spectrum β-lactams in Enterobacteriaceae disseminating within and between reservoirs, mostly via plasmid-mediated horizontal gene transfer. Yet, studies regarding the biology of plasmids encoding bla SHV-12 are very limited. In this study, we revealed the emergence of IncX3 plasmids alongside IncI1α/γ in bla SHV-12 in animal-related Escherichia coli isolates. Four representative bla SHV-12 -encoding IncX3 plasmids were selected for genome sequencing and further genetic and functional characterization. We report here the first complete sequences of IncX3 plasmids of animal origin and show that IncX3 plasmids exhibit remarkable synteny in their backbone, while the major differences lie in their bla SHV-12 -flanking region. Our findings indicate that plasmids of this subgroup are conjugative and highly stable, while they exert no fitness cost on their bacterial host. These favourable features might have contributed to the emergence of IncX3 amongst SHV-12-producing E. coli in the Netherlands, highlighting the epidemic potential of these plasmids.
Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay
Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming
2011-01-01
Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997
Watts, Thomas D; Johanesen, Priscilla A; Lyras, Dena; Rood, Julian I; Adams, Vicki
2017-05-01
Clostridium perfringens produces an extensive repertoire of toxins and extracellular enzymes, many of which are intimately involved in the progression of disease and are encoded by genes on conjugative plasmids. In addition, many C. perfringens strains can carry up to five of these conjugative toxin or antimicrobial resistance plasmids, each of which has a similar 35kb backbone. This conserved backbone includes the tcp conjugation locus and the central control region (CCR), which encodes genes involved in plasmid regulation, replication and partitioning, including a parMRC partitioning locus. Most conjugative plasmids in C. perfringens have a conserved replication protein, raising questions as to how multiple, closely related plasmids are maintained within a single strain. Bioinformatics analysis has highlighted the presence of at least 10 different parMRC partitioning system families (parMRC A-J ) in these plasmids, with differences in amino acid sequence identity between each ParM family ranging from 15% to 54%. No two plasmids that encode genes belonging to the same partitioning family have been observed in a single strain, suggesting that these families represent the basis for plasmid incompatibility. In an attempt to validate the proposed parMRC incompatibility groups, genetically marked C. perfringens plasmids encoding identical parMRC C or parMRC D homologues or different combinations of parMRC A , parMRC C and parMRC D family homologues were introduced into a single strain via conjugation. The stability of each plasmid was determined using an incompatibility assay in which the plasmid profile of each strain was monitored over the course of two days in the absence of direct selection. The results showed that plasmids with identical parMRC C or parMRC D homologues were incompatible and could not coexist in the absence of external selection. By contrast, plasmids that encoded different parMRC homologues were compatible and could coexist in the same cell in the absence of selection, with the exception of strains housing parMRC C and parMRC D combinations, which showed a minor incompatibility phenotype. In conclusion, we have provided the first direct evidence of plasmid incompatibility in Clostridium spp. and have shown experimentally that the compatibility of conjugative C. perfringens plasmids correlates with the presence of parMRC-like partitioning systems of different phylogenetic subfamilies. Copyright © 2017 Elsevier Inc. All rights reserved.
Wu, Shuyu; Dalsgaard, Anders; Hammerum, Anette M; Porsbo, Lone J; Jensen, Lars B
2010-07-30
Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans) were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc) groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%), while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively). Multireplicons were found associated with all three sul genes. Sul genes were distributed widely in E. coli isolated from pigs and humans with sul2 being most prevalent. Sul-carrying plasmids belonged to diverse replicon types, but most of detected plasmids were conjugative enabling horizontal transfer. IncFII seems to be the dominant replicon type in sul2-carrying plasmids from all three sources.
Lacks, S.A.; Balganesh, T.S.
1985-02-19
Disclosed is recombinant plasmid pLS101, consisting essentially of a 2.0 Kb ma1M gene fragment ligated to a 4.4 Kb Tcr DNA fragment, which is particularly useful for transforming Gram-positive bacteria. This plasmid contains at least four restriction sites suitable for inserting exogeneous gene sequences. Also disclosed is a method for plasmid isolation by penicillin selection, as well as processes for enrichment of recombinant plasmids in Gram-positive bacterial systems. 5 figs., 2 tabs.
Madsen, Jonas Stenløkke; Riber, Leise; Kot, Witold; Basfeld, Alrun; Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes
2016-01-01
Horizontal gene transfer (HGT), the transmission of genetic material to a recipient that is not the progeny of the donor, is fundamental in bacterial evolution. HGT is often mediated by mobile genetic elements such as conjugative plasmids, which may be in conflict with the chromosomal elements of the genome because they are independent replicons that may petition their own evolutionary strategy. Here we study differences between type 3 fimbriae encoded on wild type plasmids and in chromosomes. Using known and newly characterized plasmids we show that the expression of type 3 fimbriae encoded on plasmids is systematically different, as MrkH, a c-di-GMP dependent transcriptional activator is not needed for strong expression of the fimbriae. MrkH is required for expression of type 3 fimbriae of the Klebsiella pneumoniae chromosome, wherefrom the fimbriae operon (mrkABCDF) of plasmids is believed to have originated. We find that mrkABCDFs of plasmids are highly expressed via a unique promoter that differs from the original Klebsiella promoter resulting in fundamental behavioral consequences. Plasmid associated mrkABCDFs did not influence the swimming behavior of the host, that hereby acquired an exceptional phenotype being able to both actively swim (planktonic behavior) and express biofilm associated fimbriae (sessile behavior). We show that this exceptional phenotype enhances the conjugal transfer of the plasmid. PMID:27627107
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-10-28
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Burbank, Lindsey P; Stenger, Drake C
2016-08-01
The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.
Soler, Nicolas; Marguet, Evelyne; Cortez, Diego; Desnoues, Nicole; Keller, Jenny; van Tilbeurgh, Herman; Sezonov, Guennadi; Forterre, Patrick
2010-01-01
Thermococcales (phylum Euryarchaeota) are model organisms for physiological and molecular studies of hyperthermophiles. Here we describe three new plasmids from Thermococcales that could provide new tools and model systems for genetic and molecular studies in Archaea. The plasmids pTN2 from Thermococcus nautilus sp. 30-1 and pP12-1 from Pyrococcus sp. 12-1 belong to the same family. They have similar size (∼12 kb) and share six genes, including homologues of genes encoded by the virus PAV1 from Pyrococcus abyssi. The plasmid pT26-2 from Thermococcus sp. 26-2 (21.5 kb), that corresponds to another plasmid family, encodes many proteins having homologues in virus-like elements integrated in several genomes of Thermococcales and Methanococcales. Our analyses confirm that viruses and plasmids are evolutionary related and co-evolve with their hosts. Whereas all plasmids previously isolated from Thermococcales replicate by the rolling circle mechanism, the three plasmids described here probably replicate by the theta mechanism. The plasmids pTN2 and pP12-1 encode a putative helicase of the SFI superfamily and a new family of DNA polymerase, whose activity was demonstrated in vitro, whereas pT26-2 encodes a putative new type of helicase. This strengthens the idea that plasmids and viruses are a reservoir of novel protein families involved in DNA replication. PMID:20403814
2012-01-01
Background Many marine meiofaunal species are reported to have wide distributions, which creates a paradox considering their hypothesized low dispersal abilities. Correlated with this paradox is an especially high taxonomic deficit for meiofauna, partly related to a lower taxonomic effort and partly to a high number of putative cryptic species. Molecular-based species delineation and barcoding approaches have been advocated for meiofaunal biodiversity assessments to speed up description processes and uncover cryptic lineages. However, these approaches show sensitivity to sampling coverage (taxonomic and geographic) and the success rate has never been explored on mesopsammic Mollusca. Results We collected the meiofaunal sea-slug Pontohedyle (Acochlidia, Heterobranchia) from 28 localities worldwide. With a traditional morphological approach, all specimens fall into two morphospecies. However, with a multi-marker genetic approach, we reveal multiple lineages that are reciprocally monophyletic on single and concatenated gene trees in phylogenetic analyses. These lineages are largely concordant with geographical and oceanographic parameters, leading to our primary species hypothesis (PSH). In parallel, we apply four independent methods of molecular based species delineation: General Mixed Yule Coalescent model (GMYC), statistical parsimony, Bayesian Species Delineation (BPP) and Automatic Barcode Gap Discovery (ABGD). The secondary species hypothesis (SSH) is gained by relying only on uncontradicted results of the different approaches (‘minimum consensus approach’), resulting in the discovery of a radiation of (at least) 12 mainly cryptic species, 9 of them new to science, some sympatric and some allopatric with respect to ocean boundaries. However, the meiofaunal paradox still persists in some Pontohedyle species identified here with wide coastal and trans-archipelago distributions. Conclusions Our study confirms extensive, morphologically cryptic diversity among meiofauna and accentuates the taxonomic deficit that characterizes meiofauna research. We observe for Pontohedyle slugs a high degree of morphological simplicity and uniformity, which we expect might be a general rule for meiofauna. To tackle cryptic diversity in little explored and hard-to-sample invertebrate taxa, at present, a combined approach seems most promising, such as multi-marker-barcoding (i.e., molecular systematics using mitochondrial and nuclear markers and the criterion of reciprocal monophyly) combined with a minimum consensus approach across independent methods of molecular species delineation to define candidate species. PMID:23244441
Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius.
Wescombe, Philip A; Burton, Jeremy P; Cadieux, Peter A; Klesse, Nikolai A; Hyink, Otto; Heng, Nicholas C K; Chilcott, Chris N; Reid, Gregor; Tagg, John R
2006-10-01
Streptococcus salivarius strains commonly produce bacteriocins as putative anti-competitor or signalling molecules. Here we report that bacteriocin production by the oral probiotic strain S. salivarius K12 is encoded by a large (ca. 190 kb) plasmid. Oral cavity transmission of the plasmid from strain K12 to a plasmid-negative variant of this bacterium was demonstrated in two subjects. Tests of additional S. salivarius strains showed large (up to ca. 220 kb) plasmids present in bacteriocin-producing isolates. Various combinations (up to 3 per plasmid) of loci encoding the known streptococcal lantibiotics salivaricin A, salivaricin B, streptin and SA-FF22 were localised to these plasmids. Since all bacteriocin-producing strains of S. salivarius tested to date appear to harbour plasmids, it appears that they may function as mobile repositories for bacteriocin loci, especially those of the lantibiotic class.
Dib, Julián R; Wagenknecht, Martin; Farías, María E; Meinhardt, Friedhelm
2015-01-01
The term plasmid was originally coined for circular, extrachromosomal genetic elements. Today, plasmids are widely recognized not only as important factors facilitating genome restructuring but also as vehicles for the dissemination of beneficial characters within bacterial communities. Plasmid diversity has been uncovered by means of culture-dependent or -independent approaches, such as endogenous or exogenous plasmid isolation as well as PCR-based detection or transposon-aided capture, respectively. High-throughput-sequencing made possible to cover total plasmid populations in a given environment, i.e., the plasmidome, and allowed to address the quality and significance of self-replicating genetic elements. Since such efforts were and still are rather restricted to circular molecules, here we put equal emphasis on the linear plasmids which-despite their frequent occurrence in a large number of bacteria-are largely neglected in prevalent plasmidome conceptions.
Occurrence of small Hsd plasmids in Salmonella typhi, Shigella boydii, and Escherichia coli.
Yoshida, Y; Mise, K
1986-01-01
The natural occurrence of small Hsd (host specificity for DNA) plasmids was demonstrated in restriction endonuclease-producing strains of Salmonella typhi, Shigella boydii, and Escherichia coli. The five Hsd plasmids isolated were between 5.0 and 12.2 kilobases long. The copy number of all the Hsd plasmids was high (more than 10 copies per cell). Introduction of these small plasmids into E. coli strain 0 drastically lowered the efficiency of plating of the lambda.0 phages (the efficiency of plating was less than 5 X 10(-5) PFU-1). High restriction endonuclease activities were detected in the Hsd plasmid-positive strains because of the elevated copy numbers of the hsdR+ gene. The advantages of using E. coli strains containing the small Hsd plasmids for purification of type II restriction endonucleases are discussed. Images PMID:3003023
Pettis, Gregg S.; Prakash, Shubha
1999-01-01
A database search revealed extensive sequence similarity between Streptomyces lividans plasmid pIJ101 and Streptomyces plasmid pSB24.2, which is a deletion derivative of Streptomyces cyanogenus plasmid pSB24.1. The high degree of relatedness between the two plasmids allowed the construction of a genetic map of pSB24.2, consisting of putative transfer and replication loci. Two pSB24.2 loci, namely, the cis-acting locus for transfer (clt) and the transfer-associated korB gene, were shown to be capable of complementing the pIJ101 clt and korB functions, respectively, a result that is consistent with the notion that pIJ101 and the parental plasmid pSB24.1 encode highly similar, if not identical, conjugation systems. PMID:10419972
Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations
Fox, Randal E; Zhong, Xue; Krone, Stephen M; Top, Eva M
2008-01-01
In spite of the importance of plasmids in bacterial adaptation, we have a poor understanding of their dynamics. It is not known if or how plasmids persist in and spread through (invade) a bacterial population when there is no selection for plasmid-encoded traits. Moreover, the differences in dynamics between spatially structured and mixed populations are poorly understood. Through a joint experimental/theoretical approach, we tested the hypothesis that self-transmissible IncP-1 plasmids can invade a bacterial population in the absence of selection when initially very rare, but only in spatially structured habitats and when nutrients are regularly replenished. Using protocols that differed in the degree of spatial structure and nutrient levels, the invasiveness of plasmid pB10 in Escherichia coli was monitored during at least 15 days, with an initial fraction of plasmid-bearing (p+) cells as low as 10−7. To further explore the mechanisms underlying plasmid dynamics, we developed a spatially explicit mathematical model. When cells were grown on filters and transferred to fresh medium daily, the p+ fraction increased to 13%, whereas almost complete invasion occurred when the population structure was disturbed daily. The plasmid was unable to invade in liquid. When carbon source levels were lower or not replenished, plasmid invasion was hampered. Simulations of the mathematical model closely matched the experimental results and produced estimates of the effects of alternative experimental parameters. This allowed us to isolate the likely mechanisms most responsible for the observations. In conclusion, spatial structure and nutrient availability can be key determinants in the invasiveness of plasmids. PMID:18528415
Naito, Y; Naito, T; Kobayashi, I
1998-01-01
Previous work from this laboratory demonstrated that plasmids carrying a type II restriction-modification gene complex are not easily lost from their bacterial host because plasmid-free segregant cells are killed through chromosome cleavage. Here, we have followed the course of events that takes place when an Escherichia coli rec BC sbcA strain carrying a plasmid coding for the PaeR7I restriction-modification (R/M) gene complex is transformed by a plasmid with an identical origin of replication. The number of transformants that appeared was far fewer than with the restriction-minus (r-) control. Most of the transformants were very small. After prolonged incubation, the number and the size of the colonies increased, but this increase never attained the level of the r- control. Most of the transformed colonies retained the drug-resistance of the resident, r+ m+ plasmid. These results indicate that post-segregational host killing occurs when a plasmid bearing an R/M gene complex is displaced by an incompatible plasmid. Such cell killing eliminates the competitor plasmid along with the host and, thus, would allow persistence of the R/M plasmid in the neighboring, clonal host cells in nature. This phenomenon is reminiscent of mammalian apoptosis and other forms of altruistic cell death strategy against infection. This type of resistance to displacement was also studied in a wild type Escherichia coli strain that was normal for homologous recombination (rec+). A number of differences between the recBC sbcA strain and the rec+ strain were observed and these will be discussed.
Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species.
Li, Ruichao; Ye, Lianwei; Wong, Marcus Ho Yin; Zheng, Zhiwei; Chan, Edward Wai Chi; Chen, Sheng
2017-09-01
To investigate a set of MDR conjugative plasmids found in Vibrio species and characterize the underlying evolution process. pAQU-type plasmids from Vibrio species were sequenced using both Illumina and PacBio platforms. Bioinformatics tools were utilized to analyse the typical MDR regions and core genes in the plasmids. The nine pAQU-type plasmids ranged from ∼160 to 206 kb in size and were found to harbour as many as 111 core genes encoding conjugative, replication and maintenance functions. Eight plasmids were found to carry a typical MDR region, which contained various accessory and resistance genes, including ISCR1-blaPER-1-bearing complex class 1 integrons, ISCR2-floR, ISCR2-tet(D)-tetR-ISCR2, qnrVC6, a Tn10-like structure and others associated with mobile elements. Comparison between a plasmid without resistance genes and different MDR plasmids showed that integration of different mobile elements, such as IS26, ISCR1, ISCR2, IS10 and IS6100, into the plasmid backbone was the key mechanism by which foreign resistance genes were acquired during the evolution process. This study identified pAQU-type plasmids as emerging MDR conjugative plasmids among important pathogens from different origins in Asia. These findings suggest that aquatic bacteria constitute a major reservoir of resistance genes, which may be transmissible to other human pathogens during food production and processing. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Alvarez, Fernando
2017-01-01
Background and Aims Cryptic peracarids are an important component of the coral reef fauna in terms of diversity and abundance, yet they have been poorly studied. The aim of this study was to evaluate the taxonomic richness and abundance of cryptic peracarids in coral rubble in the Puerto Morelos Reef National Park, Mexico (PMRNP), and their relationship with depth. Methods Three reef sites were selected: (1) Bonanza, (2) Bocana, and (3) Jardines. At each site six kilograms of coral rubble were collected over four sampling periods at three depths: 3 m (back-reef), 6–8 m (fore-reef), and 10–12 m (fore-reef). Results A total of 8,887 peracarid crustaceans belonging to 200 taxa distributed over five orders and 63 families was obtained; 70% of the taxa were identified to species and 25% to genus level. Fifty species of those collected represent new records for the Mexican Caribbean Sea. Isopoda was the most speciose order while Tanaidacea was the most abundant. Discussion Cryptic peracarid taxonomic richness and abundance were related to depth with higher values of both parameters being found in the shallow (3 m) back-reef, possibly due to a higher reef development and a greater accumulation of coral rubble produced during hurricanes. Peracarid data obtained in the present study can be used as a baseline for future monitoring programs in the PMRNP. PMID:28630800
Yeates, Sarah E; Diamond, Sian E; Einum, Sigurd; Emerson, Brent C; Holt, William V; Gage, Matthew J G
2013-12-01
Despite evidence that variation in male-female reproductive compatibility exists in many fertilization systems, identifying mechanisms of cryptic female choice at the gamete level has been a challenge. Here, under risks of genetic incompatibility through hybridization, we show how salmon and trout eggs promote fertilization by conspecific sperm. Using in vitro fertilization experiments that replicate the gametic microenvironment, we find complete interfertility between both species. However, if either species' ova were presented with equivalent numbers of both sperm types, conspecific sperm gained fertilization precedence. Surprisingly, the species' identity of the eggs did not explain this cryptic female choice, which instead was primarily controlled by conspecific ovarian fluid, a semiviscous, protein-rich solution that bathes the eggs and is released at spawning. Video analyses revealed that ovarian fluid doubled sperm motile life span and straightened swimming trajectory, behaviors allowing chemoattraction up a concentration gradient. To confirm chemoattraction, cell migration tests through membranes containing pores that approximated to the egg micropyle showed that conspecific ovarian fluid attracted many more spermatozoa through the membrane, compared with heterospecific fluid or water. These combined findings together identify how cryptic female choice can evolve at the gamete level and promote reproductive isolation, mediated by a specific chemoattractive influence of ovarian fluid on sperm swimming behavior. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Saito, S; Margosan, D; Michailides, T J; Xiao, C L
2016-01-01
The Botrytis cinerea species complex comprises two cryptic species, originally referred to Group I and Group II based on Bc-hch gene RFLP haplotyping. Group I was described as a new cryptic species B. pseudocinerea During a survey of Botrytis spp. causing gray mold in blueberries and table grapes in the Central Valley of California, six isolates, three from blueberries and three from table grapes, were placed in Group I but had a distinct morphological character with conidiophores significantly longer than those of B. cinerea and B. pseudocinerea We compared these with B. cinerea and B. pseudocinerea by examining morphological and physiological characters, sensitivity to fenhexamid and phylogenetic analysis inferred from sequences of three nuclear genes. Phylogenetic analysis with the three partial gene sequences encoding glyceraldehyde-3-phosate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) and DNA-dependent RNA polymerase subunit II (RPB2) supported the proposal of a new Botrytis species, B. californica, which is closely related genetically to B. cinerea, B. pseudocinerea and B. sinoviticola, all known as causal agents of gray mold of grapes. Botrytis californica caused decay on blueberry and table grape fruit inoculated with the fungus. This study suggests that B. californica is a cryptic species sympatric with B. cinerea on blueberries and table grapes in California. © 2016 by The Mycological Society of America.
Zúñiga-Reinoso, Álvaro; Méndez, Marco A
2018-04-24
The origin of cryptic species has traditionally been associated with events of recent speciation, genetic constraints, selection of an adaptive character, sexual selection and/or convergent evolution. Species of the genus Callyntra inhabit coastal terraces, mountain slopes, and peaks; their elytral designs are associated with each of these habitats. However, cryptic species have been described within each of these habitats; the taxonomy of this group has been problematic, thus establishing the phylogenetic relationships in this group is fundamental to clarify the systematics and evolutionary patterns of Callyntra. We reconstructed the phylogeny of this group using two mitochondrial genes (COI, 16S) and one nuclear gene (Mp20). We also performed species delimitation using PTP based methods (PTP, mlPTP, bPTP) and GMYC, and evaluated the evolution of the elytral design related to habitat preference. The results showed a tree with five clades, that together with the different methods of species delimitation recovered the described species and suggested at least five new species. The elytral design and habitat preference showed phylogenetic signals. We propose a new classification based on monophyletic groups recovered by phylogenetic analyses. We also suggest that parallel evolution in different habitats and later stasis in the elytral design would be the cause of the origin of cryptic species in this group from central Chile. Copyright © 2018 Elsevier Inc. All rights reserved.
1987-07-01
nontransformable Bacillus species such as B. anthracis. Our results suggest that plasmid pLS20 of Bacillus subtilis ( natto ), which promotes transfer of the...mobilizing pBC16, pLS20 mediates transfer of the B. subtills ( natto ) plasmid pLS19 and the Staphylococcus aureus plasmid pUB110. To facilitate direct...and (v) transformation of B. cereus and B. anthracis with plasmid DNA. The 55-kb plasmid, pLS20, of Bacillus subtilis ( natto ) 3335 promotes tr msfer
2006-06-01
factors. T47DY cells were cotransfected with a PR construct, a PRE- luciferase plasmid and a renilla plasmid, for transfection control. The cells...PR-B or S294A PR-B, PRE-luciferase reporter constructs and a Renilla control plasmid. Cells were treated for 24hrs with or without R5020 (10nM...plasmid and a plasmid constitutively expressing renilla luciferase for transfection control. Cell were starved for one day and treated with or without
François, V; Conter, A; Louarn, J M
1990-01-01
Conjugative temperature-sensitive plasmids were derived from pSC101. These plasmids are useful in genetic analysis for two reasons: (i) they render possible the construction of new Hfr lines by plasmid integration at predetermined chromosomal loci via Tn10 inverse transposition, and (ii) the Hfr characters are transducible via bacteriophage P1. We also showed that replication from pSC101 origin is deleterious for the plasmid-chromosome fusion. PMID:2155201
Towards the construction of high-quality mutagenesis libraries.
Li, Heng; Li, Jing; Jin, Ruinan; Chen, Wei; Liang, Chaoning; Wu, Jieyuan; Jin, Jian-Ming; Tang, Shuang-Yan
2018-07-01
To improve the quality of mutagenesis libraries in directed evolution strategy. In the process of library transformation, transformants which have been shown to take up more than one plasmid might constitute more than 20% of the constructed library, thereby extensively impairing the quality of the library. We propose a practical transformation method to prevent the occurrence of multiple-plasmid transformants while maintaining high transformation efficiency. A visual library model containing plasmids expressing different fluorescent proteins was used. Multiple-plasmid transformants can be reduced through optimizing plasmid DNA amount used for transformation based on the positive correlation between the occurrence frequency of multiple-plasmid transformants and the logarithmic ratio of plasmid molecules to competent cells. This method provides a simple solution for a seemingly common but often neglected problem, and should be valuable for improving the quality of mutagenesis libraries to enhance the efficiency of directed evolution strategies.
Monroe, T J; Muhlmann-Diaz, M C; Kovach, M J; Carlson, J O; Bedford, J S; Beaty, B J
1992-01-01
Stable incorporation of high copy numbers (greater than 10,000 per cell) of a plasmid vector containing a gene conferring resistance to the antibiotic hygromycin was achieved in a cell line derived from the Aedes albopictus mosquito. Plasmid sequences were readily observed by ethidium bromide staining of cellular DNA after restriction endonuclease digestion and agarose gel electrophoresis. The plasmid was demonstrated by in situ hybridization to be present in large arrays integrated in metaphase chromosomes and in minute and double-minute replicating elements. In one subclone, approximately 60,000 copies of the plasmid were organized in a large array that resembles a chromosome, morphologically and in the segregation of its chromatids during anaphase. The original as well as modified versions of the plasmid were rescued by transformation of Escherichia coli using total cellular DNA. Southern blot analyses of recovered plasmids indicate the presence of mosquito-derived sequences. Images PMID:1631052
Gascoyne-Binzi, D M; Heritage, J; Hawkey, P M
1993-11-01
High-level tetracycline-resistant Neisseria gonorrhoeae (TRNG) has been associated with the presence of a plasmid approximately 25.2 MDa in size which carries a Tet M tetracycline resistance determinant. Two different plasmid types, American and Dutch, have previously been described, based on the restriction endonuclease digestion pattern. In this study, the tet(M) genes from the two plasmid types have been amplified by the polymerase chain reaction (PCR) and then sequenced. The gene sequences from the two plasmids shared 96.8% identity, and showed similarities with different segments of the tet(M) gene sequences from Tn1545, Tn916 and Ureaplasma urealyticum. The data suggest that it is highly likely that the Tet M determinant found in the American type plasmid has a different origin from that present in the Dutch plasmid.
USDA-ARS?s Scientific Manuscript database
In Campylobacter spp., resistance to the antibiotics kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095 bp.) harboring tet(O) was identified in...
Kuske, C R; Kirkpatrick, B C
1990-01-01
Supercoiled double-stranded DNA molecules (plasmids) were isolated from plants infected with three laboratory strains of western aster yellows mycoplasma-like organism (AY-MLO) by using cesium chloride-ethidium bromide density gradients. Southern blot analysis, using plasmids from the severe strain of AY-MLO (SAY-MLO) as the probe, identified at least four plasmids in celery, aster, and periwinkle plants and in Macrosteles severini leafhopper vectors infected with either the dwarf AY-MLO, Tulelake AY-MLO, or SAY-MLO strain. Plasmids were also detected in two California field isolates of AY-MLO but not in plants infected with the beet leafhopper-transmitted virescence agent, western X, or elm yellows MLOs. SAY-MLO plasmids were 5.2, 4.9, 3.4, and 1.7 kilobase pairs in size. Plasmids isolated from dwarf AY- and Tulelake AY-MLOs were 7.4, 5.1, 3.5, and 1.7 kilobase pairs in size. No evidence was obtained for integration of SAY-MLO plasmids into the MLO chromosome. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 PMID:2307660
Tikhomirova, L P; Ikonomova, R N; Kuznetsova, E N
1986-01-01
For the transformation of the yeast Hansenula polymorpha we have constructed a set of hybrid plasmids carrying the LEU2 gene of Saccharomyces cerevisiae as a selective marker and fragments of mitochondrial DNA of Candida utilis and H. polymorpha or chromosomal DNA fragments of H. polymorpha as replicator sequences. The replication properties of chimeric plasmids in the yeast H. polymorpha were investigated. We showed that for plasmids propagated autonomously in this yeast the plasmid monomers could be detected in the transformants only during the immediate time after the transformation event. Further growth under selective conditions led to the selection of polymeric forms of plasmid DNA as it was clearly shown for transformants carrying cosmid pL2 with mtDNA fragment of C. utilis. Such transformants carrying polymerized plasmids showed a remarkably increased stability of the transformed phenotype. Cosmid pL2 was able to shuttle between Escherichia coli, S. cerevisiae and H. polymorpha, whereas plasmids with DNA fragments from H. polymorpha did not transform S. cerevisiae effectively.
Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex
Ghosh, Santanu K.; Huang, Chu-Chun; Hajra, Sujata; Jayaram, Makkuni
2010-01-01
Sister chromatid cohesion, crucial for faithful segregation of replicated chromosomes in eukaryotes, is mediated by the multi-subunit protein complex cohesin. The Saccharomyces cerevisiae plasmid 2 micron circle mimics chromosomes in assembling cohesin at its partitioning locus. The plasmid is a multi-copy selfish DNA element that resides in the nucleus and propagates itself stably, presumably with assistance from cohesin. In metaphase cell lysates, or fractions enriched for their cohesed state by sedimentation, plasmid molecules are trapped topologically by the protein ring formed by cohesin. They can be released from cohesin’s embrace either by linearizing the DNA or by cleaving a cohesin subunit. Assays using two distinctly tagged cohesin molecules argue against the hand-cuff (an associated pair of monomeric cohesin rings) or the bracelet (a dimeric cohesin ring) model as responsible for establishing plasmid cohesion. Our cumulative results most easily fit a model in which a single monomeric cohesin ring, rather than a series of such rings, conjoins a pair of sister plasmids. These features of plasmid cohesion account for its sister-to-sister mode of segregation by cohesin disassembly during anaphase. The mechanistic similarities of cohesion between mini-chromosome sisters and 2 micron plasmid sisters suggest a potential kinship between the plasmid partitioning locus and centromeres. PMID:19920123
NASA Astrophysics Data System (ADS)
Müller, Vilhelm; Rajer, Fredrika; Frykholm, Karolin; Nyberg, Lena K.; Quaderi, Saair; Fritzsche, Joachim; Kristiansson, Erik; Ambjörnsson, Tobias; Sandegren, Linus; Westerlund, Fredrik
2016-12-01
Bacterial plasmids are extensively involved in the rapid global spread of antibiotic resistance. We here present an assay, based on optical DNA mapping of single plasmids in nanofluidic channels, which provides detailed information about the plasmids present in a bacterial isolate. In a single experiment, we obtain the number of different plasmids in the sample, the size of each plasmid, an optical barcode that can be used to identify and trace the plasmid of interest and information about which plasmid that carries a specific resistance gene. Gene identification is done using CRISPR/Cas9 loaded with a guide-RNA (gRNA) complementary to the gene of interest that linearizes the circular plasmids at a specific location that is identified using the optical DNA maps. We demonstrate the principle on clinically relevant extended spectrum beta-lactamase (ESBL) producing isolates. We discuss how the gRNA sequence can be varied to obtain the desired information. The gRNA can either be very specific to identify a homogeneous group of genes or general to detect several groups of genes at the same time. Finally, we demonstrate an example where we use a combination of two gRNA sequences to identify carbapenemase-encoding genes in two previously not characterized clinical bacterial samples.
Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders
NASA Astrophysics Data System (ADS)
Tannières, Mélanie; Lang, Julien; Barnier, Claudie; Shykoff, Jacqui A.; Faure, Denis
2017-01-01
Some bacteria produce and perceive quorum-sensing (QS) signals that coordinate several behaviours, including the costly processes that are exoenzyme production and plasmid transfer. In the case of plasmid transfer, the emergence of QS signal-altered invaders and their policing are poorly documented. In Agrobacterium tumefaciens, the virulence Ti-plasmid encodes both synthesis and sensing of QS-signals, which promote its transfer from a donor to a recipient cell. Here, we reported that QS-altered A. tumefaciens mutants arose during experimental evolution. All showed improved growth compared to their ancestor. Genome sequencing revealed that, though some had lost the Ti-plasmid, most were defective for QS-signal synthesis and Ti-plasmid conjugation (traR mutations) and one exhibited a QS-signal exploitation behaviour, using signal produced by other cells to enhance its own Ti-plasmid transfer. We explored mechanisms that can limit this QS-hijacking. We showed that the A. tumefaciens capacity to inactivate QS-signals by expressing QS-degrading enzyme could attenuate dissemination of the QS signal-negative Ti-plasmids. This work shows that enzymatic QS-disruption whether encoded by the QS-producing Ti-plasmid itself, by a companion plasmid in the same donor cells, or by one in the recipient cells, in all cases can serve as a mechanism for controlling QS exploitation by QS signal-negative mutants.
Ribeiro, S C; Monteiro, G A; Prazeres, D M F
2009-04-01
Plasmid biopharmaceuticals are a new class of medicines with an enormous potential. Attempts to increase the physical stability of highly purified supercoiled (SC) plasmid DNA in pharmaceutical aqueous solutions have relied on: (i) changing the DNA sequence, (ii) improving manufacturing to reduce deleterious impurities and initial DNA damage, and (iii) controlling the storage medium characteristics. In this work we analyzed the role of secondary structures on the degradation of plasmid molecules. Accelerated stability experiments were performed with SC, open circular (OC) and linear (L) isoforms of three plasmids which differed only in the "single-strandlike" content of their polyadenylation (poly A) signals. We have proved that the presence of more altered or interrupted (non-B) DNA secondary structures did not directly translate into an easier strand scission of the SC isoforms. Rather, those unusual structures imposed a lower degree of SC in the plasmids, leading to an increase in their resistance to thermal degradation. However, this behavior was reversed when the relaxed or L isoforms were tested, in which case the absence of SC rendered the plasmids essentially double-stranded. Overall, this work suggests that plasmid DNA sequence and secondary structures should be taken into account in future investigations of plasmid stability during prolonged storage.
[Nutritional status of school children from indigenous and non indigenous ancestry].
Amigo, H; Bustos, P; Erazo, M; Radrigán, M E
1999-08-01
The few studies in Chile assessing the nutritional status of indigenous children show a high prevalence of stunting, excess weight and feeding problems. To compare anthropometric indices in children from indigenous and non indigenous ancestry. School children aged 6 to 8 years old, living in locations with three clear cut levels of social vulnerability were studied. Children were considered indigenous if their last names, as well as those of their parents were of Mapuche origin. Non indigenous were those whose last names were of Spanish origin. Four hundred and fifty indigenous and 684 non indigenous children were studied. Indigenous children from high vulnerability communities were approximately 0.5 z score shorter than those of non indigenous origin. Heights of indigenous and non indigenous children were similar in communities with intermediate and low social vulnerability. The proportion of the lower segment followed the same trend. Weight/height ratios were higher among indigenous children in the three vulnerability levels. Among indigenous children coming from areas of low vulnerability arm circumference was 1 cm broader than that of their non indigenous counterparts. Stunting is prevalent among school children from areas of high socioeconomic vulnerability, mainly rural, and independent from ethnicity. Among indigenous school children overweight and a broader arm circumference are frequent. These results urgently call for located and specific nutrition interventions.
Conlan, Sean; Thomas, Pamela J.; Deming, Clayton; Park, Morgan; Lau, Anna F.; Dekker, John P.; Snitkin, Evan S.; Clark, Tyson A.; Luong, Khai; Song, Yi; Tsai, Yu-Chih; Boitano, Matthew; Gupta, Jyoti; Brooks, Shelise Y.; Schmidt, Brian; Young, Alice C.; Thomas, James W.; Bouffard, Gerard G.; Blakesley, Robert W.; Mullikin, James C.; Korlach, Jonas; Henderson, David K.; Frank, Karen M.; Palmore, Tara N.; Segre, Julia A.
2014-01-01
Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common healthcare-associated infections nearly impossible to treat. We performed comprehensive surveillance and genomic sequencing to identify carbapenem-resistant Enterobacteriaceae in the NIH Clinical Center patient population and hospital environment in order to to articulate the diversity of carbapenemase-encoding plasmids and survey the mobility of and assess the mobility of these plasmids between bacterial species. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem-resistance genes on a wide array of plasmids. Klebsiella pneumoniae and Enterobacter cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, overriding the epidemiological scenario of plasmid transfer between organisms within this patient. We did, however, find evidence supporting horizontal transfer of carbapenemase-encoding plasmids between Klebsiella pneumoniae, Enterobacter cloacae and Citrobacter freundii in the hospital environment. Our comprehensive sequence data, with full plasmid identification, challenges assumptions about horizontal gene transfer events within patients and identified wider possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae and Pantoea species, from unrelated patients and the hospital environment. PMID:25232178
Garcillán-Barcia, M Pilar; Ruiz del Castillo, Belén; Alvarado, Andrés; de la Cruz, Fernando; Martínez-Martínez, Luis
2015-01-01
Degenerate Primer MOB Typing is a PCR-based protocol for the classification of γ-proteobacterial transmissible plasmids in five phylogenetic relaxase MOB families. It was applied to a multiresistant E. coli collection, previously characterized by PCR-based replicon-typing, in order to compare both methods. Plasmids from 32 clinical isolates of multiresistant E. coli (19 extended spectrum beta-lactamase producers and 13 non producers) and their transconjugants were analyzed. A total of 95 relaxases were detected, at least one per isolate, underscoring the high potential of these strains for antibiotic-resistance transmission. MOBP12 and MOBF12 plasmids were the most abundant. Most MOB subfamilies detected were present in both subsets of the collection, indicating a shared mobilome among multiresistant E. coli. The plasmid profile obtained by both methods was compared, which provided useful data upon which decisions related to the implementation of detection methods in the clinic could be based. The phylogenetic depth at which replicon and MOB-typing classify plasmids is different. While replicon-typing aims at plasmid replication regions with non-degenerate primers, MOB-typing classifies plasmids into relaxase subfamilies using degenerate primers. As a result, MOB-typing provides a deeper phylogenetic depth than replicon-typing and new plasmid groups are uncovered. Significantly, MOB typing identified 17 plasmids and an integrative and conjugative element, which were not detected by replicon-typing. Four of these backbones were different from previously reported elements. Copyright © 2014 Elsevier Inc. All rights reserved.
Helmuth, R; Stephan, R; Bunge, C; Hoog, B; Steinbeck, A; Bulling, E
1985-04-01
Antibiotic-sensitive Salmonella isolates belonging to seven common serotypes and originating from 29 different countries from all continents were investigated for their plasmid DNA content (337 isolates) and their outer membrane protein profiles (216 isolates). Of the S. typhimurium, S. enteritidis, S. dublin, and S. choleraesuis isolates, 90% or more carried a serotype-specific plasmid. The molecular sizes of the plasmids were 60 megadaltons (Md) for S. typhimurium, 37 Md for S. enteritidis, 56 Md for S. dublin, and 30 Md for S. choleraesuis. The outer membrane protein profiles were homogeneous within each of the seven serotypes, except that a minority of S. enteritidis and S. dublin strains were lacking one major outer membrane protein. Virulence studies were performed with 39 representative strains by measuring the 50% lethal doses (LD50S) after oral infection of mice. The LD50 values obtained for plasmid-positive strains of S. typhimurium, S. enteritidis, and S. dublin were up to 10(6)-fold lower than the values obtained for the plasmid-free strains of the same serotype. Only the plasmid-positive strains could invade the livers of orally infected mice, and only they were resistant to the bactericidal activity of 90% guinea pig serum. Strains of S. infantis were generally plasmid free, whereas S. panama and S. heidelberg isolates carried heterogeneous plasmid populations. The virulence properties of the latter three serotypes could not be correlated with the predominant plasmids found in these strains.
Helmuth, R; Stephan, R; Bunge, C; Hoog, B; Steinbeck, A; Bulling, E
1985-01-01
Antibiotic-sensitive Salmonella isolates belonging to seven common serotypes and originating from 29 different countries from all continents were investigated for their plasmid DNA content (337 isolates) and their outer membrane protein profiles (216 isolates). Of the S. typhimurium, S. enteritidis, S. dublin, and S. choleraesuis isolates, 90% or more carried a serotype-specific plasmid. The molecular sizes of the plasmids were 60 megadaltons (Md) for S. typhimurium, 37 Md for S. enteritidis, 56 Md for S. dublin, and 30 Md for S. choleraesuis. The outer membrane protein profiles were homogeneous within each of the seven serotypes, except that a minority of S. enteritidis and S. dublin strains were lacking one major outer membrane protein. Virulence studies were performed with 39 representative strains by measuring the 50% lethal doses (LD50S) after oral infection of mice. The LD50 values obtained for plasmid-positive strains of S. typhimurium, S. enteritidis, and S. dublin were up to 10(6)-fold lower than the values obtained for the plasmid-free strains of the same serotype. Only the plasmid-positive strains could invade the livers of orally infected mice, and only they were resistant to the bactericidal activity of 90% guinea pig serum. Strains of S. infantis were generally plasmid free, whereas S. panama and S. heidelberg isolates carried heterogeneous plasmid populations. The virulence properties of the latter three serotypes could not be correlated with the predominant plasmids found in these strains. Images PMID:3980081
Sacramento, C B; Moraes, J Z; Denapolis, P M A; Han, S W
2010-08-01
The main objective of the present study was to find suitable DNA-targeting sequences (DTS) for the construction of plasmid vectors to be used to treat ischemic diseases. The well-known Simian virus 40 nuclear DTS (SV40-DTS) and hypoxia-responsive element (HRE) sequences were used to construct plasmid vectors to express the human vascular endothelial growth factor gene (hVEGF). The rate of plasmid nuclear transport and consequent gene expression under normoxia (20% O2) and hypoxia (less than 5% O2) were determined. Plasmids containing the SV40-DTS or HRE sequences were constructed and used to transfect the A293T cell line (a human embryonic kidney cell line) in vitro and mouse skeletal muscle cells in vivo. Plasmid transport to the nucleus was monitored by real-time PCR, and the expression level of the hVEGF gene was measured by ELISA. The in vitro nuclear transport efficiency of the SV40-DTS plasmid was about 50% lower under hypoxia, while the HRE plasmid was about 50% higher under hypoxia. Quantitation of reporter gene expression in vitro and in vivo, under hypoxia and normoxia, confirmed that the SV40-DTS plasmid functioned better under normoxia, while the HRE plasmid was superior under hypoxia. These results indicate that the efficiency of gene expression by plasmids containing DNA binding sequences is affected by the concentration of oxygen in the medium.
Thoughts on an Indigenous Research Methodology.
ERIC Educational Resources Information Center
Steinhauer, Evelyn
2002-01-01
Reviews writings of Indigenous scholars concerning the need for and nature of an Indigenous research methodology. Discusses why an Indigenous research methodology is needed; the importance of relational accountability in such a methodology; why Indigenous people must conduct Indigenous research; Indigenous knowledge and ways of knowing (including…
An Enterobacter plasmid as a new genetic background for the transposon Tn1331
Alavi, Mohammad R; Antonic, Vlado; Ravizee, Adrien; Weina, Peter J; Izadjoo, Mina; Stojadinovic, Alexander
2011-01-01
Background Genus Enterobacter includes important opportunistic nosocomial pathogens that could infect complex wounds. The presence of antibiotic resistance genes in these microorganisms represents a challenging clinical problem in the treatment of these wounds. In the authors’ screening of antibiotic-resistant bacteria from complex wounds, an Enterobacter species was isolated that harbors antibiotic-resistant plasmids conferring resistance to Escherichia coli. The aim of this study was to identify the resistance genes carried by one of these plasmids. Methods The plasmids from the Enterobacter isolate were propagated in E. coli and one of the plasmids, designated as pR23, was sequenced by the Sanger method using fluorescent dyeterminator chemistry on a genetic analyzer. The assembled sequence was annotated by search of the GenBank database. Results Plasmid pR23 is composed of the transposon Tn1331 and a backbone plasmid that is identical to the plasmid pPIGDM1 from Enterobacter agglomerans. The multidrug-resistance transposon Tn1331, which confers resistance to aminoglycoside and beta lactam antibiotics, has been previously isolated only from Klebsiella. The Enterobacter plasmid pPIGDM1, which carries a ColE1-like origin of replication and has no apparent selective marker, appears to provide a backbone for propagation of Tn1331 in Enterobacter. The recognition sequence of Tn1331 transposase for insertion into pPIGDM1 is the pentanucleotide TATTA, which occurs only once throughout the length of this plasmid. Conclusion Transposition of Tn1331 into the Enterobacter plasmid pPIGDM1 enables this transposon to propagate in this Enterobacter. Since Tn1331 was previously isolated only from Klebsiella, this report suggests horizontal transfer of this transposon between the two bacterial genera. PMID:22259249
The Role of Clonal Interference in the Evolutionary Dynamics of Plasmid-Host Adaptation
Hughes, Julie M.; Lohman, Brian K.; Deckert, Gail E.; Nichols, Eric P.; Settles, Matt; Abdo, Zaid; Top, Eva M.
2012-01-01
ABSTRACT Promiscuous plasmids replicate in a wide range of bacteria and therefore play a key role in the dissemination of various host-beneficial traits, including antibiotic resistance. Despite the medical relevance, little is known about the evolutionary dynamics through which drug resistance plasmids adapt to new hosts and thereby persist in the absence of antibiotics. We previously showed that the incompatibility group P-1 (IncP-1) minireplicon pMS0506 drastically improved its stability in novel host Shewanella oneidensis MR-1 after 1,000 generations under antibiotic selection for the plasmid. The only mutations found were those affecting the N terminus of the plasmid replication initiation protein TrfA1. Our aim in this study was to gain insight into the dynamics of plasmid evolution. Changes in stability and genotype frequencies of pMS0506 were monitored in evolving populations of MR-1 (pMS0506). Genotypes were determined by sequencing trfA1 amplicons from individual clones and by 454 pyrosequencing of whole plasmids from entire populations. Stability of pMS0506 drastically improved by generation 200. Many evolved plasmid genotypes with point mutations as well as in-frame and frameshift deletions and duplications in trfA1 were observed in all lineages with both sequencing methods. Strikingly, multiple genotypes were simultaneously present at high frequencies (>10%) in each population. Their relative abundances changed over time, but after 1,000 generations only one or two genotypes dominated the populations. This suggests that hosts with different plasmid genotypes were competing with each other, thus affecting the evolutionary trajectory. Plasmids can thus rapidly improve their stability, and clonal interference plays a significant role in plasmid-host adaptation dynamics. PMID:22761390
Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casjens S. R.; Dunn J.; Mongodin, E. F.
2012-03-14
Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so aremore » informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi {approx}900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short {le}20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.« less
pA506, a Conjugative Plasmid of the Plant Epiphyte Pseudomonas fluorescens A506
Stockwell, Virginia O.; Davis, Edward W.; Carey, Alyssa; Shaffer, Brenda T.; Mavrodi, Dmitri V.; Hassan, Karl A.; Hockett, Kevin; Thomashow, Linda S.; Paulsen, Ian T.
2013-01-01
Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of Pseudomonas spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of Pseudomonas fluorescens A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of MOBP6 family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of Pseudomonas spp. or the Enterobacteriaceae. The origin of vegetative replication (oriV) of pA506 is typical of those in pPT23A family plasmids, which are present in many pathovars of Pseudomonas syringae, but pA506 lacks repA, a defining locus for pPT23A plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne rulAB genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces. PMID:23811504
Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids
Casjens, Sherwood R.; Mongodin, Emmanuel F.; Qiu, Wei-Gang; Luft, Benjamin J.; Schutzer, Steven E.; Gilcrease, Eddie B.; Huang, Wai Mun; Vujadinovic, Marija; Aron, John K.; Vargas, Levy C.; Freeman, Sam; Radune, Diana; Weidman, Janice F.; Dimitrov, George I.; Khouri, Hoda M.; Sosa, Julia E.; Halpin, Rebecca A.; Dunn, John J.; Fraser, Claire M.
2012-01-01
Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33–40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant. PMID:22432010
Lau, Anna F; Wang, Honghui; Weingarten, Rebecca A; Drake, Steven K; Suffredini, Anthony F; Garfield, Mark K; Chen, Yong; Gucek, Marjan; Youn, Jung-Ho; Stock, Frida; Tso, Hanna; DeLeo, Jim; Cimino, James J; Frank, Karen M; Dekker, John P
2014-08-01
Carbapenem-resistant Enterobacteriaceae (CRE) have spread globally and represent a serious and growing threat to public health. Rapid methods for tracking plasmids carrying carbapenemase genes could greatly benefit infection control efforts. Here, we demonstrate that real-time, direct tracking of a single plasmid in a bacterial strain responsible for an outbreak is possible using a commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system. In this case, we retrospectively tracked the bla(KPC) carbapenemase gene-bearing pKpQIL plasmid responsible for a CRE outbreak that occurred at the NIH Clinical Center in 2011. An ∼ 11,109-Da MS peak corresponding to a gene product of the bla(KPC) pKpQIL plasmid was identified and characterized using a combination of proteomics and molecular techniques. This plasmid peak was present in spectra from retrospectively analyzed K. pneumoniae outbreak isolates, concordant with results from whole-genome sequencing, and absent from a diverse control set of bla(KPC)-negative clinical Enterobacteriaceae isolates. Notably, the gene characterized here is located adjacent to the bla(KPC) Tn4401 transposon on the pKpQIL plasmid. Sequence analysis demonstrates the presence of this gene in other bla(KPC) Tn4401-containing plasmids and suggests that this signature MS peak may be useful in tracking other plasmids conferring carbapenem resistance. Plasmid identification using this MALDI-TOF MS method was accomplished in as little as 10 min from isolated colonies and 30 min from positive (spiked) blood cultures, demonstrating the potential clinical utility for real-time plasmid tracking in an outbreak. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Lau, Anna F.; Wang, Honghui; Weingarten, Rebecca A.; Drake, Steven K.; Suffredini, Anthony F.; Garfield, Mark K.; Chen, Yong; Gucek, Marjan; Youn, Jung-Ho; Stock, Frida; Tso, Hanna; DeLeo, Jim; Cimino, James J.; Frank, Karen M.
2014-01-01
Carbapenem-resistant Enterobacteriaceae (CRE) have spread globally and represent a serious and growing threat to public health. Rapid methods for tracking plasmids carrying carbapenemase genes could greatly benefit infection control efforts. Here, we demonstrate that real-time, direct tracking of a single plasmid in a bacterial strain responsible for an outbreak is possible using a commercial matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system. In this case, we retrospectively tracked the blaKPC carbapenemase gene-bearing pKpQIL plasmid responsible for a CRE outbreak that occurred at the NIH Clinical Center in 2011. An ∼11,109-Da MS peak corresponding to a gene product of the blaKPC pKpQIL plasmid was identified and characterized using a combination of proteomics and molecular techniques. This plasmid peak was present in spectra from retrospectively analyzed K. pneumoniae outbreak isolates, concordant with results from whole-genome sequencing, and absent from a diverse control set of blaKPC-negative clinical Enterobacteriaceae isolates. Notably, the gene characterized here is located adjacent to the blaKPC Tn4401 transposon on the pKpQIL plasmid. Sequence analysis demonstrates the presence of this gene in other blaKPC Tn4401-containing plasmids and suggests that this signature MS peak may be useful in tracking other plasmids conferring carbapenem resistance. Plasmid identification using this MALDI-TOF MS method was accomplished in as little as 10 min from isolated colonies and 30 min from positive (spiked) blood cultures, demonstrating the potential clinical utility for real-time plasmid tracking in an outbreak. PMID:24850353
NetF-producing Clostridium perfringens: Clonality and plasmid pathogenicity loci analysis.
Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Whitehead, Ashley E; Parreira, Valeria R; Boerlin, Patrick; Prescott, John F
2017-04-01
Clostridium perfringens is an important cause of foal necrotizing enteritis and canine acute hemorrhagic diarrhea. A major virulence determinant of the strains associated with these diseases appears to be a beta-sheet pore-forming toxin, NetF, encoded within a pathogenicity locus (NetF locus) on a large tcp-conjugative plasmid. Strains producing NetF also produce the putative toxin NetE, encoded within the same pathogenicity locus, as well as CPE enterotoxin and CPB2 on a second plasmid, and sometimes the putative toxin NetG within a pathogenicity locus (NetG locus) on another separate large conjugative plasmid. Previous genome sequences of two netF-positive C. perfringens showed that they both shared three similar plasmids, including the NetF/NetE and CPE/CPB2 toxins-encoding plasmids mentioned above and a putative bacteriocin-encoding plasmid. The main purpose of this study was to determine whether all NetF-producing strains share this common plasmid profile and whether their distinct NetF and CPE pathogenicity loci are conserved. To answer this question, 15 equine and 15 canine netF-positive isolates of C. perfringens were sequenced using Illumina Hiseq2000 technology. In addition, the clonal relationships among the NetF-producing strains were evaluated by core genome multilocus sequence typing (cgMLST). The data obtained showed that all NetF-producing strains have a common plasmid profile and that the defined pathogenicity loci on the plasmids are conserved in all these strains. cgMLST analysis showed that the NetF-producing C. perfringens strains belong to two distinct clonal complexes. The pNetG plasmid was absent from isolates of one of the clonal complexes, and there were minor but consistent differences in the NetF/NetE and CPE/CPB2 plasmids between the two clonal complexes. Copyright © 2017 Elsevier B.V. All rights reserved.
Dröge, M; Pühler, A; Selbitschka, W
2000-04-01
In order to isolate antibiotic resistance plasmids from bacterial communities found in activated sludge, derivatives of the 3-chlorobenzoate-degrading strain Pseudomonas sp. B13, tagged with the green fluorescent protein as an identification marker, were used as recipients in filter crosses. Transconjugants were selected on agar plates containing 3-chlorobenzoate as the sole carbon source and the antibiotic tetracycline, streptomycin or spectinomycin, and were recovered at frequencies in the range of 10(-5) to 10(-8) per recipient. A total of 12 distinct plasmids, designated pB1-pB12, was identified. Their sizes ranged between 41 to 69 kb and they conferred various patterns of antibiotic resistance on their hosts. Two of the plasmids, pB10 and pB11, also mediated resistance to inorganic mercury. Seven of the 12 plasmids were identified as broad-host-range plasmids, displaying extremely high transfer frequencies in filter crosses, ranging from 10(-1) to 10(-2) per recipient cell. Ten of the 12 plasmids belonged to the IncP incompatibility group, based on replicon typing using IncP group-specific PCR primers. DNA sequencing of PCR amplification products further revealed that eight of the 12 plasmids belonged to the IncPbeta subgroup, whereas two plasmids were identified as IncPalpha plasmids. Analysis of the IncP-specific PCR products revealed considerable differences among the IncPbeta plasmids at the DNA sequence level. In order to characterize the gene "load" of the IncP plasmids, restriction fragments were cloned and their DNA sequences established. A remarkable diversity of putative proteins encoded by these fragments was identified. Besides transposases and proteins involved in antibiotic resistance, two putative DNA invertases belonging to the Din family, a methyltransferase of a type I restriction/modification system, a superoxide dismutase, parts of a putative efflux system belonging to the RND family, and proteins of unknown function were identified.
Dolejska, Monika; Villa, Laura; Minoia, Marco; Guardabassi, Luca; Carattoli, Alessandra
2014-09-01
To determine the structure of two multidrug-resistant IncHI1 plasmids carrying blaCTX-M-1 in Escherichia coli isolates disseminated in an equine clinic in the Czech Republic. A complete nucleotide sequencing of 239 kb IncHI1 (pEQ1) and 287 kb IncHI1/X1 (pEQ2) plasmids was performed using the 454-Genome Sequencer FLX system. The sequences were compared using bioinformatic tools with other sequenced IncHI1 plasmids. A comparative analysis of pEQ1 and pEQ2 identified high nucleotide identity with the IncHI1 type 2 plasmids. A novel 24 kb module containing an operon involved in short-chain fructooligosaccharide uptake and metabolism was found in the pEQ backbones. The role of the pEQ plasmids in the metabolism of short-chain fructooligosaccharides was demonstrated by studying the growth of E. coli cells in the presence of these sugars. The module containing the blaCTX-M-1 gene was formed by a truncated macrolide resistance cluster and flanked by IS26 as previously observed in IncI1 and IncN plasmids. The IncHI1 plasmid changed size and gained the quinolone resistance gene qnrS1 as a result of IS26-mediated fusion with an IncX1 plasmid. Our data highlight the structure and evolution of IncHI1 from equine E. coli. A plasmid-mediated sugar metabolic element could play a key role in strain fitness, contributing to the successful dissemination and maintenance of these plasmids in the intestinal microflora of horses. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Folster, J. P.; Pecic, G.; Singh, A.; Duval, B.; Rickert, R.; Ayers, S.; Abbott, J.; McGlinchey, B.; Bauer-Turpin, J.; Haro, J.; Hise, K.; Zhao, S.; Fedorka-Cray, P. J.; Whichard, J.; McDermott, P. F.
2015-01-01
Salmonella enterica is one of the most common causes of foodborne illness in the United States. Although salmonellosis is usually self-limiting, severe infections typically require antimicrobial treatment and ceftriaxone, an extended-spectrum cephalosporin, is commonly used in both adults and children. Surveillance conducted by the National Antimicrobial Resistance Monitoring System (NARMS) has shown a recent increase in extended-spectrum cephalosporin (ESC) resistance among Salmonella Heidelberg isolated from food animals at slaughter, retail meat, and humans. ESC resistance among Salmonella in the United States is usually mediated by a plasmid-encoded blaCMY β-lactamase. In 2009, we identified 47 ESC resistant blaCMY-positive Heidelberg isolates from humans (n=18), food animals at slaughter (n=16), and retail meats (n=13) associated with a spike in the prevalence of this serovar. Almost 90% (26/29) of the animal and meat isolates were isolated from chicken carcasses or retail chicken meat. We screened NARMS isolates for the presence of blaCMY, determined whether the gene was plasmid-encoded, examined pulsed-field gel electrophoresis patterns to assess the genetic diversities of the isolates, and categorized the blaCMY plasmids by plasmid incompatibility groups and plasmid multi-locus sequence typing. All 47 blaCMY genes were found to be plasmid encoded. Incompatibility/replicon typing demonstrated that 41 were IncI1 plasmids, 40 of which only conferred blaCMY associated resistance. Six were IncA/C plasmids that carried additional resistance genes. Plasmid multi-locus sequence typing (pMLST) of the IncI1-blaCMY plasmids showed that 27 (65.8%) were sequence type (ST) 12, the most common ST among blaCMY-IncI1 plasmids from Heidelberg isolated from humans. Ten plasmids had a new ST profile, ST66, a type very similar to ST12. This work showed that the 2009 increase in ESC resistance among Salmonella Heidelberg was caused mainly by the dissemination of blaCMY on IncI1 and IncA/C plasmids in a variety of genetic backgrounds, and likely not the result of clonal expansion. PMID:22755514
Khong, Wei Xin; Marimuthu, Kalisvar; Teo, Jeanette; Ding, Yichen; Xia, Eryu; Lee, Jia Jun; Ong, Rick Twee-Hee; Venkatachalam, Indumathi; Cherng, Benjamin; Pada, Surinder Kaur; Choong, Weng Lam; Smitasin, Nares; Ooi, Say Tat; Deepak, Rama Narayana; Kurup, Asok; Fong, Raymond; Van La, My; Tan, Thean Yen; Koh, Tse Hsien; Lin, Raymond Tzer Pin; Tan, Eng Lee; Krishnan, Prabha Unny; Singh, Siddharth; Pitout, Johann D; Teo, Yik-Ying; Yang, Liang; Ng, Oon Tek
2016-11-01
Owing to gene transposition and plasmid conjugation, New Delhi metallo-β-lactamase (NDM) is typically identified among varied Enterobacteriaceae species and STs. We used WGS to characterize the chromosomal and plasmid molecular epidemiology of NDM transmission involving four institutions in Singapore. Thirty-three Enterobacteriaceae isolates (collection years 2010-14) were sequenced using short-read sequencing-by-synthesis and analysed. Long-read single molecule, real-time sequencing (SMRTS) was used to characterize genetically a novel plasmid pSg1-NDM carried on Klebsiella pneumoniae ST147. In 20 (61%) isolates, bla NDM was located on the pNDM-ECS01 plasmid in the background of multiple bacterial STs, including eight K. pneumoniae STs and five Escherichia coli STs. In six (18%) isolates, a novel bla NDM -positive plasmid, pSg1-NDM, was found only in K. pneumoniae ST147. The pSg1-NDM-K. pneumoniae ST147 clone (Sg1-NDM) was fully sequenced using SMRTS. pSg1-NDM, a 90 103 bp IncR plasmid, carried genes responsible for resistance to six classes of antimicrobials. A large portion of pSg1-NDM had no significant homology to any known plasmids in GenBank. pSg1-NDM had no conjugative transfer region. Combined chromosomal-plasmid phylogenetic analysis revealed five clusters of clonal bacterial NDM-positive plasmid transmission, of which two were inter-institution clusters. The largest inter-institution cluster involved six K. pneumoniae ST147-pSg1-NDM isolates. Fifteen patients were involved in transmission clusters, of which four had ward contact, six had hospital contact and five had an unknown transmission link. A combined sequencing-by-synthesis and SMRTS approach can determine effectively the transmission clusters of bla NDM and genetically characterize novel plasmids. Plasmid molecular epidemiology is important to understanding NDM spread as bla NDM -positive plasmids can conjugate extensively across species and STs. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Vedler, Eve; Vahter, Merle; Heinaru, Ain
2004-01-01
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium Achromobacter xylosoxidans subsp. denitrificans strain EST4002 contains plasmid pEST4011. This plasmid ensures its host a stable 2,4-D+ phenotype. We determined the complete 76,958-bp nucleotide sequence of pEST4011. This plasmid is a deletion and duplication derivative of pD2M4, the 95-kb highly unstable laboratory ancestor of pEST4011, and was self-generated during different laboratory manipulations performed to increase the stability of the 2,4-D+ phenotype of the original strain, strain D2M4(pD2M4). The 47,935-bp catabolic region of pEST4011 forms a transposon-like structure with identical copies of the hybrid insertion element IS1071::IS1471 at the two ends. The catabolic regions of pEST4011 and pJP4, the best-studied 2,4-D-degradative plasmid, both contain homologous, tfd-like genes for complete 2,4-D degradation, but they have little sequence similarity other than that. The backbone genes of pEST4011 are most similar to the corresponding genes of broad-host-range self-transmissible IncP1 plasmids. The backbones of the other three IncP1 catabolic plasmids that have been sequenced (the 2,4-D-degradative plasmid pJP4, the haloacetate-catabolic plasmid pUO1, and the atrazine-catabolic plasmid pADP-1) are nearly identical to the backbone of R751, the archetype plasmid of the IncP1 β subgroup. We show that despite the overall similarity in plasmid organization, the pEST4011 backbone is sufficiently different (51 to 86% amino acid sequence identity between individual backbone genes) from the backbones of members of the three IncP1 subgroups (the α, β, and γ subgroups) that it belongs to a new IncP1subgroup, the δ subgroup. This conclusion was also supported by a phylogenetic analysis of the trfA2, korA, and traG gene products of different IncP1 plasmids. PMID:15489427
Hosseinkhani, Hossein; Tabata, Yasuhiko
2004-05-31
The objective of this study is to investigate feasibility of a non-viral gene carrier with repeated RGD sequences (Pronectin F+) in tumor targeting for gene expression. The Pronectin F+ was cationized by introducing spermine (Sm) to the hydroxyl groups to allow to polyionically complex with plasmid DNA. The cationized Pronectin F+ prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have active ester and methoxy groups at the terminal, to form various PEG-introduced cationized Pronectin F+. The cationized Pronectin F+ with or without PEGylation at different extents was mixed with a plasmid DNA of LacZ to form respective cationized Pronectin F+-plasmid DNA complexes. The plasmid DNA was electrophoretically complexed with cationized Pronectin F+ and PEG-introduced cationized Pronectin F+, irrespective of the PEGylation extent, although the higher N/P ratio of complexes was needed for complexation with the latter Pronectin F+. The molecular size and zeta potential measurements revealed that the plasmid DNA was reduced in size to about 250 nm and the charge was changed to be positive by the complexation with cationized Pronectin F+. For the complexation with PEG-introduced cationized Pronectin F+, the charge of complex became neutral being almost 0 mV with the increasing PEGylation extents, while the molecular size was similar to that of cationized Pronectin F+. When cationized Pronectin F+-plasmid DNA complexes with or without PEGylation were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass, the PEG-introduced cationized Pronectin F+-plasmid DNA complex specifically enhanced the level of gene expression in the tumor, to a significantly high extent compared with the cationized Pronectin F+-plasmid DNA complexes and free plasmid DNA. The enhanced level of gene expression depended on the percentage of PEG introduced, the N/P ratio, and the plasmid DNA dose. A fluorescent microscopic study revealed that the localization of plasmid DNA in the tumor tissue was observed only for the PEG-introduced cationized Pronectin F+-plasmid DNA complex injected. We conclude that the PEGylation of cationized Pronectin F+ is a promising way to enable the plasmid DNA to target to the tumor for gene expression. Coyright 2004 Elsevier B.V.
Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollet, Rebecca M.; Ingle, James D.; Hymes, Jeff P.
Antimicrobial resistance inStaphylococcus aureuspresents an increasing threat to human health. This resistance is often encoded on mobile plasmids, such as pSK41; however, the mechanism of transfer of these plasmids is not well understood. In this study, we first examine key protein-DNA interactions formed by the relaxase enzyme, NES, which initiates and terminates the transfer of the multidrug resistance plasmid pSK41. Two loops on the NES protein, hairpin loops 1 and 2, form extensive contacts with the DNA hairpin formed at theoriTregion of pSK41, and here we establish that these contacts are essential for proper DNA cleavage and religation by themore » full 665-residue NES proteinin vitro. Second, pSK156 and pCA347 are nonconjugativeStaphylococcus aureusplasmids that contain sequences similar to theoriTregion of pSK41 but differ in the sequence predicted to form a DNA hairpin. We show that pSK41-encoded NES is able to bind, cleave, and religate theoriTsequences of these nonconjugative plasmidsin vitro. Although pSK41 could mobilize a coresident plasmid harboring its cognateoriT, it was unable to mobilize plasmids containing the pSK156 and pCA347 variantoriTmimics, suggesting that an accessory protein like that previously shown to confer specificity in the pWBG749 system may also be involved in transmission of plasmids containing a pSK41-likeoriT. These data indicate that the conjugative relaxase intransmechanism recently described for the pWBG749 family of plasmids also applies to the pSK41 family of plasmids, further heightening the potential significance of this mechanism in the horizontal transfer of staphylococcal plasmids. IMPORTANCEUnderstanding the mechanism of antimicrobial resistance transfer in bacteria such asStaphylococcus aureusis an important step toward potentially slowing the spread of antimicrobial-resistant infections. This work establishes protein-DNA interactions essential for the transfer of theStaphylococcus aureusmultiresistance plasmid pSK41 by its relaxase, NES. This enzyme also processed variantoriT-like sequences found on numerous plasmids previously considered nontransmissible, suggesting that in conjunction with an uncharacterized accessory protein, these plasmids may be transferred horizontally via a relaxase intransmechanism. These findings have important implications for our understanding of staphylococcal resistance plasmid evolution.« less
2010-01-01
Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. Results A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans) were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc) groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%), while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively). Multireplicons were found associated with all three sul genes. Conclusions Sul genes were distributed widely in E. coli isolated from pigs and humans with sul2 being most prevalent. Sul-carrying plasmids belonged to diverse replicon types, but most of detected plasmids were conjugative enabling horizontal transfer. IncFII seems to be the dominant replicon type in sul2-carrying plasmids from all three sources. PMID:20670455
Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie
2015-01-01
Municipal wastewater treatment facilities are considered to be “hotspots” for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7–9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3-like plasmids concomitant to phylogenetic analysis of housekeeping genes from host Klebsiella strains, revealed that these plasmids are limited to a predominantly human-associated sub-clade of Klebsiella, suggesting that their host range is very narrow. Conversely, the pGNB2-like plasmids had a much broader host range and appeared to be associated with Klebsiella residing in natural environments. This study suggests that: (A) qnrB-harboring multidrug-resistant pKPN3-like plasmids can endure the rigorous wastewater treatment process and may therefore be disseminated to downstream environments; and (B) that small qnrS-harboring pGNB2-like plasmids are ubiquitous in wastewater treatment facilities and are most likely environmental in origin. PMID:26696974
Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie
2015-01-01
Municipal wastewater treatment facilities are considered to be "hotspots" for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7-9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3-like plasmids concomitant to phylogenetic analysis of housekeeping genes from host Klebsiella strains, revealed that these plasmids are limited to a predominantly human-associated sub-clade of Klebsiella, suggesting that their host range is very narrow. Conversely, the pGNB2-like plasmids had a much broader host range and appeared to be associated with Klebsiella residing in natural environments. This study suggests that: (A) qnrB-harboring multidrug-resistant pKPN3-like plasmids can endure the rigorous wastewater treatment process and may therefore be disseminated to downstream environments; and (B) that small qnrS-harboring pGNB2-like plasmids are ubiquitous in wastewater treatment facilities and are most likely environmental in origin.
Conducting Indigenous Research in Western Knowledge Spaces: Aligning Theory and Methodology
ERIC Educational Resources Information Center
Singh, Myra; Major, Jae
2017-01-01
Walking simultaneously in two worlds as an Indigenous researcher, navigating Indigenous and Western epistemologies/methodologies can have its challenges. Indigenous methodologies have become an important element of qualitative research and have been increasingly taken up by both Indigenous and non-Indigenous researchers. Indigenous methodologies…
USDA-ARS?s Scientific Manuscript database
While antimicrobial resistance in Salmonella enterica is largely attributed to large plasmids, small plasmids may also harbor antimicrobial resistance genes. Previously, three major groups of ColE1-like plasmids conferring kanamycin-resistance (KanR) in various S. enterica serotypes from diagnostic...
USDA-ARS?s Scientific Manuscript database
IncA/C plasmids are a class of plasmids from Enterobacteraciae that are relatively large (49 to >180 kbp), are readily transferred by conjugation, and carry multiple antimicrobial resistance genes. Reconstruction of the phylogeny of these plasmids has been difficult because of the high rate of remo...
Gender differences in the dialysis treatment of Indigenous and non-Indigenous Australians.
McKercher, Charlotte; Jose, Matthew D; Grace, Blair; Clayton, Philip A; Walter, Maggie
2017-02-01
Access to dialysis treatment and the types of treatments employed in Australia differs by Indigenous status. We examined whether dialysis treatment utilisation in Indigenous and non-Indigenous Australians also differs by gender. Using registry data we evaluated 21,832 incident patients (aged ≥18 years) commencing dialysis, 2001-2013. Incidence rates were calculated and multivariate regression modelling used to examine differences in dialysis treatment (modality, location and vascular access creation) by race and gender. Dialysis incidence was consistently higher in Indigenous women compared to all other groups. Compared to Indigenous women, both non-Indigenous women and men were more likely to receive peritoneal dialysis as their initial treatment (non-Indigenous women RR=1.91, 95%CI 1.55-2.35; non-Indigenous men RR=1.73, 1.40-2.14) and were more likely to commence initial treatment at home (non-Indigenous women RR=2.07, 1.66-2.59; non-Indigenous men RR=1.95, 1.56-2.45). All groups were significantly more likely than Indigenous women to receive their final treatment at home. Contemporary dialysis treatment in Australia continues to benefit the dominant non-Indigenous population over the Indigenous population, with non-Indigenous men being particularly advantaged. Implications for Public Health: Treatment guidelines that incorporate a recognition of gender-based preferences and dialysis treatment options specific to Indigenous Australians may assist in addressing this disparity. © 2016 The Authors.
Research on Indigenous Elders: From Positivistic to Decolonizing Methodologies
Braun, Kathryn L.
2014-01-01
Although indigenous peoples have lower life expectancies than the social majority populations in their countries, increasing numbers of indigenous people are living into old age. Research on indigenous elders is informed by a number of research traditions. Researchers have mined existing data sets to compare characteristics of indigenous populations with non-indigenous groups, and these findings have revealed significant disparities experienced by indigenous elders. Some investigators have attempted to validate standardized research tools for use in indigenous populations. Findings from these studies have furthered our knowledge about indigenous elders and have highlighted the ways in which tools may need to be adapted to better fit indigenous views of the constructs being measured. Qualitative approaches are popular, as they allow indigenous elders to tell their stories and challenge non-indigenous investigators to acknowledge values and worldviews different from their own. Recently, efforts have extended to participatory and decolonizing research methods, which aim to empower indigenous elders as researchers. Research approaches are discussed in light of the negative experiences many indigenous peoples have had with Eurocentric research. Acknowledgment of historical trauma, life-course perspectives, phenomenology, and critical gerontology should frame future research with, rather than on, indigenous elders. PMID:23841952
Research on indigenous elders: from positivistic to decolonizing methodologies.
Braun, Kathryn L; Browne, Colette V; Ka'opua, Lana Sue; Kim, Bum Jung; Mokuau, Noreen
2014-02-01
Although indigenous peoples have lower life expectancies than the social majority populations in their countries, increasing numbers of indigenous people are living into old age. Research on indigenous elders is informed by a number of research traditions. Researchers have mined existing data sets to compare characteristics of indigenous populations with non-indigenous groups, and these findings have revealed significant disparities experienced by indigenous elders. Some investigators have attempted to validate standardized research tools for use in indigenous populations. Findings from these studies have furthered our knowledge about indigenous elders and have highlighted the ways in which tools may need to be adapted to better fit indigenous views of the constructs being measured. Qualitative approaches are popular, as they allow indigenous elders to tell their stories and challenge non-indigenous investigators to acknowledge values and worldviews different from their own. Recently, efforts have extended to participatory and decolonizing research methods, which aim to empower indigenous elders as researchers. Research approaches are discussed in light of the negative experiences many indigenous peoples have had with Eurocentric research. Acknowledgment of historical trauma, life-course perspectives, phenomenology, and critical gerontology should frame future research with, rather than on, indigenous elders.
Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A; Agu, Chukwuma A; Wang, Xindan; Bernal, Juan A; Sherratt, David J; de la Cueva-Méndez, Guillermo
2014-02-18
Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid-bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs.
Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A.; Agu, Chukwuma A.; Wang, Xindan; Bernal, Juan A.; Sherratt, David J.; de la Cueva-Méndez, Guillermo
2014-01-01
Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid–bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs. PMID:24449860
Miyamoto, Kazuaki; Li, Jihong; Sayeed, Sameera; Akimoto, Shigeru; McClane, Bruce A
2008-11-01
Clostridium perfringens type B and D isolates produce epsilon-toxin, the third most potent clostridial toxin. The epsilon-toxin gene (etx) is plasmid borne in type D isolates, but etx genetics have been poorly studied in type B isolates. This study reports the first sequencing of any etx plasmid, i.e., pCP8533etx, from type B strain NCTC8533. This etx plasmid is 64.7 kb, carries tcp conjugative transfer genes, and encodes additional potential virulence factors including beta2-toxin, sortase, and collagen adhesin but not beta-toxin. Interestingly, nearly 80% of pCP8533etx open reading frames (ORFs) are also present on pCPF5603, an enterotoxin-encoding plasmid from type A isolate F5603. Pulsed-field gel electrophoresis and overlapping PCR indicated that a pCP8533etx-like etx plasmid is also present in most, if not all, other type B isolates and some beta2-toxin-positive, cpe-negative type D isolates, while other type D isolates carry different etx plasmids. Sequences upstream of the etx gene vary between type B isolates and some type D isolates that do not carry a pCP8533etx-like etx plasmid. However, nearly all type B and D isolates have an etx locus with an upstream IS1151, and those etx loci typically reside near a dcm ORF. These results suggest that pCPF5603 and pCP8533etx evolved from insertion of mobile genetic elements carrying enterotoxin or etx genes, respectively, onto a common progenitor plasmid.
Kis, Ágnes Erdeiné; Laczi, Krisztián; Zsíros, Szilvia; Kós, Péter; Tengölics, Roland; Bounedjoum, Naila; Kovács, Tamás; Rákhely, Gábor; Perei, Katalin
2017-12-01
Petroleum hydrocarbons and derivatives are widespread contaminants in both aquifers and soil, their elimination is in the primary focus of environmental studies. Microorganisms are key components in biological removal of pollutants. Strains capable to utilize hydrocarbons usually appear at the contaminated sites, but their metabolic activities are often restricted by the lack of nutrients and/or they can only utilize one or two components of a mixture. We isolated a novel Rhodococcus sp. MK1 strain capable to degrade the components of diesel oil simultaneously. The draft genome of the strain was determined and besides the chromosome, the presence of one plasmid could be revealed. Numerous routes for oxidation of aliphatic and aromatic compounds were identified. The strain was tested in ex situ applications aiming to compare alternative solutions for microbial degradation of hydrocarbons. The results of bioaugmentation and biostimulation experiments clearly demonstrated that - in certain cases - the indigenous microbial community could be exploited for bioremediation of oil-contaminated soils. Biostimulation seems to be efficient for removal of aged contaminations at lower concentration range, whereas bioaugmentation is necessary for the treatment of freshly and highly polluted sites.
Lo Giudice, Angelina; Brilli, Matteo; Bruni, Vivia; De Domenico, Maria; Fani, Renato; Michaud, Luigi
2007-06-01
One hundred and forty bacteria isolated from Antarctic seawater samples were examined for their ability to inhibit the growth of indigenous isolates and their sensitivity to antibacterial activity expressed by one another. On the basis of 16S rRNA gene sequencing and analysis, bacterial isolates were assigned to five phylogenetically different taxa, Actinobacteria, alpha and gamma subclasses of Proteobacteria, Bacillaceae, and Bacteroidetes. Twenty-one isolates (15%), predominantly Actinobacteria, exhibited antagonistic properties against marine bacteria of Antarctic origin. Members of Bacteroidetes and Firmicutes did not show any inhibitory activity. Differences were observed among inhibition patterns of single isolates, suggesting that their activity was more likely strain-specific rather than dependent on phylogenetic affiliation. A novel analysis based on network theory confirmed these results, showing that the structure of this population is probably robust to perturbations, but also that it depends strongly on the most active strains. The determination of plasmid incidence in the bacterial strains investigated revealed that there was no correlation between their presence and the antagonistic activity. The data presented here provide evidence for the antagonistic interactions within bacterial strains inhabiting Antarctic seawater and suggest the potential exploitation of Antarctic bacteria as a novel source of antibiotics.
Application of methylation in improving plasmid transformation into Helicobacter pylori.
Zhao, Huilin; Xu, Linlin; Rong, Qianyu; Xu, Zheng; Ding, Yunfei; Zhang, Ying; Wu, Yulong; Li, Boqing; Ji, Xiaofei
2018-05-23
Helicobacter pylori is an important gastrointestinal pathogen. Its strains possess different levels of powerful restriction modification systems, which are significant barriers to genetic tools used for studying the role of functional genes in its pathogenesis. Methylating vectors in vitro was reported as an alternative to overcome this barrier in several bacteria. In this study we used two H. pylori-E. coli shuttle plasmids and several single/double-crossover homologous recombination gene-targeting plasmids, to test the role of methylation in H. pylori transformation. According to our results, transformants could be obtained only after shuttle plasmids were methylated before transformation. It is helpful in gene complementation and over-expression although at a low frequency. The frequency of gene-targeting transformation was also increased after methylation, especially for the single-crossover recombination plasmids, the transformants of which could only be obtained after methylation. For the double-crossover recombination targeting plasmids, the initial yield of transformants was 0.3-0.8 × 10 2 CFUs per microgram plasmid DNA. With the help of methylation, the yield was increased to 0.4-1.3 × 10 2 CFUs per microgram plasmid DNA. These results suggest that in vitro methylation can improve H. pylori transformation by different plasmids, which will benefit the pathogenic mechanism research. Copyright © 2018. Published by Elsevier B.V.
Reporter gene expression in dendritic cells after gene gun administration of plasmid DNA.
Watkins, Craig; Hopkins, John; Harkiss, Gordon
2005-07-21
Dendritic cells (DC) play an integral role in plasmid DNA vaccination. However, the interaction between plasmid DNA and DC in vivo is incompletely understood. In this report, we utilise the sheep pseudoafferent cannulation model to examine the interaction between plasmid DNA encoding enhanced green fluorescent protein (pEGFP) and afferent lymph DC (ALDC) following gene gun administration. The results show that peaks of fluorescent ALDC tended to appear around days 1-4 and 9-13, then erratically thereafter for up to 2 months. Phenotypic analysis showed that EGFP+ ALDC expressed MHC class II, WC6, CD1b, and SIRPalpha markers. Plasmid, detected by PCR, was found in lymph cells and cell-free plasma on a daily basis, and was present variably for up to 2 months. Plasmid was also detected in purified CD1b+ ALDC, but the presence of plasmid did not correlate with EGFP expression by ALDC. Free EGFP in afferent lymph plasma was detectable by luminometry only after three administrations of the plasmid. The results show that gene gun administered pEGFP persisted for extended periods after a single administration, leeching out of skin on a daily basis. The plasmid was associated with both the cellular and fluid components of afferent lymph. EGFP protein appeared in afferent lymph in a pulsatile manner, but associated only with ALDC.
Sletvold, H; Johnsen, P J; Hamre, I; Simonsen, G S; Sundsfjord, A; Nielsen, K M
2008-07-01
Glycopeptide resistant Enterococcus faecium (GREF) persists on Norwegian poultry farms despite the ban on the growth promoter avoparcin. The biological basis for long-term persistence of avoparcin resistance is not fully understood. This study presents the complete DNA sequence of the E. faecium R-plasmid pVEF3 and functional studies of some plasmid-encoded traits (a toxin-antitoxin (TA) system and an ABC transporter) that may be of importance for plasmid persistence. The pVEF3 (63.1 kbp), isolated from an E. faecium strain of poultry origin sampled in Norway in 1999, has 71 coding sequences including the vanA avoparcin/vancomycin resistance encoding gene cluster. pVEF3 encodes the TA system omega-epsilon-zeta, and plasmid stability tests and transcription analysis show that omega-epsilon-zeta is functional in Enterococcus faecalis OGIX, although with decreasing effect over time. The predicted ABC transporter was not found to confer reduced susceptibility to any of the 28 substances tested. The TA system identified in the pVEF-type plasmids may contribute to vanA plasmid persistence on Norwegian poultry farms. However, size and compositional heterogeneity among E. faecium vanA plasmids suggest that additional plasmid maintenance systems in combination with host specific factors and frequent horizontal gene transfer and rearrangement causes the observed plasmid composition and distribution patterns.
Presentation and outcomes of indigenous Australians with peripheral artery disease.
Singh, Tejas P; Moxon, Joseph V; Healy, Genevieve N; Cadet-James, Yvonne; Golledge, Jonathan
2018-05-16
The risk factors for peripheral artery disease (PAD) are more common in Indigenous than non-Indigenous Australians, however the presentation and outcome of PAD in Indigenous Australians has not been previously investigated. The aim of this prospective cohort study was to compare the presenting characteristics and clinical outcome of Indigenous and non-Indigenous Australians with PAD. PAD patients were prospectively recruited and followed-up since 2003 from an outpatient vascular clinic in Townsville, Australia. Presenting symptoms and risk factors in Indigenous and non-Indigenous patients were compared using Pearson's χ2 test and Mann Whitney U test. Kaplan Meier survival analysis and Cox proportional hazard analysis were used to compare the incidence of myocardial infarction (MI), stroke or death (major cardiovascular events) among Indigenous and non-Indigenous patients. Four hundred and one PAD patients were recruited, of which 16 were Indigenous and 385 were non-Indigenous Australians. Indigenous Australians were younger at entry (median age 63.3 [54.7-67.8] vs 69.6 [63.3-75.4]), more commonly current smokers (56.3% vs 31.4%), and more frequently had insulin-treated diabetes (18.8% vs 5.2%). During a median follow-up of 2.5 years, five and 45 major cardiovascular events were recorded amongst Indigenous and non-Indigenous Australians, respectively. Indigenous Australians were at ~ 5-fold greater risk of major cardiovascular events (adjusted hazard ratio 4.72 [95% confidence intervals 1.41-15.78], p = 0.012) compared to non-Indigenous Australians. These findings suggest that Indigenous Australians with PAD present at a younger age, have higher rates of smoking and insulin-treated diabetes, and poorer clinical outcomes compared to non-Indigenous Australians.
Indigenous Health and Socioeconomic Status in India
Subramanian, S. V; Smith, George Davey; Subramanyam, Malavika
2006-01-01
Background Systematic evidence on the patterns of health deprivation among indigenous peoples remains scant in developing countries. We investigate the inequalities in mortality and substance use between indigenous and non-indigenous, and within indigenous, groups in India, with an aim to establishing the relative contribution of socioeconomic status in generating health inequalities. Methods and Findings Cross-sectional population-based data were obtained from the 1998–1999 Indian National Family Health Survey. Mortality, smoking, chewing tobacco use, and alcohol use were four separate binary outcomes in our analysis. Indigenous status in the context of India was operationalized through the Indian government category of scheduled tribes, or Adivasis, which refers to people living in tribal communities characterized by distinctive social, cultural, historical, and geographical circumstances. Indigenous groups experience excess mortality compared to non-indigenous groups, even after adjusting for economic standard of living (odds ratio 1.22; 95% confidence interval 1.13–1.30). They are also more likely to smoke and (especially) drink alcohol, but the prevalence of chewing tobacco is not substantially different between indigenous and non-indigenous groups. There are substantial health variations within indigenous groups, such that indigenous peoples in the bottom quintile of the indigenous-peoples-specific standard of living index have an odds ratio for mortality of 1.61 (95% confidence interval 1.33–1.95) compared to indigenous peoples in the top fifth of the wealth distribution. Smoking, drinking alcohol, and chewing tobacco also show graded associations with socioeconomic status within indigenous groups. Conclusions Socioeconomic status differentials substantially account for the health inequalities between indigenous and non-indigenous groups in India. However, a strong socioeconomic gradient in health is also evident within indigenous populations, reiterating the overall importance of socioeconomic status for reducing population-level health disparities, regardless of indigeneity. PMID:17076556
Postmenarche growth: cohort study among indigenous and non-indigenous Chilean adolescents.
Amigo, Hugo; Lara, Macarena; Bustos, Patricia; Muñoz, Sergio
2015-01-31
In Chile, indigenous and non-indigenous schoolchildren have the same stature when they begin school but indigenous adults are shorter, indicating the importance of analyzing growth during puberty. The aim of this study was to compare the growth of indigenous and non-indigenous girls during the 36 months after menarche in Chile's Araucanía Region. A concurrent cohort study was conducted to compare growth in the two ethnic groups, which were comprised of 114 indigenous and 126 non-indigenous girls who recently experienced menarche and were randomly selected. Height was measured at menarche and at 6, 12, 18, 24 and 36 months post-menarche. General linear models were used to analyze growth and a generalized estimating equation model was used to compare height at 36 months post-menarche. At menarche, the Z-score of height/age was less for indigenous than non-indigenous girls (-0.01 vs. -0.61, p < 0.001). Indigenous girls grew at a slower rate than non-indigenous girls (6.5 vs. 7.2 cm, p = 0.02), and height at 36-months post-menarche reached -0.82 vs. -0.35 cm (p <0.001). In an adjusted model at 36 months post-menarche, indigenous girls were 1.6 cm shorter than non-indigenous girls (95% confidence interval: -3.13 to -0.04). The height of indigenous girls at menarche was lower than that of non-indigenous girls and they subsequently grew less, maintaining the gap between the two groups. At the end of the follow-up period, the indigenous girls were shorter than their non-indigenous peers.
USDA-ARS?s Scientific Manuscript database
Large multidrug resistance plasmids of the A/C incompatibility complex (IncA/C) have been found in a diverse group of Gram-negative commensal and pathogenic bacteria. We present three completed sequences from IncA/C plasmids that originated from Escherichia coli (cattle) and Salmonella enterica sero...
Bruni, C B; Musti, A M; Frunzio, R; Blasi, F
1980-01-01
A fragment of deoxyribonucleic acid 5,300 base paris long and containing the promoter-proximal portion of the histidine operon of Escherichia coli K-12, has been cloned in plasmid pBR313 (plasmids pCB2 and pCB3). Restriction mapping, partial nucleotide sequencing, and studies on functional expression in vivo and on protein synthesis in minicells have shown that the fragment contains the regulatory region of the operon, the hisG, hisD genes, and part of the hisC gene. Another plasmid (pCB5) contained the hisG gene and part of the hisD gene. Expression of the hisG gene in the latter plasmid was under control of the tetracycline promoter of the pBR313 plasmid. The in vivo expression of the two groups of plasmids described above, as well as their effect on the expression of the histidine genes not carried by the plasmids but present on the host chromosome, has been studied. The presence of multiple copies of pCB2 or pCB3, but not of pCB5, prevented derepression of the chromosomal histidine operon. Possible interpretations of this phenomenon are discussed. Images PMID:6246067
Müller, J-M V; Wissemann, J; Meli, M L; Dasen, G; Lutz, H; Heinzerling, L; Feige, K
2011-11-01
Whole blood pharmacokinetics of intratumourally injected naked plasmid DNA coding for equine Interleukin 12 (IL-12) was assessed as a means of in vivo gene transfer in the treatment of melanoma in grey horses. The expression of induced interferon gamma (IFN-g) was evaluated in order to determine the pharmacodynamic properties of in vivo gene transduction. Seven grey horses bearing melanoma were injected intratumourally with 250 µg naked plasmid DNA coding for IL-12. Peripheral blood and biopsies from the injection site were taken at 13 time points until day 14 post injection (p.i.). Samples were analysed using quantitative real-time PCR. Plasmid DNA was quantified in blood samples and mRNA expression for IFN-g in tissue samples. Plasmid DNA showed fast elimination kinetics with more than 99 % of the plasmid disappearing within 36 hours. IFN-g expression increased quickly after IL-12 plasmid injection, but varied between individual horses. Intratumoural injection of plasmid DNA is a feasible method for inducing transgene expression in vivo. Biological activity of the transgene IL-12 was confirmed by measuring expression of IFN-g.
Dziewit, Lukasz; Grzesiak, Jakub; Ciok, Anna; Nieckarz, Marta; Zdanowski, Marek K; Bartosik, Dariusz
2013-09-01
Pseudomonas sp. GLE121 (a psychrophilic Antarctic strain) carries three plasmids: pGLE121P1 (6899 bp), pGLE121P2 (8330 bp) and pGLE121P3 (39,583 bp). Plasmids pGLE121P1 and pGLE121P2 show significant sequence similarity to members of the IncP-9 and IncP-7 incompatibility groups, respectively, while the largest replicon, pGLE121P3, is highly related to plasmid pNCPPB880-40 of Pseudomonas syringae pathovar tomato NCPPB880. All three plasmids have a narrow host range, limited to members of the genus Pseudomonas. Plasmid pGLE121P3 encodes a conjugal transfer system, while pGLE121P1 carries only a putative MOB module, conserved in many mobilizable plasmids. Plasmid pGLE121P3 contains an additional load of genetic information, including a pair of genes with homology to the rulAB operon, responsible for ultraviolet radiation (UVR) tolerance. Given the increasing UV exposure in Antarctic regions, the expression of these genes is likely to be an important adaptive response. Copyright © 2013 Elsevier Inc. All rights reserved.
Cryptic glucocorticoid receptor-binding sites pervade genomic NF-κB response elements.
Hudson, William H; Vera, Ian Mitchelle S de; Nwachukwu, Jerome C; Weikum, Emily R; Herbst, Austin G; Yang, Qin; Bain, David L; Nettles, Kendall W; Kojetin, Douglas J; Ortlund, Eric A
2018-04-06
Glucocorticoids (GCs) are potent repressors of NF-κB activity, making them a preferred choice for treatment of inflammation-driven conditions. Despite the widespread use of GCs in the clinic, current models are inadequate to explain the role of the glucocorticoid receptor (GR) within this critical signaling pathway. GR binding directly to NF-κB itself-tethering in a DNA binding-independent manner-represents the standing model of how GCs inhibit NF-κB-driven transcription. We demonstrate that direct binding of GR to genomic NF-κB response elements (κBREs) mediates GR-driven repression of inflammatory gene expression. We report five crystal structures and solution NMR data of GR DBD-κBRE complexes, which reveal that GR recognizes a cryptic response element between the binding footprints of NF-κB subunits within κBREs. These cryptic sequences exhibit high sequence and functional conservation, suggesting that GR binding to κBREs is an evolutionarily conserved mechanism of controlling the inflammatory response.
Minimized state complexity of quantum-encoded cryptic processes
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Mahoney, John R.; Aghamohammadi, Cina; Crutchfield, James P.
2016-05-01
The predictive information required for proper trajectory sampling of a stochastic process can be more efficiently transmitted via a quantum channel than a classical one. This recent discovery allows quantum information processing to drastically reduce the memory necessary to simulate complex classical stochastic processes. It also points to a new perspective on the intrinsic complexity that nature must employ in generating the processes we observe. The quantum advantage increases with codeword length: the length of process sequences used in constructing the quantum communication scheme. In analogy with the classical complexity measure, statistical complexity, we use this reduced communication cost as an entropic measure of state complexity in the quantum representation. Previously difficult to compute, the quantum advantage is expressed here in closed form using spectral decomposition. This allows for efficient numerical computation of the quantum-reduced state complexity at all encoding lengths, including infinite. Additionally, it makes clear how finite-codeword reduction in state complexity is controlled by the classical process's cryptic order, and it allows asymptotic analysis of infinite-cryptic-order processes.
Yavuz, Erkan; Ercan, Gulcin; Karagulle, Onur Olgac; Bayrak, Busra Yaprak; Biricik, Aytac; Ercetin, Candas; Gokcek, Berk; Yigitbas, Hakan; Kusaslan, Ramazan; Celik, Atilla; Gulcicek, Osman Bilgin
2018-04-01
To investigate the prophylactic and therapeutical effects of sildenafil in a model of acute radiation proctitis (ARP). All experimental procedures of this study was examined by histopathological, immunohistochemical and transmission electron microscopic analysis. Our histopathological evaluations indicated significant increases in lesion severity, cryptic apsis, cryptitis, cryptic distortion, reactive atypia and infiltration depth of the control (proctitis) group. While the prophylaxis group and the treatment group had significantly lower scores. High-dose group showed similar results as prophylaxis group. Histopathological findings of the prophylaxis group was more significant than the treatment group. Immunoreactivities of IL-1β, FGF-2, TNF- α and HIF-1α increased in the control group especially in the epithelial and cryptic regions. On the contrary, sildenafil application caused significant decreases of inflammatory markers in all treatment groups, specifically better results in the prophylaxis group. The sildenafil has anti-inflammatory effects on ARP, as well as protective effects against ARP and the protective effect of sildenafil surpasses its therapeutic effect histopathologically.
The Emerging Importance of Non-HLA Autoantibodies in Kidney Transplant Complications.
Cardinal, Héloise; Dieudé, Mélanie; Hébert, Marie-Josée
2017-02-01
Antibodies that are specific to organ donor HLA have been involved in the majority of cases of antibody-mediated rejection in solid organ transplant recipients. However, recent data show that production of non-HLA autoantibodies can occur before transplant in the form of natural autoantibodies. In contrast to HLAs, which are constitutively expressed on the cell surface of the allograft endothelium, autoantigens are usually cryptic. Tissue damage associated with ischemia-reperfusion, vascular injury, and/or rejection creates permissive conditions for the expression of cryptic autoantigens, allowing these autoantibodies to bind antigenic targets and further enhance vascular inflammation and renal dysfunction. Antiperlecan/LG3 antibodies and antiangiotensin II type 1 receptor antibodies have been found before transplant in patients with de novo transplants and portend negative long-term outcome in patients with renal transplants. Here, we review mounting evidence suggesting an important role for autoantibodies to cryptic antigens as novel accelerators of kidney dysfunction and acute or chronic allograft rejection. Copyright © 2017 by the American Society of Nephrology.
ERIC Educational Resources Information Center
Higgins-Desbiolles, Freya
2007-01-01
The role of the non-Indigenous educator and researcher in education on Indigenous issues is becoming the subject of critical scrutiny. Indigenous academics are successfully turning the gaze on non-Indigenous peers and practices. This paper narrates some of the experiences of a non-Indigenous educator teaching an undergraduate elective Indigenous…
ERIC Educational Resources Information Center
Shay, Marnee
2017-01-01
The Indigenous education agenda in Australia remains focused on mainstream schooling contexts. Although overlooked in Indigenous education discourse, flexi schools appear to be engaging with disproportionately high numbers of Indigenous students and staff. The educative roles of Indigenous peoples in broader Indigenous education discourse are…
Projan, S J; Archer, G L
1989-01-01
The Staphylococcus aureus plasmid pC221, a 4.6-kilobase multicopy chloramphenicol resistance plasmid that forms plasmid-protein relaxation complexes, was mobilized for transfer by the conjugative plasmid pGO1. Two open reading frames on the pC221 genome, now designated mobA and mobB, as well as a cis-acting locus, the putative oriT, were shown to be in involved in pC221 mobilization. The mobA (but not mobB) and oriT loci were required for pC221 relaxation, and relaxation was necessary but not sufficient for pC221 mobilization by pGO1. oriT was cloned onto a pE194 derivative and complemented in trans for both relaxation and mobilization. Mobilization of relaxable plasmids in S. aureus appears to be analogous to mobilization by donation observed in gram-negative bacteria. Images PMID:2703461
Plasmid-mediated resistance to protein biosynthesis inhibitors in staphylococci.
Schwarz, Stefan; Fessler, Andrea T; Hauschild, Tomasz; Kehrenberg, Corinna; Kadlec, Kristina
2011-12-01
Protein biosynthesis inhibitors (PBIs) represent powerful antimicrobial agents for the control of bacterial infections. In staphylococci, numerous resistance genes are known to be involved in resistance to PBIs, most of which mediate resistance to a specific class/subclass of PBIs, though a few genes do confer a multidrug resistance phenotype-up to five classes/subclasses of PBIs. Plasmids play a key role in the dissemination of PBI resistance among staphylococci, as they primarily carry plasmid-borne PBI resistance genes; however, plasmids also can be vectors for transposon-borne PBI resistance genes. Small plasmids that carry single PBI resistance genes are widespread among staphylococci of human and animal origin. Various mechanisms exist by which they can recombine, form cointegrates, or integrate into chromosomal DNA or larger plasmids. We provide an overview of the current knowledge of plasmid-mediated PBI resistance in staphylococci, with particular reference to the currently known PBI resistance genes, their association with mobile genetic elements, and the recombination/integration processes that control their mobility. © 2011 New York Academy of Sciences.
Plasmid fermentation process for DNA immunization applications.
Carnes, Aaron E; Williams, James A
2014-01-01
Plasmid DNA for immunization applications must be of the highest purity and quality. The ability of downstream purification to efficiently produce a pure final product is directly influenced by the performance of the upstream fermentation process. While several clinical manufacturing facilities already have validated fermentation processes in place to manufacture plasmid DNA for use in humans, a simple and inexpensive laboratory-scale fermentation process can be valuable for in-house production of plasmid DNA for use in animal efficacy studies. This chapter describes a simple fed-batch fermentation process for producing bacterial cell paste enriched with high-quality plasmid DNA. A constant feeding strategy results in a medium cell density culture with continuously increasing plasmid amplification towards the end of the process. Cell banking and seed culture preparation protocols, which can dramatically influence final product yield and quality, are also described. These protocols are suitable for production of research-grade plasmid DNA at the 100 mg-to-1.5 g scale from a typical 10 L laboratory benchtop fermentor.
Plasmid ColE1 as a Molecular Vehicle for Cloning and Amplification of DNA
Hershfield, Vickers; Boyer, Herbert W.; Yanofsky, Charles; Lovett, Michael A.; Helinski, Donald R.
1974-01-01
DNA fragments obtained from EcoRI endonuclease digestion of bacteriophage ϕ80pt190 (trp+) and the plasmid ColE1 were covalently joined with polynucleotide ligase. Transformation of Escherichia coli trp- strains to tryptophan independence with the recombined DNA selected for reconstituted ColE1 plasmids containing the tryptophan operon and the ϕ80 immunity region. Similarly, an EcoRI endonuclease generated fragment of plasmid pSC105 DNA containing the genetic determinant of kanamycin resistance was inserted into the ColE1 plasmid and recovered in E. coli. The plasmids containing the trp operon (ColE1-trp) and the kanamycin resistance gene were maintained under logarithmic growth conditions at a level of 25-30 copies per cell and accumulate to the extent of several hundred copies per cell in the presence of chloramphenicol. Cells carrying the ColE1-trp plasmid determined the production of highly elevated levels of trp operon-specific mRNA and tryptophan biosynthetic enzymes. Images PMID:4610576
West, R; Gamble, J; Kelly, J; Milne, T; Duffy, E; Sidebotham, M
2016-12-01
Evidence is emerging of the benefits to students of providing continuity of midwifery care as a learning strategy in midwifery education, however little is known about the value of this strategy for midwifery students. To explore Indigenous students' perceptions of providing continuity of midwifery care to Indigenous women whilst undertaking a Bachelor of Midwifery. Indigenous Bachelor of Midwifery students' experiences of providing continuity of midwifery care to Indigenous childbearing women were explored within an Indigenous research approach using a narrative inquiry framework. Participants were three Indigenous midwifery students who provided continuity of care to Indigenous women. Three interconnected themes; facilitating connection, being connected, and journeying with the woman. These themes contribute to the overarching finding that the experience of providing continuity of care for Indigenous women creates a sense of personal affirmation, purpose and a validation of cultural identity in Indigenous students. Midwifery philosophy aligns strongly with the Indigenous health philosophy and this provides a learning platform for Indigenous student midwives. Privileging Indigenous culture within midwifery education programs assists students develop a sense of purpose and affirms them in their emerging professional role and within their community. The findings from this study illustrate the demand for, and pertinence of, continuity of care midwifery experiences with Indigenous women as fundamental to increasing the Indigenous midwifery workforce in Australia. Australian universities should provide this experience for Indigenous student midwives. Copyright © 2016 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate.
Monticello, D J; Bakker, D; Schell, M; Finnerty, W R
1985-01-01
Plasmid-borne Tn5 insertion mutants of a Pseudomonas species which accumulated 2,5-dihydroxybenzoate (gentisate) following growth on 2-hydroxybenzoate (salicylate) were obtained from a pool of mutants that were unable to grow on naphthalene. One such mutant was characterized further. The ability of this mutant to oxidize gentisate was 100-fold less than the ability of a Nah+ Sal+ strain harboring the unmutagenized plasmid, although both strains oxidized and grew on salicylate. These bacteria were presumably able to metabolize salicylate via catechol, since they possessed an inducible, plasmid-encoded catechol 2,3-dioxygenase. Our results suggest that there is an alternate, plasmid-encoded route of salicylate degradation via gentisate and that some plasmid-associated relationship between this pathway and naphthalene oxidation exists. PMID:2988437
Transfected Cell Microarrays for the Expression of Membrane-Displayed Single-Chain Antibodies
2011-01-01
v) yeast extract, 0.005% (w/v) NaCl, and 50 μg/ml kanamycin. The broth was stored at 4◦C for up to 3 months. 4. QIAGEN Plasmid Midi kit (Qiagen) or...ampi- cillin. The broth was stored at 4◦C for up to 3 months. 16. QIAprep spin miniprep kit and QIAGEN Plasmid Midi kit (Qiagen) or PureYield Plasmid...was stored at 4◦C for up to 3 months. 8. QIAGEN Plasmid Midi kit (Qiagen) or PureYield Plasmid Midiprep System (Promega Corp.) was stored at room tem
Carlini, Leslie E; Getz, Michael J; Strauch, Arthur R; Kelm, Robert J
2002-03-08
An asymmetric polypurine-polypyrimidine cis-element located in the 5' region of the mouse vascular smooth muscle alpha-actin gene serves as a binding site for multiple proteins with specific affinity for either single- or double-stranded DNA. Here, we test the hypothesis that single-stranded DNA-binding proteins are responsible for preventing a cryptic MCAT enhancer centered within this element from cooperating with a nearby serum response factor-interacting CArG motif to trans-activate the minimal promoter in fibroblasts and smooth muscle cells. DNA binding studies revealed that the core MCAT sequence mediates binding of transcription enhancer factor-1 to the double-stranded polypurine-polypyrimidine element while flanking nucleotides account for interaction of Pur alpha and Pur beta with the purine-rich strand and MSY1 with the complementary pyrimidine-rich strand. Mutations that selectively impaired high affinity single-stranded DNA binding by fibroblast or smooth muscle cell-derived Pur alpha, Pur beta, and MSY1 in vitro, released the cryptic MCAT enhancer from repression in transfected cells. Additional experiments indicated that Pur alpha, Pur beta, and MSY1 also interact specifically, albeit weakly, with double-stranded DNA and with transcription enhancer factor-1. These results are consistent with two plausible models of cryptic MCAT enhancer regulation by Pur alpha, Pur beta, and MSY1 involving either competitive single-stranded DNA binding or masking of MCAT-bound transcription enhancer factor-1.
When to stop managing or surveying cryptic threatened species
Chadès, Iadine; McDonald-Madden, Eve; McCarthy, Michael A.; Wintle, Brendan; Linkie, Matthew; Possingham, Hugh P.
2008-01-01
Threatened species become increasingly difficult to detect as their populations decline. Managers of such cryptic threatened species face several dilemmas: if they are not sure the species is present, should they continue to manage for that species or invest the limited resources in surveying? We find optimal solutions to this problem using a Partially Observable Markov Decision Process and rules of thumb derived from an analytical approximation. We discover that managing a protected area for a cryptic threatened species can be optimal even if we are not sure the species is present. The more threatened and valuable the species is, relative to the costs of management, the more likely we are to manage this species without determining its continued persistence by using surveys. If a species remains unseen, our belief in the persistence of the species declines to a point where the optimal strategy is to shift resources from saving the species to surveying for it. Finally, when surveys lead to a sufficiently low belief that the species is extant, we surrender resources to other conservation actions. We illustrate our findings with a case study using parameters based on the critically endangered Sumatran tiger (Panthera tigris sumatrae), and we generate rules of thumb on how to allocate conservation effort for any cryptic species. Using Partially Observable Markov Decision Processes in conservation science, we determine the conditions under which it is better to abandon management for that species because our belief that it continues to exist is too low. PMID:18779594
Acoustic divergence in the communication of cryptic species of nocturnal primates (Microcebus ssp.)
Braune, Pia; Schmidt, Sabine; Zimmermann, Elke
2008-01-01
Background A central question in evolutionary biology is how cryptic species maintain species cohesiveness in an area of sympatry. The coexistence of sympatrically living cryptic species requires the evolution of species-specific signalling and recognition systems. In nocturnal, dispersed living species, specific vocalisations have been suggested to act as an ideal premating isolation mechanism. We studied the structure and perception of male advertisement calls of three nocturnal, dispersed living mouse lemur species, the grey mouse lemur (Microcebus murinus), the golden brown mouse lemur (M. ravelobensis) and the Goodman's mouse lemur (M. lehilahytsara). The first two species occur sympatrically, the latter lives allopatrically to them. Results A multi-parameter sound analysis revealed prominent differences in the frequency contour and in the duration of advertisement calls. To test whether mouse lemurs respond specifically to calls of the different species, we conducted a playback experiment with M. murinus from the field using advertisement calls and alarm whistle calls of all three species. Individuals responded significantly stronger to conspecific than to heterospecific advertisement calls but there were no differences in response behaviour towards statistically similar whistle calls of the three species. Furthermore, sympatric calls evoked weaker interest than allopatric advertisement calls. Conclusion Our results provide the first evidence for a specific relevance of social calls for speciation in cryptic primates. They furthermore support that specific differences in signalling and recognition systems represent an efficient premating isolation mechanism contributing to species cohesiveness in sympatrically living species. PMID:18462484
Escobar-Camacho, Daniel; Barriga, Ramiro; Ron, Santiago R
2015-01-01
Management and conservation of biodiversity requires adequate species inventories. The Yasuní National Park is one of the most diverse regions on Earth and recent studies of terrestrial vertebrates, based on genetic evidence, have shown high levels of cryptic and undescribed diversity. Few genetic studies have been carried out in freshwater fishes from western Amazonia. Thus, in contrast with terrestrial vertebrates, their content of cryptic diversity remains unknown. In this study, we carried out genetic and morphological analyses on characin fishes at Yasuní National Park, in eastern Ecuador. Our goal was to identify cryptic diversity among one of the most speciose fish families in the Amazon region. This is the first time that genetic evidence has been used to assess the species content of the Napo Basin, one of the richest regions in vertebrate diversity. Phylogenetic analyses of partial mitochondrial 16S ribosomal RNA gene (∼600 pb) DNA sequences from 232 specimens of the family Characidae and its closest groups revealed eight candidate new species among 33 species sampled, representing a 24% increase in species number. Analyses of external morphology allowed us to confirm the species status of six of the candidate species. Our results show high levels of cryptic diversity in Amazonian characins. If this group is representative of other Amazonian fish, our results would imply that the species richness of the Amazonian ichthyofauna is highly underestimated. Molecular methods are a necessary tool to obtain more realistic inventories of Neotropical freshwater fishes.
Regulatory role of XynR (YagI) in catabolism of xylonate in Escherichia coli K-12.
Shimada, Tomohiro; Momiyama, Eri; Yamanaka, Yuki; Watanabe, Hiroki; Yamamoto, Kaneyoshi; Ishihama, Akira
2017-12-01
The genome of Escherichia coli K-12 contains ten cryptic phages, altogether constituting about 3.6% of the genome in sequence. Among more than 200 predicted genes in these cryptic phages, 14 putative transcription factor (TF) genes exist, but their regulatory functions remain unidentified. As an initial attempt to make a breakthrough for understanding the regulatory roles of cryptic phage-encoded TFs, we tried to identify the regulatory function of CP4-6 cryptic prophage-encoded YagI with unknown function. After SELEX screening, YagI was found to bind mainly at a single site within the spacer of bidirectional transcription units, yagA (encoding another uncharacterized TF) and yagEF (encoding 2-keto-3-deoxy gluconate aldolase, and dehydratase, respectively) within this prophage region. YagEF enzymes are involved in the catabolism of xylose downstream from xylonate. We then designated YagI as XynR (regulator of xylonate catabolism), one of the rare single-target TFs. In agreement with this predicted regulatory function, the activity of XynR was suggested to be controlled by xylonate. Even though low-affinity binding sites of XynR were identified in the E. coli K-12 genome, they all were inside open reading frames, implying that the regulation network of XynR is still fixed within the CR4-6 prophage without significant influence over the host E. coli K-12. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lumley, Alyson J.; Diamond, Sian E.; Einum, Sigurd; Yeates, Sarah E.; Peruffo, Danielle; Emerson, Brent C.; Gage, Matthew J. G.
2016-01-01
There is increasing evidence that females can somehow improve their offspring fitness by mating with multiple males, but we understand little about the exact stage(s) at which such benefits are gained. Here, we measure whether offspring fitness is influenced by mechanisms operating solely between sperm and egg. Using externally fertilizing and polyandrous Atlantic salmon (Salmo salar), we employed split-clutch and split-ejaculate in vitro fertilization experiments to generate offspring using designs that either denied or applied opportunities for sperm competition and cryptic female choice. Following fertilizations, we measured 140 days of offspring fitness after hatch, through growth and survival in hatchery and near-natural conditions. Despite an average composite mortality of 61%, offspring fitness at every life stage was near-identical between groups fertilized under the absence versus presence of opportunities for sperm competition and cryptic female choice. Of the 21 551 and 21 771 eggs from 24 females fertilized under monandrous versus polyandrous conditions, 68% versus 67.8% survived to the 100-day juvenile stage; sub-samples showed similar hatching success (73.1% versus 74.3%), had similar survival over 40 days in near-natural streams (57.3% versus 56.2%) and grew at similar rates throughout. We therefore found no evidence that gamete-specific interactions allow offspring fitness benefits when polyandrous fertilization conditions provide opportunities for sperm competition and cryptic female choice. PMID:27069665
Cornils, Astrid; Wend-Heckmann, Britta; Held, Christoph
2017-02-01
Traditionally, many small-sized copepod species are considered to be widespread, bipolar or cosmopolitan. However, these large-scale distribution patterns need to be re-examined in view of increasing evidence of cryptic and pseudo-cryptic speciation in pelagic copepods. Here, we present a phylogeographic study of Oithona similis s.l. populations from the Arctic Ocean, the Southern Ocean and its northern boundaries, the North Atlantic and the Mediterrranean Sea. O. similis s.l. is considered as one of the most abundant species in temperate to polar oceans and acts as an important link in the trophic network between the microbial loop and higher trophic levels such as fish larvae. Two gene fragments were analysed: the mitochondrial cytochrome oxidase c subunit I (COI), and the nuclear ribosomal 28 S genetic marker. Seven distinct, geographically delimitated, mitochondrial lineages could be identified, with divergences among the lineages ranging from 8 to 24%, thus representing most likely cryptic or pseudocryptic species within O. similis s.l. Four lineages were identified within or close to the borders of the Southern Ocean, one lineage in the Arctic Ocean and two lineages in the temperate Northern hemisphere. Surprisingly the Arctic lineage was more closely related to lineages from the Southern hemisphere than to the other lineages from the Northern hemisphere, suggesting that geographic proximity is a rather poor predictor of how closely related the clades are on a genetic level. Copyright © 2016 Elsevier Inc. All rights reserved.
When to stop managing or surveying cryptic threatened species.
Chadès, Iadine; McDonald-Madden, Eve; McCarthy, Michael A; Wintle, Brendan; Linkie, Matthew; Possingham, Hugh P
2008-09-16
Threatened species become increasingly difficult to detect as their populations decline. Managers of such cryptic threatened species face several dilemmas: if they are not sure the species is present, should they continue to manage for that species or invest the limited resources in surveying? We find optimal solutions to this problem using a Partially Observable Markov Decision Process and rules of thumb derived from an analytical approximation. We discover that managing a protected area for a cryptic threatened species can be optimal even if we are not sure the species is present. The more threatened and valuable the species is, relative to the costs of management, the more likely we are to manage this species without determining its continued persistence by using surveys. If a species remains unseen, our belief in the persistence of the species declines to a point where the optimal strategy is to shift resources from saving the species to surveying for it. Finally, when surveys lead to a sufficiently low belief that the species is extant, we surrender resources to other conservation actions. We illustrate our findings with a case study using parameters based on the critically endangered Sumatran tiger (Panthera tigris sumatrae), and we generate rules of thumb on how to allocate conservation effort for any cryptic species. Using Partially Observable Markov Decision Processes in conservation science, we determine the conditions under which it is better to abandon management for that species because our belief that it continues to exist is too low.
Ruiz-Masó, José Á.; Luengo, Luis M.; Moreno-Córdoba, Inmaculada; Díaz-Orejas, Ramón; del Solar, Gloria
2017-01-01
Although differing in size, encoded traits, host range, and replication mechanism, both narrow-host-range theta-type conjugative enterobacterial plasmid R1 and promiscuous rolling-circle-type mobilizable streptococcal plasmid pMV158 encode a transcriptional repressor protein, namely CopB in R1 and CopG in pMV158, involved in replication control. The gene encoding CopB or CopG is cotranscribed with a downstream gene that encodes the replication initiator Rep protein of the corresponding plasmid. However, whereas CopG is an auto-repressor that inhibits transcription of the entire copG-repB operon, CopB is expressed constitutively and represses a second, downstream promoter that directs transcription of repA. As a consequence of the distinct regulatory pathways implied by CopB and CopG, these repressor proteins play a different role in control of plasmid replication during the steady state: while CopB has an auxiliary role by keeping repressed the regulated promoter whenever the plasmid copy number is above a low threshold, CopG plays a primary role by acting coordinately with RNAII. Here, we have studied the role of the regulatory circuit mediated by these transcriptional repressors during the establishment of these two plasmids in a new host cell, and found that excess Cop repressor molecules in the recipient cell result in a severe decrease in the frequency and/or the velocity of appearance of transformant colonies for the cognate plasmid but not for unrelated plasmids. Using the pMV158 replicon as a model system, together with highly sensitive real-time qPCR and inverse PCR methods, we have also analyzed the effect of CopG on the kinetics of repopulation of the plasmid in Streptococcus pneumoniae. We show that, whereas in the absence of CopG pMV158 repopulation occurs mainly during the first 45 min following plasmid transfer, the presence of the transcriptional repressor in the recipient cell severely impairs the replicon repopulation and makes the plasmid replicate at approximately the same rate as the chromosome at any time after transformation, which results in maximal plasmid loss rate in the absence of selection. Overall, these findings indicate that unrepressed activity of the Cop-regulated promoter is crucial for the successful colonization of the recipient bacterial cells by the plasmid. PMID:29250051
Wang, Xiumei; Zhu, Yao; Hua, Xin; Chen, Fuguang; Wang, Changzhen; Zhang, Yanhe; Liu, Siguo; Zhang, Wanjiang
2018-04-01
The objective of this study was to investigate the prevalence of the cfr gene in Escherichia coli isolates from domestic animals in Northeast China and to characterize the cfr-containing plasmids. Between June 2015 and April 2016, 370 E. coli isolates were collected from pigs, chickens, and dairy cows in Northeast China. Among these, 111 were florfenicol resistant, including 109 isolates carrying the floR gene and 6 positives for cfr. The prevalence of cfr in E. coli isolates from the four northeast provinces in China was 1.6% (6/370), which was higher than that previously reported (0.08% and 0.5%). All six cfr-containing E. coli isolates were highly resistant to florfenicol (100%), cefotaxime (100%), and fosfomycin (100%). Complete sequence analysis of two cfr-carrying plasmids revealed high homology of the IncX4-type pEC14cfr plasmid with two other cfr-harboring plasmids, pSD11 and pGXEC6, found in swine E. coli isolates from southern China. pEC14cfr-like plasmids have been isolated in five provinces in southern and northern China. The isolation sites were up to 2700 kilometers apart, implying that pEC14cfr-like plasmids are likely to be national epidemic cfr-carrying plasmids that mediate the dissemination of cfr in China. Moreover, the genetic structure (IS26-IS26-cfr-rec-pre/mob-ramA-IS26) of the second cfr-carrying plasmid, IncF14:A-:B- pEC295cfr, represents a novel genetic environment for cfr identified for the first time in the present study. Sequence homology analysis indicated that the cfr-carrying element was most likely introduced into a cfr-negative pEC12 plasmid backbone, which evolved into the cfr-carrying vector, pEC295cfr. Moreover, isolation of the IncF14:A-:B- pEC295cfr plasmid harboring cfr suggests that IncFII plasmids maybe have become additional effective vehicles for cfr dissemination. These results highlight the importance of surveying the prevalence of IncX4 and IncFII plasmids in gram-negative bacteria, especially in swine E. coli isolates. Copyright © 2018 Elsevier B.V. All rights reserved.
A Visual Profile of Queensland Indigenous Children.
Hopkins, Shelley; Sampson, Geoff P; Hendicott, Peter L; Wood, Joanne M
2016-03-01
Little is known about the prevalence of refractive error, binocular vision, and other visual conditions in Australian Indigenous children. This is important given the association of these visual conditions with reduced reading performance in the wider population, which may also contribute to the suboptimal reading performance reported in this population. The aim of this study was to develop a visual profile of Queensland Indigenous children. Vision testing was performed on 595 primary schoolchildren in Queensland, Australia. Vision parameters measured included visual acuity, refractive error, color vision, nearpoint of convergence, horizontal heterophoria, fusional vergence range, accommodative facility, AC/A ratio, visual motor integration, and rapid automatized naming. Near heterophoria, nearpoint of convergence, and near fusional vergence range were used to classify convergence insufficiency (CI). Although refractive error (Indigenous, 10%; non-Indigenous, 16%; p = 0.04) and strabismus (Indigenous, 0%; non-Indigenous, 3%; p = 0.03) were significantly less common in Indigenous children, CI was twice as prevalent (Indigenous, 10%; non-Indigenous, 5%; p = 0.04). Reduced visual information processing skills were more common in Indigenous children (reduced visual motor integration [Indigenous, 28%; non-Indigenous, 16%; p < 0.01] and slower rapid automatized naming [Indigenous, 67%; non-Indigenous, 59%; p = 0.04]). The prevalence of visual impairment (reduced visual acuity) and color vision deficiency was similar between groups. Indigenous children have less refractive error and strabismus than their non-Indigenous peers. However, CI and reduced visual information processing skills were more common in this group. Given that vision screenings primarily target visual acuity assessment and strabismus detection, this is an important finding as many Indigenous children with CI and reduced visual information processing may be missed. Emphasis should be placed on identifying children with CI and reduced visual information processing given the potential effect of these conditions on school performance.
Folster, Jason P; Tolar, Beth; Pecic, Gary; Sheehan, Deborah; Rickert, Regan; Hise, Kelley; Zhao, Shaohua; Fedorka-Cray, Paula J; McDermott, Patrick; Whichard, Jean M
2014-04-01
Salmonella is an important cause of foodborne illness; however, identifying the source of these infections can be difficult. This is especially true for Salmonella serotype Typhimurium, which is found in diverse agricultural niches. Extended-spectrum cephalosporins (ESC) are one of the primary treatment choices for complicated Salmonella infections. In Salmonella, ESC resistance in the United States is mainly mediated by blaCMY genes carried on various plasmids. In this study, we examined whether the characterization of blaCMY plasmids, along with additional information, can help us identify potential sources of infection by Salmonella, and used serotype Typhimurium as a model. In the United States, monitoring of retail meat, food animals, and ill persons for antimicrobial-resistant Salmonella is conducted by the National Antimicrobial Resistance Monitoring System. In 2008, 70 isolates (70/581; 12.0%) (34 isolates from retail meat, 23 food animal, and 13 human) were resistant to ceftriaxone and amoxicillin/clavulanic acid. All were polymerase chain reaction (PCR)-positive for blaCMY and 59/70 (84.3%) of these genes were plasmid encoded. PCR-based replicon typing identified 42/59 (71.2%) IncI1-blaCMY plasmids and 17/59 (28.8%) IncA/C-blaCMY plasmids. Isolates from chickens or chicken products with blaCMY plasmids primarily had IncI1-blaCMY plasmids (37/40; 92.5%), while all isolates from cattle had IncA/C-blaCMY plasmids. Isolates from humans had either IncA/C- blaCMY (n=8/12; [66.7%]) or IncI1- blaCMY (n=4/12 [33.3%]) plasmids. All of the IncI1-blaCMY plasmids were ST12 or were closely related to ST12. Antimicrobial susceptibility patterns (AST) and pulsed-field gel electrophoresis (PFGE) patterns of the isolates were also compared and differences were identified between isolate sources. When the source of a Typhimurium outbreak or sporadic illness is unknown, characterizing the outbreak isolate's blaCMY plasmids, AST, and PFGE patterns may help identify it.
Folster, J.P.; Tolar, B.; Pecic, G.; Sheehan, D.; Rickert, R.; Hise, K.; Zhao, S.; Fedorka-Cray, P. J.; McDermott, P.; Whichard, J.M.
2015-01-01
Salmonella is an important cause of foodborne illness; however, identifying the source of these infections can be difficult. This is especially true for Salmonella serotype Typhimurium which is found in diverse agricultural niches. Extended spectrum cephalosporins (ESC) are one of the primary treatment choices for complicated Salmonella infections. In Salmonella, ESC resistance in the U.S. is mainly mediated by blaCMY genes carried on various plasmids. In this study, we examined whether the characterization of blaCMY plasmids, along with additional information, can help us identify potential sources of infection by Salmonella, and use serotype Typhimurium as a model. In the U.S., monitoring of retail meat, food animals, and ill persons for antimicrobial resistant Salmonella is conducted by the National Antimicrobial Resistance Monitoring System (NARMS). In 2008, 70 isolates (70/581;12.0 %) (34 isolates from retail meat, 23 food animal, and 13 human) were resistant to ceftriaxone and amoxicillin/clavulanic acid. All were PCR-positive for blaCMY and 59/70 (84.3%) of these genes were plasmid-encoded. PCR-based replicon typing (PBRT) identified 42/59 (71.2%) IncI1-blaCMY plasmids and 17/59 (28.8%) IncA/C-blaCMY plasmids. Isolates from chickens or chicken products with blaCMY plasmids primarily had IncI1-blaCMY plasmids (37/40; 92.5%), while all isolates from cattle had IncA/C-blaCMY plasmids. Isolates from humans had either IncA/C- blaCMY (n = 8/12; [66.7%]) or IncI1- blaCMY (n = 4/12 [33.3%]) plasmids. All of the IncI1-blaCMY plasmids were ST12 or were closely related to ST12. Antimicrobial susceptibility patterns (AST) and pulsed-field gel electrophoresis (PFGE) patterns of the isolates were also compared and differences were identified between isolate sources. When the source of a Typhimurium outbreak or sporadic illness is unknown, characterizing outbreak isolate’s blaCMY plasmids, AST, and PFGE patterns may help identify it. PMID:24484290
Folster, J P; Pecic, G; Singh, A; Duval, B; Rickert, R; Ayers, S; Abbott, J; McGlinchey, B; Bauer-Turpin, J; Haro, J; Hise, K; Zhao, S; Fedorka-Cray, P J; Whichard, J; McDermott, P F
2012-07-01
Salmonella enterica is one of the most common causes of foodborne illness in the United States. Although salmonellosis is usually self-limiting, severe infections typically require antimicrobial treatment, and ceftriaxone, an extended-spectrum cephalosporin (ESC), is commonly used in both adults and children. Surveillance conducted by the National Antimicrobial Resistance Monitoring System (NARMS) has shown a recent increase in ESC resistance among Salmonella Heidelberg isolated from food animals at slaughter, retail meat, and humans. ESC resistance among Salmonella in the United States is usually mediated by a plasmid-encoded bla(CMY) β-lactamase. In 2009, we identified 47 ESC-resistant bla(CMY)-positive Heidelberg isolates from humans (n=18), food animals at slaughter (n=16), and retail meats (n=13) associated with a spike in the prevalence of this serovar. Almost 90% (26/29) of the animal and meat isolates were isolated from chicken carcasses or retail chicken meat. We screened NARMS isolates for the presence of bla(CMY), determined whether the gene was plasmid-encoded, examined pulsed-field gel electrophoresis patterns to assess the genetic diversities of the isolates, and categorized the bla(CMY) plasmids by plasmid incompatibility groups and plasmid multi-locus sequence typing (pMLST). All 47 bla(CMY) genes were found to be plasmid encoded. Incompatibility/replicon typing demonstrated that 41 were IncI1 plasmids, 40 of which only conferred bla(CMY)-associated resistance. Six were IncA/C plasmids that carried additional resistance genes. pMLST of the IncI1-bla(CMY) plasmids showed that 27 (65.8%) were sequence type (ST) 12, the most common ST among bla(CMY)-IncI1 plasmids from Heidelberg isolated from humans. Ten plasmids had a new ST profile, ST66, a type very similar to ST12. This work showed that the 2009 increase in ESC resistance among Salmonella Heidelberg was caused mainly by the dissemination of bla(CMY) on IncI1 and IncA/C plasmids in a variety of genetic backgrounds, and is likely not the result of clonal expansion.
Botts, Ryan T.; Apffel, Brooke A.; Walters, C. J.; Davidson, Kelly E.; Echols, Ryan S.; Geiger, Michael R.; Guzman, Victoria L.; Haase, Victoria S.; Montana, Michal A.; La Chat, Chip A.; Mielke, Jenna A.; Mullen, Kelly L.; Virtue, Cierra C.; Brown, Celeste J.; Top, Eva M.; Cummings, David E.
2017-01-01
Self-transmissible and mobilizable plasmids contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance. The objective of this study was to capture and characterize self-transmissible and mobilizable resistance plasmids from a coastal wetland impacted by urban stormwater runoff and human wastewater during the rainy season. Four plasmids were captured, two self-transmissible and two mobilizable, using both mating and enrichment approaches. Plasmid genomes, sequenced with either Illumina or PacBio platforms, revealed representatives of incompatibility groups IncP-6, IncR, IncN3, and IncF. The plasmids ranged in size from 36 to 144 kb and encoded known resistance genes for most of the major classes of antibiotics used to treat Gram-negative infections (tetracyclines, sulfonamides, β-lactams, fluoroquinolones, aminoglycosides, and amphenicols). The mobilizable IncP-6 plasmid pLNU-11 was discovered in a strain of Citrobacter freundii enriched from the wetland sediments with tetracycline and nalidixic acid, and encodes a novel AmpC-like β-lactamase (blaWDC-1), which shares less than 62% amino acid sequence identity with the PDC class of β-lactamases found in Pseudomonas aeruginosa. Although the IncR plasmid pTRE-1611 was captured by mating wetland bacteria with P. putida KT2440 as recipient, it was found to be mobilizable rather than self-transmissible. Two self-transmissible multidrug-resistance plasmids were also captured: the small (48 kb) IncN3 plasmid pTRE-131 was captured by mating wetland bacteria with Escherichia coli HY842 where it is seemed to be maintained at nearly 240 copies per cell, while the large (144 kb) IncF plasmid pTRE-2011, which was isolated from a cefotaxime-resistant environmental strain of E. coli ST744, exists at just a single copy per cell. Furthermore, pTRE-2011 bears the globally epidemic blaCTX-M-55 extended-spectrum β-lactamase downstream of ISEcp1. Our results indicate that urban coastal wetlands are reservoirs of diverse self-transmissible and mobilizable plasmids of relevance to human health. PMID:29067005
Wang, Ya-Fei; Wang, Ya-Fei; Li, Hui; Li, Xiao-Bin
2013-11-01
Based on triparental mating, we isolated a total of eight broad host range (BHR) petroleum hydrocarbon catabolic plasmids from the soils, sediments, and wastewater samples in the Shen-Fu irrigation zone. The antibiotic resistance of the plasmids was tested, and then, the plasmids were transferred to Escherichia coli EC100. The plasmids carrying no antibiotic resistance were tagged by miniTn5 transposon consisting of antibiotic resistant genes. The PCR-based incompatibility test revealed that the pS3-2C and pS4-6G belonged to Inc P group, the pS3-2G, pW22-3G, and pA15-7G belonged to Inc N group, the pS7-2G was identified as Inc W plasmid, and the pA23-1G and pA10-1C were placed into Inc Q group. By adopting the reported PCR amplification methods of petroleum hydrocarbon-degrading catabolic genes, the petroleum-degrading capability of these BHR plasmids were preliminarily analyzed. The plasmids pS3-2G, pS7-2G, pA23-1G, pW22-3G, and pA10-1C carried aromatic ring- hydroxylating dioxygenase gene phdA and toluene monooxygenase gene touA; the plasmid pA15-7G carried touA and toluene dioxygenase gene tod; the plasmid pS3-2C carried ben, phdA, and tod; whereas the pS4-6G only carried ben. The host range test showed that all the isolated plasmids except pS3-2C could be transferred and maintained stably in the representative strains Agrobacterium tumefaciens C58, Cupriavidus necator JMP228, and E. coli EC100 of the alpha-, beta-, and gamma-Proteobacteria, respectively.
Restriction Fragment Length Polymorphisms of Virulence Plasmids in Rhodococcus equi
Takai, Shinji; Shoda, Masato; Sasaki, Yukako; Tsubaki, Shiro; Fortier, Guillaume; Pronost, Stephane; Rahal, Karim; Becu, Teotimo; Begg, Angela; Browning, Glenn; Nicholson, Vivian M.; Prescott, John F.
1999-01-01
Virulent Rhodococcus equi, which is a well-known cause of pyogranulomatous pneumonia in foals, possesses a large plasmid encoding virulence-associated 15- to 17-kDa antigens. Foal and soil isolates from five countries—Argentina, Australia, Canada, France, and Japan—were investigated for the presence of 15- to 17-kDa antigens by colony blotting, using the monoclonal antibody 10G5, and the gene coding for 15- to 17-kDa antigens by PCR. Plasmid DNAs extracted from positive isolates were digested with restriction endonucleases BamHI, EcoRI, EcoT22I, and HindIII, and the digestion patterns that resulted divided the plasmids of virulent isolates into five closely related types. Three of the five types had already been reported in Canadian and Japanese isolates, and the two new types had been found in French and Japanese isolates. Therefore, we tentatively designated these five types 85-kb type I (pREAT701), 85-kb type II (a new type), 87-kb type I (EcoRI and BamHI type 2 [V. M. Nicholson and J. F. Prescott, J. Clin. Microbiol. 35:738–740, 1997]), 87-kb type II (a new type), and 90-kb (pREL1) plasmids. The 85-kb type I plasmid was found in isolates from Argentina, Australia, Canada, and France. Plasmid 87-kb type I was isolated in specimens from Argentina, Canada, and France. The 85-kb type II plasmid appeared in isolates from France. On the other hand, plasmids 87-kb type II and 90-kb were found only in isolates from Japan. These results revealed geographic differences in the distribution of the virulence plasmids found in the five countries and suggested that the restriction fragment length polymorphism of virulence plasmids might be useful to elucidate the molecular epidemiology of virulent R. equi in the world. PMID:10488224
Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Parreira, Valeria R; Whitehead, Ashley E; Boerlin, Patrick; Prescott, John F
2016-01-01
The recent discovery of a novel beta-pore-forming toxin, NetF, which is strongly associated with canine and foal necrotizing enteritis should improve our understanding of the role of type A Clostridium perfringens associated disease in these animals. The current study presents the complete genome sequence of two netF-positive strains, JFP55 and JFP838, which were recovered from cases of foal necrotizing enteritis and canine hemorrhagic gastroenteritis, respectively. Genome sequencing was done using Single Molecule, Real-Time (SMRT) technology-PacBio and Illumina Hiseq2000. The JFP55 and JFP838 genomes include a single 3.34 Mb and 3.53 Mb chromosome, respectively, and both genomes include five circular plasmids. Plasmid annotation revealed that three plasmids were shared by the two newly sequenced genomes, including a NetF/NetE toxins-encoding tcp-conjugative plasmid, a CPE/CPB2 toxins-encoding tcp-conjugative plasmid and a putative bacteriocin-encoding plasmid. The putative beta-pore-forming toxin genes, netF, netE and netG, were located in unique pathogenicity loci on tcp-conjugative plasmids. The C. perfringens JFP55 chromosome carries 2,825 protein-coding genes whereas the chromosome of JFP838 contains 3,014 protein-encoding genes. Comparison of these two chromosomes with three available reference C. perfringens chromosome sequences identified 48 (~247 kb) and 81 (~430 kb) regions unique to JFP55 and JFP838, respectively. Some of these divergent genomic regions in both chromosomes are phage- and plasmid-related segments. Sixteen of these unique chromosomal regions (~69 kb) were shared between the two isolates. Five of these shared regions formed a mosaic of plasmid-integrated segments, suggesting that these elements were acquired early in a clonal lineage of netF-positive C. perfringens strains. These results provide significant insight into the basis of canine and foal necrotizing enteritis and are the first to demonstrate that netF resides on a large and unique plasmid-encoded locus.
Fallico, V; Ross, R P; Fitzgerald, G F; McAuliffe, O
2012-07-01
A collection of 17 natural lactococcal isolates from raw milk cheeses were studied in terms of their plasmid distribution, content, and diversity. All strains in the collection harbored an abundance of plasmids, including Lactococcus lactis ssp. cremoris DPC3758, whose 8-plasmid complement was selected for sequencing. The complete sequences of pAF22 (22,388 kb), pAF14 (14,419 kb), pAF12 (12,067 kb), pAF07 (7,435 kb), and pAF04 (3,801 kb) were obtained, whereas gene functions of technological interest were mapped to pAF65 (65 kb) and pAF45 (45 kb) by PCR. The plasmids of L. lactis DPC3758 were found to encode many genes with the potential to improve the technological properties of dairy starters. These included 3 anti-phage restriction/modification (R/M) systems (1 of type I and 2 of type II) and genes for immunity/resistance to nisin, lacticin 481, cadmium, and copper. Regions encoding conjugative/mobilization functions were present in 6 of the 8 plasmids, including those containing the R/M systems, thus enabling the food-grade transfer of these mechanisms to industrial strains. Using cadmium selection, the sequential stacking of the R/M plasmids into a plasmid-free host provided the recipient with increased protection against 936- and c2-type phages. The association of food-grade selectable markers and mobilization functions on L. lactis DPC3758 plasmids will facilitate their exploitation to obtain industrial strains with enhanced phage protection and robustness. These natural plasmids also provide another example of the major role of plasmids in contributing to host fitness and preservation within its ecological niche. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Chulalongkorn Univ., Bangkok (Thailand).
This proceedings documents an international workshop that focused on the research linking indigenous knowledge and indigenous learning with rural intervention programs. Research into indigenous knowledge and indigenous learning could lead to an improvement in rural intervention programs by building upon the knowledge and skills indigenous to rural…
The gambling behavior of indigenous Australians.
Hing, Nerilee; Breen, Helen; Gordon, Ashley; Russell, Alex
2014-06-01
The gambling activities of minority groups such as Indigenous peoples are usually culturally complex and poorly understood. To redress the scarcity of information and contribute to a better understanding of gambling by Indigenous people, this paper presents quantitative evidence gathered at three Australian Indigenous festivals, online and in several Indigenous communities. With support from Indigenous communities, the study collected and analyzed surveys from 1,259 self-selected Indigenous adults. Approximately 33 % of respondents gambled on card games while 80 % gambled on commercial gambling forms in the previous year. Gambling participation and involvement are high, particularly on electronic gaming machines (EGMs), the favorite and most regular form of gambling. Men are significantly more likely to participate in gambling and to gamble more frequently on EGMs, horse/dog races, sports betting and instant scratch tickets. This elevated participation and frequency of gambling on continuous forms would appear to heighten gambling risks for Indigenous men. This is particularly the case for younger Indigenous men, who are more likely than their older counterparts to gamble on EGMs, table games and poker. While distinct differences between the gambling behaviors of our Indigenous sample and non-Indigenous Australians are apparent, Australian Indigenous behavior appears similar to that of some Indigenous and First Nations populations in other countries. Although this study represents the largest survey of Indigenous Australian gambling ever conducted in New South Wales and Queensland, further research is needed to extend our knowledge of Indigenous gambling and to limit the risks from gambling for Indigenous peoples.
Characterization of blaCTX-M IncFII plasmids and clones of Escherichia coli from pets in France.
Dahmen, Safia; Haenni, Marisa; Châtre, Pierre; Madec, Jean-Yves
2013-12-01
To characterize bla(CTX-M) IncFII plasmids and clones of Escherichia coli from cats and dogs and to compare them with bla(CTX-M) IncFII plasmids reported in humans. From December 2006 to April 2010, 518 E. coli isolates from clinical infections in cats and dogs were screened for extended-spectrum β-lactamase (ESBL) production. Antimicrobial susceptibility was performed by disc diffusion and resistance genes were identified by PCR and sequencing. Plasmids were characterized using PCR-based replicon typing and sub-typing schemes, restriction fragment length polymorphism analysis, S1-PFGE and Southern hybridization. Isolates were characterized by PFGE, phylogenetic grouping, O25b typing and multilocus sequence typing. Nineteen E. coli isolates (3.7%) produced ESBLs, of which 14 (74%) carried bla(CTX-M) IncFII plasmids. The bla(CTX-M) gene was predominant and located on F31:A4:B1, F36:A4:B1 or F36:A1:B20 plasmids, abundantly reported in humans. The bla(CTX-M) F22:A1:B20 or F2:A2:B20 plasmids were also found. Different sequence types (STs) were identified, such as ST10, ST410, ST359, ST617 and ST224. Only one E. coli isolate belonged to the ST131 E. coli clone and carried a bla(CTX-M) F2:A2:B20 plasmid. This is the first known extensive study on ESBL-producing E. coli isolates from pets in France. The ST131 clone was rare. However, the predominance of human-like bla(CTX-M) IncFII plasmids suggests exchanges of these plasmids with the human reservoir.
Groom, Joseph; Chung, Daehwan; Kim, Sun-Ki; Guss, Adam; Westpheling, Janet
2018-05-28
A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (≥ 60 °C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a result also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ∆recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.
Adsorption of bacterial plasmids in pure mineral mixtures
NASA Astrophysics Data System (ADS)
Zhang, L.; Cochran, J. P.; Seaman, J. C.; Parrott, B.
2017-12-01
Microorganisms play an important role in controlling the fate and transport of subsurface contaminants through the direct degradation of organic contaminants to the control of chemical redox conditions that impact the speciation and partitioning of inorganic contaminants. Genes that control these processes, including the relative tolerance associated with direct exposure to toxic contaminants, are found within the bacteria's chromosomal DNA and also within distinct, circular DNA elements called plasmids. Plasmids are mobile genetic elements that can be exchanged with other bacterial species through horizontal gene transfer (HGT). The frequency of HGT in soil is influenced by several factors, with the physicochemical characteristics of soil possibly being a primary factor. Thus, the objective for our research was to determine the movement and persistence of bacterial plasmids within soil. Our current study focuses on batch sorption experiments designed to evaluate the partitioning of bacterial plasmids in idealized mineral mixtures that represent the clay mineralogy of highly weathered soils of the Southeastern US. Specifically, we compared plasmid adsorption among pure goethite, kaolinite, and a mixture of goethite and kaolinite. We also determined the adsorption of plasmids on the above minerals over increasing pH (3 to 10). Our results show that adsorption decreased in the following order: goethite > kaolinite > mixture of goethite and kaolinite. We also found that plasmids adsorption was higher at lower pH levels, with pH 3 having the adsorption maximum. However, at pH 3, DNA denaturing may have occurred, leading to aggregation or precipitation of plasmids on the mineral surfaces. Our study was the first steps in determining the influence of soil properties on plasmid adsorption. Our future goals are to determine the adsorption in other pure minerals and in natural soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Daehwan; Groom, Joseph; Kim, Sun-Ki
A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (>/= 60 degrees C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a resultmore » also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ..delta..recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.« less
Dong, Lianhua; Meng, Ying; Wang, Jing; Liu, Yingying
2014-02-01
DNA reference materials of certified value have a critical function in many analytical processes of DNA measurement. Quantification of amoA genes in ammonia oxidizing bacteria (AOB) and archaea (AOA), and of nirS and nosZ genes in the denitrifiers is very important for determining their distribution and abundance in the natural environment. A plasmid reference material containing nirS, nosZ, amoA-AOB, and amoA-AOA is developed to provide a DNA standard with copy number concentration for ensuring comparability and reliability of quantification of these genes. Droplet digital PCR (ddPCR) was evaluated for characterization of the plasmid reference material. The result revealed that restriction endonuclease digestion of plasmids can improve amplification efficiency and minimize the measurement bias of ddPCR. Compared with the conformation of the plasmid, the size of the DNA fragment containing the target sequence and the location of the restriction site relative to the target sequence are not significant factors affecting plasmid quantification by ddPCR. Liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) was used to provide independent data for quantifying the plasmid reference material. The copy number concentration of the digested plasmid determined by ddPCR agreed well with that determined by LC-IDMS, improving both the accuracy and reliability of the plasmid reference material. The reference value, with its expanded uncertainty (k = 2), of the plasmid reference material was determined to be (5.19 ± 0.41) × 10(9) copies μL(-1) by averaging the results of two independent measurements. Consideration of the factors revealed in this study can improve the reliability and accuracy of ddPCR; thus, this method has the potential to accurately quantify DNA reference materials.
Bartling, Pascal; Brinkmann, Henner; Bunk, Boyke; Overmann, Jörg; Göker, Markus; Petersen, Jörn
2017-01-01
A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316T. PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia. PMID:28983283
Winokur, P. L.; Vonstein, D. L.; Hoffman, L. J.; Uhlenhopp, E. K.; Doern, G. V.
2001-01-01
Escherichia coli is an important pathogen that shows increasing antimicrobial resistance in isolates from both animals and humans. Our laboratory recently described Salmonella isolates from food animals and humans that expressed an identical plasmid-mediated, AmpC-like β-lactamase, CMY-2. In the present study, 59 of 377 E. coli isolates from cattle and swine (15.6%) and 6 of 1,017 (0.6%) isolates of human E. coli from the same geographic region were resistant to both cephamycins and extended-spectrum cephalosporins. An ampC gene could be amplified with CMY-2 primers in 94.8% of animal and 33% of human isolates. Molecular epidemiological studies of chromosomal DNA revealed little clonal relatedness among the animal and human E. coli isolates harboring the CMY-2 gene. The ampC genes from 10 animal and human E. coli isolates were sequenced, and all carried an identical CMY-2 gene. Additionally, all were able to transfer a plasmid containing the CMY-2 gene to a laboratory strain of E. coli. CMY-2 plasmids demonstrated two different plasmid patterns that each showed strong similarities to previously described Salmonella CMY-2 plasmids. Additionally, Southern blot analyses using a CMY-2 probe demonstrated conserved fragments among many of the CMY-2 plasmids identified in Salmonella and E. coli isolates from food animals and humans. These data demonstrate that common plasmids have been transferred between animal-associated Salmonella and E. coli, and identical CMY-2 genes carried by similar plasmids have been identified in humans, suggesting that the CMY-2 plasmid has undergone transfer between different bacterial species and may have been transmitted between food animals and humans. PMID:11557460
Keelara, Shivaramu; Thakur, Siddhartha
2014-09-17
The aim of this study was to characterize and determine the inter-serovar exchange of AmpC β-lactamase conferring plasmids isolated from humans, pigs and the swine environment. Plasmids isolated from a total of 21 antimicrobial resistant (AMR) Salmonella isolates representing human clinical cases (n=6), pigs (n=6) and the swine farm environment (n=9) were characterized by replicon typing and restriction digestion, inter-serovar transferability by conjugation, and presence of AmpC β-lactamase enzyme encoding gene blaCMY-2 by southern hybridization. Based on replicon typing, the majority (17/21, 81%) of the plasmids belonged to the I1-Iγ Inc group and were between 70 and 103kb. The potential for inter-serovar plasmid transfer was further confirmed by the PCR detection of AMR genes on the plasmids isolated from trans-conjugants. Plasmids from Salmonella serovars Anatum, Ouakam, Johannesburg and Typhimurium isolated from the same cohort of pigs and their environment and S. Heidelberg from a single human clinical isolate had identical plasmids based on digestion with multiple restriction enzymes (EcoRI, HindIII and PstI) and southern blotting. We demonstrated likely horizontal inter-serovar exchange of plasmid-encoding AmpC β-lactamases resistance among MDR Salmonella serotypes isolated from pigs, swine farm environment and clinical human cases. This study provides valuable information on the role of the swine farm environment and by extension other livestock farm environments, as a potential reservoir of resistant bacterial strains that potentially transmit resistance determinants to livestock, in this case, swine, humans and possibly other hosts by horizontal exchange of plasmids. Copyright © 2014 Elsevier B.V. All rights reserved.
Lalloo, R; Jamieson, L M; Ha, D; Ellershaw, A; Luzzi, L
2015-09-01
Indigenous children experience significantly more dental caries than non-Indigenous children. This study assessed if access to fluoride in the water closed the gap in dental caries between Indigenous and non-Indigenous children. Data from four states and two territories were sourced from the Child Dental Health Survey (CDHS) conducted in 2010. The outcomes were dental caries in the deciduous and permanent dentitions, and the explanatory variables were Indigenous status and access to fluoridated water (≥0.5 mg/L) prior to 2008. Dental caries prevalence and severity for Indigenous and non-Indigenous children, in both dentitions, was lower in fluoridated areas compared to non-fluoridated areas. Among non-Indigenous children, there was a 50.9% difference in mean dmft scores in fluoridated (1.70) compared to non-fluoridated (2.86) areas. The difference between Indigenous children in fluoridated (3.29) compared to non-fluoridated (4.16) areas was 23.4%. Among non-Indigenous children there was a 79.7% difference in the mean DMFT scores in fluoridated (0.68) compared to non-fluoridated (1.58) areas. The difference between Indigenous children in fluoridated (1.59) and non-fluoridated (2.23) areas was 33.5%. Water fluoridation is effective in reducing dental caries, but does not appear to close the gap between non-Indigenous children and Indigenous children. © 2015 Australian Dental Association.
Medina, Widman; Hurtig, Anna-Karin; San Sebastián, Miguel; Quizhpe, Edy; Romero, Cristian
2008-01-01
The purpose of this study was to evaluate the caries experience among 6-12-year-old indigenous (Naporunas) and non-indigenous (recent settlers of mixed ethnic origin) schoolchildren, living in the Amazon basin of Ecuador. Cross-sectional data were obtained from 1,449 clinical exams according to the World Health Organization criteria. Nine (7.6%) indigenous and 3 (4.5%) non-indigenous children had no caries experience in their primary dentition at the age of 6. The mean dmft value (SD) among indigenous and non-indigenous children aged 6 was 6.40 (3.36) and 8.36 (3.93), respectively. Sixty-four (54.2%) indigenous and 29 (43.3%) non-indigenous children had no caries experience in their permanent first molars at the age of 6. Only 7 (6.26%) indigenous and 2 (2.60%) non-indigenous children were caries-free at the age of 12. The mean DMFT values (SD) for 12-year-olds were 4.47 (2.85) among indigenous and 5.25 (2.89) among non-indigenous children. Fillings were almost non existent. Caries rates were high among both groups, with untreated carious lesions predominating in all ages. The data of indigenous children suggest adoption of a non-traditional diet. An appropriate oral health response based primarily on prevention and health promotion is needed.
Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA
Larson, Greger; Liu, Ranran; Zhao, Xingbo; Yuan, Jing; Fuller, Dorian; Barton, Loukas; Dobney, Keith; Fan, Qipeng; Gu, Zhiliang; Liu, Xiao-Hui; Luo, Yunbing; Lv, Peng; Andersson, Leif; Li, Ning
2010-01-01
The establishment of agricultural economies based upon domestic animals began independently in many parts of the world and led to both increases in human population size and the migration of people carrying domestic plants and animals. The precise circumstances of the earliest phases of these events remain mysterious given their antiquity and the fact that subsequent waves of migrants have often replaced the first. Through the use of more than 1,500 modern (including 151 previously uncharacterized specimens) and 18 ancient (representing six East Asian archeological sites) pig (Sus scrofa) DNA sequences sampled across East Asia, we provide evidence for the long-term genetic continuity between modern and ancient Chinese domestic pigs. Although the Chinese case for independent pig domestication is supported by both genetic and archaeological evidence, we discuss five additional (and possibly) independent domestications of indigenous wild boar populations: one in India, three in peninsular Southeast Asia, and one off the coast of Taiwan. Collectively, we refer to these instances as “cryptic domestication,” given the current lack of corroborating archaeological evidence. In addition, we demonstrate the existence of numerous populations of genetically distinct and widespread wild boar populations that have not contributed maternal genetic material to modern domestic stocks. The overall findings provide the most complete picture yet of pig evolution and domestication in East Asia, and generate testable hypotheses regarding the development and spread of early farmers in the Far East. PMID:20404179
Llop, Pablo; Cabrefiga, Jordi; Smits, Theo H. M.; Dreo, Tanja; Barbé, Silvia; Pulawska, Joanna; Bultreys, Alain; Blom, Jochen; Duffy, Brion; Montesinos, Emilio; López, María M.
2011-01-01
Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5–92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora. PMID:22174857
Llop, Pablo; Cabrefiga, Jordi; Smits, Theo H M; Dreo, Tanja; Barbé, Silvia; Pulawska, Joanna; Bultreys, Alain; Blom, Jochen; Duffy, Brion; Montesinos, Emilio; López, María M
2011-01-01
Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5-92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora.
Folster, Jason P.; Grass, Julian E.; Bicknese, Amelia; Taylor, Julia; Friedman, Cindy R.; Whichard, Jean M.
2017-01-01
Salmonella is an important cause of foodborne illness; however, quickly identifying the source of these infections can be difficult, and source identification is a crucial step in preventing additional illnesses. Although most infections are self-limited, invasive salmonellosis may require antimicrobial treatment. Ceftriaxone, an extended-spectrum cephalosporin, is commonly used for treatment of salmonellosis. Previous studies have identified a correlation between the food animal/retail meat source of ceftriaxone-resistant Salmonella and the type of resistance gene and plasmid it carries. In this study, we examined seven outbreaks of ceftriaxone-resistant Salmonella infections, caused by serotypes Typhimurium, Newport, Heidelberg, and Infantis. All isolates were positive for a plasmid-encoded blaCMY gene. Plasmid incompatibility typing identified five IncI1 and two IncA/C plasmids. Both outbreaks containing blaCMY-IncA/C plasmids were linked to consumption of cattle products. Three of five outbreaks with blaCMY-IncI1 (ST12) plasmids were linked to a poultry source. The remaining IncI1 outbreaks were associated with ground beef (ST20) and tomatoes (ST12). Additionally, we examined isolates from five unsolved clusters of ceftriaxone-resistant Salmonella infections and used our plasmid encoded gene findings to predict the source. Overall, we identified a likely association between the source of ceftriaxone-resistant Salmonella outbreaks and the type of resistance gene/plasmid it carries. PMID:27828730
Cao, Yi-zhan; Hao, Chun-qiu; Feng, Zhi-hua; Zhou, Yong-xing; Li, Jin-ge; Jia, Zhan-sheng; Wang, Ping-zhong
2003-02-01
To construct three recombinant shuttle plasmids of adenovirus expression vector which can express hepatitis C virus(HCV) different structure genes(C, C+E1, C+E1+E2) in order to pack adenovirus expression vectors which can express HCV different structure gene effectively. The different HCV structure genes derived from the plasmid pBRTM/HCV1-3011 by using polymerase chain reaction (PCR) were inserted into the backward position of cytomegalovirus(CMV) immediate early promotor element of shuttle plasmid(pAd.CMV-Link.1) of adenovirus expression vector respectively, then the three recombinant plasmids (pAd.HCV-C, pAd.HCV-CE1, pAd.HCV-S) were obtained. The recombinant plasmids were identified by endonuclease, PCR and sequencing. HCV structure genes were expressed transiently with Lipofectamine 2000 coated in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. Insert DNAs of the three recombinant plasmids' were confirmed to be HCV different structure genes by endonuclease, PCR and sequencing. The three recombinant plasmids can express HCV structure gene (C, C+E1, C+E1+E2) transiently in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. The three recombinant shuttle plasmids of adenovirus expression vector can express HCV structure gene(C, C+E1, C+E1+E2) transiently. This should be useful to pack adenovirus expression vector which can express HCV structure genes.
Eco-Evolutionary Dynamics of Episomes among Ecologically Cohesive Bacterial Populations
Xue, Hong; Cordero, Otto X.; Camas, Francisco M.; ...
2015-05-05
Although plasmids and other episomes are recognized as key players in horizontal gene transfer among microbes, their diversity and dynamics among ecologically structured host populations in the wild remain poorly understood. Here, we show that natural populations of marine Vibrionaceae bacteria host large numbers of families of episomes, consisting of plasmids and a surprisingly high fraction of plasmid-like temperate phages. Episomes are unevenly distributed among host populations, and contrary to the notion that high-density communities in biofilms act as hot spots of gene transfer, we identified a strong bias for episomes to occur in free-living as opposed to particle-attached cells.more » Mapping of episomal families onto host phylogeny shows that, with the exception of all phage and a few plasmid families, most are of recent evolutionary origin and appear to have spread rapidly by horizontal transfer. Such high eco-evolutionary turnover is particularly surprising for plasmids that are, based on previously suggested categorization, putatively nontransmissible, indicating that this type of plasmid is indeed frequently transferred by currently unknown mechanisms. Finally, analysis of recent gene transfer among plasmids reveals a network of extensive exchange connecting nearly all episomes. Genes functioning in plasmid transfer and maintenance are frequently exchanged, suggesting that plasmids can be rapidly transformed from one category to another. The broad distribution of episomes among distantly related hosts and the observed promiscuous recombination patterns show how episomes can offer their hosts rapid assembly and dissemination of novel functions.« less
Folster, Jason P; Grass, Julian E; Bicknese, Amelia; Taylor, Julia; Friedman, Cindy R; Whichard, Jean M
2017-03-01
Salmonella is an important cause of foodborne illness; however, quickly identifying the source of these infections can be difficult, and source identification is a crucial step in preventing additional illnesses. Although most infections are self-limited, invasive salmonellosis may require antimicrobial treatment. Ceftriaxone, an extended-spectrum cephalosporin, is commonly used for treatment of salmonellosis. Previous studies have identified a correlation between the food animal/retail meat source of ceftriaxone-resistant Salmonella and the type of resistance gene and plasmid it carries. In this study, we examined seven outbreaks of ceftriaxone-resistant Salmonella infections, caused by serotypes Typhimurium, Newport, Heidelberg, and Infantis. All isolates were positive for a plasmid-encoded bla CMY gene. Plasmid incompatibility typing identified five IncI1 and two IncA/C plasmids. Both outbreaks containing bla CMY -IncA/C plasmids were linked to consumption of cattle products. Three of five outbreaks with bla CMY -IncI1 (ST12) plasmids were linked to a poultry source. The remaining IncI1 outbreaks were associated with ground beef (ST20) and tomatoes (ST12). In addition, we examined isolates from five unsolved clusters of ceftriaxone-resistant Salmonella infections and used our plasmid-encoded gene findings to predict the source. Overall, we identified a likely association between the source of ceftriaxone-resistant Salmonella outbreaks and the type of resistance gene/plasmid it carries.
Zhou, Ligang; Zhou, Meixian; Sun, Chaomin; Han, Jing; Lu, Qiuhe; Zhou, Jian; Xiang, Hua
2008-08-01
The precise nick site in the double-strand origin (DSO) of pZMX201, a 1,668-bp rolling-circle replication (RCR) plasmid from the haloarchaeon Natrinema sp. CX2021, was determined by electron microscopy and DSO mapping. In this plasmid, DSO nicking occurred between residues C404 and G405 within a heptanucleotide sequence (TCTC/GGC) located in the stem region of an imperfect hairpin structure. This nick site sequence was conserved among the haloarchaeal RCR plasmids, including pNB101, suggesting that the DSO nick site might be the same for all members of this plasmid family. Interestingly, the DSOs of pZMX201 and pNB101 were found to be cross-recognized in RCR initiation and termination in a hybrid plasmid system. Mutation analysis of the DSO from pZMX201 (DSO(Z)) in this hybrid plasmid system revealed that: (i) the nucleotides in the middle of the conserved TCTCGGC sequence play more-important roles in the initiation and termination process; (ii) the left half of the hairpin structure is required for initiation but not for termination; and (iii) a 36-bp sequence containing TCTCGGC and the downstream sequence is essential and sufficient for termination. In conclusion, these haloarchaeal plasmids, with novel features that are different from the characteristics of both single-stranded DNA phages and bacterial RCR plasmids, might serve as a good model for studying the evolution of RCR replicons.
Lei, Chang-Wei; Kong, Ling-Han; Ma, Su-Zhen; Liu, Bi-Hui; Chen, Yan-Peng; Zhang, An-Yun; Wang, Hong-Ning
2017-09-01
IncC plasmids are of great concern as vehicles of broad-spectrum cephalosporins and carbapenems resistance genes bla CMY and bla NDM . The aim of this study was to sequence and characterize a multidrug resistance (MDR) IncC plasmid (pPm14C18) recovered from Proteus mirabilis. pPm14C18 was identified in a CMY-2-producing P. mirabilis isolate from chicken in China in 2014, and could be transferred to Escherichia coli conferring an MDR phenotype. Whole genome sequencing confirmed pPm14C18 was a novel type 1/2 hybrid IncC plasmid 165,992bp in size, containing fifteen antimicrobial resistance genes. It harboured a novel MDR mosaic region comprised of a hybrid Tn21 tnp -pDU mer , in which bla CTX-M-65 , dfrA32 and ereA were firstly reported in IncC plasmid. Phylogenetic relationship reconstruction based on the nucleotide sequences of the 52 IncC backbones showed all type 1 IncC plasmids were clustered into one clade, and then merged with pPm14C18 and finally with the type 2 IncC plasmids and another type 1/2 hybrid IncC plasmid pYR1. The MDR IncC plasmids in P. mirabilis of animal origin might threaten public health, which should be drawn more attention. Copyright © 2017 Elsevier Inc. All rights reserved.
P62 plasmid can alleviate diet-induced obesity and metabolic dysfunctions.
Halenova, Tatiana; Savchuk, Oleksii; Ostapchenko, Ludmila; Chursov, Andrey; Fridlyand, Nathan; Komissarov, Andrey B; Venanzi, Franco; Kolesnikov, Sergey I; Sufianov, Albert A; Sherman, Michael Y; Gabai, Vladimir L; Shneider, Alexander M
2017-08-22
A high-calorie diet (HCD) induces two mutually exacerbating effects contributing to diet-induced obesity (DIO): impaired glucose metabolism and increased food consumption. A link between the metabolic and behavioral manifestations is not well understood yet. We hypothesized that chronic inflammation induced by HCD plays a key role in linking together the two components of diet-induced pathology. Based on this hypothesis, we tested if a plasmid (DNA vaccine) encoding p62 (SQSTM1) would alleviate DIO including its metabolic and/or food consumption abnormalities. Previously we reported that injections of the p62 plasmid reduce chronic inflammation during ovariectomy-induced osteoporosis. Here we found that the p62 plasmid reduced levels of pro-inflammatory cytokines IL-1β, IL-12, and INFγ and increased levels of anti-inflammatory cytokines IL-4, IL-10 and TGFβ in HCD-fed animals. Due to this anti-inflammatory response, we further tested whether the plasmid can alleviate HCD-induced obesity and associated metabolic and feeding impairments. Indeed, p62 plasmid significantly reversed effects of HCD on the body mass index (BMI), levels of glucose, insulin and glycosylated hemoglobin (HbA1c). Furthermore, p62 plasmid partially restored levels of the satiety hormone, serotonin, and tryptophan, simultaneously reducing activity of monoamine oxidase (MAO) in the brain affected by the HCD. Finally, the plasmid partially reversed increased food consumption caused by HCD. Therefore, the administering of p62 plasmid alleviates both metabolic and behavioral components of HCD-induced obesity.
Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.
Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming
2014-12-01
In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.
The mechanism and control of DNA transfer by the conjugative relaxase of resistance plasmid pCU1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Rebekah Potts; Habibi, Sohrab; Cheng, Yuan
2010-11-15
Bacteria expand their genetic diversity, spread antibiotic resistance genes, and obtain virulence factors through the highly coordinated process of conjugative plasmid transfer (CPT). A plasmid-encoded relaxase enzyme initiates and terminates CPT by nicking and religating the transferred plasmid in a sequence-specific manner. We solved the 2.3 {angstrom} crystal structure of the relaxase responsible for the spread of the resistance plasmid pCU1 and determined its DNA binding and nicking capabilities. The overall fold of the pCU1 relaxase is similar to that of the F plasmid and plasmid R388 relaxases. However, in the pCU1 structure, the conserved tyrosine residues (Y18,19,26,27) that aremore » required for DNA nicking and religation were displaced up to 14 {angstrom} out of the relaxase active site, revealing a high degree of mobility in this region of the enzyme. In spite of this flexibility, the tyrosines still cleaved the nic site of the plasmid's origin of transfer, and did so in a sequence-specific, metal-dependent manner. Unexpectedly, the pCU1 relaxase lacked the sequence-specific DNA binding previously reported for the homologous F and R388 relaxase enzymes, despite its high sequence and structural similarity with both proteins. In summary, our work outlines novel structural and functional aspects of the relaxase-mediated conjugative transfer of plasmid pCU1.« less
Péloquin, Claudie; Doering, Thomas; Alley, Stephanie; Rebar, Amanda
2017-10-01
Disparities in health perspectives between Indigenous and non-Indigenous populations are major concerns in many of the world's well-developed nations. Indigenous populations are largely less healthy, more prone to chronic diseases, and have an earlier overall mortality than non-Indigenous populations. Low levels of physical activity (PA) contribute to the high levels of disease in Indigenous Australians. Qualitative analysis of structured one-on-one interviews discussing PA in a regional setting. Participants were 12 Indigenous Australian adults, and 12 non-Indigenous Australian adults matched on age, sex, and basketball division. Most participants reported engaging in regular exercise; however, the Indigenous group reported more barriers to PA. These factors included cost, time management and environmental constraints. The physical facilitators identified by our Indigenous sample included social support, intrinsic motivation and role modelling. Findings describe individual and external factors that promote or constraint PA as reported by Indigenous Australian adults. Results indicate that Indigenous people face specific barriers to PA when compared to a non-Indigenous sample. Implications for public health: This study is the first to compare the perspective of Indigenous Australians to a matched group of non-Indigenous Australians and provides useful knowledge to develop public health programs based on culturally sensitive data. © 2017 The Authors.
Enhancing Malaria Vaccine Development by the Naval Medical Research Center
2003-03-01
optimized in Milestone 1 of this Phase II project. Reduction in particle size of the biopolymeric carrier was sufficient for intramuscular administration of...glycolide) (PLGA) with incorporated DNA plasmid were developed for systemic administration of DNA plasmids for use as a malaria vaccine. Objectives in...with incorporated DNA plasmid were developed for systemic administration of DNA plasmids for use as a malaria vaccine. Objectives in Milestone 1
Development of Novel Peptide Inhibitors of the Estrogen Receptor
1997-10-01
plasmids used for the transfection experiments described below included pERE-TK- CAT , an estrogen responsive chloramphenicol acetylase reporter plasmid...The inhibitory potential of expressed fragments of ER were assessed by measuring the activity of chloramphenicol acetyltransferase ( CAT ) enzyme...with an ER expression plasmid (pCMV-ER) and an estrogen-responsive reporter plasmid (pERE-TK- CAT ) in order to look for inhibition of an ER mediated
Fekete, Péter Z; Brzuszkiewicz, Elzbieta; Blum-Oehler, Gabriele; Olasz, Ferenc; Szabó, Mónika; Gottschalk, Gerhard; Hacker, Jörg; Nagy, Béla
2012-01-01
In this study the plasmid pTC, a 90 kb self-conjugative virulence plasmid of the porcine enterotoxigenic Escherichia coli (ETEC) strain EC2173 encoding the STa and STb heat-stable enterotoxins and tetracycline resistance, has been sequenced in two steps. As a result we identified five main distinct regions of pTC: (i) the maintenance region responsible for the extreme stability of the plasmid, (ii) the TSL (toxin-specific locus comprising the estA and estB genes) which is unique and characteristic for pTC, (iii) a Tn10 transposon, encoding tetracycline resistance, (iv) the tra (plasmid transfer) region, and (v) the colE1-like origin of replication. It is concluded that pTC is a self-transmissible composite plasmid harbouring antibiotic resistance and virulence genes. pTC belongs to a group of large conjugative E. coli plasmids represented by NR1 with a widespread tra backbone which might have evolved from a common ancestor. This is the first report of a completely sequenced animal ETEC virulence plasmid containing an antimicrobial resistance locus, thereby representing a selection advantage for spread of pathogenicity in the presence of antimicrobials leading to increased disease potential. Copyright © 2011. Published by Elsevier GmbH.
Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes
Lee, JunMo; Kim, Kyeong Mi; Yang, Eun Chan; Miller, Kathy Ann; Boo, Sung Min; Bhattacharya, Debashish; Yoon, Hwan Su
2016-01-01
The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta. PMID:27030297
Kamensek, Urska; Tesic, Natasa; Sersa, Gregor; Kos, Spela; Cemazar, Maja
2017-01-01
Electrotransfer mediated delivery of interleukin-12 (IL-12) gene, encoded on a plasmid vector, has already been demonstrated to have a potent antitumor efficacy and great potential for clinical application. In the present study, our aim was to construct an optimized IL-12-encoding plasmid that is safe from the regulatory point of view. In light of previous studies demonstrating that IL-12 should be released in a tumor localized manner for optimal efficacy, the strong ubiquitous promoter was replaced with a weak endogenous promoter of the collagen 2 gene, which is specific for fibroblasts. Next, to comply with increasing regulatory demands for clinically used plasmids, the expression cassette was cloned in a plasmid lacking the antibiotic resistance gene. The constructed fibroblast-specific and antibiotic-free IL-12 plasmid was demonstrated to support low IL-12 expression after gene electrotransfer in selected cell lines. Furthermore, the removal of antibiotic resistance did not affect the plasmid expression profile and lowered its cytotoxicity. With optimal IL-12 expression and minimal transgene non-specific effects, i.e., low cytotoxicity, the constructed plasmid could be especially valuable for different modern immunological approaches to achieve localized boosting of the host's immune system. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Xiangmei; Lin, Jianqun; Zhang, Zheng; Bian, Jiang; Zhao, Qing; Liu, Ying; Lin, Jianqiang; Yan, Wangming
2007-01-01
A genetic transfer system for introducing foreign genes to biomining microorganisms is urgently needed. Thus, a conjugative gene transfer system was investigated for a moderately thermophilic, extremely acidophilic biomining bacterium, Acidithiobacillus caldus MTH-04. The broad-host-range IncP plasmids RP4 and R68.45 were transferred directly into A. caldus MTH-04 from Escherichia coli by conjugation at relatively high frequencies. Additionally the broad-host-range IncQ plasmids pJRD215, pVLT33, and pVLT35 were also transferred into A. caldus MTH-04 with the help of plasmid RP4 or strains with plasmid RP4 integrated into their chromosome, such as E. coli SM10. The Km(r) and Sm(r) selectable markers from these plasmids were successfully expressed in A. caldus MTH-04. Futhermore, the IncP and IncQ plasmids were transferred back into E. coli cells from A. caldus MTH-04, thereby confirming the initial transfer of these plasmids from E. coli to A. caldus MTH-04. All the IncP and IncQ plasmids studied were stable in A. caldus MTH-04. Consequently, this development of a conjugational system for A. caldus MTH-04 will greatly facilitate its genetic study.
An 'instant gene bank' method for gene cloning by mutant complementation.
Gems, D; Aleksenko, A; Belenky, L; Robertson, S; Ramsden, M; Vinetski, Y; Clutterbuck, A J
1994-02-01
We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication ('helper plasmid'). Transformant colonies appear as the result of the joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this "instant gene bank" technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.
Li, Ruichao; Xie, Miaomiao; Dong, Ning; Lin, Dachuan; Yang, Xuemei; Wong, Marcus Ho Yin; Chan, Edward Wai-Chi; Chen, Sheng
2018-03-01
Multidrug resistance (MDR)-encoding plasmids are considered major molecular vehicles responsible for transmission of antibiotic resistance genes among bacteria of the same or different species. Delineating the complete sequences of such plasmids could provide valuable insight into the evolution and transmission mechanisms underlying bacterial antibiotic resistance development. However, due to the presence of multiple repeats of mobile elements, complete sequencing of MDR plasmids remains technically complicated, expensive, and time-consuming. Here, we demonstrate a rapid and efficient approach to obtaining multiple MDR plasmid sequences through the use of the MinION nanopore sequencing platform, which is incorporated in a portable device. By assembling the long sequencing reads generated by a single MinION run according to a rapid barcoding sequencing protocol, we obtained the complete sequences of 20 plasmids harbored by multiple bacterial strains. Importantly, single long reads covering a plasmid end-to-end were recorded, indicating that de novo assembly may be unnecessary if the single reads exhibit high accuracy. This workflow represents a convenient and cost-effective approach for systematic assessment of MDR plasmids responsible for treatment failure of bacterial infections, offering the opportunity to perform detailed molecular epidemiological studies to probe the evolutionary and transmission mechanisms of MDR-encoding elements.
Dealtry, Simone; Ding, Guo-Chun; Weichelt, Viola; Dunon, Vincent; Schlüter, Andreas; Martini, María Carla; Papa, María Florencia Del; Lagares, Antonio; Amos, Gregory Charles Auton; Wellington, Elizabeth Margaret Helen; Gaze, William Hugo; Sipkema, Detmer; Sjöling, Sara; Springael, Dirk; Heuer, Holger; van Elsas, Jan Dirk; Thomas, Christopher; Smalla, Kornelia
2014-01-01
IncP-1, IncP-7 and IncP-9 plasmids often carry genes encoding enzymes involved in the degradation of man-made and natural contaminants, thus contributing to bacterial survival in polluted environments. However, the lack of suitable molecular tools often limits the detection of these plasmids in the environment. In this study, PCR followed by Southern blot hybridization detected the presence of plasmid-specific sequences in total community (TC-) DNA or fosmid DNA from samples originating from different environments and geographic regions. A novel primer system targeting IncP-9 plasmids was developed and applied along with established primers for IncP-1 and IncP-7. Screening TC-DNA from biopurification systems (BPS) which are used on farms for the purification of pesticide-contaminated water revealed high abundances of IncP-1 plasmids belonging to different subgroups as well as IncP-7 and IncP-9. The novel IncP-9 primer-system targeting the rep gene of nine IncP-9 subgroups allowed the detection of a high diversity of IncP-9 plasmid specific sequences in environments with different sources of pollution. Thus polluted sites are “hot spots” of plasmids potentially carrying catabolic genes. PMID:24587126
Satellite phage TLCφ enables toxigenic conversion by CTX phage through dif site alteration.
Hassan, Faizule; Kamruzzaman, M; Mekalanos, John J; Faruque, Shah M
2010-10-21
Bacterial chromosomes often carry integrated genetic elements (for example plasmids, transposons, prophages and islands) whose precise function and contribution to the evolutionary fitness of the host bacterium are unknown. The CTXφ prophage, which encodes cholera toxin in Vibrio cholerae, is known to be adjacent to a chromosomally integrated element of unknown function termed the toxin-linked cryptic (TLC). Here we report the characterization of a TLC-related element that corresponds to the genome of a satellite filamentous phage (TLC-Knφ1), which uses the morphogenesis genes of another filamentous phage (fs2φ) to form infectious TLC-Knφ1 phage particles. The TLC-Knφ1 phage genome carries a sequence similar to the dif recombination sequence, which functions in chromosome dimer resolution using XerC and XerD recombinases. The dif sequence is also exploited by lysogenic filamentous phages (for example CTXφ) for chromosomal integration of their genomes. Bacterial cells defective in the dimer resolution often show an aberrant filamentous cell morphology. We found that acquisition and chromosomal integration of the TLC-Knφ1 genome restored a perfect dif site and normal morphology to V. cholerae wild-type and mutant strains with dif(-) filamentation phenotypes. Furthermore, lysogeny of a dif(-) non-toxigenic V. cholerae with TLC-Knφ1 promoted its subsequent toxigenic conversion through integration of CTXφ into the restored dif site. These results reveal a remarkable level of cooperative interactions between multiple filamentous phages in the emergence of the bacterial pathogen that causes cholera.
Stoddard, Pamela; Handley, Margaret A; Vargas Bustamante, Arturo; Schillinger, Dean
2011-12-01
In many high-income countries, indigenous populations bear a higher burden of obesity and diabetes than non-indigenous populations. Less is known about these patterns in lower- and middle-income countries. We assessed the hypothesis that obesity and diabetes were less prevalent among indigenous than non-indigenous adults in Mexico, home to the largest indigenous population in Latin America. We investigated socioeconomic explanations for differences. In a related line of inquiry, we examine whether adults in communities with higher versus lower percentages of indigenous residents were buffered against these conditions. We assessed whether differences were partially explained by lower development in higher-indigenous communities. Obesity was based on measured height and weight, and diabetes on a diagnosis from a healthcare professional. The analysis for obesity included 19 577 adults aged 20 and older from the Mexican Family Life Survey (2002), a nationally representative survey of Mexican households and communities; for diabetes, we restricted analysis to adults with health insurance. We used multilevel logistic regression to estimate the odds of obesity and diabetes by indigenous status and community percent indigenous. Results suggest that indigenous adults had significantly lower odds of obesity and diabetes than non-indigenous adults. This advantage was not explained by the lower socioeconomic status of indigenous individuals. A higher percentage of indigenous individuals in communities provided protection against obesity, although not for diabetes. Differences for obesity were not accounted for by community development. Findings suggest that an opportunity may exist to prevent disparities in obesity and diabetes from developing by indigenous characteristics in Mexico. Identifying the sources of protective effects of individual and community indigenous characteristics relative to these health conditions should be a priority, given global implications for prevention. Copyright © 2011 Elsevier Ltd. All rights reserved.
Small Universal Bacteria and Plasmid Computing Systems.
Wang, Xun; Zheng, Pan; Ma, Tongmao; Song, Tao
2018-05-29
Bacterial computing is a known candidate in natural computing, the aim being to construct "bacterial computers" for solving complex problems. In this paper, a new kind of bacterial computing system, named the bacteria and plasmid computing system (BP system), is proposed. We investigate the computational power of BP systems with finite numbers of bacteria and plasmids. Specifically, it is obtained in a constructive way that a BP system with 2 bacteria and 34 plasmids is Turing universal. The results provide a theoretical cornerstone to construct powerful bacterial computers and demonstrate a concept of paradigms using a "reasonable" number of bacteria and plasmids for such devices.
Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus
Rodriguez, Michelle D.; Paul, Zubin; Wood, Charles E.; Rice, Kelly C.; Triplett, Eric W.
2017-01-01
Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus. These three reporter plasmids are available through BEI Resources. PMID:29312199
Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus.
Rodriguez, Michelle D; Paul, Zubin; Wood, Charles E; Rice, Kelly C; Triplett, Eric W
2017-01-01
Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus . These three reporter plasmids are available through BEI Resources.
[Growth in height of indigenous and non indigenous Chilean children].
Bustos, Patricia; Weitzman, Mariana; Amigo, Hugo
2004-06-01
The aim of this study was to compare growth curves of stature in indigenous and non-indigenous children belonging to two levels of poverty and to establish the onset and evolution of the deficit. Children of indigenous and non-indigenous background living in communities of extreme and low poverty in Chile were studied and their height-for-age Z-score from birth until 6 year of age were compared. Mean weight at birth was within normal range, and no differences were found in ethnicity and levels of poverty. Length at birth was below the reference with the exception of the non indigenous newborn from counties of low poverty. Deficit in growth showed an early start, furthermore in indigenous children belonging to the extreme poverty, is from birth and progress through the 18 months. At 72 months the deficit reached -1.1 z scores in the indigenous of the extreme poverty versus -0.7 in the non indigenous group. Children from the low poverty had a Z-score of -0.4 z scores at 72 months without differences between ethnias. Indigenous of the extreme poverty had less accumulative growth while the indigenous of the low poverty areas growth satisfactory without differences with the non indigenous.
Copulatory courtship song in Lutzomyia migonei (Diptera: psychodidae).
Vigoder, Felipe M; Souza, Nataly A; Peixoto, Alexandre A
2010-12-01
Lutzomyia migonei is a vector of leishmaniasis with a wide distribution in South America, which could favour population differentiation and speciation. Cryptic species of the Lutzomyia longipalpis complex, the widely distributed sand fly vector of visceral leishmaniasis in Latin America, have previously been shown to display distinct copulation songs. We found that Lu. migonei males also produce a song during copulation. This "lovesong" presents short trains (6-8 pulses) with an inter-pulse interval around 26 ms and is potentially involved in cryptic female choice and insemination success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Kwong-Kwok
In order to realize the full potential of bioremediation, an understanding of microbial community and individual bacterial responses to the stresses encountered at contaminated sites is needed. Knowledge about genetic responses of soil and subsurface bacteria to environmental stresses, which include low nutrients, low oxygen, and mixed pollutants, will allow extrapolation of basic principles to field applications, either using indigenous bacteria or genetically engineered microorganisms. Defining bacterial responses to those stresses presents an opportunity for improving bioremediation strategies, both with indigenous populations and genetically-engineered microbes, and should contribute to environmental management and restoration actions that would reduce the cost andmore » time required to achieve OEM's clean up goals. Stress-inducible genes identified in this project can be used as molecular probes for monitoring performance of indigenous bacteria as well as the effectiveness of bioremediation strategies being employed. Knowledge of survival and catabolic plasmid stability of indigenous bacteria will be needed for devising the most effective bioremediation strategy. In addition, stress-inducible regulatory elements identified in this project will be useful for creating genetically-engineered microorganisms which are able to degrade hazardous wastes under stress conditions at contaminated sites. One of the model organisms, Deinococcus radiodurans, is a stress-resistant bacterium. Thus, in addition to serving as a model for gene regulation in Gram-positive organisms, it may have specific application at aerobic DOE sites where combinations of contaminants produce a particularly stressful environment. Similarly, the use of Sphingomonas F199, isolated from a depth of 407 m at the Savannah River site (Fredrickson et al., 1991), may have relevance to deep subsurface bioremediation applications, where indigenous or engineered microorganisms adapted to the that environment are needed. In addition, F199 contains aromatic oxygenases that are relevant to degradation of contaminants at that site and is representative of a large class of similar organisms from Savannah River Identification of the genes responsive to different stresses encountered at contaminated sites will provide a basic understanding of stress responses in soil bacteria and can lead to improved strategies for bioremediation. Enhanced in situ removal of hazardous wastes by stimulating growth of indigenous bacteria with nutrients or electron acceptors such as oxygen has been demonstrated. However, how much and how often to apply these supplements has largely been determined empirically. As a result, a controlled, reproducible, and properly managed degradation of pollutants in the environment is difficult to achieve. Genes inducible by low nutrient and low oxygen conditions can serve as markers for determining the minimal amount of supplements needed. The disappearance and reappearance of such stress responses will determine how much and when nutrients and oxygen are needed to be applied or reapplied. Similar applications of stress-inducible markers are already being applied in bacterial cultures in solution (Selifonova and Eaton, 1996). Stress responses induced by pollutants also have potential use as a biological index for the performance of indigenous bacteria during bioremediation as well as a microbiological risk assessment index for environmental pollutants. For instance, measurement of the stress responses of contaminant-degrading microorganisms would provide information complementary to measurement of enzymatic activity. This more complete picture of the physiological state of the desired organisms can be used to predict their performance. Finally, prior knowledge of the stress responses of competing bacteria could be used to predict their environmental competitiveness. Promoters from stress inducible genes will facilitate the construction of genetically engineered microorganisms in which the expression of the catabolic genes is uncoupled from both microbial growth and the utilization of the pollutant as the carbon source. The application of genetically engineered organisms in bioremediation requires the design of gene expression systems that function under environmental conditions and are cost effective. The promoter, the genetic regulatory element that directs the use of the gene, plays the central role in gene expression systems. The ideal promoter for environmental applications should possess two qualities: (1) it does not require the addition of exogenous compounds for activation, and (2) it is active under nutrient-limited conditions and not dependent on cell growth for activity. Promoters that are expressed constitutively meet the first quality. However, such promoters usually require active cell growth for expression and thus incur the increased cost of constant nutrient addition.« less
2012-01-01
Background Missing or incorrect Indigenous status in health records hinders monitoring of Indigenous health indicators. Linkage of administrative data has been used to improve the ascertainment of Indigenous status. Data linkage was pioneered in Western Australia (WA) and is now being used in other Australian states. This systematic review appraises peer-reviewed Australian studies that used data linkage to elucidate the impact of under-ascertainment of Indigenous status on health indicators. Methods A PubMed search identified eligible studies that used Australian linked data to interrogate Indigenous identification using more than one identifier and interrogated the impact of the different identifiers on estimation of Indigenous health indicators. Results Eight papers were included, five from WA and three from New South Wales (NSW). The WA papers included a self-identified Indigenous community cohort and showed improved identification in hospital separation data after 2000. In CVD hospitalised patients (2000–05), under-identification was greater in urban residents, older people and socially more advantaged Indigenous people, with varying algorithms giving different estimates of under-count. Age-standardised myocardial infarction incidence rates (2000–2004) increased by about 10%-15% with improved identification. Under-ascertainment of Indigenous identification overestimated secular improvements in life expectancy and mortality whereas correcting infectious disease notifications resulted in lower Indigenous/ non-Indigenous rate ratios. NSW has a history of poor Indigenous identification in administrative data systems, but the NSW papers confirmed the usefulness of data linkage for improving Indigenous identification and the potential for very different estimates of Indigenous disease indicators depending upon the algorithm used for identification. Conclusions Under-identification of Indigenous status must be addressed in health analyses concerning Indigenous health differentials – they cannot be ignored or wished away. This problem can be substantially diminished through data linkage. Under-identification of Indigenous status impacts differently in different disease contexts, generally resulting in under-estimation of absolute and relative Indigenous health indicators, but may perversely overestimate Indigenous rates and differentials in the setting of stigma-associated conditions such as sexually-transmitted and blood-borne virus infections. Under-numeration in Census surveys also needs consideration to address the added problem of denominator undercounts. PMID:23157943
Nunes, Catherine; Sousa, Angela; Nunes, José C; Morão, António M; Sousa, Fani; Queiroz, João A
2014-06-01
The present study describes the integration of membrane technology with monolithic chromatography to obtain plasmid DNA with high quality. Isolation and clarification of plasmid DNA lysate were first conducted by a microfiltration step, by using a hydrophilic nylon microfiltration membrane, avoiding the need of centrifugation. For the total elimination of the remaining impurities, a suitable purification step is required. Monolithic stationary phases have been successfully applied as an alternative to conventional supports. Thus, the sample recovered from the membrane process was applied into a nongrafted CarbonylDiImidazole disk. Throughout the global procedure, a reduced level of impurities such as proteins and RNA was obtained, and no genomic DNA was detectable in the plasmid DNA sample. The chromatographic process demonstrated an efficient performance on supercoiled plasmid DNA purity and recovery (100 and 84.44%, respectively). Thereby, combining the membrane technology to eliminate some impurities from lysate sample with an efficient chromatographic strategy to purify the supercoiled plasmid DNA arises as a powerful approach for industrial-scale systems aiming at plasmid DNA purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gomes Freitas, Denize; Silva, Rassan Dyego Romão; Bataus, Luis Artur Mendes; Barbosa, Mônica Santiago; da Silva Bitencourt Braga, Carla Afonso; Carneiro, Lilian Carla
2017-02-08
The fecal coliform can contaminate water of human consumption causing problems to public health. Many of these microorganisms may contain plasmid and transfer them to other bacteria. This genetic material may confer selective advantages, among them resistance to antibiotics. The objectives of this study were to analyze the presence of fecal coliforms in water and at drinker surface, to identify the existence of plasmid, conducting studies of resistance to antibiotics, plasmid stability and capacity of bacterial conjugation. Were collected microorganisms in water of drinker surface and were used specific culture media and biochemical tests for identification of organisms, tests were performed by checking the resistance to antibiotics (ampicillin 10 μg, tetracycline 30 μg, and ciprofloxacin 5 μg), was performed extraction of plasmid DNA, plasmid stability and bacterial conjugation. Was obtained results of 31% of Salmonella spp. and 51% for other coliforms. Among the samples positive for coliforms, 27 had plasmid stable and with the ability to perform conjugation. The plasmids had similar forms, suggesting that the resistance in some bacteria may be linked to those genes extra chromosomal.
Molecular Characterization of Plasmid-Mediated Oxytetracycline Resistance in Aeromonas salmonicida
Adams, C. A.; Austin, B.; Meaden, P. G.; McIntosh, D.
1998-01-01
Using broth conjugation, we found that 19 of 29 (66%) oxytetracycline (OT)-resistant isolates of Aeromonas salmonicida transferred the OT resistance phenotype to Escherichia coli. The OT resistance phenotype was encoded by high-molecular-weight R-plasmids that were capable of transferring OT resistance to both environmental and clinical isolates of Aeromonas spp. The molecular basis for antibiotic resistance in OT-resistant isolates of A. salmonicida was determined. The OT resistance determinant from one plasmid (pASOT) of A. salmonicida was cloned and used in Southern blotting and hybridization experiments as a probe. The determinant was identified on a 5.4-kb EcoRI fragment on R-plasmids from the 19 OT-resistant isolates of A. salmonicida. Hybridization with plasmids encoding the five classes (classes A to E) of OT resistance determinants demonstrated that the OT resistance plasmids of the 19 A. salmonicida isolates carried the class A resistance determinant. Analysis of data generated from restriction enzyme digests showed that the OT resistance plasmids were not identical; three profiles were characterized, two of which showed a high degree of homology. PMID:9797265
Recombination between bacteriophage lambda and plasmid pBR322 in Escherichia coli.
Pogue-Geile, K L; Dassarma, S; King, S R; Jaskunas, S R
1980-01-01
Recombinant lambda phages were isolated that resulted from recombination between the lambda genome and plasmid pBR322 in Escherichia coli, even though these deoxyribonucleic acids (DNAs) did not share extensive regions of homology. The characterization of these recombinant DNAs by heteroduplex analysis and restriction endonucleases is described. All but one of the recombinants appeared to have resulted from reciprocal recombination between a site on lambda DNA and a site on the plasmid. In general, there were two classes of recombinants. One class appeared to have resulted from recombination at the phage attachment site that probably resulted from lambda integration into secondary attachment sites on the plasmid. Seven different secondary attachment sites on pBR322 were found. The other class resulted from plasmid integration at other sites that were widely scattered on the lambda genome. For this second class of recombinants, more than one site on the plasmid could recombine with lambda DNA. Thus, the recombination did not appear to be site specific with respect to lambda or the plasmid. Possible mechanisms for generating these recombinants are discussed. Images PMID:6247334
Harrold, Timothy C; Randall, Deborah A; Falster, Michael O; Lujic, Sanja; Jorm, Louisa R
2014-01-01
To quantify the independent roles of geography and Indigenous status in explaining disparities in Potentially Preventable Hospital (PPH) admissions between Indigenous and non-Indigenous Australians. Analysis of linked hospital admission data for New South Wales (NSW), Australia, for the period July 1 2003 to June 30 2008. Age-standardised admission rates, and rate ratios adjusted for age, sex and Statistical Local Area (SLA) of residence using multilevel models. PPH diagnoses accounted for 987,604 admissions in NSW over the study period, of which 3.7% were for Indigenous people. The age-standardised PPH admission rate was 76.5 and 27.3 per 1,000 for Indigenous and non-Indigenous people respectively. PPH admission rates in Indigenous people were 2.16 times higher than in non-Indigenous people of the same age group and sex who lived in the same SLA. The largest disparities in PPH admission rates were seen for diabetes complications, chronic obstructive pulmonary disease and rheumatic heart disease. Both rates of PPH admission in Indigenous people, and the disparity in rates between Indigenous than non-Indigenous people, varied significantly by SLA, with greater disparities seen in regional and remote areas than in major cities. Higher rates of PPH admission among Indigenous people are not simply a function of their greater likelihood of living in rural and remote areas. The very considerable geographic variation in the disparity in rates of PPH admission between Indigenous and non-Indigenous people indicates that there is potential to reduce unwarranted variation by characterising outlying areas which contribute the most to this disparity.
Nasir, Bushra; Kisely, Steve; Hides, Leanne; Ranmuthugala, Geetha; Brennan-Olsen, Sharon; Nicholson, Geoffrey C; Gill, Neeraj S; Hayman, Noel; Kondalsamy-Chennakesavan, Srinivas; Toombs, Maree
2017-06-13
Little is known of the appropriateness of existing gatekeeper suicide prevention programs for Indigenous communities. Despite the high rates of Indigenous suicide in Australia, especially among Indigenous youth, it is unclear how effective existing suicide prevention programs are in providing appropriate management of Indigenous people at risk of suicide. In-depth, semi-structured interviews and focus groups were conducted with Indigenous communities in rural and regional areas of Southern Queensland. Thematic analysis was performed on the gathered information. Existing programs were time-intensive and included content irrelevant to Indigenous people. There was inconsistency in the content and delivery of gatekeeper training. Programs were also not sustainable for rural and regional Indigenous communities. Appropriate programs should be practical, relevant, and sustainable across all Indigenous communities, with a focus on the social, emotional, cultural and spiritual underpinnings of community wellbeing. Programs need to be developed in thorough consultation with Indigenous communities. Indigenous-led suicide intervention training programs are needed to mitigate the increasing rates of suicide experienced by Indigenous peoples living in rural and remote locations.
Justo, Edward R; Reeves, Benjamin M; Ware, Robert S; Johnson, Janelle C; Karl, Tom R; Alphonso, Nelson D; Justo, Robert N
2017-11-01
Population-based registries report 95% 5-year survival for children undergoing surgery for CHD. This study investigated paediatric cardiac surgical outcomes in the Australian indigenous population. All children who underwent cardiac surgery between May, 2008 and August, 2014 were studied. Demographic information including socio-economic status, diagnoses and co-morbidities, and treatment and outcome data were collected at time of surgery and at last follow-up. A total of 1528 children with a mean age 3.4±4.6 years were studied. Among them, 123 (8.1%) children were identified as indigenous, and 52.7% (62) of indigenous patients were in the lowest third of the socio-economic index compared with 28.2% (456) of non-indigenous patients (p⩽0.001). The indigenous sample had a significantly higher Comprehensive Aristotle Complexity score (indigenous 9.4±4.2 versus non-indigenous 8.7±3.9, p=0.04). The probability of having long-term follow-up did not differ between groups (indigenous 93.8% versus non-indigenous 95.6%, p=0.17). No difference was noted in 30-day mortality (indigenous 3.2% versus non-indigenous 1.4%, p=0.13). The 6-year survival for the entire cohort was 95.9%. The Cox survival analysis demonstrated higher 6-year mortality in the indigenous group - indigenous 8.1% versus non-indigenous 5.0%; hazard ratio (HR)=2.1; 95% confidence intervals (CI): 1.1, 4.2; p=0.03. Freedom from surgical re-intervention was 79%, and was not significantly associated with the indigenous status (HR=1.4; 95% CI: 0.9, 1.9; p=0.11). When long-term survival was adjusted for the Comprehensive Aristotle Complexity score, no difference in outcomes between the populations was demonstrated (HR=1.6; 95% CI: 0.8, 3.2; p=0.19). The indigenous population experienced higher late mortality. This apparent relationship is explained by increased patient complexity, which may reflect negative social and environmental factors.
Smirnov, Andrew; Kemp, Robert; Ward, James; Henderson, Suzanna; Williams, Sidney; Dev, Abhilash; Najman, Jake M
2016-09-01
Despite over-representation of Indigenous Australians in sentinel studies of injecting drug use, little is known about relevant patterns of drug use and dependence. This study compares drug dependence and possible contributing factors in Indigenous and non-Indigenous Australians who inject drugs. Respondent-driven sampling was used in major cities and 'peer recruitment' in regional towns of Queensland to obtain a community sample of Indigenous (n = 282) and non-Indigenous (n = 267) injectors. Data are cross sectional. Multinomial models were developed for each group to examine types of dependence on injected drugs (no dependence, methamphetamine-dependent only, opioid-dependent only, dependent on methamphetamine and opioids). Around one-fifth of Indigenous and non-Indigenous injectors were dependent on both methamphetamine and opioids in the previous 12 months. Psychological distress was associated with dual dependence on these drugs for Indigenous [adjusted relative risk (ARR) 4.86, 95% confidence interval (CI) 2.08-11.34] and non-Indigenous (ARR 4.14, 95% CI 1.59-10.78) participants. Unemployment (ARR 8.98, 95% CI 2.25-35.82) and repeated (> once) incarceration as an adult (ARR 3.78, 95% CI 1.43-9.97) were associated with dual dependence for Indigenous participants only. Indigenous participants had high rates of alcohol dependence, except for those dependent on opioids only. The drug dependence patterns of Indigenous and non-Indigenous people who inject drugs were similar, including the proportions dependent on both methamphetamine and opioids. However, for Indigenous injectors, there was a stronger association between drug dependence and contextual factors such as unemployment and incarceration. Expansion of treatment options and community-level programs may be required. [Smirnov A, Kemp R, Ward J, Henderson S, Williams S, Dev A, Najman J M. Patterns of drug dependence in a Queensland (Australia) sample of Indigenous and non-Indigenous people who inject drugs. Drug Alcohol Rev 2016;35:611-619]. © 2016 Australasian Professional Society on Alcohol and other Drugs.
Whop, Lisa J; Garvey, Gail; Lokuge, Kamalini; Mallitt, Kylie A; Valery, Patricia C
2012-01-01
In Queensland, Australia, the incidence of cancer (all cancers combined) is 21% lower for Indigenous people compared with non-Indigenous people but mortality is 36% higher. Support services play an important role in helping cancer patients through their cancer journey. Indigenous cancer patients are likely to face greater unmet supportive care needs and more barriers to accessing cancer care and support. Other barriers include the higher proportion of Indigenous people who live remotely and in regional areas, a known difficulty for access to health services. This study describes the availability of cancer support services in Queensland for Indigenous patients and relevant location. Using a set criteria 121 services were selected from a pre-existing database (n = 344) of cancer services. These services were invited to complete an online questionnaire. ArcGIS (http://www.esri.com/software/arcgis/index.html) was used to map the services' location (using postcode) against Indigenous population by local government area. Services were classified as an 'Indigenous' or 'Indigenous friendly' service using set criteria. Eighty-three services (73.6%) completed the questionnaire. Mapping revealed services are located where there are relatively low percentages of Indigenous people compared with the whole population. No 'Indigenous-specific' services were identified; however, 11 services (13%) were classed 'Indigenous-friendly'. The primary support offered by these services was 'information'. Fewer referrals were received from Indigenous liaison officers compared with other health professionals. Only 8.6% of services reported frequently having contact with an Indigenous organisation; however, 44.6% of services reported that their staff participated in cultural training. Services also identified barriers to access which may exist for Indigenous clientele, including no Indigenous staff and the costs involved in accessing the service, but were unable to address these issues due to restricted staff and funding capacity. Further research into the best models for providing culturally appropriate cancer support services to Indigenous people is essential to ensure Indigenous patients are well supported throughout their cancer journey. Emphasis should be placed on providing support services where a high Indigenous population percentage resides to ensure support is maintained in rural and remote settings. Further efforts should be placed on relationships with Indigenous organisations and mainstream support services and encouraging referral from Indigenous liaison officers.
Olukoya, D K; Asielue, J O; Olasupo, N A; Ikea, J K
1995-06-01
In an investigation into the problems of infections due to Staphylococcus aureus in Nigeria, 100 strains were isolated from various hospitals in Lagos. The strains were screened for the presence of plasmids and for susceptibility to antimicrobial agents. Plasmids were extracted by modification of the method of Takahashi and Nagono[1]. The plasmids were diverse in nature. The strains were found to be highly resistant to commonly prescribed antibiotics.
Deb, J K; Nath, N
1999-06-01
Corynebacteria are pleomorphic, asporogenous, Gram-positive bacteria. Included in this group are nonpathogenic soil corynebacteria, which are widely used for the industrial production of amino acids and detergents, and in biotransformation of steroids. Other members of this group are plant and animal pathogens. This review summarizes the current information available about the plasmids of corynebacteria. The emphasis is mainly on the small plasmids, which have been used for construction of vectors for expression of genes in these bacteria. Moreover, considerable information is now available on their nucleotide sequence, gene organization and modes of replication, which would make it possible to further manipulate these plasmids. Other plasmid properties, such as incompatibility and host range, are also discussed. Finally, use of these plasmids as cloning vectors for the expression of heterologous proteins using corynebacteria as hosts is also summarized to highlight the potential of these bacteria as hosts for recombinant DNA.
Plasmid and surface antigen markers of endemic and epidemic Legionella pneumophila strains.
Brown, A; Vickers, R M; Elder, E M; Lema, M; Garrity, G M
1982-01-01
Environmental and clinical isolates of Legionella pneumophila obtained from the Pittsburgh Veterans Administration Medical Center were studied for the presence of plasmids and for unique surface antigens. The majority of environmental isolates contained a single 80-megadalton plasmid. After an epidemic of nosocomial Legionnaires disease subsided in the Spring of 1981, plasmid-bearing environmental isolates persisted in the environment. Whereas L. pneumophila could not be reisolated from most sites with plasmidless isolates. During this epidemic the attack rate was highest on wards with plasmidless isolates. All clinical isolates were plasmidless. Strains were serotyped by the indirect immunofluorescence method with serum from a single immunized rat which was used both without absorption and after absorption with various plasmid-bearing and plasmidless isolates. These studies suggested that a plasmid-associated surface antigen was present and that the most common plasmidless environmental serotype was similar to the epidemic clinical serotype. Images PMID:7119096
Live, attenuated Salmonella typhimurium vectoring Campylobacter antigens.
Sizemore, Donata R; Warner, Beth; Lawrence, Julie; Jones, Amy; Killeen, Kevin P
2006-05-01
We describe the evaluation of three live, attenuated deltaphoP/Q Salmonella enteric serovar Typhimurium strains expressing PEB1 minus its signal sequence (PEB1-ss) from three different plasmids: a pBR-based asd plasmid, an arabinose-based runaway plasmid, which each expressed PEB1-ss in the bacterial cytosol, and a PEB1::HlyA fusion plasmid that directs secretion of PEB1-ss into the extracellular milieu. Serum IgG responses specific for PEB1-ss were induced by pBR-derived and runaway plasmids, with 100 and 90% seroconversion, respectively, at a 1:500 dilution of anti-sera as measured by Western blot analysis, while the PEB1-ss::HlyA fusion plasmid induced serum IgG in only 20% of the mice. Although significant levels of anti-PEB serum IgG were induced, no protection against oral Campylobacter jejuni challenge was observed.
Imipenem-resistance in Serratia marcescens is mediated by plasmid expression of KPC-2.
Su, W-Q; Zhu, Y-Q; Deng, N-M; Li, L
2017-04-01
Imipenem is a broad-spectrum carbapenem antibiotic with applications against severe bacterial infections. Here, we describe the identification of imipenem-resistant Serratia marcescens in our hospital and the role of plasmid-mediated KPC-2 expression in imipenem resistance. We used the modified Hodge test to detect carbapenemase produced in imipenem-resistant strains. His resistance can be transferred to E. coli in co-culture tests, which implicates the plasmid in imipenem resistance. PCR amplification from the plasmid identified two products consistent with KPC-2 of 583 and 1050 bp that were also present in E. coli after co-culture. The restriction pattern for both plasmids was identical, supporting the transfer from the S. marcescens isolate to E. coli. Finally, gene sequencing confirmed KPC-2 in the plasmid. Due to the presence of KPC-2 in the imipenem-resistant S. marcescens, we propose that KPC-2 mediates antibiotic resistance in the S. marcescens isolate.
Stimulating Parenting Practices in Indigenous and Non-Indigenous Mexican Communities
Ozer, Emily J.; Dow, William
2017-01-01
Parenting may be influenced by ethnicity; marginalization; education; and poverty. A critical but unexamined question is how these factors may interact to compromise or support parenting practices in ethnic minority communities. This analysis examined associations between mothers’ stimulating parenting practices and a range of child-level (age; sex; and cognitive and socio-emotional development); household-level (indigenous ethnicity; poverty; and parental education); and community-level (economic marginalization and majority indigenous population) variables among 1893 children ages 4–18 months in poor; rural communities in Mexico. We also explored modifiers of associations between living in an indigenous community and parenting. Key findings were that stimulating parenting was negatively associated with living in an indigenous community or family self-identification as indigenous (β = −4.25; SE (Standard Error) = 0.98; β = −1.58; SE = 0.83 respectively). However; living in an indigenous community was associated with significantly more stimulating parenting among indigenous families than living in a non-indigenous community (β = 2.96; SE = 1.25). Maternal education was positively associated with stimulating parenting only in indigenous communities; and household crowding was negatively associated with stimulating parenting only in non-indigenous communities. Mothers’ parenting practices were not associated with child sex; father’s residential status; education; or community marginalization. Our findings demonstrate that despite greater community marginalization; living in an indigenous community is protective for stimulating parenting practices of indigenous mothers. PMID:29295595
Stimulating Parenting Practices in Indigenous and Non-Indigenous Mexican Communities.
Knauer, Heather A; Ozer, Emily J; Dow, William; Fernald, Lia C H
2017-12-25
Parenting may be influenced by ethnicity; marginalization; education; and poverty. A critical but unexamined question is how these factors may interact to compromise or support parenting practices in ethnic minority communities. This analysis examined associations between mothers' stimulating parenting practices and a range of child-level (age; sex; and cognitive and socio-emotional development); household-level (indigenous ethnicity; poverty; and parental education); and community-level (economic marginalization and majority indigenous population) variables among 1893 children ages 4-18 months in poor; rural communities in Mexico. We also explored modifiers of associations between living in an indigenous community and parenting. Key findings were that stimulating parenting was negatively associated with living in an indigenous community or family self-identification as indigenous (β = -4.25; SE (Standard Error) = 0.98; β = -1.58; SE = 0.83 respectively). However; living in an indigenous community was associated with significantly more stimulating parenting among indigenous families than living in a non-indigenous community (β = 2.96; SE = 1.25). Maternal education was positively associated with stimulating parenting only in indigenous communities; and household crowding was negatively associated with stimulating parenting only in non-indigenous communities. Mothers' parenting practices were not associated with child sex; father's residential status; education; or community marginalization. Our findings demonstrate that despite greater community marginalization; living in an indigenous community is protective for stimulating parenting practices of indigenous mothers.
ERIC Educational Resources Information Center
Whitinui, Paul; McIvor, Onowa; Robertson, Boni; Morcom, Lindsay; Cashman, Kimo; Arbon, Veronica
2015-01-01
There is an Indigenous resurgence in education occurring globally. For more than a century Euro-western approaches have controlled the provision and quality of education to, and for Indigenous peoples. The World Indigenous Research Alliance (WIRA) established in 2012, is a grass-roots movement of Indigenous scholars passionate about making a…
Circle of Courage Infusion into the Alberta Indigenous Games 2011
ERIC Educational Resources Information Center
Marchand, Dawn Marie
2011-01-01
Thousands of indigenous people from across North America came to the Enoch Cree Nation for the Alberta Indigenous Games, six days of sport, education, and cultural awakening. The vision of the Alberta Indigenous Games is to recognize the value and potential of Indigenous culture and the young people. Activities include sports, indigenous arts,…
Isolation and characterization of novel mutations in the pSC101 origin that increase copy number
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Mitchell G.; Sedaghatian, Nima; Barajas, Jesus F.
pSC101 is a narrow host range, low-copy plasmid commonly used for genetically manipulating Escherichia coli. As a byproduct of a genetic screen for a more sensitive lactam biosensor, we identified multiple novel mutations that increase the copy number of plasmids with the pSC101 origin. All mutations identified in this study occurred on plasmids which also contained at least one mutation localized to the RepA protein encoded within the origin. Homology modelling predicts that many of these mutations occur within the dimerization interface of RepA. Mutant RepA resulted in plasmid copy numbers between ~31 and ~113 copies/cell, relative to ~5 copies/cellmore » in wild-type pSC101 plasmids. Combining the mutations that were predicted to disrupt multiple contacts on the dimerization interface resulted in copy numbers of ~500 copies/cell, while also attenuating growth in host strains. Fluorescent protein production expressed from an arabinose-inducible promoter on mutant origin derived plasmids did correlate with copy number. Plasmids harboring RepA with one of two mutations, E83K and N99D, resulted in fluorescent protein production similar to that from p15a- (~20 copies/cell) and ColE1- (~31 copies/cell) based plasmids, respectively. The mutant copy number variants retained compatibility with p15a, pBBR, and ColE1 origins of replication. Thus, these pSC101 variants may be useful in future metabolic engineering efforts that require medium or high-copy vectors compatible with p15a- and ColE1-based plasmids.« less
A cell engineering strategy to enhance supercoiled plasmid DNA production for gene therapy.
Hassan, Sally; Keshavarz-Moore, Eli; Ward, John
2016-09-01
With the recent revival of the promise of plasmid DNA vectors in gene therapy, a novel synthetic biology approach was used to enhance the quantity, (yield), and quality of the plasmid DNA. Quality was measured by percentage supercoiling and supercoiling density, as well as improving segregational stability in fermentation. We examined the hypothesis that adding a Strong Gyrase binding Site (SGS) would increase DNA gyrase-mediated plasmid supercoiling. SGS from three different replicons, (the Mu bacteriophage and two plasmids, pSC101 and pBR322) were inserted into the plasmid, pUC57. Different sizes of these variants were transformed into E. coli DH5α, and their supercoiling properties and segregational stability measured. A 36% increase in supercoiling density was found in pUC57-SGS, but only when SGS was derived from the Mu phage and was the larger sized version of this fragment. These results were also confirmed at fermentation scale. Total percentage supercoiled monomer was maintained to 85-90%. A twofold increase in plasmid yield was also observed for pUC57-SGS in comparison to pUC57. pUC57-SGS displayed greater segregational stability than pUC57-cer and pUC57, demonstrating a further potential advantage of the SGS site. These findings should augment the potential of plasmid DNA vectors in plasmid DNA manufacture. Biotechnol. Bioeng. 2016;113: 2064-2071. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Isolation and characterization of novel mutations in the pSC101 origin that increase copy number
Thompson, Mitchell G.; Sedaghatian, Nima; Barajas, Jesus F.; ...
2018-01-25
pSC101 is a narrow host range, low-copy plasmid commonly used for genetically manipulating Escherichia coli. As a byproduct of a genetic screen for a more sensitive lactam biosensor, we identified multiple novel mutations that increase the copy number of plasmids with the pSC101 origin. All mutations identified in this study occurred on plasmids which also contained at least one mutation localized to the RepA protein encoded within the origin. Homology modelling predicts that many of these mutations occur within the dimerization interface of RepA. Mutant RepA resulted in plasmid copy numbers between ~31 and ~113 copies/cell, relative to ~5 copies/cellmore » in wild-type pSC101 plasmids. Combining the mutations that were predicted to disrupt multiple contacts on the dimerization interface resulted in copy numbers of ~500 copies/cell, while also attenuating growth in host strains. Fluorescent protein production expressed from an arabinose-inducible promoter on mutant origin derived plasmids did correlate with copy number. Plasmids harboring RepA with one of two mutations, E83K and N99D, resulted in fluorescent protein production similar to that from p15a- (~20 copies/cell) and ColE1- (~31 copies/cell) based plasmids, respectively. The mutant copy number variants retained compatibility with p15a, pBBR, and ColE1 origins of replication. Thus, these pSC101 variants may be useful in future metabolic engineering efforts that require medium or high-copy vectors compatible with p15a- and ColE1-based plasmids.« less